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ARTICLE

Photo-induced ultrafast active ion transport
through graphene oxide membranes
Jinlei Yang1,2, Xiaoyu Hu 3, Xian Kong 3, Pan Jia1,2, Danyan Ji1,2, Di Quan1,2, Lili Wang1, Qi Wen1,

Diannan Lu 3, Jianzhong Wu3,4, Lei Jiang1 & Wei Guo 1

Layered graphene oxide membranes (GOM) with densely packed sub-nanometer-wide

lamellar channels show exceptional ionic and molecular transport properties. Mass and

charge transport in existing materials follows their concentration gradient, whereas attaining

anti-gradient transport, also called active transport, remains a great challenge. Here, we

demonstrate a coupled photon-electron-ion transport phenomenon through the GOM. Upon

asymmetric light illumination, cations are able to move thermodynamically uphill over a broad

range of concentrations, at rates much faster than that via simple diffusion. We propose, as a

plausible mechanism, that light irradiation reduces the local electric potential on the GOM

following a carrier diffusion mechanism. When the illumination is applied to an off-center

position, an electric potential difference is built that can drive the transport of ionic species.

We further develop photonic ion switches, photonic ion diodes, and photonic ion transistors

as the fundamental elements for active ion sieving and artificial photosynthesis on synthetic

nanofluidic circuits.
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Liquid processing of colloidal 2D materials provides a facile
and scalable way to produce membrane materials with
densely packed sub-nanometer-wide channels for sustain-

able energy, environmental, and healthcare applications1–8. Novel
transport phenomena occurred in the angstrom range allows fast
and precise sieving of ionic and molecular species through the
interstitial space between restacked 2D nanosheets9,10. However,
mass and charge transport in existing membrane materials fol-
lows their concentration gradient11,12. Attaining anti-gradient
transport (viz., active transport), as effective as natural
counterparts13,14, remains a great challenge in fully abiotic micro-
or nanosystems15,16.

Existing artificial molecular transport systems reside in lipid or
liquid membranes, and use the energy of light to pump protons or
metal ions through the membrane against their concentration
gradients17–19. However, the supported liquid membranes
become the bottleneck for practical applications, because they are
fragile and hardly compatible with other components20. More-
over, these molecular transport systems hinge on much larger
ion-binding shuttle molecules for transmembrane ion trans-
port21. In this case, a large portion of energy is spent on the
movement of the shuttle molecule, which makes the ion transport
process less efficient. A shuttle-free ion pumping system in solid-
state materials is therefore needed to solve such problems.

Here, we report the generation of a net cationic flow through
layered graphene oxide membrane (GOM) upon asymmetric light
illumination. Against a concentration gradient, cations are moved
thermodynamically uphill at rates orders of magnitude faster than
that via simple diffusion. We propose a plausible mechanism to
explain this phenomenon based on a carrier diffusion model and
molecular dynamics (MD) simulations. Following the mechan-
ism, we further develop photonic ion switches (PIS), photonic ion
diodes (PID), and photonic ion transistors (PIT) as the funda-
mental elements for active ion sieving and artificial photosynth-
esis on synthetic nanofluidic circuits.

Results
Device and transport phenomenon. The GOMs were fabricated
by vacuum filtration of liquid exfoliated GO nanosheets, followed
by a mild thermal annealing process to improve their water sta-
bility22. The GOM is about 5-μm-thick (Fig. 1a, b). Scanning
electron microscopy (SEM) observation shows a densely layered
structure (Fig. 1c). The interlayer spacing (d) of wet GOMs is
about 1.26 nm (Supplementary Note 1 and Supplementary Fig. 1).
Taking into account the thickness of GO sheet (~0.34 nm), the
effective height of the lamellar nanochannels is about 0.92 nm,
allowing for the transport of water and most hydrated ions9. A
piece of rectangular GO strip (15 mm × 9mm) was embedded in
a transparent polydimethylsiloxane (PDMS) elastomer (Fig. 1a).
The two sides of the sealed GOM were trimmed off to open the
lateral ends. Two solution reservoirs were built on the two ends of
the GOM. 3.5 ml ionic solution with concentrations of CL and CR

was filled in each reservoir. Ag/AgCl electrodes were used to
record the horizontal ion transport through the GOM23.

With equivalent electrolyte solution (KCl, 1 μΜ) placed in the
two reservoirs, we discover a synchronous photo-electric response
without externally applied voltage, when the GO strip was
irradiated locally by simulated sunlight from a xenon lamp
(Fig. 1d). The recorded ionic current flows from the non-
illuminated region to the illuminated region. For example, once
the illumination (light intensity ~100 mW cm−2) was applied to
the right 1/3 (in length) of the GO strip, the net ionic current
arises from zero to ~−2.27 nA within 30 s (Fig. 1e). The direction
of the photocurrent is reversed when the illumination shifts to the
left 1/3 (in length) of the GO strip, without much altering its
magnitude (~+2.54 nA). Surprisingly, if the light beam locates in
the middle of the GO strip, no clear photo-response can be found.

