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A support vector regression model to predict nitrate-nitrogen isotopic 
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A B S T R A C T   

Nitrate is a prominent pollutant in surface and groundwater bodies worldwide. Isotopes in nitrate provide a 
powerful approach for tracing nitrate sources and transformations in waters. Given that analytical techniques for 
determining isotopic compositions are generally time-consuming, laborious and expensive, alternative methods 
are warranted to supplement and enhance existing approaches. Hence, we developed a support vector regression 
(SVR) model and explored its feasibility to predict nitrogen isotopic composition of nitrate (δ15N–NO3

− ) in a rural- 
urban river system in Southeastern China. A total of 16 easily obtained hydro-chemical variables were measured 
in the wet season (September 2019) and dry season (January 2020) and used to develop the SVR prediction 
model. The grading method utilized ~75% (35) of the samples for model building while the remaining 11 
samples assessed model performance. Principal component analysis (PCA) extracted 7 principal components for 
SVR model inputs as PCA reduces superfluous variables. We optimized tuning parameters in the SVR model using 
a grid search technique coupled with V-fold cross-validation. The optimized SVR model provided accurate 
δ15N–NO3

− predictions with a determination coefficient (R2) of 0.88, Nash-Sutcliffe (NS) of 0.87, and mean square 
error (MSE) of 0.53‰ in the testing step, and performed much better than the corresponding multivariate linear 
regression model (R2 

= 0.60, NS = 0.58 and MSE = 1.76‰) and general regression neural network model (R2 
=

0.66, NS = 0.65 and MSE = 1.45‰). Overall, the SVR model provides a potential indirect method to predict 
environmental isotope values for water quality management that will complement and enhance the interpre-
tation of direct measurements of δ15N–NO3

− .   

1. Introduction 

Nitrate (NO3
− ) contamination in surface waters induces deterioration 

of aquatic ecosystem health (e.g., eutrophication, harmful algal blooms, 
loss of aquatic biodiversity, and hypoxia/anoxia) as well as human 
health risks (e.g., stomach cancer, diabetes, thyroid disorders, miscar-
riage, and “blue baby” syndrome) (Burow et al., 2010; Ji et al., 2017b; 
Nestler et al., 2011; World Health Organization, 2011). Nitrate levels in 
surface waters are regulated by the interplay between allochthonous 
pollution sources, such as municipal sewage, livestock excreta, nitrogen 

fertilizer, soil nitrogen and atmospheric deposition, and nitrogen cycling 
processes including ammonia volatilization, nitrification, denitrification 
and plant/microbial uptake (Husic et al., 2020; Shang et al., 2020; Wang 
et al., 2020). Identification of the major pollution sources and trans-
formations of nitrate in surface waters is a primary objective for envi-
ronmental and water quality agencies to develop remediation strategies 
to address nitrate contamination. 

Measuring the isotopic composition in nitrate (δ15 N/δ18O–NO3) 
provides important information on nitrate sources and potential trans-
formations (Fadhullah et al., 2020; Hu et al., 2019; Kendall and 
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McDonnell, 1998; Xue et al., 2009). Merits of the isotope-based 
approach include less ancillary information requirements, high preci-
sion, and direct identification of pollution sources. Analyzing the iso-
topic composition of nitrate is an initial step in pollution source 
apportionment as it serves as an isotope-based source tracing method. 
An isotope ratio mass spectrometer (IRMS) is a necessary instrument for 
measuring stable isotopic compositions. However, IRMS is very expen-
sive to purchase and maintain, limiting its availability for many in-
stitutions. Additionally, sample pre-treatment techniques, including 
ion-exchange, cadmium-azide reduction and bacteria denitrifier, are 
highly technical, laborious and time-consuming further increasing 
analysis cost. Given these issues, stable isotope values are often difficult 
to acquire in sufficient quantities for complex field studies, especially in 
developing countries. Therefore, an economical and efficient secondary 
(indirect) method is warranted to predict environmental isotope values 
and supplement direct measurements of the stable isotopes in nitrate. 

