
UC Irvine
ICS Technical Reports

Title
GraphTool : a tool for interactive design and manipulation of graphs and graph
algorithms

Permalink
https://escholarship.org/uc/item/3b18q1qk

Authors
Bliss, Drew
Dillencourt, Michael B.

Publication Date
1990

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3b18q1qk
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S. C.)

9raphToo~: A Tool for Interactive Design and Manipulation of
Graphs and Graph Algorithms

Drew Bliss
Michael B. Dillencourt

Department of Information and Computer Science
University of California

Irvine, California

Technical Report 90-44
December, 1990

Abstract

GraphTool is an interactive tool for editing graphs and visualizing the ex­
ecution and results of graph algorithms. It runs under both the Sun View
and X Windows environments and has a full window /mouse interface which
is as similar as possible for the two windowing systems. In addition, there
is a standalone program called the Wrapper which simulates the Graph­
Tool interface without graphics for batch processing of graph algorithms.
While the primary purpose of GraphTool is to provide a means for exper­
imentally investigating the performance of graph algorithms, it has other
useful features as well. It provides features for printing graphs in a visually
appealing format, which makes it easier to prepare papers for publication.
It also provides a facility for "animating" algorithms, which means that it
can be used in computer assisted instruction (CAI) and for preparing video
presentations of algorithms.

Graph Tool: A Tool for Interactive Design and Manipulation of
Graphs and Graph Algorithms

Drew Bliss Michael B. Dillencourt
Department of Information and Computer Science

University of California
Irvine, California

Technical Report 90-44
December, 1990

Abstract

Graph Tool is an interactive tool for editing graphs and visualizing the ex­
ecution and results of graph algorithms. It runs under both the Sun View
and X Windows environments and has a full window /mouse interface which
is as similar as possible for the two windowing systems. In addition, there
is a standalone program called the Wrapper which simulates the Graph­
Tool interface without graphics for batch processing of graph algorithms.
While the primary purpose of Graph Tool is to provide a means for exper­
imentally investigating the performance of graph algorithms, it has other
useful features as well. It provides features for printing graphs in a visually
appealing format, which makes it easier to prepare papers for publication.
It also provides a facility for "animating" algorithms, which means that it
can be used in computer assisted instruction (CAI) and for preparing video
presentations of algorithms.

1 Overview

GraphTool is an interactive tool for editing graphs and visualizing the execution and results
of graph algorithms. It runs under both the Sun View and X Windows environments and has a
full window /mouse interface which is as similar as possible for the two windowing systems. In
addition, there is a standalone program called the Wrapper which simulates the Graph Tool
interface without graphics for batch processing of graph algorithms.

While the primary purpose of GraphTool is to provide a means for experimentally in­
vestigating the performance of graph algorithms, it has other useful features as well. It
provides features for printing graphs in a visually appealing format, which makes it easier to
prepare papers for publication. It also provides a facility for "animating" algorithms, which
means that it can be used in computer assisted instruction (CAI) and for preparing video
presentations of algorithms.

2 GraphTool's Capabilities: A Quick Summary

2.1 Graph Definition and Modification

GraphTool runs in several modes, during which the left mouse button takes on different
meanings to enable you to define and modify a graph using just the left mouse button.

MOVE

CONNECT

DELETE

Clicking on a spot outside an existing node causes a new node to be created
and placed there. If the mouse button is held down with the pointer over a
node, the node is picked up and can be moved by moving the mouse button.
All edges connected to the node are redrawn as the node is moved.

If the shift key is held down when creating a node, GraphTool will allow
you to enter exact coordinates for the node.

Edges are defined by clicking on the first node and then the second node. If
the graph is directed, the node is drawn with an arrow at the second node
to show that it goes from the first node to the second node.

Delete removes both edges and nodes. Just click on a node or near an edge
and it is deleted. For nodes with edges, the node won't be deleted unless
you force GraphTool to do so by holding down the shift key.

Every node and edge has a floating-point weight that is set from a global weight when a
node or edge is created. The weight for a node or edge can be modified at any time. The
global weight may also be modified at any time so that new objects will have different weights
from those already created. The global weight defaults to l.

Nodes and edges also have visual attributes: patterns for nodes and widths and dot­
ting/dashing for edges. These attributes are taken from global values just as for weights and
may be changed in the same way. There are eleven different node interiors and six different
line patterns and lines may be any number of pixels thick.

1

Finally, nodes and edges are numbered for labeling purposes. You don't have direct
control over what number each object has but you can affect the entire numbering system.
GraphTool automatically assigns a number to each new node or edge as it is loaded from a
file or ·added in the canvas. The graph can be renumbered on demand and is renumbered as
a side effect of several commands.

2.2 Graph Display and Printing

The current graph is stored with full floating point resolution so that it may be rescaled and
panned at will. The apparent size of a graph may be doubled or halved, allowing you to
view an entire graph or just a small portion. The view may be moved around to an arbitrary
point in the graph when the graph is larger than the screen can show. The only limit on the
resolution that may be displayed is the machine accuracy.

Printing is provided through a facility that converts a description of a graph into a stan­
dard Unix format (PIC). The graph may then either be printed directly, using standard
Unix software, or incorporated into documents using standard Unix conversion routines that
convert it into Troff or TEX format.

2.3 Application Programs

The most novel aspect of GraphTool is the capability. it provides for integrating application
programs. (In this context, application programs are programs that create, manipulate, or
compute characteristics of graphs.) Application programs are selected by a menu. The menu
is driven by a text file, so as new programs become available, incorporating them into the
menu is straightforward.

Once an application program is invoked by Graph Tool, the application program commu­
nicates with GraphTool by sending it commands. The commands may be graph modification
commands (e.g., add a new edge, delete a vertex, change an attribute), or they may be selec­
tion commands. Selection commands cause GraphTool to ask the user to select a vertex or
edge; the user's selection is then passed back to the application program.

As an illustration of the interplay between an application program and GraphTool,
consider an application that computes the shortest path between two selected nodes in a
graph. First, the application would ask GraphTool to ask the user to select two vertices.
Then the application would compute the shortest path between the two selected vertices and
cause GraphTool to display the path (e.g., by highlighting all the edges on the path).

Now suppose that we would like to visualize how the application works, rather than
just observe its output. This could be done by changing the visual attributes of each edge
that is placed on a candidate path, perhaps by making it dotted rather than solid, and
changing it back if the edge is removed from consideration. Moreover, one of GraphTool's
commands allows you to specify a delay for it to wait between later commands so that you
can easily control the display speed of the algorithm. This is useful for debugging, and also
for educational and presentation purposes.

2

In addition to GraphTool's visual interface, the Wrapper provides the same graph
management capabilities in a command-line driven package to facilitate batch mode processing
of algorithms. The Wrapper is designed to be easily run from shell scripts so complicated or
repeated executions can be entirely automated. For example, if you have an algorithm which
computes the convex hull of a set of points and you want to test it on a large number of
random point sets, this would be very tedious in GraphTool. However, using the Wrapper
this entire task can be automated. The algorithms to generate random graphs and compute
the convex hull can be developed and debugged in GraphTool, and then, without any code
changes, can be linked together in a shell script with the Wrapper for any number of test
runs.

3

3 A Detailed Description of GraphTool

3.1 A Note on Windowing Systems

Because Graph Tool runs under both Sun View and X Windows, the following description
does not talk about a specific windowing system and how it works. However, GraphTool
has been designed so that its interface is almost entirely the same for both systems, making it
easy to move between them. The generic description should not cause any difficulties unless
your local setup is radically different from the setup under which GraphTool was developed.
In particular, X Windows systems vary widely in window appearance, colors, cursors and
sizes, but the basic interface should still be preserved.

3.2 Working Areas

When GraphTool is first executed, it creates two windows. The large, blank window is the
canvas. The canvas is the work area in GraphTool, where the graph will be displayed and
edited. The canvas has scroll bars on it that let you move around the graph if the graph is
too large to fit in the canvas window all at once. A scroll bar looks like a rectangular area,
the bar itself, with another rectangular area inside the bar, called the thumb. The size of
the thumb indicates the size of what you see in the canvas as compared to the size of the
graph, and the position of the thumb indicates where you are in the graph. A good way to
think about it is that the canvas is a window on the entire graph, and the scroll bars indicate
the size and position of the window in th~ graph. When GraphTool is started, the graph
is the same size as the canvas, so the thumb is the same size as the scroll bar. When you
double and halve the graph, the size of the thumb will change to show you the new size of
the window that the canvas represents. To move your viewpoint, simply move the mouse into
the scrollbar and select the thumb. Then drag the thumb to the position where you want it
and let up the mouse button. The new view will then be drawn.

The smaller window that contains all of the controls for Graph Tool is the control panel.
The canvas and control windows are completely independent of each other, and can be moved,
resized or closed at whim.

It is very important to remember that the windows are independent when typing. If your
system is set up so that keyboard input goes to the window underneath the cursor, you may
inadvertently type something into the canvas window that you meant to type into the control
panel and vice versa. Make sure that you move the mouse pointer into the appropriate window
before you type something. If you type something and you don't get the result you expected,
see where the mouse pointer is.

Another important thing to remember is to finish actions that you started in the canvas
window. If you are moving a vertex and you drag the pointer outside of the window and let
up on the mouse button, when you move back into the canvas GraphTool will be confused.
As long as you keep the mouse button down, you can move back into the canvas window and
resume your activity.

4

I

I
I

~~-- /
',, I

'

3.3 Temporary Objects

' ...
' ' '

I
',~

' I '',,,.....
/ ' I /

/ ' / &"'/
Figure 1: A Sample Graph

/
/

/
/

/
/

Occasionally GraphTool will create a temporary object for you to enter some special infor­
mation in or make a special selection from. There are two types: popup menus and popup
windows.

