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Abstract

Design and Optimization of Wireless-Sensor Networks for Real-Time Monitoring in the
Sierra Nevada and Sacramento-San Joaquin Delta

by

Carlos A. Oroza

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Professor Steven D. Glaser, Chair

California relies extensively on two pieces of natural infrastructure for water storage and
conveyance: the Sierra Nevada mountains and the Sacramento-San Joaquin Delta. The
mountains act as a natural reservoir, storing winter precipitation throughout the year and
slowly releasing it during the summer when demand is high. Snowmelt is then routed
through the Sacramento-San Joaquin Delta to the state water project, which distributes
water throughout California. Despite the importance of these natural environments for the
state’s water resources, the in-situ infrastructure for water monitoring is limited. The ex-
isting distribution of real-time snow-sensors is present only in flat, low-elevation regions,
which does not adequately capture the spatial variability of snow depth in complex terrain.
To address this, the state relies on monthly synoptic snow surveys, which require trained
surveyors to manually measure the snow depth at locations across the Sierra Nevada. This
process provides dense in-situ data but is labor intensive and temporally sparse. It also does
not capture other important variables, such as soil moisture and radiative forcing, which are
necessary for next-generation hydrologic modeling. In the Delta, in-situ measurements are
limited to Eulerian sensors, which measure the rate of flow going past a point on shore, but
are unable to resolve finer resolution flow fields, or measure properties of the water, such as
temperature, turbidity, and salinity. This dissertation explores problems related to the design
and optimization of wireless in-situ sensor networks for monitoring the water balance in the
Sierra Nevada and flow fields in the Sacramento-San Joaquin Delta. Topics include: optimiz-
ing wireless snow-sensor placements using LIDAR data and machine learning, constructing
reliable wireless mesh networks in complex terrain, estimating the spatial variability of soil
moisture in montane regions from in-situ sensors, and the design and controller optimization
of wireless in-situ sensors in the Sacramento-San Joaquin Delta.
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Chapter 1

Introduction

1.1 Background

The Sierra Nevada Mountains and the Sacramento-San Joaquin Delta represent important
pieces of natural infrastructure for delivering California’s water resources. Like many western
states, a substantial fraction of California’s annual water supply is derived from snowpack in
the Sierras melting in the spring [72]. The runoff is then routed through the Sacramento-San
Joaquin Delta, providing water to more than 25 million people and irrigating crops valued at
more than $30 billion per year [31]. Water management in these regions is difficult because
multiple objectives must be balanced. For instance, the Delta is used for water conveyance,
recreation, and provides a habitat for many native species of fish. The existing temperature
and salinity gradients are variable, and are maintained by the interaction between spring
snowmelt runoff and saltwater intrusion from the San Francisco Bay. The Delta levees
protect a large amount of infrastructure, so large-scale failures are costly: the Department of
Water Resources estimates that the costs associated with the 2004 Jones Tract failure could
exceed 44 million dollars [73].

Improving water-resources management requires large-scale, real-time measurements of
water resources in both regions. In the Sierras, real-time, in-situ measurements are presently
limited to snow pillows which only sample flat, open terrain, but the distribution of snow
cover can vary considerably as a function of topographic features. Synoptic snow surveys
provide in-situ snow-depth measurements at representative snow courses but are labor in-
tensive and conducted only at limited (monthly) time intervals (Figure 1.1). In the Delta,
measurements are limited to Eulerian sensors at fixed locations, which only measure the flow
past a given point. To address these limitations, wireless-sensor networks (WSNs) could po-
tentially enable real-time monitoring of spatially distributed phenomena at a scale that was
previously not feasible. This thesis explores topics related to the design and optimization
of two such systems: wireless snow- and soil-moisture sensor networks in the Sierra Nevada
and a network of robotic Lagrangian (moving measurement location) sensors for the Delta.

In the Sierras, the wireless snow-sensor networks provide in-situ measurements across
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Figure 1.1: Conducting a synoptic snow survey. Measurements are taken by personnel at
representative regions across the landscape.
Image source: USDA (flickr.com/photos/usdagov)

the range of independent variables affecting snow-depth variability, such as elevation, aspect,
slope, and canopy coverage. A typical network consists of three components: sensor stations,
a base station, and repeater nodes. Sensors measure snow depth, temperature, relative
humidity, soil moisture/matric potential, and solar radiation. Repeaters route data from the
sensors to a base station, which uploads real-time data to a server at UC Berkeley every
fifteen minutes (Figure 1.2).

For sensing in the Delta, the Lagrangian sensor system is comprised of the robotic sen-
sors, as well as the communication and visualization infrastructure required to transmit and
display the data remotely in real time. Each robotic sensor consists of a cylindrical hull which
contains the batteries, communications equipment, GPS, and onboard processors. Onboard
sensors for salinity, temperature and depth extend from the base of the vehicle. The full
backend system consists of an integrated computational support tool and platform linked to
the floating sensors. Data are also sent back to a central server using the Global System for
Mobile Communications (GSM) cell phone data network. The system enables the data from
the sensors to be visualized in real time, giving the end-user live access to the sensor data.

The core contributions of this thesis are fourfold: (i) A sensor placement strategy for
wireless snow observatories is presented and evaluated in three one-square-kilometer catch-
ments. (ii) A data repeater placement strategy for mesh networks in complex terrain is
evaluated at the Southern Sierra Critical Zone Observatory (SSCZO). (iii) The long-term
accuracy of soil moisture estimated from in-situ sensors is evaluated using a six-year record
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Snow sensor node Repeater nodeBase station Wireless mesh con�guration

Figure 1.2: Components of a wireless snow-sensor network. A base station transmits real-
time data using a satellite or cellular uplink. Snow-sensor nodes measure snow depth using
ultrasonic sensors. Signal repeaters are placed throughout the region to link the sensor nodes
to the base station. A multi-hop wireless mesh network is formed between all elements using
802.15.4e low-power radios.

at the Southern Sierra Critical Zone Observatory on the upper King’s River. (iv) A design
framework for in-situ Lagrangian sensing in the Delta is presented.

1.2 Document organization

The remaining chapters are organized as follows: Chapters 2-4 cover topics related to the
optimization of sensor networks for monitoring hydrologic processes in the Sierra Nevada
Mountains; Chapter 5 presents a design framework for an autonomous in-situ sensor network
in the Sacramento-San Joaquin Delta; and Chapter 6 summarizes the contributions of the
thesis and presents a number of opportunities for future research. A brief summary of each
chapter is provided below:

Chapter 2 evaluates a sensor placement strategy for wireless snow observatories. Prior
studies have shown that the spatial distribution of snow depth is controlled by a number
of independent variables such as elevation, slope, aspect, and distribution of vegetation.
Data on each of these variables is increasingly available at high resolution from airborne
laser scanning of remote regions (LIDAR) or aerial imagery (e.g. Google Earth). The chap-
ter describes a means of utilizing these datasets in order to optimize the distribution of
snow-sensors prior to field deployment. First, sensor locations that are representative of the
distribution of independent variables (slope, aspect, elevation, and canopy) are identified us-
ing a Gaussian mixture model. Second, the spatial variability and uncertainty of snow depth
is estimated using a Gaussian process. Sensors are then added to the highest uncertainty
regions in order to minimize the error of the estimator. This process is evaluated in three
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one-square-kilometer catchments in the Southern Sierra, Tuolumne Basin, and Merced Basin
in the Sierra Nevada.

Chapter 3 presents a data repeater placement strategy for wireless snow observatories.
Once wireless snow-sensors are in place (as described in Chapter 2), repeaters must be placed
throughout the WSN observatory to form a wireless mesh network that routes sensor data
back to a real-time data uplink (satellite or cellular modem). One of the central challenges
of establishing new wireless mesh networks in complex terrain is the difficulty of designing
network topologies to ensure real-time data are delivered year-round. Given the large set
of potential placements and complex terrain, it is difficult for field teams to determine how
best to place a limited set of data repeater nodes to ensure a redundant topology is formed.
The chapter outlines a strategy by which LIDAR data can be combined with packet delivery
ratio (PDR) measurements in order to guide the selection of repeater placements during field
deployment.

The snow-sensor networks described in Chapters 2 and 3 are typically designed to cap-
ture soil-moisture variability as well as snow-depth variability. In Chapter 4, the long-term
accuracy of soil moisture estimation from in-situ sensors is quantified using a 6-year daily
record of soil moisture from the Southern Sierra Critical Zone Observatory. Five explanatory
variables (northness, soil texture, topographic wetness index, elevation, and location type)
are used in an ensemble regression tree algorithm (Random Forest) in order to estimate
soil moisture variability. The daily accuracy is quantified using the out-of-bag error for the
Random Forest algorithm.

Chapter 5 describes a design framework for an autonomous fleet of Lagrangian sensors
for in-situ monitoring in the Sacramento-San Joaquin Delta. A major limitation of existing
Eulerian sensors is they only measure flow past a given point; they are unable to resolve
finer scale flow fields or measure distributed and varying water properties like salinity or
temperature at high resolution. This could be addressed by designing sensors that are
deployed directly into the river. The chapter describes a design framework for a possible
version of this sensor. The functional requirements and design parameters for the sensor are
described using an Ishikawa diagram, and the results of the design process and sensor tests
are described in detail.

Chapter 6 summarizes the findings in each chapter and outlines possibilities for future
research, including integrating real-time data with remote sensing and other data sources.
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Chapter 2

Sensor Placement Strategy for
Wireless Snow Observatories

2.1 Introduction

This chapter presents a sensor-placement strategy for snow-sensors in wireless hydrologic
observatories. A major challenge of hydrologic science in montane regions relates to esti-
mating the spatial variability of snow cover [7, 101, 63, 38]. Multiple independent variables
govern the distribution of snow cover, including elevation, slope, aspect, and the distribution
of canopy, [28, 74, 59, 44]. Non-stationary effects such as climate warming and changes in
vegetation structure may significantly alter the timing and magnitude of storage and runoff
in these watersheds [36, 30]. Existing regression-based hydrologic models, which use statis-
tical relations from historical hydrographs to predict runoff and inform allocation decisions
[83, 88, 84] will have limited accuracy as conditions deviate from historical norms and thus
may prove to be inadequate for predictions in water management.

Recent research has focused on improving hydrologic models by assimilating remote-
sensing and in-situ measurements with distributed energy-balance models to better estimate
storage and runoff [38]. These methods use well-developed remote-sensing [79, 89, 22, 81,
24] and energy-balance models [62, 60, 16] to estimate snow and snowmelt processes across
basins. In-situ measurements for these methods are presently limited to snow pillows and
snow courses, which largely sample flat, open terrain [68], yet the distribution of snow cover
can vary considerably as a function of topographic features. To address this, in-situ sensor
measurements can be deployed to capture the mean and variance of the snow depth, which
can be used to inform models that use these statistics as inputs (e.g. [27]). Alternatively,
individual sensor measurements can be used together with distributed models to estimate
snow distribution across un-instrumented regions [9, 25, 26, 29, 43].

Prior studies have investigated the feasibility of using wireless-sensor networks to dis-
tribute representative snow measurements over a broader landscape [50, 87]. These studies
demonstrated that wireless-sensor networks can be configured to provide simultaneous mea-
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surements of snow-depth distribution, solar forcing, and subsurface exchange across a 1-km2

region. Based on these findings, 14 additional 1-km2 area networks were deployed across the
American River Basin to develop a real-time water information system [51]. Existing deploy-
ment methods for wireless-sensor networks require extensive field surveys in order to identify
sampling regions for a limited budget of sensor nodes. These practices are resource inten-
sive, provide no guarantees of accuracy, and are unsustainable if wireless-sensor networks
are going to see larger-scale adoption for real-time monitoring.

Although snow-depth statistics are site specific [37], and are often unknown prior to de-
ployment, the distribution of independent physiographic variables is often known at high
resolution (e.g. from LIDAR surveys [20]). Sensors could be deployed in representative lo-
cations based on the remotely-sensed data. Then, site-specific parameters for a snow-depth
estimator could be inferred from the initial deployment in order to determine whether addi-
tional sensors are needed. This process would be well-suited to the field of machine learning,
which includes “unsupervised” algorithms (which identify patterns in the independent vari-
ables without observing the dependent variable), and “supervised” or “active” algorithms
(which employ limited observations of the independent variable in order to improve the es-
timator). A number of recent studies have applied machine learning algorithms to topics
in hydrology, such as runoff and streamflow estimation [93, 61], evapotranspiration model-
ing [99], streamflow forecasting [86], assessment of the contamination of groundwater [52]
and estimation of needs for reservoir releases [53, 98].

This chapter evaluates a two-step machine-learning method to identify optimal sensor
locations for catchment-scale snow-depth observatories. First, a Gaussian mixture model
(an unsupervised algorithm) was used to identify representative sampling locations in a
LIDAR-derived feature space (i.e., the multivariate distribution of independent variables
that exist within the catchment). Second, a Gaussian process was used to estimate the
catchment-scale distribution of snow-depth and model uncertainty, then additional sensors
were placed in high-uncertainty regions (i.e., supervised updates). The aim of this process
is to determine the distribution of sensors that will minimize the RMSE and bias of the
Gaussian process estimate throughout the catchment. The aims of the present study are to
(i) determine how many sensors are needed in the unsupervised step in order to estimate the
catchment-scale parameters for the estimator (i.e. the regression weights and autocorrelation
for each independent variable), (ii) assess how many additional sensors are needed in the
supervised step to optimally instrument the catchment, (iii) compare the accuracy of the
snow-depth model using placements determined with the algorithm to an existing network
and to randomized placements, and (iv) determine the spatial and temporal transferability
of the method by evaluating the accuracy of the algorithm across multiple regions and over
multiple LIDAR flights.
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2.2 Methods

Study areas and data collection

The accuracy of the algorithm was evaluated in three 1-km2 catchments. The first study site
is located in the Southern Sierra Critical Zone Observatory (SSCZO) (37◦ 4’ N, 119◦ 11’ W),
within the rain-snow transition of the Sierra Nevada near Fresno, California. In water year
(WY) 2010 (October 1st, 2009 - September 30th, 2010), a 23-node wireless-sensor network
was installed (Figure 2.1), spanning a 1.5 km transect in a forested headwater catchment
where approximately 50-60% of annual precipitation falls as snow (Figure 9 in [8]). The
catchment covers elevations between 1900-2100 m a.s.l., which are centrally distributed at
2000 m a.s.l. The mean and median slopes in the catchment are 11.6 and 10.2 degrees, respec-
tively. Though a range of aspects exist within the catchment, the distribution of “northness”
is weighted towards 180 degrees, as the catchment faces SW, towards the Central Valley. The
canopy distribution is bimodal: most of the site is either open (penetration fraction = 1)
or dense (penetration fraction = 0). For the present study, sensor locations in the existing
wireless network were measured with a Trimble GPS (10-cm horizontal accuracy).

Node locations in the existing network are clustered such that the distribution of sensor
measurements can be used to represent the catchment-scale mean and variance. Particular
attention was paid to the effect of canopy, with clusters of sensors measuring the drip-edge,
under-canopy, and open regions at multiple locations in the catchment. Although these
measurements are spatially proximate, they represent 23 distinct measurements at dissimilar
points in the feature space when used in the Gaussian-process estimator. Figure 2.1 shows
the overall sensor distribution and typical network structure. The right-hand panel shows
a cluster of sensors in the network that were placed to capture drip-edge-to-open gradient
in the NE region of the catchment. Other clusters in the network are designed to capture
under-canopy effects as well as gradients of slope, aspect, and elevation. The existing network
provides a representative sampling of canopy and aspect, but significantly under-represents
high and low elevations (elevations between 1850-1950 m and 2020-2100 m are not covered),
as well as high values of slope (slopes above 15 degrees are not covered).

Physiographic variables (Figure 2.2) and a snow on/snow off raster (Figure 2.3) were gath-
ered from the NSF Open Topography database, opentopography.org [accessed 1 February,
2016]. Elevation, slope, and aspect extracted from LIDAR data were processed in ArcMap
10.2. On average, 9.21 points per square meter were used to generate the 1-m2 DEM, canopy,
and snow-depth rasters. Elevation information was stored as a point cloud in raw LIDAR
data and the points of ground returns were gridded, averaged, and smoothed in order to
create a high-resolution digital elevation model (DEM). Slope and aspect were calculated at
1 m2 resolution from the gradient of the DEM in the longitudinal and latitudinal directions
in the nine adjacent grid cells. The “northness” component of aspect was used in the present
study (0-180 degrees), as N/S differences affect snow cover due to differences in solar forcing.

