
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Geometric Constraint Removal and Related Problems

Permalink
https://escholarship.org/uc/item/3b17d37t

Author
Kumar, Neeraj

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3b17d37t
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Geometric Constraint Removal and Related

Problems

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Neeraj Kumar

Committee in charge:

Professor Subhash Suri, Chair
Professor Divy Agrawal
Professor Daniel Lokshtanov

March 2020

The Dissertation of Neeraj Kumar is approved.

Professor Divy Agrawal

Professor Daniel Lokshtanov

Professor Subhash Suri, Committee Chair

March 2020

Geometric Constraint Removal and Related Problems

Copyright c© 2020

by

Neeraj Kumar

iii

To my grandfather

iv

Acknowledgements

I will begin by thanking my advisor Prof. Subhash Suri for introducing me to research in

computational geometry and geometric shortest paths and helping me find a path short

enough to this dissertation. I am extremly grateful for his technical insights, constant

encouragement, invaluable feedback and kindness over the past five years. I would also

like to thank Prof. Daniel Lokshtanov for being on my committee and for the research

discussions on some of the problems presented in this dissertation. Huge thanks are also

due to Prof Divy Agrawal for being on my committee, and to John Hershberger for the

technical discussions during his visits to UCSB and his help during the summer of 2018

when I was staying in Portland.

I would also like to thank my collaborators Stavros Sintos for always being available

and keen to discuss research, and Sayan Bandyapadhyaya for all the research discussions

and friendship during his six-month visit to UCSB.

I am extremely grateful to all my friends who made life in Santa Barbara enjoyable.

Special thanks go to Aditya Maheshwari and Nhan Huynh who were my housemates and

closest friends for a big chunk of these five years. Thanks are also due to Pratik Soni,

Daniil Bochkov, Carol Tsai, Ryan Su, Isaac Mackey and Alex Jones for their friendship,

kindness and support. I am also thankful for my friends from Waterloo, specifically Vijay

Menon, David Szepesvari and Shreya Agrawal for passing the test of time and still keeping

in touch despite being separated by timezones. Special thanks are due to Christina Dee

for her support, kindness, humor and being a wonderful friend over all these years.

Finally, I would like to thank my family for years of unconditional love and support –

my parents for their hard work and sacrifices, my brother for his love and support, and

my grandparents for their blessings. I am forever grateful for all they have done.

v

Curriculum Vitæ
Neeraj Kumar

Education

2020 Ph.D. in Computer Science, University of California, Santa Barbara.

2015 Master of Mathematics (Computer Science), University of Waterloo,
Canada.

2010 Bachelors in Computer Science and Engineering, Indian Institute of
Technology, Varanasi, India.

Publications

1. The Maximum Exposure Problem

with Stavros Sintos and Subhash Suri at 22nd International Conference on Approxi-
mation Algorithms for Combinatorial Optimization Problems (APPROX) 2019, MIT,
USA.

Submitted to Computational Geometry : Theory and Applications

2. Computing a Minimum Color Path in Edge Colored Graphs

at Symposium of Experimental Algorithms (SEA) 2019, Kalamata, Greece.

3. Improved Approximation Bounds for the Minimum Constraint Removal
Problem

with Sayan Bandyapadhyaya, Subhash Suri and Kasturi Varadrajan at 21st Inter-
national Conference on Approximation Algorithms for Combinatorial Optimization
Problems (APPROX) 2018, Princeton, USA.

Also Appears in Computational Geometry : Theory and Applications

4. Computing Shortest Paths in the Plane with Removable Obstacles

with Pankaj K Agarwal, Stavros Sintos and Subhash Suri at 16th Scandinavian
Symposium and Wrokshops on Algorithm Theory (SWAT) 2018, Malmo, Sweden.

5. Shortest paths in the plane with Violations.

with John Hershberger and Subhash Suri at 25th European Symposium of Algorithms,
(ESA) 2017, Vienna, Austria.

Also Appears in Algorithmica

6. Counting Convex k-gons in an Arrangement of Line Segments

with Martin Fink and Subhash Suri at 28th Canadian Conference on Computational
Geometry (CCCG’16), Vancouver, Canada.

7. SiPTA: Signal Processing for Trace-based Anomaly Detection

MM Zeinali, MA Salem, N Kumar, G Cutulenco and S Fischmeister, EMSOFT ′14.

vi

Work Experience

Jun-Sep 2019 Facebook Inc., Cambridge, PhD Intern

Jun-Sep 2018 Intel Corporation, Hillsboro, Graduate Technical Intern

Jun-Sep 2016 Intel Corporation, Santa Clara, Graduate Technical Intern

May 2010 - Aug 2013 Mentor Graphics, India, Senior Member of Technical Staff

Miscellaneous

• Scholarships and Awards

− Distinguished Graduate Student Speaker (UCSB), 2018.

− Lead Teaching Assistant, Computer Science (UCSB), 2017-18.

− Outstanding Teaching Assistant (UCSB), 2015-16.

− Graduate Entrance Scholarship (UWaterloo), 2013.

• Teaching assistant

− Graduate: CS 235 (Computational Geometry , UCSB), CS 231 (Advanced
Algorithms , UCSB)

− Undergraduate: CS 130A, 130B (Algorithms and Data Structures, UCSB) CS341
(Algorithms, UWaterloo)

• External Reviewer for Conferences

− European Symposium on Algorithms (ESA) 2018

− Symposium on Computational Geometry (SoCG) 2019

− Knowledge and Data Discovery (KDD) 2019, 2020

• External Reviewer for Journals

− Information Processing Letters (IPL)

− Journal of Combinatorial Optimization (JOCO)

− ACM Transaction on Knowledge Discovery From Data (TKDD)

vii

Abstract

Geometric Constraint Removal and Related Problems

by

Neeraj Kumar

In a geometric optimization problem, the goal is to optimize an objective function

subject to a set of constraints induced by a family of geometric objects. When these

constraints render the problem infeasible or cause the objective function value to be

unacceptable, a natural course of action is to remove or relax some of the constraints,

without changing the problem formulation too much. In this dissertation, we study

natural formulations of two geometric optimization problems subject to a fixed budget on

the number of constraints that can be removed.

For most parts, our focus is on path finding problems in the plane in presence of

polygonal obstacles, where we are allowed to remove a small number of the obstacles. We

first consider the case when obstacles are overlapping such that no feasible path between

a given source s and destination t exists. Here, one would like to remove the minimum

number of obstacles so that there exists an obstacle-free s–t path. This problem is more

commonly known as minimum constraint removal (MCR), and is known to be NP-hard,

even when obstacles are axis-aligned rectangles. We design approximation algorithms for

MCR, which are based on solving the related problem of computing a minimum color

path in a colored graph.

Next, we consider the case when obstacles are disjoint (so a feasible path always

exists) but even the shortest such path is unacceptably long. For this case, we design

polynomial-time algorithms to compute a set of at most k obstacles removing which

reduces the original shortest path by maximum amount. An important requirement is

viii

that the obstacles must be convex polygons.

Finally, we consider another geometric optimization problem called maximum exposure.

Here, we are given a set of points P and a set of ranges R covering them, and we would

like to remove a subset R′ of at most k ranges so as to ‘expose’ (or uncover) a maximum

number of points. Our work here deals with designing approximation algorithms.

ix

Contents

Curriculum Vitae vi

Abstract viii

1 Introduction 1
1.1 Problems Studied and Contributions . 2
1.2 Organization of Chapters . 7
1.3 Permissions and Attributions . 8

2 Minimum Color Path in Graphs 9
2.1 Hardness of Approximation . 10
2.2 Improved Hardness of Approximation . 13
2.3 Approximation Algorithms . 24
2.4 Bibliographic Notes . 30

3 Minimum Constraint Removal (MCR) 31
3.1 An Approximation Framework . 33
3.2 Application to Geometric Objects . 36
3.3 Hardness of Approximation . 44
3.4 Bibliographic Notes . 52

4 An O(logn) Approximation for MCR 54
4.1 Color Separators . 55
4.2 An LP Formulation . 58
4.3 Structural Properties of Color Separators 60
4.4 An O(log |C|)-Approximation Algorithm 67
4.5 Computing a Min-Color Separator . 72

5 Shortest Paths with Removable Obstacles 78
5.1 Properties of k-paths . 80
5.2 Shortest Path Map SPM k: Properties and Bounds 85
5.3 Computing SPM k . 99

x

5.4 Bibliographic Notes . 103

6 Shortest Paths with Weighted Obstacle Removal 104
6.1 NP-hardness . 106
6.2 A Simple (1 + ε)-Approximation Algorithm 109
6.3 A Faster (1 + ε)-Approximation Algorithm 111
6.4 Shortest Path Queries . 122
6.5 Stochastic Shortest Path . 127
6.6 Bibliographic Notes . 129

7 The Maximum Exposure Problem 130
7.1 Hardness of Max-Exposure . 133
7.2 A Bicriteria O(k)-approximation Algorithm 137
7.3 A PTAS for Unit Square Ranges . 140
7.4 Extensions and Applications . 161
7.5 Bibliographic Notes . 164

8 Conclusion and Open Problems 166

Bibliography 169

xi

Chapter 1

Introduction

In its most generic form, an optimization problem refers to the problem of finding the

best solution from a space of feasible solutions. Optimization problems are everywhere,

from deciding what transit option to take, to financial planning, we instinctively solve

optimization problems on a regular basis. Quite naturally, due to its significance to

computing, the study of optimization problems continues to be one of the most well-

explored areas in computer science. Algorithms for combinatorial optimization problems

such as the shortest path in a graph, minimum spanning tree among many others are

concepts so fundamental that they have been part of introductory algorithm courses for

decades. Moreover, such algorithms have found applications in a large number of areas,

such as, networking, robotics, circuit design, machine learning to name a few.

More formally, in an optimization problem, we are given some objective function

f , a set of constraints that restrict the space of feasible solutions, and our goal is to

find a solution xopt such that the value f(xopt) is optimized. Geometric optimization

refers to a subclass of these problems where the underlying constraints are induced by a

family of geometric objects. As an example, consider the shortest path problem in the

plane : given a set of obstacles (modeled as polygons), a source point s and target t, we

1

Introduction Chapter 1

want to compute a minimum length path from s to t that does not intersects any of the

obstacles. In other words, the obstacle polygons restrict the space of all feasible s-t paths.

Linear programming, Euclidean TSP, clustering are some other well-known geometric

optimization problems. Over the years, researchers have designed a number of algorithms

to efficiently compute the optimal solutions for various geometric optimization problems.

However, an equally important question to consider is what happens if there is no feasible

solution or if the feasible solution value is unacceptable. Indeed, a natural course of action

is to relax or remove some of the constraints, but finding out which constraints to remove

turns out to be a challenging optimization problem by itself.

In this dissertation, we consider geometric optimization problems with a fixed budget

on the number of constraints we can remove. Our focus is on path finding and exposure

problems in the plane where constraints are defined by geometric objects, and therefore

removing a constraint essentially means deleting an object from the input. Clearly, every

set of objects that are deleted corresponds to an optimal solution value x′opt that optimizes

the value f(x′opt) in the modified instance. We would like to find the set of objects to

delete that optimizes f(x′opt) over all such choices. If n is the number of objects and k is

the budget, one can indeed try all possible
Ä
n
k

ä
choices, and return the one that optimizes

the objective function value. The challenge however is to do this in a computationally

efficient way.

1.1 Problems Studied and Contributions

In this section, we present a high level overview of the problems studied in this

dissertation and our contributions to them.

2

Introduction Chapter 1

1.1.1 Minimum Constraint Removal (MCR)

Suppose we are given a set S of possibly overlapping obstacles in the plane, and two

fixed points s and t. Then depending on the arrangement of obstacles, it is possible that

there is no feasible (obstacle-free) path from s to t. In the minimum constraint removal

problem, our goal is to find the smallest set of obstacles S ′ ⊆ S to remove so that there is

an obstacle-free path from s to t. (See also Figure 1.1).

s

t

s

t

(a) (b)

Figure 1.1: (a) An example of MCR with rectangular obstacles. At least one obstacle
must be removed to open a path from s to t. (b) Removing the obstacle shown in
dotted is sufficient.

The problem is known to be NP-complete even for simple obstacle shapes, such as

convex obstacles [1], line segments [2, 3, 4], or axis-parallel rectangles with aspect ratio

close to one [5]. A natural course of action is to consider approximate solutions with

provable guarantees. In particular, can we find a set of obstacles S ′ to remove such that

the number of obstacles in S ′ is at most some factor f of the optimal solution?

We show that this is indeed possible, and provide two approximation algorithms: one

with approximation factor f = O(
√
n) using relatively simpler techniques; and another

with f = O(log n) using a Linear programming formulation combined with some careful

rounding techniques. Both these algorithms build on the following initial observation of

translating MCR to a path finding problem on a colored graph.

3

Introduction Chapter 1

Min-Color Path Suppose we are given a graph G = (V,E) and a set of colors C, such

that each vertex v is assigned a set of colors χ(v) ⊆ C. Now, given two fixed vertices s and

t, the goal is to find a path from s to t that minimizes the total number of colors along

the path. In other words, we want to find a path π such that |⋃v∈π χ(v)| is minimized.

(See also Figure 1.2(a).)

s t
s

t

(a) (b)C = { , , , }

Figure 1.2: (a) An example of min-color path on a graph with color set C: optimal path
that uses two colors is highlighted. (b) Translating an instance of MCR to min-color
path : colors in the path corresponds to obstacles that are removed.

MCR to Min-Color Path We can now translate an instance of MCR to an instance

of minimum color path problem by constructing a graph on the arrangement formed

by the obstacles. The arrangement A(S) of S is a partition induced by the obstacles,

whose faces are the two-dimensional connected regions, and whose edges are segments

of the obstacle boundaries. We now define a planar graph GA whose vertices are in

one-to-one correspondence with the faces of the arrangement, and whose edges join two

neighboring faces. By associating each obstacle with a unique color, we obtain a version

of the minimum color path problem : an s–t path has exactly as many colors along it as

the number of obstacles it crosses. However, it is worth pointing out that the number of

vertices in GA can be quadratic in the size of the geometric input: a set of n geometric

obstacles, each with a constant number of boundary edges, can create an Ω(n2) size

arrangement. (See also Figure 1.2(b).)

4

Introduction Chapter 1

In order to design approximation algorithms, we first try to understand the complexity

of min-color path on graphs. For this problem, we obtain some hardness bounds, as well

as design some non-trivial approximation algorithms. Observe that MCR is equivalent

to solving a special case of min-color path : the underlying graph G is planar and

the set of vertices containing a given color are connected. As we will later see, that

planarity and color-connectivity are precisely the reason why one can design ‘good’

approximation algorithms for MCR. In all other cases, the problem remains hopelessly

hard to approximate.

1.1.2 Shortest Paths with Removable Obstacles

The next problem we consider is quite similar to MCR in the sense that given an

arrangement of obstacles S in the plane, we want to remove obstacles to find a good

path from s to t but with one important distinction: the obstacles are convex and non-

overlapping. This is motivated from real world applications in robotics, or urban planning,

where the obstacles are pairwise disjoint. Indeed, there always exists an s–t path but it

could be unacceptably long. Therefore, we want to remove a set of at most k obstacles

so that the shortest path length among remaining obstacles is minimized. (See also

Figure 1.3).

s

t

s

t

Figure 1.3: An example of shortest path among disjoint removable obstacles in plane.
Removing the two highlighted obstacles minimized the shortest path length for k = 2.

We show that this problem can be solved in polynomial time. In fact, we give an

5

Introduction Chapter 1

algorithm that runs in O(k2n log n) time which is optimal for k = O(1). Next, we consider

the case when each obstacle has a non-negative cost of removal and we are given a budget

C on the total cost of obstacles we can remove. Although solving this variant exactly

turns out to be NP-complete, we show that if we relax the cost budget to (1 + ε)C for

some fixed ε > 0, the problem can be solved in time polynomial in n and 1/ε.

1.1.3 Maximum Exposure

We now move to the final problem we consider in this dissertation called maximum

exposure which concerns with reliability of coverage of points in the plane by a family of

geometric objects. More formally, let S = (P,R) be a geometric set system, also called a

range space, where P is a set of points and each R ∈ R is a subset of P , also called a range.

We say that a point p ∈ P is exposed if no range in R contains p. The max-exposure

problem is defined as follows: given a range space (P,R) and an integer parameter k ≥ 1,

remove k ranges from R so that a maximum number of points are exposed. That is, we

want to find a subfamily R∗ ⊆ R with |R∗| = k, so that the number of exposed points in

the (reduced) range space (P,R \R∗) is maximized. (See also Figure 1.4).

⇒

Figure 1.4: An instance of max-exposure with rectangular ranges and its solution for k = 2.

We are primarily interested in range spaces defined by a set of points in two dimensions

and ranges defined by axis-aligned rectangles. We show that the problem is NP-hard

and assuming plausible complexity conjectures is also hard to approximate even when

6

Introduction Chapter 1

rectangles in R are translates of two fixed rectangles. However, if R only consists of

translates of a single rectangle, we present a polynomial-time approximation scheme.

For general rectangle range space, we present a simple O(k) bicriteria approximation

algorithm; that is by deleting O(k2) rectangles, we can expose at least Ω(1/k) of the

optimal number of points. The bicriteria approximation bounds hold for any polygon

with a constant number of sides, as well as for arbitrary pseudodisks. Note that a set of

objects is a collection of pseudodisks, if the boundary of every pair of them intersects at

most twice.

1.2 Organization of Chapters

The remainder of this dissertation is organized as follows. In Chapter 2, we study

the min-color path problem on general graphs in detail. We establish some hardness

of approximation guarantees and design sublinear approximation algorithms for both

vertex-colored and edge-colored variants. Chapters 3 and 4 deal with approximation

algorithms for MCR. We outline the details of an O(
√
n) factor approximation algorithm

for MCR in Chapter 3, which is then subsequently improved to an O(log n)-approximation

in Chapter 4.

We study the problem of shortest path among removable obstacles in Chapters 5 and 6.

In Chapter 5, we design an O(k2n log n) algorithm for this problem. If we consider L1

(manhattan) distances, we can obtain a faster O(kn log2 n) algorithm which is discussed

in Chapter 6. This is then also used to obtain a fast (1 + ε)-approximation algorithm for

the variant when each obstacle has a non-negative cost of removal.

Finally, we study maximum exposure in Chapter 7 and conclude with Chapter 8.

7

Introduction Chapter 1

1.3 Permissions and Attributions

Most of the research presented in this dissertation have either already appeared in

conference proceedings (or journals) or is currently in the process of submission. The

specific details on chapters is as follows.

1. The content of Chapters 2 and 4 is mostly based on joint work with D. Lokshtanov

and S. Suri and is currently under the process of submission. Parts of Chapter 2

also appear as paper [6] in the proceedings of SEA’2019 published by Springer and

available online at https://doi.org/10.1007/978-3-030-34029-2_3

2. The content of Chapter 3 is based on joint work with S. Bandyapadhyaya, S. Suri

and K. Varadrajan, and parts of it have previously appeared in proceedings of

APPROX’2018 as paper [7].

3. The content of Chapter 5 is based on joint work with J. Hershberger and S. Suri,

and has been published in Algorithmica. The final authenticated version is available

online at https://doi.org/10.1007/s00453-020-00673-y

4. The content of Chapter 6 is based on joint work with P.K Agarwal, S.Sintos and S.

Suri and has have previously appeared in proceedings of SWAT’2018 as paper [8].

5. The content of Chapter 7 is based on joint work with S.Sintos and S. Suri and has

have previously appeared in proceedings of APPROX’2019 as paper [9].

8

https://doi.org/10.1007/978-3-030-34029-2_3
https://doi.org/10.1007/s00453-020-00673-y

Chapter 2

Minimum Color Path in Graphs

In this chapter, we will study the complexity of computing a min-color path in vertex

and edge colored graphs. Formally, a colored graph G = (V,E, C) is called vertex-colored

if every vertex v ∈ V is assigned a color set χ(v) ⊆ C. Similarly, if the colors lie on

edges, that is every edge e ∈ E is assigned a color set χ(e) ⊆ C, we will refer to it as an

edge-colored graph. The set of colors used by a path is simply the union of colorsets on

the vertices (or edges) of the path and our goal is to compute a min-color path, which is

a path that uses a minimum number of colors.

The min-color path problem is known to be NP-hard and also hard to approximate

within a factor of o(log n). This follows from a simple reduction from Set Cover. In

particular, let S be a collection of m sets prom an universe U with n elements., we can

construct an instance of min-color path on an edge-colored graph as follows. For each

ui ∈ U , create a vertex vi and place them sequentially from left to right in a line. Now,

for each set Sj ∈ S that contains an element vi, add an edge (vi−1, vi) and assign it the

color cj corresponding to j. If we set s = v1 and t = vn, a minimum color path must go

through all vertices (cover all elements) and uses a minimum number of unique colors

(sets), which is the set cover problem. The graph can easily be made vertex-colored by

9

Minimum Color Path in Graphs Chapter 2

adding vertices of degree two for each edge and assigning the color on the edges to the

newly added vertex.

Results and Chapter Organization

In this chapter, we focus on two things. First, we work towards designing better

hardness of approximation guarantees (lowerbounds). Then, we also work towards

designing sublinear approximation algorithms for vertex and edge-colored versions of

min-color path. The remainder of this chapter is organized as follows. In Section 2.1, by a

reduction from minimum k-union problem, we show that min-color path is conditionally

hard to approximate within a factor O(n1/8) of optimum for both vertex and edge-colored

graphs. It is important to note that the hardness of minimum k-union is based on the

so-called Dense vs Random conjecture [10] being true. In Section 2.2, we improve this

lowerbound to O(n1/4) for vertex-colored graphs and O(n1/3) for edge-colored graphs by

a construction that builds directly on the Dense vs Random conjecture. In Section 2.3,

we will discuss an O(
√
n)-approximation algorithm for vertex-colored graphs and an

O(n2/3)-approximation algorithm for edge-colored graphs.

2.1 Hardness of Approximation

In the minimum k-union problem, we are given a collection S of m sets over a ground

set U and the objective is to pick a sub-collection S ′ ⊆ S of size k such that the union of

all sets in S ′ is minimized. The problem is known to be hard to approximate within a

factor O(m1/4) assuming the Dense vs Random conjecture [10]. The conjecture has

also been used to give lower bound guarantees for several other problems such as Densest

k-subgraph [11], Lowest Degree 2-Spanner, Smallest m-edge subgraph [12], and Label

cover [13].

10

Minimum Color Path in Graphs Chapter 2

In the following, we will show how to transform an instance of minimum k-union

problem to an instance of min-color path on edge-colored graphs. The construction can be

easily extended to vertex-colored graphs by adding vertex of degree two for each edge. In

particular, given a collection S of m sets over a ground set U and a parameter k, we will

construct an edge-colored graph G = (V,E, C, χ) with two designated vertices s, t, such

that a solution for min-color path on G corresponds to a solution of minimum k-union on

S and vice versa.

s t

S1 S2 Sm

Figure 2.1: Reducing minimum k-union to min-color path. The dashed edges are
uncolored. The horizontal edge (vij , vi(j+1)) is assigned color corresponding to the set
Sj in all rows i.

We construct G in three steps (See also Figure 2.1).

• We start with a path graph G′ that has m+ 1 vertices and m edges. Next, we create

m− k + 1 copies of G′ and arrange them as rows in a (m− k + 1)× (m+ 1)-grid,

as shown in Figure 2.1.

• So far we only have horizontal edges in this grid of the form (vij, vi(j+1)). Next, we

will add diagonal edges of the form (vij, v(i+1)(j+1)) that basically connect a vertex

in row i to its right neighbor in row i+ 1.

• Finally, we add the vertices s, t and connect them to bottom-left vertex v11 and the

top-right vertex v(m−k+1)(m+1), respectively.

11

Minimum Color Path in Graphs Chapter 2

We will now assign colors to our graph G. For the set of possible colors C, we will use

the ground set U and assign every subset Sj ∈ S to horizontal edges of G from left to

right. More precisely,

• The diagonal edges of G are not assigned any color.

• Every horizontal edge that connects a node in column j to j + 1 gets assigned

the set of color Sj, for all j ∈ 1, 2, . . . ,m. That is χ(vij, vi(j+1)) = Sj, for all

i ∈ {1, 2, . . . ,m− k + 1}.

We make the following claim.

Lemma 1 Assuming that minimum k-union problem is hard to approximate within a

factor O(m1/4) of optimal, the min-color path problem cannot be approximated within a

factor of O(n1/8), where m is the number of sets in the collection and n is the number of

vertices in G.

Proof: Consider any s− t path π in G. Without loss of generality, we can assume

that π is simple and moves monotonically in the grid. This holds because if π moves

non-monotonically in the grid, then we can replace the non-monotone subpath by a path

that uses the same (or fewer) number of colors. Now observe that in order to get from

s to t, the path π must make a horizontal displacement of m columns and a vertical

displacement of m− k rows. Since the vertical movement is only provided by diagonal

edges and π can only take at most m− k of them, it must take k horizontal edges. If π

is the path that uses minimum number of colors, then the sets Sj corresponding to the

horizontal edges taken by π must have the minimum size union and vice versa.

Now suppose it was possible to approximate the min-color path problem within a

factor O(n1/8) of optimal. Then given an instance of minimum k-union, we can use

the above reduction to construct a graph G that has n = O(m2) vertices and run this

12

Minimum Color Path in Graphs Chapter 2

O(n1/8) approximation algorithm. This will give us a path π that uses at most O(m1/4)r

colors, where r is the minimum number of colors used. As shown above, r must also be

the number of elements in an optimal solution of minimum k-union. Therefore, we can

compute a selection of k sets that have union at most O(m1/4) times optimal, which is a

contradiction.

Note that we can also make G vertex-colored : subdivide each horizontal edge e by

adding a vertex ve of degree two, and assign the set of colors χ(e) to ve. Observe that

since the graph G we constructed above had O(n) edges, the same lower bound also

translates to min-color path on vertex-colored graph.

2.2 Improved Hardness of Approximation

The hardness construction used in the previous section was based on a reduction

from minimum k-union, which was shown to be hard based on the Dense vs Random

conjecture for hypergraphs. In this section, we provide a different lowerbound construction

that uses the conjecture directly, and achieves better hardness of approximation guarantees.

We begin by setting a few definitions and then formally stating the conjecture.

Definition 1 A hypergraph G = (X,H) is a r-uniform hypergraph over a set of vertices

X if every hyperedge h ∈ H is a subset of X with cardinality r. In a random hypergraph

G(n, p, r), every subset of size r is chosen to be a hyperedge with probability p.

Indeed, graphs are just 2-uniform hypergraphs and the random graph G(n, p) = G(n, p, 2).

The Dense vs Random conjecture is then stated as follows.

Dense vs Random Given a hypergraph G, constants 0 < α, β < r−1, and a parameter

k, we want to distinguish between the following two cases.

13

Minimum Color Path in Graphs Chapter 2

1. (Random) An instance of a r-regular hypergraph G = G(n, p, r) for p = nα−(r−1).

By construction, such a hypergraph has nα+1 edges in expectation and has average

degree approximately nα.

2. (Dense) An instance of a r-regular hypergraph G that is adversarially chosen so

that the densest subhypergraph of G over k vertices has average degree kβ.

Conjecture 1 (Dense vs Random [10]) For all constant r and 0 < α, β < r − 1,

sufficiently small ε > 0, and for all k such that k1+β ≤ n(1+α)/2, one cannot distinguish

between the dense and random cases in polynomial time with high probability when

β < α− ε.

Roughly speaking in order to obtain hardness guarantees for our problem using the

above conjecture, we will construct two instances of min-color path : one that is defined

by the dense case and another that is based on random case such that the min-color

path in the dense case uses fewer colors and random case uses more colors. Suppose, we

define the ‘distinguishing ratio’ d to be the least multiplicative gap between the minimum

number of colors on the random and dense instances. Then if there exists an algorithm

with an approximation factor significantly smaller than d, we would be able to use it to

distinguish between the dense and random cases thereby refuting the conjecture. Formally,

we have the following lemma.

Lemma 2 Suppose we are given the optimum solution values x∗d on dense and x∗r on

random instances of min-color path. Let d = x∗r/x
∗
d be the distinguishing ratio. Then,

if Dense vs Random is true, an approximation ratio significantly better than d is not

possible in polynomial time.

Proof: Suppose an approximation factor f � d can be obtained in polynomial time.

So in the dense case we can compute a solution with value at most x∗d · f . Note that

14

Minimum Color Path in Graphs Chapter 2

this is strictly less than x∗r, the value of the random solution. Therefore, we can use this

approximation algorithm to distinguish the dense and random cases and therefore refute

the Dense vs Random conjecture.

We now prove the following bound on the number of vertices in a subhypergraph of

G(n, p, r) which will be used later.

Lemma 3 Let G(n, p, r) be a random hypergraph. Then any subhypergraph of G with q

hyperedges contains Ω̃(min{q, (q/p)1/r}) vertices with high probability, where Ω̃ ignores

logarithmic factors.

Proof: Define z = min
ß
q ln lnn
3 lnn

,
(

q
ep lnn

)1/r™
, where ln denotes natural logarithm.

We will now show that the probability that any subhypergraph with at most z vertices

contains q edges is small.

Let H be any subhypergraph of G with z vertices. The probability that H has q

edges is the same as probability of q successes in N =
Ä
z
r

ä
trials. Recall that each trial

corresponds to selecting a subset of size r from vertices of H and has success probability

p. Therefore, we have:

Pr [H contains q edges] =

(
N

q

)
· pq · (1− p)(N−q)

≤
Ç
eN

q

åq
· pq since (1− p)(N−q) ≤ 1

≤
Ç
ezr

q

åq
· pq since N < zr

≤
Ç
ep

q
· zr
åq

≤
Ç

1

lnn

åq
since z ≤

Ç
q

ep lnn

å1/r

≤
Ä
e− ln lnn

äq
≤

Ä
e− ln lnn

ä3z lnn/ ln lnn
since z ≤ q ln lnn

3 lnn

15

Minimum Color Path in Graphs Chapter 2

≤ elnn
−3z ≤ 1

n3z

Applying union bound over all possible hypergraphs with z vertices, we get probability

that any z sized hypergraph contains q edges is at most nz · n−3z = 1/n2z. Union bound

over all (at most n) values of z gives us the final probability 1/n2z−1 ≤ 1/n for any z > 0.

2.2.1 Construction for Vertex-Colored Graphs

Given a hypergraph G = (X,H), we will construct an instance of min-color path

G = (V,E, C) as follows. Let ` be a parameter that we will fix later. We will use the

notation adj(h) to denote the set of vertices of X adjacent to hyperedge h ∈ H.

• Define the color set C = X, the set of vertices of the hypergraph.

• Add `+ 1 vertices v1, v2, . . . , v`+1 to G and arrange them sequentially in the plane

from left to right. (See also Figure 2.2.)

• Uniformly partition hyperedges H into ` groups as H1, H2, . . . , H`. That is, every

hyperedge is assigned a group with a probability 1/` independent of other hyperedges.

• For each hyperedge h ∈ Hi, add a vertex vh and connect it to vertices vi and vi+1.

Assign the colors corresponding to vertices of h in hypergraph G as χ(vh) = adj(j).

We will use n = |X|, the number of vertices and m = |H|, the number of hyperedges

of G. By our construction, we have |C| = n, |V | = m + ` and |E| = O(|V |). Next, we

prove the following lemma.

Lemma 4 Let H∗ ⊆ H be any subset of hyperedges of G with size q. If ` = q
3 lnn

, then

every group Hi ∈ {H1, H2, . . . , H`} contains at least one edge from H∗ w.h.p.

16

Minimum Color Path in Graphs Chapter 2

vi vi+1

vh

vh′

v1 v2

vh

vh′

v` v`+1

vh

vh′

H1 Hi H`

Figure 2.2: An example of the construction. The groups H1, Hi and H` are shown
shaded in gray.

Proof: This is the same as classic problem of assigning q edges (balls) to ` groups

(bins). We say that group Hi is H∗-empty if Hi ∩H∗ = ∅ (in other words Hi contains no

edge from H∗). Let us compute the probability that group Hi is H∗-empty.

Pr [Hi is H∗-empty] =

Ç
1− 1

`

åq
=

Ç
1− 1

`

å`· q
`

≤ e−
q
` = e−3 lnn =

1

n3

The probability that at least one of Hi, for all i ∈ {1, 2, . . . , `}, is H∗-empty is at most

`/n3 ≤ 1/n, since ` < m ≤ n2. Therefore, the probability that no group is H∗-empty

(contains at least one edge from H∗) is at least 1− 1/n.

We say that the colored graph G is dense if the underlying hypergraph G was sampled

from the dense case. Otherwise we say that G is random. Recall that if G was dense, it

contained a dense subhypergraph with kβ+1 edges. We have the following lemma.

Lemma 5 Let q = kβ+1 and suppose we set the number of groups ` = q
3 lnn

in our

construction (See also Figure 2.2). Morever let s = v1 be the source t = v` be the

destination. Then the following holds w.h.p :

1. min-color s–t path in dense case uses at most k colors

2. min-color s–t path in random case uses Ω̃(min{q, (q/p)1/r}) colors

17

Minimum Color Path in Graphs Chapter 2

Here p = n1+α−r is the probability of adding hyperedges in G(n, p, r).

Proof:

1. Since we are in the dense case, we know that G contains a subhypergraph over k

vertices with kβ+1 hyperedges. Let H∗ be the set of these hyperedges. Applying

Lemma 4, we get that each of the ` groups contain at least one edge from H∗.

Therefore, the colored graph G contains a path that only uses colors from vertices

of the edge set H∗. Since the number of vertices is k, there exists a path in G with

at most k colors.

2. Now we are in the random case. The colors on any simple path in the colored graph

G correspond to a subhypergraph of G with ` edges. Since hyperedges in G are

added with probability p, applying Lemma 3 on a hypergraph with ` = Ω̃(q) edges,

we have that any such path must have Ω̃(min{q, (q/p)1/r}) colors.

From Lemma 5, we have:

distinguishing ratio ≥ min{kβ+1, (kβ+1/n1+α−r)1/r}
k

= min

kβ,
(
kβ+1−r

n1+α−r

)1/r
 (2.1)

Lemma 6 For the choice of parameters α =
√
r − 1, β = α − ε and k = n

1√
r+1 , the

distinguishing ratio between dense and random instances is at least n1−ε (w.h.p ignoring log

factors) for some arbitrarily small ε > 0. Here n is the number of vertices of hypergraph

G which is r-uniform.

18

Minimum Color Path in Graphs Chapter 2

Proof: Substituting the values in Equation 2.1, we get:

kβ = n
√
r−1−ε√
r+1 = n

1− 2+ε√
r+1 = n1−ε′ where ε′ =

2 + ε√
r + 1

Similarly, we have

(
kβ+1−r

n1+α−r

)1/r

= n
√
r−1−ε/r√
r+1 = n1−ε′′ where ε′′ =

2 + ε/r√
r + 1

Setting ε← ε′ gives us the distinguishing ratio to be at least n1−ε. Note that this can be

made arbitrarily close to n by choosing a significantly large enough r.

It is easy to verify that the parameter values in Lemma 1 satisfy the requirements for

Conjecture 1. That is, we have 0 ≤ α, β < 1 and kβ+1 = n
√
r−ε√
r+1 ≤ n1+α. Since the number

of vertices of G is the same as number of colors in our construction of G, we have the

following theorem.

Theorem 1 Assuming Dense vs Random , min-color path on a colored graph G =

(V,E, C) cannot be approximated within a factor significantly better than O(|C|).

The above theorem shows that, it is quite unlikely to find a good approximation in

terms of the number of colors. We will now obtain a bound in terms of number of vertices

of G. Observe that the number of vertices in G is m+ ` = Θ(m) where m is the number

of hyperedges of G.

Therefore, We can rewrite Equation 2.1 by expressing the probability p = n1+α−r from

the random hypergraph G(n, p, r) in terms of the number of edges m. Specifically, we can

use n1+α = m, which gives p = m(1+α−r)/(1+α).

distinguishing ratio ≥ min

kβ,
(

kβ+1−r

m(1+α−r)/(1+α)

)1/r
 (2.2)

Similar to Lemma 1, we choose the parameters as follows.

Lemma 7 For the choice of parameters α = r−1
r+1

, β = α − ε and k = m
r+1
4r , the

19

Minimum Color Path in Graphs Chapter 2

distinguishing ratio between dense and random instances is at least m1/4−ε (w.h.p ignoring

log factors) for some arbitrarily small ε > 0. Here m is the number of vertices of hypergraph

G which is r-uniform.

Proof: Substituting the values in Equation 2.2, we get:

kβ = m
r+1
4r
·(r−1
r+1
−ε) = m

1
4
− 1+ε(r+1)

4r = m1/4−ε′ where ε′ =
1 + ε(r + 1)

4r

Similarly, we have(
kβ+1−r

m(1+α−r)/(1+α)

)1/r

= m
1
4
− 1+ε(r+1)/r

4r = m1/4−ε′′ where ε′′ =
1 + ε(r + 1)/r

4r

Setting ε← ε′ gives us the distinguishing ratio to be at least m1/4−ε. Note that this can

be made arbitrarily close to m1/4 by choosing a significantly large enough r.

Again it is easy to verify that the parameter values from Lemma 7 satisfy Conjecture 1.

More precisely, we have 0 < α, β < (r−1) and kβ+1 < kα+1 = m
r+1
4r
· 2r
r+1 =

√
m = n

1+α
2 .

Moreover, since the number of vertices in the colored graph G is Θ(m), we obtain the

following theorem.

Theorem 2 Assuming Dense vs Random , min-color path on a colored graph G =

(V,E, C) cannot be approximated within a factor significantly better than O(|V |1/4).

Observe that the min-color path instance G that we constructed is planar, and in fact

has treewidth two.

Color Connectivity A min-color path instance G = (V,E, C) is said to be color-

connected if the set of vertices corresponding to any given color in C forms a connected

component in G. Indeed, one can make G color-connected by adding a new vertex v∗

with the color set χ(v∗) = C and connecting it to all other vertices. Note that this only

increases treewidth of G by one, but makes the graph non-planar.