The only popup menu provided by GraphTool is the canvas menu, activated by holding
down the right mouse button in the canvas. The canvas menu allows you to select an action
(Section 3.5) or to run an algorithm (Section 4) by moving the mouse over one of the menu's
items.

GraphTool has several popup windows. Popup windows are small windows that appear
on top of everything in the center of the screen when GraphTool needs a specific piece of
information. Nothing else can be done in Graph Tool while a popup window is active. There
are popup windows for printing, entering coordinates for a vertex and for algorithm input.
These windows are discussed in more detail in the sections for printing, 3.6, moving, 3.5, and
algorithm I/ 0, 4.4.

3.4 Working with GraphTool's Vertices and Edges

3.4.1 Appearance

The sample graph shown in Figure 3.4.1 illustrates, as closely as can be printed, what a
directed graph looks like in GraphTool's canvas. GraphTool represents vertices as circles

5

which have an interior style such as solid, hollow, empty, or a pattern. Edges are represented
as lines with a thickness and a style such as solid, dashed or dotted, to name a few. Note
in the sample graph how some of the nodes are patterned and the edges vary in both width
and style. The appearance of nodes and edges is controlled by fields on the control panel as
described in Section 3.6.

3.4.2 Selection

To work with GraphTool's objects you need to know how GraphTool thin.ks of them and
their relationship to the mouse pointer. The mouse pointer shape has a selection point, called
a hot spot, which determines the coordinates of the mouse pointer given to the program.
As this hot spot can change from pointer to pointer, it is important to know where it is so
that you select the things you want to select. This information is given in Section 3.5 where
GraphTool's various pointer shapes are described.

In addition to the selection point, you also need to know how GraphTool looks for the
object that you indicate when you click on it. Graph Tool's notion of object area for a vertex
is the entire circle, as you would expect. For edges, there is a "gravity field" around the edge
of a few pixels. If the pointer is in the gravity field of an edge, that edge is selected, so it is
not necessary for the pointer to be precisely on an edge to select it.

When checking its lists of objects for the area hit, GraphTool searches its entire list of
vertices first, and then checks the edges, so don't select an edge while you are partially in a
vertex. If two object's areas overlap, GraphTool will pick the one that it encounters first.
To the user, having no knowledge of the order in which GraphTool is storing objects, this
will seem arbitrary. In short, use unambiguous portion of objects for selection.

When an object is successfully selected, depending on the mode of operation, its weight and
appearance factors will be set in the control panel. The last selected object is remembered
for some oper;:1.tions. Section 3.5 describes precisely when this information is set. Various
commands will refer to the current object; this is the last selected object.

3.4.3 Numbering

GraphTool maintains a number of each node and edge in the graph for naming purposes.
GraphTool automatically assigns these numbers as nodes and edges are created, so you can't
directly type them in like a weight, but you can control the overall numbering scheme.

Numbering begins when a node or edge is created, either by you creating a new one in the
canvas or because you are loading a file. The first node and the first edge are both assigned
the number one and the numbers increase from there. If you delete a node or edge, its number
is not re-used, so holes in the numbering system can occur. If your numbering becomes too
fragmented, you can force GraphTool to renumber the nodes and edges from one again with
the Number button on the control panel (Section 3.6).

Note that GraphTool itself does not use these numbers; they are only for you to use
to reference things. Also note that while GraphTool saves the weights and appearances
of nodes and edges, it does not save their numbers, so graphs are always numbered from

6

one after loading. Finally, under certain circumstances GraphTool will renumber the graph
automatically as a side effect of some action (e.g., saving a graph).

There are ways you can create graphs with specific numberings but they involve separate
coding. See sections 4 and 4.4 for information on how to write a program to set up and
manipulate a graph with custom numbers.

3.5 Doing Things

GraphTool's interface is largely controlled by the left mouse button. There is a current
action associated with the left mouse button that tells GraphTool what your latest mouse
click will- mean. The name of the current action is displayed in the Action field in the
control panel and is also indicated by the mouse pointer shape. Actions fall into three rough
categories: for editing graphs, when running algorithms and for selecting a rectangular area.

GraphTool's editing actions are used for creating and modifying graphs. They give you
control over creation, deletion and placement of nodes and edges in the graph. You may also
get and set appearance and weighting information.

CONNECT

DELETE

CONNECT starts a connection between two vertices. Once a vertex is
selected, the action is automatically changed to COMPLETE. If you ac­
cidentally select a node while in CONNECT mode and you don't want to
complete the connection, undo will cancel the completion and put you back
in CONNECT.

Selecting a node in COMPLETE finishes a connection between two vertices.
Self-edges are not allowed, but duplicate edges are. However, duplicate
edges are not marked in any way so you can not tell how many edges
are between two nodes just by looking at them. The current action is
automatically changed to CONNECT after COMPLETE.

The mouse pointer for CONNECT is a circle with an arrow coming out of it.
The selection point is the center of the circle. CONNECT can be selected
from the canvas menu or by pressing 'c' in the canvas window.

The mouse pointer for COMPLETE is a circle with an arrow going into it.
The selection point is the center of the circle.

DELETE removes either vertices or edges, depending on which kind of
object is selected.

When deleting vertices, GraphTool will not allow a vertex to be deleted
unless it has no edges connected to it. If you wish to over-ride this safety
feature, hold down the shift key when selecting the vertex. The vertex and
all edges connected to it will be deleted.

The mouse pointer for DELETE is an axe, with the selection point in the
middle of the blade. DELETE can be selected from the canvas menu or by
pressing 'd' in the canvas window.

7

INFO

MOVE

SET

INFO displays the number, weight and coordinates of vertices and the num­
ber, weight and numbers of the connected nodes for edges. The weight and
appearance attributes are set in the control panel.

The mouse pointer for INFO is a question mark. The selection point is the
center of the circular portion of the question mark. INFO can be selected
from the canvas menu or by pressing 'i' in the canvas window.

MOVE allows you to drag vertices to new locations. Move the mouse
pointer inside the vertex you want to move and press and hold the left
mouse button. If the vertex is not hollow or empty, it will be redrawn
hollow. All edges that are connected to the vertex and are not solid,
one-pixel-wide lines will be redrawn as solid, one-pixel-wide lines. You
have now picked up the vertex and you can move it by moving the mouse
around without releasing the left mouse button. The coordinate display in
the control panel is updated as the mouse moves so that you know where
you are in the graph's coordinate space.

If you are holding down the shift key when you release the left mouse
button, a small window will pop up in the center of the screen with the
current coordinates of the vertex. You can edit these coordinates with the
keyboard if you wish to enter a precise location. When you are finished,
select the Done button to move the vertex to the input location or select
Cancel to leave it where it is. It is not necessary to hold the shift key after
the window has popped up.

The mouse pointer for MOVE is a left-pointing wedge, with the selection
point at the tip of the wedge. MOVE can be selected from the canvas menu
or by pressing 'm' in the canvas window.

SET without shift selects a node or edge. In this mode the weight and
appearance attributes are set in the control panel.

SET with shift applies the current weight and appearance to the selected
node.

The mouse pointer for SET is a delta, or triangle. The selection point is
the top point of the delta. SET can be selected from the canvas menu or
by pressing 's' in the canvas window.

When running an algorithm (See Section 4), GraphTool's editing actions are unavailable
and a new set of actions takes their place. These actions indicate that an algorithm is running,
allow an algorithm to get node and edge selections from the user and let an algorithm wait
on a mouse click from a user.

EDGE EDGE is entered when an application requests the user to select an edge. The
current action is set to RUN after an edge has been selected.

8

NODE

The mouse pointer for EDGE is an arrow. The selection point is the tip of the
arrow.

NODE is entered when an application requests the user to select a node. The
current action is set to RUN after a node has been selected.

The mouse pointer for NODE is an arrow. The selection point is the tip of the
arrow.

RuN RUN indicates that an application is being run and most of the normal editing
commands are disabled.

WAIT

The mouse pointer for RUN is a rectangle with some lines in it, intended to
indicate some kind of code. The selection point doesn't matter because nothing
is selected in RUN.

WAIT is entered when an application is waiting for the user to click a mouse
button. RUN is re-entered after WAIT.

The mouse pointer for WAIT is a picture of the mouse. The selection point
doesn't matter as nothing is selected in WAIT.

The last of GraphTool's actions is for selecting a rectangular area:

BOXES Box UL is entered when GraphTool wants you to select a rectangular region
of the screen, such as when appending a graph to the current graph. Move to
the point on the screen where the upper-left-hand corner of the area should be
and press down the left mouse button. The action will change to Box LR.

In Box LR, you select the lower-right corner of the box to complement the
upper-left corner you just selected. You can drag the mouse around with the
left button down and pull out an outline of the region. When the region is
where you want it, let up on the mouse button and GraphTool will continue
processing with the area you selected.

The mouse pointer for Box UL is a box with the upper-left-hand corner high­
lighted. The selection point is the center of the box.

The mouse pointer for Box LR is a box with the lower-right-hand corner high­
lighted. The selection point is the center of the box.

3.6 The Control Panel

The control panel is the area in which most of the information about the current graph is
displayed and entered. It also contains some control settings and buttons for activating certain
functions. Note that all input described here must take place within the control panel. In
the following description, the type of input device which a piece is made of is given after its
name. The devices are:

9

A text field is an area in which text can be entered. The field is selected by clicking in its
entry area. When a field is selected, a caret is placed at the current entry point. More text
can be typed in a text field than may fit on the screen; if there is more text the text scrolls
left and a left-pointing arrow is displayed by the title. It is not necessary to hit return in
these fields; in fact, return may initiate a special action.