The snow-depth raster was calculated by differencing the snow on/snow off surveys from
March 14th, 2010 [40]. The snow depth is Gaussian-distributed between 0 and 3 m (mean
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Figure 2.1: An existing wireless-sensor network at the Southern Sierra Critical Zone Obser-
vatory. Clusters of ultrasonic point measurements of snow depth are distributed across a
1.5-km transect in a 1-km2 catchment. Data from each cluster is relayed every 15 minutes
through a network of wireless elements to a base station with a real-time data uplink.
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Figure 2.2: Hillshade maps showing the LIDAR-derived digital elevation models at each of
the three sites used in the present study. At the Southern Sierra Critical Zone Observatory
(left-hand panel), the distribution of canopy is overlain in green. The raster at the Southern
Sierra Critical Zone Observatory was derived from LIDAR data in [40]. The rasters at the
Tuolumne and Merced locations were derived from the JPL Airborne Snow Observatory [80].
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Figure 2.3: LIDAR-derived snow depth in each of the 1-km2 catchments was used to deter-
mine optimal sensor locations for each site. At Tuolumne and Merced, these are the first
rasters available for WY2014. The accuracy of the placements in the remaining LIDAR
surveys is shown in Figures 2.9 and 2.10.

= 1.42, standard deviation = 0.50). A comparison against ground-truth surveys conducted
during the LIDAR surveys showed 0.1 m of vertical error in the snow-depth raster. There
were no returns in 28.5% region due to dense canopy. In these regions, trees were segmented
from the LIDAR canopy height model using the variable-area local maxima algorithm and
a typical pine tree height-diameter ratio [97, 109]. Of the regions with no returns, 2.3%
were tree trunks. The snow depth at these points was set to zero and the remaining regions
were gap-filled using bi-linear interpolation. The interpolation scheme was based on a prior
analysis of snow-depth variability at a nearby instrument cluster [8], which determined that
under-canopy measurements were typically 30 cm lower than drip-edge. Finally, the canopy
penetration fraction from the LIDAR point cloud was calculated based on the methods
presented in [112]. The raw and gap-filled LIDAR data are shown in Figure 2.4.

Sites for the long-term analysis were selected from within the Airborne Snow Observatory
(ASO) [80]. The ASO mission runs LIDAR surveys every other week (beginning the last
week of March) in the Merced and Tuolumne river basins of the Sierra Nevada. For the
present study a 1 km2 catchment was selected from within each basin. Both sites were
selected from above the tree line. This provided two advantages for the present study: it
permitted an evaluation of the transferability of the algorithm to a new environment (i.e. not
densely forested), and meant that the snow rasters did not have to be interpolated under
dense canopy. The accuracy of the algorithm could therefore be evaluated based solely
on measured values. The Tuolumne site is located at (38.044591, -119.427359 degrees) at
3100 m a.s.l. and is due east from the Hetch Hetchy reservoir. The Merced site is located
at (37.737945, -119.302983 degrees), 3450 m a.s.l. The 3 m resolution LIDAR rasters of
site characteristics and snow depth are shown in Figures 2.2 and 2.3, respectively. At the
Tuolumne catchment, the elevation range is 3085 m - 3340 m, the aspect is predominantly
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Figure 2.4: Raw (left) and gap-filled (right) LIDAR snow rasters at the Southern Sierra
Critical Zone Observatory. Dense canopy resulted in no returns for under-canopy measure-
ments in 26.2% of the catchment. These points were bi-linearly interpolated from adjacent
measurements (described in Section 2.2). The snow rasters in Tuolumne and Merced did not
require gap-filling.

west- and east-facing, and the mean and median slopes are 19.3 and 18.2 degrees, respectively.
The Merced catchment spans 3270 m - 3680 m, the aspect is predominately south-facing, and
the mean and median slopes are 20.0 and 17.5 degrees, respectively. Dates for the LIDAR
surveys at each site are listed in Table 2.2. Based on the in-situ measurements from the
Gin Flat snow pillow (located between the Merced and Tuolumne basins at 2150m), the
differences in snow depth between the seven LIDAR scenes were primarily attributable to:
accumulation (between scenes 1-2), melt (2-3), melt (3-4), accumulation (4-5), melt (5-6),
accumulation and then melt (6-7).

Identification of representative sampling locations

In the first step of the proposed method, the distribution of sensors that is most-representative
of the LIDAR-derived feature space is determined using a Gaussian mixture model, which as-
sumes that a feature space (i.e., the combined R6, x = [xlat, xlon, xslope, xaspect, xelevation, xcanopy]
LIDAR data from Section 2.2) is a product of a finite number of latent (unobserved) com-
ponents (i.e., sensors). The sensor’s ability to observe each point in the feature space is
represented using a multivariate normal distribution (Equation 2.1). This is the parametric
expression of each component of the mixture. The expected value of such a normal distribu-
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tion is the sensor’s location in the feature space. Multiple Gaussian distributions (multiple
sensor locations) were combined and weighted with mixing parameters from an ensemble of
M mixture elements in Equations 2.2 and 2.3. The combined ability of all sensors to observe
all points in the feature space is represented using a likelihood function (Equation 2.4).

Formally, the Gaussian mixture model is a linear superposition of D-dimensional multi-
variate normal distributions, N , with expected value µ and covariance Σ applied to data x,
which are vectors including the four LIDAR derived variables. Each component is defined
as:

N (x|µ,Σ) =
1

(2π)D/2

1

|Σ|1/2
exp{−1

2
(x− µ)TΣ−1(x− µ)} (2.1)

and their superposition, with mixing parameters, πm, with m being an index denoting a
single mixture component, is defined as:

p(x) =
∑
m

= 1MπmN (x|µm,Σm) (2.2)

subject to:
M∑

m=1

πm = 1 (2.3)

The complete log-likelihood function, evaluated over all the LIDAR-derived measure-
ments, N is given by:

ln p(xn|π, µ,Σ) =
N∑

n=1

ln
{ M∑

m=1

πmN (xn|µm,Σm)
}

(2.4)

The Expectation Maximization (EM) algorithm [64, 82] was used to retrieve the sensor
locations. This is an iterative process in which the algorithm tries to recover the most-likely
parameter estimates for the mixture of multivariate Nm to explain the data. A spherical
covariance function was used and the model weights, covariance, and means were updated
with each iteration. Once the maximization step no longer increases the log-likelihood, the
process terminates and the optimal sensor locations have been found. Like many gradient-
based optimization methods, EM converges to local minima. Therefore, 100 initializations
from randomized starting points were used to select the result with the maximum likelihood.
This process was parallelized onto four computational cores using a subsampled feature space
(1-in-16 point subsampling to make the evaluation of many starting points computationally
tractable). Then a nearest-neighbor search was performed through the full feature space
(i.e. not subsampled) in order to find the physical location that most closely matches the
features of each Gaussian mixture model mean.
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Figure 2.5: Representative sensor locations were determined using a Gaussian mixture model
in the space of independent variables from Figure 2.2. Black points represent a 2-dimensional
projection of the R6 LIDAR data onto the latitude-elevation plane. Optimal sensor locations
(indicated by red points) are the expected values of the latent Gaussians. The likelihood
function (contour lines) quantifies how well each point in the LIDAR-derived feature space is
observed given the locations and covariance of each sensor (see Equation 2.4). The optimal
parameters (expected value and covariance) for the model were determined using the EM
algorithm.

Snow-depth model

In the second step, the LIDAR-derived snow-depth measurements at the locations proposed
by the Gaussian mixture model were used to estimate the distribution of snow depth across
the catchment using a Gaussian process [85]. A Gaussian process is a regression technique
that predicts a dependent variable (in this case, the snow depth, Y) using a set of indepen-
dent variables, X, which are expected to be informative for its prediction. It establishes a
covariance-based model that, using known input-output relationships (the training data at
the measuring stations locations, {xn, yn}Nn=1), is able to predict the snow depth on new,
unseen locations where the inputs can be obtained. In this application, the physiographic
variables (slope, aspect, elevation, and canopy) were used as independent variables in the
estimation (i.e., for a single point in R4, x = [xslope, xaspect, xelevation, xcanopy]). The Gaussian
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Figure 2.6: Illustration of a Gaussian process shown in one of the four dimensions. Uncer-
tainty in the observations (0.1 m in LIDAR data) is quantified with a regularization at each
point (Equation 2.7). The confidence of the prediction at intermediate points is a function
of the covariance parameters estimated from measurements at the sensor locations. The
estimated uncertainty is employed by the supervised updating process.

process (Equation 2.5) combines the N point measurements XN from each sensor station
and the four LIDAR-derived physiographic variables to estimate the mean snow depth, Ȳ ,
using a covariance function K,

Y ∼ GP (Ȳ ,K), (2.5)

where the ∼ symbol means ‘is distributed following’. An illustration of the Gaussian
process is shown in Figure 2.6: given the observed data and uncertainty (sensor stations, in
red) and a prior over the shape and parametrization of the functions which are likely to be
observed (e.g., all functions are Gaussians with mean Ȳ and covariance K), the Gaussian
process estimates a posterior distribution with a predictive average (dashed line) and variance
(the uncertainty of the prediction – the grey envelope). Note that close to the observed data,
the variance approaches zero. Readers interested in the mathematical details may refer to
Chapter 2 in the book by [85]. In the present study, a squared exponential covariance
function (Kse in Equation 2.6) was used, which depends on four variables: x and x′ are two
points in the domain, d is the distance between them, and l is the characteristic length scale
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(computed individually for each independent variable in the normalized feature space). This
covariance was used because the snow depth was assumed to vary smoothly with respect to
the input variables. The autocorrelation in the model is controlled by the l parameter. The
algorithm has no prior information about this parameter; it must be estimated only from the
point measurements at each sensor. Regression weights and autocorrelation are estimated
using a constrained optimization by linear approximation algorithm in the software package
SciPy (fmin cobyla) [82]. The error at each measurement (10 cm based on the LIDAR error)
was quantified using the regularization in Equation 2.7, where yi is the measured snow depth
at point i, and σi is the measurement variance at yi.

Kse(x, x
′) = exp(−||x− x

′||2

2l2
) = exp(−||d||

2

2l2
) (2.6)

ri =
[σi
yi

]2
(2.7)

Supervised updates

In addition to estimating the spatial mean of the snow depth, the Gaussian process estimates
the distribution of model uncertainty from the covariance matrix of the posterior distribu-
tion, which is a function of the independent variable weights and estimated autocorrelation.
This provides a basis for placing additional sensors with the aim of minimizing uncertainty
throughout the catchment. Using the measurements from the sensors placed in Section 2.2,
the snow depth was modeled using the Gaussian process, and a new feature space corre-
sponding to the highest 1% and 10% of model uncertainty was computed. The Gaussian
mixture model was then used in each feature space to select additional sensor locations that
both reduce the uncertainty of the model and are unique with respect to the combination
of topographic variables they sample. The additional placements are considered supervised
updates because they rely on observations of the dependent variable (i.e., the estimated auto-
correlation and regression weights in the snow-depth model) to determine optimal locations.
In the machine-learning community, the procedure is known as “active learning” [91]. They
are distinct from the placements in Section 2.2, which are unsupervised in the sense that no
observations of the dependent variable (snow depth) are used in their determination. Sensors
placed in regions of high uncertainty will reduce the uncertainty throughout the domain at
points with similar combinations of physiographic features.

Model evaluation

The error in the snow-depth model was determined by differencing the predicted snow depth
under each scenario from the LIDAR-derived snow-depth raster (Figure 2.3). The accuracy
of the snow-depth model under each placement scenario was computed using two standard
metrics: RMSE (Equation 2.8) and Bias (Equation 2.9). In each equation, n is the number
of points in the model, ŷi is the model prediction at point i, and yi is the true snow depth.
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RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (2.8)

Bias =
n∑

i=1

(ŷi − yi) (2.9)

Optimal number of sensors

The number of sensors required in the unsupervised step was determined by examining the
error in the snow-depth model in a range of placement scenarios. In the first set of scenarios,
the unsupervised placements ranged between 2 and 23 sensors. The optimal number of
sensors was taken to be when the marginal improvement in RMSE was less than 10%.
Given the placements from the unsupervised process, sensors were added using the process
described in Section 2.2, up to the budget of 23 sensors. Finally, with the optimal number
of sensors determined, the snow-depth estimate resulting from the proposed placements was
compared to an equivalent number of randomly-chosen, but spatially-distributed sensors.
The snow-depth model under 100 randomized configurations was evaluated to determine the
expected accuracy of the randomized placements.

Long-term accuracy

Only one LIDAR survey was available for the region covered by the existing wireless sensor
network, which is insufficient to assess the long-term accuracy of the algorithm. To ad-
dress this, two regions within the JPL Airborne Snow Observatory were chosen (described
in Section 2.2) that had multiple LIDAR surveys during WY2014. First, the unsupervised
placements were selected based on the independent variables at each site (described in Sec-
tion 2.2). Second, the supervised update step (described in Section 2.2) was performed in the
first snow-depth raster of WY2014. The accuracy of the model estimated from the sensors
in seven additional LIDAR surveys for each catchment was quantified using the bias and
RMSE in each LIDAR survey. Results were then compared to the average of 100 random
configurations of sensors. Finally, the ability of the sensors to represent the catchment-scale
mean and standard deviation of snow depth was evaluated in each of the LIDAR surveys.

2.3 Results

Using the methods described in Section 2.2, six sensors were selected in the unsupervised
step for the SSCZO catchment. The converged Gaussian mixture model for this configura-
tion is shown in Figure 2.5. Optimal sensor placements (the expected values of the latent
Gaussians) are shown as red markers. The likelihood function (quantifying how well the
space of independent variables is observed under the current sensor configuration), is shown
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Figure 2.7: Histograms showing the distribution of error in the snow-depth model under
each sensor configuration from Figure 2.8. The placements proposed by the machine learn-
ing algorithms have lower bias and RMSE than the eight random sensors and the existing
network. The RMSE is lowered in the supervised update, but the bias slightly increases
compared to the unsupervised placements.

as contour lines. Points that are well observed are shown in blue; poorly observed points
are shown in red. As it is not possible to show the full six-dimensional feature space, Figure
2.5 illustrates a two-dimensional projection of the output. Adding more than six sensors in
the unsupervised step did not significantly improve the accuracy of the algorithm (see Table
2.1). With 6 sensors, the accuracy of the algorithm was 43.23 cm; at 23 sensors, this was
reduced only to 42.90 cm. Intermediate values were variable, and in one case as high as
73.88 cm (at 14 sensors). Two sensors were then placed in the supervised step (using the
10% uncertainty threshold), reducing the RMSE to 38.29 cm. The effect of the update is
shown in Figure 2.7: the error becomes more tightly distributed around zero, but the bias
remains essentially unchanged (it increases by slightly less than one centimeter).

In the 100-sample evaluation of randomized placements of eight sensors, the average
RMSE was 63.7 cm. The distribution was heavy-tailed: most of the results were clustered
between 40-75 cm RMSE, but there were eight outcomes with greater than 100 cm RMSE. A
configuration corresponding to one of the average runs is shown in the middle panel of Figure
2.8. The spatial distribution is similar to the proposed placements, however the output of
snow-depth model reveals a slight over-estimation of the snow-depth, particularly in the SW
regions of the catchment (right-hand panel in Figure 2.8), resulting in a positive bias for the
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Table 2.1: RMSE, bias with increasing number of sensors in the unsupervised step at SSCZO.

Sensors: Bias (cm) RMSE (cm)
5 35.58 277.5
6 2.57 43.2
7 7.47 52.8
8 9.00 63.8
9 0.16 59.3
10 -0.23 62.7
11 -9.73 52.6
12 -14.15 46.0
13 -9.11 56.0
14 -3.52 73.9
15 -4.67 63.4
16 -3.02 47.1
17 -4.32 66.3
18 3.58 52.4
19 -16.79 65.2
20 4.67 43.3
21 -8.25 43.9
22 -9.74 46.6
23 5.41 42.9

estimator (blue line in Figure 2.7).
The snow-depth model estimated from the existing 23 placements has higher error (RMSE

53.0 cm, bias 15.49 cm) than the estimates from the machine-learning method. The accuracy
of the snow-depth model is high (less than 15-cm error) near the sensor clusters. However,
the error is very high (greater than 1-m error) in the NW and SW region, where the snow-
depth model over-estimates the true snow depth. This produces a more heavy-tailed error
distribution than the proposed or random placements, and an overall overestimate of the
true snow depth within the catchment (green line in Figure 2.7). Despite this, the true mean
(1.42 m) of the snow-depth raster are better estimated by the sensors in the existing network.
The mean and standard deviation of the sensor measurements is 1.76/0.49, 1.54/0.52, and
1.48/0.57 m for the proposed, random, and existing network respectively.

