
UC Davis
UC Davis Previously Published Works

Title
A weighted string kernel for protein fold recognition

Permalink
https://escholarship.org/uc/item/3b33d84s

Journal
BMC Bioinformatics, 18(1)

ISSN
1471-2105

Authors
Nojoomi, Saghi
Koehl, Patrice

Publication Date
2017-12-01

DOI
10.1186/s12859-017-1795-5
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3b33d84s
https://escholarship.org
http://www.cdlib.org/


Nojoomi and Koehl BMC Bioinformatics  (2017) 18:378 
DOI 10.1186/s12859-017-1795-5

METHODOLOGY ARTICLE Open Access

A weighted string kernel for protein fold
recognition
Saghi Nojoomi1 and Patrice Koehl2*

Abstract

Background: Alignment-free methods for comparing protein sequences have proved to be viable alternatives to
approaches that first rely on an alignment of the sequences to be compared. Much work however need to be done
before those methods provide reliable fold recognition for proteins whose sequences share little similarity. We have
recently proposed an alignment-free method based on the concept of string kernels, SeqKernel (Nojoomi and Koehl,
BMC Bioinformatics, 2017, 18:137). In this previous study, we have shown that while Seqkernel performs better than
standard alignment-based methods, its applications are potentially limited, because of biases due mostly to sequence
length effects.

Methods: In this study, we propose improvements to SeqKernel that follows two directions. First, we developed a
weighted version of the kernel, WSeqKernel. Second, we expand the concept of string kernels into a novel framework
for deriving information on amino acids from protein sequences.

Results: Using a dataset that only contains remote homologs, we have shown that WSeqKernel performs remarkably
well in fold recognition experiments. We have shown that with the appropriate weighting scheme, we can remove
the length effects on the kernel values. WSeqKernel, just like any alignment-based sequence comparison method,
depends on a substitution matrix. We have shown that this matrix can be optimized so that sequence similarity scores
correlate well with structure similarity scores. Starting from no information on amino acid similarity, we have shown
that we can derive a scoring matrix that echoes the physico-chemical properties of amino acids.

Conclusion: We have made progress in characterizing and parametrizing string kernels as alignment-based methods
for comparing protein sequences, and we have shown that they provide a framework for extracting sequence
information from structure.

Keywords: String kernel, Protein fold recognition, Amino acid substitution matrices

Background
Traditional approaches to comparing two protein
sequences start with strings of letters, where each letter
corresponds to an amino acid type, and a separable scor-
ing function for comparing these letters, to find either
the best global alignment [1] or the best local alignment
between the two sequences [2]. Unfortunately, it is not
easy to find the parameters of a scoring function that best
captures the similarity between amino acid types. This
has led to the development of many types of scores in the
form of substitution matrices in the hope of producing
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2Department of Computer Science and Genome Center, 1, Shields Avenue,
95616 Davis, CA, USA
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biologically meaningful sequence alignments [3–6]. In
addition, when the similarity between the two proteins
to be compared is low, the quality of the correspond-
ing sequence alignment is usually lacking. Therefore
sequence alignment techniques are usually poor methods
for classifying proteins into folds [7] or detecting homol-
ogy [8, 9], both essential tasks in the hope of solving the
protein structure prediction problem. There have been
many methods developed to circumvent these problems.
More reliable detection of structure similarity can be
achieved for example if sequence similarity is defined on
the basis of families of sequences, rather than on the basis
of the native sequence alone. This fact is at the root of all
profile methods used in modern database searching pro-
grams such as PSIBLAST [10] and HMMER [11]. Those
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methods still rely on the concept of alignments, with all
its limitations that we discuss below.
It is interesting to note that the scoring schemes asso-

ciated with sequence alignment methods consider indi-
vidual amino acids only and not directly oligomers. One
option to improve upon these methods involves consid-
ering multiple amino acids at once. This idea has led
to the concept of “alignment-free” methods which have
been developed over the past three decades (for review,
see [12–14]). Alignment-free methods rely on the fre-
quencies of words of a fixed length, k, also denoted as
k-mers. Once the frequency distribution functions of such
k-mers have been computed for two sequences, the dis-
tance between those two sequences is assimilated to the
distances between those distributions, using different def-
initions of distances [13, 15]. Other implementations are
based on word matches of different lengths [16, 17]. It
should be noted that all these methods are based on exact
word matches. Exact matches, however, are bound to lim-
itations, due to strong correlations between amino acids
at neighboring positions. A solution to this limitation was
proposed, the so-called spaced seedsmethods that defines
patterns with match and possible don’t care positions
[18–21]. Another class of alignment-free methods for
comparing protein sequences that are directly relevant to
this work are the string kernel based methods [22–29].
As mentioned above, the sequence alignment meth-