The negatively charged sub-nm-wide lamellar channels in
GOM are fully covered by the Debye screening layer24. The
photocurrent consists of nearly perfect cations (t+ > 0.97,
Supplementary Note 2, Supplementary Fig. 2 and Supplementary
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Fig. 1 Photo-induced ion transport through GOM. a Scheme of the device. b A photograph of the GO strip. c SEM image on the cross-section shows a
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Table 1). The photocurrent and the incident photon to current
efficiency measured at different light wavelength generally agree
with the absorption spectrum of GO dispersion (Fig. 1f,
Supplementary Note 3 and Supplementary Fig. 3). Direct heating
on part of the GOM does not generate net ion transport, and the
photocurrent is insensitive to the temperature from 4 to 40 °C
(Supplementary Note 4 and Supplementary Figs. 4–5). Although
the light illumination may slightly reduce GO, its influence is
limited (Supplementary Note 5, Supplementary Figs. 6–10, and
Supplementary Tables 2–3). These evidences suggest that the
observed photocurrent does not originate from the thermal
effect25.

Similar photo-response can be found in either neutral, acidic,
or alkali electrolytes (Fig. 1g). The magnitude of photocurrent
depends on light intensity. Besides GOM, the photo-induced ion
transport phenomenon can be found in other types of 2D layered
materials reconstructed from, for example, WSe2, MoS2, WS2,
and reduced GO (Supplementary Note 6 and Supplementary
Fig. 11). As control experiments, we also check the photo-
response in pH test papers and cellulose acetate membranes
(Supplementary Note 7 and Supplementary Fig. 12). No
detectable photo-response was found.

Anti-gradient transport. More intriguingly, under concentration
gradient, anti-gradient ion transport can be realized upon

asymmetric light illumination. For example, under a 10-fold
concentration gradient (CL= 10 μM, CR= 1 μM), the initial dif-
fusion current (Idiff) was about −3.67 nA (Fig. 2a). Upon light
illumination (100 mW cm−2) on the left 1/3 of the GO strip, the
ionic current soon goes across the zero line and further increases
in the reverse direction, leading to anti-gradient cation transport.
By contrast, if the concentration gradient goes in the reverse
direction (CL < CR), or if it is too high (e.g., 20-fold), no reversed
ionic current (anti-gradient transport) can be observed (Fig. 2a).

The photo-induced active ion transport can be further
confirmed by directly measuring the changes in ionic concentra-
tion in the two reservoirs via inductively coupled plasma optical
emission spectroscopy (ICP-OES, Supplementary Note 8). For
example, under a 10-fold concentration gradient, after light
illumination for 180 s, K+ concentration in the high-
concentration reservoir (CH) increases, while that in the low-
concentration reservoir (CL) declines (Fig. 2b and Supplementary
Table 4), showing anti-gradient transport. The K+ pumping rate
increases with the light intensity, and approaches 0.78 ± 0.04 mol
h−1 m−2 with light intensity of 120 mW cm−2. It also depends on
the illumination position (Supplementary Note 9 and Supple-
mentary Fig. 14) and the surface charge density of the GOM
(Supplementary Note 10 and Supplementary Fig. 15).

Prolonging the illumination time (Supplementary Note 11 and
Supplementary Fig. 16) or enhancing the light intensity
(Supplementary Note 12 and Supplementary Fig. 17) facilitates
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the anti-gradient ion transport. For a fixed illumination time of
30 s, we measured the photocurrent under a series of concentra-
tion gradients and with different light intensities (Fig. 2c). In the
bottom-right part of the dashed line (Idiff), the ion transport is
downhill, dissipating the concentration difference. While, in the
upper-left part of the dashed line, the ion transport is against the
concentration gradient, showing ion-pumping effect. Under lower
concentration gradient, the anti-gradient ion transport can be
realized with lower light intensity. But under higher concentra-
tion gradient, the minimum light intensity for anti-gradient ion
transport should exceed a threshold value and rise with the
concentration gradient.

