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Abstract
The FAIR principles, as applied to clinical and neuroimaging data, reflect the goal of making research products Find-
able, Accessible, Interoperable, and Reusable. The use of the Collaborative Informatics and Neuroimaging Suite Toolkit 
for Anonymized Computation (COINSTAC) platform in the Enhancing Neuroimaging Genetics through Meta-Analysis 
(ENIGMA) consortium combines the technological approach of decentralized analyses with the sociological approach of 
sharing data. In addition, ENIGMA + COINSTAC provides a platform to facilitate the use of machine-actionable data objects. 
We first present how ENIGMA and COINSTAC support the FAIR principles, and then showcase their integration with a 
decentralized meta-analysis of sex differences in negative symptom severity in schizophrenia, and finally present ongoing 
activities and plans to advance FAIR principles in ENIGMA + COINSTAC. ENIGMA and COINSTAC currently represent 
efforts toward improved Access, Interoperability, and Reusability. We highlight additional improvements needed in these 
areas, as well as future connections to other resources for expanded Findability.
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Introduction

International neuroimaging collaborations are becoming 
a staple of clinical neuroscience research, with sample 
sizes ranging from hundreds to tens of thousands. These 
studies represent immense investments in research and 
provide valuable resources for replication of findings 
and analyses to address novel questions. Within a dec-
ade of the first functional magnetic resonance imaging 
(fMRI) papers, the value of data sharing across insti-
tutions has been recognized; e.g., (Governing Council 
of the Organization for Human Brain Mapping, 2001). 
Efforts to share data have included many centralized 
repositories such as the fMRI Data Center (Van Horn 
et al., 2001, 2005), investigator or institutionally sup-
ported databases such as XNAT (Herrick et al., 2016), 
LONI IDA (Dinov et al., 2010), and COINS (Scott et al., 
2011), or more recently the current National Institute of 
Mental Health’s National Data Archive (https:// nda. nih. 
gov/ about/ about- us. html). Open data sharing reposito-
ries are also growing, including the OpenNeuro, NITRC, 
and DataLad resources (Halchenko et al., 2016; Kennedy 
et al., 2016; Poldrack & Gorgolewski, 2017). Decentral-
ized approaches range from the Biomedical Informatics 
Research Networks (BIRN) federated databases (Keator 
et al., 2016b; Ozyurt et al., 2010), to attempts to make 
multiple databases interoperable and queryable across a 
single interface, such as SchizConnect.org (Wang et al., 
2016) and the Neuroscience Information Framework 
(Gardner et al., 2008). All of these efforts involve efforts 
to apply FAIR principles, implicitly if not explicitly—
getting neuroimaging data and their associated behavio-
ral and other data out of the “desk drawer”, and making 
them Findable, Accessible, Interoperable, and Reusable, 
to different degrees (Wilkinson et al., 2016).

FAIR principles are being explicitly adopted and sup-
ported at many levels nationally and locally, even in neu-
roimaging research. For example, OpenNeuro and DataLad 
provide standardized metadata regarding data provenance, 
as well as unique identifiers for datasets. It is not yet com-
mon practice to fully implement FAIR recommendations, 
however, through providing persistent and unique identi-
fiers for datasets or standardizing the metadata formats 
or access, for example. In this paper we discuss how the 
international ENIGMA consortium practices together with 
the software platform COINSTAC are addressing FAIR 
principles for the neuroimaging community. We include 
an example of a decentralized COINSTAC analysis that 
examines sex differences in symptom severity in schizo-
phrenia. We assess the current FAIR capabilities of their 
practices, and make recommendations for improved FAIR 
compliance.

ENIGMA: Promoting Findability, 
Accessibility, Interoperability, 
and Reusability

The Enhancing Neuroimaging Genetics through Meta-
Analysis (ENIGMA) consortium is a data integration ini-
tiative coordinating large-scale analyses of brain imaging, 
genetics, clinical and behavioral data, across 45 countries 
(Thompson et  al., 2020). The consortium, founded in 
2009, has grown to include over 2,000 scientists working 
together on questions in neurology, psychiatry, and brain 
development. Crucially, ENIGMA lowered the sociologi-
cal and technical barriers to entry, by initially asking neu-
roimaging researchers worldwide to collaborate on “pro-
spective meta-analyses” – in other words, coordinated 
analyses of existing data, where there was no requirement 
to centralize individual-level data at any one site (Bearden 
& Thompson, 2017; Ching et al., 2020a, b; Thompson 
et al., 2014, 2020). The neuroimaging community has 
responded positively, with analyses of massive datasets, 
from studies that individually may lack the statistical 
power to definitively answer certain questions, but when 
combined have resulted in some of the largest studies in 
neuroimaging to date; e.g., (Hibar et al., 2018; Kong et al., 
2018; Renteria et al., 2017; van Erp et al., 2016, 2018). In 
the first meta-analyses performed by ENIGMA, participat-
ing sites analyzed their data using the same agreed-upon, 
harmonized methods and statistical models, and returned 
summary results to a central site for a meta-analysis.

Through concerted efforts to bring in researchers from 
around the world, ENIGMA has grown into a massive col-
laborative effort organized around over 50 working groups 
focused on clinical studies, methodological approach 
development for a range of imaging modalities (MRI, dif-
fusion imaging, resting-state fMRI and EEG), and genetic 
as well as epigenetic analyses. The methods have expanded 
to include data sharing and centralized aggregation for 
some analyses, allowing for a “mega-analysis” rather 
than meta-analyses, e.g., (Boedhoe et al., 2018; Ching 
et al., 2020a; Hoogman et al., 2020; Zugman et al., 2020), 
though the data aggregation approach limits participation 
by sites who are not allowed to share individual data points 
due to local regulations and ethical concerns. In short, the 
consortium has supported coordinated immensely power-
ful analyses that are entirely distributed, or entirely cen-
tralized, as well as combinations of each approach.