In the Tuolumne ASO site, 11 sensors were placed in the unsupervised step, and 4 were
added in the supervised step (using the 1% uncertainty threshold). The bias and RMSE
of the 15 locations proposed by the algorithm in the first LIDAR scene are higher than at
SSCZO (left-hand panel, Figure 2.9). This negative bias persists and decreases in magnitude
in the remaining LIDAR surveys (top line in Table 2.2 ) and the RMSE is bounded between
64.2 cm and 70.6 cm in the remaining surveys. The bias and RMSE in the average of
the 100 of the random trials are worse throughout the remaining LIDAR surveys (second
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Figure 2.8: Predicted snow depth (left-hand panels) and error (right-hand panels) using three
sensor configurations: proposed (top), random (middle), existing (bottom). The resolution
of the snow-depth model is 1 m2, the scale in the left-hand panel is 0-3.0 m. The error of each
model is computed relative to the LIDAR snow-depth raster in Figure 2.3. The distribution
of errors is compared in Figure 2.7.
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Table 2.2: Long-term error and snow-depth statistics in ASO LIDAR data (all values cm).

Tuol 3-23-14 4-07-14 4-13-14 4-20-14 4-28-14 5-02-14 5-11-14
Bias: -12.2/44.4 -15.3/47.3 -9.9/43.4 -13.9/35.4 -3.5/50.4 -5.6/27.3 -10.3/37.8
RMSE: 60.9/89.0 70.6/108.2 64.5/97.5 66.4/80.3 65.5/105.6 64.2/74.9 64.2/76.4
Mean: 115/101/136 153/130/172 127/105/145 110/75/125 124/97/142 94/69/115 85/59/107
Std 58/30/88 65/35/109 62/35/98 64/44/105 65/41/102 61/37/96 61/40/95

Merced 3-24-14 4-06-14 4-14-14 4-23-14 4-29-14 5-03-14 5-12-14
Bias: 0.4/-1.5 -2.4/-6.8 6.1/9.0 0.8/17.1 -5.5/12.8 0.6/6.4 5.2/12.6
RMSE: 58.0/70.1 73.1/82.5 65.1/84.0 62.5/87.7 66.6/74.5 61.6/74.0 59.4/81.1
Mean: 76/84/67 114/117/100 73/80/68 67/75/65 77/77/68 71/75/66 54/61/48
Std 58/49/48 69/64/63 61/52/49 61/54/52 66/60/58 63/59/52 57/49/46

number in top two lines of Table 2.2) and there is greater variability in both quantities.
Neither the proposed nor the random placements capture the small-scale variability along
the drainages in the center of the catchment (see spatial distribution of error in the right-hand
panels, Figure 2.9). Although the machine-learning algorithm consistently outperforms the
average of the random placements in estimating location-specific error, the correspondence
between the measured snow mean and the snow variance is inconsistent (bottom two lines in
Table 2.2). The mean and standard deviation are generally underestimated by the proposed
placements and overestimated by the random placements.

In the Merced ASO site (Figure 2.10), 13 sensors were placed in the unsupervised step,
and 1 was added in the supervised step (using the 10% uncertainty threshold). The RMSE
and bias of the 14 locations proposed by the algorithm are lower than at Tuolumne (top lines
in the “Merced” subsection of Table 2.2). The bias starts near zero and does not deviate
above 6.1 cm. By contrast, the bias and RMSE resulting from the average of the random trials
are high and variable throughout the remaining LIDAR surveys (second number in the top
lines the “Merced” subsection of Table 2.2). Again, much of the small-scale variability in the
catchment is not captured by either the random or proposed placements. The relationship
between the mean and standard deviation of the sensor measurements compared to the
catchment-scale statistics is again inconsistent (bottom two lines the “Merced” subsection
of Table 2.2).

2.4 Discussion

Although individual point measurements of snow depth are poor estimators of the local mean,
these results indicate that an automated process can be used to find a limited combination
of representative placements that can be used to estimate the catchment-scale snow cover.
Eight placements in strategic locations produced a better catchment-scale estimate than 23
placements in the existing network, likely due to the under-representation of high values of
slope and elevation and the closer spatial distribution of the existing sensor clusters. The
long-term analysis indicated that the method is transferable to other types of environments,
and that the accuracy of the sensors placement determined from the first LIDAR survey
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Figure 2.9: Snow-depth model accuracy (comparing proposed placements to the average
of 100 random placements) in the remaining 2014 LIDAR surveys at Tuolumne. Sensor
placements are overlain as red points.



CHAPTER 2. SENSOR PLACEMENT STRATEGY FOR WIRELESS SNOW
OBSERVATORIES 21

0

1000

2000

3000

4000

5000

6000

3
/2

4
/2

0
1

4

Error distribution
Proposed

Random

Snow Depth (LiDAR) Predicted (Proposed) Predicted (Random) Abs. Error (Proposed) Abs. Error (Random)

0

1000

2000

3000

4000

5000

6000

4
/0

6
/2

0
1

4

0

1000

2000

3000

4000

5000

6000

4
/1

4
/2

0
1

4

0

1000

2000

3000

4000

5000

6000

7000

4
/2

3
/2

0
1

4

0

1000

2000

3000

4000

5000

6000

7000

4
/2

9
/2

0
1

4

0

1000

2000

3000

4000

5000

6000

7000

5
/0

3
/2

0
1

4

3 2 1 0 1 2 3

Error (m)

0

1000

2000

3000

4000

5000

6000

7000

8000

5
/1

2
/2

0
1

4
 (

co
u
n
t)

0 140 280 420 560 700 840

Relative distance (m)

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0

S
n
o
w

 d
e
p
th

 (
m

)

Figure 2.10: Snow-depth model accuracy (comparing proposed placements to the average of
100 random placements) in the remaining 2014 LIDAR surveys at Merced. Sensor placements
are overlain as red points.
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persists in the remaining surveys. This was not true of the random placements, which
showed greater variability in the bias and RMSE in the remaining surveys.

At the ASO catchments (Tuolumne and Merced), the RMSE of the snow-depth model
was higher than at the SSCZO, despite the additional sensors placed by the algorithm. This
is likely due to the greater exposure of the terrain above the tree line in the ASO sites. At
the SSCZO, the highest errors are in exposed (i.e. un-vegetated) areas in the NW, SW,
and meadows (right-hand panels, Figure 2.8). At the ASO sites, the highest errors are
distributed throughout the catchments (right-hand panels in Figures 2.9 and 2.10). The
dense canopy closures at SSCZO likely constrain the wind redistribution effects to smaller
regions within the catchment, thereby reducing the overall error and required number of
sensors. It should also be noted that many of the under-canopy measurements in the SSCZO
raster were interpolated. This may have affected the relative error and required number of
sensors between the ASO and SSCZO sites by producing a more homogeneous distribution
of under-canopy snow depth.

The present study is conducted in small catchments sampled at very high spatial res-
olution, whereas typical hydro-metrological studies are conducted at lower resolution (e.g.
spatial resolutions on the order of 50m - 100m). Running the algorithm at lower resolution
will likely affect the accuracy of the spatial snow cover model and placements determined by
the algorithm. If the above analysis is repeated with the LIDAR data averaged to 50m res-
olution, the accuracy of the model increases and fewer sensors are placed by the algorithm.
The variance explained by the low-resolution model in the first snow rasters for SSCZO,
Merced, and Tuolumne is 56%, 59%, and 36% with 8, 10, and 8 sensors, respectively. Us-
ing the high-resolution data, the variance explained 45%, 6%, and 18% with 8, 14, and 15
sensors, respectively. This is likely due to small-scale variability being averaged out at lower
resolutions. The temporal persistence of the accuracy is also observed in the 50m data:
all snow cover models chosen by the algorithm had lower RMSE than the average random
configuration. The range of model accuracies in the present study is consistent with the
findings in [26], which analyzes the accuracy of multiple snow cover models in three 1-km2

catchments. The study finds the models explain between 6.8% and 31% of the snow depth
variance, depending on the specific catchment and statistical model.

The accuracy of the high-resolution model in the present study may be improved by
adding independent variables that capture the effects of small-scale terrain features and
wind redistribution. None of the algorithms in the ASO catchments accurately modeled the
accumulation of snow depth near sharp transitions in the DEM, (e.g. along the drainages in
Figure 2.9, and along the ridges of Figure 2.10). Similarly, none of the algorithms captured
the increasing, S-facing gradient of snow depth across the meadow in the Southern Sierra
Critical Zone Observatory, which was likely a result of wind redistribution. This effect has
been observed in a number of prior studies [108, 67], and directional variables have been
suggested to account for directional redistribution of snow (e.g., in [67]). Given the dense
canopy throughout the catchment in the present study, a directional variable was not included
in the feature space. In catchments with less dense distributions of canopy, it would likely
be necessary. Care should be taken in mixed open/forested regions that the directional bias
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measured in open regions is not translated to the regions with dense canopy.
It would be beneficial to evaluate the proposed method in a vegetated region over long

time spans in which there are regular under-canopy measurements (from an in-situ net-
work or synoptic survey) and multiple LIDAR flights. The accuracy of the algorithm may
exhibit greater temporal variability in such environments, since the influence of canopy is
different throughout the year (affecting snow interception during the accumulation phase,
and long-wave radiation enhancement during the ablation phase). The method should also
be evaluated in alpine catchments that exhibit lower temporal persistence in the spatial
snow cover. The coefficients of determination between the first raster and successive rasters
at Tuolumne and Merced are: 0.82, 0.81, 0.74, 0.80, 0.76, 0.73 and 0.93, 0.93, 0.86, 0.91,
0.90, 0.87, respectively. The long-term bias and RMSE may exhibit greater variability in
catchments with lower temporal persistence.

Recent studies have demonstrated that mutual-information-based sensor placement strate-
gies can outperform placements based on Gaussian process uncertainty [56]. This approach
was not used in the present study as the mutual information algorithm is NP-complete
with complexity O(kn4) (where k is the number of sensors and n is the number of possi-
ble locations). The fourth-order dependence on the number of potential locations can yield
computationally intractable problems when using LIDAR data. The number of candidate
placements in the numerical studies in [56] is on the order of 100-200, compared to over
1,000,000 in the present study. The mutual information-based strategy may be feasible to
implement at lower spatial resolutions or by reducing the complexity using sub-modularity
(discussed in [56]). It therefore warrants further research for this application.

There are practical considerations in observatory design that are not considered in the
present study. Regions of the catchment may be inaccessible due to terrain attributes and
other access constraints. This can be addressed by defining a set of inaccessible placements
in the feature space from Figure 2.5. If the optimal sensor location is determined to be
on an inaccessible grid element, a search to the nearest viable point in the feature space
will be output as the optimal point. The proposed algorithm also requires a greater spatial
distribution than the clustering approach. Recent field deployments have indicated that
1-km-scale wireless-sensor networks can be deployed using existing hardware in a variety
of terrains. If the spatial extent is limited, the spatial coordinates could be removed from
the unsupervised step, and an algorithm could determine the most-representative, spatially
proximate distribution of nodes.

It should be noted that the “supervised updating” step in the present study would
require two field deployments: one to gather data to estimate the distribution of uncer-
tainty throughout the catchment (which also requires knowledge of the catchment-scale
independent-variable distributions), and a second to add sensors in high-uncertainty re-
gions. In practice, the marginal gain from the supervised updates may not be worth the
marginal cost, though in this analysis, the supervised placements outperform un-supervised
placements. In the present study, the first LIDAR flight was used to estimate the uncertainty
and perform supervised placements. The selected locations may change depending on which
raster is used, as the autocorrelation and regression weights will change throughout the year.
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Given additional years of LIDAR data, it may be better to perform supervised placements
based on a long-term analysis of the uncertainty within the catchment.

The true optimal number of nodes per site should be determined by considering the
marginal value of the improved information. Combined with an understanding of the
marginal cost of each additional placement, this would determine an optimal number of
sensor nodes by comparing marginal cost and value functions. This approach would capture
site-specific cost/value tradeoffs for each sensor network.

2.5 Conclusion

The research reported here suggests that a machine-learning algorithm can be used to identify
snow-sensor locations in catchment-scale observatories prior to field deployment. In the
three regions considered in the present study, the placements determined from the algorithm
exhibited higher accuracy and less bias than an existing sensor network and an equivalent
number of randomly selected locations. The accuracy of the algorithm was found to be
consistent when the temporal transferability was evaluated in fourteen LIDAR rasters within
the Airborne Snow Observatory.

The aim of the present study was to determine sensor locations to be used together with
a snow-depth regression model to estimate the catchment-scale distribution. Without the
Gaussian process estimate, the mean and standard deviation of the sensor measurements
alone was not consistently more accurate than random or existing placements. Therefore
the proposed algorithm is likely better suited to situations in which the snow depth is to be
modeled at the catchment scale, as opposed to distributed models which take the mean and
standard deviation (or variance) as input.
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Chapter 3

Repeater Placement Strategy for
Mesh Networks in Complex Terrain

3.1 Introduction

The prior chapter evaluated a sensor placement strategy for wireless snow-depth observato-
ries. Once these sensor locations are determined, signal repeaters are needed to fill in data
links too far apart to carry from sensor station to sensor station. These placements must be
made to maximize the resiliency of the network by ensuring multiple data path redundancy
allowing for the case of one or more elements failing during the winter season. The total
number of placements is limited by cost and link capacity of the base station manager, so it
is desirable to take advantage of terrain features to minimize the number of nodes placed.

This problem is not unique to snow-sensor networks: wireless sensor networks are in-
creasingly being used to make distributed measurements in a number of fields [4]. It is often
difficult to access these networks, so the initial deployment must ensure a redundant mesh
topology to guarantee year-round access to the real-time data. Existing methods for opti-
mizing wireless mesh topologies employ simplifying assumptions of a flat environment and
symmetric, planar models of node connectivity [66]. In complex terrain, these assumptions
do not hold: small movements of nodes in the wireless network can drastically affect the
connectivity of adjacent nodes due to changes in terrain attributes (e.g. path intersection
with terrain and vegetation).

In practice, these networks must be structured in the field in real time, using feedback
from the field teams and diagnostic networking software [50]. Nodes are simultaneously
reconfigured by personnel at strategic locations until the network is fully connected and
each link has sufficient signal strength. The current approach is limited in that it relies
on personnel with incomplete knowledge of the overall network structure to make their
best guess for the local placements, without considering the effect on the broader network
topology. The amount of time required for the network statistics to stabilize is on the order of
many hours to days, limiting the number of combinations that can reasonably be evaluated.
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Given the large geographical area to be covered, this process is time intensive and can result
in sub-optimal network topology formation, resulting in data loss [87].

This chapter presents a four-step methodology for structuring redundant wireless mesh
networks prior to field deployment using high-resolution remote sensing of the deployment
site (LIDAR data): (i) packet delivery ratio (PDR) is measured on four channels at represen-
tative locations across the deployment region; (ii) the PDR data are combined with LIDAR
(airborne laser scanning) elevation and canopy data to train an algorithm that estimates the
PDR between any new pair of points in the domain; (iii) the link model is used to evaluate the
connectivity of thousands of potential repeater placements; (iv) a minimal set of repeaters
is found using a fast approximation algorithm for the Steiner tree problem and redundancy
is added by adding repeaters at each articulation point to maximize connectivity.

The chapter is divided into four sections: Section 3.2 describes how the PDR measure-
ments and LIDAR were collected; Section 3.3 describes the link model; Section 3.4 describes
the topology optimization component; Section 3.5 concludes the chapter with a comparison
of the algorithm’s placements to the manually configured network described in [50].

3.2 PDR measurements and LIDAR data

First, LIDAR data were collected for the region around the SSCZO network from the prior
chapter. These data were used to make 1 m2 digital elevation and canopy models. The
LIDAR survey was conducted from August 5th to August 15th, 2010. Point-cloud data were
processed and classified by the National Center for Airborne Laser Mapping (NCALM),
which is hosted on the NSF OpenTopography server. The study area was clipped from
the point-cloud dataset for calculating the above-one-meter vegetation density. The point
clouds were first grouped as ground returns or vegetation returns by using their classification
attribute. Second, the elevation difference between each point was calculated by iterating
through all vegetation data points and measuring the height to the nearest neighbor among
all the ground returns. Finally, the vegetation data were filtered such that only the points
above 1 m were retained. This process was repeated for the 1-10 m height range. Binary
rasters were created for both vegetation layers, which were combined to create the final
vegetation model. Thus, the final model is more heavily weighted for vegetation in the 1-10
m range, which is more likely to affect signal strength.