Machine learning models are an emerging data-analysis/discovery 
method for addressing water resource applications, which employ arti-
ficial neural networks, adaptive neuro-fuzzy inference systems, extreme 
learning machines and support vector regression (SVR) models. Several 
studies document the potential of machine learning models for simu-
lating and predicting streamflow, rainfall, groundwater levels, sus-
pended sediment loads, evapotranspiration, dissolved oxygen content, 
biochemical oxygen demand, algal density and the isotopic composition 
of oxygen in water (δ18O–H2O) (e.g., Adnan et al., 2020; Banadkooki 
et al., 2020; Cerar et al., 2018; Diez-Sierra and del Jesus, 2020; Ji et al., 
2017a; Kim et al., 2020; Noori et al., 2015; Tikhamarine et al., 2020; 
Xiao et al., 2017; Yaseen et al., 2016; Yoon et al., 2011). For example, 
Cerar et al. (2018) investigated the performance of artificial neural 
networks for δ18O–H2O prediction in groundwater based on spatial 
characteristics of the watershed including elevation, distance from the 
sea and average annual precipitation. Their results demonstrated the 
efficacy of artificial neural network models to effectively predict 
δ18O–H2O values of groundwater. Despite the significant potential of 
machine learning models in the field of environmental isotope 
modeling, relevant studies assessing the application of machine learning 
models for δ15N–NO3

− value prediction are lacking. Hence, there is a 
compelling opportunity to test whether machine learning approaches 
can be effectively used to model/predict δ15N–NO3

− values using com-
mon and easily measured hydro-chemical variables as the input data. 

Among different machine learning models, SVR model has gained 
popularity due to its superior generalization and accurate prediction 
abilities. The main advantage of SVR is its use of a kernel trick to 
minimize prediction errors and model complexity simultaneously when 
coping with complex nonlinear associations (Raghavendra and Deka, 
2014). Furthermore, like other machine learning models, the SVR model 
is an input-output transformation, which can be structured without 
understanding the underlying mechanistic processes, leading to simple 
and practical model development. Additional merits of SVR models are 
(1) excellent performance using relatively small data sets, and (2) pre-
vention of over-fitting the model, which is a critical shortcoming of 
artificial neural networks (Ji and Lu, 2018). 

In view of the above considerations, the main objective of this study 
was to develop a machine learning model (i.e., SVR model) for pre-
dicting δ15N–NO3

− values based on common and easily measured hydro- 
chemical variables. We believe this study is the first attempt to examine 
the potential feasibility of machine learning models for prediction of 
δ15N–NO3

− values in surface waters. We expect that successful SVR 
models will serve as an efficient tool for accurate, rapid and inexpensive 
prediction of environmental isotopes that can supplement and enhance 
the interpretation of directly measured δ15N–NO3

− values in water 
quality studies. 

2. Study area and data collection 

2.1. Study area 

The Wen-Rui Tang River watershed (27◦51’ – 28◦02′ N, 120◦27′– 
120◦46′ E) is located in Wenzhou, Zhejiang province of Southeastern 
China and occupies a total drainage area of 740 km2 (Fig. 1). The Wen- 
Rui Tang River is a major river system across a rural-suburban-urban 
interface in Wenzhou, where is a rapidly developing city with a popu-
lation of ~9.2 million. The mainstream and total lengths of the Wen-Rui 
Tang River network are 33.8 km and ~1200 km, respectively. Climate is 
subtropical monsoon with mild, dry winters and hot, humid summers. 
Annual average temperature is ~18 ◦C and annual average rainfall is 
~1800 mm, with 70% of precipitation occurring between April and 
September (Wang et al., 2019). The Wen-Rui Tang River is a typical 
coastal plain river network in Southeast China characterized by nearly 
stagnant water flows for long periods of the year (Wang et al., 2018). 
When floodgates to the adjacent Ou River are open during heavy rainfall 
events, the river ultimately flows into the East China Sea. 

2.2. Data collection 

Two synoptic water quality surveys collected water samples from 23 
sites across the Wen-Rui Tang River watershed under contrasting hy-
drological conditions. The first sampling campaign was performed 
during the wet season (September 2019) and the second in the dry 
season (January 2020). In total, 46 samples were collected from a 30-cm 
depth in the center of a well-mixed channel segment. 