A message field displays a line of text.
A check box represents a boolean action and looks like a small rectangle with or without

a checkmark in it. Check boxes can be set and reset by clicking somewhere on it.
A button activates something when clicked on and looks like a rounded rectangle with a

name in it.
A cycle is a list of items that can be cycled through for a multiple choice item. Note that

this use of the word "cycle" has nothing to do with the concept of a cycle in a graph; it is
used because it is what Sun View and X Windows call this particular type of input. A cycle.
has a label followed by a picture of two arrows cycling around followed by the current item.
Clicking somewhere on it causes the value to change. In Sun View, a menu of all selections is
displayed when the right mouse button is held down in a cycle. Also, if shift is held the value
goes backwards. In X Windows, the menu is not available and the left button goes forwards
and the right buttons goes backwards.

Action

Append

Clear

(Message) This displays the current action. The mouse pointer also
. changes to indicate the current action.

(Button) Append loads the graph specified in the Filename item from
its file and merges it with the current graph. You select the
area in which you want the graph to go and GraphTool
scales and offsets the nodes appropriately. All header infor­
mation in the appended graph is ignored so the direction,
zoom level, etc. of the original graph is unchanged.

When this button is clicked, Box UL mode is activated. You
can then pull out the box that you want the new graph to
go in as described under the Box UL and Box LR modes.
When you have selected the box, GraphTool loads in the
new graph and :fits it into the given box. The scaling may
change the aspect ratio of the new graph from its original
value.

The graph is renumbered from one as a side-effect of append­
ing.

(Button) Clear removes the current graph and resets many of Graph­
Tool's parameters such as the coordinate system and zoom
level. If the current graph has unsaved modifications you will
be alerted of it and given the option to go ahead anyway or
to cancel the clear.

10

Coords

Clear empties the undo buffer (See Undo).

(Message) The coordinates of the mouse pointer in the current graph's
coordinate system.

Directed (Check Box) This on-off item controls whether the current graph has di­
rected edges or not. GraphTool does not differentiate be­
tween directed and undirected edges; this item only controls
their appearance. Therefore, if you toggle this item from di­
rected to undirected and then back, the graph will be just as
it was before. Information is neither lost nor gained.

Double

Edges

EW One

Filename

Fit

(Button) Double doubles a scaling factor in the coordinate system so
that the screen views only one fourth of the area that it did
previously. The quarter of the screen at the center becomes
the new view. The scroll bars are reset to indicate the new
size of the screen and the new position of the view. The node
radius does not increase with the doubling level, so the size of
the nodes on screen does not indicate the current zoom level.

Note that actual coordinates of objects do not change; only
a scaling factor in the view transformation. The appearance
of the graph changes but not the actual coordinates.

The view can only be doubled a certain number of times be­
cause of machine limits. When the screen can no longer be
doubled and and a doubling attempt is made, an error mes­
sage is displayed in the Message field.

(Cycle) Edges is a graphic field that shows what the current line style
will look like on a miniature line segment next to the name.
All new edges are created with the line style in this field.

If the current action is SET and this field is cycled, the line
style of the current edge will be changed to the new value in
this field.

(Button) EW One stands for Edge Weight One. The weights of all
edges in the graph are set to one.

(Text) The current filename. A filename must be present before a
graph can be loaded or saved.

(Button) Fit draws a box around the current graph and manipulates
the scaling factors in the coordinate system so that the graph
just fills the screen. The zoom level is reset to a base level
so that halving and doubling have the same effect as starting

11

Halve

Load

Messages

Nodes

from scratch. The scroll bars are reset to reflect the fact that
the entire view is now visible.

The entire graph is guaranteed to be visible, but the scaling
is isometric so one axis may fill the screen while the other
axis takes up less than the entire screen in its direction.

There is a small margin left around the screen so that vertices
do not lie precisely on the edge.

(Button) Halve does the opposite of Double. A coordinate system scal­
ing value is halved so that the screen views four times as much
area as before. The view shrinks around the center of the
screen. As with Double, the actual coordinates of objects ~o
not change; just a scaling factor.

The view can be halved indefinitely, but if you halve too
much, you may not be able to double enough to. enlarge your
graph to a reasonable size. Use Fit to reset the zoom level.

(Button) Loads the current file specified in the Filename field. If the
current filename does not have an extension a '.g' extension
is automatically appe~ded. If there is no current filename,
GraphTool will tell you to type one in before loading. If
there is a system error when loading the graph file, Graph­
Tool will display the standard system error message for it in
the Message field. If the file is not what GraphTool expects,
GraphTool will display the message File format error.
See error file in the Message field. The error file is a text
file which will contain some messages from GraphTool de­
scribing what it doesn't like about the file. The error file name
is made from the current file name with .err appended. For
more information on GraphTool's file format, see Section 8.

If a current graph exists and has unsaved modifications, an
alert will pop up asking you whether you really want to load
the file or not. If you choose to load the file, you will destroy
the current graph. If you cancel the action, the load will be
aborted and the current graph will be unchanged.

Loading a file empties the undo buffer (See Undo).

(Message) The display area for all messages. Messages are blanked af­
ter a certain number of canvas events like mouse movement,
button presses, etc.

(Cycle) Nodes is a graphic field which displays what the current node
fill style looks like in a small picture of a node by the title.

12

Number

NW One

Plain

Print

Note that there are two styles, hollow and empty, which look
very similar in a graph. Hollow is indicated by an empty
circle. A hollow node in the graph is drawn without a center
so it may overlap other nodes without er.asing them. Empty
nodes are indicated by a hollow node with an X in the center,
indicating that the center is filled with the background color,
erasing whatever was there.

All new nodes are created with this fill style. If the current
action is SET and this field is cycled, the fill style of the
current node is changed to the value of this field.

(Button) Renumbers the nodes and edges in the graph starting at one
and increasing.

(Button) NW One stands for Node Weight One. The weights of all
nodes in the graph are set to one.

(Button) Removes all patterns, widths and line styles from the current
graph. They are permanently lost.

(Button) Print formats the current graph and writes a file in PIC for­
mat that may be printed directly or incorporated into another
document.

When Print is clicked on, a popup window comes up with the
options for printing. The 'To file:' field holds the name of
the file that the print commands will be put in. It defaults
to the current file name with an extension of .pie. If there is
no current file name, print.pie is used.

There are several check boxes after the file name which control
which elements of the graph, such as number, weights and
styles, are printed. Node numbers and weights are placed in
the center of the node without regard to the size of the node
so they may not fit. Node patterns are printed as grey scales
and may not look like what you see on the screen. If node
patterns are disabled, the nodes are hollow.

Edge numbers and weights are placed at the midpoint of the
edge and may overlap it. If the edge is thick, it may obscure
the numbers entirely. Edge widths and styles are only ap­
proximated, so the appearance may be quite different from
the screen representation. If edges styles are disabled, the
lines are solid.

The node radius field controls the size of the nodes drawn.
The width and height are the width and height of the box that

13

Quit

Radius

Redo

Save

the current graph will be scaled to for printing. The graph
itself, not the canvas view, is what is scaled, so if your graph
does not fill the canvas, you won't get a lot of blank space
around the edges; only the graph is considered. Conversely,
if your graph is huge, you won't see just a part of it. It will
be scaled to fit in the size you specify.

Once you are satisfied with the print settings, click the Print
button in the popup and the print file will be created. Your
settings, except for the filename, will be saved for the next
time you print. If you cancel, the settings are not changed
from what they were when the print popup first came up.

As mentioned previously, the file is in PIC format, and is
suitable for conversion to TEX format via tpic (or your fa­
vorite utility). It can also be used in the normal fashion as a
troff preprocessor input file. If you want to edit your graph
for some reason, such as moving things or adding annota­
tions, there are programs that provide editing capabilities for
PIC files. You may have to convert the PIC format to a dif­
ferent format that the editor uses, but PIC is a well-known
format and there are many translation and editing tools for
it. Unfortunately, none of these programs are standard UNIX
commands, so their availability will be site-dependent.

A side effect of printing is that the current graph is renum­
bered from one.

(Button) Quit is a "safe" exit. If the current graph has unsaved modi­
fications you are prompted as to whether you really want to
quit or not. If you quit anyway the current graph will be lost.

(Text) The current node radius in pixels. When return is pressed in
this field, the graph is redrawn with the node radius set to
the value in the field.

This value cannot be less than one.

(Button) Redo reverses what Undo just reversed. In other words, it re­
stores the action that you just undid. See Undo for a complete
description of how GraphTool manages Undo and Redo.

(Button) Saves the current graph in the file specified by the Filename
field. If the current filename does not have an extension a
'.g' extension is automatically appended. Save handles no
filename and system errors in the same way as Load. There
is no way to get format errors when saving. If the specified

14

Undo

file exists the user will be alerted of it. You are given the
option of saving over, and thus destroying, the previous file
or cancelling the save.

Nodes and edges are renumbered consecutively from one as a
side effect of saving.

(Button) Undo reverses the last action performed. Actions that undo
reverses are: addition and deletion of nodes and edges, moves
of nodes and sets of nodes and edges.

When undoing a node or edge deletion, the number will not
be preserved because the graph may have been renumbered in
the interim. The recovered node or edge will have the greatest
number in the graph.

Undo and Redo use a thing called the undo buffer, which is a
storage place of the last few actions you did. When you create
a new node or edge, move a node, delete an edge or any of the
above actions, it is stored in the undo buffer. When you undo,
the current action (which, if you just started undoing, will be
the last action you performed) in the buffer is reversed and the
buffer pointer is stepped down one. Multiple undo's will keep
reversing actions and stepping earlier and earlier in the buff er
until there is nothing left to undo, at which point GraphTool
will complain. When you Redo, the current action in the
buffer is restored and the buffer pointer is stepped up. You
can step all the way back to where you started, if you like,
and everything will be back the way it was before you began
undoing. The upshot of all this is that your last few actions
are stored and you can walk back and forth through them at
will.