Findability ENIGMA has been a wildly successful data 
analysis consortium, even though the datasets that are 
accessed for ENIGMA analyses are at the present largely 
not machine findable as proposed by the FAIR principles. 
The FAIR findability principle requires that data include a 
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globally unique and persistent identifier and rich associated 
metadata, which are both registered or indexed in a search-
able resource. More generally, a spectrum of “findability” 
for datasets to allow for a range of FAIR solutions ranges 
from datasets and their metadata being directly linked to 
identifiers, to a link for either the dataset or metadata without 
the elements of the datasets being available (Mons et al., 
2017). In each case, the identifier is required, as a founda-
tion for FAIR compliance (Juty et al., 2020). Particularly for 
groups outside of the United States, data are most often not 
in publicly available repositories, and some types of data 
sharing may be limited by national and international regu-
lations such as the General Data Protections Regulations in 
the European Union (GDPR; (Union, 2016)). Associating an 
identifier with a dataset or metadata generally doesn’t hap-
pen at the level of an individual investigator’s datasets inside 
their home institutions’ firewalls, which ENIGMA is work-
ing with. But with the addition of a unique and persistent 
identifier to index the existence of these datasets, these data-
sets could fall under Mons et al.’s label of “FAIR-findable”.

Lacking the adoption of these identifiers, ENIGMA’s 
approaches to finding data are utilitarian. The datasets that 
are being included in ENIGMA analyses are Findable in some 
cases through organized semantic wikis such as NITRC (nitrc.
org), NIF (neuinfo.org), or ODS (www. organ icdat ascie nce. 
org), but largely through calls for participation in any given 
projects. Finding the data for completely new ENIGMA pro-
jects at this time often occurs via literature searches, refer-
rals by ENIGMA consortium members, and advertising to 
the wider community; e.g., via the ENIGMA website and 
conference presentations. Finding the data used in specific 
ENIGMA publications or projects is helped by detailed sup-
plemental material in publications, with the cohort descrip-
tions as well as the means to access them via working group 
chairs and cohort investigators. ENIGMA has used many for-
mats to help researchers learn about ongoing projects overall 
and to provide access to the data and collaborative network. 
Beginning with an initial email calling for a collaborative 
genome-wide scan analysis of structural imaging data as the 
first project and extensive personal communication includ-
ing multiple conference presentations and invited seminars, 
ENIGMA investigators now hold regular workshops around 
the world to engage researchers internationally in learning the 
methods used or in joining or leading new projects’ analyses.

Access to the data comes along with Finding it. ENIGMA is 
not a data sharing resource, and the notion of access to “the 
ENIGMA data” is misconstrued. Joining ENIGMA involves 
joining one or more working groups, usually through sign-
ing their Memoranda of Understanding (MOUs) and joining 
in on teleconferences and projects. Access to the data for 
an analysis is managed through the investigators who have 

access to the data personally. For example, the ENIGMA 
Schizophrenia working group has published two studies that 
both used the same meta-analysis technique: we leveraged 
a structural image processing using the FreeSurfer software 
(Dale et al., 1999; Fischl, 2012; Fischl et al., 2002) which is 
the earliest processing pipeline that ENIGMA groups agreed 
upon. FreeSurfer output was then analyzed using standard 
R scripts (R Development Core Team, 2020) to assess the 
effects of diagnostic status (case/control) across the quality-
controlled FreeSurfer-derived brain measures. Each site ran 
the ENIGMA FreeSurfer protocols on their data, and then 
ran the R scripts on the output to perform the same analysis. 
The analysis results at each site were then sent via email 
or uploaded to the organizing site for meta-analysis. Using 
this highly distributed approach, the analysis of case/control 
differences in subcortical volumes included data from 5,000 
individuals, and the subsequent analysis of cortical measures 
included almost 10,000 individuals (van Erp et al., 2016, 
2018). Sites that were able to run the FreeSurfer processing 
and the R scripts, and return the results, were included in the 
analysis, as were sites that could share either the raw images 
or the individual FreeSurfer brain measures for inclusion in 
the analysis by the organizing site. In another analysis, indi-
vidual subject level data FreeSurfer were shared to compare 
meta- and mega-analysis approaches (Radua et al., 2020). 
Other agreed-upon protocols within ENIGMA for diffusion 
tensor imaging analysis, brain region shape analyses, and 
genetic analyses have been tested, published on, and made 
available to the research community (http:// enigma. ini. usc. 
edu/ proto cols/).

Interoperability in these analyses, as in the diffusion tensor 
imaging analyses and other distributed analyses, comes from 
ENIGMA investigators agreeing to organize their data in 
the same way for a project’s analysis. Each different project 
which performs a meta-analysis, whether it is analyzing cog-
nitive correlates of white matter measures in schizophrenia 
or genetic effects on subcortical volumes generally, develops 
their own analysis plans and requirements as tuned for their 
particular questions. For example, in the genetic analyses 
of subcortical volumes, participating sites discussed and 
agreed on allowable imaging segmentation software to use, 
quality assurance techniques to use, and how to organize 
the subcortical volumes into a consistent spreadsheet for-
mat so that each site’s data were consistently arranged and 
the same analysis performed. They also agreed on imputa-
tion techniques, quality control steps, software to use and 
analysis scripts for the genetic data analyses. These agree-
ments on data processing and organization are not “stand-
ards” that are intended for universal use, only for a given 
project—with subsequent projects doing new analyses of 
other imaging types or genetic data, the choices that worked 
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well in previous projects can be kept, while improvements or 
completely new directions can be included. It is important to 
note that it may become more efficient to adopt the develop-
ments of more generalizable neuroinformatics data sharing 
standards (e.g., www. repro nim. org) in future projects. This 
will require some extra effort, and thus is most likely to 
succeed when driven by a question that requires data not 
yet generated by the adopted system for data organization.

