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Barriers to front propagation in laminar, three-dimensional fluid flows

Minh Doan,1, ∗ JJ Simons,1 Katherine Lilienthal,1 Kevin Mitchell,2, † and Tom Solomon1, ‡

1Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837, USA
2School of Natural Sciences, University of California, Merced, CA 95344, USA

(Dated: July 28, 2017)

We present the first experiments on one-way barriers that block reaction fronts in a fully three-
dimensional (3D) fluid flow. Fluorescent Belousov-Zhabotinsky reaction fronts are imaged with
laser-scanning in a laminar, overlapping vortex flow. The barriers are analyzed with a 3D ex-
tension to burning invariant manifold (BIM) theory that was previously applied to 2D advection-
reaction-diffusion processes. We discover tube and sheet barriers that guide the front evolution.
The experimentally-determined barriers are explained by BIMs calculated from a model of the flow.

PACS numbers: 82.40.Ck, 47.52.+j, 47.10.Fg, 47.70.Fw

Numerous chemical, biological, atmospheric and
oceanic processes are characterized by the propagation
of a front that separates two different phases. In many of
these processes, the front propagation is strongly affected
by fluid flows in the system. This generalized advection-
reaction-diffusion (ARD) problem [1, 2] has applications
in a wide variety of systems, including microfluidic chem-
ical and biological devices [3, 4]; cellular- and embryonic-
scale biological processes [5]; oceanic-scale algal blooms
[6, 7]; the ignition stages of a supernova explosion [8]; and
the propagation of a disease in a mobile society [9]. Pre-
vious experiments [10–13] have identified dynamically-
defined, one-way barriers that block reaction fronts prop-
agating in a wide range of two-dimensional (2D), laminar
flows. These barriers have been explained theoretically
[10, 14–17] as burning invariant manifolds (BIMs) that
are generalizations of passive invariant manifolds [18–22]
that impede passive mixing in a flow. But most ARD
processes involve flows that are three-dimensional (3D).
The question of whether BIMs can be generalized to 3D
flows is important toward developing a comprehensive
theory of front propagation in ARD systems.

In this Letter, we present the first experimental study
of front propagation in a laminar, 3D fluid flow, along
with an extension of the BIM theory to account for the
additional spatial dimension. The extension from 2D to
3D is accompanied by several topological questions: (1)
Are there generalized BIMs that also act as barriers that
impede the motion of reaction fronts for 3D flows? (2)
What is the topology of these barriers – if they exist – for
a 3D flow? (3) Are the barriers one-way, similar to their
2D counterparts? (4) How does the structure of these
barriers depend on the flow and reaction-diffusion front
speeds?

The flow is a superposition of horizontal and vertical
chains of vortices, generated experimentally using a mag-
netohydrodynamic technique (Fig. 1). An electrical cur-
rent passes lengthwise through fluid in an optical-quality
quartz cell. The current interacts with a magnetic field
produced by two chains of five 3/4” Nd-Fe-Bo magnets,
one below and the other behind the cell. The magnets

FIG. 1: (Color online) Fluid cell, showing the magnetohy-
dronamic forcing and the resulting flow formed from the su-
perposition of a horizontal (red) and vertical (blue) chain of
vortices. The fluid channel measures 0.80 cm x 8.0 cm hori-
zontally with a height of 1.9 cm.

below the cell produce the horizontal vortex chain and
the magnets behind produce the vertical vortices. The
bottom and side magnets are aligned so that the super-
posed vortex chains line up.

The fluid in the cell is composed of the chemicals used
for the excitable Ruthenium (Ru)-catalyzed Belousov-
Zhabotinsky (BZ) chemical reaction[23–25]. The Ru in-
dicator is initially in its orange, reduced state, but when
triggered (either naturally or manually by inserting a sil-
ver wire), the indicator is oxidized, producing a green,
pulse-like, autocatalytic reaction front that propagates
with a speed V0 = 70µm/s in the absence of a flow.
The electrical current and imposed electrical field (< 0.1
V/cm) are small enough to avoid significant effects on
the front propagation speed [26]. Measurements of front
speeds without an electrical current also indicate a neg-
ligible effect from the permanent magnets [27]. We also
neglect curvature effects on front speeds [1].