If the buffer is full, the oldest action is discarded is when a
new action is put in the buffer. Also, if you undo down into
the buffer so that there are some actions above the current
point in the buffer, and then do something new, all events in
the buffer above your current position are discarded.

Note that because the buffer contains multiple actions, you
cannot "undo an undo." You can only exhaust the buffer of
things to undo. Use redo to "undo an undo."

Currently, the undo buffer is twenty-five actions deep. It is
cleared when you load or clear or run an algorithm.

In addition to the major function of moving through the undo
buffer, undo will also cancel a half-complete edge connection.

15

Weight

Weight

Width

This will put you back in CONNECT mode. This action does
not affect the undo buffer, so you can't redo to get back into
COMPLETE.

(Button) Weight sets the weights of the edges in the graph to the Eu­
clidean distance between the centers of the nodes that the
edge connects.

(Text) The current weight for nodes and edges. This item can be
modified at any time as long as the return key is not pressed.
If the return key is pressed and the current action is SET , the
weight of the current object is set to the value in this field.

The weight of an object is a floating point value, so decimal
values may be entered here.

(Text) Width controls the width of new edges and can be used to
change the width of existing edges. All new edges are created
with a width of this many pixels, which cannot be less than
one.

If the current mode is SET and return is pressed in this field,
the current edge will have its width set to this value.

3. 7 The Keyboard

A few notes on keyboard commands: case is significant and all keyboard commands must be
typed in the canvas window. The convention 'Ctrl-key' means that the Control key must be
held down when pressing the key.

Ctrl-c If there is an algorithm running, sends SIGINT (the same signal that is sent
when Ctrl-c is detected by a program running normally) to the currently running
algorithm. For programs with standard signal handlers (i.e. almost all), this
causes the process to terminate. If you have an algorithm that is misbehaving
or is not programmed to terminate, this command will kill it.

Ctrl-1 Performs the same action as the Load button.

Ctrl-p Toggles the control panel on and off. If you don't need the control panel or it is
getting in the way, you can turn it off. You can then bring it back with another
Ctrl-p.

Ctrl-q Performs the same action as the Quit button.

Ctrl-r Causes the current graph to be redrawn. This is an easy way to remove any
garbage left over from a faulty run of an algorithm.

16

Ctrl-s Performs the same action as the Save button.

Ctrl-v Prints the current version string in the Message field.

Ctrl-x Exits GraphTool immediately. There may or may not be confirmations, de­
pending on what your windowing system does. Do not depend on there being
any.

c Selects CONNECT.

d Selects DELETE.

Selects INFO.

m Selects MOVE.

r Performs the same action as the Redo button.

s Selects SET.

u Performs the same action as the Undo button.

4 Algorithms

External programs that adhere to the following input/output format can be run under
GraphTool and manipulate the current graph. GraphTool gives the current graph to
the program in the file format described in Section 8 and then waits for commands from
the program. The program may modify the current graph by adding and deleting objects,
changing appearances and even drawing its own graphics. The programs are referred to as
algorithms and also children. In addition to any native programming that you may wish to
do, there is a library that handles many common functions used in algorithms. It is described
in Section 4.5.

Algorithms are made visible to GraphTool by adding an entry for them in the .graphrc
file. GraphTool reads the .graphrc file every time the canvas menu is brought up, so the
.graphrc file can be modified without having to exit GraphTool and re-enter. The entries in
the .graphrc file are added to the canvas menu and can be selected from it just like any other
menu item.

4.1 The .graphrc File

Like graph description files, the .graphrc is line formatted. The types of lines in a .graphrc
are:

#submenu <string menu name>

Declares a submenu that will be a pull-right from the parent menu. The submenu will
. be shown with the given name.

17

#endsub

Ends a submenu so that later entries are added to the parent menu. Every #endsub
must have a #submenu before it.

An algorithm entry

An algorithm entry has no preceeding keyword and consists of these two lines:

• The name of the algorithm to show on the menu.

• The relative path of the executable from the current directory and any arguments
that you want to pass the algorithm on the command line.

The name of the algorithm will be placed in the current menu for selection. The relative
path is kept by Graph Tool so that it knows what to run when the algorithm's entry is
selected in the menu. The path may not begin with a'#' or a'*'· Any space-separated
chunks of text after the path are assumed to be command line arguments and will be
given to the algorithm with the normal argc-argv convention when the algorithm is
executed. Because the space character is the delimiter, you cannot have a space in
the path itself and you cannot pass arguments that are a single argument but contain
spaces.

When an algorithm entry is selected from the menu, the algorithm is run under Graph­
Tool and may interact with GraphTool in a variety of ways. A complete description
follows.

A command entry

P.._ command entry has no preceeding keyword and consists of these two lines:

• The name of the command to show on the menu.

• The command to be interpreted.

The name of the command will be placed in the current menu for selection. The
command is a GraphTool language command as described in Section 4.4 and therefore
must begin with a'#'. The leading'#' is the only way that GraphTool can determine
that the entry is a command entry so be very careful to "include it.

When a command entry is selected from the menu, the language command is executed
precisely as if an algorithm had given the command to GraphTool. This enables you
to execute certain actions from the menu for your convenience. For example, there is
a language command to remove all edges from the current graph. If you want this
function on your menu for easy selection, put a command entry for the function in your
.graphrc, as shown in the following example.

A file entry

A file entry has no preceeding keyword and consists of these two lines:

18

• The name of the file to show on the menu.

• The path of the file to be loaded, prefixed by a'*'·

The file name given will be placed in the current menu for selection. The file path is
a UNIX path, relative to the current directory. The preceeding '*' is stripped from
the filename when used; it is only there to identify the path a file path. The '*'is the
only way that GraphTool can determine that the entry is a file entry so be careful to
include it.

When a file entry is selected from the menu, GraphTool puts the given filename in
the Filename text item and attempts to load the file, just as if you had typed the file
name in yourself and clicked on the Load button.

White space at the front of the line is ignored so it is possible to indent submenus to show
the menu hierarchy clearly.

There is no set limit on the number of entries that may be added to the canvas menu; it
is a function of the window system's constraints. Submenus have no set nesting limit; again,
this is controlled by the window system. Finally, lines cannot be longer than 255 characters.

4.2 An Example .graphrc

Remove Edges
#no edges
#submenu Directed

Shortest Path
algs/spath -directed

Any Path
anypath

#submenu One
One Algorithm
algs/one

#endsub
#endsub
#submenu Undirected

Shortest Path
algs/spath -undirected

#endsub
#submenu Graph Files

Convex Hull
*chull

Shortest Path
* .. /gfiles/spath

#endsub

19

4.3 Running Algorithms

When running an algorithm, there is a program which maintains the current graph and re­
sponds to commands that is called the server. This is either Graph Tool or the Wrapper.
Graph Tool provides the fully interactive environment explained previously, while the Wrap­
per is intended more for a batch environment and does not provide any of the editing and
manipulation features of GraphTool. The Wrapper's only function is to provide support
for the complete algorithm command set and respond in as similar a manner to GraphTool
as possible while also being able to run completely unattended.

The algorithm is called a client because it depends on functionality that the server provides
to it. The client may keep its own copy of the current graph for use, but it is wholly dependent
on the server for both display of the current graph, if the server does so, and all input that
the client may want. On the other hand, the client may be run under any server without any.
changes, and yet still take advantage of the unique features that server offers.

Therefore, it is important to be familiar with exactly what each server does and which
one you should choose to run your algorithm.

4.3.1 GraphTool as Server

When an algorithm is invoked, the undo buffer is discarded and the graph is marked as
not being saved. Even if the algorithm does nothing, the graph is still marked as having
modifications. All editing actions are suspended and RuN mode is entered. If GraphTool
cannot execute the algorithm for some reason, error messages will be displayed in the Messages
field.

When the algorithm exits on its, the message Child process exited with code 0 will
be displayed in the Messages field to let you know that the algorithm is no longer running.
The code number is the exit value of the program, and will not necessarily be zero. If the
algorithm was killed by a signal, like a segmentation violation or you killing it with Ctrl-c,
Graph Tool will display a message of the form Child killed by SIGSEGV where the actual
signal name will be displayed to inform you why it died.

The action in effect before the algorithm was run will be reinstated.

4.3.2 The Wrapper as Server

The Wrapper provides a complete interface for algorithms and functions just as Graph­
Tool would in most cases. However, because GraphTool is running a full graphical, mouse­
oriented interface and the Wrapper has a textual interface, some commands function differ­
ently. These differences are documented along with the commands in the section below .. In
addition, the Wrapper can run both in interactive mode, where it will prompt you for input
for certain commands, or in non-interactive mode, where it assumes that no user interaction is
necessary for the algorithm to run and returns arbitrary values for commands that require in­
put. Again, these differences are documented along with the commands themselves. Technical
documentation for running the Wrapper is in an appendix to this document (Section 7).

20

Another way the Wrapper is different from GraphTool is in the way it handles the
exiting of an algorithm. If the child exits on its own and returns an exit code, the Wrapper
will exit with this return code. This enables you to check the exit code of the Wrapper in
a shell script and take action on it. For example, if your algorithm can fail in certain cases,
you can exit with some error code in those cases to indicate that it didn't do what it was
supposed to. Then, when you are testing your algorithm, check the exit code of the Wrapper
to see why your algorithm :finished. When the child is terminated by a signal, the Wrapper
will print the message Child killed by SIGSEGV, with whatever the actual signal was, on
standard error and exit with a -1.