For structural analyses, the FreeSurfer output format 
and directory structure have been the same for decades, 
and ENIGMA’s cortical and subcortical analyses have 
leveraged that directory structure, in pulling together the 
brain measurements into csv (comma separated value) 
files that are the same across sites. The non-imaging data 
such as age, sex, diagnostic status, and other measures, are 
handled independently by each site and arranged into an 
agreed-upon format for the analyses to complete. The anal-
yses are also agreed upon ahead of time, including various 
R scripts regression models, which perform the analyses 
using the same commands and save the same output across 
sites. This includes all the brain regions being analyzed 
in all the models with and without various confounding 
variables. The naming conventions for the output often are 
explicitly used to read each site’s results and perform the 
meta-analyses; often, hundreds of meta-analyses. Quality 
control of the results is critical, to ensure individual sites’ 
data are not miscoded or mis-analyzed in some way that 
would invalidate the meta-analysis. This is done at each 
site, but also often by the central site, which can compare 
across sites’ results and range of measures to identify sites 
whose output is unusual.

With these agreements for access and interoperability of 
the data, however, ENIGMA’s approach has been wildly suc-
cessful in making data Reusable. Many of the clinical work-
ing groups have published meta- or mega-analyses of sub-
cortical and cortical data in their clinical disorder of interest 
(Boedhoe et al., 2020; de Zwarte et al., 2019; Hibar et al., 
2018), diffusion tensor imaging analyses have also flourished 
(Holleran et al., 2020; Kelly et al., 2018), and more nuanced 
analyses of symptom severity and environmental effects have 
also been successful (Walton et al., 2017, 2018). At present, 
reusability of data is again mediated by humans, by investi-
gators agreeing to participate in various projects, or to share 
their data in common repositories. Because ENIGMA work-
ing groups adopt the same image analysis and quality control 
procedures across working groups, generated data can also 
be re-used for analyses to address questions that span mul-
tiple working groups such as imaging genetics (Enhancing 
Neuro Imaging Genetics Analysis et al., 2012; Hibar et al., 
2015), cross-disorder comparisons (Boedhoe et al., 2020), 
brain laterality results (Kong et al., 2018), and analyses of 
changes across the lifespan (Frangou et al., 2019).

COINSTAC: Promoting Findability, 
Accessibility, Interoperability, 
and Reusability

The Collaborative Informatics and Neuroimaging Suite 
Toolkit for Anonymous Computation (COINSTAC) is a 
software platform that allows for decentralized analyses 
(Plis et al., 2016). The goal is for the data to remain at 
their source location, behind their institutional firewall, 
and yet to be available for inclusion in cross-institutional 
integration and analyses. The development of COINSTAC 
is particularly motivated by the need to protect partici-
pant privacy and confidentiality, for datasets that cannot 
be shared due to identifiability concerns (e.g. rare genetic 
disorders) or legal or regulatory restrictions (Sarwate 
et al., 2014). To this end, COINSTAC includes a range 
of privacy-preserving features. All of the algorithms in 
COINSTAC are designed from the ground up to only share 
derived data, not original data, from a site. The fact that 
individual-level data is never shared with a remote site 
provides a basic level of protection. Furthermore, for par-
ticularly sensitive data, a pipeline developer can leverage 
algorithmic privacy such as differential privacy algorithms 
(Sarwate et al., 2014).

The COINSTAC platform allows for federated or decen-
tralized data analysis via sharing of analysis pipelines and 
peer to peer communication of partial results, updated 
models, etc., as needed for federated learning, for exam-
ple. The COINSTAC client software works via download 
of analysis pipelines generated by a group that leads a con-
sortium. Investigators can design and specify the analysis 
they want to run (e.g., group differences in brain region 
volumes after controlling for age and intracranial volume, 
or a machine-learning classification analysis on gray mat-
ter images), which then also determines the needed data 
for each subject included in the analysis (e.g., gender, age, 
intracranial volume, and the desired brain region volumes; 
or the gray matter images along with needed subject and 
scanner information). Once the analysis is designed, the 
investigator can start a consortium. Other investigators who 
have COINSTAC installed on their systems can then join 
the consortium with a click of a button, which initiates a 
download of the needed analysis pipeline in a Docker con-
tainer (Merkel, 2014). The data for the consortium analysis 
then needs to be “mapped”, through identifying the data 
files on their local file system with the covariates of inter-
est (e.g., gender, age, intracranial volume, and brain region 
volumes) and paths to local gray matter images and other 
relevant data, and associating columns in those files to the 
needed variables for the computation pipeline. Once the 
data are mapped, the individual pipeline can run automati-
cally at each participating site, with the needed summary 
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or intermediate results passed back and forth as needed 
to perform the initial analysis and meta-analysis, or for 
the machine learning analysis to complete. This process 
improves interoperability between datasets. COINSTAC is 
hosted at GitHub (https:// github. com/ trend scent er/ coins tac), 
along with example instructions for its use. The software is 
shared using an MIT license, which can be found at (https:// 
github. com/ trend scent er/ coins tac/ blob/ master/ LICEN SE).

Findability and Access The COINSTAC system is cur-
rently in between a fully automated system that can iden-
tify any arbitrary needed variables from all the data a 
site has without human involvement, and a fully manual 
system like ENIGMA that requires the site personnel to 
reorganize and extract their needed data for each analysis. 
COINSTAC is open to anyone who installs the software. 
However, like ENIGMA, it is not a data repository. COIN-
STAC is still implementing methods for finding data, or 
adding identifiers to the pipelines, datasets, or results, and 
developments toward those ends are described in more 
detail below. In COINSTAC, similar to within ENIGMA, a 
user can start a consortium, create a pipeline for an analy-
sis, map their own data as needed for that analysis, and run 
the analysis either on their own data only or on the data of 
other users and sites that have joined the consortium and 
mapped their data as well. Methods to advertise a new 
consortium among registered COINSTAC users, as well 
as methods for giving blanket approval for one’s data to 
be included in any relevant analysis, are in the develop-
ment plans.