PDR measurements were then collected within the existing network. Antennas (L-
COM HGV-2404U) were placed on lightweight poles that were measured to be the same
height as the poles in the existing network (3 m). The data were collected on 4 channels
(2.405, 2.425, 2.445, and 2.465 GHz) using the “radiotest” module for Dust Networks chips
(github.com/dustcloud/smartmeshsdk/tree/master/app/RangeTest). The transmitter mote
is set to continuously send a 40B packet every 5ms. The transmitter and receiver were placed
in strategic locations throughout the observatory, with the intention of sampling across a
representative range of distances, vegetation, and angle. Each transmitter and receiver loca-
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Figure 3.1: Packet delivery ratio was measured using L-COM HGV-2404U 4dBi antennas at
representative locations near the existing network.

tion was measured with a handheld GPS unit. Figure 3.1 shows the transmitter and receiver
measurement setup, along with a cluster of nodes in the existing network.

Figure 3.2 shows where all measurements were taken, along with the average PDR along
each path. The top panel shows a hillshade map of the 1 m2 digital elevation model. The
lower panel shows the same measurements with the canopy model. Darker green regions in
the figure show where the canopy is denser in the 1-10m height range.

Collecting these measurements provided some intuition for how terrain properties affect
the signal strength. First, when there was line of sight between the two antennas, PDR was
high on all channels even for long links. For example, Figure 3.2 shows a link on the far
right which received [639, 876, 929, 881] packets on each channel for the 2.405, 2.425, 2.445,
and 2.465 GHz channels, respectively. The maximum number of packets received was 973,
which was taken as 100% PDR. Removing line of site at large distances strongly affected
PDR. Moving the receiver by 5 m (thereby introducing more vegetation along the path),
caused the packets received to go to zero on all channels. Second, PDR was found to be
extremely variable when there was significant vegetation along the path. While longer links
were observed, high PDR measurements were rarely seen for links longer than approximately
50 m when dense vegetation was present on the path. Finally, angle was not observed to have
a strong effect on PDR. This was tested by tilting the receiver to 0, 30, 60, and 90 degrees at
a fixed distance. Angles up to 60 degrees did not result in significant degradation with regard
to how many packets were received: [910, 965, 947, 894] for 60 degrees versus [877, 908, 869,
854] for zero degrees. At 90 degrees (antenna approximately 2 m off the ground, flat), a
PDR decline was observed: [376, 447, 690, 264] packets were received in this configuration.
There was also not a significant PDR drop when the transmitter and receiver were mounted
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Figure 3.2: Transmitter and receiver locations shown with measured PDR and LIDAR ele-
vation model (top) and canopy data (bottom).
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vertically, but separated by a large angle. These results were likely specific to the 4dBi
antennas used, which have a 50 degree vertical beam width. This characteristic makes these
types of antennas a good choice for deployment in complex terrain. The following section
attempts to capture the intuition developed during the data collection by training a PDR
model based on the observed data.

3.3 PDR model

After collecting the LIDAR and PDR data from Section 3.2, the LIDAR data were used to
compute path properties of each measured point based on the GPS locations of the transmit-
ter and receiver. Given the intuition from Section 3.2, vegetation and distance were used as
the primary path properties affecting the path links. First, the three-dimensional Euclidian
between the two points was computed from DEM. Then, Bresenham’s line algorithm [15]
was used to compute all the grid cells between the transmitter and receiver. The amount
of canopy was integrated along the path to calculate the total amount of vegetation on the
path. Terrain intersection was computed by comparing the straight line of sight of the trans-
mitter and receiver against the DEM profile between. If the two intersected within a 0.5 m
tolerance, the link was set to zero PDR. A subset of the measurements and LIDAR path
features is shown in Table 3.3.

Given the PDR measurements and path properties, a PDR model was created using a
K-Nearest-Neighbor (KNN) regression scheme. Given an input space, x (the LIDAR-derived
path features), a KNN regressor predicts a new value, Ŷ :

Ŷ =
1

k

∑
xi∈Nk(x)

yi (3.1)

where k is the number of neighbors, and yi is one of the measured PDR values. The
number of neighbors to use in the regressor is tuned using 3-fold cross validation. The model
was implemented in Scikit Learn version 18.1 using the KNeighborsRegressor module and
GridSearchCV for cross validation. Negative mean squared was used as the scoring metric,
and Euclidian distance was used as a distance metric. The search space consisted of between
two and thirty neighbors. The optimal number of neighbors was determined to be seventeen.

Figure 3.3 shows the output of the KNN regressor for every 1m2 grid cell in the domain,
given a transmitter at the center of the image. The image illustrates how the algorithm
captures the intuition gained from the PDR measurements from Section 3.2: good links
can exist at long distances (dark green regions) when canopy does not intersect the path. If
canopy intersects the terrain, PDR is not likely to be high at links greater than approximately
50 m (yellow regions). Where the path intersects the terrain, it is very unlikely a good link
will form (red regions). The image illustrates how anisotropic path properties can be in
complex terrain. The next section takes advantage of this property to find a minimal set of
repeaters which connects the network.
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Path distance, m Path vegetation 2.405 GHz (Packets received) 2.425 2.445 2.465

71.20 0.0 973 899 905 892
100.07 16.0 879 916 902 864
135.35 6.0 944 834 894 902
160.21 41.0 135 237 161 22
177.30 38.0 639 876 929 881
182.12 91.0 0.0 1 0.0 2
187.50 94.0 0.0 0.0 0.0 0.0
178.44 48.0 0.0 0.0 0.0 0.0
177.27 78.0 0.0 0.0 0.0 0.0
46.88 51.0 902 914 901 923
42.63 27.0 902 856 842 847
62.58 70.0 882 942 915 901
74.31 87.0 914 928 922 897
61.70 78.0 0.0 0.0 0.0 0.0
64.73 66.0 0.0 0.0 0.0 0.0
64.04 5.0 938 897 925 887
72.86 51.0 839 941 939 894
63.08 57.0 530 565 590 659
36.62 67.0 908 912 920 909
62.71 70.0 479 533 573 486
36.77 46.0 927 921 930 895

Table 3.1: A subset of PDR measurements and LIDAR-derived path features

3.4 Topology optimization

The topology optimization consists of three steps: (1) determining the potential connectivity
across the region of interest; (2) finding a minimal set of repeaters which connects all the
sensor stations to the base station; (3) adding repeaters to maximize the connectivity of the
mesh, up to the allowable budget of repeaters. First, repeaters were placed throughout the
domain at 10 m intervals. Second, the PDR model from Section 3.3 was used to determine
where links were likely to form. The PDR for a good link was required to be 75% or better.
Third, a minimal set of repeaters was found to connect the sensor stations to the base station
with at least 2-vertex-connectivity (the removal of any node will not disconnect the network)
and 3-edge-connectivity (every node has at least 3 good neighbors) in the network topology.
Finding minimal network topologies with guarantees on high-order connectivity has been
shown to be MAXSNP-hard (no known Polynomial-Time Approximation Scheme exists)
[92]. Therefore, an efficient heuristic algorithm was employed in order to find a minimal set
of repeaters. A fast approximation algorithm for the Steiner tree problem [55] was used to
find a minimal set of repeaters that fully connects the network (1-Vertex connectivity). This
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Figure 3.3: Predicted PDR at every 1 m2 grid cell based on PDR measurements and LIDAR
data given a transmitter at (150,150). Only dark-green links would be considered in the
topology optimization component.

algorithm has low time complexity (O(‖S‖‖V ‖2), for V total nodes, with S sensor stations.
At each articulation point in the graph, additional repeaters were added to maximize the
edge-connectivity to the adjacent nodes, until the final network is at least 2-vertex connected
and 3-edge connected. An example set of initial placements is shown in Figure 3.5.

3.5 Results and discussion

The layout and number of repeaters determined by the algorithm is similar to the final
network layout determined by the field team in [50]. Thirty-three repeaters were placed by
the algorithm, compared to thirty-four in [50]. Where there is dense vegetation, the longest
links selected by the algorithm are approximately 50 m, which accords with the findings and
recommendations in [50]. Note that the algorithm takes advantage of longer line-of-sight
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Figure 3.4: The connectivity is evaluated by placing repeaters throughout the region and
evaluating potential network links.

pathways between the trees in the meadows to reduce the required number of repeaters.
These results indicate that the algorithm can effectively search through complex terrain

to determine a reasonable network topology in order to guide the field team towards an initial
set of placements. The estimated PDR should not be taken as a guarantee of path quality,
however. In the present study PDR was found to vary considerably, particularly within
vegetation. Moving links by just a few meters could result in PDR declining to zero despite
similar path distance and vegetation characteristics. This also accords with the findings in
[50]: the authors observed large temporal variability in the number of neighbors and path
quality, which were not directly attributable to distance or vegetation. These effects may
be attributable to factors such as destructive interference, multi-path fading, and changing
environmental characteristics, such as relative humidity. It should also be noted that in
seasonally snow-covered environments, surface characteristics can change dramatically as
snow accumulates and melts, which is likely to affect long-term PDR.
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Figure 3.5: Repeater placements determined by the algorithm.

It will likely never be possible to predict PDR at any given time in even the simplest
environments [104]. The factors affecting PDR in this and prior studies are inherently
unpredictable, which underscores the importance of deploying redundant network topologies
to ensure data continues to be received in the event of single node failures. The link predictor
in the present study is only approximately 70% accurate in predicting good links in the cross-
validated dataset. Therefore, it will likely always be necessary to have a field team validate
the placements and make adjustments. Despite this, the algorithm and data presented in this
chapter may provide a useful starting point for field teams to determine how many repeaters
are required for a given environment. It also provides fixed starting points for field teams
so they can place the network, find the few links that are not working and adjust them,
rather than continuously rearranging the network, which prevents the mesh from forming
optimally.
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Chapter 4

Long-term accuracy of soil moisture
estimated from in-situ sensors

4.1 Introduction

The prior two chapters discussed methods for optimizing wireless snow observatories. Many
of these observatories are also equipped with soil moisture sensors, which provides a more
complete estimate of the water balance at each node location. This chapter evaluates the
long-term accuracy of estimating soil moisture from in-situ sensors in complex terrain. Soil
moisture variability is controlled by multiple factors, including soil texture, controls on water
routing, and aspect [70, 23, 110, 71, 105]. In montane regions, basin-scale estimation of soil
moisture is confounded by complex topography, heterogenous subsurface properties, snow-
soil interactions [106], and spatial variability of snow depth [69]. Though passive microwave
monitoring of soil moisture enables remote observation of surface soil moisture, it is too coarse
to capture spatial variability in the complex terrain of montane regions [7]. Remote-sensing
techniques also only capture surface (typically 10 cm or above) soil-moisture storage [77,
103]. Observing only surface storage is insufficient for understanding controls on ecological
functioning, as tree roots in these regions are present beyond 100 cm depth [8].

Recent advances in low cost sensor networks are enabling the deployment of more spa-
tially extensive in-situ soil moisture measurements at a range of depths. Studies have sug-
gested that an integrated sampling strategy could extrapolate in-situ measurements to un-
instrumented regions in a basin [7, 46]. Developing a strategic and systematic approach
for in-situ observation networks requires a long-term understanding of the accuracy of these
methods as well as the controls on soil moisture. In seasonally snow-covered, semi-arid re-
gions such as the Sierra Nevada, interannual patterns of precipitation and snowpack are
highly variable [42]. This variability is exemplified by the multi-year drought in the Sierra
Nevada that began in fall 2011, which has significantly lowered precipitation and snowpack-
water storage, affecting water availability for local ecosystems and downstream stakeholders
(California DWR Cooperative Snow Survey, cdec.water.ca.gov). The effect of these changes
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on soil moisture availability in the rain/snow transition is of particular interest, as spatial
patterns of soil-water storage affect catchment-scale water fluxes, including summer base
flow in streams [10], biogeochemical processes and ecosystem health. Long-term changes in
climate may also alter hydrologic processes in snow-dominated regions [11].

As the amount and timing of water entering the soil exhibit considerable inter-annual
variability, predictors designed to extrapolate in-situ soil-water storage in average water years
may not work well for years that are significantly wetter or drier. While there have been lim-
ited reports of catchment-scale soil moisture variability in these regions [106, 8], a long-term
study of the attributes controlling patterns has not been reported. It is presently unclear how
long-term variability will affect the predictive accuracy, and relative independent variable
ranking, of soil moisture estimation. A long-term understanding of inter-annual differences
in these features would benefit modeling, sampling strategies, and our understanding of
ecological processes.

The aims of the present study were to: (i) quantify the accuracy of an ensemble regression
tree algorithm (Random Forest) in estimating spatial soil moisture patterns over time at un-
instrumented locations from in-situ measurements; (ii) identify which landscape attributes
are most informative for predicting intra-annual and inter-annual patterns of soil moisture;
(iii) determine whether dry years alter the estimator accuracy or temporal trends of inde-
pendent variable ranking; and (iv) identify differences in the physical processes affecting
soil-water storage in wet, dry, and average water years.

4.2 Methods

A 6-year dataset of spatially distributed water-balance measurements at the Southern Sierra
Critical Zone Observatory (SSCZO) in the Kings River basin was used to quantify the long-
term accuracy of soil moisture estimation in a montane environment. Soil moisture mea-
surements at 10-, 30-, and 60-cm depths were co-located with snow-depth sensors, designed
to capture gradients of physiographic features found to affect soil moisture (slope, aspect,
elevation, and vegetation canopy cover) [8]. The data included a very wet water year (2011),
years with near-average precipitation (2009-2010), and a record-dry period (2012-2014).

Site description and data collection

The Southern Sierra CZO is located in the Kings River basin of the Southern Sierra Nevada
(Figure 4.1). It is situated in a mixed-conifer forest east of Fresno, California and contains
sensors distributed across the rain-snow transition. The region receives mainly rain below
1500-m and snow above 2200-m elevation [8]. Soils are weakly developed and formed from
decomposed granite [18]. Higher-elevation soils have a hard soil-bedrock interface, whereas
soils at lower elevations have a deeper paralithic contact [8].

Data for the present study were collected from eighty-one soil-moisture sensors in the SS-
CZO deployed at twenty-seven water-balance nodes, which were placed into distinct higher-
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Figure 4.1: Study site location and sensor distribution. Left-hand panel shows the providence
catchments, within the Critical Zone Observatory and the locations of the upper and lower
clusters of sensor nodes within the basin. Right-hand panels show the distribution of sensors
at upper and lower met with respect to the 1-m2 LIDAR DEM (top panels), and canopy
(bottom panels).

and lower-elevation clusters. Each node consists of an ultrasonic snow-depth sensor (Judd
communications) and 3 to 4 co-located soil moisture and temperature sensors (Decagon EC-
TM) at 10-, 30-, 60-, and 90-cm depths. The 90-cm measurements were not used in the
present study as they are only installed at a subset of nodes, owing to limitations on hand
excavation for installations in rocky saprolite. Data from 2 sensors (10cm south lower ppde
and 60cm north lower open) were not used due to unreasonable values in the level two data.
The higher-elevation site (abbreviated UM), had a cluster of 17 nodes, and lower-elevation
(LM) site 10 nodes. The distribution of nodes was designed to capture gradients in slope,
aspect, and canopy distribution. The following abbreviations for each node are used in the
remainder of the article: (F/S/N) refers to nodes with flat, south-facing, and north-facing
aspects, respectively; (uc/de/open) refers to nodes that are under canopy, at the drip edge,
and open; and tree types are abbreviated AC: Abies concolor, PP: ponderosa pine, QK:
black oak (Quercus kelloggii), PL: sugar pine (Pinus lambertiana) and CD: incense cedar
(Calocedrus decurrens). Daily soil moisture storage, S(t)i for each node, i was determined
by depth integrating the volumetric water content (VWC) data:

S(t)i = θ10cm∆z0−10cm + θ30cm∆z10−30cm + θ60cm∆z30−60cm (4.1)
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Topographic properties at each node (elevation, slope, aspect) were derived from a LIDAR
digital elevation model of the region from the NSF open topography database (opentopog-
raphy.org, accessed Sept 2016). The grid size of the computed variables was 1 m (derived
from an average of 11.65 returns per square meter) [5]. Node locations were measured with
a Trimble GPS (horizontal accuracies between 0.6 and 1.4 m).