Finally, because the Wrapper doesn't have a window like GraphTool, the #display
block may be destroyed or corrupted more easily. The Wrapper does set up a coordinate
system with the same defaults as for GraphTool, but it is only set up once when the Wrap­
per is activated and cannot be reset without re-running the Wrapper. This may lead to
an algorithm getting a coordinate system which is only a point or nonsense. You should be
careful when using the window position and sizing parameters available in the GraphTool
library (Section 4.5) and in files (Section 8).

Note that although the Wrapper does not display the current graph, it still maintains
the appearance attributes such as node patterns and edge widths.

4.4 Interactive Communication with an Algorithm

An algorithm sends and receives commands through the standard input/output channels.
This means that the standard printf/scanf and putchar/getchar commands can be used for
all input and output rather than some exotic socket communication line or such. All com­
mands are also human-readable ASCII lines, further enhancing the ease of programming and
debugging. One thing to watch out for is that all commands must be terminated by a new-line
and must be sent as a single entity to ensure complete transfer.

The first communication between a client and server is automatic and occurs at the time
when the client is executed. The server sends the current graph to the algorithm on the
algorithm's stdin in the same format as if it were saving it. (See Section 8) The only difference
is that the server terminates the input with<> to indicate that the graph data has stopped.
EOF is not necessarily defined on the communication line so it is not a good indicator of the
presence of data. A side effect of saving the graph is to renumber the graph from one so the
algorithm is guaranteed a consecutive numbering system when dealing with its input. Once
the initial graph has been consumed from the input, commands and replies can :flow freely
between the client and server.

The servers do very little error checking of commands so it is very important that they
appear precisely as they are here. Specifically, the only checking that the servers do on the
input is to check the numbers for the commands that refer to objects by their numbers. If a
server receives a command using a number that refers to a non-existent object, the command
is ignored. If debug mode is on, an error message will be logged into the debug file.

In the following description commands are typed as they would appear in typewriter
type so you know exactly what GraphTool expects. The characters < and > enclose

21

parameters and are not included in the file. A parameter is described with a type: int for
integer, double for floating point and string for a string of characters. The type is followed
by a name describing what should actually be typed for the parameter. The angle brackets
in quotes indicate that they are actually part of the command to be sent.

#append <string filename> <double x> <double y> <double vidth>
<double height>

For GraphTool, puts the given :filename in the Filename item and appends a graph
file to the current graph in the given area just as if you had typed the filename into the
Filename item, clicked the Append button and selected the area. No error messages
will "be displayed, but an error file will be created if errors are found in the file.

For the Wrapper, appends the specified graph to the current graph. No errors will be
displayed but an error file may be created.

#circle <double x> <double y> <double r> <int op>

GraphTool draws a circle ofradius rat (x,y). Note that this is not something Graph­
Tool remembers. It is the responsibility of the algorithm to clean up with a redraw.
Otherwise, the circle will remain until the user does something so that GraphTool
redraws the screen.

The x, y and r are specified in the graph's coordinate system.

The op specifies how the circle will be drawn. The codes are:

• 0 Draw

• 1 Clear

• 2 Exclusive OR

The Wrapper ignores this command.

#clear

Removes all nodes and edges from the current graph and clears the screen. Unlike the
Clear editing command, nothing else, such as the coordinate system or the scrollbars,
etc. is reset.

The Wrapper discards the current graph.

#debug <string dump file>

Starts debug mode processing. All commands that the server receives and all output
that the server sends are dumped into the given file. Error messages will also be dumped
here. The server appends to the given file so it is safe to reuse a file. The server also
dumps the starting and ending times of the debug mode.

If an algorithm is terminated and debug mode is on, the server automatically closes the
dump file.

22

#delay <int milliseconds>

After each command, GraphTool will delay this many milliseconds so that the execu­
tion speed of your algorithm can be controlled. Zero means no delay. Setting this value
high (several seconds) will cause editor feedback delays.

The actual delay is usually close to the requested delay, but some machines do not
provide support for this level of timing so the delay is approximated with a busy-loop.
The approximation will be poor.

The Wrapper ignores this command.

#dflush

Causes the server to flush the debug file if the server is in debug mode. Because the
debug file is buffered, there may be information lost in the buffer if the algorithm crashes
when the debug file is open. To avoid this, the debug file can be :flushed to write all
material currently in the buff er to the file. This does take time, though, so this command
should probably not be used in critical loops.

#directed <int status>

Changes the directed status of the graph to what is given. Any non-zero number for
status will make the graph directed and a zero will make the graph undirected.

#edge+ <int number> <int from> <int to> <double weight> <int vidth>
<int style>

Adds an edge with the given values into the graph. Again, duplicate numbers are not an
error. From and to are node number of nodes that exist already. If the from or to node
d-0es not exist, this command is disregarded. The styles are as described in Section 8.

#edge- <int number>

Removes an edge from the graph.

#edgep <int number> <int vidth> <int style>

Sets the width and line style for an edge.

#gettext <'<'string prompt'>'> [<'<'string default· entry'>'>]

In GraphTool, pops up a window with a text entry field in it. The prompt given is
used as the prompt in the window for the text. An optional default entry will be placed
in the field if specified. The <> are needed to enclose the strings so that spaces may
be included.

In the Wrapper, if the Wrapper is in interactive mode, the user will be prompted
for input with the given prompt and the default in brackets by it. If the user just
hits return, the default is sent back. If the Wrapper is not in interactive mode, a
warning message will be printed alerting the user that a text request was ignored and
the Wrapper will send back an empty text return.

23

There is no way to specify a string with a > in it, although < can be used.

An example would be: #gettext <Number of layers?> <10>

The server returns the input in a command of the form:

#text <string>
The<> are not included here. Also, in GraphTool, the user can cancel the input,
in which case GraphTool returns only #text, or the user can input nothing, in
which case there will be one space after #text. Under the Wrapper, there is no
way to enter nothing unless the default is empty also. If the Wrapper receives
a #gettext in non-interactive mode, it will return a #text with nothing, as if the
#gettext had been cancelled.

#line <double xi> <double y1> <double x2> <double y2> <int op>

GraphTool draws a line from (xl,yl) to (x2,y2). #line functions in the same manner
as #circle.

The Wrapper ignores this command.

#load <string filename>

In GraphTool, puts the filename in the Filename item and loads a graph file just as if
you had typed the given filename in the Filename item and clicked on the Load button.
No errors will be displayed, al though an error file will be created if errors are found in
the file. No confirmation of this action will be requested if the current graph is unsaved,
so be careful not to issue this command unless you know the current graph can be
discarded.

The Wrapper loads the specified graph. No errors will be displayed but an error file
may be created.

#ltext <string text> <double x> <double y> <int op>

Draws the text between the <> at the given position with the given operation. The
(x,y) is the left edge and baseline position for the text. #ltext functions in the same
manner as #circle.

The Wrapper ignores this command.

#msg <string message>

In GraphTool, displays message in the Message field.

In the Wrapper, depending on what mode you have run it in, the message may be
logged to a file, printed on the standard output or ignored.

#node+ <int number> <double x> <double y> <double -.reight> <int pattern>

Adds a node with the given values into the graph. Duplicate numbers are not an error;
the first node with the number will be used in later references to the number. The
patterns are the same as described in Section 8.

24

#node- <int number>

Deletes the node with the given number.

#node= <int number> <double x> <double y>

Moves an existing node to new coordinates.

#node bug

Turns off debug mode and closes the debug file. If debug mode was not active, this does
nothing, so it is always a safe command.

#nodep <int number> <int pattern>

Sets the fill pattern for a node.

#no edges

Removes all edges from the current graph.

#plain

Performs the same function as the Plain button.

#rect <double ulx> <double uly> <double lrx> <double lry> <int op>

GraphTool draws a rectangle with upper-left point (ulx,uly) and lower-right point
(lrx,lry). #rect functions in the same manner as #circle.

The Wrapper ignores this command.

#redraw

Redraws the current graph. The screen is erased before the redraw, so this can be used
to remove anything the algorithm has drawn that is no longer needed.

The Wrapper ignores this command.

#renumbere <int start>

Renumbers the edge list starting from the given number.

#renumbern <int start>

Renumbers the node list starting from the given number. In the Wrapper, the edge
list is modified to reflect the new node numbers for from and to.

#select-e

Causes GraphTool to enter EDGE mode and wait for the user to select an edge.

If the Wrapper is in interactive mode, the user will be prompted for an edge number.
Otherwise, a warning is printed and a garbage edge is sent to the algorithm. The edge
will have a number of -1, so you can check for this in your algorithm if you think it will
be necessary.

Once the user has selected an edge, the server sends it to the algorithm in the form:

25

#edge <int number> <int from> <int to> <double weight> <int width>
<int style>

Note that the server just sends the information to the algorithm and then goes back
to doing nothing. The algorithm can do anything it wants after it issues a #select
command, including not reading its input for quite some time after it actually receives
the node notification. So it is quite possible for the server to be waiting for a selection
while the algorithm is doing something else. The algorithm would then read its input
when it was ready.

#select-n

Causes GraphTool to enter NODE mode and wait for the user to select a node.

The Wrapper handles #select-n just like #select-e.

Once the user has selected a node, the server sends it to the algorithm in the form:

#node <int number> <double x> <double y> <double weight> <int
pattern>

#select-n returns its value in the same manner as #select-e.

#sendgraph

#sync

Causes the server to send the current graph to the algorithm just as it did automatically
when the algorithm was started. The graph is renumbered from one when it is sent so
that the numbering system is coherent.

Allows synchronization of the server and the algorithm. The server replies with the line:

<>

This command is not strictly necessary but it ensures that the server receives all of
the input from the algorithm. If the algorithm exits with commands still making their
way between the server and the algorithm, they will be ignored. So an algorithm that
wants to make sure all of its command are sent will send #sync as the last command
and then wait for the <>. Because the server won't send the <> until it gets the
#sync, you are assured that the server has also seen any commands that preceeded the
#sync. The algorithm can then safely exit. If the algorithm's last action was to wait on
something, such as #select-n, #select-e or #waitclick, #sync is not necessary because
the algorithm will already have waited for the server to synchronize with the algorithm
and send the appropriate information.