Several hydro-chemical variables (i.e., water temperature (T), dis-
solved oxygen (DO), electrical conductivity (EC), turbidity (TUR), 
phycocyanin of cyanobacteria (PC), chlorophyll a (Chla)) were deter-
mined in situ using a portable multi-parameter water-quality sonde (YSI- 
EXO2, Xylem, USA). Nutrient (total nitrogen (TN), ammonium (NH4

+), 
nitrate (NO3

− ), nitrite (NO2
− ), total phosphorus (TP), phosphate (PO4

3− )) 
concentrations were measured with a continuous-flow analyzer (Auto-
analyser-3, Seal, Germany); chloride (Cl− ) was analyzed using ion 
chromatography (Compact IC plus 882, Metrohm, Switzerland); and 
total organic carbon (TOC), total carbon (TC) and total inorganic carbon 
(TIC) were determined with a TOC analyzer (TOC-L, Shimadzu, Japan). 
Detection limits for TN/TP, NH4

+/NO3
− /NO2

− /PO4
3− , Cl− , and TOC/TC/IC 

were ~0.02 mg N or P/L, ~0.003 mg N or P/L, ~0.1 mg Cl/L and ~0.1 
mg C/L, respectively. 

The δ15N–NO3
− values were analyzed using the bacteria denitrifier 

method (Sigman et al., 2001; Casciotti et al., 2002) at the Chinese 
Academy of Agricultural Sciences (Beijing, China). Briefly, a denitrify-
ing bacteria Pseudomonas aureofaciens (ATCC 13985, United States) 
transformed nitrate to gaseous nitrous oxide (N2O) for detection of 
15N–N2O using a continuous-flow isotope ratio mass spectrometer (Delta 
V, Thermo Fisher Scientific). The δ15N–NO3

− values are expressed in 
parts per thousand (‰) relative to atmospheric N2 (Kendall et al., 2007) 
and have an analytical precision of ±0.2‰. 

3. Model development 

3.1. Data pre-processing 

To calibrate and evaluate model efficacy, water samples were 
divided into training and testing data sets. The training data set was used 
for model construction, whereas the validation of model performance 
utilized the testing data set. The training samples should provide 
representative information about the sources of variability that are 
present in unknown samples across the watershed. Herein, we used a 
grading method to select representative training and testing samples as 
follows: (1) all samples were ranked based on δ15N–NO3

− values; (2) for 
every four samples, the first three samples were extracted into the 
training data set and the last sample was assigned to the testing data set; 
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and (3) the training and testing data sets used 75% and 25% of available 
samples, respectively. 

Data normalization was performed to eliminate dimensional differ-
ences and transform raw data into a common scale, without distorting 
differences in the ranges of values or losing information. In this study, 
we employed z-score normalization to transform on all variables inde-
pendently (Chen et al., 2020). The mathematical formula for z-score 

normalization is: 

xn =
x − xmean

xSD
(1)  

where, xn is the normalized value; x is the original value; and xmean and 
xSD are the mean and standard deviation of the original variables. 

Fig. 1. Location of sampling sites in the Wen-Rui Tang River watershed.  
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3.2. Principal component analysis 

The 16 measured hydro-chemical parameters were taken as potential 
input variables given their direct or indirect effect on 15N values in 
aquatic ecosystems. When using a high number of input variables, the 
occurrence of irrelevant, redundant and noisy variables coupled with 
multicollinearity among variables may weaken model performance. 
Therefore, it is necessary to first extract key model input variables. 

Principal component analysis (PCA) is a multivariate statistical 
technique extensively applied for data reduction in environmental and 
hydro-chemical studies. It gives information on the most meaningful 
variables, which describe the interpretation of the whole data set, 
summarize the statistical correlation among different variables with 
little loss of the original information (Helena et al., 2000). PCA is an 
objective method for calculating indices so that the variations in the data 
set are accounted by a new set of uncorrelated variables called principal 
components (Li et al., 2018; Sarbu and Pop, 2005). Principal compo-
nents are originated from linear combinations of the original variables. 
Typically, the first principal component can explain most of the varia-
tions while the last principal component is responsible for the least of 
variations in all original variables. 

3.3. Support vector regression model 

Support vector machine (SVM) models, developed on the basis of 
statistical learning theory, were widely used for classification and 
regression problems (Mohammadpour et al., 2015). SVM models include 
support vector classification (SVC) models and SVR models. The basic 
theory of SVR model is to map the original data points from the input 
space into a higher or even infinite-dimensional feature of space where 
an optimal separating hyperplane is built (Lin et al., 2008). The distance 
to all data points is minimum from the constructed separating hyper-
plane. Numerous studies report on the full development and expression 
of SVR models (Raghavendra and Deka, 2014; Vapnik, 1998). Therefore, 
only a brief explanation of the SVR is provided below along with a 
schematic diagram in SVR (Fig. S1). 