Soil moisture estimation

To determine the long-term accuracy of soil moisture estimation from the in-situ measure-
ments, an ensemble regression-tree algorithm (Random Forest, see [14]) was applied to the
daily storage data as well as volumetric water content at each layer individually. Classifica-
tion and regression tree (CART) algorithms can be used to build predictors when independent
variables are a mix of continuous and categorical features (e.g. topographic-wetness index
and location type in the present study). A single regression tree is known to overfit data,
particularly when the number of features and number of samples are similar in magnitude
[32]. To address this, ensemble tree algorithms such as Random Forest combine estimates
from multiple CART models to arrive at an estimate of the true output. These methods
have seen recent adoption in a variety of fields, such as remote sensing [34] and upscaling
eddy-covariance measurements [49].

Five independent variables were used in the estimator for the present study: soil texture,
topographic wetness, elevation, northness, and location type. Soil-texture properties were
extracted from a prior survey, [8], and are shown in Table 4.1 for reference. Note that texture
of the lower-elevation nodes (LM) is significantly finer than that at the higher-elevation
nodes. The topographic-wetness index (TWI) was derived from the LIDAR elevation raster
using the equation in [12],

TWI = ln
a

tan(b)
(4.2)

where a is the upslope contributing area per unit contour and tan(b) is the local slope. To-
pographic wetness was processed using the built-in module available at opentopography.org.
Elevation was represented as an integer-based categorical variable representing the high and
low clusters to minimize the collinearity with other features. Northness was computed from
the LIDAR slope and aspect rasters:

northness = sin(slope)× cos(aspect) (4.3)

Finally, location type was encoded as one of three categorical variables representing drip
edge, under canopy, and open. The node properties are summarized in Table 4.1.

The regression was implemented using the Random Forest module in Scikit-learn version
18.1. One hundred trees were used in the ensemble. A new regression was performed each
day in the six-year study period for depth-integrated soil-water storage as well as for the
VWC in the 10-, 30-, and 60-cm layers individually. Average soil texture was used when
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Figure 4.2: Illustration of the ensemble tree-based regression algorithm for depth-integrated
storage. One of the 100 estimators is shown. The feature importances are derived from the
relative rank of the variable averaged across all trees.
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Table 4.1: Properties for each node. Soil texture (clay% + silt%) shown for 10-, 30-, and 60-
cm layers. Upper met soils are weakly developed, lower met are well developed, containing
more clay and silt.

Node 10 cm (texture) 30 cm 60 cm TWI Elevation Northness

North upper acde 29.87 25.30 27.02 5.70 1979.25 0.22
North upper acuc 24.98 23.75 22.52 7.14 1978.99 0.24
North upper cdde 23.78 21.32 17.00 6.79 1977.37 0.36
North upper cduc 21.04 17.98 9.85 7.29 1978.38 0.31
North upper open 25.93 21.88 21.36 4.44 1974.63 0.18
North upper plde 24.14 21.98 22.79 4.67 1977.21 0.08
North upper pluc 23.25 21.96 20.42 6.85 1977.92 0.26
South upper acde 24.32 21.58 13.93 5.42 1974.90 -0.26
South upper acuc 23.84 19.75 16.50 3.46 1974.85 -0.18
South upper open 23.75 18.92 15.20 3.62 1976.78 -0.14
South upper qkde 23.41 19.27 17.55 3.49 1976.91 -0.20
South upper qkuc 22.70 19.92 17.67 4.51 1977.30 -0.25
Flat upper acde 19.61 14.35 13.46 5.69 1983.15 0.03
Flat upper acuc 16.23 11.64 11.00 3.64 1983.17 0.02
Flat upper open 22.00 23.24 25.15 3.20 1982.62 0.06
Flat upper ppde 29.07 24.10 24.47 5.50 1982.60 -0.02
Flat upper ppuc 30.13 25.58 26.02 3.48 1982.63 -0.02
North lower acde 29.08 27.74 26.64 2.84 1732.00 -0.11
North lower acuc 32.61 31.02 28.71 6.24 1732.08 -0.01
North lower open 23.00 20.41 20.44 1.96 1733.14 -0.09
North lower cduc 32.37 33.21 34.35 1.48 1732.49 -0.05
North lower cdde 36.57 34.23 31.45 6.02 1732.80 -0.02
South lower cdde 35.88 37.50 38.66 1.73 1737.03 -0.12
South lower cduc 35.11 37.21 35.29 1.77 1737.26 -0.11
South lower open 38.50 34.03 41.88 4.77 1737.45 -0.15
South lower ppde 36.03 32.59 32.86 4.94 1738.47 -0.18
South lower ppuc 37.77 35.37 33.71 3.39 1738.33 -0.27
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applying the algorithm to the depth-integrated soil storage. The predictive accuracy of the
algorithm was quantified with the coefficient of determination (R2) using the out-of-bag error
for the Random Forest (oob score in Scikit-learn). Where there were gaps in the daily mea-
surements, the data were excluded from the algorithm for that day. The relative importance
of each independent variable was determined from the feature importances attribute of the
predictor, which determines the relative contribution of each independent variable based on
how frequently it is used in the CART estimator, averaged over all trees in the ensemble
[82].

4.3 Results

The soil moisture storage in average precipitation (WY 2009), wet (WY 2011), and dry (WY
2014) years is shown in Figure 4.3. The results are discussed with respect to the wet-up,
high-flux, and dry-down phases, which are labeled on the figure.

Soil moisture estimation

During the six-year study period, the predictor accuracy and the relative contribution of each
physiographic variable differed considerably (Figure 4.4). The top panel shows the daily data
for precipitation, soil-moisture storage, and snow depth. This panel illustrates the inter- and
intra-annual variability of these quantities. The second panel shows the predictive accuracy
(R2 of predicted and measured data) of the ensemble regression tree. Each lower panel shows
the relative importance of each physiographic variable in the ensemble.

The accuracy is highest during the high-flux and early dry-down periods of wet years
(2010-11). At the end of the dry-down period in all years, the coefficient of determination
declines to near zero. The low accuracy period typically lasts for one to two months, before
a new influx of precipitation restores the predictive accuracy on the wet-up period. During
the high-flux period of each year, large changes to the snowpack state result in a temporary
decrease in accuracy (e.g., R2 decreases from 0.4 to 0.05 during an early season melt event
in 2009 and from 0.6 to 0.2 in 2010). Drought conditions exhibit extended periods of low
accuracy: during WY 2012 and 2014 the R2 is near-zero for four months (July-October). By
WY 2014, dry conditions coincide with lower accuracy even during the high-flux period.

Soil texture is the highest-rank predictor of soil-water storage during high-flux periods,
with elevation and northness contributing as well. The importance of texture declines dur-
ing early dry-down, with that of elevation and northness increasing. Topographic wetness
becomes important as dry-down progresses. During this late dry-down period, northness
and location type exhibit some importance, but less than soil texture. The importance of
topographic wetness increases during the dry-down process, after the snowpack has finished
melting, however the out-of-bag R2 is low. During dry years the importance of topographic
wetness remains high for a longer portion of the water year. The relative importance peaks
during the initial distribution of snow and during the initial dry-down period. The impor-
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Figure 4.3: Mean depth-integrated soil-water storage for average-precipitation (WY2009),
wet (WY2011), and dry (WY2014) years in three different periods of the water year.
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Figure 4.4: Ensemble regression-tree predictive accuracy and independent variable ranking
for six water years. Top panel shows daily precipitation, mean soil-moisture storage, and
mean snow depth. Second panel shows predictive accuracy (coefficient of determination) of
ensemble prediction algorithm. Lower panels show relative importance of each predictive
variable, values for which sum to 1.0.
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tance of elevation peaks just as the last of the snowpack is melting, slightly earlier than
topographic wetness. In dry years, the contribution of elevation declines entirely. The im-
portance of northness typically peaks early in the water year, just before and during the
early accumulation of snow pack. Finally, location type exhibits minimal importance in any
year. The peak in its importance in late 2012 should be disregarded as it corresponds to a
zero-accuracy period for the estimator.

When the predictor is applied to VWC data at each depth individually (Figures 4.5,
4.6, and 4.7), there are large variations in predictability and relative feature ranking. The
accuracy is higher for the 60-cm layers than for the 30- or 10-cm layers. Surface (10-cm
layers) are most predictable during the high-flux and dry-down phases of wet years, whereas
subsurface (60-cm layers) are most predictable during the wet-up and high-flux phases.
The accuracy in the intermediate (30-cm layers) is consistently lower than the other layers,
showing extended periods of zero R2. Northness, elevation and soil texture are the highest-
rank predictors for the 10-cm layers, whereas only elevation, topographic wetness and soil
texture are strong predictors for the 60-cm layer. In the 60-cm layer, the duration of the high-
importance for elevation declines, while the importance of topographic wetness increases.

Differences in the physical processes affecting soil-water storage in
each water year

In dry years, differences in the wet-up period were associated with drier lower soil layers,
which are not affected by initial inputs of precipitation, illustrated in Figure 4.8. The figure
shows the soil moisture storage for all layers of a single node, a drip-edge node near a
ponderosa pine in the upper met station. Conditions at the end of the dry-down period are
nearly identical in wet and dry years. Lower-layer soils are all just below 0.1 VWC. The 10-
cm soils are drier than the lower layers in both years (around 0.03 VWC). In wet years, early
season precipitation affects all soil layers, resulting in a highly correlated response across the
soil column. In dry years, shallow soil layers respond to precipitation, but lower-soil layers
are not affected. Deeper soils do not begin to store water until well into the high-flux period.
Similar patterns are seen across many of the other vertical soil moisture transects (data not
shown).

Differences during the high-flux period were associated with a transition to non-continuous
snow cover during dry years. Unlike the wet-up period, which was characterized by dry lower-
layer soils, upper soil layers in the high-flux period show greater declines due to multiple
winter-spring melt events. The coincident increases in soil temperature, diurnal soil tempera-
ture fluctuations, and correlated ET increases, suggest that some of the storage is potentially
being partitioned into evaporation rather than infiltration (Figure 4.9). The lower three pan-
els show mean snow, soil moisture, soil temperature, and patterns for wet and dry years; the
top panel shows coincident evapotranspiration patterns during dry years.

Physical differences in the dry-down period are minimal. Initial storage conditions in
dry years are lower, resulting in a more uniform distribution of soil moisture across the
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Figure 4.5: Ensemble regression-tree predictive accuracy and independent variable ranking
for six water years at 10 cm depth. Top panel shows daily precipitation, mean 10-cm VWC
data, and mean snow depth. Second panel shows predictive accuracy (coefficient of deter-
mination) of ensemble prediction algorithm. Lower panels show relative importance of each
predictive variable, values for which sum to 1.0.
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Figure 4.6: Ensemble regression-tree predictive accuracy and independent variable ranking
for six water years at 30 cm depth. Top panel shows daily precipitation, mean 30-cm VWC
data, and mean snow depth. Second panel shows predictive accuracy of ensemble prediction
algorithm. Lower panels show relative importance of each predictive variable, values for
which sum to 1.0.
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Figure 4.7: Ensemble regression-tree predictive accuracy and independent variable ranking
for six water years at 60 cm depth. Top panel shows daily precipitation, mean 60-cm VWC
data, and mean snow depth. Second panel shows predictive accuracy of ensemble prediction
algorithm. Lower panels show relative importance of each predictive variable, values for
which sum to 1.0.
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Figure 4.8: Soil moisture at a single node in wet (2009) and dry (2014) years. In dry
years, initial precipitation has minimal effects on lower levels of soil moisture, resulting in a
de-coupling of storage in the upper and lower layers.
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Figure 4.9: Snow-off conditions during the typical high-flux period of WY 2014 resulted in
soil moisture storage decline, increased soil temperature, and coincident increases in ET.
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Figure 4.10: Coefficient of variation for wet and dry years (WY2009 and 2014, respectively).
Dry years are characterized by greater variability during the wet-up period, and lower vari-
ability during the high-flux and dry-down periods.

region during the dry-down process. This is reflected in the coefficient of variation of all
nodes (Figure 4.10). The typical water year exhibited a steep increase in the coefficient of
variation during the summer months. The dry year exhibited a more gradual increase.

4.4 Discussion

The variability of the predictor accuracy and independent variable ranking in the present
study accord with the results in [105] and [106], which found significant seasonal variability
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in the degree to which terrain indices explain the distribution of soil moisture. Topographic
features exhibit predictable seasonal controls on soil moisture storage in typical water years,
but are altered by drought conditions (Section 4.3). Across all layers, wetter soils tend to
be more predictable, which accords with the findings in both prior studies. However, the
short-term predictive accuracy can decrease during wet periods due to significant changes
in the snowpack (e.g., melting during January 2009 and 2010). Also, soil moisture storage
for large precipitation inputs during the wet-up period is not predictable. Given these
findings, confidence in the statistical modeling of soil moisture storage must incorporate daily
knowledge of the snowpack state, soil moisture state and precipitation. This underscores
the importance of deploying complete water-balance instrument clusters to un-instrumented
regions rather than soil-moisture sensors alone. The most consistently predictable period
during all years occurred during the dry-down period, shortly after the snow depth declined
to zero. The predictive accuracy remains high during the dry-down process for the spring
and summer months, but declines thereafter.

Inter- and intra-annual differences in the independent variable ranking may be explained
by different water-routing processes during each part of the water year. The northness
terrain attribute was more highly ranked for surface (10cm) water storage, likely a result
of radiative variability affecting soil-water storage near the surface. Deeper soil layers were
more affected by topographic wetness and elevation, which may reflect different snow-soil
interactions. The relative importance of elevation declined in dry years, perhaps due to the
decreasing differences in snowpack between the upper- and lower-elevation sites.

These results suggest sensor-placement strategies must account for the relative impor-
tance of predictive features, which vary across seasons and depths. The distribution of
surface soil moisture sensors should aim to capture differences in soil texture and northness,
whereas subsurface sensors should aim to capture variability of topographic wetness, soil
texture and elevational differences. Sampling strategies for dry years should aim to capture
greater variability of topographic features such as topographic wetness and northness.

Section 4.3 revealed that extremely dry years are characterized by physical changes which
alter soil moisture storage patterns across the basin. Dry lower-soil layers and minimal input
precipitation resulted in a decoupling of lower- and upper-soil moisture storage in the wet-up
period. In typical water years, tightly coupled soil layers make observations of the surface
storage a good proxy for lower-level storage. In dry years, the upper- and lower-level soil
moisture are less tightly coupled. Remote sensing tools, which measure only surface soil
moisture may overestimate soil storage in the lower soil column during dry years, and may
underestimate soil storage during transient snow-off conditions. During the wet-up period
of dry years, remote sensing may therefore underestimate plant-available water in the soil.

4.5 Conclusion

Four conclusions can be drawn from the findings in this chapter: (1) An ensemble regres-
sion tree algorithm using topographic features and soil texture as independent variables
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exhibits higher accuracy estimating depth-integrated water storage and soil moisture at var-
ious depths during wet years than during dry years. (2) Soil texture has consistently high
feature importance across all soil layers. Other landscape attributes exhibit seasonal trends:
northness peaks during the wet-up period, and elevation and topographic-wetness index
peak during the late high-flux and early dry-down periods, respectively. (3) The relative
rank of each predictor exhibits temporal variability with predictable seasonal trends during
wet years, which do not persist during dry years. (4) Physical drivers of altered soil-moisture
patterns in dry versus wet years included lower-than-average deep soil storage, and more fre-
quent snow-off conditions, resulting in a decoupling of upper and lower layers of the soil
column.
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Chapter 5

Design Framework for Autonomous
Lagrangian Sensors in the
Sacramento-San Joaquin Delta

5.1 Introduction

This chapter describes the design methodology for a network of robotic Lagrangian floating
sensors designed to perform real-time monitoring of water flow, environmental parameters,
and bathymetry of shallow water environments (bays, estuarine and riverine environments).
Unlike previous Lagrangian sensors which passively monitor water velocity, the sensors de-
scribed in this chapter can actively control their trajectory on the surface of the water and
are capable of inter-sensor communication. The addition of these functionalities enables La-
grangian sensing in obstacle-encumbered environments, such as rivers. The Ishikawa cause
and effect design framework is used to ensure that the final system synthesizes the diverse
operational and functional needs of multiple end user groups to arrive at a broadly applica-
ble system design. A summary of potential applications for the system is given, including
completed projects performed on behalf of the Department of Homeland Security, Office of
Naval Research, and the California Bay-Delta Authority.