#sync's only action is to cause the server to send <>, so it can be used any number
of times at any time during the execution of an algorithm as long as you remember to
read the <> in to clear it.

26

#vai tclick

Causes GraphTool to enter WAIT mode and wait for the user to click a mouse button.

If the Wrapper is in interactive mode, it will prompt the user for a button number. If
the Wrapper is not in interactive mode, -1 is sent for the button number.

Once the user has selected a mouse button, the server sends the click to the algorithm
in the form:

#click <int button> The buttons are:

1. Left

2. Middle

3. Right

#wa.itclick returns its value in the same manner as #select-e.

#-weight

Performs the same function as the Weight button.

4.5 The GraphTool Library

A library of useful subroutines has been written for writers of graph algorithms. The only
current language bindings are in C. You should find out how to use the library from someone
knowledgeable, as there is no standard method for doing so. Even if you are using C, you may
have difficulty as the library attempts to define function prototypes as in the ANSI standard.
Your compiler may not be able to handle these prototypes, in which case you must change a
define in the library header file called ARGS to () so that arguments are not declared.

Data structures for nodes and edges are defined as follows:

struct edge {

};

struct edge *from_next,*from_prev;
struct edge *to_next.*to_prev;
int num;
int i_from,i_to;
struct node *p_from,*p_to;
double weight;
int vidth,style;
double from_angle,to_angle;
void *data;

struct node {
struct node *next,*prev;
int num;

27

};

struct edge *vh,*vt;
double x,y,weight;
int pattern;
void *data;

The *data fields are unused by the library and are present to allow you to hook any private
data you wish onto edges and nodes.

The library's graph reading functions set a number of global variables for your use:

int version

The file format version number of the graph read in.

int num..nodes,num_edges

The number of nodes and edges read in. ·

double x_off ,y_off ,x_scl,y_scl

double zoom_multx,zoom_multy

int directed

int node...radius

int wx,wy,ww,wh

int zoom--1.evel

int x_scroll,y_scroll,x..scroll_pos, y..scrolLpos ,x_scroll--1.en, y _scroll--1.en

A complete description of what these variables mean is in Section 8.

The library contains the following macros:

line...buffer(FILE *for)

line_buffer is a macro that sets the given file pointer ip.to a line-buffered mode. It
is present because this is done differently on different systems, and if you use it you
can port your code without changes because the GraphTool library should have the
appropriate definition on the new system. If line_buffer fails, you may have to edit the
library header file to change it to something that is correct for your system.

The next group of macros exists to deal with vertex edge lists, (generated by vertex_edgeJists
and sorted by sort_vertex_edgeJists, described later), which do not have a regular format. It
is strongly recommended that you use these macros to traverse vertex edge lists rather than
your own code, as the interconnections between vertex edge lists can become complex. Using
the macros will also shield you from any changes in the lists' representation.

28

These macros come in various forms depending on the type of the arguments and the type
of the result coming back. Most of them take two arguments: an edge and a vertex. The edge
is always a struct edge *. The following naming convention is used: if the vertex is an index
(number), append an I to the macro's base name. If the vertex is a struct node*, append a
P. If you want an index back, append an I to what you just appended. If you want a pointer
back, append a P. So OPP _VERTIP(edge, vertex) takes an edge pointer and a node number
and returns an edge pointer.

If you are confident that you will never get a null pointer for SUCC, PRED, etc., they are
written in expression form so that you can reference directly from them, as in SUCC(edge,vertex)­
>num.

Note that because these are macros, the arguments are textually substituted and may
occur more than once in the final code. Therefore, do not use arguments with side effects,
like OPP _VERTIP(e++,vertex) because thee++ will be evaluated twice and the result will
not be what you expected.

ANGLE(edge,vertex)

Returns the angle the given edge makes from the vertex to its opposite vertex. This is
only valid on a sorted edge list.

P and I forms.

CCW(edge,vertex)

Returns the next edge in the counter-clockwise direction in the given vertex's sorted
edge list. Sorted edge lists are circular, so this will never return NULL.

PP, PI, IP, II forms.

CW(edge,vertex)

Returns the next edge in the clockwise direction in the given vertex's sorted edge list.
Sorted edge lists are circular, so this will never return NULL.

PP, PI, IP, II forms.

ENUM(edge)

Returns either the number of the edge or -1 if the edge pointer is NULL. Useful in
combination with SUCC and PRED to simulate PI and II forms.

OPP_VERT(edge,vertex)

Returns the vertex opposite the given vertex on the given edge.

PP, PI, IP, II forms.

PRED(edge,vertex)

Returns the previous edge in the given vertex's edge list.

PP, IP forms.

29

SUCC(edge,vertex)

Returns the next edge in the given vertex's edge list.

PP, IP forms.

The library contains the following functions:

void ar_read_graph(FILE *from, struct node **nd_ar,struct edge **ed_ar,int
nd....max, int nd_start, int ed....max, int ed_start)

Reads a graph from the given file pointer into an array. If nd_ar or ed_ar is NULL,
an array of *...max+*...start elements is malloc'ed for you and the * __ar pointer is set
appropriately. Nodes and edges are read into the array starting at the starting element
given. The next and prev pointers are set correctly so that the array can also be treated
as a doubly linked list. The edge list uses the from_* pointers.

Note that giving a starting position does not affect the numbering of the graph; it only
affects the position in the array in which the graph will be stored.

int click....message(printf arguments)

Takes the same arguments as a printf call and sends the resulting string as a #msg
command. If the message is not terminated by a newline, one is added automatically.
Click__message then does a #waitclick and scans the input for the #click return. Any
floating newlines in the input are discarded so click.message will leave a clean input
pipe after it returns. Click...message sends a #dflush before it waits so that the debug
channel is flushed. Finally, click__message returns the number of the button pressed.

void edge_chk_end(struct node *node,struct edge *edge)

Links the given edge into the given node's vertex edge list along the from_* pointers or
to_* pointers depending on whether the node is the from node or to node.

struct edge *edge...num_ptr(struct edge *head,int n)

Returns a pointer to the n'th edges from the given list head. If the list ends before the
n'th edge, NULL is returned. The from_next pointer chain is followed. The first edge
is number one.

void edge_weight....matrix(struct edge *head,double **matrix,int n,int
directed, double initial,int boolean)

Creates a matrix where entry (row,column) contains the weight of the edge with fields
(from, to)=(row,column). If matrix is NULL, a matrix of size [n+l][n+l] is malloc'ed
for you. Note that n is the number of nodes, with the nodes considered to start at one,
not zero, so everything is n + 1 elements in size.

The matrix is filled with the given initial value and then all edges are put in. For
undirected graphs, both (from,to) and (to,from) entries are set for a particular edge,
while only (from,to) is set for a directed edge.

30

If boolean is non-zero, non-zero weights are put in the matrix as one, so with an initial
value of zero a boolean matrix is created.

The edge list is traversed along the from_* pointers.

void fill_edge(struct edge *fill, int number,struct node *head,int
from,int to,double weight, int width,int style)

Fills the given edge's fields with the given information. Sets the p_from and p_to fields
with node_num_ptr using the given node list head. From..next, from_prev, to..next,
to_prev and data are set to NULL.

void fill...node(struct node *fill, int number,double x,double y,double
weight,int pattern)

Fills the given node's fields with the given information. Sets next, prev, vh, vt and data
to NULL.

void flush_pipe()

Ensures that algorithm communication pipes are flushed by sending #sync and then
waiting for the <>. All input from the server is ignored until the <> is sent, so the
input pipe is emptied up to the<>. #dflush is sent before the wait so that the debug
channel is flushed.

void free_edge..J.ist(struct edge *edges)

Frees all of the edges in the edge list. The list is traversed along the from_* pointers.

void free...node..J.ist(struct node *nodes)

Frees all of the nodes in the node list and their edge lists. The edge lists may be circular,
as after a sort_vertex_edgeJ..ists, or normal, as after any of the vertex edge list creation
routines have acted on a node.

void ll_read....graph(FILE *from,struct node **nd..head, struct edge **ed..head)

Reads a graph from the given file pointer into a linked list. The nd_head and ed_head
parameters are set to point to the heads of the node and edge lists, respectively. The
edge list is constructed along the from_* pointers.

void message(printf arguments)

Takes the same arguments as a printf call and sends the resulting string as a #msg
command. If the message is not terminated by a newline, one is added automatically.
Message sends a #dflush before it waits so that the debug channel is flushed.

void new_vertex_edge(struct node *from,struct node *to, struct edge *edge)

Allocates a new edge, copies the given edge's information into it and links the new edge
into both the from and to node's vertex edge lists along the proper pointer chain.

31

void new_vertex_edge.J.ists(struct edge *head)

For each vertex, creates a list of the edges that impinge upon that vertex using the
vh (head) and vt (tail) pointers. Edges are added to both the from node and the to
node along their respective pointers. Therefore, when traversing an edge list from the
vh pointer of a node, if the edge's from node is the same as the node you started from,
use the from_* pointers. If the edge's from node is not the node you started from, use
the to_* pointers. The SUCC and PRED macros described above shield you from this
problem, so use them whenever you can.