For a training data set {(xi, yi)|i = 1, 2, …, n}, where xi ∈ RD is a D- 
dimensional real input vector, yi ∈ R is the corresponding target value, 
and n is the total number of data patterns, the regression function of SVR 
model is expressed as follows: 

f (x)=wT ⋅φ(x) + b (2)  

where w ∈ RD is a weight vector, T stands for the transpose operator. b is 
a bias, φ is a nonlinear transfer function mapping the input vectors into a 
high dimensional feature space. The parameters w and b, which define 
the location of the separating hyperplane, can be derived by minimizing 
the regularized risk function as follows: 

Minimize :
1
2
wT ⋅ w + C

∑n

i=1

(
ξi + ξ*

i

)
(3) 

Subject to 

yi − wT ⋅φ(xi) − b ≤ ε + ξi

wT ⋅φ(xi) + b − yi ≤ ε + ξ*
i

ξi ≥ 0, ξ*
i ≥ 0, i = 1, 2...., n  

where C stands for the regularization parameter, ε (Epsilon) is error 
tolerance, and ξi and ξ*

i are slack variables. Minimizing Eq. (3) is a 
constrained optimization problem. Introducing a dual set of Lagrange 
multiplier i.e., αi and α*

i allows the optimization problem to be solved by 
maximizing the quadratic programming algorithm as follows: 

∑n

i=1
yi
(
αi − α*

i

)
− ε

∑n

i=1

(
αi +α*

i

)
−

1
2
∑n

i,j=1

(
αi − α*

i

)(
αj − α*

j

)
φ(xi)

T ⋅φ
(
xj
)

(4) 

Subject to 

∑n

i=1

(
αi − α*

i

)
= 0

0 ≤ αi ≤ C

0 ≤ α*
i ≤ C, i = 1, 2,…, n 

The solution to Eq. (4) is unique and optimal. Subsequent to the 
determination of Lagrange multipliers in Eq. (4), the parameters w and b 
in support vector machine regression function can be calculated under 
the Karush-Kuhn-Tucker optimality condition, where w =

∑n
i=1(αi −

α*
i )φ(xi). Besides, the inner product φ(xi)

T⋅φ(x) can be replaced by the 
so-called kernel function K(xi, x) under Mercer’s condition. Therefore, 
the final form of SVR function can be expressed as follows: 

f (x)=
∑n

i=1

(
αi − α*

i

)
K(xi, x) + b (5) 

It follows from this description that the kernel function plays a 
crucial role in the SVR algorithm. There are four options, namely 
polynomial, sigmoid, linear and radial basis function (RBF), that can be 
utilized as the SVR model kernel function. In this study, the RBF kernel 
function was chosen for the following reasons: (1) unlike the linear 
kernel, RBF is capable of modeling nonlinear relationships by mapping 
data points from the input space into a high dimensional feature space in 
a nonlinear fashion; (2) RBF requires fewer adjustable parameters 
compared to polynomial and sigmoid kernels, making it simple and 
practical (Keerthi and Lin, 2003); and (3) the superior performance of 
RBF has been demonstrated in several studies (Dibike et al., 2001; 
Keerthi and Lin, 2003). The kernel function RBF is defined as: 

K(xi, x) = exp
(
− g‖xi − x‖2) (6)  

where g is the adjustable kernel parameter. 

3.4. Support vector regression model parameter optimization 

It is important to note that the performance of SVR models is strongly 
dependent on the RBF kernel parameter g in combination with the 
regularization parameter C. The parameter g defines the width of the 
kernel, which regulates the amplitude of the kernel function and, 
thereby, the generalization ability of the model. The parameter C reg-
ulates the trade-off between maximizing the margin and minimizing 
training errors. A minimal C value induces insufficient fitting of the 
training data, while a large C value gives rise to the algorithm to over-fit 
the training data (Wang et al., 2007). 

This study utilized a grid search technique coupled with V-fold cross- 
validation to calculate the optimal C and g values (Hsu et al., 2007). For 
V-fold cross-validation, data were randomly partitioned into five 
non-overlapping subsets, each containing one-fifth of the data. Each 
subset served as the testing data for models trained on the other 
four-fifths of the data, resulting in five different pairs of training and 
testing data sets, with each observation appearing in one testing set and 
the four training sets not paired with that testing set. Therefore, the 
V-fold cross-validation procedure limits the over-training problem. The 
grid search algorithm is an unguided method and the mean square error 
(MSE) value is often used as a criterion to tune the parameters C and g. 
Grid search algorithm divides the search scope of the parameters to be 
optimized into grids and traverses all the grid points to search the 
optimal value. 