Interoperability and Reusability Consistent data organiza-
tion is a key point, that in some ways COINSTAC’s interface 
was designed to address. The COINSTAC interface allows 
mapping of particular variables, so that idiosyncrasies and 
inconsistencies across research labs can be avoided. For 
example, in a standard regression of age and gender against 

hippocampal volume, in which data are in a spreadsheet, one 
site might label age as “Age” while another group labels it as 
“AgeinYears” or even “V1” or any arbitrary string. COIN-
STAC includes a “data mapping” procedure in which the site 
team joining a consortium can indicate where their data are, 
and which variables are which for the needed analysis. This 
minimizes the data handling requirements for the site joining 
a consortium, without requiring a standard naming scheme 
or data organization, for example, or requiring that people 
re-type in their data to a webform either once or for every 
study. It allows generalizability from one analysis pipeline 
to another, so that there is not one fixed data naming scheme 
or set of variables that all studies are expected to conform 
to, and evolving quality assurance steps can be added to new 
pipelines as needed, rather than depending on a priori input 
validations.

Example COINSTAC Analysis

To demonstrate the use of COINSTAC in a multi-site con-
sortium, we ran a meta-analysis examining sex differences in 
negative symptom severity in individuals with schizophrenia 
using data collected by the FBIRN (Function Biomedical 
Informatics Research Network). The FBIRN data were col-
lected at seven institutions with cross-site clinical harmo-
nization, including multiple symptom scale assessments. 
Each site’s dataset was run as a separate COINSTAC site 
and combined in a COINSTAC consortium. We present the 
results of the sex differences in negative symptom factors 
here as a simplified example; more complex analyses relat-
ing symptom severity to imaging data are being performed 
but are beyond the scope of this paper.

In Fig. 1 we show the workflows for how ENIGMA 
would implement this meta-analysis without COINSTAC 
(left) and how it is implemented within COINSTAC 
(right). The participating sites are shown along the top, 
and each have the relevant data for the analyses. Without 

Fig. 1  The example analy-
sis workflow as originally 
implemented for ENIGMA 
meta-analyses (left) and as 
implemented with COINSTAC 
(right). For more detail see text
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COINSTAC, the project leader (at the bottom), develops 
the analysis instructions or scripts, sends them to all sites 
(dotted arrows), who locally install any needed software 
and implement the analyses, and return the results to the 
project leader (either via email or upload to a shared loca-
tion). The project leader aggregates the results and runs 
the meta-analysis script. With COINSTAC (right), the 
project leader sets up the pipeline for the local analy-
ses and meta-analysis within COINSTAC. The sites join 
the consortium within COINSTAC, map the locations 
of their data as needed for the analysis, and COINSTAC 
runs the analysis pipeline on their data on their machines, 
aggregates the results, and performs the meta-analysis, 
returning the results to the project leader. If this were a 
more complex analyses, e.g., an iterated algorithm for 
data decomposition or federated learning, COINSTAC 
would implement all the parameter passing and model 
updating, etc.

In this example, we analyzed the Schedule for the 
Assessment of Negative Symptoms (SANS; (Andreassen, 
1984)) from 185 participants (139 males, 46 females) 
with schizophrenia from seven sites. Confirmatory factor 
analyses, including hierarchical models, of negative symp-
tom data have identified two broad and five subordinate 
negative symptom domains (Ahmed et al., 2019; Strauss 
et al., 2018, 2019a, b). Historically, men with schizophre-
nia are reported to have more severe negative symptoms 
than women with schizophrenia (Abel et al., 2010; Ahmed 
et al., 2014; Gur et al., 1996; Maric et al., 2003), though 
these effects have not been examined for individual nega-
tive symptom domains.

Methods

We developed R scripts to read the clinical and demographic 
data, to calculate five factor model and two-factor model scores 
from SANS item data, and to regress these scores against gen-
der. The five-factor model generates scores for Anhedonia, 
Asociality, Avolition, Blunted Affect, and Alogia, and the 
two-factor model generates scores for Motivation/Apathy or 
MAP, which is a weighted combination of Anhedonia, Aso-
ciality, and Avolition, and Expressiveness or EXP, which is 
a weighted combination of Blunted Affect and Alogia. Each 
site had the SANS and gender data in a standardized comma 
separated value (csv) file, though those spreadsheets could be 
in any directory on the local system, as the user identifies the 
needed files during data mapping. The analysis calculated the 
total negative symptom scores, the five and two factor scores 
based on the SANS for each subject at each site. The relation-
ship between self-reported gender (M or F) and these scores 
were calculated in R using the lm function, and each site’s 
results were then combined in a meta-analysis. The mixed-
effect meta-analysis was performed using R’s metafor package 
including site as a random effect and gender as fixed effect.

Results

In Figs.  2 and 3, the user “test1” started a consortium 
named “Gender & Negative Symptoms” in order to run 
the analysis pipeline named “ENIGMA”. A project leader 
can start a new consortium via the “Consortia” item in the 
main COINSTAC menu (Fig. 2). The leader then names the 

Fig. 2  Example COINSTAC Consortium. A screenshot of the consortium set up with the members having joined and mapped their data as 
needed for the consortium analysis pipeline
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consortium, selects an analysis pipeline, and members can 
then join the consortium. Here, six other groups joined as 
members in the consortium. After logging into COINSTAC, 
consortium members download a dockerized version of the 
consortium-specific analysis pipeline to their local COIN-
STAC instances. They then map their data files for analysis 
under “Maps” in the main menu, which in this case included 
pre-arranged csv files with the relevant clinical and demo-
graphic data (Fig. 3). Once every member has mapped their 
data, the consortium owner launches the pipeline. In this 
meta-analysis example, the pipeline first ran analyses at each 
site on the local data, then uploaded the analysis results to 
COINSTAC central, where the meta-analysis was run. The 
local results from each site plus the meta-analysis results 
were then transferred to the project leader.