A Lagrangian sensor is an instrument used in the field of oceanography and hydrodynam-
ics to monitor the currents and other physical properties of large-scale hydraulic systems.
The instrument measures the water velocity by moving within the medium, along a trajec-
tory of the flow (as opposed to an “Eulerian” sensor which measures the properties of the
medium from a fixed location). It measures other physical properties, such as temperature,
turbidity, and dissolved oxygen, with a variety of onboard sensors. Lagrangian sensors have
seen extensive use in the oceanographic community since 1955 [96]. In the field, they are
referred to as “drifters.” Early drifters used acoustic communication to transmit data to
researchers [35]. Their capabilities expanded in 1978 with the introduction of the Argos
satellite service, which enabled remote communication of sensor data and location [17]. Ex-
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amples of Argos-enabled units include the Costal Dynamics Experiment drifter [19], and the
Low Cost Tropical Drifter [76]. In the oceanographic community, these sensors are usually
“passive,” meaning they have no actuation capabilities.

The design of oceanographic drifters generally consists of a buoyant spherical or cylindri-
cal housing for the sensors and communications equipment, which is tethered to a drogue.
The drogue extends into the water and is designed to capture the current by presenting a
large, symmetric drag profile to oncoming flow. For example, the Low Cost Tropical Drifter’s
sensor housing is a PVC tube which is 11.4 centimeter diameter and 2.9 meters long. It is
designed to be positively buoyant such that 0.4 meters of the cylinder are above the surface
of the water. The drogue is attached by a 7.5 meter nylon tether which is 1.6 cm in diameter.
The drogue itself is a perforated cylindrical tube which is 10 meters long and 50 centimeters
in diameter. Similarly, the TRISTAR drifter consists of a 48 centimeter fiberglass sphere
tethered to a 557 centimeter by 544 centimeter symmetric drogue.

A logical extension of the oceanographic research in Lagrangian sensing is to develop
sensors for near-shore environments such as rivers and bays. It is important to instrument
such environments because most of the renewable freshwater available for human use flows
through rivers [78]. Lagrangian sensors can be used in this context to better monitor the flow
of freshwater and the transport of constituents therein. Specific examples include assessing
vulnerabilities to contaminate spills or infrastructure failure in critical water-resource regions,
planning reservoir release and gate control policies to affect the intrusion of saltwater, and
monitoring the effect of heavy agriculture use on freshwater supplies.

Simply scaling down the oceanographic design paradigm will not work for Lagrangian
sensors operating in constricted domains. In such environments, the possible locations of
the sensor represent more space relative to the boundaries of the environment, and sensors
can easily become entangled on the shore. Also, because rivers are obstacle-encumbered
and contain many branches, there are situations in which the sensor’s motion must be ac-
tively controlled, rendering passive sensors less useful for monitoring missions. Finally, in
rivers, sensors move through the experimental domain faster, requiring more frequent de-
ployments and retrievals. Thus, a new sensor must be designed that retains a suitable form
factor for Lagrangian sensing, but adds capabilities such as active control and inter-vehicle
communication.

Fortunately, recent developments in sensor networks for aquatic sensing have made op-
erations in constricted environments feasible. Examples include the AMOUR project at
MIT [21], the NEPTUS Autonomous Underwater Vehicle (AUV) at LSTS in Portugal [95],
submersible pneumatic drogues built at UCSD [41], the Slocum underwater drifters at
MBARI [13] and the Smart Bay sensor network in Galway Bay [90]. In many cases, these
projects have added the communication and actuation capabilities necessary for operations
in constricted environments. Many of these Autonomous Underwater Vehicles (AUVs), such
as the submarines used in LSTS, are not suited for Lagrangian sensing in rivers specifically.
The overall size and shape of a submarine is not appropriate for Lagrangian sensing since it
does not present a symmetric drag profile to the flow, and the deployments require specialized
equipment.
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This chapter details the design for the physical sensors in such a network. The use of
a design methodology adapted from the Ishikawa “cause and effect” framework (discussed
in detail below) has enabled the creation of an electro-mechanical system which balances
the diverse needs of a wide range of end-user groups. This chapter presents an overview of
the Floating Sensor Network system, a discussion of the design methodology used for the
physical sensors, and a detailed explanation of how each component of the system evolved
from the methodology. The chapter concludes with three case studies in which the design
decisions were validated in real-world tests.

5.2 System Design Overview

The UC Berkeley Floating Sensor Network [1] is a system of robotic Lagrangian sensors de-
signed for use in shallow water environments [3, 100]. The system is comprised of the robotic
sensors shown in Figure 5.1, as well as the communication and visualization infrastructure
required to transmit and display the data in real time.

Each robotic sensor consists of a cylindrical hull which contains batteries, communications
equipment, GPS, and onboard processors. Onboard sensors for salinity, temperature and
depth extend from the base of the vehicle.

Figure 5.2 shows a schematic of the full drifter-backend system, which consists of an
integrated computational support tool and platform linked to the floating sensors. Data
from the sensors can be intercommunicated between vehicles using 802.15.4 radios. Data
is also sent back to a central server using the GSM cell phone data network. The system
enables the data from the sensors to be assimilated and visualized in real time, giving the
end user live access to the sensor data. It also assists field operations by providing a constant
stream of vehicle diagnostics and position data.

The velocity measurements inferred from GPS can be combined with measurements from
a static infrastructure maintained by the US Geological Survey [100]. The computations nec-
essary to take data from the sensors in the field and create an estimate of the entire system is
called data assimilation. This is an estimation problem characterized by sparse sensor data.
Several techniques can be used to perform data assimilation using these streaming data mea-
surements. For example, the velocity estimates can be assimilated with an Ensemble Kalman
Filter algorithm to generate velocity estimates for the rest of the river system [94] [100]. This
technique incorporates the sparse sensor data with a model of the hydrodynamic system,
such as a two-dimensional shallow water equation, to arrive at an improved state estimate
of the system. These estimates are sent back to the processors on the vehicles for path
planning.

The vehicle positions, sensors readings, and state estimates from the Ensemble Kalman
Filter algorithm are available online in real time through a visualization tool developed at
UC Berkeley called DIVA, built on Google mapping technology (see Figure 5.3).
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Figure 5.1: Floating Sensor Network vehicle design.

5.3 Design Methodology

During the design process of an electro-mechanical system with interrelated system com-
ponents, it is important to be able to track and prioritize the desired functionalities of
the final system. During the prototyping phase of the Floating Sensor Network, multiple
prototype designs were rejected because they failed to address key system functionalities,
which were overlooked in the design process. For example, Section 4.3 describes a prototype
actuation system which failed to meet fundamental portability, serviceability and sensing
requirements because they were not sufficiently managed during design. The prototype was
developed without a formal design methodology, and its early failure to balance functional
requirements underscores the utility of a system to manage the design process.

A general approach to prioritizing and interrelating system components during the design
process has been adapted from the Ishikawa “cause and effect” process [48, 107]. In this
approach, the desired system functionality is related through a cause and effect or “fishbone”
diagram. The item in the center of the fishbone diagram is the desired outcome for the
system, and the branches, or “causes” leading up to that effect are arranged by priority. In
the diagram, components or “causes” with higher priority are closer to the desired outcome
for the system. This approach facilitates prioritization of system functionality during the
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Figure 5.2: Schematic of the drifter-backend system, including floating sensors and backend
computational infrastructure.

design process and guides the selection of specific system components. In this manner,
once the general system requirements (or “functional requirements”) are enumerated and
prioritized, a second fishbone diagram can be created with specific “design parameters” in
place of the functional requirements.

The Ishikawa diagram in Figure 5.4 presents the generic functional requirements of the
Floating Sensor Network. Figure 5.5 presents an Ishikawa diagram with the same structure,
but with each component replaced with specific “design parameters”. For example, “sense
location” has been replaced with GPS system, and “Lagrangian sensor” has been replaced
with “vertical profile, symmetric drag”. The following sections provide a more detailed
explanation of how the design parameters for each component on the Ishikawa diagram
affect the final system design.
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Figure 5.3: Vehicle position and water velocity computed from the Ensemble Kalman Filter
algorithm running in the background server are available on the web in real-time.

5.4 Vehicle Design

Sections 4 and 5 follow the prioritization order from the Ishikawa diagram. They explain
in detail how the functional requirements from Figure 5.4 evolved into the specific design
parameters listed in Figure 5.5 during the design process.

Form Factor

As indicated by its position in the Ishikawa diagram, the form factor (or overall size and
shape of sensor) is one of the most important considerations in the design process since it
determines the vehicle’s effectiveness as a Lagrangian sensor. Previous studies have indicated
that appropriate Lagrangian sensors must maximize their cross sectional area to flow and
should present a roughly symmetric drag profile [94]. Additionally, feedback from researchers
and operators in the Office of Naval Research indicated that each sensor should be man-
portable since the vehicles are usually deployed by a small team from a boat with limited
space and/or payload.

To ensure that the vehicle lends itself to Lagrangian sensing, its hull is a vertically-
oriented cylinder. It is designed to sit low in the water with mass and volume configuration



CHAPTER 5. DESIGN FRAMEWORK FOR AUTONOMOUS LAGRANGIAN
SENSORS IN THE SACRAMENTO-SAN JOAQUIN DELTA 58

Figure 5.4: Complete Ishikawa diagram for design process with functional requirements.

that makes it hydrostatically stable. It also must have a sizable cross sectional area to ensure
that it settles into the local flow as quickly as possible.

To ensure portability, size and weight constraints were enforced during the design process.
Each vehicle was not to weigh more than seven kilograms, exceed twenty centimeters in
diameter or fifty centimeters in length.

In order for the system to be broadly applicable for multiple end users, the vehicle must
be able to carry a variety of immersed sensors. Therefore, a modular PVC sensor mounting
plate was designed into the bottom of the vehicle as shown in Figure 5.6. It is 12 centimeters
in diameter and 2 centimeters thick, ensuring ample room exists for a variety of threaded
interfaces and o-ring seals.

Finally, to ensure that the vehicles are field serviceable, each functional system is a mod-
ular unit which can easily be removed and replaced. As shown in Figure 5.7, the vehicle
consists of the following systems: propulsion pods, power electronics and sensors, and com-
munications electronics. With the exception of the propulsion pods, each system can be
removed and replaced without the use of hand tools.
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Figure 5.5: Complete Ishikawa diagram for design process with design parameters.

The height of the antennas for communication and sensing is an important design pa-
rameter dictating form factor. Early tests with prototypes indicated that the antennas for
the GPS, GSM, and 802.15.4 radios all needed to be at least 2.5 centimeters above the water
surface to guarantee a consistent signal.

Another parameter dictating form factor and overall dimensions was mission life. The
external diameter of the main hull is fixed by the pre-fabricated housing chosen for the upper
hull. The overall length of the vehicle into the water could be varied to accommodate larger
or smaller batteries. The final vehicle length was chosen to accommodate a battery capable
of 72 hours of mission life (see Section 5 for details) while not violating the man-portability
functional requirement.

Finally, it was imperative that the mass be distributed so that the vehicle be hydrostat-
ically stable in the desired orientation. Therefore the battery was located low in the vehicle
to ensure that the center of mass was below the center of buoyancy. The motor pods were
also located as close to the center of mass as possible in order to minimize any unnecessary
moments acting on the vehicle during steady state operation.
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Figure 5.6: Side view of lower sensor mounting plate with single beam depth finder installed.

Sensing

The fundamental sensing mission of the vehicle is to measure the river velocity and to make
measurements of water quality factors. Because velocity is not uniform across the water
column, hydrodynamic models are needed to infer the velocity deep in the water, hence the
necessity of the backend computing infrastructure discussed previously.

The water quality sensor currently used is the Omega CDE222 temperature and electro-
conductivity sensor. An estimate of the salinity of the water can be made from these two
quantities. The Omega CDE222 is normally a hand-held laboratory sensor; it is inexpensive,
and its form factor is convenient for integrating directly into the drifter, making it a good
choice for a representative water quality sensor.

The most convenient way to estimate position and velocity in outdoor environments at
reasonable accuracies is a civilian GPS unit. Factors to consider when selecting an OEM
GPS unit include power consumption, form factor, accuracy, and ease of integration. The
Magellan AC-12 GPS unit is slightly larger than other available units, but has higher ac-
curacy; 1.0 m Circular Error Probable (CEP) as opposed to 2.5 m CEP, which is the more
usual accuracy of low-cost, commercial grade OEM GPS units. This GPS unit also provides
an estimate of the velocity of the drifter. This is important both for the passive sensing
function of the drifter as well as for control during active propulsion. Because of the non-
trivial interaction between the thrust generated by the propellers, the rotational and linear
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Figure 5.7: Modular structure of vehicle’s internals: (from left to right) Delrin lower hull with
removable motor pods, lower electronics assembly with battery and sensors, upper electronics
assembly with microprocessors and guidance/location sensors, and clear PVC upper hull.

drag from the surrounding water, and the unknown velocity of the surrounding water, it
would be very difficult to estimate the velocity of the drifter based on the control input to
the propellers. It is far easier to directly estimate the velocity of the device using the GPS
module.

Estimating the vehicle heading is very important for any guidance or motion control oper-
ations. An estimate of heading can be made from GPS readings alone, but at the low speeds
at which the vehicle moves, these estimates would be inaccurate to the point of inefficacy. A
separate sensor, the Honeywell HMC6532, was chosen to provide heading information. The
HMC6532 is an integrated circuit package containing two magnetometers and logic circuitry
to translate those readings into a heading measurement relative to magnetic north. It pro-
vides roughly 2◦ accuracy at 20 Hz, which is appropriate for the heading control tasks faced
by the vehicle.

Vehicles which have been modified for use with the Office of Naval Research also include
a Hummingbird single-beam depth finder for bathymetry mapping.
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Actuation

The objective of adding propulsion capability to a Lagrangian sensor is to enable it to stay off
the banks and clear of obstructions in shallow water. In the case of adaptive sampling, it also
enables the drifters to position themselves near features of the water which the user might
want to monitor. Initial experiments with a fleet of ten passive sensors in the Sacramento-
San Joaquin Delta indicated that sensors got stuck after approximately one hour if left
unattended. Therefore, the propulsion system was designed to re-orient the vehicle and
enable it to perform brief course corrections to keep clear of river boundaries. Given that
the vehicle must present a large cross sectional area to flow, it is not expected to achieve
high velocities. A design speed target of 0.3 m/s was set to enable cross stream movement,
but not upstream movement or station keeping.

Initial actuated prototypes featured a single propeller with a gear driven rotary pod to re-
orient the propulsive force as shown in Figure 5.8. The gear train occupied excessive space
inside the vehicle and it was determined that the man-portability functional requirement
would have been violated for this design approach to work. Also with single motor actuation,
stability of the controller became an issue quickly.

Figure 5.8: Single propeller design candidate which did not meet portability functional
requirement and presented stability issues.

Therefore the vehicle was redesigned with split motor control. In this configuration, the
vehicle has two motor/propeller modules, one on either side of the vehicle. This allows two
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degrees of freedom for independent control of orientation and forward velocity. To achieve
forward motion, the onboard computer compares the desired GPS waypoint to the current
location of the vehicle. The computer calculates the bearing that the vehicle must maintain
to reach the GPS waypoint, and the vehicle uses the electronic compass to drive itself toward
the desired waypoint along the required heading. A feedback controller is used to control
the two independent motors in order to maintain desired heading and speed, given feedback
from the compass and GPS.

Angular Velocity Characterization

In order to investigate the suitability of different heading controllers for the sensor, a math-
ematical model of the vehicle’s response to motor inputs was desired. A pre-production
prototype was designed with split motor control and optical encoders on each motor shaft
so that the angular response of the vehicle could be mapped to the difference in revolutions
per minute (RPM) between the two motors. To generate data for the model, a high speed
camera was used to track the vehicle’s angular displacement as a function of time to known
motor inputs.

The model is based on the law of dynamics for angular motion, i.e. that the net torque on
an object equals its moment of inertia multiplied by its angular acceleration. In the equation
below, θ represents the angular displacement of the vehicle, I is the moment of inertia, and
τ is the torque.

τ = I · θ̈ (5.1)

A net torque will act on the vehicle when there is a difference in RPM between the two
motors, ∆RPM. There will also be a drag torque, which is assumed to be directly propor-
tional to the angular velocity. Thus, the equation above becomes an ordinary differential
equation in which ∆RPM acts as a control:

c1∆RPM− c2θ̇ = I · θ̈ (5.2)

In the equation above, c1 and c2 represent unknown constants to be determined by a
polynomial approximation of the high speed camera data shown in Figure 5.9.

The vehicle response was modeled in Simulink. The block diagram of the plant is repro-
duced in Figure 5.10.

In the figure, “RPM” represents ∆RPM, “Theta” represents the angular displacement of
the vehicle, and c1 and c2 are the constants defined previously.