20

Minimum Color Path in Graphs Chapter 2

Corollary 3 Assuming Dense vs Random , min-color path G = (V,E, C) is hard

to approximate within a factor significantly better than O(|V |1/4 even on the following

restricted instances:

1. G has treewidth two and is not color-connected

2. G has treewidth three, is color-connected and is not planar

The problem can be solved in polynomial-time if G is color-connected and has treewidth

two, by a non-trivial dynamic programming algorithm. By a reduction from Vertex

Cover, the planar and color-connected case is NP-hard even when treewidth is three.

Later we will see that good approximation algorithms exist for planar and color-connected

instances of min-color path.

2.2.2 Construction for Edge-Colored Graphs

Since the colored graph that we constructed in previous section has linear number of

edges, the same bound of O(|V |1/4 also applies to edge-colored graphs. However, it seems

likely that one should be able to achieve better bounds by some alternative construction.

In this section, we show that a bound of |V |1/3 is indeed possible. The construction is

quite similar to the vertex-colored graphs with some important differences.

Given a hypergraph G = (X,H) sampled from dense or random cases, we construct

an edge-colored graph G = (V,E, C) as follows.

1. Uniformly partition hyperedges of G into ` groups H1, H2, . . . , H`, same as before.

The set of colors C = X, the vertices of the hypergraph.

2. Add ` + 1 vertices v1, v2, . . . , v`+1 from left to right as shown in Figure 2.3. Call

them connecting vertices.

21

Minimum Color Path in Graphs Chapter 2

3. For each group Hi, add a bipartite graph Gi = (Ui, Vi, Ei) such that |Ei| = |Hi| and

the number of vertices |Ui|+ |Vi| is as small as possible.

4. For the bipartite graph Gi = (Ui, Vi, Ei) corresponding to i-th group, do the

following:

(a) Connect every vertex in Ui to the left connecting vertex vi. Similarly, connect

every vertex in Vi to the right connecting vertex vi+1.

(b) Uniquely map every hyperedge h from Hi to an edge e of Ei. Assign colors to

this edge as χ(e) = adj(h).

viv1 v2 v`+1

H1 Hi H`

v`vi+1

u11

u12

u13

v11

v12

v13

ui1

ui2

ui3

vi1

vi2

vi3

u`1

u`2

u`3

v`1

v`2

v`3

Figure 2.3: An example of the construction. The groups H1, Hi and H` are shown
shaded in gray. The subgraph Gi in the i-th group is a bipartite graph with |Hi| edges
and fewest number of nodes.

Clearly, G is edge-colored. Let z = |V | be the number of vertices of G. Using

Conjecture 1, our goal now is to show that min-color path on G cannot be approximated

within a factor significantly better than O(z1/3). To that end, it suffices to find a choice

of parameters α, β, k such that the distinguishing ratio is Ω̃(z1/3−ε). As usual, we will use

n and m to be the number of vertices and edges of the hypergraph G. All calculations are

w.h.p and ignore log factors.

We will again apply Lemma 5 with q = kβ+1 and set ` = q/3 lnn which guarantees

that in the dense case, the min-color path uses at most k colors and in the random

case uses min{q, (q/p)1/r} (ignoring log and constant factors). In order to compute the

22

Minimum Color Path in Graphs Chapter 2

distinguishing ratio, we need to express the probability p in terms of z. Towards that

end, We prove the following lemma.

Lemma 8 Let the number of groups ` = z1−x for some 0 < x < 1, then the probability

p = z
(1+α−r)(1+x)

1+α

Proof: The expected number of hyperedges in each group is m/`. It follows that the

number of edges of the bipartite graph Gi of each group is also be m/` and therefore, the

number of vertices of Gi will be
»
m/` w.h.p ignoring log factors. Since the total number

of vertices is z, we have that the number of vertices in any given group zx. This gives us:

z2x =
m

`
=⇒ z2x =

m

z1−x
=⇒ m = z1+x

Substituting m = z1+x in p = m(1+α−r)/(1+α), we get the claimed value.

Moreover, kβ+1 = ` = z1−x. This gives us kβ = z
(1−x)β
1+β . The distinguishing ratio from

Equation 2.2 can now be restated as:

distinguishing ratio ≥ min

z (1−x)β
1+β ,

(
z(1−x)(1+β−r)/(1+β)

z(1+x)(1+α−r)/(1+α)

)1/r
 (2.3)

Similar to the previous cases, the following lemma can be verified by substituting the

parameters to Equation 2.3.

Lemma 9 For the choice of parameters α = r−1
r+1

, β = α− ε and x = 1/3, the distinguish-

ing ratio from Equation 2.3 is at least z1/3−ε (w.h.p ignoring log factors) for some small

ε > 0.

Proof: We have 1+α = 2r
r+1

, which gives 1+α−r = r(1−r)
r+1

. Moreover, β
β+1

= 1
2
−ε′ for

some ε′ proportional to 1/r. By similar calculations, 1+α−r
1+α

= 1−r
2

, and 1+β−r
1+β

= 1−r
2
− ε′′

23

Minimum Color Path in Graphs Chapter 2

for some ε′′ proportional to 1/r. Using these values, we get:

kβ = z
(1−x)β
1+β = z

2
3
·(1

2
−ε′) = z

1
3
−O(ε′)

Similarly, we have

(
z(1−x)(1+β−r)/(1+β)

z(1+x)(1+α−r)/(1+α)

)1/r

=

Ñ
z

2
3
·(1−r

2
−ε′′)

z
4
3
·(1−r

2
)

é1/r

= z
1
3
−O(ε′′)

It remains to see that this choice of parameters satisfies the requirements of Conjec-

ture 1. Clearly, 0 ≤ α, β < r − 1. Moreover, since z1+x = m, we have kβ+1 = z1−x =

m(1−x)/(1+x) = m1/2 = n(1+α)/2. Therefore, we obtain the following theorem.

Theorem 4 Assuming Dense vs Random , min-color path on an edge-colored graph

G = (V,E, C) cannot be approximated within a factor significantly better than O(|V |1/3).

2.3 Approximation Algorithms

We will now describe approximation algorithms to compute the min-color path. More

precisely, an algorithm with approximation factor α will compute a path that uses at

most α · k∗ colors, where k∗ is the number of colors used by a min-color path. Although

we do not know the value k∗ apriori, we know that it is an integer between 1 and |C|, the

maximum number of colors. Therefore, we will design an approximation algorithm for

computing an approximation for k-color path and use it to compute an approximation for

min-color path. Note that a k-color path is a path that uses exactly k-colors.

An algorithm is called an α-approximation algorithm for computing a k-color path if

it satisfies the following conditions – if there exists a k-color path, then the algorithm

must returns a path with at most αk color, otherwise, the algorithm returns an arbitrary

path. The following lemma is straightforward.

24

Minimum Color Path in Graphs Chapter 2

Lemma 10 If there exists an α-approximation algorithm to compute a k-color path then

there also exists an α-approximation algorithm for computing a min-color path.

Proof: We try all possible values k = 1, 2, . . . , |C| and let πk be the path returned

by the approximation algorithm for computing a k-color path for a given value of k.

Moreover, let πk∗ be the path returned by the k-color path approximation algorithm for

k = k∗. Let j be the value such that χ(πj) has smallest cardinality over all χ(πk). Clearly,

|χ(πj)| ≤ |χ(πk∗)| ≤ αk∗ and therefore πj is an α-approximation for computing a

minimum color path.

From Lemma 10, it follows that computing an approximation of a k-color path is

sufficient, and therefore in the rest of our discussion, we work towards that goal.

2.3.1 An O(
√
n)− Approximation for Vertex-Colored Graphs

One natural approach to consider is to simply ignore the colors altogether. Instead,

we assign each vertex v a weight equal to |χ(v)|, the cardinality of its color-set and find a

minimum weight path using Dijkstra’s algorithm. What this does is that we charge for

every occurrence of a color on the path. Indeed, if the colors on the path do not repeat at

most f times, this simple algorithm computes a f -approximation. However f = Θ(n), so

by itself this does not give a sublinear approximation. But what we can do now is apply

a filtering step: that identifies and pays for a ‘small’ number of colors that can occur on

the path ‘a lot of’ times. Now, we know that the colors do not repeat on the path as

much, so we can simply apply the Dijkstra’s algorithm as usual. The complete details are

shown in Algorithm 1. We now make the following claim.

Lemma 11 Algorithm 1 achieves an O(
√
n)-approximation for k-color path on vertex-

colored graphs.

25

Minimum Color Path in Graphs Chapter 2

Algorithm 1 Vertex-Colored Graph Approximation

1. Remove all vertices from G that have the number of colors |χ(v)| > k.

2. Discard all colors that occur on at least
√
n vertices.

3. Set weight of each vertex as |χ(v)| and return the minimum weight s–t path.

Proof: After all the vertices that contain more than k colors are removed, the total

number of occurrences of all colors is bounded by kn. Therefore, the total number of

colors that are discarded in Step 2 of the algorithm is at most kn/
√
n = k

√
n. Finally

in Step 3, its easy to see that any color on the minimum weight path can repeat at most

√
n times, so the k-color path can have weight at most k

√
n. Therefore, the minimum

weight path has weight at most k
√
n in the modified graph and if we include the at most

k
√
n discarded colors, the number of colors used by this path is at most 2k

√
n.

Combining Lemmas 10 and 11, we obtain the following theorem.

Theorem 5 Let G = (V,E, C, χ) be a vertex-colored graph, then there exists a polynomial

time O(
√
n)-approximation algorithm for computing a min-color path in G.

2.3.2 An O(n2/3)− Approximation for Edge-Colored Graphs

We now want to compute an approximation algorithm for k-color path on edge-colored

graph. We begin with the first natural approach : transform our problem into an instance

of k-color path on vertex-colored graphs by adding a vertex of degree two on each edge e

and assigning the colors |χ(e)| to this newly added vertex. Applying Algorithm 1 easily

gives an O(
»
|E|)-approximation for our problem, which is sub-linear in n if the graph is

sparse, but can still be Ω(n) in the worst case. So the challenging case is when the graph

is dense.

To address this problem, we apply the technique of Goel et al. [14] where the idea

26

Minimum Color Path in Graphs Chapter 2

is to partition the graph G into dense and sparse components based on the degree of

vertices (Step 1 of our algorithm). We consider edges in both these components separately.

For edges in dense component, we simply discard their colors, whereas for edges in the

sparse components, we use a pruning strategy similar to Algorithm 1 to discard a set

of colors based on their occurrence. Finally, we show that both these pieces combined

indeed compute a path with small number of colors. We start by making a couple of

simple observations that will be useful.

Without loss of generality, we can assume that all edges that contain more than k

colors have been removed from G as a k-color path will never use these edges. Since each

edge in G now contains at most k colors, we have the following lemma.

Lemma 12 Any s − t path of length ` uses at most k` colors and is therefore an `-

approximation.

This suggests that if there exists a path in G of small length, we readily get a good

approximation. Note that the diameter of a graph G = (V,E) is bounded by |V |
δ(G)

, where

δ(G) is the minimum degree over vertices in G. So if the graph is dense, that is, degree

of each vertex is high enough, the diameter will be small, and any path will be a good

approximation (Lemma 12).

We are now ready to describe the details of our algorithm. We outline the details for

the most general case when the number of colors on each edge is bounded by a parameter

z ≤ k. If z is a constant, the algorithm achieves slightly better bounds.

The input to our algorithm is a colored graph G = (V,E, C, χ), two fixed vertices s

and t, the number of colors k and a threshold β (which we will fix later) for deciding if a

vertex belongs to a dense component or a sparse component. Note that all edges of G

have at most z ≤ k colors on them.

It remains to show that the algorithm above indeed computes an approximately good

27

Minimum Color Path in Graphs Chapter 2

Algorithm 2 Edge-Colored Graph Approximation

1. First, we will classify the vertices of G as lying in sparse or dense component. To do
this, we include vertices of degree at most β to the sparse component and remove all
edges adjacent to it. Now we repeat the process on the modified graph until no such
vertex exists. Finally, we assign the remaining vertices to the dense component,
and restore G to be the original graph.

2. For all edges e = (u, v) such that both u, v lie in the dense component, discard its
colors. That is set color χ(e) = ∅.

3. Now, consider the set of edges that have at least one endpoint in the sparse
component, call them critical edges. Note that the number of such edges is at most
nβ.

4. Remove every color ci that occurs on at least
√

znβ
k

critical edges. That is, set
χ(e) = χ(e) \ {ci}, for all edges e ∈ E.

5. Let G′ be the colored graph obtained after above modifications. Using |χ(e)| as
weight of the edge e, run Dijkstra’s algorithm to compute a minimum weight s− t
path π in G′. Return π.

path. We will prove this in two steps. First, we make the following claim.

Lemma 13 The number of colors that lie on the path π in the modified colored graph G′

is at most
√
zknβ.

Proof: Observe that each color appears on no more than
√

znβ
k

edges of G′. Now

consider the optimal path π∗ in G that uses k colors. Since each of these k colors contribute

to the weight of at most
√

znβ
k

edges of π∗, the weight of the path π∗ in G′ is at most

(k ·
√

znβ
k

) =
√
zknβ. Therefore, the minimum weight s− t path π will use no more than

√
zknβ colors.

Lemma 14 The number of colors that lie on the path π in the original colored graph G

is O(zn
β

+
√
zknβ).

Proof: To show this, we will first bound the number of colors of π that we may have

discarded in Steps 2 and 4 of our algorithm.

28

Minimum Color Path in Graphs Chapter 2

Consider a connected dense component Ci. Now let Gi be the subgraph induced by

vertices in Ci. Since the degree of each vertex in Gi is at least β, the diameter of Gi is

at most ni
β

, where ni is the number of vertices in the component Ci. Observe that since

the weight of all edges of Ci is zero in G′, we can safely assume that π only enters Ci at

most once. This holds because if π enters and exits Ci multiple times, we can simply

find a shortcut from the first entry to last exit of weight zero, such a shortcut always

exists because Ci is connected. Therefore π contains at most ni
β

edges and uses at most

zni
β

colors in the component Ci. Summed over all components, the total number of colors

discarded in Step 2 that can lie on π is at most z
∑
i
ni
β
≤ zn

β
. Next, we bound the

number of colors discarded in Step 4. Observe that since each critical edge contains at

most z colors, the total number of occurrences of all colors on all critical edges is znβ.

Since we only discard colors that occur on more than
√

znβ
k

edges, the total number of

discarded colors is bounded by
Å
znβ

¡√
znβ
k

ã
=
√
zknβ.

Summing these two bounds with the one from Lemma 13, we achieve the claimed

bound.

The bound from Lemma 14 is minimized when β = (zn
k

)1/3. This gives the total

number of colors used to be O((zn
k

)2/3) · k) and therefore, an approximation factor of

O((zn
k

)2/3). If the number of colors z on each edge is bounded by a constant, we get

an approximation factor of O((n
k
)2/3). Otherwise, we have that z ≤ k, which gives an

O(n2/3)-approximation.

Theorem 6 There exists a polynomial time O(n2/3)-approximation algorithm for min-

color path in an edge-colored graphs G = (V,E, C, χ). If the number of colors on each

edge is bounded by a constant, the approximation factor can be improved to O((n
OPT

)2/3).

29

Minimum Color Path in Graphs Chapter 2

2.4 Bibliographic Notes

The min-color path problem was first studied by Yuan et al. [15] and was motivated

by applications in maximizing the reliability of connections in mesh networks. More

precisely, each network link is assigned one or more colors where each color corresponds to

a given failure event that makes the link unusable. Now if the probability of all the failure

events is the same, a path that minimizes the number of colors used has also the least

probability of failure. Therefore, the number of colors used by a minimum color path can

be used as a measure for ‘resilience’ of the network. This has also been applied in context

of sensor networks [16] and attack graphs in computer security [17]. The problem has

also gathered significant theoretical interest. If each edge of the graph is assigned exactly

one color (called its label), the problem is called min-label path and was studied in [18].

They gave an algorithm to compute an O(
√
n)-approximation and also show that it is

hard to approximate within O(logcn) for any fixed constant c, and n being the number of

vertices. Several other authors have also studied related problems such as minimum label

spanning tree and minimum label cut [19, 20].

30

Chapter 3

Minimum Constraint Removal

(MCR)

Given a set S of geometric objects as obstacles in the plane, a path is called obstacle-free

if it does not intersects the interior of any obstacle. In the minimum constraint removal

(MCR) problem, the goal is to remove a minimum-sized subset S ′ ⊆ S such that the

remaining set S \ S ′ admits an obstacle-free path between a source point s and the target

point t.

We briefly discussed MCR in Chapter 1 and showed how it could be cast as a

minimum color path problem by constructing a graph GA on the arrangement formed

by the obstacles. Moreover, we also showed that MCR is a special case of min-color

path problem, when the underlying graph is planar and the colors are connected. In the

previous chapter, we studied the minimum color path problem in graphs and gave an

O(
√
n)-approximation for it on vertex-colored graphs. Indeed, one can try to run this

approximation algorithm on the planar graph GA induced by the arrangement. However,

the number of vertices in GA can be quadratic in the size of the geometric input: a set of

n geometric obstacles, each with a constant number of boundary edges, can create an

31

Minimum Constraint Removal (MCR) Chapter 3

Ω(n2) size arrangement. Therefore, applying the approximation algorithm from Chapter 2

directly, only gives an O(n)-approximation. In this chapter, we aim to design a sublinear

approximation for MCR with geometric objects such as polygons and disks.

Results and Chapter Organization

In particular, we discuss the following results for MCR in this chapter. First, we

extend the approximation technique for min-color path from the previous chapter to

obtain an algorithmic framework for MCR in Section 3.1. Then we apply the framework

in Section 3.2 to obtain an O(
√
n)-approximation for rectilinear polygons and pseudodisks.

This is later extended to obtain an O(
»
nα(n))-approximation for polygonal objects

in Section 3.2.2. Here α(n) is the inverse Ackermann’s function and n denotes the

total number of vertices of the polygons. We also present an O(
√
n)-approximation for

rectilinear polygons and pseudodisks.

Finally, we also present some results showing the hardness of approximating MCR. In

particular, we show that the problem is NP-hard to approximate within a factor better

than 2 for either rectilinear or convex polygons. We also prove the APX-hardness of the

problem in a more restricted case, where the obstacles are axis-parallel rectangles. This is

discussed in Section 7.1.

Note that in Chapter 4, we will show how to obtain an O(log n)-approximation

for MCR by an alternative characterization via colored separators of a planar graph,

which significantly improves on the O(
√
n)-approximation presented in this chapter.

Nevertheless, the algorithms presented in this chapter are relatively simpler and the ideas

presented here might be useful in designing faster practical algorithms.

32

Minimum Constraint Removal (MCR) Chapter 3

3.1 An Approximation Framework

Roughly speaking, the approximation framework presented here is an abstraction of

the simple strategy of removing a ‘frequently occurring’ color from the graph that gave

us an O(
√
n)-approximation for vertex-colored graphs in Chapter 2. However, as we will

see later, this abstraction makes it easier to obtain better bounds for geometric objects as

one just needs to prove some combinatorial properties of the objects in order to obtain a

good approximation algorithm.

We are given a colored graph G = (V,E, C) and an integer k, and our goal is develop

an approximation algorithm for computing a k-color path in G. (Recall from Lemma 10,

that an α-approximation for k-color path gives an α-approximation for min-color path.)

The key idea behind our approximation framework is to define a notion of neighborhood

for the colors in C, and ‘discard’ the colors that have dense neighborhoods.

Definition 2 Let P be an arbitrary set of objects and β be a parameter. We define

neighborhood N : C → 2P to be a mapping from C to subsets of P that satisfies the

following properties.

1. (Bounded-Size Property) The size of N , defined to be the sum of cardinalities

of all neighborhoods,
∑
C∈C |N (C)|, is O(kβ2)

2. (Bounded-Occurrence Property) If there exists a k-color path in G, then there

also exists a k-color path π∗ in G such that, for any color C ∈ C, the number of

times that C appears on π∗ is at most O(|N (C)|).

The set P in the above definition can be any set of objects. For example, in min-color

path problem P is the set of vertices of the graph. In the case of MCR, P is a set of

points in the plane. We now describe our approximation algorithm which we will refer to

as Approx-Core.

33

Minimum Constraint Removal (MCR) Chapter 3

Algorithm 3 Approx-Core

1. Construct the neighborhood N (C) for each color C ∈ C.

2. For all C ∈ C, remove all occurrences of the color C from the graph G if |N (C)| ≥ β.
Let G′ be the modified graph after removing all such colors.

3. For every vertex v in G′, assign an integer weight |χ(v)| on v.

4. Compute a minimum weight path π from s to t in G′ using Dijkstra’s Algorithm.
Return π.

Lemma 15 Given the set P and a parameter β, the algorithm APPROX-CORE gives

an O(β)-approximation for the k-color path in G.

Proof: Assume that there exists a k-color path in G. Otherwise, the proof is trivial

as the algorithm always returns a path. Let C1 be the set of colors removed during step 2

of the algorithm, and C2 be the set of colors in G′ that appear on the path π returned by

the algorithm. Then, the total number of colors in G that may appear on π is at most

|C1|+ |C2|.

First we compute a bound on the size of C1. Observe that the neighborhood of each

color C ∈ C1 has size at least β. Therefore, we have:

∑
C∈C1
|N (C)| ≤

∑
C∈C
|N (C)|

=⇒ |C1| · β ≤ O(kβ2) By the bounded-size property of N

=⇒ |C1| ≤ ckβ for some constant c

Next, we compute a bound on size of C2 . Towards this end, observe that the

neighborhood N (C) of every color C in G′ has fewer than β colors. By the bounded-

occurrence property of the neighborhood N , there exists a k-color path π∗ in G such

that for each C ∈ C, the number of times that C appears on π∗ is at most O(|N (C)|).

34

Minimum Constraint Removal (MCR) Chapter 3

Therefore, it follows that any color C in G′ appears on π∗ at most O(β) times. In other

words, there exists a path in G′ that has weight at most c′kβ for another constant c′.

Therefore the number of colors used by the minimum weight path π is at most c′kβ.

Hence, the total number of colors in C that appear on π is at most |C1|+|C2| = (c+c′)·kβ,

which is an O(β)-approximation.

We obtain the following theorem.

Theorem 7 Given a colored graph G = (V,E, C) and integer k, suppose a neighborhood

N for G can be constructed in polynomial time that satisfies the bounded-size and bounded-

occurrence property. Then there exists a polynomial time algorithm that achieves an

O(β)-approximation for computing a k-color path in G.

Therefore, in order to achieve an approximation for the k-color path, it just suffices

to construct a neighborhood N , that satisfies the bounded-size and bounded-occurrence

properties. In the next section, we illustrate this construction for min-color path on

vertex-colored graphs.

3.1.1 Application to Minimum Color Path

In this section, we will apply the above framework to recreate O(
√
n)-approximation

for min-color path on a vertex-colored graph G = (V,E, C) with n vertices. Our goal is to

simply compute a neighborhood N for a k-color path in G such that N has bounded-size

O(kn) and satisfies the bounded-occurrence property. Using Lemma 10 and β =
√
n in

Theorem 7, an O(
√
n)-approximation follows.

We define neighborhood N (C) of each color C to be the set {v ∈ V | C ∈

χ(v) and |χ(v)| ≤ k}. The bounded-occurrence property is easily satisfied because

a k-color path πk will never visit vertices that contain more than k colors, and since πk is

35

Minimum Constraint Removal (MCR) Chapter 3

simple, each occurrence of a color C on the path can be uniquely charged to a vertex in

N (C). To see that the bounded-size property is satisfied, we note the following.

∑
C∈C
|N (C)| =

∑
v∈V :|χ(v)|≤k

|χ(v)| ≤ kn.

Application to Minimum Label Path. As another example application for the

framework, we consider a special case of min-color path when each edge has exactly one

color (called its label). This problem has been well studied [18, 19, 21] under the name

minimum label path. Hassin et al. [18] gave an O(
√
n)-approximation for this problem on

general graphs Using our framework and the following simple definition of neighborhood,

we can achieve an O(
»

n
OPT

)-approximation if the number of edges in G is O(n). Here

OPT is the number of labels used by any minimum label s-t path.

For the sake of applying the framework, we transform the input edge-colored graph

G = (V,E, C) into a vertex-colored graph H by adding a vertex corresponding to each

edge that subdivides the edge. The color corresponding to an old edge is moved to the

new vertex. Now, for each new vertex v that has color C, we include both neighbors

(old vertices) of v in H to the neighborhood of C. The bounded-occurrence property is

straightforward. For the bound on size, observe that an old vertex v can be in at most

degree(v) neighborhoods, so sum of cardinality of all neighborhoods is at most 2|E|. Since

|E| = O(n), the size of N is O(n) = O(n
k
·k). With β =

»
n/k, Theorem 7 and Lemma 10

give an O(
»

n
OPT

)-approximation.

3.2 Application to Geometric Objects

We now show how to approximate the MCR problem when the obstacles are geometric

objects such as constant-complexity polygons or disks. Recall that the approximation

36

Minimum Constraint Removal (MCR) Chapter 3

for vertex-colored graphs cannot be applied directly to the graph of the arrangement of

obstacles since the latter can have size Θ(n2). Instead, we first construct a colored graph

G such that an s–t path in the plane that removes the minimum number of obstacles

corresponds to a path in G that uses the minimum number of colors. We then construct

the neighborhood N for colors in G such that it satisfies the bounded-size and bounded-

occurrence properties. For technical reasons, the graph G we construct for the geometric

instances has colors assigned on edges—one can easily transform it into a vertex-colored

graph by adding a vertex corresponding to each edge.

Throughout this section, we assume that the obstacles are in general position, namely,

no three obstacle boundaries intersect at a common point, and the boundaries of any two

objects intersect transversally.

Any arrangement of obstacles in the plane can be partitioned into two distinct regions

namely the obstacles, and free space, that is the region of the plane not occupied by

obstacles. Without loss of generality, we assume that the points s and t lie in free space,

as we must remove all the obstacles that are incident to either s or t in order to find an

obstacle free s–t path. We say that a path π crosses an obstacle S if π intersects the

interior of S. Note that, as s and t lie in free space, if π crosses S, π must intersect the

boundary of S transversally.

Consider an optimal path π that removes the minimum number of obstacles. It is easy

to see that π will cross an obstacle S if and only if S was removed from input. Therefore,

removing an obstacle is equivalent to crossing it. In the following, we introduce the notion

of a k-crossing path.

Definition 3 A path π in the plane is called a k-crossing path if it crosses exactly k

obstacles.

It is easy to see that if each obstacle is assigned a unique color and we assign color

37

Minimum Constraint Removal (MCR) Chapter 3

to a path whenever it enters an obstacle, then a k-crossing path π uses exactly k colors.

Observe that although the space of k-crossing paths is infinite, we want to establish a one

to one correspondence between the path in the plane that crosses minimum number of

obstacles and a path in G that uses the minimum number of colors.

Towards this end, we simply let G to be the “dual” graph of GA induced by the input

arrangement A: each cell Ci of GA is associated with a vertex vi of G that is contained in

Ci, and any pair of neighboring cells Ci, Cj are joined by the edge vivj that only intersects

the shared boundary ∂Cij between the cells Ci and Cj. Note that the edge vivj is not

necessarily a straight line segment, it could be a curve segment in some cases. Due to

the general position assumption, ∂Cij is part of the boundary of a unique obstacle in S.

Therefore, we have that each edge of G intersects the boundary of a unique obstacle and

no two obstacles share an edge. Additionally, we make G directed by replacing each edge

{vi, vj} with two directed edges vi → vj and vj → vi. Next, we assign colors to edges of G.

Each obstacle in S corresponds to a color in C, so for any edge e = vi → vj ∈ E, we assign

to e the set of colors corresponding to all obstacles S such that vj lies in the interior of S

and vi does not lie in the interior of S. From our general position assumptions, it follows

that |S| is either 1 or 0. Roughly speaking, we assign a color when the edge enters into

the corresponding obstacle.

Note that the way G is defined, it is a plane graph and we consider its natural

embedding which is also planar. Since we assign colors when an edge of G enters an

obstacle, it is easy to see that a k-color path π in G corresponds to a k-crossing path

π′ in the plane. For the other direction, without loss of generality we can assume that

there exists a k-crossing path π′ that visits a cell in the arrangement at most once. This

holds because if not, we can always find a shortcut between two consecutive visits to the

same cell. Therefore given such a path π′ we can easily construct a path π in G by simply

concatenating the vertices corresponding to each arrangement cell intersected by π′ in

38

Minimum Constraint Removal (MCR) Chapter 3

order. Thus, we have the following immediate observation.

Lemma 16 Given a set S of obstacles in the plane, we can build an edge colored graph

G = (V,E, C) with two fixed vertices vs, vt such that:

1. if there is a k-color vs-vt path in G, then there is also a j-crossing s-t path in the

plane for some j ≤ k, and

2. if there is a k-crossing s-t path in the plane, then there is also a j-color path from

vs to vt in G for some j ≤ k.

We refer to such a graph G = (V,E, C) as a valid edge colored graph for the arrange-

ment. From the above discussion and using Lemma 10 and Theorem 7, we have the

following.

Lemma 17 Suppose we are given a valid edge colored graph G = (V,E, C) for an ar-

rangement of the set S of input obstacles in the plane. Moreover, given integer k, suppose

we can construct the neighborhoods N (S) for all obstacles S ∈ S in polynomial time such

that N has a total size of O(kβ2) and also satisfies the bounded-occurrence property, where

β is independent of k. Then, there exists a polynomial time algorithm that achieves an

O(β)-approximation.

In the following, given a set S of obstacles in the plane, we will show how to build

a sparse neighborhoods N (S) for all S ∈ S, such that the term β2 in total size of the

neighborhoods is close to linear in n.

3.2.1 Building a Sparse Neighborhood

Consider an edge e = vi → vj of G. We say that e enters the obstacle S if e intersects

the boundary of S and the cell Cj corresponding to the destination vertex vj of e is

39

Minimum Constraint Removal (MCR) Chapter 3

contained in S. This suggests a natural way of defining the neighborhood N (S): we

simply include all edges e that enter the obstacle S in the neighborhood N (S) of S. It

is easy to see that every occurrence of the color corresponding to an obstacle S can

be uniquely charged to an edge in N (S). Therefore N satisfies the bounded-occurrence

property.

Note that every edge of the arrangement is part of the boundary of a cell and due to

general position assumption, belongs to the boundary of exactly one obstacle. Therefore,

every edge of our graph G intersects the boundary of exactly one obstacle, and thus we

have the following observation.

Observation 1 Every edge of G is included in the neighborhood of at most one obstacle.

For the bounded-size property, by Observation 1, we have that the total neighborhood

size is |E|. However, |E| can be Ω(n2), so this directly is not useful for us. Therefore, the

primary challenge is to sparsify this neighborhood and in the rest of the discussion, we

work towards this goal.

One approach is to only consider the “shallow” edges e = vi → vj such that the

destination cells Cj have depth at most k (that is, Cj is contained in at most k obstacles).

That is, we define the neighborhood N (S) of obstacle S to be the set of all shallow edges

that enter S. The bounded-occurrence property still holds because a k-crossing path

cannot enter cells of depth more than k. By planarity, the number of shallow edges is

within a multiplicative constant of the number of cells with depth at most k. Indeed, if

obstacles are simpler shapes such as disks or pseudodisks, the number of cells with depth

at most k is known to be O(kn) [22]. Thus, the total neighborhood size is O(kn). Hence,

by Lemma 17, with β =
√
n, we readily obtain an O(

√
n)-approximation for MCR when

the obstacles are pseudodisks.

40

Minimum Constraint Removal (MCR) Chapter 3

Theorem 8 There exists an O(
√
n)-approximation for MCR when the obstacles are

pseudodisks.

However, if the obstacles are more general such as rectangles, similar bounds on the

number of cells with depth at most k do not hold. Nevertheless, we will use a different

notion, called the level of a cell, to obtain a more refined neighborhood for the obstacles.

3.2.2 Approximation for Polygonal Objects

In this section, we obtain similar approximation bounds when obstacles are polygonal.

We begin by formally defining level of a cell.

Definition 4 The level of a cell C in an arrangement, denoted by L(C), is the minimum

number of objects one needs to cross to reach C from the source s by a path in the plane.

For a collection of cells, we say they are at level at most k if the level of each cell in this

collection is at most k.

With the above definition in place, we can use it to construct the neighborhood N .

Recall that the neighborhood N (S) of an object S (in our earlier definition) consists of

all edges e = vi → vj of the graph G that enter the obstacle S into a “shallow” cell Cj.

We can now simply use the level of a cell to define its shallowness. Specifically, we include

the edge e to the neighborhood N (S) if e enters S and the level of its source cell Ci and

destination cell Cj are both at most k. Since a k-crossing path would never enter a cell

that has level more than k, bounded occurrence property is easily satisfied. Next, we

need to bound the total size of this neighborhood.

Towards that end, suppose we define the level of a vertex of the arrangement A(S) in

the same way. That is, the level of a vertex of the arrangement A(S) is the minimum

number of obstacles crossed by any path from s to the vertex. We define Vl(n) to be the

41

Minimum Constraint Removal (MCR) Chapter 3

maximum number of level l vertices in an arrangement of polygons with input complexity n.

Therefore, V0(n) upper bounds the number of vertices in A(S) that can be reached from s

without crossing any obstacle. It is important to note that n here is the input complexity

(total number of polygon vertices) and not the number of edges of the arrangement, which

could be quadratic in n. We now need a technical definition.

Definition 5 A function f : Z+ → R+ is well-behaved if for any n ≥ 1 and any random

variable X with support {0, 1, 2, . . . , n} and expectation n/m, where m ≥ 1, we have

E[f(X)] ≤ f(n)/m.

We will require that V0(n) is upper bounded by some well-behaved function. Examples

of well-behaved functions are n, n log n, and n2. We now upper bound the number of

cells with level at most k, using standard machinery [22].

Lemma 18 Suppose for a class T of objects, V0(n) ≤ f(n) for some well-behaved function

f . Then for any k ≥ 1, the number of cells with level at most k in an arrangement of the

objects from T with input complexity n is O(k · f(n)).

Proof: Let Uk be the set of vertices in the arrangement A(S) that are at level at

most k. We will prove that |Uk| = O(k · f(n)). Observe that for every cell that has level

at most k, all vertices on its boundary must also be at level at most k. This holds because

every point inside the cell is contained in the same set of obstacles, so if we can reach the

cell by crossing at most k obstacles, we can also reach the boundary vertices by crossing

no more than k obstacles. Therefore by planarity, the number of cells with level at most

k will also be bounded by O(k · f(n)).

We will now bound the number of vertices in the set Uk. Our approach is based on the

well-known probabilistic method due to Clarkson and Shor [22]. Specifically, we sample

42

Minimum Constraint Removal (MCR) Chapter 3

each object in S independently with a probability p = 1/m, where m = 2k. Let S ′ ⊆ S be

the set of sampled objects. Fix one of the vertices v ∈ Uk, and assume its level is l ≤ k; fix

a path from s to v that crosses l objects. There are two cases: either v is an intersection

point of two obstacle polygons Si, Sj or v is a corner of some obstacle Si. In the first case,

v will show up as a level 0 vertex in A(S ′) if Si, Sj ∈ S ′ and none of the l obstacles from

S that ‘block’ the path from s to v are sampled in S ′. This happens with a probability

p2(1− p)l ≥ p2(1− p)k. In the second case, v is corner of some polygon Si. Similar to the

earlier argument, v shows up as a level 0 vertex in A(S ′) only if Si ∈ S ′ and none of the l

blocking obstacles in S are chosen to be in S ′. This happens with a probability at least

p(1− p)k. By linearity of expectation, the expected number of vertices of Uk that show up

as a level 0 vertex in A(S ′) is at least |Uk|p2(1− p)k = |Uk|
Ä

1
m

ä2 Ä
1− 1

m

äk ≥ α|Uk|/k2,

for some constant α > 0.

Now we will upper bound the expected number of level 0 vertices in A(S ′). Since

each polygon is sampled with an independent probability of 1/m, if n was the number of

vertices of polygons in S, the expected number of vertices of polygons in S ′ is n/m. As f

is well-behaved, the expected number of level 0 vertices in A(S ′) is bounded above by

f(n)/m = f(n)/2k.

It follows that α|Uk|/k2 ≤ f(n)/2k. This gives |Uk| = O(k · f(n)) and therefore we

achieve the claimed bound.

Combining Lemma 18 with Lemma 17, we get the following approximation for MCR.

Theorem 9 Suppose for a class of objects, the maximum number V0(n) of level 0 ver-

tices is upper bounded by f(n) for some well-behaved function f . Then, there exists an

O(
»
f(n))-approximation for MCR with this class of objects.

From the work due to Edelsbrunner et al. [?] it follows that, for arbitrary n segments,

V0(n) = O(nα(n)), where α(n) is the functional inverse of Ackermann’s function. More-

43

Minimum Constraint Removal (MCR) Chapter 3

over, if the segments are axis-parallel, it follows that V0(n) = O(n) [?, 23]. It is easy to

see that both upper bounds are in terms of well-behaved functions. For polygonal objects

with input complexity n, the number of underlying segments is also O(n), so we obtain

the same bounds. In particular, for general polygons V0(n) = O(nα(n)) and for rectilinear

polygons, we have V0(n) = O(n). Hence, we have the following corollary.

Corollary 10 There exists an O(
»
nα(n))-approximation for MCR with polygonal obsta-

cles. This improves to an O(
√
n)-approximation when the polygons are rectilinear.

3.3 Hardness of Approximation

In this section, we describe the 2-inapproximability and the APX-hardness results for

rectilinear polygons and axis-parallel rectangles, respectively.

3.3.1 2-Inapproximability for Rectilinear Polygons

We reduce Vertex Cover to MCR with rectilinear polygons. Recall that as input to the

Vertex Cover problem we are given a graph G = (V,E) with n vertices, and the goal is to

find a minimum size subset V ′ ⊆ V such that for any (u, v) ∈ E, either u or v is in V ′. Let

e1, . . . , em be the edges of G. Now we describe the reduction. The constructed instance

of MCR contains a region called barrier formed by a subset of the obstacles. Each point

in the barrier is contained in at least 2n obstacles and thus if an s-t path intersects the

barrier, it intersects at least 2n obstacles. We would ensure that any optimal path of the

instance intersects at most n obstacles and thus no such path intersects the barrier region.