The COINSTAC platform was used to initiate the con-
sortium, provide a pipeline of the needed R version, librar-
ies, and the R scripts to all sites, to start the analyses at 
all sites, transfer the results of each analysis when done, 
and then to automatically perform the meta-analysis, and 
provide the results to the consortium owner at completion. 
One major advantage of using the COINSTAC is that apart 
from downloading and running the COINSTAC application 
and Docker, no local software installations are needed for 
COINSTAC-initiated decentralized data analyses.

The meta-analysis was performed using the results from 
seven datasets from the FBIRN consortium; see Table 1 
for the site information. All subjects were stable on antip-
sychotic medication, and had a minimum of a one year’s 
diagnosis; for inclusion and exclusion criteria please see 
(Turner et al., 2013). The meta-analytic results of gender 
effects (M > F) on the various SANS factors and total scores 
are shown in Table 2. Generally, women’s symptom scores 
were less severe than men’s, though only the EXP factor and 
its components Blunted Affect and Alogia reached meta-
analytic p values less than 0.05. The forest plot of these 
effects across site is shown in Fig. 4.

Discussion

The main objective of this study was to demonstrate the use 
of the COINSTAC platform in a multi-center federated data 
analysis setting such as performed in the ENIGMA (Enhanc-
ing Neuro-Imaging Genetics through Meta-Analysis) consor-
tium and to assess how the combination of COINSTAC and 
ENIGMA can facilitate the use of FAIR data principles (see 
Table for current status). To this end, this study ran a COIN-
STAC meta-analysis exploring gender differences in negative 
symptom severity based on recently published two and five 

Fig. 3  Example Data Mapping. 
For this consortium analysis, 
data mapping consisted of 
identifying the needed files, 
which were then grouped as a 
bundle for use in the analysis. 
Data mapping does not move 
the files, but sets up the commu-
nication needed for the analysis 
pipeline to find the needed files 
when it runs locally

Table 1  Demographics of the 
participating sites’ samples as 
shown in Fig. 2, including the 
site, the number of subjects with 
SZ, the number of self-reported 
male and female (M/F), the 
mean age in years, the mean 
duration of illness in years 
(DOI), and the means SANS 
total score for the sample

Site N M/F mean age (range) mean DOI (range) mean 
SANS Total 
(range)

test1 28 22/6 35.8 (22–53) 12.3 (1–27) 19.6 (1–61)
test2 15 14/1 41.7 (23–58) 19.3 (3–41) 29.5 (9–54)
test3 35 26/9 44.5 (20–60) 23.3 (2–40) 15.9 (2–63)
test4 31 26/5 37.0 (21–62) 15.3 (3–49) 20.4 (0–48)
test5 15 10/5 37.1 (21–51) 16.3 (2–31) 20.3 (0–44)
Test6 (tvanerp) 31 18/13 36.6 (19–56) 15.1 (2–48) 18.6 (4–45)
Test7 (author) 32 25/7 39.3 (18–60) 18.5 (1–39) 19.4 (0–53)
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factor negative symptom domain analyses. We found that 
total negative symptom severity was not significantly higher 
in males compared to females (P > 0.05). However, on closer 
examination, the EXP (expression) but not the MAP (motiva-
tion and pleasure) factor score, and its corresponding 5-factor 
model negative symptom sub domains of Blunted Affect and 
Alogia, were more severe in men compared to women with 
schizophrenia. To our knowledge, is the first report of gender 
differences in these symptom factor scores in schizophrenia 
that may at least provide an initial external validation for the 
2-factor model of negative symptoms in psychosis.

Scope of ENIGMA + COINSTAC 

It is critical to note that the collaboration of ENIGMA and 
COINSTAC does not create a data repository along the lines 
of the NIMH Data Archive, or Open Neuro, that a user can 

request data from. It is not a data management and sharing 
system for neuroimaging studies like XNAT or COINS. 
COINSTAC is not a pipeline design framework for central-
ized data like the LONI IDA or CPAC, for example. It is not 
a deep-learning AI platform for neuroimaging such as Clara 
(https:// devel oper. nvidia. com/ clara). It is an open-source 
platform designed for implementation of a broad range of 
decentralized neuroimaging analyses for datasets which do 
not allow direct access for sharing. Since ENIGMA was also 
designed to work within data sharing restrictions, the two 
efforts are collaborating to push the application of COIN-
STAC methods to ENIGMA analyses, both to facilitate the 
meta-analyses and to allow for federated learning approaches.

The push to move ENIGMA + COINSTAC toward FAIR 
principles is summarized in Table 3. The table lists whether 
the current COINSTAC system includes methods for 
addressing the principle, whether it does not apply, whether 

Table 2  For each score (Total, 
MAP, EXP, and the five 
factors), the meta-analysis 
estimate of Cohen’s d for the 
gender effect, the standard 
error, the z, p, and effect size 
confidence interval lower bound 
(ci.lb) and upper bound (ci.ub)