ods as well as the recent string kernel methods depend
critically on a scoring, or substitution matrix. Those sub-
stitution matrices basically encode amino acids as arrays
of numerical values, where those values are derived from
statistical analyses of reference alignments (the PAM and
BLOSUM matrices), or from the physical and chemical
properties of amino acids [30–32]. While those matrices
have been used in the context of fold recognition prob-
lems, they have not been optimized for such a task. There
have been attempts to perform such an optimization
[33–35]; none, however, have yet surpassed the well
accepted BLOSUM62 matrix.
In this paper we describe a new weighted string kernel

that attempts to combine the benefits of the local string
kernels [27, 28] that use a substitution matrix and of the
weighted degree kernels that consider weighted sums of
kernels obtained with fixed length k-mers [25]. It is an
extension of a preliminary study in which we introduced
an unweighted kernel, SeqKernel, and showed its applica-
tions to protein fold recognition [29]. In this preliminary
study, we have shown that the kernel values computed by
SeqKernel show dependencies on sequence length, and
that those dependencies can be minimized by changing
the values of its parameters. The motivations for this work
are twofold. First, we introduce a weighted version of
SeqKernel, WSeqKernel, and show that with the proper
weighting scheme, the impact of sequence length can be

fully eliminated. Second, we use the fact that the string
kernel is differentiable with respect to the elements of its
input substitutionmatrix to optimize this matrix such that
the kernel scores match with structural scores for pairs
of proteins. Starting with the identity matrix, we show
that this procedure generates a substitution matrix that
recovers the physico-chemical properties of the twenty
amino acids.

Methods
The weighted string kernel considered here, referred to
as WSeqKernel, is inspired by the convolution string ker-
nels introduced by D. Haussler [36], the local alignment
kernel presented by Saigo et al. [27], and the string kernel
of Smale and co-workers [28]. An unweighted version was
presented in details in Nojoomi and Koehl [29]. We pro-
vide here the key elements of its construction, emphasiz-
ing the differences with those kernels. Readers are referred
to the original papers for a more detailed presentation,
notably for the proofs of the mathematical properties that
are relevant to kernels in general.

The weighted string kernel
Figure 1 depicts the major steps that define the string
kernel, WSeqKernel. The input of WSeqKernel is a pair
of sequences, S = (s1, . . . , sn) and T = (t1, . . . , tm) of
lengths n and m, respectively, and a substitution matrix
denoted SM. We note that n and m may be different; we
set p = min(n,m). Examples of SM include the matrices
representing the raw data of any BLOSUM matrices [5],
namely the raw counts of how often amino acid i is substi-
tuted by amino acid j in a set of selected protein sequence
alignments. Such amatrix is normalized such that the sum
over each of its row is 1.
We first define a kernel for amino acid pairs, namely a

measure of similarity between two amino acids (Fig. 1a).
Given a strictly positive real number β , we define the
function K1 as:

K1(si, tj) = SM(si, tj)β (1)

K1 is a kernel, as long as SM is symmetric, positive definite
and β is strictly positive. The same definition was used in
[27, 28].
The second step in the string kernel method imple-

mented inWSeqKernel is to define a kernel for comparing
two strings of the same length, k (Fig. 1b). Let k be
a strictly positive integer and let Sk = (si, . . . , si+k−1)
and Tk = (tj, . . . , tj+k−1) be two substrings of S and T,
respectively, both of length k. Such substrings are usually
referred to as k-mers. It is important to note that a k-mer
is a contiguous substring of a sequence, namely that we do
not consider gaps. The function Kk

2 defined by:
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Fig. 1 The weighted string kernel WSeqKernel. a Comparing two amino acids, b Comparing two strings of length k, c Comparing two sequences