3.5. Model performance assessment 

Performance of the optimized δ15N–NO3
− prediction model was 

evaluated using three commonly used performance metrics: determi-
nation coefficient (R2), Nash-Sutcliffe model efficiency (NS) and mean 
square error (MSE). These indexes were computed as: 
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R2 =

⎛

⎜
⎜
⎝

∑n

i=1

(
Pi − P

)(
Oi − O

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Pi − P

)2 ∑n

i=1

(
Oi − O

)2
√

⎞

⎟
⎟
⎠

2

(7)  

NS= 1 −

∑n

i=1
(Oi − Pi)

2

∑n

i=1

(
Oi − O

)2 (8)  

MSE =
1
n
∑n

i=1
(Oi − Pi)

2 (9)  

where n is the total number of data; Oi and Pi denote the measured and 
predicted δ15N–NO3

− values (‰), respectively; and O‾ and P‾ represent 
the mean of measured and predicted δ15N–NO3

− values (‰), 
respectively. 

The R2 represents the square of the correlation between the predicted 
and observed values (Kim et al., 2020). The NS is a measure of the ability 
of the model to predict observations (Shoaib et al., 2016). According to 
Shu and Ouarda (2008), model accuracy can be evaluated as very good 
when NS > 0.8. The MSE measures the average error associated with the 
model (Legates and McCabe, 1999). In sum, R2 = 1, NS = 1 and MSE =
0‰ indicate perfect model performance. 

3.6. Software 

The correlation test figure was generated using the corrplot package 
in R (Ver. 3.0.2, R Core Team; https://CRAN.R-project.org/package=c 
orrplot). Multivariate linear regression (MLR) model and z-score 
normalization were performed using SPSS (Ver. 17.0, SPSS Inc., Chi-
cago, USA). PCA and general regression neural network (GRNN) 
modeling were performed using MATLAB (Ver. 2018b; MathWorks, 
Natick, USA). SVR modeling was conducted using the LIBSVM toolbox 
(Chang and Lin, 2011) working in MATLAB environment. 

4. Application and results 

4.1. Training and testing data set partitioning 

The grading method selected 35 samples to establish the model while 
the remaining 11 samples were used as testing data to assess model 
performance. Basic statistics for the target variable (δ15N–NO3

− ) and 
hydro-chemical variables in training and testing data sets are provided 
in Table 1. The range (− 2.38 ‒ 13.37‰) and coefficient of variation (CV 
= 46.4%) for δ15N–NO3

− in the training data set was broad, and 
encompassed that of the testing data set (range = 2.22–9.97‰, CV =
32.6%). 

4.2. Input variable reduction 

This study used 16 hydro-chemical variables to predict nitrate- 
nitrogen isotopic composition in surface waters of the Wen-Rui Tang 
River network. Spearman rank correlation analysis among the different 
hydro-chemical variables examined the linear dependence between 
variables (Fig. 2). There were strong correlations between several water 
quality parameters. For instance, correlation coefficients (r values) be-
tween TP and PO4

3− , Cl− and EC, and PC and Chla were 0.90, 0.95 and 
0.90, respectively; while correlation coefficients among carbonaceous 
components (e.g., TOC, TC, IC) were greater than 0.85. These results 
revealed that several hydro-chemical variables contained collinear and 
redundant information, which often leads to performance degradation 
of the calibrated models. 

To eliminate superfluous inputs, we performed PCA on the original 
variables (16 hydro-chemical variables) to extract the useful and 

independent principal components. We performed a Kaiser-Meyer-Olkin 
analysis to determine the suitability of the data for PCA analysis. Kaiser- 
Meyer-Olkin analysis is a measure of sampling adequacy that indicates 
the proportion of common variance, i.e., variance caused by the un-
derlying factors. High values (≥0.6) generally suggest that PCA may be 
useful, which was the case in this study: Kaiser-Meyer-Olkin = 0.60. 
Further, Bartlett’s sphericity test confirmed that the data distribution 
was suitable for PCA owing to a p-value close to zero (≤0.01). Figure S2 
depicts the changing trend for cumulative percent variance with an 
increasing number of principal components. The percent of cumula-
tively explained total variance values increased quickly as the number of 
principal components increased from 1 to 7, which was ascribed to the 
inclusion of useful variables, then held a relatively stable level as 
additional principal components were added. Herein, the scores of first 
seven principal components (termed PC1, PC2, …, PC7) which explained 
> 95% of the total variance were selected as the input variables to 
construct the SVR model. 