Three-dimensional BZ patterns have been imaged
previously[28], but only for stagnant systems. These are
the first experiments to obtain full 3D imaging of the
time-evolution of BZ reaction fronts in a fluid flow. We
use a scanning, laser-induced fluorescence technique that
takes advantage of the fact that the Ru indicator flu-
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oresces when reduced but not when oxidized. A 400-
mW, 405 nm laser beam is reflected off a pair of voltage-
controlled mirrors. One mirror oscillates rapidly, causing
the beam to scan horizontally through the cell; the other
mirror scans through 50 different heights in the cell. For
each height, the fluoresence of the reduced Ru is imaged
from above with an sCMOS video camera. The result is
a stack of 50 images which can be reconstructed into a
full 3D view of the evolving reaction front.
Particle image velocimetry (PIV) is used to character-

ize the flow. We model the flow as the superposition of
two vortex chains described by streamfunctions

ψ1(x, y, z) = −
1

π
cos(πx)W (y)f(z),

ψ2(x, y, z) = −
1

π
cos(πx)W (z)g(y).

(1)

The velocity field is derived from these streamfunc-
tions via ux(x, y, z) = ∂ψ1/∂y + ∂ψ2/∂z, uy(x, y, z) =
−∂ψ1/∂x, and uz(x, y, z) = −∂ψ2/∂x. In Eq. (1),
f(z) = 0.5(1 + 0.5[1 + cos(2πz)]) and g(y) = a(y +
0.5) exp[−b(y + 0.5)] + c (with a=46, b=7.8 and c=0.9)
are taper functions (fitted to the PIV data) to account for
variation of the vortex strengths with distance from the
magnets. The function W [29] depends on the boundary
conditions at the side and top/bottom surfaces. In the
simplest case with free-slip boundary conditions,

W (y) = cos(πy). (2)

In this paper, we use more realistic no-slip boundary con-
ditions [29], with

W (y) = cos(q0y)−A1 cosh(q1y) cos(q2y)+

A2 sinh(q1y) sin(q2y), (3)

with q0 = 3.973638032476331, q1 = 5.194998480822572,
q2 = 2.125929469473915, A1 = 0.061508353836287,
and A2 = 0.103869826106854. In Eq. (1), the
xyz-coordinates are non-dimensionalized by the vortex
length, height, and width, so that a single vortex occu-
pies a unit cell. Similarly, the resulting fluid velocities
are non-dimensionalized by the maximum velocity of the
second vortex chain.
We define a dimensionless front propagation speed

v0 ≡ V0/U , where U is the maximum (dimensionful) fluid
velocity of the second vortex chain. Note that there is no
advective (passive) transport between adjacent vortices
in this flow.
Examples of evolving reaction fronts are shown in

Fig. 2. Two of the most dominant barriers are shown
in these sequences: a quarter-tube barrier that follows
an edge of the unit cell and forms an arch that spans two
neighboring vortices (Fig. 2a) and a large sheet-like bar-
rier that forms near the boundary between neighboring
vortices (Fig. 2b). Reactions propagating in a partic-
ular direction do not penetrate through these barriers

FIG. 2: (Color online) Sequences showing the evolution of
reaction fronts for the middle two unit cells (4.0 cm) of the
overlapping vortex flow. (a) v0 = 0.064; the evolving front
(viewed at an angle from above) is blocked by a quarter-tube,
arch-like barrier that spans two vortices. The leading edge of
this barrier is shown as a cyan curve in the 60 s image. (b)
v0 = 0.16; the evolving front (viewed at an angle from below)
is blocked by a scroll-shaped, sheet barrier, the edge of which
is shown in red in the 60 s image. Movie versions of these
sequences can be found online in Supplementary Material. (c)
and (d) Simulated burning invariant manifolds corresponding
to the barriers seen in (a) and (b). The dots show the burning
fixed points to which the BIMs are attached. The red (blue)
arrows show the stable (unstable) directions of the fluid flow
near the advective fixed point.

but must circumnavigate them, similar to reaction bar-
riers observed in previous 2D experiments. Note that
the sheet-like barrier (Fig. 2b) wraps into the left vortex.
A reaction front going to the left passes the advective
separatrix between the vortices, hits the vertical part of
this barrier and wraps around over the top of the vortex.
The front penetrates into the center of the left vortex
only because the barrier itself scrolls into the center.