Kk
2 (Sk,Tk) =

k∏

l=1
K1(si+l−1, tj+l−1) (2)

is a kernel on the space of strings of length k. We note that
Kk
2 is a convolution kernel [36].
The kernel between two sequences S and T with dif-

ferent lengths n and m, respectively, is then computed by
considering all combinations of substrings Sk and Tk is S
and T, for all k in [1, p] (Fig. 1c). We define

Kk
3 (S,T) =

∑

Sk∈S

∑

Tk∈T
Kk
2 (Sk ,Tk) (3)

where Kk
2 is the kernel on substrings of length k define

above.
The kernel value for the two sequences S and T is then

computed as a weighted sum of the kernel values Kk
3 for

all possible values of k:

K3(S,T) =
n∑

k=1
ω(k)Kk

3 (S,T). (4)

where ω(k) is a positive weight that depends on k.
Finally, we define the correlation kernel K̂3 as:

K̂3(S,T) = K3(S,T)√
K3(S, S)K3(T,T)

(5)

K̂3 is the sequence kernel considered in this paper. Follow-
ing [28, 29, 36], we make the following remarks:

i) The input kernel matrix G is not a traditional
substitution matrix, as it does not involve applying
the logarithm function on the probability measures.
While the latter is needed to make scores additive, a
necessary condition to enable the use of dynamic
programming algorithms to generate pairwise
sequence alignment, it is not needed for the string
kernel we use here. Note that this differs from the
local alignment kernel that is designed to mimic
pairwise alignment.

ii) The kernel K3 is computed as a weighted sum of the
individual kernels Kk

3 that are computed with fixed k,
akin to the weighted degree kernels [26]. As such, it
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differs from the string kernel introduced by Smale
and colleagues [28] and originally implemented in
SeqKernel [29]. Different options for those weights
are presented in the result section in the paper.

iii) As defined, K̂3 does not consider gap penalties, or
even gaps. We consider this as an advantage, as it
does reduce the number of parameters.

iv) The string kernel K̂3 is a similarity measure in the
space of sequences. Notice that for all sequences S,
K̂3(S, S) = 1. This similarity measure can be
transformed into a distance measure, using

D(S,T) =
√
2 − 2K̂3(S,T). D(S,T) takes values

between 0 and
√
2.

Implementing the weighted string kernel
The implementation of the weighted string kernel follows
closely the implementation of SeqKernel [29]. For com-
pleteness, we provide here a flowchart of the algorithm.

Algorithm 1 WSeqKernel: an algorithm to compute the
weighted string kernel K3(S,T) between two sequences S
and T

Input: S and T, the two sequences; Set n = |S|; m =
|T|; kmax, the longest k-mer considered; β , the power
coefficient to define K1; the scoring kernel GN
Initialize: Build matrix M of size n × m such that
M0(i, j) = 1. Set K3(S,T) = 0.
for k = 1, . . . , kmax do

(1) Update matrix Mk : for i ∈[ 1, n − k + 1] and j ∈
[ 1,m−k+1],Mk(i, j) = Mk−1(i, j)K1(si+k−1, tj+k−1)

(2) Compute Kk
3 (S,T) = ∑

i
∑

j Mk(i, j) where the
sums run over all i ∈[ 1, n−k+1] and j ∈[ 1,m−k+1]
(3) Update: K3(S,T) ← K3(S,T) + ω(k)Kk

3 (S,T)

end for
Output: string kernel K3(S,T).

The time complexity of this algorithm is O(nmkmax),
which remains large for protein sequence comparison. For
two sequences S and T, the algorithm above is run three
times, for the pairs, (S,T), (S, S), and (T,T). The three
kernel values are then combined according to Eq. 5 to
generate the correlation kernel of the two sequences.

Optimization of the amino acid kernel K1
Given a kernel matrix K1 (see Eq. 1) that defines the sim-
ilarities of pairs of amino acids, WSeqKernel computes
sequence similarity scores that are expected to mimic
structure similarity scores. Here we are concerned with
the problem of optimizing K1 such that the similarity
between the sequence and structure scores is maximized.
To perform this optimization, we need an objective func-
tion, derivatives of this objective function with respect to

the elements of K1, as well as a procedure that enforces
that K1 remains symmetric, positive, and definite during
the optimization. We discuss the former and latter here,
and refer the reader to the Additional file 1 for a complete
description of the computation of the derivatives, as well
as of the algorithm that implements this procedure.