The list is unsorted and is new. The old edge list is undisturbed.

struct no'de *node.nuni_ptr(struct node *head, int n)

Returns a pointer to the n'th node from the given list head. If the list ends before the
n'th node, NULL is returned. The first node is number one.

void nillilber_from(struct node *nodes,int nstart,struct edge *edges,int estart)

Renumbers the node and edge lists starting at the given starting value for the head and
increasing along the list. The edge list is followed along the from_* pointers. The i_*
fields in the edge list are updated to reflect the new node numbers. Vertex edge lists
are NOT updated.

void read_graph(char *name,FILE *from, FILE *error,void
(*add.node)(),void (*add_edge)(),int header)

Reads a graph from the given file name or pointer. If the from file pointer is NULL, an
attempt to open 'name' is made. The error file pointer is a single file that any input
errors will be logged to. If error is passed as NULL, 'name.err' is used. If name is
NULL, no error file is kept.

The directed global is set if header is non-zero and a #graph block is encountered. The
#graph block is mandatory, so directed will be set for all but malformed files. If a
#display block is present in the file and header is non-zero, the other globals will be set
with its values. The #display block is optional. Therefore, if you want to hand- craft
a file and don't have any idea as to what to put in the #display block, leave it out.
#include links are followed.

For each node and edge, the given add function is called. The function pointer may be
NULL if you don't want additions of that type. The format for a node add function is:

void add...node(int nillilber,double x,double y, double weight,int pattern)

The number given is the node's number in the current numbering scheme kept by
readJile. You may ignore it if you wish. The other arguments contain the same
data as in the #node+ command.

An edge add function looks like:

32

void add_edge(int number,int from,int to, double weight,int width,int
style)

The number given is the node's number in the current numbering scheme kept by
readJile. You may ignore it if you wish. The other arguments contain the same
data as in the #edge+ command.

void skip....graph(FILE *from)

Sets num...nodes and num_edges to zero and then calls read....graph(NULL, from, NULL,
NULL, NULL) to set the rest of the globals but ignore all node and edge information.

void sort_vertex_edge...lists(struct node *head)

Sorts the vertex edge lists into angular order. The CW and CCW macros described
above allow you to traverse the resulting list in clockwise and counter-clockwise order.

This function traverses and sorts lists of the the type generated by vertex_edgeJists
using the vh and vt pointers in the nodes, if you wish to construct your own lists for
sorting.

void vertex_edge(struct node *from,struct node *to, struct edge *edge)

Links the given edge into both the from and to node's vertex edge lists along the proper
pointer chain.

void vertex_edge...lists(struct edge *head)

Performs the same function as new _vertex_edgeJists, but uses the old list as storage
space instead of allocating new space. The old edge list is destroyed in the process and
cannot be used again.

void write....graph(FILE *to,int header,struct node * nodes, struct edge *edges)

Writes the given graph to the given file pointer in the GraphTool file format. The
edges list is followed along the from_* pointers. The graph is renumbered from one.

If header is non-zero, a #display header is written using the library's global variables.
If you do not want a header or the global variables are not set, pass a zero for header
and a header will not be written. As mentioned above, read....graph will read files with
and without #display blocks.

4.6 Some Advice on Programming Algorithms

Use as many of the GraphTool library's routines as possible, as this will enable you to
move your algorithms between different servers and server versions with a minimum of code
changes.

Watch out for newlines in the communication streams. If you forget a newline somewhere
the results can be disastrous. For example, when using a #select or #waitclick, the returned
value includes a newline. Using scanf to pull the fields out of the input stream will work, but

33

will leave the newline in the input channel, which can get in the way if you later need to read
a line from the input. If you have more than one scanf in a row, things will work because most
of the scanf scan types skip white space and so will skip the extra newlines. For something
like a #text return, though, you can't just scan a string from the input because the return
may contain spaces. You must scan the whole line from the input. When doing so, either
avoid white space yourself or eliminate it at the other steps. Click....message and fiush_pipe
clear the input line for you, so if you can structure your code to let them do the work, good
for you.

Know what I/O channels do what and can be used for what. Stdin is dedicated to receiving
messages from the server, so you shouldn't expect any other input from it as you normally
would. Stdout is dedicated to sending messages to the server, so don't output anything else
to it. The easiest way to break your algorithm is to accidentally use a printf when you want
to print out some message. Stderr is what you want to use. The stderr of an algorithm
under GraphTool is the same as the stderr of GraphTool, which is usually on the tty that
GraphTool was executed from, although it can be redirected. The Wrapper allows you to
redirect the stderr of the algorithm to anything. This makes a really neat trick possible: when
writing an algorithm, send all your debugging output to stderr. When you run the algorithm
under GraphTool, you can see all of this on the tty you ran GraphTool on. When you
want to run it under the Wrapper, but you don't want to see the debugging stuff, you can
tell the Wrapper to send stderr to /dev /null.

4. 7 An Example Algorithm

What follows is the actual C code for an algorithm that computes shortest paths using Di­
jkstra's shortest path algorithm. 1 The user is prompted for a from and a to node and the
algorithm highlights the shortest path between the two with a thick, dashed line.

#include <stdio.h>
#include <values.h>
#include 11 graphtool.h11

#define NUM_NODES 300
#define NUM_EDGES 600
extern int num_edges,num_nodes,directed;
struct node *nodes=NULL;
struct edge *edges=NULL;
double dist[NUM_NODES] [NUM_NODES],*distmat=dist;

main()
{

double x,y;

1 E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269-271,
1959.

34

Figure 2: The Original Graph with Edge Weights Shown

35

Figure 3: The Original Graph

36

Figure 4: The Shortest Path Between Nodes 1 and 5 with Edge Weights Shown

37

Figure 5: The Shortest Path Between Nodes 1 and 5

38

int from,to,i,j,cost[NUM_NODES],final[NUM_NODES],
prev[NUM_NODES],min_cost,not_final,min_node;

char junk [80] ;

/* GraphTool passes the current graph as input
when the process is activated */

ar_read_graph(stdin,&nodes,&edges,NUM_NODES,1,NUM_EDGES,1);
/*This line is usually critical. If the stream being

written to is block-buffered (the default) the
stdio library will buffer characters and your
commands won't appear as you would expect.
Because commands are lines, line buffering
is optimal */

line_buffer(stdout);

/* Your program goes here */

printf("#weight\n");
for (;;)

{

printf("#plain\n");

printf("#msg Path from?\n");
printf("#select-n\n");
scanf ("'l.s'l.dY.lfY.lfY.lf'l.d", junk, &from, &x ,&y, &x, &i) ;
printf("#msg To?\n");
printf("#select-n\n");
scanf(11 Y.sY.d'l.lf'l.lf'l.lf'l.d 11 ,junk,&to,&x,&y,&x,&i);

A simple shortest path algorithm.
Assumes a path exists
*I

I* Initialize costs to 'infinity' */
#define INFINITY MAXINT

for (i=1;i<=num_nodes;i++)
{

cost[i]=INFINITY;
fin al [i] =O ;
prev[i]=from;

39

}

I* Set initial costs */
edge_weight_matrix(edges+1,&distmat,NUM_NODES-1,directed,INFINITY,O);
for (i=1;i<=num_edges;i++)

{

}

if (edges[i].i_from==from)
cost[edges[i].i_to]=edges[i] .weight;

if (!directed && edges[i] .i_to==from)
cost[edges[i].i_from]=edges[i].weight;

final [from] =1;
not_final=num_nodes-1;
for (;not_final;not_final--)

{

}

min_cost=INFINITY;
for (i=1;i<=num_nodes;i++)

if (!final[i] && cost[i]<min_cost)
{

}

min_node=i;
min_cost=cost[i];

if (min_node==to) break;
final[min_node]=1;
for (i=1;i<=num_nodes;i++)

if (!final [i])
if (cost[i]>cost[min_node]+dist[min_node] [i])

{

}

prev[i]=min_node;
cost[i]=cost[min_node]+dist[min_node][i];

for (i=to;i!=from;i=prev[i])
for (j=i;j<=num_edges;j++)

if (edges[j].i_from==prev[i] && edges[j] .i_to==i)
{

}

printf("#edgep Y,d 5 4\n",j);
break;

else if (!directed && edges[j].i_to==prev[i] && edges[j] .i_from==i)
{

40

}

printf("#edgep Y,d 5 4\n",j);
break;

}

i=click_message("Left - More, Other - Quit\n");
if (i!=1) break;

}

flush_pipe () ;

41

5 Appendix A - GraphTool Under Sun View

When you are running GraphTool under Sun View, GraphTool will do everything in black
on a white backdrop.

Graph Tool accepts all of the standard Sun View -W command line arguments. If there is
an argument left, it takes it as an initial file name and sets the Filename item to the argument.
The file is not loaded, though.

42

6 Appendix B - GraphTool Under X Windows

GraphTool takes the following command line arguments:

-display X display.

-geometry I= Geometry of canvas window.

-background I -bg Canvas window background color.

-foreground I -fg Canvas window foreground color.

-borderwidth I -bw Canvas window border width.

-font I -fn Panel window font.

-name Resource retrieval instance name.

-xrm Define a resource

An additional argument is assumed to be an initial file name and sets the Filename item
to the argument. The file is not loaded, though.

Note that because the foreground and background colors can be set, things are not nec­
essarily black and white.

GraphTool searches the system databases for the following resources:

display (Class Display)

name (Class Name)

geometry (Class Geometry)

background (Class Background)

foreground (Class Foreground)

borderWidth (Class BorderWidth)

font (Class Font)

X display.

Resource retrieval instance name.

Canvas window geometry.

Canvas window background color.

Canvas window foreground color.

Canvas window border width.

Panel window font.

43

7 Appendix C - The Wrapper

The Wrapper is a small program which furnishes a completely GraphTool compatible
harness for GraphTool algorithms. It is mainly intended for running an algorithm in a
batch mode, but is not limited to doing so.

Upon startup, the Wrapper reads a graph from a file or its standard input and passes
the graph to the algorithm being run. The algorithm can then perform all its normal actions
and the Wrapper will track the current state of the graph. When the algorithm exits, the
Wrapper writes the current graph to a file or its standard output.