Intuitively, the barrier region forces any optimal path to lie in a certain region, which we

refer to as corridor.

The construction is the following. We place an obstacle corresponding to each vertex.

44

Minimum Constraint Removal (MCR) Chapter 3

For each edge (u, v) there is two possible pathlets (or subpaths of an s-t path) - one

that intersects the obstacle corresponding to u and the other that intersects the obstacle

corresponding to v. The start points of the two pathlets are same. The end points of

the two pathlets are also same. Moreover, the m pairs of pathlets corresponding to the

edges are placed one after the other in a series. This ensures that the endpoints of a

pair are same as the start points of the next pair. Note that the selection of the pathlet

corresponding to u (resp. v) for making an s-t path is equivalent to the selection of u

(resp. v) for covering the edge (u, v). Thus, the s-t path formed by the chosen pathlets

intersects only k obstacles if and only if all the edges can be covered by k vertices.

Next, we give more details about the layout of the pathlets and the obstacles. One of

a pair of pathlets corresponding to each edge lies above x-axis and the other lies below

x-axis. To ensure this, all the start and the end points of the pathlets are placed on the

x-axis. Let si and ti be the respective start and end points of the pathlets corresponding

to the edge ei. These points are placed on x-axis in the order s1, t1, s2, t2, . . . , sm, tm. For

each 1 ≤ i < m, we connect the point ti with si+1 using a segment that joins the ith

and i+ 1th pathlets. The point s is placed on x-axis before s1 and t is placed on x-axis

after tm. s and s1 are connected by a segment. Similarly, tm and t are connected by a

segment. Now to ensure that the pathlets cross the correct obstacles they are laid out in

a fashion as shown in Figure 3.1. Each pathlet contains exactly one point (tip) having

the maximum x-coordinate. Moreover, all such tips corresponding to the pathlets are in

convex position. Thus one can connect the tips of any subset of pathlets using segments

to form a rectilinear polygon that does not intersect any other pathlets (see Figure 3.1).

Recall that each pathlet of an edge corresponds to a vertex incident on that edge. For

each vertex u ∈ V , we connect the tips of the pathlets corresponding to u to form an

obstacle whose shape is a rectilinear polygon. Note that the total number of possible

s-t paths we constructed is 2m. Now to make sure that any optimal s-t path is one of

45

Minimum Constraint Removal (MCR) Chapter 3

these 2m paths we place the barrier around these paths. In other words, the barrier region

forms a corridor for the paths. Any optimal path always stays inside the corridor, as it

is expensive to cross the “wall” of the barrier. As the pathlets consist of a polynomial

number of segments in total, a polynomial number of rectilinear polygons is sufficient to

place avoiding the 2m s-t paths. We make 2n copies of each such polygon to ensure the

density. Lastly, each obstacle corresponding to a vertex is expanded sufficiently to ensure

that it blocks the respective portion of the corridor. Note that the barrier can be placed

in a way so that the corridor is arbitrarily thin, and thus this expansion can be done such

that the obstacle do not cross any additional pathlets. From the above discussion, we

obtain the following lemma.

s s1 si ti tt5

v1

v2

v4

v2

v3

v4

v3

v2

v1

v3

Figure 3.1: An example of the construction. The barrier region is shown in gray.

Lemma 19 For any 1 ≤ k ≤ n, there is a size k vertex cover for G iff there is an s-t

path that intersects k obstacles.

Proof: Suppose there is a size k vertex cover for G. Now for each edge (u, v), if u

is in the vertex cover, we choose the pathlet corresponding to (u, v) that intersects the

46

Minimum Constraint Removal (MCR) Chapter 3

obstacle corresponding to u. Otherwise, we choose the pathlet corresponding to (u, v) that

intersects the obstacle corresponding to v. The s-t path formed by these chosen pathlets

intersects only k obstacles. Similarly, suppose there is an s-t path Π that intersects only

k obstacles. If for an edge (u, v), Π contains the pathlet that intersects the obstacle

corresponding to u, we select the vertex u. Otherwise, we select the vertex v. All the

selected vertices form a vertex cover of size k.

As Vertex Cover is hard to approximate within a factor of 2− ε for any constant ε > 0,

assuming the Unique Games conjecture [24], we get the following theorem.

Theorem 11 Minimum constraint removal with rectilinear polygons is hard to approx-

imate within a factor of 2 − ε for any constant ε > 0, assuming the Unique Games

conjecture.

It is easy to see that the same idea can easily be extended for convex polygons.

Basically, one can connect the tips of any subset of pathlets using segments to form a

convex polygon that does not intersect any other pathlets.

Lemma 20 Minimum constraint removal with convex polygons is hard to approximate

within a factor of 2− ε for any constant ε > 0, assuming the Unique Games conjecture.

3.3.2 APX-hardness for Axis Parallel Rectangles

We reduce a restricted version of vertex cover, which is referred to as Special-3VC, to

our problem. Chan et al. [25] introduced this version for the sake of proving APX-hardness

of several geometric optimization problems.

Definition 6 In a Special-3VC instance, we are given a graph G = (V,E), where

V contains 5m vertices {vij | 1 ≤ i ≤ m, 1 ≤ j ≤ 5}. E contains 4m + n edges - 4m

of type 1 and n of type 2, where 2n = 3m. Type 1 edges are of the form {(vij, vi,j+1) |
47

Minimum Constraint Removal (MCR) Chapter 3

1 ≤ i ≤ m, 1 ≤ j ≤ 4}. Type 2 edges are of the form {(vpq, vxy) | 1 ≤ p < x ≤

m, and q, y are odd numbers} such that any vertex vij with odd index j appears in exactly

one such edge.

As each vertex vij with odd index j contributes exactly once in the type 2 edges, the

number of type 2 edges is 3m/2 = n. Chan et al. [25] proved that Special-3VC is

APX-hard. Now we describe our reduction. The reduction is similar to the reduction for

rectilinear polygons. We will have one obstacle corresponding to each vertex. Moreover, we

construct two pathlets corresponding to each edge (u, v) such that one pathlet intersects

the obstacle corresponding to u and the other intersects the obstacle corresponding to v.

However, due to the simpler structure of the obstacles, here it is more complicated to

ensure that the pathlets intersect the correct obstacles. The construction of the instance

of MCR is as follows.

R12

R14

R22

R24

R24

R11

R13

R15

R21

R23

R25

s

L

(a) (b) (c)

Figure 3.2: (a) The stack of the class 1 rectangles for m = 2. (b) The initial
configuration of the class 2 rectangles (shown by squares) for m = 2. (c) Drawing of
the pathlets for the class 1 edges.

We denote the rectangles corresponding to vij by Rij. First we place the rectangles

corresponding to the vertices in {vij | 1 ≤ i ≤ m and j is even} in a way so that they

48

Minimum Constraint Removal (MCR) Chapter 3

form a stack like structure (see Figure 3.2(a)). Also the rectangles are placed from top

to bottom in the lexicographic order of the indexes (i, j): Rab is considered before Rcd

if a < c, and Ra2 is considered before Ra4. We refer to these rectangles as the class 1

rectangles. Thereafter we place the rectangles corresponding to the remaining vertices.

All these rectangles are placed in lexicographic order of the indexes (i, j). The first one is

placed below Rm4 (the last rectangle of the stack) in a way so that its left side is aligned

with the left side of Rm4. Thereafter every rectangle is placed below the already placed

ones and a little aligned towards the left w.r.t. the previous one (see Figure 3.2(b)). We

refer to these rectangles as the class 2 rectangles. We note that initially every class 2

rectangle is a square. Later each such rectangle might be expanded suitably towards right

and below to ensure the correctness of the intersections with the pathlets.

Now let L be a vertical line such that all the rectangles are placed strictly to the right

of it. All the endpoints of the pathlets we draw lie on L. Each pathlet is a curve consisting

of rectilinear segments. The start (resp. end) points of the two pathlets corresponding to

an edge are the same. We place s right above the topmost start point of the pathlets and

connect s with this point by a vertical segment. Similarly, the point t is placed below

the bottommost end point and joined with it by a vertical segment. At first we draw the

pathlets for type 1 edges {(vij, vi,j+1) | 1 ≤ i ≤ m, 1 ≤ j ≤ 4} in the dictionary order of

the indexes (i, j, i, j + 1), i.e at first (v11, v12), then (v12, v13) and so on. The pairs of start

and end points of the pathlets corresponding to these edges appear in the same order on

L from top to bottom. For each type 1 edge (vij, vi,j+1), let s(i, j, j + 1) and t(i, j, j + 1)

be the respective start and end points of the pathlets. Note that for a vij with odd j,

vij appears in two type 1 edges only if j is 3. Otherwise, it appears only once. Let Pij

be the horizontal projection (an interval) of Rij on L. Then the start and endpoints of

the pathlets of the type 1 edges with a vertex vij lie on Pij. Now consider a type 1 edge

(vij, vi,j+1). Then either j or j + 1 is odd. WLOG let j is odd. We draw the two points

49

Minimum Constraint Removal (MCR) Chapter 3

s(i, j, j + 1) and t(i, j, j + 1) on Pij such that s(i, j, j + 1) lies above t(i, j, j + 1). One

pathlet of (vij, vi,j+1) lies on the right of L. It consists of three orthogonal segments and

the only rectangle it intersects is Rij (see Figure 3.2(c)). The other pathlet is also drawn

in a way so that the only rectangle it intersects is Ri,j+1 (see Figure 3.2(c)). We repeat

the process for all type 1 edges and each consecutive pairs of end and start points are

joined with a vertical segment.

G4

H1

R11

R13

R15

R21

R23

R25
G1G2G3

G4

R11

R13

R15

R21

R23

R25

G1G2G3

H1

H2

H3

(a) (b)

Figure 3.3: (a) Drawing of the pathlets for the edge (vpq, vm5) where m = 2, p = 1, q = 5.
(b) Drawing of the pathlets for the type 2 edges (v15, v25), (v11, v23), (v13, v21) where
m = 2.

Now we draw the pathlets corresponding to the type 2 edges {(vpq, vxy) | 1 ≤ p <

x ≤ m, and q, y are odd numbers}. Note that, there are n such edges in G. We process

all these edges in the reverse lexicographic order of the indexes (x, y) of the vertices vxy.

Thus at first we consider the edge that contains vm5, then the edge that contains vm3 (if

not considered already), then the edge that contains vm1, then the edge that contains

vm−1,5 (if not considered already), and so on. We take n+ 1 vertical lines G1, . . . , Gn+1

such that Gn+1 intersects the right vertical side of R11, Gn is on the right of Gn+1, Gn−1 is

on the right of Gn, and in general Gi is on the right of Gi+1. Also let Gi and Gi+1 are unit

distance apart for 1 ≤ i ≤ n. In every iteration 1 ≤ i ≤ n, we define a horizontal line Hi.

50

Minimum Constraint Removal (MCR) Chapter 3

Denote by Qi the region that lies below Hi and inside the strip defined by Gi and Gi+1.

The drawing procedure is the following. Consider the first edge (vpq, vm5) corresponding

to the vertex vm5. Let H1 be a horizontal line such that all the class 1 rectangles lie above

it and all the class 2 rectangles lie below it. At first we expand Rm5 sufficiently towards

below such that one can place a pathlet with the following properties - the only rectangle

it intersects is Rm5, it consists of two horizontal segments and one vertical segment, and

its start and end points lie on L. Note that the expansion of Rm5 do not create any new

intersections with the existing pathlets. Thereafter Rpq is expanded sufficiently towards

below and right to ensure that it has non-empty intersection with Q1. Then the other

pathlet can be drawn in a way so that it intersects the portion of Rpq that is in Q1, and

as Q1 is empty the pathlet does not intersect any other rectangle (see Figure 3.3(a)).

Now consider the ith type 2 edge (vpq, vxy) in this order. Let all the edges before it in the

ordering are already taken care of. It is easy to see that one can expand Rxy towards

below for drawing a pathlet with the desired properties. Now to make sure that the other

pathlet intersects only Rpq, set Hi to be a horizontal line such that the region Qi, as

defined above, is empty of previously drawn pathlets and expanded rectangles. Then we

can expand Rpq towards below and right so that it has non-empty intersection with Qi.

As Qi is empty one can draw the other pathlet as well with the desired properties (see

Figure 3.3(b)).

Lastly, we draw the barrier region around the paths. As the pathlets are orthogonal

and consisting of a polynomial number of segments in total, the barrier region can be

simulated using a polynomial number of rectangles and thus the construction can be

realized in polynomial time. From the construction, it is straightforward to see the

following lemma.

Lemma 21 For any 1 ≤ k ≤ |V |, there is a size k vertex cover for G iff there is an s-t

51

Minimum Constraint Removal (MCR) Chapter 3

path that intersects k rectangles.

As Special-3VC is APX-hard we obtain the following theorem.

Theorem 12 Minimum constraint removal with rectangles is APX-hard.

3.4 Bibliographic Notes

The geometric minimum constraint removal problem has been studied under different

names across multiple research communities, including sensor networks and robotics. In

networks, the problem is called barrier resilience where obstacles represent coverage regions

of sensors, and the network’s resilience is measured by the minimum number of sensors

whose removal creates a sensor-avoiding s–t path. Circular disks are a commonly used

model for sensor coverage. When all disks have the same (unit) radius, a 2-approximation

is known due to Chan and Kirkpatrick [26], who build and improve upon the earlier work

of Bereg and Kirkpatrick [16]. However, even for this simple case, the complexity of

minimum constraint removal is an unsolved open problem [26]. In [26, 5], constant factor

approximations are proposed for restricted versions of arbitrary radii disks. However,

when disks have arbitrary radii, no sub-linear approximation with provable guarantee

is known. The problem has also been studied for other types of obstacles, mainly from

the perspective of time complexity. The problem has been shown to be NP-complete for

convex obstacles [1], for line segments [2], even in the bounded density case [3, 4], and for

axis-parallel rectangles with aspect ratio close to one [5].

In robotics, the minimum constraint removal problem models the motion planning

problem of multi-articulated robot [27, 1]. Suppose we have a physical environment

containing a disjoint set of impenetrable obstacles in the plane, and a robot with two

degrees of freedom. Then the configuration space approach to motion planning shrinks the

52

Minimum Constraint Removal (MCR) Chapter 3

robot to a point while simultaneously expanding the obstacle by taking their Minkowski

sum with the robot’s geometry. The result is our minimum constraint removal problem:

a set of two-dimensional intersecting obstacles that may have no feasible path for the

robot, and so some obstacles need to be removed. Finally, the problem has also been

studied through the lenses of parameterized complexity [4, 5], and exact and heuristic

algorithms [27, 28].

53

Chapter 4

An O(logn) Approximation for

MCR

In the previous chapter, we gave close to O(
√
n)-approximation algorithm for MCR with

polygonal obstacles and pseudodisks, where n was the number of vertices (in case of

polygonal obstacles) or the number of pseudodisks. In this chapter, we work towards

improving that bound. In fact, we will discuss an O(log |C|)-approximation1 algorithm

for the more general problem of computing a min-color path on a vertex-colored planar

graph G = (V,E, C) with color connectivity. That is, for any given color Ci ∈ C, the

set of vertices Vi ⊆ V that contain Ci are connected in G. We will use the shorthand

Planar-Conn-MCP to refer to this case. Recall that MCR is a special case of Planar-

Conn-MCP over the arrangement graph of obstacles. Since MCR is NP-hard, it follows

that Planar-Conn-MCP is also NP-hard.

Note that both these conditions (planarity and color connectivity) are crucial for

existence of an O(log |C|)-approximation algorithm for Planar-Conn-MCP because

without either of them, the problem is conditionally hard to approximate within a factor

1In the case of MCR, colors C correspond to the set of obstacles, so |C| ≤ n.

54

An O(logn) Approximation for MCR Chapter 4

significantly better than O(|C|). (See Section 2.2, Theorem 1.)

We will now work towards designing an O(log |C|)-approximation algorithm for

Planar-Conn-MCP. One of the key insights here is an alternative characterization

in terms of color separators and finding a minimum size color set that hits all color

separators. The remainder of this chapter is organized as follows. In Section 4.1, we

introduce the notion of color separators and prove some useful properties. In Section 4.2

we use these ideas to obtain a linear program for Planar-Conn-MCP. Finally, in

Section 4.4 we apply the well-known rounding technique of Leighton and Rao [29] to

obtain our approximaion algorithm.

4.1 Color Separators

We begin by setting some basic definitions. Let G(V,E, C) be a vertex-colored graph,

and let s, t be two fixed vertices. For any set C ′ ⊆ C of colors, we define its host

vertex-set V (C ′) ⊆ V to be the set of vertices that contain a color in C ′. That is,

V (C ′) = {v ∈ V | χ(v) ∩ C ′ 6= ∅}. We can now define color separators formally as follows.

Definition 7 (Color Separator) A non-empty set of colors S ⊆ C is called an s-t

color separator, if removing the host vertex-set V (S) of S from the graph G separates the

vertices s and t into distinct connected components.

Moreover, we say that a vertex v ∈ V is a white vertex if χ(v) = ∅. That is, v does not

contain any color. Recall that our goal is to find a min-color path from s to t, so we can

assume that both s and t are white vertices, because any s-t path must include all colors

from both s and t. From the definition of color seperators, we note the following.

Observation 2 Let S be an s-t color separator of G, then its host vertex-set V (S)

contains no white vertices.

55

An O(logn) Approximation for MCR Chapter 4

v1

v3

v4

v2

v5

s t

C1

C2

C3

Figure 4.1: An instance of Planar-Conn-MCP with three colors C = {C1, C2, C3}.
The colorsets {{C3}, {C1, C2}, {C1, C3}, {C1, C2, C3}} are all color separators. The
color set S = {C3} is the minimum color separator. Note that removing its host vertex
set V (S) = {v3, v4, v5} separates s from t.

Clearly, it is possible that a graph G does not contain any color separators. However,

if that happens, we have the following useful property.

Lemma 22 If G does not contain any color separator, then there exists an s− t path in

G containing only white vertices.

Proof: Consider the trivial color set S = C. Since G does not contain any color

separator, we must have that s and t remain connected even when vertices of V (S) are

removed from G. Moreover, all vertices of G − V (S) are white. Therefore, there must

exist a white path from s to t in G− V (S), which is also a path in G.

Suppose we define S to be the set of all color separators of G. If S = ∅, Lemma 22

easily gives us a path that uses a minimum number (zero) of colors. However, it is likely

that S contains a large number (possibly exponential) number of color separators. We

can still have the following lemma.

Lemma 23 If C∗ is the set of colors such that S ∩ C∗ 6= ∅ for all S ∈ S (colors C∗ “hit”

all color separators), then there exists a path π such that the colors used by it χ(π) ⊆ C∗.

Proof: First, we remove colors of C∗ from vertices of G = (V,E, C) to obtain a

modifed colored graph G′ = (V,E, C \ C∗). That is for all vertices v ∈ V , we assign

χ(v) = χ(v) \ C∗ in G′.

56

An O(logn) Approximation for MCR Chapter 4

Next, we claim that G′ does not contain a color separator. For the sake of contradiction,

suppose G′ contains a color separator S ′. Then, removing the vertices V (S ′) disconnects

s from t. Clearly, S ′ is also a color separator in G such that S ′ ∩C∗ = ∅ which contradicts

the choice of C∗.

By Lemma 22, there must be a path π in the modified graph G′ containing only white

vertices. Therefore, the set of colors of π in the original graph χ(π) ⊆ C∗.

We will now formally define the min-color hitting set problem on a colored graph and

in the next lemma show that it is equivalent to min-color path.

Definition 8 (Min-Color Hitting Set) Given a vertex-colored graph G = (V,E, C)

and let S be the set of all color separators of G. In the min-color hitting set problem, we

want to compute the smallest sized set of colors C∗ ⊆ C that hits every seperator in S.

That is, S ∩ C∗ 6= ∅ for all S ∈ S.

Lemma 24 Given a vertex-colored graph G = (V,E, C), the problem of computing a

min-color path and computing a min-color hitting set are equivalent.

Proof: Let π∗ be the min-color path and let C∗ be the min-color hitting set of G.

Moreover, let S be the set of all color separators of G.

For the forward direction, it is easy to see that the min-color path π∗ corresponds

to a set of colors that hit all separators in S. In particular, consider the color set

χ(π∗) =
⋃
v∈π χ(v). If χ(π∗) did not hit all color sperators in S, then must have a color

separator S ′ ∈ S such that its host vertex-set V (S ′) is disjoint from π. Since π will remain

an s–t path in G− V (S ′), removing V (S ′) from G does not disconnects s from t which

contradicts that S ′ is a color separator. Therefore, we must have that χ(π∗) hits all color

separator and |C∗| ≤ χ(π∗).

For the other direction, applying Lemma 23, it follows that χ(π∗) ≤ |C∗|. Therefore,

57

An O(logn) Approximation for MCR Chapter 4

we must have χ(π∗) = |C∗|, and a solution to min-color path corresponds to a solution to

min-color hitting set and vice versa.

Since the number of all color separators in S can be arbitrarily large, translating a

min-color path instance to min-color hitting set instance is not directly useful to obtain

approximation algorithms. Instead, we use the equivalence of two problems to obtain an

LP formulation for min-color path. Then we apply rounding techniques on this LP to

obtain an O(log |C|)-approximation algorithm for Planar-Conn-MCP. We note that

planarity and color connectivity are both crucial for our approximation algorithm.

4.2 An LP Formulation

We will now present the following linear program whose integral solutions are solutions

to min-color hitting set on the graph G. For each color Ci ∈ C, we associate a variable

0 ≤ xi ≤ 1 that indicates the whether or not the color Ci is included in the solution. We

then have the following formulation which we will refer to as Hitting-LP .

min
∑
c∈C

xi

such that: ∑
Cj∈S

xj ≥ 1 for all color separators S ∈ S (4.1)

The set of constraints ensure that every color separator in S contains at least one color

that is included in the solution. Note that the number of constraints can be exponential.

In order to obtain an approximation algorithm using this LP, we first need to be

able to solve it in polynomial time. Although the LP contains an exponential number of

constraints, it may still be possible to solve it in polynomial time using ellipsoid method

58

An O(logn) Approximation for MCR Chapter 4

provided the existence of a polynomial time separation oracle. In the following, we

introduce the notion of a min-color separator which will serve as a separation oracle for

the above LP.

Definition 9 (Min-Color Separator) Let G = (V,E, C) be a weighted colored graph such

that each color Ci ∈ C has a non-negative weight wi. We define a min-color separator of

G to be a color separator S ∈ S that minimizes the weight w(S) =
∑
Cj∈S wi.

We can now have the following lemma.

Lemma 25 If there exists a polynomial time algorithm to find a min-color separator of

G, then Hitting-LP can be solved in polynomial time.

Proof: Roughly speaking, we use the algorithm for min-color separator of G as

a polynomial time separation oracle for ellipsoid method. Specifically, given a solution

vector x̂ = 〈x1, x2, . . . , x|C|〉, a separating oracle decides if x̂ is feasible, and if it is infeasible

produces finds a hyperplane separating x̂ and the feasible region. Setting the weights

of a color to its fractional value xi, we can compute a min-color separator S∗ ∈ S in

polynomial time. If w(S∗) ≥ 1, then x̂ is feasible. Otherwise, we have found a violating

constraint S∗ which corresponds to the separating hyperplane.

Indeed, as shown in Section 4.5, computing a min-color separator is NP-hard in

general. However, the problem is polynomial time solvable on vertex-colored graphs

that are planar and have color-connectivity (instances of Planar-Conn-MCP). The

algorithm is discussed in Section 4.5.1. Here, we state the resulting lemma.

Lemma 26 The Hitting-LP can be solved in polynomial time on planar graphs with

color-connectivity.

Using the above lemma and the equivalence of min-color path and min-color hitting

set, it follows that one can obtain a fractional solution x̂ = 〈x1, xs, . . . , x|C|〉 for Planar-

Conn-MCP in polynomial time. That is, if OPT is the number of colors used by the

59

An O(logn) Approximation for MCR Chapter 4

min-color path, then for each color Ci ∈ C, we can compute a fractional value xi such

that
∑
xi ≤ OPT. We now need to round the fractional solution vector x̂ to obtain an

integral solution ŷ such that
∑
yi ≤ O(log |C|) ·OPT. Towards that end, we first establish

some useful properties for color separators. Unless otherwise stated, we assume that the

graph G is color-connected and planar. We discuss the details of the rounding scheme in

Section 4.4.

4.3 Structural Properties of Color Separators

In this section, we will discuss some structural properties of color separators on a

color-connected planar graph G = (V,E, C). We begin by fixing an embedding of G and

let G∗ = (V ∗, E∗) be its dual graph. A separating cycle of G∗ is a cycle that separates s

from t. We then have the following lemma.

Lemma 27 Every color separator S of graph G corresponds to a non-empty family of

separating cycles F(S) of the dual graph G∗.

Proof: Let E(S) ⊆ E be the set of edges adjacent to vertices in V (S). Consider any

set Eγ ⊆ E(S) such that removing Eγ from G separates s from t. That is, edges Eγ are

cut edges. Given a set of cut edges, it is not hard to obtain a separating cycle γ in the

dual graph : draw a simple closed curve enclosing one of s or t and only intersecting the

cut edges.

Repeating this for all possible Eγ gives a family F(S) of separating cycles. Note that

F(S) is non-empty because removing V (S) separates s from t, so the set Eγ = E(S) is a

trivial cut edge set.

Therefore, for each color separator S, we can associate a separating cycle γ ∈ F(S) in

the dual graph. Next, we assign colors to the vertices of the dual graph so that the colors

60

An O(logn) Approximation for MCR Chapter 4

on vertices of γ correspond to the colors in S.

Assigning Colors to the Dual Graph Let v∗ ∈ V ∗ be a vertex in the dual graph

G∗ and let f be its corresponding face in G. We assign to v∗ the union of all colors on

the boundary vertices of f . That is, if ∂f denotes the set of boundary vertices of f , we

assign χ(v∗) =
⋃
v∈∂f χ(v). We now note the following.

Lemma 28 The colored dual graph G∗ is also color-connected.

Proof: Let v∗i , v
∗
j be two vertices in the dual corresponding to faces fi, fj of G.

Consider a color C ∈ χ(v∗i) ∩ χ(v∗j). By color-connectivity of G, there must be a path

π = v1 → v2 → · · · → vr in G from a vertex v1 on the boundary of fi to a vertex vr on

boundary of fj. We want to find a color-connected path π∗ from v∗i to v∗j in the dual.

We do an induction on number of vertices r on the path π. If v2 also lies on face fi,

we can drop v1 from π and we are done by induction. If v2 lies on some other face fk,

we consider the clockwise order of faces around v1− both fi, fk are faces in this ordering.

Moreover, all these faces will contain the color C. Traversing faces in this order, starting

from v∗i we can reach v∗k (dual vertex of fk) by a path in dual such that every vertex on

this path contains color C. Now, we can consider the subpath of π from v2 to vr and will

again be done by induction.

Now that we have added colors to the dual graph G∗, we want to assign an ordering

of colors of the separator S on the cycle γ. We do this by computing a color-mapping

M that assigns to every vertex v∗ ∈ γ, a color from S ∩ χ(v∗). Moreover, we ensure that

this color mapping ‘respects’ the order in which γ intersects the cut edges Eγ. (Recall

from proof of Lemma 27, that every separating cycle γ ∈ F(S) corresponds to a set of

cut edges Eγ ⊆ E(S).) Observe that edges in the cycle γ are basically the dual of Eγ.

61

An O(logn) Approximation for MCR Chapter 4

Computing a Color-Mapping M Assume that the vertices on γ are arranged in

clockwise order: v∗1 → v∗2 → . . . v∗r → v∗1. With each vertex v∗i ∈ γ, we now associate a

valid-colorset C(v∗i) as follows.

Definition 10 (Valid-Colorsets) Let v∗i−1 be the predecessor of v∗i on γ, and let e∗ =

(v∗i−1, v
∗
i) be the corresponding edge in G∗. Let e = (u, u′) ∈ Eγ be the primal edge

corresponding to e∗. Then, the valid-colorset for v∗i is given by C(v∗i) = (χ(u)∪ χ(u′))∩ S.

Lemma 29 For every v∗i ∈ γ, the valid-colorset C(v∗i) is non-empty.

Proof: Recall that Eγ ⊆ E(S), where E(S) is the set of edges adjacent to host-vertex

set V (S) of color separator S. Therefore for every edge e = (u, u′) ∈ Eγ , at least one of u

or w lies in V (S). Therefore, the color set χ(u) ∪ χ(w) contains at least one color from S.

The color-mapping M is simply a mapping from a vertex v∗i ∈ γ to any color in its

valid-colorset C(v∗i). Similarly, we can extend the mapping M to all vertices v∗i ∈ γ. This

gives us a cyclic sequence of colorsM(v∗1)→M(v∗2) . . . ; . . . M(v∗r)→M(v∗1) which

we will refer to as color-cycle of γ and denote it by M(γ).

Intuitively, M simply maps a separating cycle γ ∈ F(S) to a color-cycle M(γ) by

selecting one color belonging to S from every vertex on γ. Note that given γ and its

color-cycle we can easily obtain the corresponding mapping and vice-versa. The following

lemma is easy to verify.

Lemma 30 Let v∗i−1, v
∗
i be two consecutive vertices on the clockwise ordering of separating

cycle γ. Then the color M(v∗i) lies in χ(v∗i−1).

Proof: This follows easily from how we define valid-colorset C(v∗i). Indeed, the

vertices u, u′ in Definition 10 lie on the face fi−1 corresponding to the dual vertex v∗i−1.

Therefore, we must have C(v∗i) ⊆ χ(v∗i−1). Since M(v∗i) ∈ C(v∗i), the lemma follows.

62

An O(logn) Approximation for MCR Chapter 4

Well-behaved Separating Cycles We know from Lemma 27 that there can be mul-

tiple separating cycles F(S) for any given color separator S. We now establish the notion

of a well-behaved separating cycle and then show that a well-behaved separating cycle

always exists.

Definition 11 (Well-behaved Separating Cycles) We say that a color-cycle Z is

well-behaved if all occurrences of any given color C in Z are consecutive. We say that γ

is a well-behaved separating cycle if there exists a mapping M such that the color-cycle

M(γ) is well-behaved.

As an example, the color-cycle Z = C1 → C2 → C2 → C1 is well-behaved, but Z = C1 →

C2 → C3 → C2 → C1 is not well-behaved.

We now show that such a cycle always exists. Roughly speaking, the overall idea is

to start with an arbitrary separating cycle γ ∈ F(S) and modify it so that it stays a

separating cycle and also becomes well-behaved.

Let v∗i , v
∗
j be any two vertices on γ. Suppose we split the cycle γ into two disjoint

paths π1, π2 from v∗i to v∗j . That is, γ = π1 ⊕ π2, where ⊕ denotes the operation of

concatenating two paths at their common endpoints. We can then obtain the following

lemma.

Lemma 31 Let u∗ and v∗ be two vertices on γ such that both contain a given color C.

Moreover, let π be a path from u∗ to v∗ in G∗ that is disjoint from γ and such that all

vertices on π also contain color C. Then, exactly one of γ1 = π1⊕ π and γ2 = π2⊕ π is a

separating cycle.

Proof:

Note that since π is disjoint from γ, both γ1 and γ2 are simple cycles. Let R be the

region enclosed by γ, we have the following two cases. We assume that source s lies inside

R and destination t lies outside R.

63

An O(logn) Approximation for MCR Chapter 4

u∗

v∗

π1

π2

π

s

π1

π2

s

π
u∗

v∗

(a) (b)

Figure 4.2: Two cases from proof of Lemma 31. Separating cycle γ (shown in bold) is
split into paths π1 and π2. (a) Path π is disjoint from γ and lies inside (b) Path π is
disjoint from γ and lies outside.

1. Path π lies inside R: In this case, π splits the region R into two disjoint sub-regions

defined by γ1 and γ2. We set γ′ to whichever of γ1 or γ2 contains the source s. (See

also Figure 4.3(a).)

2. Path π lies outside R: In this case, one of the two cycles γ1 and γ2 completely

encloses the region R and the other is disjoint from R. Without loss of generality

assume that γ1 encloses R and γ2 is disjoint from R. If t lies outside γ1, we set γ′ to

γ1 as our separating cycle. If t lies inside γ1, we set γ′ to γ2. (See also Figure 4.3(b).)

In both these cases, we were able to find another separating cycle γ′, which is basically π

concatenated with either π1 or π2.

Lemma 32 Every color separator S has a separating cycle that is well-behaved.

Proof: Let γ ∈ F(S) be any separating cycle. Let M be a trivial mapping that

simply assigns to each vertex v∗ ∈ γ any arbitrary color from its valid-colorset C(v∗i).

(From Lemma 29, at least one such color exists). Now, if the sequence M(γ) is well-

behaved, we are done. If not, we will iteratively transform γ to obtain another separating

cycle that is well-behaved.

Let u∗ and v∗ be two non-consecutive vertices on γ that violate the well-behaved

property. That is, both u∗ and v∗ are mapped to a color C but the intermediate vertices

64

An O(logn) Approximation for MCR Chapter 4

are mapped to a different color. We will find another separating cycle γ′ that eliminates

this violation (without adding any extra violations). Therefore, γ′ has at least one less

violation than γ. Applying this process repeatedly gives us a well behaved separating

cycle (one with zero violations).

Since both u∗ and v∗ contain the color C, using color connectivity of G∗ (Lemma 28),

there must be a simple path π from u∗ to v∗ such that all intermediate vertices on this path

also contain the color C. If π was disjoint from γ, then we can simply apply Lemma 31 to

obtain a separating cycle in which u∗ and v∗ are connected by path π. SettingM(v) = C

for all v ∈ π gives us a separating cycle that eliminates the u∗ − v∗ violation, and clearly

does not add any extra violations.

However, it is possible that π intersects γ multiple times, which makes things a little

more complicated. We claim that even in this case, there exists a separating cycle that

eliminates the u∗ − v∗ violation. The proof of this is by induction on X, which is the

number of times π intersects γ. We just discussed the base case of X = 0. That is, when

π is disjoint from γ and found a desired separating cycle.

π1

π2

s

u∗

v∗

π

u∗
1

π1

π2

s

v∗

π

u∗

π′

Figure 4.3: The case when color-connecting u∗ − v∗ path π crosses γ multiple times.
The modified separating cycle γ′ to the right contains a u∗ − v∗ path with one fewer
intersection.

For the inductive step, find the vertex u∗1 closest to u∗ where π crosses γ. (See also

Figure 4.3.) The sub-path π′ : u∗ ; u∗1 along π is disjoint from γ. Applying Lemma 31

again with π′ gives us a separating cycle γ′. Note that π′ is now a part of γ′. Moreover,

we assign M(v) = C for all v ∈ π′. One can verify that γ′ either eliminates the u∗ − v∗

65

An O(logn) Approximation for MCR Chapter 4

violation, in which case we are done. Otherwise, there exists a u∗ − v∗ path containing

color C that intersect γ′ at most X− 1 times. In the latter case, we are done by induction.

In the rest of our discussion, whenever we say a separating cycle γ is well behaved,

we assume that we are also given a well-behaved color-cycle M(γ). Indeed one compute

M(γ) using Lemma 32. We conclude this section with one last property of separating

cycle that will be used later.

Lemma 33 Let γ be a simple closed curve in the plane and let πst be a simple path

between two points s, t in the plane. Then γ separates s and t if and only if the number

of times πst intersects γ is odd.

Proof: By Jordan curve theorem, γ divides the plane into two distinct regions

exterior and interior of γ. Let R be the region interior of γ. Observe that γ separates s

from t if one of them lies inside and the other lies outside. We show that this happens if

and only if π intersects γ odd number of times.

(⇒) Without loss of generality, assume s lies inside R and t lies outside. Then we

follow the path πst. If πst exits R but does not enter R, the number of intersection is

one. Assume that number of intersections is at least two, and consider the first two

intersections. Since the first intersection is exit, the second must be entry. We can discard

these intersections (two in total) and repeat the process. Eventually, all but the last

intersection can be paired as exit ; entry. So the total number of intersections is odd.

(⇐) We prove the contrapositive. That is if s, t are both outside or inside R, then the

number of intersections is even. To see this, we follow the path πst again, starting from

s. The first intersection must be either an entry or an exit. In either case, we consider

the point x immediately after the intersection which must lie inside R if both s, t were

outside or it must lie outside R if both s, t were inside. Now x lies in the region opposite

66

An O(logn) Approximation for MCR Chapter 4

of t, so from the proof for forward direction, the number of intersections from x to t is

odd. Therefore, the total number of intersections from s to t must be even.

Combining Lemma 32 and 33, we have the following.

Lemma 34 Let G = (V,E, C) be a color-connected planar graph and G∗ = (V ∗, E∗, C) be

its colored dual graph. Moreover, let πst be an arbitrary s–t path in G. Then any color

separator S corresponds to a well-behaved cycle in G∗ that crosses πst an odd number of

times.

4.4 An O(log |C|)-Approximation Algorithm

In the previous sections, we introduced the notion of color separators, established some

useful properties, and designed a linear program Hitting-LP for Planar-Connected-

MCP and claimed that it can be solved in polynomial time (Lemma 26). Recall that a

fractional solution of Hitting-LP corresponds to a solution vector x̂ = 〈x1, x2, . . . , x|C|〉

such that
∑
i xi ≤ OPT where OPT is the number of colors used by a min-color path.

Note that OPT is also the objective function value for an integral solution of Hitting-LP

. In this section, our goal is to round x̂ to compute an integer solution vector ŷ such that∑
i yi ≤ O(log |C|) ·OPT.

Our rounding scheme is based on the well-known small diameter graph decomposition

technique due to Leighton and Rao [29]. We will need a node-weighted version of this

decomposition where distance values are on nodes and distance between two nodes is

defined as the sum of the distance values on intermediate and destination nodes. We

state their main theorem relevant to our algorithm.

Theorem 13 (Lemma 13, [29]) Suppose we are given a graph G such each vertex

v ∈ V (G) has a nonegative cost c(v) and a distance d(v) associated with it. Moreover, let

67

An O(logn) Approximation for MCR Chapter 4

W =
∑
v∈V (G) c(v) · d(v) be the total weight of the distance function d. Then there exists

a set X ⊆ V (G) of vertices such that radius of each component in G \X is at most δ and

the cost of c(X) =
∑
v∈X c(v) is O(W log |V (G)|/δ)

Intuitively, it may be convenient to argue about the diameter of a component by fixing a

vertex vc in the component and drawing a ball of some radius δ around it – all vertices

that are within a distance δ (using d(v) values) from vc lie in that component. Clearly,

diameter of the component is at most 2δ.