Objective function. Let L be a set of pairs of proteins.
We denote by N the cardinality of L. For each pair n of
proteins in L, we compute the alignment between their
structures using STRUCTAL [37], and record its SAS
score, Yn. This score is an input of the procedure. In paral-
lel, we compute the kernel between their sequences, using
WSeqKernel, and record it as Xn. Xi is a non-linear func-
tion of the elements of the kernel K1. Our objective is
to optimize the degree of linear dependence between the
two variables Y and X. We quantify this linear depen-
dence using the Pearson’s correlation coefficient, which
we denote as P:

P = N
∑N

n=1 YnXn − ∑N
n=1 Yn

∑N
n=1 Xn√

N
∑N

n=1 Y
2n −

(∑N
n=1 Yn

)2
√
N

∑N
n=1 X

2n −
(∑N

n=1 Xn
)2 (6)

The values of P are in the range -1 to 1. Note that the
SAS score Y is akin to a distance measure, while the mea-
sure X is based on a kernel. As such, large values for X
are expected to correspond to small values for Y, and vice
versa. Optimizing the linear dependence between X and
Y is therefore a minimization, i.e. we attempt to push P to
be as close as possible to -1.

Maintaining the kernel K1 positive definite. Direct
minimization of the objective function defined by Eq. 6
is likely to fail as there is no guarantee that the matrix
K1 stays positive definite. One option to circumvent this
problem is to consider the Cholesky factorization of K1.
Indeed, any positive definitive real matrix K1 can be
decomposed as

K1 = LLT (7)

where L is a lower triangle matrix. Conversely, if K1 is
a matrix that can be written as LLT for some invertible
lower triangular matrix L, then K1 is positive definite.
The latter provides a framework for enforcing positive
definiteness, namely we set the parameters of the opti-
mization to be the matrix L, the Cholesky factorization of
the kernel K1. We do need to impose that the matrix L
remains invertible, which is achieved by preventing any of
the coefficients L(i, i) to become zero.

Datasets
We used in this study the same datasets as in Reference
[29]; we describe them here for sake of completeness.
Briefly, the first set of structures considered in this study
consists of 10619 domains from the CATH [38] v4.0
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domains, each with a CATH classification. As we focus on
protein fold recognition, we consider the first three lev-
els of CATH, Class, Architecture and Topology, to give a
CAT classification. We refer to a set of structures with the
same CAT classification as a fold. Using a set of structures
with sufficient sequence diversity ensures that the data is
duplicate-free and that the problem of detecting structural
similarity is non-trivial for all pairs of proteins considered.
The 10619 structures were selected as follows: (i) Ran-
domize the list of 235,858 CATH v4.0 domains; (ii) Start
with the first domain on the randomized list, and remove
from the list all domains that share significant sequence
similarity with it (FASTA [39] E-value< 10−4). (iii) Repeat
step (ii) with all domains in the list that have not been
removed, until there are no domains left for selection.
The set of 10619 domains resulting from this procedure is
referred to as CATH40e4.
There are 1363 folds in CATH40e4, many of which

only contain a single element (734). To facilitate statisti-
cal analysis, we selected five of the most populated folds
in CATH40e4 as a more specific test set, including at
least one fold from each CATH class: CATH fold 1.10.10,
a fully α fold (arc repressor, 381 representatives), CATH
fold 2.60.40, a fully β fold (immunoglobulin-like, 555 rep-
resentatives), and three alternating α/β folds: 3.20.20,
(TIM-like, 251 representatives), 3.30.70, (two layer sand-
wich, 368 representatives) and 3.40.50 (Rossmann fold,
1278 representatives). These five folds include a total of
2833 proteins (set CATH2833).
For statistical significance, we generated in parallel a set

of ten CATH2833-like datasets by repeating the proce-
dure above, starting with different randomized lists of the
CATH4.0 domains. These datasets are referred to as setI,
for I between 1 and 10.