4.3. Optimization of SVR tuning parameters 

Optimum tuning parameters are essential for proper SVR calibration. 
Thus, prior to developing the SVR model, we optimized the regulariza-
tion parameter C and RBF kernel parameter g using a grid search tech-
nique coupled with V-fold cross-validation. The accuracy of grid search 
optimization depends on the parameter range in combination with the 
selected interval size (Singh et al., 2011). Commonly, higher efficiencies 
for obtaining an optimal solution are achieved by increasing the 
parameter range and decreasing the step size (Wang et al., 2007). 
Therefore, both the C and g parameters were evaluated widely within 

Table 1 
Statistical summary of δ15N–NO3

− and hydro-chemical variables in the training 
and testing data sets.   

Mean SD Minimum Maximum CV (%) 

Training data set (n = 35) 
δ15N–NO3

− (‰) 6.44 2.99 − 2.38 13.37 46.4 
T (◦C) 19.3 5.9 12.5 27.7 30.7 
DO (mg/L) 6.5 3.0 1.7 12.2 46.0 
TN (mg/L) 3.11 1.60 0.34 7.37 51.6 
NH4

+ (mg/L) 1.76 1.67 0.07 6.50 95.1 
NO3

− (mg/L) 1.25 0.80 <0.01 2.75 64.0 
NO2

− (mg/L) 0.08 0.05 <0.01 0.19 69.2 
TP (mg/L) 0.12 0.09 0.03 0.47 74.3 
PO4

3− (mg/L) 0.10 0.10 <0.01 0.44 98.9 
TOC (mg/L) 5.2 2.5 2.2 12.4 47.1 
TC (mg/L) 20.1 10.9 5.9 59.7 53.9 
TIC (mg/L) 14.9 8.6 3.1 47.4 57.7 
Cl− (mg/L) 102.3 91.7 5.1 283.3 89.6 
EC (ms/cm) 0.54 0.41 0.03 1.50 76.0 
TUR (NTU) 25.3 24.1 1.6 85.6 95.0 
PC (μg/L) 0.5 0.6 0.1 2.5 114.0 
Chla (μg/L) 11.0 12.0 0.3 50.9 109.2 
Testing data set (n = 11) 
δ15N–NO3

− (‰) 6.59 2.15 2.22 9.97 32.6 
T (◦C) 22.4 5.3 13.8 26.6 23.5 
DO (mg/L) 6.9 1.9 3.6 9.8 28.1 
TN (mg/L) 1.82 1.43 0.35 4.50 78.5 
NH4

+ (mg/L) 1.10 1.46 0.06 4.97 132.4 
NO3

− (mg/L) 0.89 0.67 <0.01 2.20 75.1 
NO2

− (mg/L) 0.07 0.05 0.01 0.15 73.5 
TP (mg/L) 0.09 0.10 0.03 0.39 109.2 
PO4

3− (mg/L) 0.08 0.10 0.01 0.37 125.5 
TOC (mg/L) 4.7 2.4 2.0 9.8 50.8 
TC (mg/L) 17.7 9.4 5.9 34.8 53.0 
TIC (mg/L) 13.0 7.2 3.4 25.1 55.0 
Cl− (mg/L) 72.8 82.9 3.4 252.1 113.8 
EC (ms/cm) 0.35 0.31 0.04 0.95 88.3 
TUR (NTU) 23.2 17.9 2.5 52.3 77.5 
PC (μg/L) 0.6 1.1 0.2 4.0 174.4 
Chla (μg/L) 13.3 24.2 0.4 85.1 182.2 

SD standard deviation, CV coefficient of variation. 
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the region of 2− 10 to 210, and the step size was set to 20.5. The pairwise 
parameters with the lowest MSE for cross-validation values were 
considered as the optimum combination. Fig. 3 shows a 
three-dimensional view of optimization results for C and g by the grid 
search method with V-fold cross-validation. The optimal values were C 
= 5.6569 and g = 0.0625. 

4.4. Performance of the SVR model 

We used the optimum combination for the C and g parameters to 
train the SVR model for prediction of δ15N–NO3

− values (Fig. 4). The 
optimized SVR model had outstanding efficacy for predicting δ15N–NO3

−

values with regard to the R2 (0.88), NS (0.87) and MSE (0.53‰) metrics. 
Observed and predicted values were fully superposed and the differ-
ences between predicted and observed values were small, suggesting 

Fig. 2. Spearman rank correlation coefficients for hydro-chemical variables.  