Applying Leighton-Rao decomposition In order to apply Theorem 13 to round

the fractional solution x̂, we first need to construct a graph using xi as distance values,

where we can reason about diameter of components and its connection to hitting all

color separators of a colored graph G = (V,E, C). To that end, we define the following

color-incidence graph IG.

Definition 12 (Color-Incidence Graph) Let IG be a graph whose vertices vi ∈ V (IG)

correspond to color Ci ∈ C and we add an edge (vi, vj) to IG if the corresponding colors

Ci and Cj occur on some vertex of G∗, the colored dual graph of G.

We are now all set describe our approximation algorithm (See Algorithm 4). Recall

that although Algorithm 4 returns a set of colors that hits all color separators of G, by

equivalence of min-color path and min-color hitting set (Lemma 24), the same color set is

also a solution for Planar-Conn-MCP.

The approximation bound follows from the following simple lemma.

Lemma 35 If OPT is the optimal number of colors, the number of colors |C∗| returned

by Algorithm 4 is O(log |C|) ·OPT

Proof: Rounding up variables with xj ≥ 1/2 in Step 2 of the algorithm only increases

the cost by a factor of 2. Moreover, in Step 5 of Algorithm 4 where we apply Theorem 13,

68

An O(logn) Approximation for MCR Chapter 4

Algorithm 4 Approximate Planar-Connected-MCP

Input: A vertex-colored planar graph G = (V,E, C) with color connectivity.
Output: A set of colors C∗ that hits all color separators of G.

1. Using Lemma 26, solve Hitting-LP in polynomial time. Let x̂ = 〈x1, x2, . . . , x|C|〉
be the fractional solution vector.

2. Include all colors Cj to the solution C∗ such that xj ≥ 1/2.

3. Build the color-incidence graph IG over the remaining colors C \ C∗.

4. For each color Ci, assign its fractional value xi to the corresponding vertex vi in IG.
That is, d(vi) = xi. Moreover, set c(vi) = 1.

5. Apply Theorem 13 on the node-weighted graph GI with radius δ = 1/2− ε. Let X
be the set of cut vertices obtained from the theorem.

6. Add the set of colors corresponding to all nodes of X to C∗. Return C∗.

we have :

W =
∑

v∈V (G)
c(v) · d(v) =

∑
xi ≤ OPT

|C∗| = c(X) =
∑
v∈X

c(v) = O(W log |C|)

Therefore, we have |C∗| = O(log |C|) ·OPT as claimed.

In the next two lemmas, we show that Algorithm 4 indeed computes a set of colors C∗

that hits all color separators of G. Since we removed all colors with xi ≥ 1/2 (Step 2),

we can assume that every color separator S contains at least three vertices. Because if

not, the sum of xi values for colors on S will be less than 1, contradicting the constraint

corresponding to S in Hitting-LP . We note the following.

Lemma 36 Every color separator S corresponds to a cycle in the color-incidence graph

IG.

Proof: From Lemma 32, we know that every color separator corresponds to a

69

An O(logn) Approximation for MCR Chapter 4

separating cycle γ in the dual graph and a mapping M such that the color-cycle M(γ)

is well-behaved. Consider any two consecutive vertices v∗i−1, v
∗
i ∈ γ that are mapped to

different colors. That is Cj = M(v∗i−1), Ck = M(v∗i) and Cj 6= Ck. By Lemma 30, we

know that the face fi−1 corresponding to the dual vertex v∗i−1 contains both colors Cj and

Ck. Therefore, there must be an edge corresponding to Cj and Ck in IG.

SinceM(γ) is well-behaved, all occurrence of a color are consecutive, which corresponds

to staying at the same vertex in GI . SinceM(γ) is a color-cycle, S corresponds to a cycle

in IG.

Lemma 37 The set of colors C∗ returned by Algorithm 4 hits all color separators of G.

Proof: We begin by noting that every color separator that contains a color Ci with

fractional value xi ≥ 1/2 is already hit by the set C∗ (Step 2 of the algorithm). Therefore,

we can restrict our attention to color separators S such that for all Ci ∈ S xi ≤ 2. Indeed

every such separator corresponds to a cycle in IG (Lemma 36). So if we can show that C∗

hits all cycles in IG, we are done.

Let S ∈ S be an arbitrary color separator of G, and let Z(S) be the set of vertices in

IG corresponding to the color set S. It suffices to show that Z(S) is not contained in a

single component of IG \Z(C∗). This holds because if S spanned at least two components,

we will have C∗ ∩ S 6= ∅, and therefore C∗ will hit all color separators S.

The proof is by contradiction. Suppose there exists a color separator S whose vertex

set Z(S) is contained in a single component κ of IG. Since δ = 1/2− ε, we know from

Theorem 13 that diameter of κ is strictly less than 1. Consider the shortest path tree T

of the component κ rooted at some vertex, say ui which corresponds to color Ci. We will

now try to compute the image T ∗ of T in the dual graph G∗

1. Observe that each color Ci is connected and therefore can be drawn as a simple

closed curve βi surrounding all vertices of G∗ on which the color occurs. Let ri be a

70

An O(logn) Approximation for MCR Chapter 4

representative point for color Ci anywhere inside the curve βi.

2. We compute the image T ∗ as follows.

(a) The vertex set of T ∗ consists of representative vertices ri and dual vertices v∗i .

(b) Let V ∗ij be the set of all vertices of the dual graph that contain both colors

Ci and Cj. For every edge (ui, uj) ∈ T , add edges to T ∗ connecting ri to all

vertices in V ∗ij by a path that stays inside βi. Similarly, add edges connecting

rj to V ∗ij by path that lies inside βj.

Observe that since representative vertices are points in the plane and the edges added

to T ∗ correspond to paths in the plane, the embedding of G∗ can be extended to obtain

an embedding of T ∗. However, it is possible that the edges of T ∗ intersect each other.

Suppose we add dummy crossover vertices at the intersection points of edges of T ∗ to

make it planar. We now have two cases.

1. s and t lies in different faces of T ∗. In this case we would have found a separating

cycle γ that only uses colors from the component κ and has weight w(γ) strictly

less than 1 (because diameter of κ is less than 1). This contradicts the constraint

corresponding to the colorset of γ in the Hitting-LP .

2. s and t lie on the same face of T ∗. This case is a little more involved. We begin by

drawing a path πst disjoint from T ∗. Let γ correspond to a cycle R in IG that is

contained in component κ. Edges of R are of two types: those that belong to T (tree

edges) and those which do not belong to T (non-tree edges). The tree-edges of R

correspond to edges in T ∗ which are disjoint from πst. Recall that from Lemma 33,

we know that any separating cycle γ must cross πst an odd number of times. Since

tree edges cross πst and even number (zero) of times, there must exist a non-tree

edge that crosses πst an odd number of times.

71

An O(logn) Approximation for MCR Chapter 4

Using this as edge as a shortcut to the path only using tree edges gives a separating

cycle that has weight strictly less than 1, which is a contradiction.

4.5 Computing a Min-Color Separator

In this section, we show how to compute a color separator of minimum cardinality (or

minimum weight in the case when colors are weighted) in polynomial time. As discussed

before, if such an algorithm exists, we can obtain a fraction solution for Hitting-LP in

polynomial time.

However, as shown in the following lemma, the problem of computing a min-color

separator turns out to be NP-hard on general colored graphs. Fortunately, if the graph is

color-connected and planar, we show that the problem is polytime solvable (Section 4.5.1).

Recall that this is all we need for our approximation algorithm for Planar-Connected-

MCP (Algorithm 4).

Lemma 38 Computing a min-color separator is NP-hard on general colored graphs.

Proof: We have a simple reduction from the minimum hitting-set problem. In the

hitting-set problem, given a collection S of sets and a universe U , we want to decide if

there exists a set X ⊆ U , such that |X| ≤ k and X ∩ Si 6= ∅ for all Si ∈ S.

S1

s t

S2

S3

S4

S5

Figure 4.4: Reduction from Hitting Set

72

An O(logn) Approximation for MCR Chapter 4

We construct a colored graph G = (V,E, C) as follows. Create a node vi for each

set Si and assign χ(vi) = Si. Connect both s, t to all vi. We show that there exists a

color-separator of size k iff there exists a hitting set of size k. The colorset C = U .

For the forward direction, observe that any color separator X ⊆ C with cardinality at

most k, must have the host-vertex set V (S) = V \ {s, t}, and by definition of the color

separator we can conclude that X is a hitting set for S.

For the other direction, suppose we are given a hitting set X of cardinality k. Then,

it is easy to see that the set of colors X ⊆ U is a color separator. Observe that

V (X) = V \ {s, t}, because for every vi ∈ V \ {s, t}, we have χ(vi) ∩X 6= ∅. This holds

because χ(vi) = Si and X is a hitting set.

We will now describe a polynomial time exact algorithm for Color-Connected planar

graphs.

4.5.1 Exact Algorithm for Color-Connected Planar Graphs

Let G = (V,E, C) be a color-connected planar graph such that each color Ci ∈ C has

weight w(Ci). Our goal is to compute a min-color separator. Recall from Definition 9, a

min-color separator is a color separator S that minimizes w(S) =
∑
Cj∈S w(Cj).

The key to an algorithm for min-color separator is Lemma 34, which states that

every color separator S corresponds to a well-behaved cycle in the colored dual graph

G∗ = (V ∗, E∗, C) that crosses an arbitrary s-t path πst an odd number of times. Recall

that the notion of well-behaved means that all occurrences of a given color on the cycle

are consecutive. This lets us formulate the problem of finding a min-color separator as a

shortest path problem in an auxiliary layered graph H.

73

An O(logn) Approximation for MCR Chapter 4

Constructing the Auxiliary Graph H

The auxiliary graph H consists of two layers: La and Lb with an identical set of

vertices and two types of edges: intra-layer edges that go within the layer and inter-layer

edges that go between layers. The graph H will be edge weighted. We first add vertices

and edges to H and later assign weights to its edges.

Adding vertices to H For every dual vertex v∗i ∈ V ∗, we create r = |χ(v∗i)| copies in

La, one corresponding to each color in χ(v∗). More precisely, we add a vertex aji to La for

each pair (i, j) where v∗i ∈ V ∗ and Cj ∈ χ(v∗i). We make another copy of all vertices in

La and add them to Lb. We will refer to copy of vertex aji as bji in layer Lb.

Recall that G∗ is a planar graph. So intuitively, we can think of following visualization

of H in three dimensions. Let La be the bottom layer, L1 to be the top layer, and stack

all copies aji , b
j
i of v∗i one above another, such that all aji copies come first followed by bji .

(See also Figure 4.5)

C4

C3

C5

a3
1

a4
1

b31

b41

a3
2

a5
2

b32

b52

La

Lb

(a) An edge of G∗ (b) edge does not crosses πst (c) edge crosses πst

u

u′

v∗2v∗1

a3
1

a4
1

b31

b41

a3
2

a5
2

b32

b52

La

Lb

Figure 4.5: An example of layered graph construction with weight of all colors as one.
An edge (v∗1, v

∗
2) of colored dual graph G∗ is shown in (a) and the two cases for its

corresponding set of edges in H is shown in (b) and (c). The dash-dotted edges in the
picture are free edges and have weight zero. All other edges have weight one.

74

An O(logn) Approximation for MCR Chapter 4

Adding edges to H We add two groups of edges to H. The first group will be called

clique edges and are added as follows. Let Ai be the set of all copies of vertex v∗i in layer

La. Add edges to H such that the vertex set Ai is a clique. Similarly, let Bi be the set of

all copies of vertex v∗i in layer Lb, add edges to H so that Bi is a clique. Repeat for all v∗i

Note that clique edges are intra-layer edges.

The second group of edges will be called free edges and are added as follows. For each

edge e∗ = (v∗x, v
∗
y) of the dual graph G∗, we add a set of edges Exy as follows depending

on whether or not e∗ crosses path πst. Let e = (u, u′) be the primal edge corresponding

to e∗. A dual edge e∗ crosses a primal path πst if the primal edge e lies on the path πst.

Suppose we define Ce = χ(u) ∪ χ(u′) to be the colorset associated with the primal edge e.

We have the following two cases.

1. Edge e∗ does not cross πst: For every Cj ∈ Ce, add edges (ajx, a
j
y) and (bjx, b

j
y). Note

that all edges added in this case are also intra-layer edges. (See Figure 4.5(b))

2. Edge e∗ crosses πst: For every Cj ∈ Ce, add edges (ajx, b
j
y) and (ajy, b

j
x). Note that

all edges added in this case are inter-layer edges. (See Figure 4.5(c))

Assigning weights All free edges are assigned a weight of zero. We now assign weight

to clique edges. Recall that clique edge are of the form (pki , p
`
i) where p ∈ {a, b} and the

superscript {k, `} denote the indices of the color Ck, C` ∈ C. First, we make these edges

directed by adding two directed edges (pki → p`i) and (pki ← p`i). We assign the weights as

w(pki → p`i) = w(C`) and w(pki ← p`i) = w(Ck). (See also Figure 4.5)

Intuitively, we can think of this assignment of weights as follows. We only pay the

cost of a color when entering its vertex – all consecutive usage is free.

75

An O(logn) Approximation for MCR Chapter 4

Min-Color Separator as Shortest Path on H

From Lemma 32, we know that every color separator S has a separating cycle γ in G∗

that is well-behaved. Recall that a well-behaved separating cycle γ comes with a mapping

M such such that all occurrences of a color in the color-cycle M(γ) are consecutive. Let

C∗ be the set of all colors inM(γ). Suppose we define weight of γ as w(γ) =
∑
Cj∈C∗ w(Cj)

. Since C∗ ⊆ S, we have w(γ) ≤ w(S). Therefore, it suffices to compute a minimum

weight well-behaved separating cycle γ in G∗.

Since γ is a cycle in the dual graph G∗, we can assume that one of the vertices say

v∗i ∈ γ is given to us. That is we want to find the shortest well-behaved separating cycle

in G∗ that passes through v∗i . Indeed, we can repeat for each vertex of G∗ and return the

minimum, which will be the shortest well-behaved separating cycle.

We modify H by adding two special vertices vsrc and vdst. We add the edges (vsrc → aji)

and assign its weight to be w(Cj). Here aji is the set of La vertices corresponding to v∗i

and Cj ∈ χ(v∗i). Similarly, we connect all Lb vertices corresponding to v∗i as (bji → vdst)

and assign a weight of zero to these edges.

Lemma 39 Any path π from vsrc to vdst in H with weight w(π) corresponds to a separating

cycle γ of weight w(γ) = w(π) passing through v∗i .

Proof: Given a path π, we build a separating cycle γ as follows. Every clique edge

(pki → p`i) corresponds to switching from color Ck to C` at vertex v∗i . Every intra-layer

free edge such as (ajx → ajy) corresponds to moving from vertex v∗x to v∗y using color Cj.

Every inter-layer free edge such as (ajx → bjy) corresponds to moving from vertex v∗x to v∗y

using color Cj but also crossing πst once. Since vsrc and vdst are both connected to copies

of v∗i but in different layers, we obtain a cycle γ in the dual graph that crosses πst an

odd number of times. This holds because, observe that every time the path π takes an

inter-layer edge, it crosses πst in G∗. Since vsrc and vdst are in different layers, the path π

76

An O(logn) Approximation for MCR Chapter 4

must take an odd number of inter-layer edges and therefore crosses πst an odd number of

times. It is easy to verify that w(γ) = w(π).

Given a separating cycle γ, we can first obtain a well-behaved mapping M using

Lemma 32. Now we build a path π in H as follows. If e∗ = (v∗x, v
∗
y) be an edge in γ

such that mapping M(v∗x) =M(v∗y) = Cj and e∗ does not cross πst, we add intra-layer

free edges such as ajx → ajy to our path. If e∗ does crosses πst, we add inter-layer free

edges such as ajx → bjy to our path. The more interesting case is when M(v∗x) = Ck and

M(v∗y) = C`. In this case, we know from Lemma 30 that C` ∈ χ(vx) and we can add the

clique edge akx → a`x followed by the free edge a`x → a`y. It is again easy to verify that the

path π in H we obtained has weight w(π) = w(γ).

Using Lemma 39, we can now simply compute a shortest path from vsrc and vdst for

each v∗i and finally return the separating cycle corresponding to the choice of v∗i that

minimizes the shortest vsrc and vdst path. We conclude with the following theorem.

Theorem 14 The minimum color separator on color-connected planar graphs can be

computed in polynomial time.

77

Chapter 5

Shortest Paths with Removable

Obstacles

In this chapter, we turn our attention to the problem of computing shortest path from a

given source to destination in presence of ‘pairwise disjoint’ removable obstacles in the

plane. In other words, given a set of disjoint polygonal obstacles in the plane and an

integer parameter k, which k obstacles should we remove to obtain the shortest obstacle-

free path between two points s and t? Equivalently, what is the shortest path that is

allowed to violate (pass through) up to k obstacles?

We call a path violating at most k obstacles a k-path, generalizing a traditional

obstacle-free path, which is a 0-path. We assume a polygonal environment P containing h

disjoint convex obstacles in the plane, with a total of n vertices, all lying inside a rectangle

R (the outer boundary). The complement of the obstacles within R is called free space.

Given a fixed source point s in free space, we want to compute shortest k-paths, for k ≤ h,

to all other points of free space. The description of these shortest paths can be compactly

encoded as a finite partition of the plane, called the shortest k-path map. We use the

notation πk(t) to denote the shortest k-path from s to t, with the fixed source s being

78

Shortest Paths with Removable Obstacles Chapter 5

implicit, and denote the length of this path by dk(t).

In this chapter, we investigate structural and computational aspects of shortest k-paths.

The problem differs from the 0-path problem in nontrivial ways even in the plane. In

particular, two shortest 0-paths originating at a common source cannot intersect, by the

triangle inequality, and this non-crossing property of 0-paths is an essential ingredient

for computing them in optimal time [30]. In contrast, two shortest k-paths can cross

each other, for any k > 0. Our approach to solving the k-path problem is to compute

a shortest k-path map SPM k, which is a partition of the plane into equivalence classes

of cells (regions), where all destination points inside a cell have the same combinatorial

structure of shortest k-paths to s. Once the map is known, the shortest k-path to any

destination can be computed by performing a point location query on the map [31, 32].

This obstacle-removing shortest path generalizes the classical obstacle-avoiding shortest

path problem, by giving the planner an option of essentially “tunneling” through obstacles.

Besides an interesting problem in its own right, it is also a natural formulation of tradeoffs

in some motion planning settings. For instance, it might be beneficial to remove a few

critical blockages in a workspace to significantly shorten an often traveled path, just as an

urban commuter may strategically pay money to use certain toll roads or bridges to avoid

traffic obstacles. In general, our model with removable obstacles is useful for applications

where one can adapt the environment to enable better paths such as urban planning or

robot motion planning in a warehouse setting.

Results and Chapter Organization

We show that SPM k has O(kn) regions and O(kn) edges and that this bound is tight.

We present an O(k2n log n) time and O(kn log n) space algorithm for computing SPM k

using the continuous Dijkstra framework, which constructs each SPM j for 0 ≤ j ≤ k

79

Shortest Paths with Removable Obstacles Chapter 5

sequentially. The running time of the algorithm is optimal for k = O(1).

The rest of this chapter is organized as follows. In Section 5.1, we discuss some

properties of k-paths that are central to the algorithms presented later in the chapter.

In Section 5.2, we discuss some relevant background for shortest path maps and prove a

tight bound on the size of map defined by shortest k-paths. Finally in Section 5.3, we

give an algorithm to compute the map.

5.1 Properties of k-paths

Given a point p in free space, a shortest k-path πk(p) connects s to p, crosses the

interiors of at most k obstacles, and has minimum length among all such paths. On

occasion, we also need to reason about paths crossing exactly k obstacles, and we refer

to such a path as an (= k)-path. We begin with the easy observation that the problem

can be solved in polynomial (quadratic) time, using a Dijkstra-like search on a “visibility

graph.”

Theorem 15 Given a polygonal domain P with h convex obstacles and n vertices, a

source point s and a destination t, we can compute a shortest k-path from s to t in

worst-case time O((kn+ h2) log n+ kh2).

Proof: By the triangle inequality, each edge of the shortest path πk(t) is either an

edge of an obstacle polygon or is a tangent between two obstacles, where we include

tangents from s and t. (Each pair of convex obstacles has four tangents.) Let V1 be the

set of obstacle vertices (including s and t) and E1 the set of all polygon edges and the

tangents. Each edge of E1 is assigned a weight equal to its Euclidean length, and has

a label equal to the number of obstacles it crosses. We can compute the set E1, along

with the labels, in time O(n + h2 log n) [33]. We now construct a graph G = (V,E),

80

Shortest Paths with Removable Obstacles Chapter 5

with O(kn) vertices and O(n+ kh2) edges, as follows. For every v ∈ V1, we create k + 1

copies v0, v1, . . . , vk, corresponding to the number of obstacles crossed on the path to

v. For every edge (u, v) ∈ E1 that passes through j ≤ k obstacles, we add the edges

(u0, vj), (u1, vj+1), . . . , (uk−j, vk). We create two new vertices s and t and connect them

to their respective copies in G. That is, s connects to s0, s1, . . . , sk and t connects to

t0, t1, . . . , tk with zero weight and zero crossing edges. The shortest path from s to t in

this graph is the shortest k-path, and the claimed bound follows.

The visibility graph-based approach is inherently quadratic in the worst case, because

the number of obstacles can be h = Ω(n). It also is limited to computing the shortest

k-path to only one point (or a fixed set of points) at a time, although it can be extended

to support queries in O(h(k + log n)) time apiece after quadratic preprocessing.

The main result of this chapter is an algorithm to compute shortest k-paths from s to all

points of free space in subquadratic time O(k2n log n). We do this by computing a shortest

k-path map of free space; we also prove a tight bound of Θ(kn) on the combinatorial

complexity of SPM k. Note that the length of a shortest k-path to a point is unique,

although some points (along bisectors forming the boundaries of regions in the shortest

path map) can be reached by multiple shortest k-paths. For simplicity, however, we

assume that the obstacles are in general position, so that the shortest k-path to each

obstacle vertex is unique. (Otherwise, if a vertex is reached from s by multiple shortest

k-paths, we pick one of them arbitrarily.)

We begin by highlighting a conceptual difficulty with shortest k-paths. The shortest

paths to two different destinations can cross each other, which poses an inherent difficulty

for the continuous Dijkstra framework of geometric shortest paths [30], since that method

depends on the fact that two Euclidean shortest paths from a common source cannot

intersect.

81

Shortest Paths with Removable Obstacles Chapter 5

Lemma 40 There exist obstacle configurations such that for two destinations t1, t2 in

free space, the shortest k-paths πk(t1) and πk(t2) cross each other, for k > 0.

Proof: The construction, shown in Figure 5.1, has two identical obstacle bundles

A and B placed parallel to the y-axis. Each bundle contains four vertical strips with

perforations (single-point openings that split the original strip into disjoint sub-strips).

The horizontal spacing between the strips in a bundle is infinitesimal, but for clarity the

strips are shown separated in the figure. The points s and t both lie on the x-axis at

distance 1 to the left and right of bundles A and B, respectively. We show that there are

two shortest 1-paths from s to t, which cross each other, as shown in the figure. We then

conclude that by perturbing t up and down slightly we obtain two destination points t1

and t2 with their shortest 1-paths crossing, as claimed.

A

π1(t)

π′
1(t)

δ
2

s t

B

Figure 5.1: Two intersecting 1-paths.

Within each bundle, the openings form an upper and a lower group. In the upper

group, strips 2 and 3 have an opening at y = (1 + δ/2), and strips 1 and 4 have openings

at y = 1. In the lower group, all except strip 3 have an opening at y = −1. If the distance

between the bundles is D, then a shortest 0-path has length 2
√

2 +D+ 2δ, and a shortest

2-path has length 2
√

2 + D. A path with exactly one crossing in an upper group has

length at least 2
√

2 +D + 3δ/2, and a shortest path with one crossing in a lower group

has length 2
√

2 +
√
D2 + 4 + δ < 2

√
2 + D + 2/D + δ. By choosing D = 10, say, and

82

Shortest Paths with Removable Obstacles Chapter 5

δ = 4/D, we can force a shortest 1-path to go through exactly one group of each type.

This gives two intersecting shortest k-paths, π1(t) and π′1(t). Now, let t1 (resp. t2) be a

destination point obtained by shifting t vertically up (resp. vertically down) infinitesimally.

Then it is easy to see that the shortest 1-paths π1(t1) and π1(t2) cross each other.

Fortunately, as we show in this section, shortest k-paths can always be decomposed

into appropriate non-crossing subpaths to which the continuous Dijkstra method can

be applied, working on multiple copies of free space connected using the metaphor of a

k-level garage. Toward that goal, we establish a series of lemmas.

Lemma 41 A shortest path with exactly k crossings can be decomposed into a shortest

path with exactly (k − 1) crossings, a straight line segment inside an obstacle, and a

shortest path with zero crossings.

Proof: Let π = (v1, v2, . . . , vm) be an (= k)-path from v1 to vm. Going backward

from vm along π, let vi be the first vertex such that the segment vi−1vi intersects one or

more obstacles. Let H be the obstacle that is closest to vi along the segment vi−1vi. By

the convexity of H, the segment vi−1vi intersects H at two points, which we call p and q,

and the segment pq lies entirely within H. By subpath optimality, the path from v1 to p

is a shortest path with exactly k− 1 crossings; by construction, the segment pq lies inside

the obstacle; and the subpath from q to vm crosses no obstacles.

Observe that for any shortest k-path π, the subpath between any two consecutive

vertices vi−1 and vi of π is the straight line segment vi−1vi. Since the part of π that lies

inside an obstacle H must be coincident with one such segment, we have the following.

Corollary 16 In a shortest k-path, the path segments preceding and following any obstacle

crossing are collinear with the path segment inside the obstacle.

Lemma 41 allows us to break any πk(t) into a (k − 1)-path πk−1(p), a subpath line

segment pq, and an obstacle-free subpath between q and t. We label the last two subpaths

83

Shortest Paths with Removable Obstacles Chapter 5

with the number of obstacles crossed by the prefix of the path, and call these labels the

prefix counts. In particular, the prefix count for the subpath pq is k − 1, and the prefix

count for the subpath from q to t is k. By a recursive application of Lemma 41, we can

decompose πk(t) into 2k + 1 disjoint subpaths whose labels are in non-decreasing order.

The key consequence of this decomposition is the following lemma, which says that

subpaths with the same prefix count cannot cross. The example in Figure 5.1 is consistent

with the lemma, because the intersecting edges of the two crossing shortest k-paths have

different prefix counts.

Lemma 42 Let πk(t) and π′k(t
′) be two subpaths whose prefix counts are the same. Then

πk(t) and π′k(t
′) do not cross each other.

Proof: The proof follows from a simple application of the triangle inequality: if two

subpaths with the same prefix count intersect, then we can reconnect the prefix of each

path to the suffix of the other, and possibly perform a local shortcut, either shortening

at least one path or leaving them the same length but without a crossing. Since the

intersecting subpaths are either both inside some obstacle or in free space, avoiding the

intersection does not increase the number of obstacle crossings for either path.

The next two lemmas establish properties of shortest k-paths that will be useful later.

Definition 13 A point p is k-visible from the source s if the segment sp passes through

at most k obstacles. A k-visibility edge is a shortest k-path with exactly one edge.

Lemma 43 If p is not (k − 1)-visible from s, then the path πk(p) must be an (= k)-path.

Proof: By contradiction. Suppose πk(p) passes through fewer than k obstacles.

Since p is not (k − 1)-visible from s, πk(p) must have at least one bend. The path can

then be shortened by going through the obstacle causing this bend, thereby increasing

84

Shortest Paths with Removable Obstacles Chapter 5

the number of crossings by 1. The resulting path is shorter than πk(p) and has at most k

crossings, contradicting the optimality of πk(p).

Let dk(p) be the length of a shortest k-path to a point p. Clearly, a path that crosses

j obstacles and contains at least two segments can be made even shorter if it is allowed to

pass through more obstacles. Thus, it follows that for any point p that is not (k−1)-visible

from s, we must have dj(p) > dj+1(p), for j < k.

Lemma 44 For any point p that is not (k − 1)-visible from s, the lengths of the shortest

j-paths form a decreasing sequence:

d0(p) > d1(p) > . . . > di(p) > . . . > dk(p)

5.2 Shortest Path Map SPM k: Properties and Bounds

Having established the basic properties of shortest k-paths, we now begin our discussion

of the shortest k-path map SPM k.

Definition 14 Given a shortest k-path πk(p), we define the k-predecessor of p to be the

vertex of P (including s) that is adjacent to p in πk(p). The partition of free space into

connected regions with the same k-predecessor is called the shortest k-path map, and

denoted SPM k. The subset of SPM k for which the shortest path πk(p) to every point p

has exactly k crossings is called the shortest (= k)-path map and denoted by SPM =k. See

Figure 5.2 for an example.

Unlike SPM 0, in which the predecessor of a region is always inside or on the boundary

of the region, the predecessor of a region in SPM k may lie outside the region. Moreover,

multiple regions in SPM k may have the same predecessor. (See Figure 5.2.) Thus, we need

to maintain additional information with polygon vertices to disambiguate the predecessor

85

Shortest Paths with Removable Obstacles Chapter 5

s

Figure 5.2: The shaded region de-
notes the cells of SPM 1 for which
the 1-predecessor is (s, 0). Note
that unlike SPM 0, there are multi-
ple cells with the same predecessor.

s

Figure 5.3: The boundary ∂V1 of the region V1
is dash-dotted, and it encloses the boundary
∂V0, which is shown with dotted segments. The
region V0 is shown in white, V1 \ V0 is shown
shaded gray. The blue region denotes V2 \ V1.

relation. In particular, let v be the k-predecessor of p, namely, the vertex adjacent to

p in πk(p). Suppose the line segment vp crosses (k − i) obstacles, for some 0 ≤ i ≤ k.

Then the length dk(p) of πk(p) is the sum of the length of the i-path to v and the length

of segment vp. We need to maintain the values di(v) for all obstacle vertices v and all

integers i = 0, 1, . . . , k. In other words,

For a point p in SPM =k, we identify the k-predecessor of p by the pair (v, i),

where v is a vertex of P and i ∈ {0, 1, . . . , k}, such that dk(p) = di(v) + |vp|

and the segment vp crosses (k − i) obstacles.

Thus, the total number of k-predecessors is O(kn). However, this alone does not bound

the number of regions in SPM =k because multiple regions can have the same k-predecessor

and the same crossing sequence. Toward our goal of bounding the combinatorial complexity

of the map, let us begin with the notion of k-visibility.

We define Vk to be the region consisting of k-visible points, which is star-shaped and

therefore simply connected (Figure 5.3). Now if πk(p) crosses fewer than k obstacles,

then by Lemma 43, p must lie in Vk−1. The path πk(p) is a straight line segment and the

k-predecessor of p is s. Therefore, we have the following.

86

Shortest Paths with Removable Obstacles Chapter 5

Lemma 45 All points p such that πk(p) has fewer than k crossings lie in Vk−1. Outside

of Vk−1, SPM k is the same as SPM =k, the shortest path map with exactly k crossings.

This simplifies our discussion and allows us to decompose SPM k into two distinct

regions, Vk−1 and SPM =k. In the following, we study structural properties of these regions

and use them to compute upper bounds on their respective sizes. Later, we combine them

to compute an upper bound on the size of the map SPM k.

5.2.1 k-Visibility Region

We first bound the complexity of the boundary of Vk, the region visible from s by a

segment crossing at most k obstacles.

Lemma 46 The number of edges on the boundary ∂Vk is O(n+ h) = O(n).

Proof: Every vertex of ∂Vk is either a vertex of P or a projection of one of the

2h tangents from s to an obstacle of P . The edges on the boundary ∂Vk are therefore

sub-segments of the tangents or parts of obstacle boundaries. Each projection vertex

belongs to a segment of ∂Vk collinear with s, and the endpoint x farther from s is the

end of a maximal segment sx that crosses exactly k obstacles. Therefore, each of the 2h

tangents gives rise to at most one segment of ∂Vk and at most two vertices.

More interestingly, the bound on the total complexity of these regions is less than the

sum of the individual bounds.

Lemma 47 The total number of edges on all ∂Vi, for 0 ≤ i ≤ k, is O(n+ hk).

Proof: Any vertex v of P belongs to ∂Vi for at most one value of i, namely the i

(if any) such that sv intersects exactly i obstacles. For j < i, v is outside ∂Vj, and for

j > i, v is in the interior of ∂Vj . There are O(h) edges of ∂Vi (for any i) not incident to a

vertex of P . Summing over all i ≤ k completes the proof.

87

Shortest Paths with Removable Obstacles Chapter 5

By connecting s to all vertices on boundary ∂Vk−1, we can easily decompose Vk−1 into

constant complexity regions in SPM k.

5.2.2 The k-Level Garage and the Structure of SPM=k

We now introduce our main idea for computing the shortest k-path map. By Lemma 41,

an (= k)-path from s to a point p is the concatenation of a (k − 1)-path to the boundary

of some obstacle H, a shortest path inside H, and a shortest path in free space from

the other side of H to p. This suggests an incremental construction of SPM =k from

SPM =(k−1). We describe this construction using the metaphor of a k-level parking garage

with elevators.1 The idea is to create multiple copies of the input polygonal domain and

stack them in levels such that the shortest paths at each level have the same prefix count

and therefore do not intersect. The planar subdivision of free space at the top level is

SPM =k.

Definition 15 (k-garage) We construct the k-garage structure by stacking k copies (or

floors) of the input polygonal domain P on top of one another, with special connections

at the obstacle boundaries. We connect the obstacle H on floor i to its counterpart on

floor i+ 1 such that any path that enters H on floor i can exit only on the next higher

floor—in a sense, obstacles act as elevators.

Our algorithm to construct SPM =k makes use of the continuous Dijkstra method,

which simulates the expansion of a unit speed wavefront from the source s in free space.

The wavefront at time T contains all points p whose shortest path distance from s is T .

The boundary of the wavefront is a set of circular arcs called wavelets, each generated by

an obstacle vertex (including s) already covered by the wavefront. The generating vertex

1The garage metaphor is also used in the context of finding homotopically different paths in [34], but
the properties and technical details of our k-garage are quite different.

88

Shortest Paths with Removable Obstacles Chapter 5

v is called the generator of the wavelet and is identified by the pair (v, w), where w is the

time at which v was reached by the wavefront. Since the wavefront moves at unit speed,

w is precisely the length of the shortest path from s to v. The generators can be thought

of as sources additively weighted with delays, since they start emitting wavelets at time w

after the start of the simulation. The locus of the meeting points of two adjacent wavelets

is a bisector curve. Taken together with the obstacle boundaries, bisector curves partition

free space into regions of the shortest path map.

We extend the continuous Dijkstra method to our k-garage structure. Each level of

the garage is a plane with polygonal obstacles on which wavefronts propagate as usual,

but the wavelets can now move to higher floors by entering the obstacles (elevators). More

precisely, when the wavefront hits an obstacle H, it is absorbed by the outer boundary of

H and is immediately re-emitted into the interior of H. When that wavefront reaches

the inner boundary on the other (previously unreached) side of H, it is absorbed and

immediately re-emitted on the next higher floor of the garage. This vertical movement

therefore adds no delay. In this modified setting, the wavefront at time T contains points

on all floors that are at distance T from the source.

The region Vk−1 is removed from the polygonal domain on floor k of the k-garage

because the shortest k-path is known for every point p in Vk−1—it is simply the line

segment sp—and leaving these points in the polygonal domain on floor k would create

redundant copies of this path. We defer the exact details of our algorithm to Section 5.3.

In the following, we note some properties of the k-garage structure useful to our algorithm.

1. If π is a shortest s–t path from s on floor 0 to t on floor k, then the downward

projection π↓ of π, obtained by projecting π into the planar domain P , is a shortest

k-path to t. (To see this, suppose for contradiction we have another k-path πc from

s to t that is shorter. Then by applying Lemma 41 recursively, we can break πc

89

Shortest Paths with Removable Obstacles Chapter 5

into 2k + 1 disjoint subpaths ordered by their prefix counts. We now lift the paths

into the levels of the garage and concatenate them in order: if the prefix counts of

the current and the next subpath are the same, join their common endpoint at the

same level as the prefix count; otherwise join their common endpoint at the next

level. This transforms the path πc into a shortest path π↑c from s on floor 0 to t on

floor k. Since the vertical movement between the garage floors incurs no delay, the

lifted path π↑c is shorter than π, which is a contradiction.)

2. Since wavefront propagation on floor i is affected only by wavelets coming from

floors below it, we can think of wavefront propagation on floor i as occurring in a

polygonal domain with multiple sources. On floor i > 0, all sources correspond to

generators of wavelets coming from lower floors.

3. To compute the sources at floor i > 0, we need to consider only wavelets coming

from floor i− 1. This follows from Lemma 44, which implies that even if wavelets

were allowed to ascend multiple floors in an elevator, a wavelet from floor i − 1

would reach floor i no later than the wavelets from other lower floors.

4. The planar subdivision formed by bisectors of colliding wavelets on floor i is the

shortest path map for (= i)-paths, SPM =i. Note that since the obstacles are convex,

a shortest path to a point on floor i cannot cross the same obstacle (on any floor)

more than once, or else it can be made even shorter.

This suggests a natural way of computing the shortest path map SPM =k. We construct

maps SPM =i for i = 0, 1, . . . , k iteratively. Each iteration i > 0 is defined by ordinary

shortest path propagation with a set of sources that come from the previous iteration. In

the following section we use these observations to compute a bound on the size of the

shortest k-path map SPM k.

90

Shortest Paths with Removable Obstacles Chapter 5

5.2.3 Complexity of SPM k

The shortest k-path map SPM k on the top floor of the k-garage is precisely SPM =k

in the portion of free space that is outside Vk−1, as shown in Lemma 43. The boundary of

Vk−1 has linear size, and so we only need to bound the complexity of SPM =k. To bound

the complexity of SPM =k, we consider the embedded planar graph Gk formed by SPM =k,

Vk−1, and the obstacle polygons. We note the following property of planar graphs, which

is a direct consequence of Euler’s formula.