Convergence of the experimental reaction fronts and
the one-way nature of these barriers can be seen in Figs. 3
and 4. Column (b) of both of these figures shows fronts
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FIG. 3: (Color online) Part of the quarter-tube, arch-like bar-
rier. (a) v0 = 0.16; (b) and (c) v0 = 0.064. The front left sur-
face corresponds to the green grid in Fig. 2(a). In (a) and (b),
the front enters the quarter-tube from the back and is blocked
by the tube-barrier as it moves in the −y direction near the
top surface. In (c), a front moving in the +y direction near
the top penetrates into the quarter-tube. Panels (d) and (e)
show numerically computed BIMs corresponding to the same
viewing region and v0 as columns a and b/c.

converging on – but not passing through – part of a BIM,
while column (c) shows fronts penetrating through the
BIMs in the opposite direction.

The locations of these barriers also depend on the
non-dimensional front progation speed v0, also shown in
Figs. 3 and 4. The barriers are farther away from the vor-
tex boundaries (where passive invariant manifolds reside)
for larger v0 (denoted by red boxes in each figure).

The topology of the barriers can be qualitatively un-
derstood by considering the Eulerian fixed points of the
simple free-slip flow given by Eq. (1) with W in Eq. (2).
The eight corners of each vortex cell are hyperbolic fixed
points with either two stable and one unstable directions
(SSU) or one stable and two unstable directions (SUU).
If triggered near an SSU fixed point (Fig. 5a), a reaction
front will flow outward with the unstable direction; it will
also propagate outward against the two stable directions,
until balanced by the incoming flow, where |u| = v0. The
result is a tube-like, one-way barrier (Fig. 5a) that con-
fines reactions propagating outward, but allows reactions

FIG. 4: (Color online) Part of the sheet (scroll) barrier. (a)
v0 = 0.064; (b) and (c) v0 = 0.16. The front right surface
corresponds to the green grid in Fig. 2(b). In (a) and (b),
a front above the barrier (partially drawn in cyan and red
curves) is blocked from propagating downward by the barrier.
In (c), a front propagating upward passes through the (one-
way) barrier. Panels (d) and (e) show numerically computed
BIMs corresponding to the same viewing region and v0 as
columns a and b/c. Compared to Fig. 2 (d), part of a second
BIM has also been plotted near y = −0.5.

propagating inward to penetrate the tube.

If triggered near an SUU fixed point (Fig. 5b), the re-
action will flow outward along the two unstable directions
and will also propagate outward against the single stable
direction until balanced by the incoming flow, |u| = v0.
The result is two one-way sheet barriers (Fig. 5b), each
of which blocks reactions going away from the SUU fixed
point.

To quantitatively analyze the behavior of reaction
fronts in a 3D flow, we extend the previous 2D BIM
theory [10–17], in which we directly model the motion
of an infinitesimal element of the reaction front. In 2D,
a front element is parameterized by two spatial coordi-
nates and a single orientation angle. In 3D, a minimal
model requires three spatial dimensions and two orien-
tation angles. However, it is computationally easier to
characterize the orientation of a front element using the
three xyz-components of its unit normal vector n. The
result is a 6D set of ODEs (with the 5D system embedded
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(a) (b)

FIG. 5: (Color online) (a) Cartoon of a tube-like reaction bar-
rier expected near an advective fixed point with SSU stability
and equal stable flow rates. (b) Cartoon of sheet-like reaction
barriers expected near an SUU fixed point.