Fig. 3. Three-dimensional representation of support vector regression (SVR) model parameter optimization.  
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strong efficacy for the SVR model prediction of δ15N–NO3
− values in 

surface waters of the Wen-Rui Tang River network. 

4.5. Comparison of SVR, MLR and GRNN 

The MLR model, which assumes the dependent variables are linearly 
dependent on two or more independent variables (Abrougui et al., 
2019), often serves as a reference to assess other nonlinear models (like 
the SVR model used in this study). The MLR model (regression kind: 
Enter) was constructed as in Eq. (10) to predict δ15N–NO3

− values in the 
Wen-Rui Tang River network.  

where * refers to p < 0.05, ** refers to p < 0.01. 
Fig. 5a presents the observed and predicted δ15N–NO3

− values ob-
tained from the MLR model during the testing stage. The performance of 
the established MLR model was unsatisfactory for δ15N–NO3

− prediction 
purposes in terms of R2 (0.60), NS (0.58) and MSE (1.76‰). Observed 
and predicted values were not well superposed and the differences be-
tween predicted and observed values were often large. These results 
revealed the MLR model failed to effectively predict the isotope values 
for the riverine network, largely due to its linear structure. The SVR 
model was far superior to MLR model in predicting δ15N–NO3

− values in 
terms of R2 (0.60 vs. 0.88), NS (0.58 vs. 0.87) and MSE (1.76‰ vs. 
0.53‰). GRNN is a common artificial neural network which has wide 
applications in various linear and nonlinear regression problems. Here, 
the GRNN was trained ten times and the best network was retained for 
isotopic prediction. The smoothing factor was evaluated within the 
range of 0.1–2 at the step size of 0.1 and which was determined as 1.5. 
Finally, the GRNN model was obtained with R2, NS and MSE in testing 
data set of 0.66, 0.65 and 1.45‰, respectively (Fig. 5b). Obviously, 
GRNN could provide better predictions than the MLR model. However, 
the performance of GRNN was much poorer than that of SVR, which was 
not available for prediction purpose. Overall the results demonstrated 
the superiority of SVR model compared to the MLR and GRNN models in 
the prediction of δ15N–NO3

− values. 

5. Discussion 

Machine learning models do not require any complex or explicit 
description of the underlying hydrologic/environmental processes in a 
mathematical form (Ahmed et al., 2019). Thus, they are useful for 
dealing with prediction problems in many scientific disciplines where 
the main concern is accurate predictions and not necessarily under-
standing the underlying mechanistic relationships. Although extensively 
employed to predict water quality parameters including DO 
(Antanasijević et al., 2013), chemical oxygen demand (Kisi and Parmar, 
2016), biochemical oxygen demand (Kim et al., 2020), and chlorophyll 

Fig. 4. Observed versus predicted δ15N–NO3
− values using SVR model in 

testing period. 

Fig. 5. Observed versus predicted δ15N–NO3
− values using (a) multivariate linear regression (MLR) model and (b) general regression neutral network (GRNN) model 

in testing period. 

δ15N − NO3
− = 0.009 − 0.136*PC1 + 0.324**PC2 − 0.001PC3 − 0.074PC4 + 0.226PC5

+ 0.204PC6 + 0.249PC7
(10)   
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(Mamun et al., 2020), machine learning models are not yet used to 
predict environmental stable isotopes based on easily measured and 
low-cost hydro-chemical variables. Hence, this study fills an important 
gap in advancing machine learning techniques to studies of environ-
mental stable isotopes. 

Analyzing the composition of environmental isotopes using complex 
sample pre-treatment techniques (e.g., bacteria denitrifier) coupled with 
IRMS in the laboratory is not only expensive, but also time and labor 
consuming, which hinders its widespread application. Although the 
machine learning models do not replace experimental analysis, this 
study demonstrates that nitrate isotopes can be accurately predicted by 
more rapid, cost-effective, and easier to measure hydro-chemical vari-
ables via the alternative machine learning model approach. Thus, after 
appropriate data acquisition for calibration and validation, machine 
learning models can supplement and enhance the interpretation of 
measured isotope data. 