* denotes p < .05 for the EXP factor score and its two subdomain factors

Cohen’s d SE z p ci.lb ci.ub

Total SANS -0.29 0.18 -1.62 0.10 -0.64 0.06
MAP -0.05 0.17 -0.30 0.76 -0.40 0.29
EXP -0.39 0.18 -2.14 0.03* -0.74 -0.03
Anhedonia 0.094 0.18 0.52 0.61 -0.26 0.44
Asociality 0.049 0.18 0.22 0.83 -0.31 0.39
Avolition -0.26 0.18 -1.45 0.15 -0.61 0.09
Blunted Affect -0.36 0.18 -1.99 0.047* -0.71 -0.004
Alogia -0.36 0.18 -1.97 0.04* -0.729 -0.001
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Fig. 4  Forest plots for Meta-analysis of Gender Differences in EXP (Expression), and associated Blunted Affect (Fact4), and Alogia (Fact 5) 
Negative Symptom Domain Factors
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it facilitates methods for addressing it (e.g., COINSTAC 
does not provide Digital Object Identifiers (DOIs) for data-
sets, but points users to Zenodo and other sites, and will 
store the DOI if provided), or if the methods for addressing 
it are in development. Table 3 lists the FAIR principles and 
how the current ENIGMA + COINSTAC addresses these not 
only for datasets, but also to analysis pipelines, results, and 
the overall projects. Metadata standards for describing each 
of these are still in development, and likely to remain so 
as more detailed descriptions become possible. We discuss 
each of these below.

Findability improvements

This decentralized analysis example highlights several 
strengths and weaknesses of the approach. Standards for 
identifying existing consortia, the datasets used in their 
analyses, the analysis pipelines, and the results need to be 
integrated as they develop. Within COINSTAC, project con-
sortia do not yet have DOIs (though they have UUIDs in the 
COINSTAC database of projects), and datasets used in an 
analysis can have DOIs such as those from Zenodo included. 
We are facilitating the acquisition of DOIs by creating a com-
munity on Zenodo dedicated to COINSTAC datasets (https:// 
zenodo. org/ commu nities/ coins tac/) and have seeded it with a 
sample dataset (https:// zenodo. org/ record/ 54254 43). We have 

also developed a Discovery feature which stores Brain Imag-
ing Data Set (BIDS) format data descriptions when those 
are available, and BIDS format specifications includes DOIs 
for the datasets (Gorgolewski et al., 2017). This allows for 
searching within the datasets that have these descriptors. We 
are in the process of creating an API that will allow other 
platforms and websites to search for datasets on COIN-
STAC, thereby improving interoperability as well. Methods 
for improving findability could certainly include searches of 
available repositories such as DataLad’s automated searches 
for available data, or searching the NDA or SchizConnect 
data repositories for the needed data, and including the rel-
evant datasets from one of those resources in the consortium 
as another “site”.

As these kinds of efforts become more standardized, 
it would be beneficial to have COINSTAC be able to 
access and query for relevant datasets for new consortia 
or analysis pipelines. COINSTAC Discovery capabilities 
currently include the functionality for making existing 
consortia searchable, e.g., providing such an identifier for 
the consortium and its analysis pipeline, along with con-
tact information for the consortium organizer. This will aid 
in making existing consortia and their analyses findable, 
both for replication and reproducibility, without compro-
mising data access restrictions. The results of an analysis 
are local to the consortium lead site, but can be uploaded 

Table 3  FAIR principles’ status through ENIGMA + COINSTAC 

FAIR principle Consortium 
project

Datasets Analysis Pipelines Results

F1. (meta)data are assigned a globally unique and persistent identi-
fier

In development Facilitated Addressed Addressed

F2. data are described with rich metadata (defined by R1 below) N/A Facilitated Facilitated In development
F3. metadata clearly and explicitly include the identifier of the data 

it describes
Addressed Facilitated Addressed Addressed

F4. (meta)data are registered or indexed in a searchable resource In development Facilitated Addressed Addressed
A1. (meta)data are retrievable by their identifier using a standard-

ized communications protocol
In development In development In development In development

A1.1 the protocol is open, free, and universally implementable Addressed Addressed Addressed Addressed
A1.2 the protocol allows for an authentication and authorization 

procedure, where necessary
Addressed Addressed Addressed Addressed

A2. metadata are accessible, even when the data are no longer avail-
able

Facilitated Facilitated In development In development

I1. (meta)data use a formal, accessible, shared, and broadly applica-
ble language for knowledge representation

In development In development In development In development

I2. (meta)data use vocabularies that follow FAIR principles In development In development In development In development
I3. (meta)data include qualified references to other (meta)data In development In development In development In development
R1. meta(data) are richly described with a plurality of accurate and 

relevant attributes
In development In development In development In development

R1.1. (meta)data are released with a clear and accessible data usage 
license

Addressed Facilitated Addressed Addressed

R1.2. (meta)data are associated with detailed provenance N/A Facilitated In development In development
R1.3. (meta)data meet domain-relevant community standards In development In development In development In development
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outside of COINSTAC, for example statistical brain maps 
to NeuroVault (Gorgolewski et al., 2016b). The pipelines 
included in COINSTAC are built as Docker images and 
have a unique URL on the COINSTAC Github site, though 
including rich semantic standard metadata describing 
the pipelines needs to be an ongoing collaboration with 
the Neuroimaging Data Model (NIDM), which focuses 
on the description of experiments, analyses, and results 
(Keator et al., 2016a). COINSTAC has included an initial 
feature to automatically generate NIDM results for our 
VBM regression pipeline; generalizing this to arbitrary 
pipelines is an ongoing effort. We are in the process of 
automatically mirroring new GitHub repository releases of 
COINSTAC pipelines on Zenodo, which will provide them 
with DOIs. The ENIGMA Organic Data Science platform 
is also planned as a human-usable interface for building 
and tracking consortia (McMahon et al., 2018). Within 
ENIGMA, the Organic Data Science platform includes 
a centralized index of analyses that includes searchable 
metadata to facilitate comparing methods and findings 
across different working groups and domains. These plans 
will need to link to standard formats for identifiers, rich 
metadata, and detailed provenance regarding the analy-
ses and the vocabularies used to describe the analyses, as 
noted below.