Lemma 48 Let f be the number of faces in a planar graph G = (V,E). If all the vertices

of G have degree three or more, then the size of G is O(f).

Proof: Let d(v) be the degree of a vertex v. Since
∑
v∈V d(v) = 2|E|, and d(v) ≥ 3,

we have 2|E| ≥ 3|V |. Substituting this in Euler’s formula |V | − |E| + f = 2 gives us

|V | ≤ 2f − 4 = O(f). Since |E| = |V |+ f − 2, we conclude that |V |+ |E| = O(f).

Observe that the “interesting” vertices in Gk are the points where bisectors meet

obstacle boundaries or meet each other, and therefore have degree at least three. If f is

the number of faces, then by Lemma 48 the complexity of the map due to these vertices

is O(f). In addition to this, Gk can also have O(n) vertices of degree two corresponding

to the vertices of obstacle polygons, giving a total complexity bound of O(f + n).

Therefore, in order to compute a bound on the complexity of SPM =k, it suffices to

bound the number of faces f in the graph Gk. We begin with the following well-known

result [30].

Lemma 49 The shortest path map of m sources weighted by their delays in a polygonal

domain with n vertices and h holes has f ≤ m+ n+ h ≤ m+ 2n faces. By planarity,

the total complexity of the map is O(f + n).

The key to the proof of the preceding lemma is that each shortest path map region is

star-shaped and connected to the predecessor of all points in the region. Since the total

91

Shortest Paths with Removable Obstacles Chapter 5

number of predecessors is at most (m+n), the number of faces due to these regions is also

at most (m+ n). Crucially, this lemma does not immediately apply to SPM =k, because

some predecessors of regions on the kth floor belong to regions below the kth floor. That is,

some of the m sources are not in the polygonal domain, so the argument that each region

is connected to its predecessor does not hold. Fortunately, the argument of Lemma 49 is

a topological one, and we can create a topological domain in which the argument applies.

(a)

s

t

s

s

t

s

(s, w, `)

(b)

(c) (d)

Figure 5.4: (a)–(c) An example illustration of wavefront propagation across garage
floors. The wavefront ascends between floors by entering into obstacles (elevators) and
creates boundary sources at the next level. We continue wavefront propagation at
the next level using these boundary sources. (d) Creating a pseudo-polygonal domain
by connecting a source on a higher level to its predecessor on an earlier level by a
triangular “flap”.

Every point p ∈ ∂P outside of Vk−1 is labeled by a (k−1)-crossing distance dk−1(p). If p

belongs to an obstacle H, and there exists some q ∈ ∂H such that dk−1(q)+ |qp| < dk−1(p),

then πk(p) may reach p by passing through H. The wavefront that determines SPM =k

will be initialized with a weighted source that reaches p by “elevator” passing through H.

If q ∈ ∂H minimizes dk−1(q) + |qp|, then the predecessor of q on πk−1(q) is the generator

of the wavelet that first reaches p in the wavefront. We partition each edge of ∂H into

maximal sub-edges with the same predecessor. For each sub-edge with predecessor v, we

construct a triangular “flap” by drawing the segments from the sub-edge endpoints to

92

Shortest Paths with Removable Obstacles Chapter 5

v. Shortest paths propagate from v toward the kth garage floor inside the flap, and in

the pseudo-polygonal domain obtained by gluing all the flaps onto the boundary of free

space, each shortest path map region is connected to its predecessor. If these flaps were

projected into the plane, they would likely overlap, but topologically they do not alter

the structure of the domain, and they add only two edges per flap.

Lemma 50 Let P be a polygonal domain with n vertices and h holes. If P is extended by

gluing at most m triangular flaps to its boundary, then the shortest path map of m sources

weighted by their delays in this extended polygonal domain has f ≤ m+n+h ≤ m+ 2n

faces and total complexity O(m+ n).

The preceding lemma applies to the propagation of shortest paths on each floor of the

k-garage and also to propagation inside the obstacles (elevators). In both cases the key to

bounding the complexity of an iterated construction is bounding the number of sources

that propagate into the next level, whether elevator or garage floor. In each elevator and

on each garage level i > 0, the sources are located on the domain boundary. For simplicity

we partition the sources at obstacle vertices, so each source is a maximal (sub-)edge `

on some obstacle boundary ∂H, with an associated generator (v, w). We refer to such a

source as a boundary source and represent it by the triple (v, w, `). Shortest paths from a

source (v, w, `) enter the domain through edge `, and their predecessor is vertex v with

weight (delay) w. As noted above, each boundary source defines a triangular flap glued

onto the boundary of the propagation domain; the flap is the convex hull of ` and v.

When boundary sources propagate into some domain (either P or the interior of an

obstacle), they define a shortest path map S in the domain. We say that if the region

of S corresponding to a source s = (v, w, `) intersects a domain edge, then s claims

the intersection interval on that edge. An entry claim of a source (v, w, `) is a claim

on edge ` itself; entry claims can be ignored for further propagation, since a path that

93

Shortest Paths with Removable Obstacles Chapter 5

(v, w, `)

(a) (b)

Figure 5.5: (a) Exit claims for the boundary source (v, w, `) need to be propagated to
next level. (b) Connecting the sources with their exit claims gives a bipartite planar
graph.

enters the domain through ` and exits through the same edge can be shortened. Exit

claims (ones on edges other than `) define the sources for the next level of shortest path

propagation. (See Figure 5.5.) Within any edge, a maximal sequence of exit claims with

the same source is called an exit claim cluster. In other words, exit claims of a source

(v, w, `) on an edge e may be disconnected and each connected sequence is precisely an

exit claim cluster. Note that these exit claim clusters give rise to the boundary sources

for subsequent wavefront propagation. That is, for an exit claim cluster on edge e with

source (v, w, `), the corresponding boundary source at the next level is (v, w, `′), where `′

is the minimal subsegment of e containing the cluster. As noted, entry claims inside `′ do

not affect shortest path propagation at the next level.

Lemma 51 Let S be the shortest path map obtained by propagating m boundary sources

into a polygonal domain with n vertices. Then the number of exit claim clusters of S is at

most m+O(n).

Proof: Since S is a partition of the domain, the domain boundary is completely

covered by claims, which may be either entry claims or exit claims.

We construct an embedded bipartite planar graph whose nodes are claims on the

94

Shortest Paths with Removable Obstacles Chapter 5

domain boundary. Every source (v, w, `) that claims some portion of the domain boundary

must have an entry claim on `; otherwise the shortest path propagation from (v, w, `)

would not enter the domain. For every exit claim τ claimed by source (v, w, `), we draw

an arc from segment ` to τ , following a shortest path segment across the domain interior.

We want to bound the total number of these arcs. Since the shortest paths that define S

do not cross, these arcs are non-crossing. (See also Figure 5.5.)

We group arcs into bundles whose sources and targets lie on the same pair of domain

edges. If we pick one arc from each bundle and regard each domain edge as a node in

a planar graph, planarity gives a bound of O(n) on the total number of bundles. This

bound on the number of bundles is the first step in bounding the number of arcs.

If a bundle joining edges e and e′ has j > 1 arcs, we draw j − 1 cycles, each one

defined by two adjacent arcs and the subsegments of e and e′ between their endpoints.

The cycles for a single bundle are interior-disjoint, but cycles from different bundles may

be nested, one containing the other. Note that cycle boundaries cannot cross—they are

composed of obstacle boundaries and noncrossing arcs—so nesting is the only possible

relation between cycles that are not interior-disjoint.

If a cycle C contains any obstacle, we split the bundle B containing C between the

arcs of C, so neither of the resulting two bundles contains C. We charge the splitting of

B to one of the obstacles inside C. We choose which obstacle to charge so as to guarantee

that each obstacle is charged at most once. If C contains no cycle nested inside it, we

charge an arbitrary obstacle inside C. If C contains other cycles, let C ′ be one at the

outermost level of nesting within C. Cycle C ′ must have at least one of its bounding

edges on an obstacle H contained in the interior of C, because otherwise C ′ would share

both obstacle edges with C, which is impossible by construction. Obstacle H is not

contained in any cycle C ′′ nested inside C, because C ′′ would necessarily contain C ′, but

C ′ was chosen outermost. We charge the splitting of B at C to H. Note that H cannot

95

Shortest Paths with Removable Obstacles Chapter 5

be charged by any cycle inside C (because it is outside all such cycles) or containing C

(because it is inside C and hence shielded from such cycles).

Because there are at most O(n) obstacles, each charged for at most one split, the

number of bundles after splitting is still O(n). None of the bundles that remain after

splitting contains any obstacle inside the quadrilateral it bounds.

Given a bundle incident to edges e and e′, we divide it into two sub-bundles, one

consisting of arcs directed from e to e′ and one consisting of the oppositely directed arcs.

Within each sub-bundle, we identify contiguous runs of arcs with the same source. Each

maximal run corresponds to an exit claim cluster, so we will call these runs arc clusters.

We charge the first and last arc cluster in each sub-bundle to the bundle itself. (There

are O(n) such charges.) Crucially, every other arc cluster corresponds to a source that

appears only in this bundle, because the arcs before and after it in the sub-bundle confine

it and prevent it from claiming edges anywhere else. Hence we can charge each such

cluster to the source itself; the source is charged only once.

To recap, we bound the number of exit claim clusters by the number of arc clusters.

Arcs belong to bundles, and there are O(n) bundles by planarity. To remove obstacles

inside bundles, we split bundles at most O(n) times. We break each bundle into two

sub-bundles, and pay explicitly for the first and last arc cluster in each, for a total of

O(n). We charge each remaining arc cluster to one of the m sources, charging each source

at most once, giving a total bound on the number of arc clusters of m+O(n).

We are now ready to bound the complexity of SPM =k.

Lemma 52 The number of faces fk in SPM =k is O(n(k+1)). The complexity of SPM =k

has the same asymptotic bound.

Proof: The proof is by induction. Our goal is to show that there exists a constant

C such that the number of faces fk in SPM =k is at most Cn(k + 1) for all k ≥ 0.

96

Shortest Paths with Removable Obstacles Chapter 5

We begin with the inductive step. Let m be the number of exit claim clusters in

SPM =(k−1). This is the number of boundary sources in “elevator” propagation across the

obstacle interiors, going from level k − 1 to level k. By Lemma 51, the resulting number

of exit claim clusters is m′ = m+O(n). But m′ is the number of boundary sources in the

construction of SPM =k, and once again by Lemma 51, the resulting number of exit claim

clusters is m′′ = m′ +O(n) = m+O(n), that is, m′′ ≤ m+ c1n for some constant c1.

To establish the base case, recall that a shortest path map with no crossings (SPM 0)

has complexity O(n), which implies that the number of exit claims on its boundary is

O(n), i.e., at most c2n for some constant c2. Combining the base case and inductive step,

we have shown that the number of exit claim clusters on the boundary of SPM =k is at

most c2n + k · c1n. The number of faces of SPM =k is at most equal to the number of

boundary sources, which is at most Cn(k+ 1), for C = max(c1, c2). Lemma 48 establishes

the total complexity bound.

5.2.4 A Matching Lower Bound

We will now bound the size of SPM k from below by constructing a map with Ω(nk)

regions. We construct an arrangement of obstacles as shown in Figure 5.6. We start with

two obstacle bundles A and B placed parallel to the y-axis. Within each bundle, the

horizontal spaces between strips are infinitesimal, but they are shown enlarged for clarity.

The source s lies on the x-axis with bundle A placed right next to it. Bundle A consists

of 3k perforated strips. In the first 2k strips, the odd numbered ones have openings at

y = 0 and the even numbered ones have openings at y = −0.5. The next k strips have an

opening at y = 0. Bundle B is placed at a distance D to the right of A and consists of k

strips with no openings.

The last k strips in bundle A ensure that shortest k-paths starting at s must exit

97

Shortest Paths with Removable Obstacles Chapter 5

A BS

.

p
s y∗

. . .

Figure 5.6: A shortest k-path map with complexity Ω(nk). Bundle A has 2k black
strips and k gray strips; bundle B has k strips. The thick strip S has Ω(n) openings.
Each opening of S defines k cells in SPM k, shown shaded (one to the right of each of
the k strips in bundle B). A shortest k-path π(p) from s is also shown. Observe that
since π(p) crosses (k − 1) strips in bundle A, it can only cross the first strip in bundle
B.

from the opening of the last strip in A (denoted by y∗); a path that crosses the last strip

in A at some point other than y∗ can be shortened while preserving the same number

of crossings. Observe that a shortest path starting at s can reach y∗ with i crossings,

where 0 ≤ i ≤ k. However, each crossing avoided results in an additional length of 1 unit.

Therefore a shortest path with i crossings at y∗ has an additional length of (k − i) units.

Also note that a shortest path with i crossings prior to y∗ can cross the first (k − i) of

the k strips in bundle B, but cannot cross any farther. Therefore, to the right of strip j

in bundle B, we get a region with k-predecessor (y∗, k − j) and a total path length (to a

point on the x-axis) of D + j. This gives us a total of k regions.

We extend this construction to Ω(nk) regions by adding a vertical strip S, which acts as

a path splitter. This special strip has a total of m single-point openings at y = 0, 1, . . . ,m,

denoted by yi. We place S at an infinitesimal distance to the left of bundle B, creating

k new regions for each opening of S. Note that in the range 0 ≤ y ≤ m, a path that

crosses S other than at one of the perforations yi can be shortened by detouring through

the nearest yi and inserting one more crossing before y∗. Hence a shortest k-path always

passes through one of the yi. This gives a total of O(mk) regions: the k-predecessor of

the region at y = i and to the right of strip j of bundle B will be (yi, k − j), with a total

98

Shortest Paths with Removable Obstacles Chapter 5

path length of
√
D2 + i2 + j.

The total number of vertices in our construction is 3k × 4 + k × 2 + (m+ 1)× 2 =

14k + 2m + 2. By choosing m = (n − 14k − 2)/2 and assuming k < n/28, we have

m = Θ(n) and the total number of regions in SPM k is Ω(nk). This gives us the following

lemma.

Lemma 53 The worst-case complexity of SPM k is Ω(nk).

Combining Lemmas 46, 52, and 53, we get the main result of this section.

Theorem 17 The shortest k-path map SPM k has size Θ(kn).

5.3 Computing SPM k

In this section we describe an O(k2n log n) algorithm to construct SPM k. Recall from

our discussion about the k-garage (Definition 15), we can construct SPM =k iteratively,

one level at a time. To compute the map at each level, we propagate the sources from the

previous level and then perform wavefront propagation at the current level. For this, we

use the algorithm for shortest paths in the presence of polygonal obstacles by Hershberger

and Suri [30] as a subroutine. Except for a few small modifications required for our

setting, most of the algorithm carries over unchanged. In the following, we briefly review

the key ideas and discuss the necessary modifications.

The Hershberger–Suri algorithm uses the continuous Dijkstra method, which simulates

the propagation of a unit speed wavefront in free space. The wavefront is a collection

of circular wavelets. It changes its shape as it propagates and hits obstacles. Each

wavelet originates at a generator, which may be a point source or an obstacle vertex (an

intermediate source). A generator for a wavelet γ is identified by the pair (v, w), where v

is an input vertex and w is the time at which v starts emitting γ. The Hershberger–Suri

99

Shortest Paths with Removable Obstacles Chapter 5

algorithm simulates wavefront propagation over a planar subdivision called the conforming

subdivision of free space. For each subdivision edge e, and every point p ∈ e, the algorithm

identifies the generator whose wavelet first reaches p. Combining these results for all

p ∈ e gives the wavefront for e. The key idea of the algorithm is to localize interesting

events (such as wavelet collisions) within a constant number of cells in the subdivision.

Each free-space edge e of this subdivision is contained in the union of a constant number

of cells, called its well-covering region U(e). The wavefront for edge e is computed by

combining and propagating the wavefront inside of U(e). The computed wavefronts are

then merged to compute the shortest path map. This is the main result relevant to our

algorithm:

Lemma 54 ([30]) Given a set of polygonal obstacles with n vertices and a set of O(n)

sources with delays, one can compute the shortest path map in O(n log n) time and

O(n log n) space.

From the discussion preceding Lemma 51, recall that the sources on floor i are identified

by triples (v, w, `), where ` is a (sub-)edge of some obstacle H, (v, w) is a weighted point

source on some floor j < i, and the wavelet γ generated by (v, w) enters floor i from

the interior of H (an elevator) passing through edge `. Each source (v, w, `) defines a

triangular flap glued onto the boundary of free space at `. Conceptually, we think of the

wavelet γ from (v, w, `) as propagating in the flap before it enters floor i. Algorithmically,

we can ignore the flap and start the propagation in free space at edge `. This calls for

a slight modification in the initialization step of the Hershberger–Suri algorithm. In

particular, we do the following for each edge e of the conforming subdivision:

1. Find all boundary sources (v, w, `) such that the well-covering region U(e) contains

`.

100

Shortest Paths with Removable Obstacles Chapter 5

2. Initialize covertime(e), which is the time at which e would be engulfed by the

wavefront, minimizing over all boundary sources (v, w, `) with ` ∈ U(e), and for

each such source considering paths from v with delay w, constrained to pass through

`.

3. For each source (v, w, `) with ` ∈ U(e), propagate its wavelet γ to e inside U(e).

In the following lemma we show how to compute the boundary sources for each step

of wavefront propagation.

Lemma 55 Given m boundary sources in a polygonal domain with n vertices, we can

compute the exit claims of the sources in O((m+ n) log(m+ n)) time and space.

Proof: We apply the Hershberger–Suri algorithm, modified for boundary sources as

described above. The algorithm computes the shortest path map for the sources inside

the polygonal domain in total time and space O((m+ n) log(m+ n)). The shortest path

map partitions the boundary into O(m+ n) intervals (claims), each claimed by its own

source.

However, some of these intervals may be entry claims, that is, they are claimed by a

source that lies on the same segment. Observe that an entry claim interval must have a

non-empty intersection with the interval corresponding to its source. We can therefore

identify entry claims by overlaying the set of claim intervals with the boundary sources

that form another set of m intervals. Overlaying these two sets of intervals takes additional

linear time and space. The remainder is the set of all exit claims, that is, those with a

claiming source from a different segment.

With these primitives in place, we are ready to describe our algorithm. The input is a

polygonal domain P with convex obstacles. We will use M to denote the set of boundary

sources passed as input to the Hershberger–Suri algorithm. The algorithm computes two

101

Shortest Paths with Removable Obstacles Chapter 5

things: the (k − 1)-visibility region V and the (= k)-path map SPM =k, which combined

together form SPM k. The length of the shortest path to any point p can then be easily

computed by first locating the region containing p in the map SPM k and then connecting

p to the k-predecessor of this region as described in the beginning of Section 5.2.

Algorithm 5 Algorithm to construct SPM k

1. Set M = {s} and call the Hershberger–Suri algorithm to compute SPM 0 for the
polygonal domain P . Initialize V to be the empty region ∅.

2. Repeat for each i ∈ 1, 2, . . . , k:

(a) Using Lemma 55, propagate the sources in SPM i−1 through the obstacles in
P to compute the set of boundary sources Mnew for SPM =i.

(b) Identify all the regions in SPM =(i−1) for which the predecessor is s. Observe
that this is precisely the region V ′ = Vi−1 \Vi−2. Set P to be the new polygonal
domain with this region removed.

(c) If V = ∅, then set V = V ′. Otherwise merge V with V ′ at the common vertices.

(d) Set M = Mnew and call the Hershberger–Suri algorithm to compute SPM =i

for the polygonal domain P .

3. Merge SPM =k with V at the boundary of regions of SPM =k that have s as prede-
cessor (i.e. V ′ = Vk \ Vk−1), to obtain SPM k.

Observe that after Step 2c of iteration i, the region V is equal to Vi−1. Because Vi−1

contains Vi−2 and because both regions have linear size (by Lemma 46), Step 2c takes linear

time. Therefore, the total running time is dominated by k calls to the Hershberger–Suri

algorithm with O(nk) sources (Theorem 17). We have the following result.

Theorem 18 If P is a polygonal domain bounded by convex obstacles with a total of n

vertices, the shortest k-path map for P with respect to a source point s can be computed

in O(k2n log n) time and (kn log n) space.

102

Shortest Paths with Removable Obstacles Chapter 5

5.4 Bibliographic Notes

The problem of computing shortest paths in the presence of obstacles has a long

history in computational geometry, dating back to the 1970s. The case of polygonal

obstacles in the plane, in particular, has been a subject of intense research [35, 36, 37,

38, 39, 33, 40, 41, 42], culminating in an optimal O(n log n) time algorithm using the

continuous Dijkstra framework [30]. Many other variations of the problem, including

shortest paths inside a simple polygon [43, 44, 45], among weighted regions [46], and

among curved obstacles [47, 48], have also been studied. The general flavor of our problem

is related to geometric optimization where a small number of constraints can be violated.

This line of work has been pursued in [49, 50, 51, 52], in the context of low-dimensional

linear programming, separability with outliers, and geometric optimization. Our problem

can also be viewed as a form of network augmentation, where the goal is to add edges to

the network to improve connectivity, diameter, or spanning ratio, etc. [53, 54, 55, 56].

The prior work most closely related to our problem is a recent result by Maheshwari et

al. [57], which presents an O(n3) time algorithm for computing the 1-violation path inside

a simple polygon: that is, a shortest path inside a simple n-gon where at most one edge

of the path lies outside the polygon. We deal with a different notion of path violation: we

compute a k-violation path, for any value of k, in a polygonal domain with n vertices and

h convex holes, where the violation count is the number of holes intersected by the path.

Recall that the minimum constraint removal problem discussed in Chapters 3 and 4

considers the case where given a set of possibly overlapping obstacles in the plane, one

would like to compute the minimum number of obstacles that can be removed to create

a path in free space from s to t. An important difference is that here we assume the

obstacles to be disjoint, so the existence of a free space s–t path is trivial.

103

Chapter 6

Shortest Paths with Weighted

Obstacle Removal

In the previous chapter, we presented an O(k2n log n) algorithm for shortest paths that

pass through (or remove) at most k obstacles. There, we assumed that all obstacles

are equivalent in terms of their removal costs. In this chapter, we study a more general

formulation where one needs to pay a non-negative cost ci for removing the i-th obstacle.

Formally, let P = {P1, . . . , Ph} be a set of h pairwise-disjoint polygonal obstacles in R2

with n vertices, and let ci > 0 be the cost of removing the obstacle Pi for i = 1, . . . , h. For

a path π in R2, we define its cost, denoted by c(π), to be the sum of the costs of obstacles

intersecting π, and its length, denoted by ‖π‖, to be its Euclidean length. Given two

points s, t ∈ R2 and a budget C > 0, we wish to compute a path from s to t of minimum

length whose cost is at most C.

Indeed, the shortest k-path problem studied in the previous chapter is also an obstacle-

removing shortest path where each obstacle removal has cost 1 and the cost budget is k.

We will call this the cardinality version of the obstacle-removal to distinguish it from the

cost-based model of obstacle removal studied in this chapter.

104

Shortest Paths with Weighted Obstacle Removal Chapter 6

A natural application where the cost model comes in handy is to path planning under

uncertainty. Imagine, for instance, a workspace with n obstacles, the presence of each

obstacle is a random event. That is, the presence of the ith obstacle is determined by

a Bernoulli trial with (independent) probability βi. A natural approach to planning a

s–t path in such a workspace is to search for a path that is both short and obstacle-free

with high probability. Given a desired probability of success β, we can ask: what is the

shortest path from s to t that is obstacle free with probability at least β. This problem is

easily transformed into our obstacle removal problem where the obstacle probabilities are

mapped to obstacle removal cost, and β is mapped to the cost budget C.

Results and Chapter Organization

We first show that the obstacle-removing shortest path problem is NP-hard for

polygonal obstacles in the plane, even if obstacles are vertical line segments by reducing

the well-known Partition problem to it. This is in contrast with the cardinality version

of the problem, which can be solved exactly in O(k2n log n) time [58]. This is discussed

in Section 6.1.

The main result of this chapter is a fully-polynomial time approximation scheme

(FPTAS) when each obstacle is a convex polygon. We first define the notion of the

viability graph G, which is an extension of the well-known visibility graph [59, 60],

for geometric paths that can cross obstacles. Using the viability graph, we present a

simple algorithm that returns a path with length at most the optimal1 but cost at most

(1 + ε)C. The approximation algorithm, while simple, has a worst-case time complexity

Θ(n
3

ε
polylog(n)). This is discussed in Section 6.2. Then in Section 6.3, we develop a

framework for a more efficient and practical approximation algorithm, which also results

in a number of related results. Specifically, for any constant ε > 0, we can compute

1The optimal length is always with respect to the budget C.

105

Shortest Paths with Weighted Obstacle Removal Chapter 6

a (1 + ε)-approximate shortest path whose total removal cost is at most (1 + ε)C in

time O
Ä
nh
ε2

log n log n
ε

ä
, where h is the number of obstacles and n is the total number of

vertices in the obstacles. The main idea behind the improvement is to construct a sparse

viability graph, with only O(n
ε

log n) edges. This approximation scheme immediately gives

a corresponding result for the uncertain model of obstacles (see Section 6.5 for this).

The approximation scheme, as a byproduct, also solves the exact L1 norm shortest

path problem in the cardinality model of obstacle removal: that is, in O(kn log2 n) time,

we can decide which k obstacles to remove for the shortest s–t path, which is roughly a

factor of k faster than the L2-norm result from the previous chapter. Alternatively, we

can also decide which k obstacles to remove so that the shortest s–t path has length at

most (1 + ε) times optimal in O(kn
ε

log2 n) time. This is again faster than the result from

Chapter 5 for constant ε, if k = Ω(log n).

Finally in Section 6.4, we also construct query data structures for answering approxi-

mate obstacle removal shortest path queries. If the source s is fixed (one point queries),

we construct a data structure of size O(nh
ε2

log n) such that, given a query point t, it

returns a s–t path of length (1 + ε) times the optimal with cost at most (1 + ε)C in

time O(1
ε

log2 n+ kst), where kst is the number of edges in the path. The data structure

size can be improved to O(n
ε2

log n log h
ε
) if we only return the length of the path. If

both points s, t are given in the query (two point queries), the data structure has size

O(n
2h
ε3

log2 n), and the query time is O(1
ε2

log2 n+ kst). The size of the data structure can

also be improved to O(n
2

ε3
log2 n log h

ε
) if we only return the length of the path.

6.1 NP-hardness

Consider the decision version of the obstacle-removing shortest-path problem: Given

a set P of pairwise-disjoint obstacles along with the cost of each object being removed,

106

Shortest Paths with Weighted Obstacle Removal Chapter 6

two points s, t ∈ R2, and two parameters C,L > 0, is there a path from s to t of length

at most L and cost at most C?

ai

t

Gi

a1
an

.s

Figure 6.1: Reduction from Partition. The gray segment in the obstacle group Gi
has length ai and can be crossed by paying a cost ai. The tall segments are drawn in
black and are placed ±δ apart from their corresponding gray segment.

We prove the hardness by a simple reduction from the well-known NP-complete problem

Partition. An instance of Partition is a set of n positive integers A = {a1, a2, . . . , an},

and the problem is to decide whether A can be partitioned into two sets A1 and A2 such

that W (A1) = W (A2) = 1
2
W (A), where W (S) is the sum of the integers in S. We place

the source s at (0, 0) and destination t at (n+1, 0) on the x-axis. We also set C = 1
2
W (A),

L = 1
2
W (A) + (n+ 1) and define a parameter δ = 1

8n
. For each i ≤ n we create a group

of obstacles, denoted Gi, which consists of five vertical line segments placed close to each

other in the following way. (See also Figure 6.1.)

• The middle segment emi has length ai, and has its midpoint on the x-axis. The

coordinates of its endpoints are (i,−ai/2), (i, ai/2). The cost of this obstacle is ai.

• At x-coordinates i−δ and i+δ we place two vertical segments eli and eri symmetrically

along the x-axis – each with point-sized holes on the x-axis and length 2(L + 1).

The point sized holes split the segment eli (resp. eri) into two disjoint tall segments

elui , e
ld
i (resp. erui , e

rd
i), of length (L+ 1). Each of these segments has cost (C + 1).

107

Shortest Paths with Weighted Obstacle Removal Chapter 6

Lemma 56 The set A can be partitioned into two equal-weight subsets if and only if

there is a path from s to t of length at most L and cost at most C.

Proof: The choice of obstacle lengths and costs ensures that any path of length

at most L and cost at most C must avoid passing through any of the tall obstacles

elui , e
ld
i , e

ru
i , e

rd
i as well as must travel through the point-sized holes between them at all

i = 1, 2, . . . , n groups (otherwise, the path either is longer than L or costs more than C).

In each group, however, the path must choose whether to pass through the obstacle emi at

cost ci or travel around it, which increases its length by at least (ai − 2δ). Given a valid

partition into two subsets A1 and A2, finding a path that meets the constraints is easy –

just go through short obstacles in groups corresponding to elements in A1 and go around

short obstacles in groups corresponding to elements in A2. Given a path that meets the

constraints, let A1, A2 be the elements in A corresponding to short obstacles in groups

that the path goes through and goes around respectively. From the cost constraint on

this path, it follows that W (A1) is at most 1
2
W (A). The length of this path is at least

(n+ 1) +W (A2)− 2nδ = (n+ 1) +W (A2)− 1
4
. Due to the length constraint, this value

can be at most (n+ 1) + 1
2
W (A) which gives that W (A2) is at most 1

2
W (A) + 1

4
. Note

that since the smallest element in A is at least 1, if W (A2) was more than W (A)/2, it

must also be more than 1
2
W (A) + 1

2
. Therefore, we must have W (A1),W (A2) to be at

most 1
2
W (A) and since W (A1) +W (A2) = W (A), we have a valid partition.

We thus obtain the following:

Theorem 19 Let P be a set of n disjoint polygonal obstacles in a plane, where each

obstacle Pi ∈ P has an associated removal cost ci. Given a source and destination pair of

points s, t, a removal budget C and a length L, the problem of deciding if there is a s–t

path with cost at most C and length at most L is NP-hard.

108

Shortest Paths with Weighted Obstacle Removal Chapter 6

6.2 A Simple (1 + ε)-Approximation Algorithm

In this section, we propose a simple polynomial-time approximation scheme for the

problem. We begin by noting that an obstacle-removing shortest path only turns at

obstacle vertices and crosses the boundary of an obstacle at most twice. While these

properties follow easily due to the convexity of P and basic geometry, they are crucial for

our algorithms.

The algorithm constructs a viability graph G = (V,E), whose nodes are all the obstacle

vertices along with s and t. Thus, |V | = n + 2. The edges of E correspond to pair of

nodes (u, v) for which the line segment uv passes through obstacles of total cost at most

C, the cost budget. For each edge e ∈ E, we associate two parameters: cost c(u, v) and

length ‖uv‖, where c(u, v) is the cost of the segment uv. In the worst-case G has Θ(n2)

edges. It is important to note that the cost of a path πst in a viability graph is defined as

the sum of the costs of its edges, whereas the cost of πst in the plane is defined as sum of

costs of all obstacles that it goes through. Moreover, the cost of a path in the plane is at

most its cost in the viability graph. If the path crosses each obstacle at most once (which

is the case for shortest path among convex obstacles), these two costs are the same.

The following algorithm shows how to compute an approximately optimal path in this

viability graph. The main idea is that we construct copies of the vertices and the edges of

G to convert the multi-objective problem to a single-objective problem.

Let κ = min
Ä

C
mini ci

, h
ä
. To simplify the approximation error analysis, we first scale

all the costs by κ/C, so that the new target cost is κ. We now construct an auxiliary

graph G′ = (V ′, E ′), with O
Ä⌈

2κ|V |
ε

⌉ä
nodes and O

Ä⌈
2κ|E|
ε

⌉ä
edges, whose edges only have

the length parameter but not the cost parameter, as follows. We create
†
2κ
ε

£
+ 1 copies

v0, v ε
2
, vε, v 3

2
ε . . . , vκ, for each v ∈ V . Then, for each edge (u, v) ∈ E with cost c and for

each 0 ≤ i ≤ d2κ/εe, we add the edge (ui ε
2
, vj ε

2
), where j ≤ d2κ/εe is the maximum

109

Shortest Paths with Weighted Obstacle Removal Chapter 6

integer with j ε
2
≤ i ε

2
+ c. All these edge copies have the same length as edge (u, v)—the

cost parameter is now implicitly encoded in the edge copies. Finally we add two new

vertices s and t in G′ and connect them to all si and ti respectively with zero length edges,

for 0 ≤ i ≤ d2κ/εe. We now find the minimum length path π from s to t in G′, say, using

Dijkstra’s algorithm, and argue that π is our approximation path.

Theorem 20 Let P be a set of h convex obstacles with n vertices, s, t be two obstacle

vertices, and C ∈ R be a parameter. Let L∗ also be the length of the shortest s–t path

with cost at most C, and let G = (V,E) be a viability graph induced by this workspace. If

there exists a path π∗ of length at most αL∗ with α ≥ 1 and cost at most C in the graph

G, then a s–t path π with length at most αL∗ and cost at most (1 + ε)C can be computed

in time O
(
κ
ε
(|E|+ |V | log |V |

ε
)
)
, where κ = min

Ä
C

mini ci
, h
ä

and 0 < ε < 1 is a parameter.

Proof: First, we construct the auxiliary graph G′ as described above. Next, we

construct a path π′ in G′ corresponding to the path π∗ in G by mapping edges of π∗ to

edges in G′. More precisely, let e = (s, v) be the first edge in π∗ and let ce be its cost.

Now let c = 0 and c′ be the value obtained by rounding down ce to the nearest multiple

of ε
2
. We map e to the edge (sc, vc′) in G′. Setting c = c′, we repeat the process for all

edges in π∗. This gives us the path π′ in G′ that has the length same as that of π∗ (at

most αL∗). Clearly, the s–t path π computed using Dijkstra’s algorithm on G′ must also

have length at most αL∗. Moreover, since (scaled) rounded cost of any s–t path in G′

is at most κ, the rounded cost of π is also at most κ. Now we only need to bound its

original (pre-rounded) cost.

Let CR be the true (pre-rounded) cost of the path π in the plane and CA its rounded

cost in G′. The approximation error in the cost (due to rounding) is at most ε/2 for

each obstacle that π passes through, and so if k̄ is the number of obstacles π crosses, we

have the upper bound CR ≤ CA + k̄ε/2. Since CA ≤ κ, we have CR ≤ κ+ k̄ε/2. We can

110

Shortest Paths with Weighted Obstacle Removal Chapter 6

bound k̄ by considering the following two cases. If κ = C/mini ci, the minimum cost of

an obstacle is 1, and so for each obstacle crossed, the path π incurs a cost of least 1− ε/2.

Therefore, k̄ ≤ κ
1−ε/2 and CR ≤ κ+ κ

1−ε/2 · ε/2 ≤
1

1−ε/2κ ≤ (1 + ε)κ. Otherwise, we have

κ = h, which trivially implies k̄ ≤ κ since h is the total number of obstacles.

In conclusion, we have CR ≤ (1 + ε)κ, whose pre-scaled value is (1+ε)κ
(κ/C)

= (1 + ε)C,

as claimed. Finally, the time complexity is dominated by an invocation of Dijkstra’s

algorithm on the graph G′, which has O(|V |κ/ε) nodes and O(|E|κ/ε) edges.

If G is the viability graph constructed in this section then it always contains the

shortest s–t path with cost at most C, i.e. α = 1. Hence, by applying Theorem 20 to G

we get a path of at most the optimum length and cost at most (1 + ε)C in Ω(n
3

ε
) time.

In the next section, we show that if we also allow an (1 + ε) approximation of the

path length, we can improve the running time by roughly an order of magnitude.

6.3 A Faster (1 + ε)-Approximation Algorithm

In this section, we describe our algorithm for sparsifying the graph G = (V,E). We

augment the graph by adding some vertices so that the number of viability edges can be

sharply reduced, while approximately preserving the path lengths within the cost budget.

Throughout the following discussion, we will respect the cost budget C, and only allow

the path lengths to increase slightly. With that in mind, we use the notation dG(u, v) to

denote the length of the shortest path in G from u to v whose cost is at most C. In this

section we only use the definition of the cost of a path with respect to a viability graph.

Recall that the cost of a path in a graph is the sum of the costs of the edges in the path.

Our sparse graph Hε = (Xε, Tε) is defined for any ε > 0, with V ⊆ Xε, and satisfies

the following two conditions:

1. dG(u, v) ≤ dHε(u, v) ≤ (1 + ε)dG(u, v) for all pairs u, v ∈ V .

111

Shortest Paths with Weighted Obstacle Removal Chapter 6

2. The number of vertices and edges is O(n
ε

log n), that is, |Xε|, |Tε| = O(n
ε

log n).

We construct Hε in two stages. In the first stage we construct a graph H = (X,Γ)

with X ⊇ V , |X|, |Γ| = O(n log n), and dG(u, v) ≤ dH(u, v) ≤
√

2dG(u, v) for all u, v ∈ V .

Next, we make O(1/ε) “copies” of H and combine them to construct Hε. Once the

graphs H and Hε are constructed, we use the machinery of the previous section, namely

Theorem 20, to efficiently find the approximately optimal shortest path within the cost

budget.

Recall that all the obstacles in our input are convex, and therefore the shortest path in

G does not cross the boundary of an obstacle more than twice. To avoid degenerate cases,

we assume that all obstacle vertices are in general position, namely, no three vertices are

collinear and all obstacles have non-zero area. We can, therefore, simplify the problem by

replacing all the obstacles by their constituent boundary segments, where each obstacle

vertex is assigned to its incident segment in the clockwise order. We now allocate the

“obstacle removal” cost to these segments as follows: if ci is the removal cost of obstacle

i, then we allocate cost ci/2 to each boundary segment of obstacle i. This ensures that

any shortest path crossing the ith obstacle incurs a cost of ci, while allowing us to reason

about the geometry of just line segment obstacles.

We describe the construction of the sparse viability graph by explaining how to sparsify

the “neighborhood” of an obstacle vertex, say, p. That is, we show which additional

vertices are added and which viability edges are incident to p in the final sparse graph

H. To simplify the discussion, we assume that p is at the origin, and we only discuss the

edges incident to p that lie in the positive (north-east) quadrant; the remaining three

quadrants are processed in the same way.