The aquatic ecosystems are complex biogeochemical systems con-
taining numerous chemical, physical and biological components expe-
riencing a wide range of integrated transformation processes. Creating 
an association between water quality parameters and stable isotopes in 
water bodies is thereby a complex nonlinear problem, which is beyond 
the capability of linear models, such as MLR models. Thus, the SVR 
model outperformed the MLR model for δ15N–NO3

− prediction because of 
its ability to model complicated nonlinear relationships. Moreover, one 
of the most important characteristics of SVR is its ability to generalize 
well from a limited amount of training samples such as 35 samples used 
here. Compared to alternative methods such as artificial neural networks 
(like the GRNN model used here), SVR can yield comparable accuracy 
using a much smaller training sample size (Mountrakis et al., 2011). This 
is in line with the “support vector” concept that relies only on a few data 
points to define the position of the decision surface (Huang and Zhao, 
2018; Kuter, 2021; Mountrakis et al., 2011). In light of this research, the 
SVR model had the ability to accurately modeling δ15N–NO3

− values in 
surface water relying on commonly measured hydro-chemical variables, 
and thereby serves as an indirect, rapid, and convenient tool for envi-
ronmental stable isotope prediction. 

We recommend researchers and water resource managers investigate 
the relationship between stable isotopic composition and water quality 
parameters using the SVR modeling approach established here, espe-
cially in regions where isotope compositions are difficult to obtain. As 
more and more waterbodies have high-frequency water quality moni-
toring programs in real time, many model inputs are easily obtained for 
investigation as input data. The SVR model based on readily available 
input variables enables us to predict δ15N–NO3

− values with high spatial 
and temporal resolution. This is of considerable significance and can aid 
full interpretation of nitrate source dynamics and transformations. Of 
course, sufficient δ15N–NO3

− data must be initially collected to develop 
and confirm model results as various systems are likely to have site- 
specific attributes. SVR models can be used to generate hypotheses 
concerning spatial/temporal patterns in isotopes that can be subse-
quently tested with direct isotope measurements. Models can further aid 
in optimizing the collection of water sample locations within watersheds 
for isotope analysis to maximize the effectiveness of the data acquisition 
strategy. Furthermore, this study demonstrates the potential efficacy for 
prediction of other environmental stable isotopes (e.g., δ18O–H2O, δ13C, 
and δ11B) in waterbodies such as rivers, lakes, reservoirs, groundwater 
and oceans. 

While excellent model performance was achieved in this study, some 
additional aspects need to be further investigated in future research. For 
instance, only 16 hydro-chemical variables were used as inputs in this 
study. Therefore, it is warranted to investigate other potentially 
important variables, such as hydrology (e.g., flow velocity and hydraulic 
retention time), microbial communities (e.g., species richness, total 
number of species, species evenness, and distribution of species), 
meteorology (e.g., precipitation, evaporation, relative humidity, water 
vapor pressure, total solar radiation, temperature and wind speed), and 

even social economic parameters (e.g., gross domestic product, munic-
ipal sewage generation, and population density). In subsequent studies, 
ancillary data should be collected to improve upon the conclusions 
drawn from this study. Additionally, due to the uncertainties associated 
with model parameters, structure and input data, methods to quantify 
the prediction uncertainty would be beneficial for data interpretation 
(Noori et al., 2015). Notably, the SVR modeling approach for δ15N–NO3

−

requires extensive future testing across a wide range of environmental 
conditions to examine the robustness of the approach. Finally, it is ad-
vantageous to apply the model output to the interpretation of mecha-
nistic associations with the various input variables to provide a 
process-level understanding of the model output. Hence, a major 
benefit of the model predictions will be to supplement and enhance the 
interpretation of limited stable isotope measurements within complex 
real-world settings. 

6. Conclusions 

This study is the first of its kind to investigate the efficacy of SVR 
model to predict δ15N–NO3

− values in surface waters using basic hydro- 
chemical variables. The SVR model exhibited very good performances 
metrics for R2 (0.88), NS (0.87), and MSE (0.53‰) using a testing data 
set. The overall results demonstrated the efficacy of machine learning 
models, as an indirect method, for estimating nitrate isotopic composi-
tions in surface waters. Machine learning models are a simple, low cost 
and time saving approach for estimating environment isotopes from 
commonly measured water quality parameters. This methodology sup-
plements and enhances measured δ15N–NO3

− values to generate a better 
understanding of nitrate sources and transformation processes, espe-
cially in developing countries where the high-cost of stable isotope 
analysis precludes extensive isotope investigations. Future studies 
should target validation of this machine learning approach to other 
catchments across the globe, investigate additional water quality vari-
ables (as dependent and independent variable), incorporate model un-
certainty metrics and investigate process-level interpretation of model 
results. 
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