Heading controller comparison

The creation of an accurate vehicle model enabled an investigation into the suitability of
multiple heading controllers for the sensor. The function of the heading controller is to
apply power to the motors in order to orient the sensor along a given trajectory in a stable
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Figure 5.9: Angular velocity data for the vehicle model.

Figure 5.10: Vehicle plant for control simulation, designed in Simulink.

and time-efficient manner. Three types of controllers were investigated: proportional, PID,
and model-based.

The simplest of these is a proportional controller. In this scheme, the magnitude of
the control input is directly proportional to difference between the desired state and the
current state. In this context, the desired state is the desired heading of the sensor and the
current state is its current heading. The blue line in Figure 5.11 shows a simulation of a
sensor starting at zero radians and turning to π/2 radians under proportional control. The
simulation shows that the sensor overshoots the desired heading and oscillates before settling
to the desired heading. This is expected because the form factor of the vehicle enables it to
rotate rapidly. Therefore, the second motor is not capable of countering the sizable angular
momentum of the vehicle as it approaches the desired heading, resulting in oscillations. The
magnitude of the overshoot can be minimized by reducing the proportional control gain.
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Figure 5.11: Simulink simulation of the effect of three proposed controllers on the vehicle
plant.

This results in the sensor taking excessive time to reach the desired heading. Thus, it was
deemed that proportional control would not be effective for this system.

In order to minimize the controller overshoot, a PID (proportional, integrator, derivative)
controller was simulated. This control scheme adds terms for the integral and derivative to
the calculation of the control effort. The derivative term prevents the overshoot by reducing
the control effort if the sensor is rapidly approaching the desired heading. The integral term
adds control effort as a function of time if the sensor dwells far from the desired heading.
The relative control gains can be tuned heuristically or with automated methods. The black
line in Figure 5.11 shows the result a PID controller applied to the system. It can be seen
that the overshoot and oscillation is reduced in this scheme.

Finally, a model-based controller was simulated for the vehicle. In this scheme, the
data from the vehicle model is uploaded to the vehicle’s controller. This design has the
advantage that it can more accurately predict when the vehicle is approaching the desired
heading, minimizing the chances of overshoot. This controller worked well on prototypes and
successfully minimized overshoot and settling time, as seen in the red line of Figure 5.11.
The use of this controller requires that shaft encoders be installed on every production
vehicle. It was determined that the added cost and complexity of this approach was not
worth the marginal improvement in settling time compared to the PID controllers. Thus,
the production fleet uses PID controllers.
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Forward Velocity Characterization and Validation

Once the vehicle size requirements and control were determined, motors and propellers had to
be sized to meet the target forward velocity of 0.3m/s. The vehicle drag coefficient estimate,
Cd for forward motion is Cd = 0.8, based on calculations for an ideal finite cylinder [111].
Vehicle cross sectional area, A was determined by CAD program to be 0.032 m2. These
numbers are used to estimate the steady-state speed, v of the vehicle with respect to the
water as it travels in a straight line with the sum of the two propeller forces operating at
Fprop. Equating drag force to propulsive force (with water density, ρ):

Fdrag = 1
2
ρCdAv

2 = Fprop (5.3)

Solving for Fprop in this equation with v = 0.3 m/s, the desired propulsion force is
1.15 N or 0.58 N per motor. A test setup was developed consisting of a force load cell
attached to a motor/propeller pod. The motor was driven by a speed controller at a range
of speeds at 7.4 V, and the output force was logged as function of input power. A number
of motor/propeller combinations were explored. The chosen combination produced the most
force per unit input power near the 0.58 N target.

Figure 5.12: Motor force test platform: submerged motor unit is attached to an extended
arm which pivots against a force transducer. Power is applied to the motor at a range of
values, and output force is recorded in Matlab.

The actual speed of the vehicle was estimated during tests in an outdoor tank at the
UC Davis Bodega Bay Marine Laboratory. By driving back and forth in the still water
of the tank, while receiving GPS signals, the speed of the vehicle can be estimated. Two
techniques were used: first, the GPS velocity signal itself was averaged over a run across
the pool, providing an estimate of 0.264 m/s with a standard deviation of 0.036 m/s. An
alternate method is to take a finite difference of the GPS positions, spaced 6 s apart: this
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Figure 5.13: Output force as a function of input power for chosen motor/propeller.

method results in an estimate of 0.242 m/s with a standard deviation of 0.033 m/s. It is
expected that the finite difference estimate would be lower, because the drifter does not
travel in a perfectly straight line. Figure 5.14 shows the time series of the speed estimates
by the two methods during a run across the pool, and Figure 5.15 shows the GPS positions
gathered during the run.

Figure 5.14: Vehicle velocity inferred from GPS signal.
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Figure 5.15: GPS trajectory from vehicle during velocity test.

An Alternate Approach: Mobile Phones as a Controller

A future version of the sensor may use the computational and sensing capabilities of a modern
smartphone to act as a Lagrangian sensor. To control the motors and read the compass it
is necessary to output PWM values to the speed controllers. This signal is fed to a speed
controller which supplies the power necessary to drive a DC electric motor. This is enabled
by an Android IOIO board which plugs into an Android phone via USB and allows the
configuration of multiple pins for PWM out, digital IO etc. It also allows the user to access
the compass and GPS data necessary for real-time control.

As can be seen in Figure 5.16, the control system hardware would consist of four primary
components. The Android phone is connected to the IOIO board and is supplied with 11.1V
DC from an external source. Pins 5 and 6 are configured for PWM out. The signals from
these pins are wired with a ribbon cable into a custom-built speed control board. The IOIO
board also has a 5V out which is wired to the speed control board, which is used to enable
the motors. The speed controller board has a protection circuit, which enables users to
disable the motors if necessary. The speed controllers are also powered from an external
11.1V source. The result is a system which controls the motors with feedback from compass
readings, as can be seen in Figure 5.18.

In Figure 5.18, the desired heading of the vehicle is set at zero degrees. As the compass on
the phone moves back and forth across zero degrees, the vehicle powers each motor separately
to maintain the desired heading. The advantage of this approach would be dramatically
lowered cost and a simplified user interface. However, this approach is limited in that there
are heterogeneous properties of the phone, requiring tuning the controller for each phone,
which is impractical for the fleet. It is necessary to test a control algorithm to find the tuning
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Figure 5.16: System components necessary to replace real time control system in actuated
sensor.

Figure 5.17: Working system showing feedback control of motors from internal magnetome-
ter.
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Figure 5.18: Modified active sensor with mobile phone.

parameters for waypoint control without explicitly being programmed.
The controller’s performance could be quantified with the following cost function:

J(θ) =
1

T − to

T∫
t0

[r(t)− y(t, θ)]2dt (5.4)

In equation 5.4, t0 represents the time at which the first peak occurs, T is the total time
of the experiment, r is the desired heading, and y is the heading at any given time. Thus, this
equation quantifies the total difference between the actual heading and the desired heading
throughout the course of the experiment, except for the initial transient. A set of PID gains
that quickly reaches the desired heading and does not overshoot drastically will therefore
minimize the cost.

For this application, it is necessary to include the initial transient (since it represents the
period during which the vehicle is driving itself toward the desired heading). Thus the cost
function is as follows:

J(θ) =
1

T

T∫
0

[r(t)− y(t, θ)]2dt (5.5)

As the experiments are run, an extremum-seeking (ES) algorithm [54] estimates the
gradient of the cost function and modifies each of the PID gains to follow the gradient to a
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local minimum of the cost. The algorithm is as follows:

ξ(k) = −hξ(k − 1) + J(θ(k − 1))

θ̂(k + 1) = θ̂l(k)

θ(k + 1) = θ̂l(k + 1)− αi cosωi(k + 1)

(5.6)

This is a discrete time implementation of a high pass filter on the cost signal, a integrator,
a low pass filter and finally a perturbation signal that generates new PID gains. The purpose
of each step is as follows: the high pass filter removes the DC component of the cost signal,
which is then multiplied by a discrete time sinusoid to extract the portion of the cost that
is due to perturbation of the parameter estimate (the gradient estimate). The gradient
estimate is then integrated with step size γ and added to the perturbation signal to obtain
new PID gains. Thus in the above equations, k represents the iteration number, h is the
cutoff frequency of the high pass filter, γ is the integration gain, θ is a vector of the PID
gains, i is the index of the θ vector, and θ̂ is an estimate of the PID gains. Finally, ω and
α are the perturbation frequency and amplitude for the updated PID gains. Note that the
perturbation frequency and amplitude are different for each PID gain.

This method follows the gradient of the cost function toward a local minimum.

ωi = aiπ
0 < a < 1
0 < h < 1

(5.7)

Initial Controller Parameters

The D and I gains are both set to zero and the P gain is increased from zero until the system
starts to oscillate. The gain value at which this occurs is recorded as Ku and the time period
of oscillation is recorded as Tc. The PID gains are then prescribed based on the following
formula:

Kp Ki Kd

0.6 Kc 2Kp

Tc

KuPu

8

The ES algorithm is initialized with the following coefficients:

Kp Ki Kd

180 32.7 248

The response of the assumed plant is shown in Figure 5.19
This response is taken as a starting value for the ES algorithm and the system is run for

one thousand iterations. As expected, the gain coefficients are iteratively modified to reduce
the cost, shown in Figures 5.20 and 5.21.

The final gains are shown in the table below, and the system response to these gains is
shown in Figure 5.22
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Figure 5.19: System response to initial control gains.

Figure 5.20: Evolution of cost function.

Kp Ki Kd

435 270 10

The results accord well with expectations. After one thousand iterations, the cost of the
hand-tuned PID gains is over 2.6 times higher than for the ES gains. The ES response also
minimizes target overshoot and stabilizes more quickly. After fifty seconds, the hand-tuned
method still has not settled, whereas the ES method settles after thirty seconds. The model
assumptions are then modified, doubling the moment of inertia and halving the power of the
motors. The results are shown in figure 5.23.

As expected, increasing the power of the motors while decreasing the inertia requires a
lower proportional gain, but similar I and D gains. The plant was also modified to model
a time delay in real-time control computation. The resulting plant is shown in Figure 5.24.
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Figure 5.21: Evolution of PID coefficients.

Figure 5.22: System response to control gains after ES algorithm.



CHAPTER 5. DESIGN FRAMEWORK FOR AUTONOMOUS LAGRANGIAN
SENSORS IN THE SACRAMENTO-SAN JOAQUIN DELTA 74

Figure 5.23: A drifter with twice the power and half the inertia.

Figure 5.24: Plant with time delay.
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Figure 5.25: Drifter with one second time delay.

The results of the time delay system are shown in Figure 5.25. Even with time delay and
heterogeneous fleet properties, the extremum-seeking algorithm was able to find a reasonable
set of controller parameters. This indicates that the future cost of each sensor could be
brought down using off the shelf smartphone components, even if fleets carry heterogenous
payloads and real-time guarantees are not provided by the operating system.

Depth Controller

Many important features of hydrological systems exist under the surface of the water. There-
fore, it is desirable that the sensor be able to control its motion along the water column to
take measurements at known depths.

During the design process, the possibility of adding this capability was investigated within
the requirements outlined in the Ishikawa diagram. A prototype sensor containing an ad-
justable ballast system was created. Ballast is added by drawing surrounding water into the
vehicle through silicone tubes connected to a gear pump, as shown in Figure 5.26. The water
is contained in a sealed reservoir in the upper hull of the vehicle.

A pressure sensor embedded in the lower PVC mounting plate is used to determine depth
of the vehicle below the water surface, as shown in Figure 5.27. A proportional controller
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Figure 5.26: Prototype sensor with buoyancy control.
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uses feedback from the pressure sensor to add and remove water from the ballast reservoir
to adjust the sensor depth.

Figure 5.27: View of bottom PVC mounting plate with embedded pressure sensor.

Laboratory experiments in closed tanks revealed that this was a viable method of con-
trolling depth. The sensors were able to perform multiple controlled dives to 5 meters depth.
Integrating buoyancy into the final operational system presented non-trivial challenges.

First, the sensors lose GPS, GSM, and 802.15.4 connectivity when submerged. This
presents two issues: the sensor’s position is no longer known, and it is no longer able to
communicate in the event of a failure. The first challenge could be addressed with a nine-
degree of freedom inertial measurement unit (IMU). These units use filtered data from 3-axis
accelerometers, gyroscopes, and magnetometers to estimate vehicle position from a known
starting point. However these are expensive and would require additional computational
complexity. The communication challenge could be solved by creating a separate pod for
communication equipment that stays on the surface of the water while the main hull is
submerged. This would complicate the vehicle design and impinge upon the man-portability
requirement outlined in the Ishikawa process.

Second, the failure modes of the system as designed can result in complete loss of the
vehicle. If any component of the buoyancy system fails, it will begin to flood the vehicle. This
would damage the electronics and likely result in the vehicle becoming completely submerged
before a field team could retrieve it. This could be mitigated by adding a leak sensor that
would automatically trigger the pump to empty the reservoir at maximum rate. However, if
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the pump jammed or a tube became obstructed, this safety mechanism would be rendered
useless. Therefore, though the current production vehicles can be modified for buoyancy
control, this capability is not used in field operations.

Construction

As shown in the Ishikawa diagram, there are a number of functional requirements for the hull
construction of the sensor. The most important parameters require that it be weatherproof
and waterproof. This requires that the material maintain its tolerances underwater within
a wide range of temperatures. It is also important that the design be scalable, so that
production can be rapidly increased after the first prototypes were produced.

Therefore, a high performance plastic, Acetyl Homopolymer (Delrin) was chosen for
the main hull construction. It is well suited to CNC machining which allows scalability
in manufacturing. It is also a material that can be injection molded at larger production
quantities. Finally, it only absorbs 0.2% of its volume in water during 24 hour submersion
and has an operating temperature range of −29 ◦C to 89 ◦C.

5.5 Electronics

Computation

The vehicles were designed to be used as a research platform for investigating implementa-
tions of distributed robotics, multivehicle control, environmental sensing, and data assimila-
tion. The computational requirements for controlling the vehicle and fulfilling mission goals
therefore vary widely between scenarios. The computational hardware was thus chosen to
provide flexibility.

An embedded microprocessor system supporting the Linux operating system offered an
efficient development process. Multitasking, file systems, databases, inter-process communi-
cations, and advanced memory management are examples of some of the useful features of
a Linux operating system in this context.

One disadvantage of high-level systems such as a Linux-based embedded computer is
that real-time control can be difficult to implement. This is because guaranteed timing of
control tasks (which is essential for real-time control) is difficult to achieve in a general
purpose operating system. A common solution, and one adopted here, is to split the control
functionality between the high-level, non-real-time microprocessor and a low-level, real-time
microcontroller to handle fast, time-critical control tasks.

The selected embedded microprocessor is the Gumstix Overo Water, a single-board com-
puter using the Texas Instruments OMAP 3530 Applications Processor running at 720 MHz,
512 MB of RAM, and a 2 GB MicroSD card for storage. The Overo comes installed with
mainline Linux 2.6.34 using the OpenEmbedded distribution and toolchain [57]. Earlier gen-
erations of Gumstix products featured a Gumstix microprocessor combined with an Atmel
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Component Voltage Current Duty cycle Power
Overo 3.7 V 0.3 A 50% 0.51 W
G24 3.7 V 0.2 A 5% 0.04 W

XBee-PRO ZB 3.3 V 0.3 A 5% 0.04 W
Motors 7.4 V 2.4 A 10% 1.8 W

Table 5.1: Component power requirements.

ATMEGA128 microcontroller for low-level tasks such as motor control [39]. Using this ar-
chitecture as inspiration led to the selection of the Atmel XMEGA128 [6] (a next-generation
version of the ATMEGA) for the motor-control and other low-level control tasks.

Power

Rechargeable electrochemical batteries are the cheapest and most convenient way to store the
electrical energy needed for the on-board electronics and motors. The power budget for the
electrical systems is shown in Table 5.1. The energy storage requirement is set by the power
budget and mission time; the major remaining choice for the battery system is the battery
chemistry, which will determine the mass, volume, and material cost of the battery that can
store the required power. A summary of battery chemistries and their energy densities is
shown in Table 5.2. Lithium ion and lithium polymer batteries are the only ones that are
compatible with the mass and volume constraints of the hull (as discussed in section 5.4).