112

Shortest Paths with Weighted Obstacle Removal Chapter 6

6.3.1 An O(1)-Approximation Algorithm

In this subsection we describe the construction of H = (X,Γ) such that |X|, |Γ| =

O(n log n), and dG(u, v) ≤ dH(u, v) ≤
√

2dG(u, v) for all u, v ∈ V .

For a segment pq we use ‖pq‖1 to denote its L1-length, i.e., ‖pq‖1 = |xp−xq|+ |yp−yq|,

where p = (xp, yp) and q = (xq, yq). For a polygonal path π = p0p1 . . . pk, we use ‖π‖1

to denote its L1-length, i.e., ‖π‖1 =
∑k
i=1 ‖pi−1pi‖1. We note that ‖π‖1 ≤

√
2‖π‖. We

will construct a graph H = (X,Γ) with the following property: For a pair of vertices

u, v ∈ V if G contains a path π from u to v of cost at most C, H contains a path π̄

from u to v of cost at most C such that ‖π̄‖1 ≤ ‖π‖1. Hence ‖π̄‖ ≤
√

2‖π‖ and thus

dH(u, v) ≤
√

2dG(u, v).

We are now ready to describe the algorithm for constructing H. It is a simple recursive

algorithm and consists of the following steps:

1. Let xm be the median x-coordinate of the points in V . We consider the vertical split

line `v : x = xm that partitions V into two almost equal-sized subsets Vl and Vr.

(a) For each point v ∈ V , consider its projection v′ = (xm, vy) on the line `v. If

c(v, v′) ≤ C, then add the projection vertex v′ to X and the corresponding

edge e = (v, v′) to Γ with length ‖vv′‖1 and cost c(v, v′).

(b) Let s′ be the first obstacle segment with positive slope that the projection

segment vv′ intersects. If s′ intersects the split line `v, we add bypass vertices

and edges to H as follows. Let v1 be the point where vv′ intersects s′, and

let v2 be the point where s′ intersects `v. We add bypass vertices v1, v2 on

the segment s′. If v2 lies above v1, the bypass vertices are considered to

be above the segment s′, otherwise they are considered below the segment

s′. (See also Figure 6.2.) We add the edges (v, v1) and (v1, v2) to Γ with

113

Shortest Paths with Weighted Obstacle Removal Chapter 6

lengths ‖vv1‖1, ‖v1v2‖1 and costs c(v, v1), c(v1, v2), respectively. Observe that

c(v1, v2) = 0.

(c) We repeat the procedure above for the first negative slope segment that vv′

intersects.

(d) For two consecutive Steiner vertices w,w′ (projection or bypass) on `v, if

c(w,w′) ≤ C, then add the edge e = (w,w′) to Γ with length ‖ww′‖1 and cost

c(w,w′).

(e) Recurse on the subsets Vl and Vr until |Vl|, |Vr| ≤ 1.

2. Repeat the above process but this time using median y-coordinate ym and a hori-

zontal split line `h at y = ym.

3. We add edges between consecutive vertices on the boundary of obstacles with cost

0.

v

w

`v

w2

v′

w′

`h

v

v2 w′
v′

w

w2

v1v1

w1

v2

w1

Figure 6.2: Steiner vertices due to vertical (left) and horizontal (right) split lines.
Projections are shown with white dots, bypass vertices as squares, bypass edges shown
in blue have cost zero.

At each recursive step of our algorithm, we need to find the first positive (negative)

slope obstacle segment intersected by the projection segment vv′, and compute the cost

of all edges we add. In order to find the first positive (negative) slope segment say s′, we

can simply perform a point location query in O(log n) time [61] on positive (negative)

114

Shortest Paths with Weighted Obstacle Removal Chapter 6

slope segments. If s′, intersects both the projection segment vv′ and the split line passing

through v′, we add the bypass vertices. For computing the edges costs, observe that

bypass edges and the edges on the boundary of obstacles have both cost zero, and all

other edges are either horizontal or vertical line segments, so we just need to compute the

total cost of obstacle segments intersected by an axis aligned segment. We show how to

do this for a horizontal projection segment vv′ and all other cases follow similarly. We

preprocess all the obstacle segments in a segment tree based data structure S. Using

fractional cascading and increasing the fan-out of the segment tree [62, 61], a (weighted)

counting query runs in O(log n) time. During each recursive call, we simply query S to

compute the cost of the segment vv′. However, we need to be careful in including the

cost of the obstacle segment that v lies on. More precisely, if Pi is the obstacle incident

to v, we include the cost ci/2 to the cost of segment vv′ only if vv′ intersects the interior

of Pi (which we can decide in constant time).

We can easily obtain the following lemma.

Lemma 57 Every input vertex adds Steiner vertices on O(log n) split lines. Moreover,

graph H has size O(n log n) and can be constructed in O(n log2 n) time.

Proof: In each recursive call with n vertices, the total number of new projection

vertices added is at most n (one per projection). For each projection we can have at most

two bypass vertices, so the number of bypass vertices is O(n). The number of edges is

also O(n). Combined over all recursive calls, it is easy to observe that each input vertex

adds Steiner vertices on O(log n) split lines and the total number of vertices and edges in

H is O(n log n).

For the running time – at each recursive level we make a total of O(n) queries to find

the bypass vertices and the edge costs. These take O(n log n) time in total giving us a

recurrence that solves to O(n log2 n).

115

Shortest Paths with Weighted Obstacle Removal Chapter 6

It is important to note here that a similar recursive algorithm was first used by

Clarkson et al. [60] to compute L1 shortest obstacle-avoiding paths in the plane – each

vertex was projected on O(log n) split lines and on the obstacle closest to it in all four

directions. This was enough to capture obstacle-avoiding shortest paths (as they lie

entirely in free space) but since obstacle-removing shortest paths can also go through

obstacles, things get quite complicated. In particular, it is not clear that which of the

O(n) nearby obstacles (in each direction) should a vertex be projected on. We address

this challenge in Step 1b of our algorithm by adding bypass vertices. Since we need to

guarantee that the sparsification preserves the L1 length as well as the cost of the shortest

path, our correctness argument is quite different and can be viewed as a more general

form of the result by [60].

6.3.2 Proof of Correctness

We now prove that dH(u, v) ≤
√

2dG(u, v) for all u, v ∈ V . More precisely, if we set

the length of each edge e = (u, v) in G to be ‖uv‖1, then we show that dH(u, v) ≤ dG(u, v).

We basically show that for any edge e = (u, v) in G there is a path πe from u to v in

H such that c(πe) ≤ c(u, v) and ‖πe‖1 ≤ ‖uv‖1. This claim is established in Lemma 60,

whose proof relies on the following Lemmas 58 and 59.

For convenience, we introduce the notion of the region Rpq defined by two obstacle

vertices p, q ∈ V . Let R̄pq be the rectangle with p and q as lower left and upper right

corners respectively. Now, let sx (resp. sy) be the first obstacle segment of positive

slope that intersects the two sides of R̄pq below (resp. above) the diagonal pq. We define

Rpq = R̄pq \ (B(sx) ∪ A(sy)), where B(sx) is the area below segment sx, and A(sy) is the

area above sy. If a segment sx or sy does not exist then B(sx) = ∅ and A(sy) = ∅. (See

also Figure 6.3.)

116

Shortest Paths with Weighted Obstacle Removal Chapter 6

p

sy

sx
p

q

`v

B

A

C

Figure 6.3: The region Rpq is shown shaded. If Rpq does not contain obstacle vertices,
the type A,B,C obstacle segments that may intersect Rpq are shown on the right.
Observe that type B and type C segments cannot both exist in Rpq.

Lemma 58 Let (p, q) be an edge in G with cost c(p, q). If the region Rpq does not contain

an obstacle vertex, then there exists a path πpq in H that is entirely contained in Rpq such

that ‖πpq‖1 = ‖pq‖1 and c(πpq) = c(p, q).

Proof: Since Rpq does not contain any obstacle vertex there are only three types of

obstacle segments that intersect Rpq. (See also Figure 6.3.)

1. Type A : these obstacle segments have negative slope and intersect both vertical

and horizontal segments of Rpq adjacent to either p or q.

2. Type B : obstacle segments that intersect both vertical segments of Rpq.

3. Type C : obstacle segments that intersect both horizontal segments of Rpq.

It is easy to see that segments of type B and C cannot both exist in Rpq because the

obstacle segments are non-intersecting. From the construction of H there is always a

vertical and a horizontal split line between two obstacle vertices. Let `v (`h) be the first

vertical (horizontal) split line in the recursion that we consider between the vertices p, q.

There are three cases.

• Only Type A segments exist in Rpq. This case is taken care by the Steiner vertices

on the vertical (or horizontal) split line `v. More precisely, `v may intersect both sx

117

Shortest Paths with Weighted Obstacle Removal Chapter 6

and sy, one of them, or even neither of them. We show what happens in the case

where `v intersects both sx and sy and the other cases follow easily. Since there are

no obstacle vertices in Rpq, sx, sy are the first positive slope segments intersected

by the projections of p, q on `v. So we have created bypass vertices p1, p2 and q1, q2

on sx, sy. The path πpq is defined as πpq = pp1p2q2q1q and it is easy to see that

‖πpq‖1 = ‖pq‖1. Moreover, both πpq and the edge pq cross one time the same set of

obstacle segments (only type A), so we have that c(πpq) = c(p, q).

• Type B segments exist in Rpq. In this case, observe that type B edges do not

intersect with the horizontal projection segments adjacent to p and q on the vertical

split line, and therefore we can use the exact same path πpq as the previous case.

The cost of the type B segments needs to be included but since the edge pq must

cross these segments, we have that c(πpq) = c(p, q).

• Type C segments exist in Rpq. This case is symmetric to the previous case using

the horizontal split line `h.

Lemma 59 Let (p, q) be an edge in G with cost c(p, q). If the region Rpq contains

one or more obstacle vertices, then there exists an obstacle vertex r ∈ Rpq such that

‖pr‖1 + ‖rq‖1 = ‖pq‖1, and c(p, r) + c(r, q) ≤ c(p, q).

Proof: We prove the lemma by exhibiting a vertex r such that (i) the triangle ∆prq

does not contain any other obstacle vertex, and (ii) no obstacles segment intersects the

interiors of both pr and rq. Such a choice of r suffices for our proof since r ∈ Rpq implies

that ‖pr‖1 + ‖rq‖1 = ‖pq‖1 and we get c(p, r) + c(r, q) ≤ c(p, q) because any obstacle

segment crossing either pr or rq must also cross pq, otherwise that obstacle segment

would terminate inside the triangle which contradicts the choice of r. Next, we show

118

Shortest Paths with Weighted Obstacle Removal Chapter 6

p

q

p

q

sp

sq

w

lr

lw
r

Figure 6.4: The region Tpq is shown shaded on left. If r ∈ Tpq is the vertex closest
to pq, then the region T ′pq ⊆ Tpq(shown shaded in dark on right) cannot contain an
obstacle vertex.

how to find such a vertex. We restrict our search for this vertex r in a convex polygon

Tpq ⊆ Rpq which we construct in the following way. (See also Figure 6.4.) Observe that

the diagonal pq divides the region Rpq into two subsets – one above and one below it. We

consider the subset R′pq that contains at least one obstacle vertex. Since, Rpq contains

at least one obstacle vertex, such a subset always exists. Without loss of generality, we

can assume that R′pq lies above pq. Now, let Spq be the set of all obstacle segments that

intersect a vertical or a horizontal segment of the boundary ∂R′pq, and let sp, sq ∈ Spq be

the segments that intersect ∂R′pq closest to p and q respectively. From the endpoints of

sp, sq that lie in R′pq, let w be the endpoint closest to the segment pq. Moreover, let lw

be the line parallel to pq that passes through w. Now we simply clip off the region of

R′pq that lies above lw. More precisely, this gives us the quadrilateral R′′pq = R′pq \ A(lw),

where we use A(s) for the region above segment s. Finally, we define the convex polygon

Tpq = R′′pq \ (A(s′p) ∪ A(s′q)), where s′p, s
′
q are the subsegements of sp, sq respectively that

lie inside the quadrilateral R′′pq.

From the set of obstacle vertices that lie inside or on the boundary of Tpq, we choose

the vertex r to be the one that minimizes the area of the triangle ∆prq, or equivalently, be

the one that has the minimum distance from the segment pq. Observe that the boundary

of region Tpq contains the obstacle vertex w, so we will always find one such r. It is easy

119

Shortest Paths with Weighted Obstacle Removal Chapter 6

to see that the triangle ∆prq is a subset of Tpq and does not contain an obstacle vertex

or else it would not have the minimum area. It remains to show that there cannot be

an obstacle segment that crosses both pr and rq. To this end, let lr be a line parallel to

pq passing through r. Observe that the region T ′pq = Tpq \ A(lr), i.e., the region in Tpq

that lies below lr, cannot contain an obstacle vertex by the choice of r. So any obstacle

segment sj that crosses both pr and rq must intersect ∂R′pq at either the vertical segment

between p and sp or the horizontal segment between sq and q which is a contradiction.

(See also Figure 6.4.)

Finally, we prove the main result of this section.

Lemma 60 Let (p, q) be an edge in G with cost c(p, q). There is a path πpq ∈ H such

that ‖πpq‖1 = ‖pq‖1 and c(πpq) ≤ c(p, q). Moreover, the path πpq lies in the region Rpq.

Proof: We prove this by induction on the number of obstacle vertices in the

region Rpq. Our base case is when the region Rpq does not contain an obstacle vertex.

Applying Lemma 58 gives us the desired path πpq in H. For the inductive step, let

j be the number of obstacle vertices in the region Rpq and assume that the lemma

holds for all edges (u, v) such that the region Ruv contains i < j obstacle vertices.

Using Lemma 59 we find an intermediate vertex r such that ‖pr‖1 + ‖rq‖1 = ‖pq‖1

and c(p, r) + c(r, q) ≤ c(p, q). This gives us two disjoint sub-regions Rpr ⊂ Rpq and

Rrq ⊂ Rpq each with at least one less obstacle vertex than the region Rpq. By our

induction hypothesis, we get the disjoint subpaths πpr from p to r and πrq from r to q in

H. We then join these two paths at vertex r to obtain path πpq that lies within the region

Rpq. Moreover, we have that ‖πpq‖1 = ‖πpr‖1 + ‖πrq‖1 = ‖pr‖1 + ‖rq‖1 = ‖pq‖1 and

c(πpq) = c(πpr) + c(πrq) ≤ c(p, r) + c(r, q) ≤ c(p, q).

120

Shortest Paths with Weighted Obstacle Removal Chapter 6

6.3.3 An (1 + ε)-Approximation Algorithm

We now describe how to use the preceding construction to define our final sparse

graph Hε. A direction in R2 can be represented as a unit vector u ∈ S1. Let N ⊂ S1 be a

set of O(1/ε) unit vectors such that the angle between two consecutive points of N is at

most ε. For each u ∈ N, we construct a graph Hu by running the algorithm in Section

6.3.1 but regarding u to be the y axis — i.e., by rotating the plane so that u becomes

parallel to the y-axis and measure L1-distance in the rotated plane. Set Hε =
⋃

u∈NH
u.

Notice that the number of vertices and edges in Hε is O(n
ε

log n). The following lemma

follows easily by the discussion above.

Lemma 61 For any pair u, v ∈ V , we have that dHε(u, v) ≤ (1 + ε)dG(u, v).

Proof: Let (p, q) be an edge of the path πuv from u to v in graph G with c(p, q) ≤ C,

and let u be a direction in N such that the angle between the segment pq and u is at most

ε. From the definition of N there is always such a direction u. From Lemma 60 there is

a path π from p to q in Hu such that c(π) ≤ c(p, q) and ‖π‖1 = ‖pq‖1. Recall that the

angle between u and pq is at most ε, so ‖pq‖1 ≤ (cos ε + sin ε)‖pq‖. We conclude that

‖π‖ ≤ (cos ε+ sin ε)‖pq‖ ≤ (1 + ε)‖pq‖, for ε ∈ (0, 1). The result follows.

From the above lemma, it follows that the graph Hε preserves pairwise shortest path

distances within a factor of (1 + ε) and at most the same cost with graph G. Let L∗ be

the length of the shortest s–t path in the plane that has cost at most C. Since there

exists a s–t path of length at most L∗ and cost at most C in the viability graph G, there

exists a s–t path in Hε of length (1 + ε)L∗ and the same cost. Applying Theorem 20 with

α = (1 + ε) on Hε gives the following result.

Theorem 21 Let P be a set of h convex polygonal obstacles with n vertices, s, t be two

obstacle vertices and C ∈ R be a parameter. If L∗ is the length of the shortest s–t path

121

Shortest Paths with Weighted Obstacle Removal Chapter 6

with cost at most C, a s–t path with length at most (1 + ε)L∗ and cost at most (1 + ε)C

can be computed in O(nh
ε2

log n log n
ε
) time.

6.4 Shortest Path Queries

We now describe a near-linear space data structure to answer approximate distance

queries from a fixed obstacle vertex s subject to the obstacle removal budget in O(1
ε

log2 n)

time. The data structure is then extended to handle two-point shortest path queries in

O(1
ε2

log2 n) time with near-quadratic space.

The key idea relies on the following observation. Without loss of generality, assume

that the points s and t lie in the exterior of all obstacles and let us also assume that s, t

were part of the input. Now consider the shortest s–t path in the graph Hε and let t′

be the vertex preceding t in this path. It is easy to see that t′ must be a Steiner vertex

(projection or bypass) as there are no direct edges in Hε between two input vertices that

do not lie on the same obstacle. All such edges must cross some split line at Steiner

vertices. Therefore, the last edge (t′, t) in the path is the segment obtained by projecting t

on some split line `. Now, suppose we have precomputed the paths to all Steiner vertices

on all split lines, then we can find the shortest path to t by simply finding the neighbor

of t′ on `. Using Lemma 57, we know that t can be projected on O(1
ε

log n) split lines,

which gives O(1
ε

log n) choices for `.

6.4.1 Preprocessing

We apply the algorithm preceding Theorem 20 on the graph Hε that we constructed in

the previous section. More precisely, first we multiply the cost of all obstacles by h/C so

that the target cost becomes h. Next we create an auxiliary graph H ′ε with O(h
ε
) copies of

each vertex in Hε. Running Dijkstra’s algorithm on H ′ε with source s computes a shortest

122

Shortest Paths with Weighted Obstacle Removal Chapter 6

path to each vertex in H ′ε. Now for each vertex v in Hε, we maintain arrays distv, predv

each with size 1 + h
ε

= O(h
ε
). We store the length of the shortest path found by Dijkstra’s

algorithm from s to viε (i-th copy of vertex v) at distv(i) and its predecessor in predv(i).

In addition, for each direction u ∈ N that we defined in the previous section we maintain

two data structures:

• A segment tree [62] based data structure Su that we also used in Section 6.3.1 to

compute the cost of an axis aligned segment in O(log n) time.

• A balanced search tree Tu over all the vertical (resp. horizontal) split lines, which

is basically the recursion tree corresponding to the algorithm from Section 6.3.1.

More precisely, the root of Tu is the split line `m (at the median x-coordinate xm),

and the left and right children are the split lines added during recursive processing

of points to the left and right of `m respectively.

Moreover, for every split line `, we maintain a search tree over all the Steiner vertices

that lie on `. Overall, our data structure consists of all arrays distv, predv, O(n
ε
) search

trees, and O(1
ε
) segment trees Su. The size of the data structure is O(nh

ε2
log n) and the

preprocessing time is O(nh
ε2

log n log n
ε
).

6.4.2 Query

The query procedure consists of two parts. Given the target query point t, we first

find a subset of O(1
ε

log n) split lines L that we need to search. Next, for each line ` ∈ L,

we find the Steiner vertex t′ created by projecting t on ` and then find the path to t using

one of the two neighbors of t′ on `. Let v denote a neighbor of t′ on `. Finally, we take

the shortest of all O(1
ε

log n) candidate paths.

In order to find the subset of split lines we use the search tree Tu over the set of all

split lines for a direction u ∈ N. For a node z ∈ Tu, if t lies in the region left of split line

123

Shortest Paths with Weighted Obstacle Removal Chapter 6

at z we search the left child, else we search the right child. Searching Tu in this way, we

reach a leaf node such that the associated region contains exactly one obstacle vertex w

and the query point t. In this case we add a new split line `∗ between w and t and add

Steiner vertices for the obstacle vertex w on `∗. This gives us a total of O(log n) + 1 split

lines per direction that we need to search, and in total O(1
ε

log n) split lines.

To compute the candidate paths for a given a split line `, we consider the Steiner

vertices – projection t′ and bypass t1, t2 – for the query point t. The shortest path from `

to t may either be t′ → t or t2 → t1 → t. We find a neighbor v of t′ or t2 on ` (at most

two neighbors are possible). We now consider the section of the path πvt from v to t. If

the arrays distv, predv are not precomputed, which can happen if v is the projection of

an obstacle vertex w on the new split line `∗, we set v = w and include the path from

w to t along the split line `∗ to πvt. (See also Figure 6.5.) At this point we have found

`

tt′

t2
t1

`∗

v

tt′
t2

t1

v

Figure 6.5: Computing path from a query point t to one of the vertices in Hε – using
a split line that already exists in Hε (left) and using a new split line `∗ added at query
time (right). The suffix path πvt is shown shaded in red.

a vertex v such that distv, predv are precomputed for all cost values 0, ε, 2ε, . . . , h. Since

the cost of bypass edges is zero, and all other segments in the path πvt are axis-aligned,

we can compute the cost c(πvt) using the segment tree Su. The remaining cost budget is

h− c(πvt) which we round up for looking up in the distv, predv arrays. More precisely, let

j be the integer such that (j−1)ε ≤ h− c(πvt) ≤ jε, then we compute the length of the

candidate s–t path via v as distv(j) + ‖πvt‖1. Finding the vertex v for a given split line

124

Shortest Paths with Weighted Obstacle Removal Chapter 6

takes O(log n) time, and compute the index j =
⌈
h−c(πvt)

ε

⌉
in constant time. Therefore,

computing the value distv(j) takes O(log n) time in total. Finally, we take the minimum

over all O(1
ε

log n) choices of v (one per split line) to obtain the shortest path πst using

the pred arrays. Using a similar argument as in the proof of Theorem 20, one can show

that the length of πst is at most (1 + ε) times optimal and the cost is (1 + ε)C. The total

query time is O(1
ε

log n · log n) = O(1
ε

log2 n).

Improving Space Complexity Instead of computing the path itself, one may ask to

just find the length of the shortest s–t path of cost at most C for some query point t. We

can answer such queries approximately in O(1
ε

log2 n) time using O(n
ε2

log n log h
ε
) space

which improves on the O(nh
ε

log n log h
ε
) space requirement for finding the exact path. The

main idea is that instead of storing O(h
ε
) distance values in distv for cost 0, ε, 2ε, . . . , h

ε
ε,

we store a subset of O(1
ε

log h
ε
) values. More precisely, we only store the distance values

corresponding to the cost jε where j is an integer such that (j − 1)ε < ε(1 + ε)i ≤ jε,

for all i in 0, 1, 2, . . . , log1+ε
h
ε
. The size of distv arrays for each vertex v is therefore

O(log1+ε
h
ε
) = O(1

ε
log h

ε
). Note that the reason this works for the path length (but not

for exact path) is because we only need to find the penultimate vertex in the path, so an

accurate linking of predecessors using predv arrays is not needed.

We will now adapt the query procedure as follows. First, we compute the vertex v

as usual in O(log n) time. The only change is in how we find an appropriate index j in

the ‘now sparse’ array distv. Once that is done, we return the length of path via v as

distv(j)+‖πvt‖1 as usual. Let i be an integer such that ε(1+ε)i−1 < h−c(πvt) ≤ ε(1+ε)i.

We use the index j stored in distv corresponding to this value of i. The path πst is taken

to be minimum over all choices of v. We can now prove the following bound on the cost

of πst.

Lemma 62 The cost of πst is at most (1 + 5ε)C.

125

Shortest Paths with Weighted Obstacle Removal Chapter 6

Proof: We first apply the scaling factor h/C to the costs and show that c(πst) ≤

(1 + 5ε)h. Since we try all split lines, without loss of generality, assume that v is the vertex

on the split line that gives us the path πst. From Theorem 20, distv(j) stores the length of

a path in the plane with cost at most jε+hε. Here j is such that (j−1)ε < ε(1+ε)i ≤ jε.

Hence, the cost of the corresponding path from s to v is at most jε+hε ≤ ε(1+ε)i+ε+hε.

If i ≥ 1, we bound the cost of πst as follows. For the next inequalities, we note that

ε(1 + ε)i−1 + c(πvt) < h.

c(πst) ≤ ε(1 + ε)i + hε + ε + c(πvt)

≤ (1 + ε)
Ä
ε(1 + ε)i−1 + hε + ε + c(πvt)

ä
≤ (1 + ε)(h+ hε+ ε)

≤ (1 + ε)(1 + 2ε)h

≤ (1 + 5ε)h

If i = 0, then c(πst) ≤ hε + ε + c(πvt) ≤ (1 + 2ε)h. By scaling back the costs of the

obstacles we get c(πst) ≤ (1 + 5ε)C.

Given a split line, we can find the vertex v in O(log n) time and find index j in

additional O(log n) time (assuming the sparse distv arrays are sorted by the index j).

Therefore, query time is O(log n) per split line and O(1
ε

log2 n) in total. Constructing the

data structure for ε← ε/5, we obtain the following theorem.

Theorem 22 Let P be a set of h convex polygonal obstacles with n vertices, s be an

obstacle vertex, and C ∈ R be a parameter. A data structure of O(nh
ε2

log n) size can

be constructed in O(nh
ε2

log n log n
ε
) time such that, given a query point t ∈ R2, a path

πst can be returned with cost (1 + ε)C and length at most (1 + ε) times the optimal in

O
Ä
1
ε

log2 n+ kst
ä

time, where kst is the number of edges of πst. The length of the path πst

126

Shortest Paths with Weighted Obstacle Removal Chapter 6

can be returned in time O
Ä
1
ε

log2 n
ä

using a data structure of size O(n
ε2

log n log h
ε
).

Two point queries Now we briefly explain how to extend the above data structure

to handle two point queries. That is, both s, t are part of the query. During the

preprocessing, we store distance values distuv (similarly preduv) for every pair of vertices

u, v in Hε for all cost values 0, ε, 2ε, . . . , h. The idea now is to find the neighbor u of s on

some split line `s and neighbor v of t on split line `t. We compute the cost of paths πsv and

πvt as before and set the length of this candidate s–t path to be distuv(j)+‖πsu‖1 +‖πvt‖1.

Here j is the smallest integer such that h− c(πsu)− c(πvt) ≤ jε. We take the minimum

across O(1
ε2

log2 n) choices of u and v.

Theorem 23 Let P be a set of h convex polygonal obstacles with n vertices, and C ∈ R be

a parameter. A data structure of O(n
2h
ε3

log2 n) size can be constructed in O(n
2h
ε3

log2 n log n
ε
)

time such that, given two query points s, t ∈ R2, a path πst can be returned with cost at

most (1 + ε)C and length at most (1 + ε) times the optimal in O(1
ε2

log2 n + kst) time,

where kst is the number of edges of πst. The length of the path πst can be returned in

O(1
ε2

log2 n) time using a data structure of size O(n
2

ε3
log2 n log h

ε
).

6.5 Stochastic Shortest Path

In this section, we consider a stochastic model of obstacles where the existence of each

obstacle Pi ∈ P is an independent event with known probability βi. That is, Pi is part of

the input with probability βi and is not part of the input with probability 1 − βi. We

define the probability of path πst as
∏
Pi∈S(1−βi) where S ⊆ P is the set of obstacles that

this path goes through (assuming they did not exist). In such a setting, our goal is to

compute the approximate shortest path that has probability more than a given threshold

β ∈ (e−1, 1].

127

Shortest Paths with Weighted Obstacle Removal Chapter 6

Let Lβ denote the length of the shortest path from s to t with probability at least

β. We convert the multiplicative costs to additive costs by setting ci = − ln(1− βi) for

each obstacle and setting C = − ln β. Using Theorem 21, we find a path πst with length

L(πst) ≤ (1 + ε)Lβ and cost c(πst) ≤ (1 + ε)C. It can be shown that πst has probability

at least (1− ε)β.

Theorem 24 Let P be a set of h convex polygonal obstacles with n vertices, where each

obstacle Pi ∈ P exists independently with a probability βi, s, t be two obstacle vertices and

β ∈ (e−1, 1] be a parameter. If Lβ is the length of the shortest s–t path with probability at

least β, a s–t path with length at most (1 + ε)Lβ and probability at least (1− ε)β can be

computed in O(nh
ε2

log n log n
ε
) time.

Most likely path We now consider the following question – given a bound L on

the length of the path, what is the s–t path with maximum probability? We need a bound

on the path length or else there is always a path of probability 1. To answer this question,

we can again take negative logarithms of probabilities to transform into an additive cost

model and construct the graph Hε as before. Now instead of applying Theorem 20 on Hε,

we construct a new graph H∗ε that is exactly the same as Hε, but with length and cost

parameters on edges interchanged. More precisely, for an edge e ∈ Hε with length le and

cost ce, we have an edge e∗ ∈ H∗ε with length ce and cost le. Next we apply Theorem 20

on the graph H∗ε with C = (1 + ε)L, and scale all costs with a parameter O(n
Cε

log n),

such that the target cost is scaled to O(n
ε

log n). We choose this value because a shortest

path in Hε can have O(n
ε

log n) edges. This gives us the following result.

Theorem 25 Let P be a set of h convex obstacles with n vertices, s, t be two obstacle

vertices, and L ∈ R be a parameter. If βM is the maximum probability of a path from s to

t with length at most L, a path πst with length at most (1 + ε)L and probability at least

βM can be computed in O(n
2

ε3
log2 n log n

ε
) time.

128

Shortest Paths with Weighted Obstacle Removal Chapter 6

6.6 Bibliographic Notes

The cost-version of obstacle removing shortest path problem is closely related to the

problem of computing a shortest path through weighted polygonal regions [63, 64, 46]

where the length of a path is defined as the weighted sum of Euclidean or L1 lengths of

the subpaths within each region. However, in our setting there is only a one-time fixed

cost for passing through a region, and therefore does not depend on the length of the

subpath that lies inside the region.

The stochastic formulation of our problem is also related to some shortest path

problems under uncertainty [65, 66, 67, 68]. However, these results assume existence

of a graph whose edges have either an existence probability or a distribution over their

lengths. In contrast, our definition is purely geometric where the existence of obstacles is

an uncertain event. Our problem can also be seen as a variant of geometric bi-criteria

shortest path problem [69, 70, 71, 72, 73], as our objective is to compute the shortest

path with a constraint on the total cost of obstacles that we remove.

As for the queries, the shortest path map [30] has linear size and can answer Euclidean

shortest path queries with a fixed source in O(log n) time. If both s, t are part of the

query, quadratic space data structures [74, 75] exist for L1 shortest path queries and

super quadratic space data structures [76] for L2 shortest path queries. Similar results

exist for rectilinear shortest path queries among disjoint weighted rectilinear and convex

obstacles [74, 77], and for bi-criteria shortest path problems [70, 71, 73].

129

Chapter 7

The Maximum Exposure Problem

Let S = (P,R) be a geometric set system, also called a range space, where P is a set of

points and each R ∈ R is a subset of P , also called a range. We say that a point p ∈ P

is exposed if no range in R contains p. The max-exposure problem is defined as follows:

given a range space (P,R) and an integer parameter k ≥ 1, remove k ranges from R so

that a maximum number of points are exposed. That is, we want to find a subfamily

R∗ ⊆ R with |R∗| = k, so that the number of exposed points in the (reduced) range space

(P,R \R∗) is maximized. In this chapter, we design some approximation algorithms as

well as some hardness of approximation lowerbounds for max-exposure. Although, We

are primarily interested in range spaces defined by a set of points in two dimensions and

ranges defined by axis-aligned rectangles, some of these results are also applicable to any

polygonal range with constant number of sides and pseudodisks.

The max-exposure problem arises naturally in many geometric coverage settings. For

instance, if points are the location of clients in the two-dimensional plane, and ranges

correspond to coverage areas of facilities, then exposed points are those not covered by

any facility. The max-exposure problem in this case gives a worst-case bound on the

number of clients that can be exposed if an adversary disables k facilities. Similarly, in

130

The Maximum Exposure Problem Chapter 7

distributed sensor networks, ranges correspond to sensing zones, points correspond to

physical assets being monitored by the network, and the max-exposure problem computes

the number of assets exposed when k sensors are compromised.

More broadly, the max-exposure problem is related to the densest k-subgraph problem

in hypergraphs. In the densest k-subhypergraph problem, we are given a hypergraph

H = (X,E), and we want to find a set of k vertices with a maximum number of

induced hyperedges. In general hypergraphs, finding k-densest subgraphs is known to

be (conditionally) hard to approximate within a factor of n1−ε, where n is the number

of vertices. The max-exposure problem is equivalent to the densest k-subhypergraph

problem on a dual hypergraph, whose vertices X corresponds to the ranges R, and whose

hyperedges correspond to the set of points P . Specifically, each point p ∈ P corresponds

to a hyperedge adjacent to the set of ranges containing the point p. In the rest of this

chapter, we will use n = |R| for the number of ranges in R and m = |P | for the number

of points. We show that if the range space is defined by convex polygons, then the

max-exposure problem is just as hard as the densest k-subhypergraph problem. However,

for ranges defined by axis-aligned rectangles, one can achieve better approximation.

Summary of Results and Techniques

We will now briefly mention all the results that we discuss in this chapter and the

techniques we apply to achieve these results.

1. We show that the max-exposure problem is NP-hard and assuming the dense vs

random conjecture, it is also hard to approximate better than a factor of O(n1/4)

even if the range space is defined by only two types of rectangles in the plane. For

range space defined by convex polygons, we show that max-exposure is equivalent

to densest k-subhypergraph problem, which is hard to approximate within a factor

131

The Maximum Exposure Problem Chapter 7

of O(n1−ε).

2. When ranges are defined by translates of a single rectangle, we give a polynomial-

time approximation scheme (PTAS) for max-exposure. The PTAS stands in sharp

contrast to the inapproximability of ranges defined by two types of rectangles.

Moreover, as an easy consequence of this result, we obtain a constant approximation

when the ratio of longest and smallest side of rectangles in R is bounded by a

constant. However, we do not know if max-exposure with translates of a single

rectangle can be solved in polynomial time or is NP-hard.

3. For ranges defined by arbitrary rectangles, we present a simple greedy algorithm

that achieves a bicriteria O(k)-approximation. No such approximation is possible

for general hypergraphs. If rectangles in R have a bounded aspect ratio, the

approximation improves to O(
√
k). For pseudodisks with bounded-ply (no point in

the plane is contained in more than a constant number of disks), this algorithm

achieves a constant approximation.

The PTAS is obtained by optimally solving some restricted max-exposure instances in

polynomial time using dynamic programming and carefully combining them to obtain an

optimal solution in (nm)O(h) time for the case when input points lie within a horizontal

strip of width h. Applying well known shifting techniques on this gives us the PTAS.

Both bicriteria algorithms are obtained by carefully assigning the points to ranges and

applying greedy strategies.

The remainder of this chapter is organized as follows. In Section 7.1, we discuss

our hardness results followed by the bicriteria O(k)-approximation in Section 7.2. In

Section 7.3, we study the case when R consists of translates of a fixed rectangle and

describe a PTAS for it. Finally, in Section 7.4, we use these ideas to obtain a bicriteria

O(
√
k)-approximation when aspect ratio of rectangles in R is bounded by a constant.

132

The Maximum Exposure Problem Chapter 7

7.1 Hardness of Max-Exposure

We show that the max-exposure problem for geometric ranges is both NP-hard, and

inapproximable. We begin by reducing the densest k-subgraph on bipartite graphs

(bipartite-DkS) to the max-exposure problem; the known NP-hardness of biparite-DkS

then implies the hardness for max-exposure. Moreover, we show that bipartite-DkS is

hard to approximate assuming the dense vs random conjecture, thereby establishing the

inapproximability of max-exposure.

In the bipartite-DkS problem, we are given a bipartite graph G = (A,B,E), an integer

k, and we want to compute a set of k vertices such that the induced subgraph on those

k vertices has the maximum number of edges. Given an instance G = (A,B,E) of

bipartite-DkS, we construct a max-exposure instance as follows.

Figure 7.1: Reducing bipartite-DkS to max-exposure with axis-aligned rectangles.

Let R1 = [0, ε] × [0, n] be a thin vertical rectangle and R2 = [0, n] × [0, ε] be a thin

horizontal rectangle. For each vertex vi ∈ A, we create a copy Ri of R1, and place it such

that its lower-left corner is at (i, 0). Similarly, for each vertex vj ∈ B, we create a copy Rj

of R2, and place it such that its lower-left corner is at (0, j). These |A|+ |B| rectangles

create a checkerboard arrangement, with |A| × |B| cells of intersection. For each edge

(vi, vj) ∈ E, we place a single point in the cell corresponding to intersection of Ri and

Rj. It is now easy to see that G has a k-subgraph with m∗ edges if and only if we can

expose m∗ points in this instance by removing k rectangles: the removed rectangles are

133

The Maximum Exposure Problem Chapter 7

exactly the k vertices chosen in the graph, and each exposed point corresponds to the

edge included in the output subgraph. (See also Figure 7.1.) We will later make use of

this reduction, and therefore state it as the following lemma.

Lemma 63 The max-exposure problem is at least as hard as bipartite-DkS.

Since bipartite-DkS is known to be NP-hard [78], we have the following.

Theorem 26 Max-exposure problem with axis-aligned rectangles is NP-hard.

7.1.1 Hardness of Approximation

The construction in the preceding proof shows that max-exposure with rectangles is

at least as hard as bipartite-DkS problem. Moreover, the geometric construction uses

translates of only two rectangles R1, R2. In the following, we show that even with such a

restricted range space, the problem is also hard to approximate. To that end we prove

that bipartite-DkS cannot be approximated better than a factor O(n1/4), where n is the

number of vertices in this graph. More precisely, if the densest subgraph over k vertices

has m∗ edges, it is hard to find a subgraph over k vertices that contains Ω(m∗/n
1
4
−ε)

edges in polynomial time. This hardness of approximation is conditioned on the so-called

dense vs random conjecture [10] stated as follows.