as the invariant subspace |n| = 1 ):

dri
dt

=ui + v0ni,

dni
dt

=ni
∑

j,k

uj,knjnk −
∑

j

uj,inj , i, j, k = x, y, z,
(4)

where ui and ni are the components of the fluid velocity
field and unit normal, respectively, and uj,k is the partial
derivative of uj in the k direction. The first equation de-
notes motion of the front element due to advection (first
term) and burning, i.e., propagation of the front relative
to the fluid in the normal direction (second term). The
second equation denotes rotation of the front element due
to the flow.
A burning fixed point is a position r and orientation n

where dr/dt = dn/dt = 0 in Eq. (4). According to the
prior Fig. 5 discussion, these often occur near advective
fixed points, with two burning fixed points near an SUU
point and a circle of fixed points near an SSU point (with
equal unstable flow rates). See the black dots in Fig. 5.
The BIMs are calculated by integrating trajectories of
Eq. (4) away from the burning fixed points.
For comparison to the experiments, we use no-slip

boundary conditions, Eq. (3). Though the number and
positions of the burning fixed points are more compli-
cated than for Eq. (2), the same computational approach
generates the BIMs; see Figs. 2c and 2d. The BIM
in Fig. 2c is a quarter tube that flairs out away from
the burning fixed point (black dot), forming an arch
that mimics the experimental barrier in Fig. 2a. It also
matches one quarter of the cartoon in Fig. 5a, since the
BIM in Fig. 2c surrounds an SSU advective fixed point
on the edge of the domain. The quarter-tube geome-
try is especially clear in the cross-section Fig. 3e, which
corresponds to the experiments in Figs. 3b and 3c. Sim-
ilarly, Fig. 3d shows the BIM cross-section for the larger
v0 value, corresponding to Fig. 3a. Note that the larger
v0 produces a fatter tube, as in the experiments. Though
the tube BIM only blocks reactions propagating outward,
it can still act as a trip-wire for reactions initiated outside
the tube. A front that encounters a tube BIM penetrates
inside but then is trapped by the outward-blocking na-
ture of the BIM; see Fig. 3b, in which a reaction triggered

below the back of the tube penetrates into the BIM but is
stopped by the outward-blocking BIM as the front moves
in the −y direction near the top.

Comparing the numerical BIM in Fig. 2d to the ex-
periment in Fig. 2b, they both exhibit the same scroll
behavior. Near the boundary between the two vortices,
Fig. 2d also resembles the cartoon in Fig. 5b, having a flat
sheet-like surface normal to the fluid inflow direction x̂.
Figures 4d and 4e show cross-sections of the scroll BIM
for the two v0 values, comparable to the experiments in
Figs. 4a and 4b/c. Each theory figure actually shows two
BIMs, so close together they appear as one: the original
BIM from Fig. 2 and a second BIM in the gap between
the original BIM and the front left surface. As seen by
the red and cyan intersection curves, these BIMs show
the same scroll structure as the experiments, including
the fact that the larger v0 value creates a BIM closer to
the vortex center. For both the tube and scroll, the ex-
perimental and theoretical BIMs differ in their detailed
structure. But this is to be expected given the simple
analytical form of the fluid velocity field Eq. (1).

There are more BIMs in this system than observed
in these experiments. For example, symmetry dictates
that the BIM in Fig. 2d reflects about the midplane to a
second BIM on the right. However, this BIM is not seen
in Fig. 2b because the reaction fronts pass through it in
the allowed direction.

In summary, we experimentally visualized one-way
barriers that block the motion of reaction fronts in a
truly 3D laboratory-scale fluid flow. We developed a
3D extension of the burning invariant manifold theory,
used previously only in 2D, which provides a theoreti-
cal explanation and framework for studying these reac-
tion barriers. Using an explicit form of the flow field,
direct numerical computation shows that the shape of
the BIMs captures the essential geometry of the experi-
mentally measured barriers. This theory applies to much
more than chemical reactions; given any flow and any
process that produces a sharp propagation front (with
zero-flow propagation speed V0), the BIMs predicted by
Eq. (4) will identify one-way barriers that impede the
motion of that front. Ultimately, the success of the BIM
approach for identifying reaction front barriers in both
2D and now 3D flows suggests that this approach could
form the basis for a more comprehensive theory of front
propagation in fluid flows.
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