The electronic components and the motors require different input voltages. Although
it would be easy to incorporate a voltage regulating circuit to lower the voltage for the
electronics, allowing all systems to share a common battery, there are reasons why it makes
sense to keep the motor power separate from the electronics power. First, the inrush current
when motors start can cause a voltage slump which could cause drop-outs in the electronics
power; second, brushed DC motors can generate noise on the power lines that could adversely
affect the electronics; third, if the motors are run so long as to exhaust the battery, and the
electronics are on the same battery, the vehicle will no longer be able to gather data or
transmit its location. The first and second problems could be mitigated by careful design of
the voltage regulator circuitry, but it is easier to simply keep the two power sources separate.

The selected design was a hexagonal pack of 19 cylindrical lithium ion cells, with five
cells dedicated to the electronics (3.7 V, 170 kJ, allowing 80 hours of electronics operation)
and 14 cells dedicated to the motors (7.4 V, 480 kJ, allowing 74 hours of operation at the
10% duty cycle). See Table 1 for component power requirements.

Communications

There are three primary reasons to communicate with a drifting sensor in the field: (1)
to discover the local water conditions for real-time sensing applications; (2) to track the
sensor’s position for retrieval, or to query its health and operational status (battery energy
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Chemistry/format
Example

Specific energy Energy density

Lithium ion
Panasonic
NCR18650 [75]

840 kJ/kg 2100 kJ/L

Lithium polymer
Sanyo
UPF673791 [102]

760 kJ/kg 1800 kJ/L

Nickel-metal hydride
Panasonic
HHR110AAO [45]

200 kJ/kg 620 kJ/L

Lead-acid
Panasonic LC-
P0612P [58]

130 kJ/kg 370 kJ/L

Table 5.2: Representative battery capacities for various chemistries.

remaining, etc); (3) to share data between vehicles for multi-vehicle control applications or
with the command center for remote actuation of the drifter.

These goals have different requirements for transmission range, bandwidth, and latency.
Goals (1) and (2) above have very low bandwidth requirements; 0.01–0.1 kB/s, with up to
30 s latency, would be acceptable. These transmissions will need to be sent over distances
of kilometers or greater. By contrast, goal (3) requires more bandwidth and lower latency;
2 kB/s with < 1 s latency. For multi-vehicle control applications the vehicles can be assumed
to be relatively close: 100 m is a reasonable range. These diverse requirements can be best
addressed with two separate communication networks.

The range requirements of the long-range communication system pose a challenge in
the estuarine environment. The vehicles themselves might be up to 10 km away from their
origin. Islands, levees, trees, and buildings are all interfering obstacles. The best self-
contained solution would be to erect a communication tower on-site to minimize the fading
through these obstacles. Although truck-mounted portable tower solutions exist, there is
a more convenient option: the civilian Global System for Mobile Communications (GSM)
network. Using a GSM module such as the Motorola G24 [33], the drifting sensor can use
the GPRS (General Packet Radio Service) of the GSM protocol suite [2] to open a TCP
connection to any server on the Internet. The guaranteed minimum bandwidth of a GPRS
connection is 9.6 kB/s, but the latency is not guaranteed. Empirical tests show that latency
of 1–5 s is common.

Due to the larger latency, the GSM solution is inappropriate for multi-vehicle control
applications. At shorter ranges, it is reasonable to expect a clean line of sight between the
vehicles, and so a low-power point-to-point radio system is appropriate. The emerging IEEE
802.15.4 standard for low-power wireless networks [47] defines protocols for low-powered
radios to form mesh networks and transfer small quantities of data (appropriate for sensor
networks, automation, or other embedded applications) over the 2.4 GHz ISM frequency
band. Some radios that conform to a subset of the IEEE 802.15.4 drafts are branded as
ZigBee radios. The Digi XBee-PRO ZB is a ZigBee radio that allows short-range, line-of-
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sight, low-latency data communications between vehicles. One feature of the XBee-PRO ZB
that distinguishes it from similar modules is the on-board power amplifier, which increases
the transmit power to 50 mW, extending the transmission range of the system. Connectivity
at distances of up to 1 km was observed in river environments when using these modules.

5.6 Case Studies

The Floating Sensor Network team tested the various capabilities of the system with com-
pleted projects involving the US Army Corps of Engineers, the Office of Naval Research, and
the California Bay-Delta Authority. The following sections describe how these case studies
were used to test the functional requirements of the system detailed in Sections 4 and 5.

US Army Corps of Engineers

One application envisioned for the Floating Sensor Network is responding to levee failures.
Using the real time web interface described previously, it would be easy to pinpoint the
location of a levee breach and track the movement of water out of the system. It would
also be useful for characterizing the change in salinity, temperature and other important
parameters after the breach has occurred.

To test this capability, the team was invited to participate in the 2009 Rapid Repair
of Levee Breaches Demonstration in Stillwater, Oklahoma. The test was operated by the
Department of Homeland Security and the US Army Corps of Engineers. A test levee was
built at the Federal Agriculture Department’s Hydrologic Engineering Research Unit shown
in Figure 5.28.

The channel behind the levee was filled and the levee was breached, releasing 125 cubic
feet of water every second. The sensors were deployed upstream and allowed to pass through
the breach:

Despite a brief loss of GPS signal while the vehicle was submerged in the breach, the
experiment demonstrated the robustness of the system for use in real world environments
and validated the design parameter dictating antenna height.

In addition to testing the robustness of the sensor design, this offered an opportunity
to test the data assimilation capabilities of the backend system. This experiment and the
Extended Kalman Filter analysis was first described in [3]. For the experiment, drifters
were deployed into the supply canal upstream of the levee breach, shown in Figure 5.30.
The upstream boundary condition was the supply canal flow control, set to 1.42 m3/s. The
downstream boundary condition was a gate that could be raised or lowered to restrict the flow
out of the experimental region. Drifters were released at approximately 30 s intervals near
the upstream boundary in Figure 22(a). After traveling through the canal for approximately
400 s, they were individually retrieved in Figure 22(b). Figure 22(c) marks the location of
the downstream control gate.
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Figure 5.28: Test levee under construction.

Figure 5.29: Floating sensor about to pass through the breach.
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Figure 5.30: Annotated satellite image of supply canal.

A total of 20 runs were performed, and divided into five cycles of four runs each. Each
run in the cycle had a different operation of the downstream control gate. During the first
run, the gate remained open for the entire run. During the second run, the gate was closed
as soon as the sixth drifter was released. During the third run, the gate remained closed.
Finally, during the fourth run the gate was opened as soon as the final drifter was released.
The cycle was then repeated.

The velocities of the sensors in one run are shown in Figure 5.31. The spikes in the
velocity signal correspond to the sensor being thrown in the water. The velocity data from
five sensors could then be assimilated with an Extended Kalman Filter (EKF), to estimate
the flow in discretized 5 meter regions of the channel. Figure 5.32 shows the flow estimation in
discretized “cells” using three techniques: forward simulation of the one-dimensional shallow
water equation, and an EKF with and without estimating the bed slope.

The robustness of the sensor combined with the data assimilation system could be useful
in the event of a levee failure in a region which supplies drinking water and is a fragile
ecosystem for wildlife, such as the Sacramento San Joaquin Delta. On June 3, 2004, a levee
breach occurred on the west levee of the Upper Jones Tract in the southern region of the
Delta in San Joaquin County. Using the existing static infrastructure, it would be difficult
to track changes near the breach. By contrast, the floating sensors could be immediately
deployed by small boat teams in the affected region and would be able to upload data in
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Figure 5.31: Measured sensor velocity during canal deployment. Source: [3]

Figure 5.32: Estimated flow in discretized “cells” of the canal. Source: [3]
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real time.

California Bay-Delta Authority

A number of experiments have been performed with the Floating Sensor Network to support
research in the Sacramento San Joaquin Delta region performed on behalf of the Califor-
nia Bay-Delta Authority. The sensors have been used to track temperature changes near
the Jones Tract failure and the implications for the delta smelt fish in the region. Other
researchers have used the sensors to study the effect of submerged vegetation on water flow.

The sensors have also been used in the San Francisco Bay to study the exchange of
water between the Bay and the rivers that feed into it. The sensors were deployed near
the Mayfield Slough in the South San Francisco Bay. They were tracked over a full tidal
cycle to determine if particles which get pulled into the Bay from the Slough during the
ebb tide return during the flood tide, as shown in Figure 5.33. Unfortunately, high winds
resulted in the data not matching the exact expectations of hydrodynamicists involved in
the experiment, but the operation confirmed the ability of the system to operate unattended
overnight and be retrieved. It also validated the design parameters governing battery life
and mission time.

The experiment also provided confidence in the design parameters, indicating that mul-
tiple communication methods are necessary. During the middle of the night, the GSM signal
unexpectedly failed (likely due to limited coverage in the center of the Bay). Without the
capacity to communicate over the 802.15.4 radios, the vehicles would have been unrecover-
able.

Office of Naval Research

The Floating Sensor Network was also explored as a platform for autonomous depth mapping
of rivers for the Office of Naval Research. As part of phase one SIBR with SSCI, Inc., the
team redesigned the sensors to be able to carry single beam depth finders.

SSCI developed a number of strategies in which the vehicles could leverage inter-vehicle
communications to coordinate while operating in unstructured environments to upload depth
maps in real time. Tests were done at Aquatic Park near UC Berkeley and the data was
uploaded to Google Earth.

This application underscored the importance of design modularity. The sensor network
was not designed with this application in mind but was able to accommodate the new
application with limited changes to the system design thanks to the modular PVC sensor
mounting plate and flexible electronics design. It also validated the computation design
parameters such as the need to have a powerful processor for coordinated control tasks with
a separate low level controller for real time control.
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Figure 5.33: GPS traces from floating sensors during 24h San Francisco Bay experiment.

5.7 Conclusion

This chapter has described how the Ishikawa design methodology can be applied to devel-
oping a new network of robotic sensors for autonomous water management in near-shore
environments. Specifically, it describes how the design parameters for the system evolved
from a more general set of functional requirements which are interconnected through a cause
and effect diagram. As a result of this design and prototyping process, a number of general
conclusions are reached for the system.

First, when designing a sensing solution for multiple end users, it is important to have
a modular sensor mounting system. The case studies confirmed that there are a number
of applications for the sensor network ranging from bathymetry mapping in remote envi-
ronments to salinity tracking for environmental monitoring purposes. If the system is to
be broadly applicable, it must be able to accommodate a diverse set of applications with
minimal changes to the core system design.
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Figure 5.34: Floating sensor modified for single beam depth finder.

Figure 5.35: Automated depth survey from sensor path shown in Google Earth.
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Second, the longer field tests have underscored the importance of redundant communica-
tion devices for retrieval. When GSM connectivity was lost during the 24-hour experiment
in the San Francisco Bay, retrieval would have been impossible without having the ZigBee
radios as a backup.

Third, the case studies have confirmed the need for actuation for Lagrangian sensors
in near-shore environments. Field experiments which featured passive and active sensors
deployed at the same time in the same location showed that passive sensors were only effective
for 10 minutes before becoming entangled on shore whereas the active sensors operated for
over an hour without becoming entangled.

Fourth, the 72-hour mission target seems to be sufficient for near-shore environments.
Due to the small experimental domains of riverine networks, the sensors usually leave the
experimental region in under 10 hours. The 24-hour test in the San Francisco Bay is the
longest mission requested thus far.

Finally, while the vehicle form factor presents a reasonable tradeoff between man-portability,
Lagrangian sensing, and active control capacity, further design studies could consider a more
formal approach to optimizing vehicle size, battery life, and actuation mechanisms.
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Chapter 6

Thesis Conclusions and Future Work

The prior chapters covered four topics related to the design and optimization of in-situ
sensor networks for monitoring hydrologic phenomena in the Sierra Nevada Mountains and
Sacramento-San Joaquin Delta. Chapter 2 evaluated a sensor placement strategy for wire-
less hydrologic observatories. Chapter 3 presented a repeater placement strategy for wireless
mesh networks in complex terrain. Chapter 4 evaluated the long-term accuracy of estimating
soil moisture from in-situ sensors, and Chapter 5 presented a design framework for an au-
tonomous in-situ sensor network for the Sacramento San Joaquin Delta. The findings in each
chapter raise a number of potential opportunities for future research, which are discussed in
this concluding chapter.

The findings in Chapter 2 indicate that structuring catchment-scale observatories prior
to field deployment using remotely-sensed data may be a feasible alternative to conducting
field surveys. Further research could quantify the accuracy of the algorithm over longer
time spans, particularly in forested environments. It would also be useful to investigate how
increased information from these networks translates to value for downstream users. This
would provide a more objective metric for the marginal value of information, which could
be compared to the marginal cost of network establishment to determine the best locations
for new catchment-scale observatories.

It may be possible to optimize the placement of the elements of the entire network
(sensor and data repeater nodes) in tandem by combining the research reported in Chapters
2 and 3. The sensor locations in Chapter 2 were selected based on the nearest neighbor
to the mean of each latent component in the Gaussian mixture model. Instead it may be
possible to consider all the neighbors within a defined region near each latent component.
The repeater placement algorithm could then be run using combinations of each of these
potential placements, in order to find the distribution of nodes that produces a redundant
mesh with the fewest number of repeater nodes.

The findings in Chapter 4 underscore the importance of in-situ measurements for moni-
toring soil moisture in montane regions, which feature topographic complexity, heterogenous
soil and vegetation properties, and coupled snow-soil interactions. Future studies could eval-
uate these methods using more in-situ sensors deployed across greater elevation gradients in
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the rain-snow transition. It would be informative to deploy sensors which capture gradients
in variables not included in this study, particularly to investigate features that could bet-
ter predict soil moisture in dry years. For instance, sampling over larger biomass gradients
may better inform differences in water usage patterns by vegetation in wet and dry years.
Future studies could also develop methodologies to synthesize the findings from this study
into sensor placements and modeling strategies for basin-scale soil monitoring. Remote sens-
ing, in-situ data, and deterministic modeling could then be combined to better estimate soil
moisture storage in atypical water years.

It would be interesting to improve upon the drifter design presented in Chapter 5 in order
to solve some of the limitations of the final sensor. While a mechanism for buoyancy control
was present in the final design, there is no means to track the vehicle once it is submerged
since the GPS loses signal. Further research is needed to determine how accurately the
vehicles can be guided once they are submerged. One solution might be to employ the
onboard IMU for underwater positioning. Another may be to design a GPS antenna that can
be re-deployed to the surface. It would also be beneficial to design a sensor that addresses the
mobility issues presented by the symmetric drag profile requirement for Lagrangian sensing.
It may be possible to place a movable ballast that rotates the sensor into a horizontal
position while the motors are engaged, but transitions to a vertical position while in use as
a Lagrangian sensor.

Finally, it would be beneficial to consider how the dense, real-time measurements af-
forded by the systems described in this thesis can be combined with other data sources to
meet future water challenges. Existing management policies often rely on analysis of his-
torical data in order to plan and allocate water, implicitly assuming a stationary hydrologic
system. This approach will likely have limited utility for future generations [65]. Due to
rising temperatures, precipitation is more likely to fall as rain in the mountains, resulting
in earlier and less controlled runoff. Significant high tides already put pressure on the levee
networks, threatening below-sea level communities, agriculture, and freshwater availability.
Sea-level rise will likely exacerbate these challenges. Managing water in a non-stationary en-
vironment presents a sizable multi-objective optimization problem: the needs of agriculture,
hydropower, urban water users, and ecological communities must all be met simultaneously.
An ideal approach for managing water in a non-stationary environment would integrate real-
time measurements of the hydrologic system with remote sensing and distributed hydrologic
models in order to better allocate water resources.

While an important first step in realizing this approach involves the design and opti-
mization of systems that enable persistent real-time measurements in the environments that
supply our water resources, future research should explore how best to connect these sys-
tems into an intelligent water grid. Sensor networks, computational resources, remote sensing
tools are all progressing at a rapid pace, and we have only begun to realize the potential of
combining these systems into an integrated water management infrastructure. Remote sens-
ing data is increasingly available from sources such as the JPL Airborne Snow Observatory,
which can be combined with in-situ measurements to better estimate large-scale hydrologic
processes. As data on water usage in agriculture and urban areas is becoming increasingly
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available, real-time measurements of both the supply and demand side are now within reach.
Data from real-time sensor networks must be seamlessly integrated with large-scale hydro-
logic models and used for automated management and control of water usage along every
step of the hydrologic cycle. Achieving this vision will require advances in large-scale opti-
mization algorithms, in-situ sensor networks, standardization, and inter-operability. It will
also require integrating research from beyond engineering, as water resources management is
confounded by numerous social, political, and legislative factors. Information systems must
be designed with these societal constraints in mind. Ultimately, it is insufficient to consider
each of these systems in isolation, and intelligent water management will be facilitated by
exchanging real-time knowledge throughout the water cycle.
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