Given a graph G, constants 0 < α, β < 1, and a parameter k, we want to distinguish

between the following two cases.

1. (Random) G = G(n, p) where p = nα−1, that is, G has average degree approxi-

mately nα.

2. (Dense) G is adversarially chosen so that the densest k-subgraph of G has average

degree kβ.

134

The Maximum Exposure Problem Chapter 7

The conjecture states that for all 0 < α < 1, sufficiently small ε > 0, and for all k ≤
√
n,

one cannot distinguish between the dense and random cases in polynomial time (w.h.p),

when β ≤ α− ε.

In order to obtain hardness guarantees using the above conjecture, one needs to find

the ‘distinguishing ratio’ r, that is the least multiplicative gap between the optimum

solution for the problem on the dense and random instances. If there exists an algorithm

with an approximation factor significantly smaller than r, then we would be able to use it

to distinguish between the dense and random instances, thereby refuting the conjecture.

We obtain the following result for densest k-subgraph problem on bipartite graphs.

Lemma 64 Assuming that dense vs random conjecture is true, the densest k-subgraph

problem on bipartite graphs is hard to approximate better than a factor O(n1/4) of optimum.

Proof: Let G′ = (V ′, E ′) be a graph sampled either from the dense or the random

instances. We construct a bipartite graph G = (A,B,E) as follows. For every vertex

v ∈ V ′, add a vertex va to A and vb to B. For every edge e = (u, v) ∈ E ′, we add the pair

of edges e1 = (ua, vb) and e2 = (va, ub) to E. That is, every edge e ∈ E ′ is mapped to two

copies e1, e2 ∈ E and we define e to be their parent edge as par(e1) = par(e2) = e. Similarly,

for a vertex u ∈ V ′ and its two copies ua, ub ∈ V , we define par(ua) = par(ub) = u. We

say that G is dense if the underlying graph G′ was sampled from the dense case, otherwise

we say that G is random.

Consider a set of k∗ = 2k vertices in G. If G came from the dense case, there

must be a set of 2k vertices that have 2kβ+1 edges between them. So the number of

edges in dense case m∗d ≥ 2kβ+1. Otherwise, we are in the random case. Consider the

optimal set of 2k vertices V ∗ and let E∗ be the set of edges in the induced subgraph

G[V ∗]. Now consider the corresponding set of vertices Vp = {par(v) | v ∈ V ∗} of the

original graph G′ and the set of edges Ep in the induced subgraph G′[Vp]). We have that

135

The Maximum Exposure Problem Chapter 7

|Vp| ≤ |V ∗| = 2k and |Ep| ≥ |E∗|/2 because for each edge e = (u, v) ∈ E∗, we will have

the edge par(e) = (par(u), par(v)) ∈ Ep. Since |Vp| ≤ 2k and we are in the random case,

we can upperbound the number of edges in Ep as the number of edges in the densest

subgraph of G(n, nα−1) over 2k vertices. This is Õ(max(2k, 4k2nα−1)) w.h.p. where Õ

ignores logarithmic factors. Therefore the optimum number of edges in the random case

is m∗r = |E∗| ≤ 2|Ep| = Õ(max(k, k2nα−1)) w.h.p.

Choosing k = n1/2, α = 1
2
, β = 1

2
−ε, gives us m∗r = Õ(n1/2) w.h.p. and m∗d = Ω̃(n

3−2ε
4).

Suppose, we could approximate this problem within a factor O(n1/4−ε), then in the dense

case, the number of edges computed by this approximation algorithm is Ω̃(n
1+ε
2) which is

strictly more than the maximum possible edges in the random case. Therefore, we would

be able to distinguish between dense and random cases, and thereby refute the conjecture

for these values of α, β and k.

Using the same construction as in Lemma 63, we obtain the following.

Corollary 27 Assuming the dense vs random conjecture, max-exposure with axis-aligned

rectangles is hard to approximate better than factor O(n1/4) of optimum.

7.1.2 Hardness of Max-exposure with Convex Polygons

We now show that the max-exposure problem is equivalent to the densest k-subhypergraph

problem for general hypergraphs when the range space (P,R) is defined by convex poly-

gons. In one direction, the max-exposure instance (P,R) naturally corresponds to a

hypergraph H = (R, P) whose vertices are the ranges and the edges correspond to points

and are defined by the containment relationship. Clearly, the densest k-subhypergraph

corresponds to the set of k ranges deleting which exposes maximum number of points.

For the other direction, we have the following lemma. (See also Figure 7.2.)

Lemma 65 Given a hypergraph H = (X,E), one can construct a max-exposure instance

136

The Maximum Exposure Problem Chapter 7

A

B

a

b

c

d

ea

b

c

d

e

A

B

Figure 7.2: Reducing densest k-subhypergraph problem to max-exposure. Hypergraph
vertices A,B shown as convex ranges.

with convex ranges R and points P such that the densest k-subhypergraph of H corresponds

to a solution of max-exposure.

Proof: For each edge e ∈ E of the hypergraph, add a point pe ∈ P . We place all the

points of P in convex position. Let v ∈ X be a vertex and Ev be the set of hyperedges

adjacent to v. Then for every v ∈ X, we add a convex polygon Rv ∈ R such that the

corners of Rv is precisely the point set Ev. Note that this is possible since points of P are

in convex position. It is easy to see that in order to include an edge e (expose pe), we

must include all vertices in Ev, which corresponds to removing all polygons corresponding

to vertices in Ev.

7.2 A Bicriteria O(k)-approximation Algorithm

In this section, we present a simple approximation algorithm for the max-exposure

problem that achieves bicriteria O(k)-approximation for range spaces defined by arbitrary

axis-aligned rectangles. Specifically, if the optimal number of points exposed is m∗, the

algorithm picks a subset of k2 rectangles such that the number of points exposed is at

least m∗/ck, for some constant c. In fact, the results hold for any polygonal range with

O(1) complexity.

This bicriteria approximation should be contrasted with the fact that no such approxi-

137

The Maximum Exposure Problem Chapter 7

mation is possible for the densest k-subhypergraph problem: that is, one cannot compute

a set of O(kb) vertices for any constant b such that the number of edges in the induced

subhypergraph is at least optimal. Thus the geometric properties of the range space have

a significant impact on the problem complexity. In particular, if R consists of rectangle

ranges, we show that the following strategy picks a subset of αk ranges such that the

number of points exposed is at least αm∗/(ck2), for a parameter 1 ≤ α ≤ k and constant

c that will be fixed later. Choosing α = k gives us the claimed bound.

Our algorithm is essentially greedy. We divide the points into maximal equivalence

classes, where each class is the maximal subset of points belonging to the same subset of

ranges. We define R(p) as the set of ranges that contain a point p ∈ P , and remove all

points that are contained in more than k ranges, since they can be never exposed in the

optimal solution. Therefore, without loss of generality, we can assume that |R(p)| ≤ k for

all points p ∈ P . The rest of the algorithm is as follows.

Algorithm 6 Greedy-Bicriteria

1. Partition P into a set G of groups where each group Gi ∈ G is an equivalence class of
points that are contained in the same set of ranges. That is, for any p ∈ Gi, p

′ ∈ Gj ,
we have R(p) = R(p′) if i = j and R(p) 6= R(p′), otherwise.

2. Sort the groups in G by decreasing order of their size |Gi| and select the ranges in
first α groups for deletion.

3. Return m′ =
∑

1≤i≤α |Gi| as the number of points exposed.

In Algorithm 6, observe that every point in the ith group Gi is contained in the same

set of ranges, denote it by R(Gi). Moreover, we have |R(Gi)| ≤ k. Therefore, the total

number of ranges that we delete in Step 2 is at most αk. It remains to show that the

number of points exposed m′ is at least αm∗/ck2.

Lemma 66 Let m′ be the number of points exposed by the algorithm Greedy-Bicriteria,

138

The Maximum Exposure Problem Chapter 7

and let m∗ be the optimal number of exposed points, Then, m′ ≥ αm∗/ck2.

Proof: Consider the optimal set R∗ of k ranges that are deleted, and let P ∗ be the

set of exposed points. We partition the set of points P ∗ into groups G∗ as before, such

that each group G∗i ∈ G∗ is identified by the range set R(G∗i) = R(p), for any p ∈ G∗i .

Since P ∗ ⊆ P , we must have that G∗ ⊆ G. This holds because for every group G∗i ∈ G∗

there must be a group Gj ∈ G such that R(G∗i) = R(Gj). Moreover since P ∗ is the

maximum set of points that can be exposed, we must have that G∗i = Gj. Finally, we

note that the number of groups |G∗| is bounded by the number of cells in the arrangement

of ranges in R∗ which is at most ck2 for some fixed constant c, for all O(1)-complexity

ranges. If the groups in G are arranged by decreasing order of their sizes, we have that

m∗ =
∑

1≤i≤|G∗|
|G∗i | ≤

∑
1≤i≤|G∗|

|Gi| ≤
∑

1≤i≤ck2
|Gi|

≤ ck2

α

∑
1≤i≤α

|Gi| =
ck2

α
·m′

The parameter α can be tuned to improve the approximation guarantee with respect

to one criterion (say the number of exposed points) at the cost of other. With α = k, the

algorithm exposes at least Ω(m∗/k) by removing k2 ranges.

7.2.1 Constant Approximation for Bounded-ply Pseudodisks

If the range space R consists of pseudodisks of bounded-ply (no point in the plane is

contained in more than a constant number ρ pseudodisks), then the algorithm Greedy-

Bicriteria achieves a constant approximation. Due to the bounded-ply restriction, we

139

The Maximum Exposure Problem Chapter 7

have that the number of pseudodisks containing the points of group Gi is |R(Gi)| ≤ ρ,

and therefore number of pseudodisks that are removed in Step 2 of the algorithm is also

at most αρ. Moreover, the number of cells in an arrangement of k pseudodisks with

depth at most ρ is O(ρk) [22]. Therefore, we can bound the number of groups of the

optimal solution |G∗| in the proof for Lemma 66 to be at most cρk. This gives us that

the number of points exposed m′ ≥ αm∗/cρk, where m∗ is the number of points exposed

by the optimal solution.

Lemma 67 If the range space R consists of pseudodisks of bounded-ply ρ, then algorithm

Greedy-Bicriteria exposes at least αm∗/cρk points by deleting at most αρ pseudodisks,

where 1 ≤ α ≤ k.

Choosing α = k, the algorithm achieves a bicriteria O(ρ)-approximation. With

α = k/ρ, the algorithm exposes at least 1/cρ2 fraction of the optimal number of points

by deleting k ranges.

7.3 A PTAS for Unit Square Ranges

We have seen that max-exposure is hard to approximate even if the ranges are

translates of two types of rectangles. We now describe an approximation scheme when

the ranges are translates of a single rectangle. In this case, we can scale the axes so that

the rectangle becomes a unit square without changing any point-rectangle containment.

Therefore, we can assume that our ranges are all unit squares. The problem is non-trivial

even for unit square ranges, and as a warmup we first solve the following special case: all

the points lie inside a unit square. We develop a dynamic programming algorithm to solve

this case exactly, and then use it to design an approximation for the general set of points.

140

The Maximum Exposure Problem Chapter 7

7.3.1 Exact Solution in a Unit Square

We are given a max-exposure instance consisting of unit square ranges R and a set of

points P in a unit square C. Without loss of generality, we can assume that the lower left

corner of C lies at origin (0, 0) and all ranges in R intersect C. We classify the ranges in

R to be one of the two types: (See also Figure 7.3).

Type-0 : Unit square ranges that intersect x = 0.

Type-1 : Unit square ranges that intersect x = 1.

`1

`0

C

Figure 7.3: Max-exposure in a unit square C. Type 0 ranges are drawn with solid
lines, Type 1 ranges are dash-dotted.

(A unit square range coincident with both x = 0 and x = 1 is assumed to be Type-0).

We draw two parallel horizontal lines `0 : y = 0 and `1 : y = 1 coincident with bottom

and top horizontal sides of C respectively. We say that a range R ∈ R is anchored to

a line ` if it intersects `. Note that every R ∈ R is anchored to exactly one of `0 or `1.

(When R is coincident with both `0 and `1, we say that it is anchored to `0).

Moreover, for the rest of our discussion, let x = xi be a vertical line and define Pi ⊆ P

to be the set of points that have x-coordinate at least xi. In other words, Pi is the set of

active points at x = xi. Similarly, define Ri ⊆ R to be the set of active ranges that have

at least one corner to the right of x = xi. That is, R ∈ Ri either intersects x = xi or lies

completely to the right of it.

141

The Maximum Exposure Problem Chapter 7

In order to gain some intuition, we will first consider the following two natural dynamic

programming formulations for the problem.

DP-template-0 Suppose that the points in P are ordered by their increasing x-

coordinates and let xi be the x-coordinate of the ith point pi. We define a subproblem as

S(i, k′,Rd) which represents the maximum number of points in Pi that can be exposed

by removing k′ ranges from the range set Ri \ Rd. If we define x0 = 0, then S(0, k, ∅)

gives the optimal number of exposed points for our problem.

Let ki = |R(pi) \ Rd| be the number of new ranges in Ri that contain pi. Then, we

can can express the subproblems at i in terms of subproblems at i+ 1 as follows.

S(i, k′,Rd) = max


S(i+ 1, k′ − ki, Rd ∪R(pi)) + 1 expose pi

S (i+ 1, k′, Rd) pi not exposed

Roughly speaking, at x = xi which is the event corresponding to a point pi ∈ P , we have

two choices : expose pi or do not expose pi. If we expose pi, we pay for deleting the ranges

in Ri \ Rd that contain pi and mark them as deleted by adding to the deleted range set

Rd. It is easy to see that this correctly computes the optimal number of exposed points

since we charge for every deletion exactly once. However, there is one complication: a

priori it is not clear how to bound the number of range subset Rd used by this dynamic

program. We later argue that the geometry of range space for Type-0 ranges allows us to

use only a polynomial number of choices.

DP-template-1 An alternative approach is to consider both point and begin-range

events. That is, x = xi is either incident to a point pi ∈ P or to the left vertical side

of a range Ri ∈ R. Then, we can define a subproblem by the tuple S(i, k′, Pf) which

represents the maximum number of points in (Pi \ Pf) that can be exposed by removing

142

The Maximum Exposure Problem Chapter 7

k′ ranges in Ri. If we define x0 = 0, then S(0, k, ∅) gives the optimal number of exposed

points. Let P (Ri) ⊆ P be the set of points contained in the range Ri, then we have the

following recurrence.

S(i, k′, Pf) = max


S(i+ 1, k′ − 1, Pf) delete range Ri

S(i+ 1, k′, Pf ∪ P (Ri)) Ri not deleted

(event x = xi was beginning of a range Ri ∈ Ri)

= max


S(i+ 1, k′, Pf) if pi ∈ Pf , cannot expose pi

S(i+ 1, k′, Pf) + 1 otherwise, expose pi

(otherwise, event x = xi was a point pi ∈ Pi)

In the above formulation, at each begin-range event for some Ri ∈ Ri, we have two

choices: delete Ri or do not delete Ri. If Ri was deleted, we reduce the budget k′ by one.

Otherwise, if Ri was not deleted, we can never expose the points in P (Ri), and therefore

we add P (Ri) to the forbidden point set Pf . The correctness of the dynamic program

follows from the fact that for every point pi, all the ranges containing it must begin before

x = xi, and we expose pi only if those ranges were deleted. Again, it is not obvious how

many different subsets Pf are needed by the dynamic program. However, we will later

show that by keeping track of polynomial number of sets Pf , we can solve max-exposure

with Type-1 ranges.

We note that the Type-0 and Type-1 ranges may superficially seem symmetric but

once we fix the order of computing subproblems, they become structurally different.

Therefore, we would need slightly different techniques to handle each type. For the ease of

exposition, we present dynamic programs for Type-0 and Type-1 ranges separately and

finally combine them. Also note that if the ranges in R are intervals on the real line (max

143

The Maximum Exposure Problem Chapter 7

exposure in 1D), then both DP-template-0 and DP-template-1 can be easily applied to

obtain a polynomial time algorithm.

p

`0

`1

p′

R

R′

d(R′, `0)

Figure 7.4: An example of closer relationship. Point p is closer to `1 than p′. R is
closer to `0 than R′.

We will now define the following ordering relations that will be useful later. Let `

be a horizontal line, and let d(p, `) denote the orthogonal distance of p ∈ P from `. If

p, p′ ∈ P are two points, we say that p is closer to ` than p′ if d(p, `) < d(p′, `). Similarly,

for a range R ∈ R that is anchored to `, let d(R, `) be the vertical distance inside the

unit square C between ` and the side of R parallel to `. If R,R′ ∈ R are two ranges, we

say that R is closer (or equivalently R′ is farther) from ` if both R,R′ are anchored to `

and d(R, `) < d(R′, `). (See Figure 7.4.)

Max-exposure with Type-0 Ranges

Recall that Type-0 ranges intersect the vertical lines x = 0 and are anchored to either

`0 or `1. We will apply the formulation discussed in DP-template-0. The key challenge

here is to bound the number of possible deleted range sets Rd. Towards that end, we

make the following claim. Recall that Ri is the set of active ranges at x = xi.

Lemma 68 Let q0, q1 be the two exposed points strictly to the left of x = xi that are

closest to `0 and `1 respectively. Then our dynamic program only needs to consider the

set of deleted ranges Rd = Ri ∩ (R(q0) ∪R(q1)) at x = xi conditioned on q0, q1.

144

The Maximum Exposure Problem Chapter 7

Proof: Observe that since R consists of Type-0 ranges, every range in Ri must

intersect the vertical line x = xi. Suppose we partition Ri into ranges R0
i that are

anchored to `0 and R1
i that are anchored to `1. Let P ′ ⊆ P be the set of all exposed

points strictly to the left of x = xi. Observe that for all p ∈ P ′, any range R ∈ R0
i

that contains p must also contain q0. Therefore, we must have R0
i ∩R(p) ⊆ R0

i ∩R(q0),

for all p ∈ P ′. Similarly, R1
i ∩ R(p) ⊆ R1

i ∩ R(q1), for all p ∈ P ′. This gives us⋃
p∈P ′Ri ∩R(p) = Ri ∩ (R(q0) ∪R(q1)). Therefore, the set Rd consists of all the active

ranges that contain at least one exposed point and were therefore deleted to the left of

x = xi.

Therefore, if our dynamic program remembers the exposed points q0, q1, then we can

compute the deleted range set Rd = Ri ∩ (R(q0) ∪ R(q1)) at x = xi. There are O(m2)

choices for the pair q0, q1, so the number of possible sets Rd is also O(m2). We can

therefore identify our subproblems by the tuple S(i, k′, q0, q1) which represents the

maximum number of exposed points with x-coordinates xi or higher using k′ rectangles

from the set Ri \ Rd. With ki = |R(pi) \ Rd|, we obtain the following recurrence:

S(i, k′, q0, q1) =

max


S (i+ 1, k′ − ki, closer(pi, q0), closer(pi, q1)) + 1 expose pi

S (i+ 1, k′, q0, q1) pi not exposed

where the function closer(pi, q0) returns whichever of pi, q0 is closer to `0, and closer(pi, q1)

returns whichever of pi, q1 is closer to `1. The optimal solution is given by S(0, k, q∗0, q
∗
1),

where q∗0 = (0, 1) and q∗1 = (0, 0) are two artificial points with R(q∗0) = R(q∗1) = ∅ (not

contained in any range). The base case is defined by the rightmost event at vertical line

x = 1 and is initialized with zeroes for all q0, q1 and k′ ≥ 0. Any subproblem with k′ < 0

has value −∞.

145

The Maximum Exposure Problem Chapter 7

Max-exposure with Type-1 Ranges

Next we consider the case when we only have Type-1 ranges in R. Unfortunately

in this case, our previous dynamic program does not work and we need to remember a

different set of parameters. More precisely, we will apply the formulation discussed in

DP-template-1, and bound the number of possible forbidden point sets Pf . Recall that Pi

is the set of active points at x = xi (with x-coordinate xi or higher).

`0

`1

xi

Q1

Q0

Figure 7.5: Undeleted ranges Q0 and Q1 farthest from `0 and `1 respectively.

Lemma 69 Let Q0, Q1 be two ranges that begin to the left of x = xi and were not deleted.

Moreover, Q0 is anchored to and is farthest from `0. Similarly Q1 is anchored to and

is farthest from `1 (Figure 7.5). Then the forbidden point set at x = xi is given by

Pf = Pi ∩ (P (Q0) ∪ P (Q1)), where P (Q) is the set of points contained in range Q.

Proof: Recall that the set Ri consists of ranges that have at least one corner to the

right of the vertical line x = xi. Since we are dealing with Type-1 ranges, every range

that begins to the left of x = xi lies in Ri. Now let R′ ⊆ Ri be the set of ranges that

begin to the left of x = xi and were not deleted. Recall that Pi is the set of points in P

that have x-coordinate xi or higher. Now consider any range R ∈ R′. Observe that if

R was anchored to `0, then every point of Pi that lies in R also lies in Q0. Otherwise,

if R was anchored to `1, every point of Pi that lies in R also lies in Q1. Therefore,

146

The Maximum Exposure Problem Chapter 7

⋃
R∈R′ (Pi ∩ P (R)) = Pi ∩ (P (Q0) ∪ P (Q1)), which is precisely the forbidden point set

Pf .

Therefore, if our dynamic program remembers the ranges Q0 and Q1, we can compute

the forbidden point set Pf = Pi ∩ (P (Q0) ∪ P (Q1)) at x = xi. Since there are O(n2)

choices for the pair Q0, Q1, the number of possible sets Pf is also O(n2). We can now

identify the subproblems by the tuple S(i, k′, Q0, Q1) which represents the maximum

number of points in Pi \ Pf that are exposed by deleting k′ ranges that begin on or after

x = xi. This gives us the following recurrence.

S(i, k′, Q0, Q1) =

max


S(i+ 1, k′ − 1, Q0, Q1) delete range Ri

S(i+ 1, k′, farther(Ri, Q0), farther(Ri, Q1)) Ri not deleted

(event x = xi was beginning of a range Ri ∈ R)

max


S(i+ 1, k′, Q0, Q1) if pi ∈ Pf , cannot expose pi

S(i+ 1, k′, Q0, Q1) + 1 otherwise, expose pi

(otherwise, event x = xi was a point pi ∈ P)

Here, the function farther simply updates the ranges Q0, Q1 with Ri if needed. More

precisely, if Ri is anchored to `0 and is farther from `0 than Q0, then farther(Ri, Q0)

returns Ri, otherwise it returns Q0. Similarly, if Ri is anchored to `1, and is farther from

`1 than Q1, then farther(Ri, Q1) returns Ri, otherwise it returns Q1.

The optimal solution is given by P (0, k, Q∗0, Q
∗
1), where Q∗0, Q

∗
1 are two artificial ranges

of zero-width : Q∗0 is anchored to `0 and is defined by corners (0, 0) and (0, 1); similarly,

Q∗1 is anchored to `1 and is defined by corners (0, 1) and (1, 1).

147

The Maximum Exposure Problem Chapter 7

R1

R2

p1

R

R′

p

p′
p2

p3

(a) (b)

Figure 7.6: Remembering one of R1, R2 in (a) or one of p1, p2 in (b) is not sufficient.

Remark 1 We note that remembering a constant number of exposed points q0, q1

(DP-template-0) or a constant number of undeleted ranges Q1, Q2 (DP-template-1) by

themselves cannot solve both Type-0 and Type-1 ranges. For instance, in Figure 7.6(a)

with Type-0 ranges, if R1, R2 were both not deleted but we remembered one of them,

then we will incorrectly expose one of p, p′. Similarly in Figure 7.6(b) with Type-1 ranges,

if p1, p2 were both exposed but we only remembered one of them, we will pay for one of

the ranges R,R′ again when we expose p3. However, since both the dynamic programs

for Type-0 and Type-1 ranges express subproblems at event i in terms of subproblems at

event i+ 1, we can easily combine them with minor adjustments.

Combining them together

In the following, we will combine the dynamic programs for Type-0 and Type-1 ranges

to obtain a dynamic program for max-exposure in a unit square C. We will need a

couple of changes. First, the events at x = xi are now defined by either a point pi ∈ P

or beginning of a Type-1 range Ri. Next, the deleted range set Rd at x = xi will only

consist of Type-0 ranges and is defined as Rd = Ri0 ∩ (R(q0) ∪R(q1)) where Ri0 ⊆ Ri

is the set of Type-0 ranges that intersect the vertical line x = xi. The forbidden point

set Pf = Pi ∩ (P (Q0) ∪ P (Q1)) stays the same. Here q0, q1, Q0, Q1 are same as defined

before. The subproblems represent the maximum number of points in Pi \ Pf that can be

exposed by deleting k′ ranges from Ri \ Rd. If ki = |(R(pi) ∩Ri0) \ Rd|, then we obtain

148

The Maximum Exposure Problem Chapter 7

the following combined recurrence.

S(i, k′, q0, q1, Q0, Q1) =

max



S(i+ 1, k′, q0, q1, Q0, Q1) if pi ∈ Pf , cannot expose pi

S(i+ 1, k′, q0, q1, Q0, Q1) choose to not expose pi

S(i+ 1, k′ − ki, closer(q0, pi), closer(q1, pi), Q0, Q1) + 1 expose pi

(event x = xi was a point pi ∈ Pi)

max


S(i+ 1, k′ − 1, q0, q1, Q0, Q1) delete Type-1 range Ri

S(i+ 1, k′, q0, q1, farther(Ri, Q0), farther(Ri, Q1)) Ri not deleted

(event x = xi was beginning of a Type-1 range Ri ∈ Ri)

The optimal solution is given by S(0, k, q∗0, q
∗
1, Q

∗
0, Q

∗
1). The correctness of the above

formulation follows from the fact that when we choose to expose pi, we are guaranteed

that all Type-1 ranges in R(pi) have already been deleted, and the expression ki only

charges for Type-0 ranges containing pi. As for the running time, for each event x = xi,

we compute O(kn2m2) entries and computing each entry takes constant time. Since there

are O(n+m) events, we obtain the following.

Lemma 70 Given a set P of m points in a unit square C and a set of n unit square

ranges R, we can compute their max-exposure in O(k(n+m)n2m2) time.

7.3.2 A Constant Factor Approximation

We now use the preceding algorithm to solve the max-exposure problem for general set

of points and unit square ranges within a factor 4 of optimum. In particular, we compute

a set of 4k ranges in R such that the number of points exposed in P by deleting them is

149

The Maximum Exposure Problem Chapter 7

at least the optimal number of points. Suppose we embed the ranges R on a uniform

unit-sized grid G, and define C as the collection of all cells in G that contain at least one

point of P . Then we can solve exactly for each cell in C and combine them using dynamic

programming as described in Algorithm 7 (DP-Approx). See also Figure 7.7.

Figure 7.7: Embedding a max-exposure instance with unit square ranges on a unit-sized
grid. Optimal solution in each grid cell can be computed exactly using Lemma 70.

Algorithm 7 DP-Approx

1. Apply Lemma 70 to solve max-exposure locally in every cell Ci ∈ C for all 0 ≤ ki ≤ k.
Call this a local solution denoted by local(P (Ci),R(Ci), ki), where P (Ci) ⊆ P is
the set of points contained in cell Ci and R(Ci) is the set of ranges intersecting Ci.

2. Process cells in C in any order C1, C2, . . . , Cg, and define global(i, k′) as the maximum
number of points exposed in the cells Ci through Cg using k′ ranges. Combine local
solutions to obtain global(i, k′) as follows.

global(i, k′) = max
0≤ki≤k′

global(i+ 1, k′ − ki) + local(P (Ci), R(Ci), ki)

3. Return global(1, 4k) as the number of exposed points.

Lemma 71 If P ∗ ⊆ P is the optimal set of exposed points, then global(1, 4k) ≥ |P ∗|, that

is , the algorithm DP-Approx achieves a 4-approximation and runs in O(k(n+m)n2m2)

time.

Proof: Consider the optimal set of ranges R∗ ⊆ R. Observe that each range R ∈ R∗

intersects at most four grid cells. Let Ri = R ∩ Ci be the rectangular region defined by

150

The Maximum Exposure Problem Chapter 7

intersection of R and Ci. Clearly, there are at most four regions Ri for each R ∈ R∗ and

therefore 4k in total. At this point, the regions in cell Ci are disjoint from regions in some

other cell Cj ∈ C. Therefore, optimal solution exposes |P ∗| points over a set of cells C∗

such that the set R∗ has at most 4k disjoint components in the cells C∗. Since we can

solve the problem exactly for each cell and can combine them using the above dynamic

program, we have that global(1, 4k) ≥ |P ∗| and we achieve a 4-approximation.

For the running time, we observe that solving max-exposure locally in a cell Ci takes

O(k(ni +mi)n
2
im

2
i) time, where ni is the number of ranges that intersect Ci and mi is the

number of points in P that lie in Ci. Summed over all cells, we get the following bound.

∑
i

k(ni +mi)n
2
im

2
i ≤ k

∑
i

(ni +mi)
∑
i

n2
i

∑
i

m2
i

≤ k(n+m) (
∑
i

ni)
2 (
∑
i

mi)
2 = O(k(n+m)n2m2)

Once the local solutions are computed, the dynamic program that merges them into a

global solution has O(k|C|) subproblems and computing each subproblem takes O(k) time.

Recall that every cell in C contains at least one point, so |C| ≤ n and the merge step takes

an additional O(k2n) time.

7.3.3 Towards a PTAS

We now consider the max-exposure instance in a horizontal strip of unit width. That

is, all points in P lie in a horizontal strip bounded by lines `0, `1 and R consists of unit

square ranges. Suppose, we subdivide the strip into unit square cells C1, C2, . . . , Cr ∈ C

ordered from left to right. We make the following simple observation.

Lemma 72 Let R ∈ R be a unit square range and Cj−1 be the first cell from left which it

intersects. Then the only other cell that R can intersect is Cj. Moreover, R is Type-1 with

151

The Maximum Exposure Problem Chapter 7

respect to Cj−1 and Type-0 with respect to Cj. (See Figure 7.8.)

CjCj−1

`0

`1

L0

X

Y

L1

Figure 7.8: Max-exposure instance in a strip. Cj−1, Cj ∈ C are two consecutive cells.
All ranges in the figure are Type-1 in cell Cj−1 and Type-0 in cell Cj . For L0, L1

highlighted in the figure, we have L>0 = {X} and L>1 = ∅. Moreover, both ranges L0

and X dominate the range Y .

Observe that the set of points exposed in cell Cj will also depend on the set of Type-0

objects of Cj that were already deleted in Cj−1. So we need to ensure that we do not

double count the set of ranges that were already deleted in Cj−1. To do this, we again use

a dynamic program similar to that for max-exposure within a cell where we express the

subproblems at x = xi in terms of subproblems to the right of x = xi. However, there are

some important differences in how we define our subproblems. First, events at a vertical

line x = xi are one of three types:

1. cell-boundary : x = xi is coincident with left-boundary of a cell Cj ∈ C,

2. begin-range: x = xi is coincident with left-vertical side of a range Ri ∈ R

3. point : x = xi is incident to a point pi ∈ P

Moreover for a given cell Cj, in addition to the points q0, q1, and ranges Q0, Q1, we will

also need to remember two additional ranges : L0 (anchored to `0) and L1 (anchored to

`1) that begin in Cj−1, were not deleted and are farthest from `0, `1 respectively. For the

sake of clarity, we will use Z0 = (q0, Q0, L0) to denote the triplets corresponding to `0 and

Z1 = (q1, Q1, L1) to denote the triplets corresponding to `1.

152

The Maximum Exposure Problem Chapter 7

Suppose x = xi lies in the cell Cj. Then we show that the set of deleted ranges Rd

consisting of Type-0 ranges in Cj, and the set of forbidden points Pf can be uniquely

identified using the triples Z0, Z1.

• Deleted Type-0 range-set Rd Let Rj−1 be the set of ranges that begin in cell Cj−1,

and therefore are Type-1 with respect to Cj−1. Suppose we define L>0 ⊆ Rj−1 to

be the set consisting of ranges anchored to `0 and farther from `0 than L0. Similarly,

L>1 ⊆ Rj−1 consists of ranges anchored to `1 and farther from `1 than L1. Then,

we define Rd = Ri0 ∩ (R(q0) ∪R(q1) ∪ L>0 ∪ L>1). Recall that Ri0 ⊆ Ri is the set

of active Type-0 ranges. (See also Figure 7.8.)

• Forbidden point-set Pf = Pi ∩ (P (L0) ∪ P (L1) ∪ P (Q0) ∪ P (Q1)).

Finally, we say that a range R dominates another range R′, if both R,R′ begin in the

same cell Cj and R′ ∩ Cj ⊆ R ∩ Cj. That is, R completely contains the part of R′ that

lies in cell Cj (Figure 7.8). Note that the key difference from earlier formulations is that

at a begin-range event for a Type-1 range Ri in cell Cj, we choose to ignore Ri if it is

dominated by ranges Q0 or Q1, because the points of Ri contained in Cj already lie in

the forbidden set Pf . With ki = |(R(pi) ∩Ri0) \ Rd|, we obtain the following recurrence.

S(i, k′, Z0, Z1) = S(i+ 1, k, U(Z0, Cj), U(Z1, Cj)) update L0, L1

(event x = xi is left-boundary of cell Cj)

max



S(i+ 1, k′, Z0, Z1) if pi ∈ Pf , cannot expose pi

S(i+ 1, k′, Z0, Z1) choose to not expose pi

S(i+ 1, k′ − ki, U(Z0, pi), U(Z1, pi)) + 1 expose pi, update q0, q1

(otherwise, event x = xi was a point pi in cell Cj)

153

The Maximum Exposure Problem Chapter 7

max



S(i+ 1, k′, Z0, Z1) if either Q0 or Q1 dominates Ri, ignore Ri

S(i+ 1, k′ − 1, Z0, Z1) delete Type-1 range Ri

S(i+ 1, k′, U(Z0, Ri), U(Z1, Ri)) Ri not deleted, update Q0 or Q1

(otherwise, event x = xi was beginning of a Type-1 range Ri in cell Cj)

The function U(Z, E) used above is defined as follows. Roughly speaking, it updates

the triplets Z ∈ {Z0, Z1} based on the event E and returns an updated triplet. We have

the following three cases.

• For a cell-boundary event Cj , if we have Z0 = (q0, Q0, L0), the function U(Z0, Cj) =

(q∗0, Q
∗
0, Q0). Similarly, U(Z1, Cj) = (q∗1, Q

∗
1, Q1). This corresponds to resetting

the points q0, q1, rectangles Q0, Q1 for the current cell Cj, and remembering the

rectangles Q0, Q1 from the previous cell Cj−1 as L0, L1 respectively.

• For a point event pi, we have U(Z0, pi) = (closer(pi, q0), Q0, L0) and similarly

U(Z1, pi) = (closer(pi, q1), Q1, L1). Recall that the function closer(pi, q0) returns

whichever of pi, q0 is closer to `0, and closer(pi, q1) returns whichever of pi, q1 is

closer to `1.

• Finally for a begin-rectangle eventRi, we have the following two updates: U(Z0, Ri) =

(q0, farther(Ri, Q0), L0) for triplet Z0 and U(Z1, Ri) = (q1, farther(Ri, Q1), L1) for

Z1. Recall that the function farther(Ri, Q0) returns Ri, if Ri is anchored to and is

farther from `0 than Q0. Similarly, farther(Ri, Q1) returns Ri if Ri is anchored to

and is farther from `1 than Q1.

The optimal solution is given by W (0, k, Z∅0 , Z
∅
1) where Z∅0 = (q∗0, Q

∗
0, Q

∗
0) and

Z∅1 = (q∗1, Q
∗
1, Q

∗
1). In order to establish the correctness of the above formulation, we

make the following claim.

154

The Maximum Exposure Problem Chapter 7

Lemma 73 Let P ∗ ⊆ P be the optimal set of exposed points. Then, for every point

pi ∈ P ∗, we count the range R ∈ R(pi) towards the total number of deleted ranges exactly

once.

Proof: We begin by noting that R intersects at most two cells : Cj−1 as a

Type-1 range and Cj as a Type-0 range. It suffices to show that we count R towards

the total number of deleted ranges in exactly one of these two cells. Alternatively, it

suffices to show that we count R in cell Cj if and only if we have not already counted

R in Cj−1. Recall that we can only count for R in Cj−1 by deleting it at a begin-range

event. Moreover, we can only count for R in Cj when a point pi 6∈ Pf that lies in cell Cj

is exposed. Without loss of generality, assume that R is anchored to `0. The case when

R is anchored to `1 is symmetric.

We first consider the easy case when R was not deleted in Cj−1. Observe that since R

is Type-0 with respect to Cj, similar to the earlier cases, the terms R(q0) ∪R(q1) in the

expression for Rd will correctly charge for R in cell Cj.

CjCj−1

`0

R1

R3

R2

L0

Figure 7.9: Three cases for the proof: R1 ∈ L>0, and R2, R3 6∈ L>0. R2 begins before
L0 and R3 begins after L0.

Now, we move to the second case where we are currently in cell Cj and we have already

counted R by deleting it at a begin-range event in cell Cj−1. In this case, we show that we

will not count R again in Cj . More precisely, we show that if R contains an exposed point

p that lies in cell Cj but is not contained in the forbidden point set Pf , then the deleted

155

The Maximum Exposure Problem Chapter 7

range set Rd contains R, and therefore the expression for ki = |(R(pi) ∩Ri0) \ Rd| will

not charge for R again. We have three cases.

1. R ∈ L>0. This case is straightforward as Rd contains all ranges in L>0.

2. R 6∈ L>0 and R begins before L0. This case is not possible because any point that is

contained in (R ∩ Cj) is also contained in L0. This holds because R and L0 have

the same width, so if R begins before L0 in Cj−1, it must end before L0 in Cj . Since

every point contained in L0 is contained in the forbidden set Pf , we must have

p ∈ Pf which is a contradiction. (See Figure 7.9 with R = R2.)

3. R 6∈ L>0 and R begins after L0. This case is also not possible because if this were

true L0 would have dominated R. Therefore, we would have ignored R in Cj−1 and

would not have deleted it. (See Figure 7.9 with R = R3.)