Verified by ICP measurements, the photo-induced ion
pumping against 10-fold concentration gradient (10/1 μM) can
be achieved with many types of mono- and divalent ions (Fig. 2d
and Supplementary Tables 5–6). Although having larger hydra-
tion radius, the pumping rate for divalent ions can be as high as
the monovalent ions. Additionally, for ionic species larger than
4.5 Å, no effective changes in ionic concentration were found in
both reservoirs. The cut-off size is quantitatively in agreement
with the diffusion-driven ion permeation experiments9, and in
accord with the effective height of the GO nanochannels (~0.92
nm). Considering the cross-sectional area (0.045 mm2) and the
length (15 mm) of the GOM, the estimated ion permeation rate
via classical diffusion under a 10 μM concentration difference is
~10−5 mol h−1 m−2, which is about 5 orders of magnitude lower
than the measured ion pumping rates over a broad concentration
range of 1–100 μM (Supplementary Fig. 13).

Working principle. The observed net ion transport directly cor-
relates with a concomitant electric potential difference on GOM
(Supplementary Note 13 and Supplementary Figs. 18–20)26. The
photo-excited electrons and holes in the illuminated area would
diffuse to the non-illuminated area driven by their concentration
gradients (Supplementary Figs. 21–23). For GO-based materials,
the diffusivity and mobility of holes are higher than that of the
electrons (Supplementary Table 7). An electric potential difference
is therefore established across the GOM via a diffusion-controlled
charge separation27. We further develop a one-dimensional con-
tinuum model to quantify the mechanism (Supplementary
Note 14)28. Asymmetric carrier diffusion in GO layers results in
low electric potential in the illuminated area. If the illumination
was applied to the central part, the electric potential distribution is
symmetric and balanced between the two ends (Fig. 3a, middle).
Otherwise, it leads to an electric potential difference (ΔV) (Fig. 3a,
left and right), whose polarity and magnitude depends on the
illumination position and light intensity (Supplementary Figs. 24
and 25). From the model, one can see that ΔV is a direct con-
sequence of asymmetric carrier diffusion. Meanwhile, carrier
recombination facilitates the generation of ΔV (Supplementary
Note 15 and Supplementary Fig. 26).

Furthermore, we applied the light-induced redistribution of the
charge profile on a model GO nanochannel to elucidate the
generation of net ionic flow with MD simulations (Supplementary
Note 16). The lamellar nanochannel (length= 10.0 nm, width=
3.2 nm, height= 1.3 nm, Supplementary Fig. 27) connected two
solution reservoirs. The initial ionic concentrations were equal
(1.0 M) in both reservoirs. We find asymmetric light illumination
in vertical direction induces a horizontal cationic flow through
the lamellar nanochannel (Fig. 3b). The direction of the ionic flow
depends on the illumination position, from the non-illuminated
region to the illuminated region (Supplementary Fig. 28), in
accord with the experimental observations (Fig. 1e). The K+

transport rate approaches 2.2 × 108 ions s−1 with light intensity of
100 mW cm−2. Under light illumination, the GO nanochannel

remains perfectly cation-selective (t+ → 1, Supplementary Fig. 29).
A positive correlation is found between the photocurrent and the
surface charge density on GO sheets. The model is able to
reproduce the above experimental observations. Both the photo-
induced electric potential difference and the ionic current highly
depend on the illumination position and light intensity (Fig. 3c,
d). Under concentration gradient, the light-induced ion transport
can counterbalance the diffusion current (Fig. 3e, f). Beyond a
threshold light intensity, the ionic flow can be reversed against the
concentration gradient. Detailed model parameters are summar-
ized in Supplementary Note 17 and Supplementary Tables 8–9.

Furthermore, we experimentally applied an electric potential
distribution along the GOM to simulate the influence of light, and
confirm the generation of a net ionic current (Supplementary
Note 18 and Supplementary Figs. 30–31). To achieve long-range
transport, inter-sheet carrier hopping should be considered
(Supplementary Note 19). While the multi-sheet model gives a
more precise description to the inter-sheet carrier transport and
refines the electric potential profile, both models render an
excellent support to the experimental observations (Supplemen-
tary Fig. 32). The main conclusions in Fig. 3 are unaffected. More
intriguingly, we find that, under a transmembrane concentration
difference of 10−5 M, the predicted ion pumping rate from the
simplified model can be also 5 orders of magnitude higher than
the estimated ion permeation rate from classical diffusion
(Supplementary Note 20, Supplementary Fig. 33, and Supple-
mentary Table 10).