Access

The COINSTAC software is freely available, and access 
to the interacting COINSTAC network does include user 
accounts with authentication, encryption, and permission-
based access. Once the data are mapped for an analysis pipe-
line within a consortium, COINSTAC accesses only the data 
that have been mapped, and only for the consortium analysis 
pipeline that was agreed to. Access is not automatic simply 
because an investigator has installed COINSTAC; data has to 
be mapped for a particular consortium and analysis. In effect, 
COINSTAC acts similarly to a Data Usage Agreement that 
says specific data will be shared only for a particular project 
or analysis plan, and no attempts at de-identification or other 
analyses will be made other than what is in the pipeline. 
Thus access is protected through local data analysis with-
out upload of individual subject data to a central repository, 
or transfer of individual subject data between institutions. 
Methods for pre-approval are certainly desirable, so that data 
that are unrestricted could be automatically included from a 
site with a COINSTAC installation.

Interoperability

The metadata vocabularies needed for the Interoperability 
and Reusability principles for consortia, datasets, analyses, 

and results are in early stages, and their use will need to be 
developed, as noted in Table 3. The decentralized analy-
sis presented in this paper highlighted the usefulness of 
standards for data organization and management, as the 
informal arrangement of data in the csv files constituted 
the “standard” for data organization for this analysis, 
making the analysis immediately possible. The structure 
applied here is clearly not generalizable to other projects 
or datasets, however, as the data organization is set up 
only for a specific study and has meaning only within this 
analysis. The challenge is to use a more generic vocabu-
lary, meaningful beyond the confines of a specific current 
study, with the goal of making scientific data interoper-
able and reusable in a larger context (Burns & Turner, 
2013; Turner et al., 2015). Other imaging-based pipelines 
implemented in COINSTAC leverage the BIDS structure, 
so that different imaging modalities are clearly marked and 
relevant imaging parameters are stored in consistent ways 
(Gorgolewski et al., 2016a, 2017). A great deal of work 
has gone into clarifying the underlying structure of the 
relevant imaging data that can be identified and compared 
across datasets, to design BIDS to represent the needed 
information robustly. Imaging pipelines can take advan-
tage of having data in BIDS format, to implement robust 
analyses across large and diverse datasets.

The non-imaging data, such as the clinical assessment 
scores, behavioral and demographic data or other relevant 
measures, is not covered by BIDS. Organizing the data 
and ensuring that they are coded consistently from one 
lab to another are perennial problems in biomedical data 
sharing, which many efforts have attempted to address, e.g. 
(Bandrowski et al., 2016; Chen et al., 2018; Keator et al., 
2009; Ozyurt et al., 2010, 2016; Turner & Laird, 2012; 
Zaslavsky et al., 2016). Agreeing to organize the data as 
needed by the NIMH Data Archive, for example, or for 
other large-scale efforts with some agreements on termi-
nology, acceptable values, and organization, would allow 
more generalizable data structures for various COINSTAC 
consortia and analysis pipelines, while working toward 
developing a fully realized interoperable annotation of the 
data in keeping with FAIR principles. ENIGMA does not 
at the moment use that approach, though as the different 
ENIGMA working groups are collaborating for cross-dis-
order analyses, agreements about the clinical and demo-
graphic data coding and arrangement are taking place as 
needed, e.g. (Kochunov et al., 2020; Navarri et al., 2020).

Reusability

The analysis container used in this example analysis ran 
a simple regression and meta-analysis using container-
ized R code. This was a simplified example, and pipeline 
developers are not limited to the options included here. 
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Including the analysis for a COINSTAC consortium as a 
container ensures that the analysis is the same at all sites; 
that it is not dependent on the individual site investigator 
installing arbitrary software, or implementing the analysis; 
and that there is a record for reproducing the analysis as 
needed, as the pipelines can be stored and re-used. While 
this does not address the reusability of the datasets per se, 
it does address issues of reproducibility of the analysis, as 
the same analysis can be implemented again or applied to 
an independent group of participating sites in an identical 
manner.

While in this study we implemented a simple regression 
based on regions of interest, more complex algorithms have 
been developed to work in the decentralized environment; 
the full list of algorithms for COINSTAC is available pub-
licly (COINSTAC, 2020) and includes preprocessing, voxel-
based approaches and can take various types of input includ-
ing structural, functional, and diffusion MRI data. Building 
upon these developments, a recent voxel-based morpho-
metry analysis of over 2000 datasets collected in Europe, 
India, and China was performed to study brain structure rela-
tionships with age, body mass index, and smoking (Gazula 
et al., 2019). The regression analysis, however, is a single 
communication step between the consortium organizer and 
the participating sites: Each site runs an analysis and sends 
it to the central site for meta-analysis.

With COINSTAC, if the analysis is an iterative analysis 
as in federated learning, each site would run an analysis, and 
then the central site would aggregate the results, update per-
haps several parameters, and have each site run an updated 
analysis, and so on until the algorithm converges (Li et al., 
2019; Mothukuri et al., 2021). This iterative process has to 
be automated, so that machine learning and latent variable 
analyses can be conducted in a decentralized environment. 
Currently decentralized versions of iterative regression, 
independent component analysis for static and dynamic 
network connectivity analyses, support vector machines, 
and distributed t-stochastic neighbor embedding (t-sne) for 
visualization are all available through COINSTAC (Gazula 
et al., 2018; Saha et al., 2017; Plis et al., 2016; Sarwate 
et al., 2014; Baker et al., in press; Saha et al., 2020). In 
some cases a shared reference data set is leveraged, or test-
ing/training configurations are incorporated. An initial deep 
neural network approach has been developed as well, with 
the addition of GPU support for computational efficiency in 
process (Lewis et al., 2020). The strength of a COINSTAC 
implementation is allowing exactly these iterative solutions 
which would not be available manually without data aggre-
gation in a single institution or cloud environment.