Lemma 74 The restricted max-exposure instance such that all points in P lie within a

unit-width horizontal strip bounded by lines `0, `1 and R consists of unit squares can be

solved in O(k(n+m)n4m2) time, where m = |P | and n = |R|.

Using similar ideas as Lemma 71, this readily gives a 2-approximation for max-

exposure. More precisely, we can embed the input instance on to a unit-sized grid as

before, but instead of solving max-exposure in a cell, we use the above algorithm to solve

max-exposure locally in a row of the grid. Since each range R ∈ R can intersect at most

two rows, R is split into two sub-ranges R1, R2 contained in at most two rows. Since these

new sub-ranges in two different rows are disjoint, there exists an optimal solution with

2k sub-ranges. Therefore, if we have already computed the local solutions for each row

i, using the algorithm DP-Approx we can compute global(1, 2k) which exposes at least

optimal number of points using at most 2k ranges.

156

The Maximum Exposure Problem Chapter 7

Corollary 28 There exists a 2-approximation algorithm for max-exposure with unit

square ranges running in O(k(n+m)n4m2) time.

Generalizing to h anchor lines The dynamic program for max-exposure in a

horizontal strip bounded by two anchor lines `0, `1 can be generalized to the case when

we have h anchor lines `1, `2, . . . , `h. However, there is a minor technical change required.

Observe that for a given anchor line `i, there can be points and anchored ranges on either

side of `i. Therefore, we will need to remember the closest exposed points and the farthest

undeleted ranges on both sides of `i. So for each anchor line `i, we will need the triplet

Z+
i = (q+i , Q

+
i , L

+
i) for points and ranges above `i and the triplet Z−i = (q−i , Q

−
i , L

−
i) for

points and ranges below `i. The dynamic program will now need to remember at most 4h

ranges and 2h points which gives a running time of O(k(n+m)n4hm2h). If we denote a

collection of h consecutive anchor lines by a bundle of width h, then we have the following

lemma that will be used later.

Lemma 75 Max-exposure in a bundle of width h can be solved in O(k(n + m)n4hm2h)

time.

7.3.4 An (1 + ε)-Approximation Algorithm

We are now ready to describe our PTAS for the problem. Suppose the anchor lines

correspond to the horizontal lines of the uniform unit-sized grid G. Since we have already

solved max-exposure exactly for h consecutive rows in G, we can now apply standard

shifting techniques [79] to obtain an (1 + ε)-approximation. If P ∗ is the optimal set of

exposed points, then we show how to compute a set of (1 + ε)k ranges deleting which will

expose at least |P ∗| points. Note that using similar ideas but with a little more work,

it is also possible to expose at least (1− ε)|P ∗| points by deleting exactly k ranges. We

show this later in Section 7.3.5.

157

The Maximum Exposure Problem Chapter 7

Suppose that anchor lines `1, `2, . . . , `z are ordered by increasing y-coordinates. We

define a bundle Bj to be a set of h consecutive anchor lines, identified by the lowest index

anchor `j . We also define bundle-set to be a sequence of consecutive bundles, identified by

the index of the lowest bundle. For instance the bundle B1 comprises of anchor lines `1

through `h (inclusive). And the bundle-set B1 comprises of bundles B1, Bh, B2h, . . . Bdz/he.

The lines `1, `h, . . . , `dz/he form the bundle boundaries ∂B1 of bundle-set B1.

For each bundle Bj ∈ B1, we can use the dynamic program from Lemma 75 to solve

max-exposure locally. Using the exact solution for each bundle as local solution, we can

use the algorithm DP-Approx (from Section 7.3.2) to combine them into a global solution

for the bundle-set B1 given by P (B1) = global(1, (k + k/h)). We repeat this for each

bundle-set Bi for all i ∈ {1, 2, . . . , h}, and return the point set P (Bi) that has maximum

cardinality over all i ∈ {1, 2, . . . , h}.

It remains to show that this achieves a good approximation. To see this, we observe

that the only ranges that may be double counted are the ones that are anchored to bundle

boundaries of ∂Bi. In the following, we show that this number is a small fraction of the

optimum solution.

Lemma 76 The bundle boundaries ∂Bi, ∂Bj for any two bundle-set Bi,Bj are disjoint,

and therefore the set of ranges anchored to lines in ∂Bi are also disjoint. Then, there

exists a bundle-set Bmin such that the number of ranges of the optimal solution anchored

to lines in ∂Bmin is at most k/h.

Proof: Let R∗ ⊆ R be the optimal set of ranges, and let R∗(∂Bi) ⊆ R∗ be the set of

ranges anchored to lines in ∂Bi. Since
⋃
i∈{1,...h} ∂Bi is the set of all anchor lines, we have

⋃
i∈{1,...h}

R∗(∂Bi) = R∗ =⇒
∑

i∈{1,...h}
|R∗(∂Bi)| = k

158

The Maximum Exposure Problem Chapter 7

=⇒
∑

i∈{1,...h}
|R∗(∂Bmin)| ≤ k =⇒ |R∗(∂Bmin)| ≤ k/h

Choosing ε = 1/h gives us a set of (1 + ε)k objects such that the number of points

exposed by selecting these objects is at least the optimum number of points.

Theorem 29 There exists an (1 + ε)-approximation algorithm for max-exposure with

unit square ranges running in O(k(n+m)n4/εm2/ε) time.

7.3.5 An Alternative (1 + ε)-Approximation Algorithm

Given a set of points P , unit square ranges R, we will now show that the PTAS for

unit square ranges can be modified so that we can compute a set of k ranges that expose

at least (1 − ε) fraction of the maximum possible number of points. For simplicity we

assume that h is odd. The basic setup is the same: we have the anchor lines `1, `2, . . . , `z

that are unit distance apart. However, there is one important change, we will only use the

odd-numbered lines `1, `3, . . . , `h, `h+2, . . . , `z to define bundles. For instance, the bundle

B1 now consists of the anchor lines `1, `3, . . . , `h, while the bundle-set B1 now comprises of

bundles B1, Bh, B2h, . . . , Bz/h. Same as before, the lines `1, `h, . . . , `z/h form the boundary

∂B1. We have the following algorithm.

Clearly, the number of ranges used by the above algorithm is k. It remains to show

that the number of points m′ exposed by the algorithm is also close to m∗, the optimal

number of exposed points. Let P ∗ ⊆ P be the optimal set of exposed points.

Lemma 77 The bundle boundaries ∂Bi, ∂Bj for any two bundle-set Bi,Bj are disjoint,

and therefore the set of points assigned to lines in ∂Bi are also disjoint. Then, there exists

a bundle-set Bmin such that the number of points of P ∗ assigned to its boundaries ∂Bmin

is at most 2m∗

h−1 .

159

The Maximum Exposure Problem Chapter 7

Algorithm 8 PTAS-Exposed-Points

1. Assign each point p ∈ P to the closest line among l1, l3, . . . lz.

2. For each i ∈ {1, 3, . . . , h}, process bundle set Bi as follows.

• Let Ai be the set of points assigned to anchor lines lj ∈ ∂Bi, boundaries of Bi.
• Using the exact algorithm for each bundle B ∈ Bi as local solutions, we run

the algorithm DP-Approx (from Section 7.3.2) over the point set P \ Ai to
obtain global solutions given by global(1, k). Let P (Bi) be the set of exposed
points returned by DP-Approx.

3. Return the set P (Bi) that has maximum cardinality over all i ∈ {1, 3, . . . , h}.

Proof: let P ∗(∂Bi) ⊆ P ∗ be the set of points in P ∗ that are assigned to lines in

boundaries ∂Bi of some bundle Bi. Since
⋃
i∈{1,3,...,h} ∂Bi is the set of all anchor lines to

which we assign points, we have

⋃
i∈{1,3,...h}

P ∗(∂Bi) = P ∗ =⇒
∑

i∈{1,3...h}
|P ∗(∂Bi)| = m∗

=⇒
∑

i∈{1,3,...h}
|P ∗(∂Bmin)| ≤ m∗ =⇒

Ç
h− 1

2

å
|P ∗(∂Bmin)| ≤ m∗

=⇒ |P ∗(∂Bmin)| ≤ 2m∗

h− 1

Observe that for the bundle-set Bmin, we may have removed Amin = P ∗(∂Bmin) points,

but the remaining set P \ Amin consists at least m∗ − 2m∗

h−1 = (1 − 2
h−1)m∗ points of

the optimal set P ∗. Moreover, observe that we have removed points that are within a

unit distance on either side of anchor line `j ∈ ∂Bmin, the set of ranges deleted in each

bundle are disjoint from another. Therefore, the value P (Bmin) returned by the algorithm

DP-Approx exposes at least P \ Amin = (1− 2
h−1)m∗ points by deleting k ranges. If we

set h = 2/ε+ 1 we have the following result.

160

The Maximum Exposure Problem Chapter 7

Theorem 30 There exists an (1− ε)-approximation on the number of exposed points for

max-exposure with unit-square ranges running in k(nm)O(1/ε) time.

7.4 Extensions and Applications

In this section, we discuss some extensions and applications of our the results from

previous section. We say that the range family R consists of fat rectangles if every range

R ∈ R is a rectangle of bounded aspect ratio. Moreover, we say that R consists of similar

and fat rectangles, if ranges in R are rectangles and the ratio of the largest to the smallest

side in R is constant. We show that if R consists of similar and fat rectangles, one

can achieve a constant approximation. Moreover, if R consists of fat rectangles one can

achieve a bicriteria O(
√
k)-approximation.

7.4.1 Approximation for Similar and Fat Rectangles

Let a, b be the length of smallest and largest sides of rectangles in R such that b/a = c

is constant. Then we can modify the input instance as follows. Replace each range R ∈ R

by tiling it with at most c2 squares of sidelength a such that the area occupied by R

and its replacements are the same. Now, we have a modified set of ranges R′ consisting

of squares that have the same sidelength. Consider the optimal solution with k ranges

R∗ that exposes m∗ points. It is easy to see that the set R∗ corresponds to at most c2k

ranges in the modified instance, and therefore deleting c2k ranges from R′ exposes at

least m∗ points. Therefore, we can run the polynomial-time 2-approximation algorithm

(Corollary 28) to obtain a set of at most 2c2k ranges that expose at least m∗ points.

Theorem 31 Given a set of points P , a set of rectangle ranges R such that the ratio of

largest to smallest side in R is bounded by a constant, then there exists a polynomial time

161

The Maximum Exposure Problem Chapter 7

O(1)-approximation algorithm for max-exposure.

7.4.2 Approximation for Fat Rectangles

We now consider the case when rectangles in R have bounded aspect ratio. That

is for all rectangles R ∈ R, the ratio of its two sides is bounded by a constant c. We

transform the input ranges R to obtain a modified set of ranges R′ as follows. For each

rectangle R ∈ R, let x be the length of the smaller side of R. Then we replace R by at

most dce squares each of sidelength x. If m∗ is the optimal number of points exposed by

deleting k ranges from R, then there exists a set of O(k) ranges in R′ deleting which will

expose at least m∗ points. Observe that the set R′ consists of square ranges, of possibly

different sizes. Therefore, if we can obtain an f -approximation for square ranges, we can

easily obtain O(f)-approximation with fat rectangles.

A Bicriteria O(
√
k)-approximation for Squares

We will describe an approximation algorithm for the case when the set of ranges R

consists of axis-aligned squares. We achieve an approximation algorithm in three steps.

First, we partition the point set by assigning them to one of the input squares. Next,

we solve the problem exactly for a fixed square. Finally, we combine these solutions to

achieve a good approximation to the optimal solution.

We define A : P → R to be a function that assigns a point in P to exactly one range

in R. If R(pi) is the set of squares that contain pi, then A(pi) is the smallest square in

R(pi). This assignment scheme ensures the following property.

Lemma 78 Let R ∈ R be a square and let PR = A−1(R) be the set of points assigned to

it. Moreover, let R′ ⊆ R be the set of squares that intersect R and contain at least one

point in PR. Then, every square R′ ∈ R′ must have sidelength bigger than that of R, and

162

The Maximum Exposure Problem Chapter 7

therefore contains at least one corner of R.

Now suppose we fix a square R, and consider a restricted max-exposure instance with

the set of its assigned points PR. Since, ranges that contain a point in PR are all bigger

then R, this case is essentially the same as points inside a unit square, and therefore

Lemma 70 can be easily extended to solve it exactly. This gives us the following algorithm.

Here 1 ≤ α ≤ k is a parameter.

Algorithm 9 Greedy-Squares

1. For every square R ∈ R, apply Lemma 70 over the point set PR to expose the
maximum set of points P (R, k) ⊆ PR by deleting k ranges.

2. Order squares in R by decreasing |P (R, k)| values, and pick the set S ⊆ R of first
α squares.

3. Return
⋃
R∈S P (R, k) as the set of exposed points.

Lemma 79 Let m∗ be the optimal number of points exposed using k squares, then algo-

rithm Greedy-Squares computes a set of at most αk squares that expose at least αm∗/k

points.

Proof: It is easy to see that the number of squares is at most αk. To show the

bound on number of points exposed, consider the optimal set R∗ of k ranges and let the

optimal set of points exposed by R∗ to be P ∗. We will now use the same assignment

procedure A∗ : P ∗ → R∗ to assign points in P ∗ to a square in R∗. That is, A∗(pi) is the

smallest square in R∗ that contains pi. We claim that A∗(pi) = A(pi) for all pi ∈ P ∗ since

every square that contains pi lies in R∗. Moreover, let P∗R denote the set of points of P ∗

assigned to R.

Let m′ be the number of points exposed by the algorithm and assume that the squares

in R are ordered such that |P (Ri, k)| ≥ |P (Rj, k)| for all i < j. Then, we have the

163

The Maximum Exposure Problem Chapter 7

following.

m∗ =

∣∣∣∣∣∣ ⋃R∈R∗P∗R
∣∣∣∣∣∣ =

∑
R∈R∗

|P∗R|

≤
∑

1≤i≤k
|P (Ri, k)| ≤ k

α

∑
1≤i≤α

|P (Ri, k)| =
k

α
m′

For α =
√
k, the above algorithm achieves a bicriteria O(

√
k)-approximation. Since

an f -approximation for square ranges gives an O(f)-approximation for fat rectangles, we

obtain the following.

Theorem 32 Given a set of points P and a set of ranges R consisting of rectangles of

bounded aspect ratio, then one can obtain a bicriteria O(
√
k)-approximation for max-

exposure in polynomial time.

7.5 Bibliographic Notes

Coverage and exposure problems have been widely studied in geometry and graphs.

In the classical Set Cover problem, we want to select a subfamily of k sets that cover

the maximum number of items (points) [80, 81]. For the set cover problem, the classical

greedy algorithm achieves a factor log n approximation for the number of sets needed to

cover all the items, or factor (1− 1/e) approximation for the number of items covered by

using exactly k sets. Similarly, in geometry, the art gallery problems explore coverage of

polygons using a minimum number of guards. Unlike coverage problems where greedy

algorithms deliver reasonably good approximation, the exposure problems turn out to

be much harder. Specifically, choosing k sets whose union is of minimum size is much

harder to approximate with a conditional inapproximability of O(n1−ε) where n is the

number of elements, or O(m1/4−ε) where m is the number of sets [10]. This so-called

164

The Maximum Exposure Problem Chapter 7

min-union problem is essentially the densest k-subgraph problem on hypergraphs [82].

The densest k-subgraph problem for graphs has a long history [83, 84, 85, 11]. The

paper [82] also studies the special case of an interval hypergraph H = (V,E), whose

vertices V is a finite subset of N and for each edge e ∈ E there are values ae, be ∈ N such

that e = {i ∈ V : ae ≤ i ≤ be}. That is, vertices are integer points and edges are intervals

containing them. They show that this restricted case can be solved in polynomial time.

The corresponding max exposure instance is when ranges R are intervals Ri = (ai, bi) on

the real line. As discussed in the chapter, this 1-D case can also be solved in polynomial

time.

The coverage problems have also been studied for geometric set systems where improved

approximation bounds are possible using the V C dimension [86, 87, 88]. Multi-cover

variants, where each input point must be covered by more than one set, are studied

in [89, 90]. The minimum constraint removal problem [7, 91] (studied in Chapter 3),

where given a set of ranges, the goal is to expose a path between two given points by

deleting at most k ranges (a path is exposed if it lies in the exterior of all ranges), is also

closely related to the max-exposure problem. Even for simple shapes such as unit disks

(or unit squares) [16, 92], no PTAS is known for this problem.

165

Chapter 8

Conclusion and Open Problems

Motivated by applications to robotics, sensor networks and path planning under uncer-

tainty, the goal of this dissertation was to study some path finding and exposure problems

in the plane under the notion of constraint violation. We made progress towards this

goal by making clean theoretical formulations for these problems, and designing a family

of non-trivial approximation and exact algorithms for them. Although we leave some

questions unanswered, this dissertation will hopefully serve as an important first step in

the study of these class of problems.

We began our discussion with the study of min-color path problem in Chapter 2,

where we studied lowerbounds (hardness guarantees) and upperbounds (approximation

algorithms) for the problem of finding a minimum color path in a colored graph. Assuming

plausible complexity conjectures, we prove a lowerbound of O(n1/4) and an upperbound

of O(n1/2) on vertex-colored graphs. Similarly, we obtain a lowerbound of O(n1/3) and an

upperbound of O(n2/3) for edge-colored graphs. A natural open problem to consider is

the following.

Open Problem 1 (Min-Color Path) Is it possible to design tight approximation al-

gorithms for minimum color path on vertex- and edge-colored graphs?

166

Conclusion and Open Problems Chapter 8

The log-density framework has been useful in designing tight approximation bounds for

related problems such as minimum k-union [10] and densest k-subgraph [11]. It would be

interesting to see if those techniques can be applied to min-color path.

In Chapters 3 and 4, we studied the problem of designing approximation algorithms

for minimum constraint removal (MCR). We first designed an O(
√
n) approximation

algorithm for MCR and later improved it to obtain an O(log n) approximation in Chapter 4.

As for the lowerbounds, we showed that MCR is as hard to approximate as vertex cover,

which cannot be approximated to a factor significantly better than 2 assuming unique

games conjecture. A natural open question is the following.

Open Problem 2 (MCR) Is it possible to design tight approximation algorithms for

the minimum constraint removal problem?

Although, we have reasons to believe that MCR exhibits a constant approximation

algorithm but finding the best possible constant remains a challenging open problem.

In Chapters 5 and 6, we study the problem of shortest path among removable and

pairwise disjoint polygonal obstacles in the plane. We showed that if k is the number of

obstacles to be removed, the problem can be solved in O(k2n log n) time under euclidean

distances and O(kn log2 n) time under manhattan distances. These algorithms were then

subsequently applied to obtain fast fully polynomial approximation schemes (FPTAS)

for the problem of obstacles with weighted costs and a target cost budget. A natural

question to consider here is to get rid of the multiplicative dependence on k and design

near-linear algorithms for k = Θ(n). Also recall that the polynomial time solvability

crucially depends on the obstacles being convex. So a natural question to understand the

complexity of the problem with non-convex but pairwise disjoint obstacles. This gives us

the following two problems.

167

Conclusion and Open Problems Chapter 8

Open Problem 3 (Shortest Obstacle Removing Paths)

1. Can we design a near-linear time algorithm for the case of disjoint convex obstacles

in the plane?

2. What happens if we allow the obstacles to be non-convex? Does the problem becomes

NP-hard? Can we design an algorithm that computes a path which removes O(k)

obstacles and computes a path no longer than the shortest path removing k obstacles?

We believe that the problem is likely NP-hard with non-convex obstacles. Designing a

good approximation algorithm remains a challenging open problem.

Finally, in Chapter 7 we studied the maximum exposure problem that is motivated

by reliability of coverage in geometric networks. We show that the problem is hard to

approximate even for simple shapes such as axis-aligned rectangles. For unit squares, we

give a PTAS and use it to obtain constant approximation algorithms for some restricted

cases. However the following questions remain open.

Open Problem 4 (Maximum Exposure) Is the max-exposure problem with squares

of arbitrary side length (or arbitrary disks) NP-hard? Does there exists a constant

approximation for this case?

Recall that if the overlap number of pseudodisks (disks or squares) is bounded, we gave

a constant approximation in Section 7.2.1. Can we say the same if the overlap is not

bounded by a constant?

168

Bibliography

[1] L. Erickson and S. LaValle, A simple, but np-hard, motion planning problem, in
Proceedings of AAAI, AAAI press, 2013.

[2] K. R. Tseng and D. G. Kirkpatrick, On barrier resilience of sensor networks, in 7th
ALGOSENSORS 2011, pp. 130–144, 2011.

[3] H. Alt, S. Cabello, P. Giannopoulos, and C. Knauer, On some connection problems
in straight-line segment arrangements, 27th EuroCG (2011) 27–30.

[4] E. Eiben and I. Kanj, How to navigate through obstacles?, CoRR abs/1712.04043
(2017).

[5] M. Korman, M. Löffler, R. I. Silveira, and D. Strash, On the complexity of barrier
resilience for fat regions, in 9th ALGOSENSORS 2013, pp. 201–216, 2013.

[6] N. Kumar, Computing a minimum color path in edge-colored graphs, in Analysis of
Experimental Algorithms, (Cham), pp. 35–50, Springer International Publishing,
2019.

[7] S. Bandyapadhyay, N. Kumar, S. Suri, and K. Varadarajan, Improved approximation
bounds for the minimum constraint removal problem, in Proceedings of 21st
APPROX, pp. 2:1–2:19, 2018.

[8] P. K. Agarwal, N. Kumar, S. Sintos, and S. Suri, Computing Shortest Paths in the
Plane with Removable Obstacles, in 16th Scandinavian Symposium and Workshops
on Algorithm Theory (SWAT 2018), vol. 101, pp. 5:1–5:15, 2018.

[9] N. Kumar, S. Sintos, and S. Suri, The maximum exposure problem, in
Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2019), Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2019.

[10] E. Chlamtáč, M. Dinitz, and Y. Makarychev, Minimizing the union: Tight
approximations for small set bipartite vertex expansion, in Proceedings of the 28th
SODA, pp. 881–899, 2017.

169

[11] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan, Detecting
high log-densities: an O(n1/4) approximation for densest k-subgraph, in Proceedings
of the 42nd STOC, pp. 201–210, ACM, 2010.

[12] E. Chlamtac, M. Dinitz, and R. Krauthgamer, Everywhere-sparse spanners via dense
subgraphs, in Proceedings of the 53rd FOCS, pp. 758–767, 2012.

[13] E. Chlamtáč, P. Manurangsi, D. Moshkovitz, and A. Vijayaraghavan, Approximation
algorithms for label cover and the log-density threshold, in Proceedings of the 28th
SODA, pp. 900–919, 2017.

[14] G. Goel, C. Karande, P. Tripathi, and L. Wang, Approximability of combinatorial
problems with multi-agent submodular cost functions, in Proceedings of the 50th
FOCS, pp. 755–764, 2009.

[15] S. Yuan, S. Varma, and J. P. Jue, Minimum-color path problems for reliability in
mesh networks, in 24th INFOCOM 2005, vol. 4, pp. 2658–2669, IEEE, 2005.

[16] S. Bereg and D. G. Kirkpatrick, Approximating barrier resilience in wireless sensor
networks, in 5th ALGOSENSORS 2009, pp. 29–40, 2009.

[17] S. Jha, O. Sheyner, and J. Wing, Two formal analyses of attack graphs, in Computer
Security Foundations Workshop, pp. 49–63, IEEE, 2002.

[18] R. Hassin, J. Monnot, and D. Segev, Approximation algorithms and hardness results
for labeled connectivity problems, J. Comb. Optim. 14 (2007), no. 4 437–453.

[19] M. R. Fellows, J. Guo, and I. Kanj, The parameterized complexity of some minimum
label problems, Journal of Computer and System Sciences 76 (2010), no. 8 727–740.

[20] S. O. Krumke and H.-C. Wirth, On the minimum label spanning tree problem,
Information Processing Letters 66 (1998), no. 2 81–85.

[21] H. J. Broersma, X. Li, G. Woeginger, and S. Zhang, Paths and cycles in colored
graphs, Australasian journal of combinatorics 31 (2005), no. 1 299–311.

[22] K. Clarkson and P. Shor, Application of random sampling in computational
geometry, II, Discrete & Computational Geometry 4 (1989) 387–421.

[23] K. Kedem, R. Livne, J. Pach, and M. Sharir, On the union of jordan regions and
collision-free translational motion amidst polygonal obstacles, Discrete &
Computational Geometry 1 (1986) 59–70.

[24] S.Khot and O. Regev, Vertex cover might be hard to approximate to within 2-epsilon,
Journal of Computer and System Sciences 74 (2008), no. 3 335–349.

170

[25] T. M. Chan and E. Grant, Exact algorithms and apx-hardness results for geometric
packing and covering problems, Computational Geometry 47 (2014), no. 2 112–124.

[26] D. Y. C. Chan and D. G. Kirkpatrick, Multi-path algorithms for minimum-colour
path problems with applications to approximating barrier resilience, Theor. Comput.
Sci. 553 (2014) 74–90.

[27] K. Hauser, The minimum constraint removal problem with three robotics
applications, in Tenth Workshop on the Algorithmic Foundations of Robotics, WAFR
2012, pp. 1–17, 2012.

[28] I. K. E. Eiben, J. Gemmell and A. Youngdahl, Improved results for minimum
constraint removal, in Proceedings of AAAI, AAAI press, 2018.

[29] T. Leighton and S. Rao, Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms, Journal of the ACM (JACM) 46 (1999),
no. 6 787–832.

[30] J. Hershberger and S. Suri, An optimal algorithm for Euclidean shortest paths in the
plane, SIAM Journal on Computing 28 (1999), no. 6 2215–2256.

[31] D. Kirkpatrick, Optimal search in planar subdivisions, SIAM Journal on Computing
12 (1983), no. 1 28–35.

[32] H. Edelsbrunner, L. J. Guibas, and J. Stolfi, Optimal point location in a monotone
subdivision, SIAM Journal on Computing 15 (1986), no. 2 317–340.

[33] H. Rohnert, Shortest paths in the plane with convex polygonal obstacles, Information
Processing Letters 23 (1986), no. 2 71–76.

[34] S. Eriksson-Bique, J. Hershberger, V. Polishchuk, B. Speckmann, S. Suri,
T. Talvitie, K. Verbeek, and H. Yıldız, Geometric k shortest paths, in Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1616–1625, 2015.

[35] T. Asano, An efficient algorithm for finding the visibility polygon for a polygonal
region with holes, IEICE TRANSACTIONS (1976-1990) 68 (1985), no. 9 557–559.

[36] T. Asano, T. Asano, L. Guibas, J. Hershberger, and H. Imai, Visibility of disjoint
polygons, Algorithmica 1 (1986), no. 1-4 49–63.

[37] S. K. Ghosh and D. M. Mount, An output-sensitive algorithm for computing
visibility graphs, SIAM Journal on Computing 20 (1991), no. 5 888–910.

[38] S. Kapoor and S. N. Maheshwari, Efficient algorithms for Euclidean shortest path
and visibility problems with polygonal obstacles, in Proceedings of the Fourth Annual
Symposium on Computational Geometry, pp. 172–182, 1988.

171

[39] M. H. Overmars and E. Welzl, New methods for computing visibility graphs, in
Proceedings of the Fourth Annual Symposium on Computational Geometry,
pp. 164–171, 1988.

[40] J. S. B. Mitchell, A new algorithm for shortest paths among obstacles in the plane,
Annals of Mathematics and Artificial Intelligence 3 (1991), no. 1 83–105.

[41] J. S. B. Mitchell, Shortest paths among obstacles in the plane, International Journal
of Computational Geometry & Applications 6 (1996), no. 3 309–332.

[42] J. A. Storer and J. H. Reif, Shortest paths in the plane with polygonal obstacles,
Journal of the ACM (JACM) 41 (1994), no. 5 982–1012.

[43] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan, Linear-time
algorithms for visibility and shortest path problems inside triangulated simple
polygons, Algorithmica 2 (1987), no. 1-4 209–233.

[44] D. T. Lee and F. P. Preparata, Euclidean shortest paths in the presence of rectilinear
barriers, Networks 14 (1984), no. 3 393–410.

[45] J. Hershberger and J. Snoeyink, Computing minimum length paths of a given
homotopy class, Computational Geometry 4 (1994), no. 2 63–97.

[46] J. S. B. Mitchell and C. H. Papadimitriou, The weighted region problem: finding
shortest paths through a weighted planar subdivision, Journal of the ACM (JACM)
38 (1991), no. 1 18–73.

[47] J. Hershberger, S. Suri, and H. Yıldız, A near-optimal algorithm for shortest paths
among curved obstacles in the plane, in Proceedings of the Twenty-Ninth Annual
Symposium on Computational Geometry, pp. 359–368, 2013.

[48] D. Z. Chen and H. Wang, Computing shortest paths among curved obstacles in the
plane, ACM Trans. Algorithms 11 (2015), no. 4 26:1–26:46.

[49] T. M. Chan, Low-dimensional linear programming with violations, SIAM Journal on
Computing 34 (2005), no. 4 879–893.

[50] T. Roos and P. Widmayer, k-violation linear programming, Information Processing
Letters 52 (1994), no. 2 109–114.

[51] J. Matoušek, On geometric optimization with few violated constraints, Discrete &
Computational Geometry 14 (1995), no. 4 365–384.

[52] S. Har-Peled and V. Koltun, Separability with outliers, 16th International
Symposium on Algorithms and Computation (2005) 28–39.

172

[53] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms,
and Applications. Prentice hall, 1993.

[54] M. Farshi, P. Giannopoulos, and J. Gudmundsson, Improving the stretch factor of a
geometric network by edge augmentation, SIAM Journal on Computing 38 (2008),
no. 1 226–240.

[55] J.-L. D. Carufel, C. Grimm, A. Maheshwari, and M. Smid, Minimizing the
continuous diameter when augmenting paths and cycles with shortcuts, in 15th
Scandinavian Symposium and Workshops on Algorithm Theory, pp. 27:1–27:14, 2016.

[56] M. Abellanas, A. Garca, F. Hurtado, J. Tejel, and J. Urrutia, Augmenting the
connectivity of geometric graphs, Computational Geometry 40 (2008), no. 3 220 –
230.

[57] A. Maheshwari, S. C. Nandy, D. Pattanayak, S. Roy, and M. Smid, Geometric path
problems with violations, Algorithmica (2016) 1–24.

[58] J. Hershberger, N. Kumar, and S. Suri, Shortest paths in the plane with obstacle
violations, in Proc. 25th Annual Eur. Symp. on Alg., vol. 87, pp. 49:1–49:14, 2017.

[59] D. Z. Chen and H. Wang, A new algorithm for computing visibility graphs of
polygonal obstacles in the plane, J. Comput. Geom. 6 (2015), no. 1 316–345.

[60] K. Clarkson, S. Kapoor, and P. Vaidya, Rectilinear shortest paths through polygonal
obstacles in O(n log2 n) time, in Proc. 3rd Annual Symp. Comput. Geom.,
pp. 251–257, ACM, 1987.

[61] N. Sarnak and R. E. Tarjan, Planar point location using persistent search trees,
Communic. ACM 29 (1986), no. 7 669–679.

[62] T. M. Chan and Y. Nekrich, Towards an optimal method for dynamic planar point
location, in Proc. 56th Symp. Found. Comp. Science, pp. 390–409, IEEE, 2015.

[63] D. Lee, C.-D. Yang, and T. Chen, Shortest rectilinear paths among weighted obstacle,
Int. J. Comput. Geom. & Appl. 1 (1991), no. 02 109–124.

[64] D. Lee, C. Yang, and C. Wong, Rectilinear paths among rectilinear obstacles,
Discrete Applied Mathematics 70 (1996), no. 3 185–215.

[65] T. Feder, R. Motwani, L. O’Callaghan, C. Olston, and R. Panigrahy, Computing
shortest paths with uncertainty, J. Algorithms 62 (2007), no. 1 1–18.

[66] Y. Gao, Shortest path problem with uncertain arc lengths, Computers & Mathematics
with Applications 62 (2011), no. 6 2591–2600.

173

[67] P. Kamousi, T. M. Chan, and S. Suri, Stochastic minimum spanning trees in
Euclidean spaces, in Proc. 27th Annual Symp. Comput. Geom., pp. 65–74, ACM,
2011.

[68] E. Nikolova, M. Brand, and D. R. Karger, Optimal route planning under uncertainty,
in Proc. 16th Int. Conf. Autom. Plann. and Sched., vol. 6, pp. 131–141, 2006.

[69] E. M. Arkin, J. S. Mitchell, and C. D. Piatko, Bicriteria shortest path problems in
the plane, in Proc. 3rd Canad. Conf. Comput. Geom, pp. 153–156, 1991.

[70] D. Z. Chen, O. Daescu, and K. S. Klenk, On geometric path query problems, Int. J.
Comp. Geom. & Applic. 11 (2001), no. 06 617–645.

[71] H. Wang, Bicriteria rectilinear shortest paths among rectilinear obstacles in the
plane, in Proc. 33rd Annual Symp. Comput. Geom., pp. 60:1–60:16, 2017.

[72] C. Yang, D. Lee, and C. Wong, On bends and lengths of rectilinear paths: a
graph-theoretic approach, Int. J. Comput. Geom. & Appl. 2 (1992), no. 01 61–74.

[73] C. Yang, D. Lee, and C. Wong, Rectilinear path problems among rectilinear obstacles
revisited, SIAM J. Comput. 24 (1995), no. 3 457–472.

[74] D. Z. Chen, K. S. Klenk, and H. T. Tu, Shortest path queries among weighted
obstacles in the rectilinear plane, SIAM J. Comput. 29 (2000), no. 4 1223–1246.

[75] M. Iwai, H. Suzuki, and T. Nishizeki, Shortest path algorithm in the plane with
rectilinear polygonal obstacles, in Proc. SIGAL Workshop, 1994.

[76] Y. Chiang and J. Mitchell, Two-point Euclidean shortest path queries in the plane,
in Proc. 10th ACM-SIAM Annual Symp. Discrete Algorithms, SIAM, 1999.

[77] D. Z. Chen, R. Inkulu, and H. Wang, Two-point L1 shortest path queries in the
plane, in Proc. 30th Annual Symp. Comput. Geom., p. 406, ACM, 2014.

[78] U. Feige and M. Seltser, On the densest k-subgraph problems, tech. rep., Weizmann
Institute of Science, Jerusalem, Israel, 1997.

[79] D. S. Hochbaum and W. Maass, Approximation schemes for covering and packing
problems in image processing and vlsi, Journal of the ACM (JACM) 32 (1985), no. 1
130–136.

[80] U. Feige, A threshold of ln n for approximating set cover, Journal of the ACM
(JACM) 45 (1998), no. 4 634–652.

[81] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto, Optimal packing and covering in
the plane are np-complete, Information processing letters 12 (1981), no. 3 133–137.

174

[82] E. Chlamtác, M. Dinitz, C. Konrad, G. Kortsarz, and G. Rabanca, The densest
k-subhypergraph problem, SIAM Journal on Discrete Mathematics 32 (2018), no. 2
1458–1477.

[83] U. Feige, D. Peleg, and G. Kortsarz, The dense k-subgraph problem, Algorithmica 29
(2001), no. 3 410–421.

[84] Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama, Greedily finding a dense
subgraph, Journal of Algorithms 34 (2000), no. 2 203–221.

[85] S. Arora, D. Karger, and M. Karpinski, Polynomial time approximation schemes for
dense instances of np-hard problems, Journal of computer and system sciences 58
(1999), no. 1 193–210.

[86] P. K. Agarwal and J. Pan, Near-linear algorithms for geometric hitting sets and set
covers, in Proceedings of 30th SoCG, p. 271, ACM, 2014.

[87] H. Brönnimann and M. T. Goodrich, Almost optimal set covers in finite
vc-dimension, Discrete & Computational Geometry 14 (1995), no. 4 463–479.

[88] N. H. Mustafa, R. Raman, and S. Ray, Settling the apx-hardness status for geometric
set cover, in Proceedings of 55th FOCS, pp. 541–550, IEEE, 2014.

[89] C. Chekuri, K. L. Clarkson, and S. Har-Peled, On the set multi-cover problem in
geometric settings, ACM Transactions on Algorithms (TALG) 9 (2012), no. 1 9.

[90] M. Cygan, F. Grandoni, S. Leonardi, M. Mucha, M. Pilipczuk, and P. Sankowski,
Approximation algorithms for union and intersection covering problems, in
Proceedings of 31st FSTTCS, p. 28, 2011.

[91] E. Eiben, J. Gemmell, I. Kanj, and A. Youngdahl, Improved results for minimum
constraint removal, in Proceedings of 32nd AAAI Conference on Artificial
Intelligence, 2018.

[92] M. Korman, M. Löffler, R. I. Silveira, and D. Strash, On the complexity of barrier
resilience for fat regions and bounded ply, Comput. Geom. 72 (2018) 34–51.

175

	Curriculum Vitae
	Abstract
	Introduction
	Problems Studied and Contributions
	Organization of Chapters
	Permissions and Attributions

	Minimum Color Path in Graphs
	Hardness of Approximation
	Improved Hardness of Approximation
	Approximation Algorithms
	Bibliographic Notes

	Minimum Constraint Removal (MCR)
	An Approximation Framework
	Application to Geometric Objects
	Hardness of Approximation
	Bibliographic Notes

	An O(logn) Approximation for MCR
	Color Separators
	An LP Formulation
	Structural Properties of Color Separators
	An O(log|C|)-Approximation Algorithm
	Computing a Min-Color Separator

	Shortest Paths with Removable Obstacles
	Properties of k-paths
	Shortest Path Map SPMk: Properties and Bounds
	Computing SPMk
	Bibliographic Notes

	Shortest Paths with Weighted Obstacle Removal
	NP-hardness
	A Simple (1+)-Approximation Algorithm
	A Faster (1+)-Approximation Algorithm
	Shortest Path Queries
	Stochastic Shortest Path
	Bibliographic Notes

	The Maximum Exposure Problem
	Hardness of Max-Exposure
	A Bicriteria O(k)-approximation Algorithm
	A PTAS for Unit Square Ranges
	Extensions and Applications
	Bibliographic Notes

	Conclusion and Open Problems
	Bibliography