Discussion
Following this mechanism, we develop three types of funda-
mental elements for light-controlled nanofluidic circuits, termed
PIS, PID, and PIT. As shown in Fig. 4a, upon asymmetric illu-
mination, the photo-induced potential difference can be used to
counterbalance an electric voltage in the same direction, and
thereby blocks the transmembrane ionic current, forming a per-
fect switch-off state. The on–off ratio approaches 103–104. By
synergistically operating the light and the alternating electric field,
one can use the asymmetric light illumination to block the ionic
current at only desired voltage polarity (Fig. 4b, Supplementary
Note 21, and Supplementary Fig. 34), forming a highly efficient
PID with rectification ratio up to ~104. The polarity of the PID
can be altered by changing the illumination position. Moreover,
the localized low potential in the illuminated area can be treated
as a photo-induced gate potential to control the horizontal ionic
conductance29, functioning as a PIT (Fig. 4c). From the output
characteristics and transfer curves (Fig. 4d), the source-drain
current (ISD) increases with light intensity. The PIT shows p-type
gating behavior. The photoresponsivity reaches up to 6.4 μAW−1

(Supplementary Fig. 35).
The generation of photocurrent and electric potential differ-

ence across the GOM is almost instantaneous upon light illu-
mination. But, it takes time to reach steady state (Supplementary
Note 22 and Supplementary Fig. 36). Due to the finite thickness
of the GOM, the intensity of light irradiation in the depth
direction was not homogeneous. Besides, to establish a steady-
state electric potential distribution upon light irradiation also
depends on the disorder of the GO assemblies30, as well as the
intra- and inter-sheet charge traps31. This complex process may
need more time to reach the equilibrium state. Similar results
were found in previous photoconductivity measurements on
macroscopic rGO membranes under continuous light
illumination32,33. The time scale approaches several tens of
seconds.

The photo-induced directional ion transport in 2D layered
materials provides a new way for remote, non-invasive, and active
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control of the transport behaviors in synthetic systems. Sub-
nanometer scale integration of atomically-thin 2D materials
enables fabrication of highly compact nanofluidic architectures
with extraordinarily high ionic pumping rates. By doping the 2D
nano-building-blocks with photosensitive elements or molecules,
their photo-responsiveness can be further extended for scalable
and more precise applications in, for example, active ionic siev-
ing, artificial photosynthesis, and modular nanofluidic
computation.

Methods
Device fabrication. GOMs were prepared by vacuum filtration and stabilized via a
thermal annealing process22. As schematically shown in Fig. 1a, the GO strip was
top-sealed with a piece of transparent PDMS elastomer in a two-compartment
electrochemical cell (made of Teflon) to avoid the leak of solution. Afterwards, the
two ends of the sealed GO strip were trimmed off to connect with the solution
reservoirs on the two sides. 3.5 ml ionic solution was filled in each reservoir. A pair
of Ag/AgCl electrodes was used to record the transmembrane ionic current.

Electrical measurements. Ionic current signals were recorded by a Keithley 2636B
source meter. No externally applied voltage was needed, otherwise specifically
mentioned. Light illumination was generated from a xenon lamp (Perfectlight
CHF-500W). A transparent window was applied above the GOM to select the
illumination position. The actual change in cation concentration in each reservoir
was analyzed by ICP-OES to determine the ion transport rate (Supplementary
Note 8).

Theoretical methods. A one-dimensional continuity model was adopted to cal-
culate the light-induced electric potential redistribution on GO surface, involving

time-dependent evolution of electric potential and carrier densities. Photo-excita-
tion, recombination, diffusion, and electro-migration were considered in the
model. The partial differential equations were numerically integrated with a time
step of 0.1 ps. Steady distribution was achieved once the maximum relative change
of carrier density was less than 10−9. More details can be found in Supplementary
Note 14.

MD simulation was conducted by NAMD package34. A 1.3-nm-height GO
nanochannel was placed between two solution reservoirs. The system dimensions
were 28.8 nm× 3.2 nm× 5.5 nm. The initial surface charge density was −25mCm−2

and uniformly distributed. The charge density distribution calculated from the above
model was then assigned to the MD model sheet to calculate the light-induced
redistribution of electric potential. The system was equilibrated in isothermal–isobaric
(NPT) ensemble under one atmosphere at 300 K. Then, the simulation was conducted
in canonical (NVT) ensemble for data collection. More details can be found
in Supplementary Note 16.

Data availability
The authors declare that the main data supporting the findings of this study are
contained within the paper. All other relevant data are available from the corresponding
author upon reasonable request.
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ionic current at one voltage polarity with ultrahigh rectification ratio up to 104. The polarity of PID depends on the illumination position. Error bars denote
standard deviation. c Photonic ion transistor (PIT). Current–voltage (ISD–VSD) curves in dark and under light illumination. Light illumination is used as a
photo-gate to control the ionic conductance between source and drain electrodes. d Transfer characteristics at VSD of 0.3, 0.6, and 1.0 V. The electrolyte
solutions were 1 μM KCl in (a)–(d)
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