We have recently improved findability, accessibility, and 
reusability of datasets with COINSTAC with the creation of 
“vaults”. These are COINSTAC instances set up on cloud 
or on-premise hardware to facililate federated analysis of 

sensitive datasets without manual intervention. The data 
owners can approve only the computations with which they 
are comfortable or that are appropriate for their data and the 
variables that they allow to be used in federated analyses 
(e.g., gender, age, diagnosis). These instances can be found 
by other users on COINSTAC, added to new consortia, and 
take part in federated analyses without a need for further 
approvals and scheduling with the data owners. These vaults 
will be findable via the Discovery feature and API men-
tioned above, allowing for improved accessibility. Addition-
ally, with the removal of hurdles to analyze data, we predict 
that the data will be reused more frequently as well.

Limitations and Recommendations

We have already highlighted several limitations of the 
ENIGMA + COINSTAC joint effort in implementing FAIR 
principles. A critical one for FAIR is the need for persistent, 
unique identifiers for datasets (or at least their metadata), the 
pipelines (or again, their structured metadata regarding what 
was done and how), and the analyses. This is a deficit that we 
are in the process of remedying, through collaborations with 
other efforts using identifiers for data that have restricted 
access, for metadata, and for pipelines, as well as results.

COINSTAC includes instructions for pipeline develop-
ers, to aid in integrating their pipeline containers into the 
COINSTAC platform. Meta-data on what the pipeline does, 
what parameters are chosen, what software versions were 
included, and such details, are critical for later re-use and 
reproducibility, and incorporating structures like the NIDM 
(Neuroimaging Data Model) (Keator et al., 2013) to describe 
neuroimaging analyses would be a key step toward improv-
ing Reuse. Standards for describing and parameterizing each 
pipeline will be an active area of development going forward.

Pipelines as containers have numerous advantages, for 
robustness and reproducibility. In a decentralized environ-
ment with privacy concerns, however, privacy protection 
steps must be included (Mothukuri et al., 2021). The pipe-
lines developed with COINSTAC today have been built to 
include differential privacy and other approaches to avoid 
inadvertent data sharing or malicious privacy attacks (Plis 
et al., 2016; Saha et al., 2020; Sarwate et al., 2014). As the 
number of pipelines grows, pipeline developers must be 
aware of the need to ensure that their pipeline isn’t send-
ing data points between sites and to incorporate privacy 
protection.

COINSTAC shares the limitations of any distributed 
analysis in assessing data quality. Whether the data were 
originally high quality but were manipulated incorrectly 
through the automated analysis pipeline, or whether the 
data were originally full of errors, methods need to be 
included to assess the quality (e.g., Glover et al., 2012; 
Kim et al., 2019)). Pipeline developers can include those 
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options based on best practices for their analyses at the 
time, and some of the currently available pre-processing 
pipelines include recommended quality assurance metrics. 
COINSTAC also supports a computation specifically to 
help users spot outliers graphically, called dSNE (Saha 
et al., 2020). dSNE is a powerful method for visualizing 
large but decentralized datasets and identifying trends, 
particularly data points which fall outside of the larger 
groupings.

What COINSTAC does not do, at the moment, is by default 
check for consistency in measurement techniques across 
sites—if one site measures age in years and another measures 
it in months, that will not be be useful in a combined analysis 
without taking that difference into account. If two sites used 
different software to extract brain measures, that may pre-
sent a problem for a particular analysis. That is always true in 
multi-dataset analyses; ENIGMA solved it by allowing each 
project leader or team to decide what variables they wanted 
set up in which way for their analysis (e.g. organized in a 
particular order and named using specific strings in a csv file, 
or imaging measures which had been processed using only 
particular software packages and versions), and participating 
sites who had the needed variables and measures would set 
them up accordingly for that analysis. COINSTAC currently 
assumes that the consortium leader will do the same in set-
ting up the analysis pipeline, and that consortium participants 
whose datasets are being included will have the specified var-
iables and conform to any analysis specifications. Pipeline 
developers are recommended to include checks for outliers 
in either the original data or the summary statistics or partial 
results being shared with the lead site.

A future goal would be to incorporate semantic links, 
so that, for example, Age in Years as a variable can be dis-
tinguished automatically from Age in Months, or that the 
data provenance specifies the manipulations that have been 
applied to the imaging or other data follow specifications in 
the analysis pipeline using standard models (Keator et al., 
2013). Through several collaborations, we are taking steps 
towards solving this problem in COINSTAC by including a 
detailed description of the subject metadata (e.g., the BIDS 
participants.json file) in our Discovery feature, which can 
include links to more detailed ontologies online. As noted 
above, solving this problem across data, analyses, and 
results, is clearly a larger and more complex problem that 
requires collaboration with many other projects.

Conclusion

This study describes an initial successful multi-center 
federated meta-analysis automated using COINSTAC. 
The approach described addresses compromises between 
access and protection for datasets, allows for simple 

interoperability without requiring the development of 
fully semantic annotation, and facilitates data re-use. We 
believe that federated analysis platforms, such as COIN-
STAC, will play an increasingly important role in advanc-
ing data analyses across federated data sources as they 
allow for analysis of mixtures of FAIR data along with 
data that may otherwise not be accessible due to regulatory 
or other restrictions.

Information Sharing Statement

COINSTAC is hosted at github (https:// github. com/ trend scent er/  
coins tac) with example instructions for its use here (https:// 
github. com/ trend scent er/ coins tac- instr uctio ns). The code for  
this analysis is at https:// github. com/ trend scent er/ coins tac- 
 enigma- sans, with the Docker image here:

https:// hub. docker. com/r/ coins tacte am/ enigma- sans
ENIGMA analysis protocols for different neuroimag-

ing modalities are available at http:// enigma. ini. usc. edu/ 
proto cols/.
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