When using the standard input and output for graph I/O, you should be careful not to
use interactive mode because interactive mode uses stdin for its input. If you have already
dedicated stdin to a graph, you are out of luck. The Wrapper provides complete control
over the graph input file, output file and stderr, so there shouldn't be any difficulties.

The Wrapper is intended to be run from the UNIX command line. Its invocation takes
the form:

wrapper [-i] [-t] [(+1-o) file] [(+1-)e file]
[-gi file] [(+ 1-)go file] [-ngi] [-ngo]
algorithm [algorithm args]

- i Puts the Wrapper in interactive mode. In interactive mode, the
user is prompted for input on things where input is necessary such
as a select or a waitclick. If these commands are issued when the
Wrapper is not interactive, garbage comes back, which could cause
problems.

-t

C+l-)o file

(+1-)e file

Asks the Wrapper to time the execution of the algorithm. The time
is taken just before the initial graph is sent and just after the child
exits. It may include some operating system overhead time to set up
the algorithm and shut it down, but in all but the most pathological
cases this shouldn't strongly affect the overall time.

The run time is printed as the last output from the Wrapper in
the form Running time : 00 : 00 : 00 . 000000. The accuracy of the
fractional portion of the time is limited by the system and probably
will never be trustworthy beyond milliseconds.

Directs the Wrapper to send the text from all #msg commands to
the given file. If -o is used, the file is opened for writing and any
previous contents it had will be destroyed. If +o is used, the file is
appended to so multiple runs will accumulate.

Directs the Wrapper to send all algorithm output on the standard
error to the given file. The file is overwritten or appended to according
to whether - or + is used.

44

This is very useful for collecting results over a batch session through
the standard error while also allowing results to be viewed on the tty
when the algorithm is run under GraphTool.

-gi file Causes the Wrapper to read its initial graph from the given file. The
.g is not automatically appended. If this option is not present, the
Wrapper reads from its standard input.

(+I-) go file Causes the Wrapper to write the final graph to the given file. The
.g is not automatically appended. If this option is not present, the
Wrapper writes to its standard output. The file with be overwritten
or appended to according to whether - or + is used.

-ngi Tells the Wrapper to send an empty graph to the algorithm. Graph­
Tool's default coordinate system is used in the #display block. The
Wrapper does not read in an initial graph.

-ngo Tells the Wrapper not to write the final graph.

algorithm Specifies the path of the algorithm to be run.

algorithm args The remaining arguments to the Wrapper are passed to the algo­
rithm as its command line so that command line switches may be
passed to the algorithm itself as in GraphTool.

7.1 Examples Using the Wrapper

The simplest use of the Wrapper is in a standard UNIX pipeline. If we had an algorithm
which generated a random graph with the number of points specified on the command line
and an algorithm which computed a convex hull for a graph, we could easily put them into a
pipeline:

% wrapper -ngi random...graph 50 I wrapper convex..hull
random_graph will generate a fifty vertex random graph in its Wrapper and the Wrap­

per will send the graph on its stdout when random_graph exits. This travels through the pipe
to the convex_Jrnll Wrapper which gives it as input to convex_Jrnll. ConvexJ:rnll computes
the convex hull and the final graph is printed out on the tty, or it could be redirected into a
file.

If you have an algorithm which takes input, like the shortest path algorithm from above,
you can't just run it in a pipeline like the previous example because the interactive mode
takes its input from stdin. You would do this:

% wrapper -ngi -go /tmp/rg random...graph 50
% wrapper -i -gi /tmp/rg shortest_path
The first Wrapper writes its graph to /tmp/rg rather than stdout, (which could have

also been accomplished with redirection) and the second Wrapper takes this graph as input.
This must be specified with -gi instead of redirection so that stdin is available for typed input.

45

The Wrapper is run in interactive mode, so you will be asked to type in the numbers of the
from and to nodes on the tty and also the waitclick number. The :final graph will then go out
on the stdout.

For more complex things, like testing, shell scripts are best. For example, suppose you
had an algorithm that, given a point set, :finds the number of triangles that can be made
with three of the points that don't contain any of the other points. You want to run this
many times to empirically determine the relationship between the number of points and the
number of empty triangles. You have written the algorithm so that it writes the number of
empty triangles to its stderr; exits with zero if successful and exits with one if it failed for
any reason. The following script will perform the tests for you:

#! /bin/csh -f

Usage: <script name> [number of points [number of iterations]]

Initialize number of points and iterations from command line
Default to fifty points and infinite iterations

if ($#argv > 0) then
set points = $1

else
set points = 50

end if

if ($#argv > 1) then
set iter_max = $2

else
set iter_max = -1

endif

set iter = 0

while (1)

Are we finished?
if ($iter_max > 0 && $iter >= $iter_max) break

Write out iteration number
© iter ++
echo -n $iter 11 - 11

Generate graph
wrapper -ngi -go /tmp/empty$$ random_graph $points

46

Run algorithm on graph
if ({~rapper -gi /tmp/empty$$ -ngo -e results.1 empty_triangles}) then

Print out iteration and results
echo $iter - 'cat results.1' empty triangles

Log results on end of results file and delete single result for next time
cat results.1 >>results
/bin/rm -f results.1

end if
end
Remove temp file
/bin/rm ~f /tmp/empty$$

47

8 Appendix D - File Format

Files are line-formatted, i.e., an entire line is read in at once when parsing, so only one
keyword can be present on a line. Keywords begin most lines and tell G.raphTool what to
do with the rest of the line. It is very important to type the commands in exactly the way
they are presented here. GraphTool can catch most errors but a single simple spacing error
can cause the rest of the file load to fail. The keywords and lines may appear in any order in
the file separated by any number of blank lines.

The very first line of the file must be:

int version...number

A number identifying the file format version.

8.0.1 Keywords

#include <string filename>

This command causes the file filename to be parsed in the same way as the current
file is being parsed. Additional headers are ignored and a warning is given if one is
found. The first included file's name is remembered and written to a saved file in lieu of
a header block so that standard, shared headers can be preserved automatically across
editing sessions.

-- <comment>

If the first two characters of a keyword are --, the line is ignored. Note that this
commenting only works at the keyword level; it is not possible to include free-form
cqmments. That means you can't insert comments in a block like #display or #graph.
However, nodes and edges are not keywords, so it is possible to insert comment lines
between lines defining nodes or edges.

#display

Introduces a display header block. The header is:

int window x (wx), int window y (wy), int window width (ww), int window height (wh)

Defines the canvas window.

double x_offset, double y_offset double x_scale, double y_scale

Defines the coordinate mapping from canvas to graph by:

Similarly for y.

int zoom..level

canvas_x ~ (int)((graph...x - x_of f set)/x_scale)

A power of two indicating the current zoom level.

48

double zoom....multx, zoom....multy

Scaling factors that control zooming.

int x_scroll, y__scroll

Offsets that control the position of the current graph.

int x_scrolLpos, y__scrolLpos, x__scroll..J.en, y__scrolLlen

Values controlling the current appearance of the scrollbars.

int node..radius

Defines the radius of the node circles in pixels.

The header values may not be on the same line as #display. They may be on any lines
thereafter. All values must be present.

#graph

Introduces a graph header block. The header is:

int directed

1 = Directed edges, 0 = undirected.

#nodes

Signifies that any non-blank, non-comment lines following this line should be treated as
node definitions. #nodes must be on a line by itself.

#edges

Similar to #nodes, but for edges.

8.0.2 Nodes and Edges

Input lines that do not have one of the previously described keywords are interpreted according
to the node/edge flag. The node/edge flag defaults to nodes.

A node is (must be on one line):

double x, double y, double weight, int pattern

The patterns are:

• -3 Hollow

• -2 Empty

• -1 Solid

• 0 17% Grey

• 1 20% Grey

• 2 25% Grey

49

• 3 50% Grey

• 4 75% Grey

• 5 80% Grey

• 6 83% Grey

• 7 Root Grey (essentially a different 50% grey)

The greys are actually just dot patterns of the given weight, so they will show up as
different levels of intensity of the foreground color. They will only actually be grey if
the foreground color is black.

An edge is (must be on one line):

int from....node..number, int to..node..number, double weight, int width, int
style

The width can be any number greater than or equal to zero. The styles are:

• -1 Solid

• 0 Dashed

• 1 Dotted

• 2 Dash-Dot

• 3 Dash-Dot-Dot

• 4 Long dashes

Nodes and edges are numbered automatically as they are read in, starting at one. There­
fore, the from and to node numbers in the edge lists must be set up as if the nodes were
numbered from one. When saving from GraphTool, this is done automatically.

8.0.3 An Example File

100
#display
20 20 1000 800
0.000000 799.000000 1.000000 -1.000000
1 1.000000 1.000000 0 0
0 0 1000 800
10
#graph
1

#nodes
302.000000 403.000000 1.000000 -3

50

440.000000 507.000000 1.000000 -3
527.000000 392.000000 1.000000 -3
615.000000 508.000000 1.000000 -3
737.000000 387.000000 1.000000 -3
619.000000 263.000000 1.000000 -3
432.000000 257.000000 1.000000 -3
213.000000 592.000000 1.000000 -3
836.000000 608.000000 1.000000 -3
827.000000 158.000000 1.000000 -3
201.000000 150.000000 1.000000 -3

#edges
1 2 1.000000 1 -1
2 3 1.000000 1 -1
3 4
4 5
5 6

6 3
3 7

1.000000
1.000000
1.000000
1.000000
1.000000

1
1
1
1
1

-1
-1
-1
-1
-1

7 1.000000 1 1 -1
11 8 1.000000 1 -1
8 9 1.000000 1 -1
9 10 1.000000 1 -1
10 11 1.000000 1 -1

51