ROC analysis of protein fold recognition
We quantify the effectiveness of a distance measure in
identifying correctly if two sequences correspond to pro-
teins that belong to the same CATH class using the
receiver operating characteristic (ROC) analysis [40],
following the procedure described in Nojoomi and
Koehl [29].

Principal component analysis of a substitution matrix
A substitution matrix K can be assimilated to a data
matrix in which a set of N “objects” (usually 20 amino
acids) are characterized by a set of P measured “features”
(the usually 20 scores for substituting one amino acid into
another). As such, each amino acid can be considered as
a point in a P-dimensional space. Not all P features are
equally important, however, and some of these features
may be highly correlated. To capture the principal com-
ponents that describe the amino acids and thereby reduce
the dimension of the space in which they lie, it is common

to perform a Principal Component Analysis (PCA). PCA
can be thought of as fitting an N-dimensional ellipsoid to
the matrix K, where each axis of the ellipsoid represents a
principal component. If some axis is small, then the vari-
ance along that axis is also small, and by omitting that axis
we lose only a small amount of information. To find the
principal components, we first center the values for each
feature by subtracting their means:

Kc(i, j) = K(i, j) − 1
N

N∑

k=1
K(k, j) (8)

We then estimate the covariance matrix C of the matrix
K from the centered matrix Kc:

C = 1
N − 1

KcKT
c (9)

where a factor N-1 is used instead of N as the mean
value of the P features are computed from the matrix K,
and not from the true distribution. Then, we calculate
the eigenvalues of this covariance matrix and their corre-
sponding eigenvectors. The latter provide the directions
of the principal components, while the former give the
corresponding contribution of that component to the total
variance of K.

Reproducibility
We have implemented this procedure into the pro-
gram WSeqKernel, whose source code is available
at the URL http://nook.cs.ucdavis.edu/~koehl/Research/
Research_seqanal.html or upon request to the authors.
WSeqKernel takes as input two sequences, a substitution
matrix GN, values for the two parameters β and kmax, as
well as a flag indicating the choice of kernel weighting
scheme. It gives as output the value of the correlation ker-
nel K̂3 for those two sequences (a similarity measure), as
well as the corresponding distance.

Results
Two proteins with similar sequences almost always share
the same structure. The reverse, however, is not always
true: Rost [9] has shown that pairs of proteins with sim-
ilar structures possess, on average only 8–10% sequence
identity: this observation is one of the reasons that it is dif-
ficult to classify proteins based on sequence information.
Here, we test an alternative approach to pairwise sequence
comparison. We propose to use a weighted string kernel
that provides an alignment-free measure of the similarity
of two protein sequences. We use that measure to clas-
sify protein sequences and compare the corresponding
classification results with classifications derived from 3D
structures and sequences. Our aims are twofold. First, we
parameterize the weighted string kernel such that it per-
forms better than sequence alignment based methods on
fold recognition problems.

http://nook.cs.ucdavis.edu/~koehl/Research/Research_seqanal.html
http://nook.cs.ucdavis.edu/~koehl/Research/Research_seqanal.html
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Second, we use the weighted string kernel to derive a
scoring matrix for amino acid similarities that captures
the properties of the structural scores. We use CATH2833
as our test set. CATH2833 is a database of 2833 protein
sequences that covers the three main classes of CATH
[38]: one fully α fold, one fully β fold, and three α/β folds
(see “Methods” section ). CATH2833 was designed such
that the sequences of any pair of proteins in the set have
statistically no similarity (FASTA [39] E-value > 10−4).

Parameterizing the weighted string kernel
The weighted string kernel considered in this paper
depends on the input substitution matrix GN, the weight-
ing scheme for combining the kernels for fixed length
k-mers, and two parameters, the power coefficient β

that is used to compute the Hadamard power of the
input substitution matrix S (see Eq. 1), and kmax, the
longest k-mers considered in the comparison of the two
sequences. We set the substitution matrix to be BL62, i.e.
the raw count kernel matrix derived from the BLOSUM62
matrix (referred to as BLOSUM62-2 in [28]). We con-
sider three possible weighting schemes. In the uniform
weight scheme, the coefficients ω(k) are set equal to 1
for all k. This corresponds to the unweighted kernel of
Smale et al. [28]. In the degree weight scheme, the coef-
ficient ω(k) are set to 2(kmax − k + 1)/(kmax(kmax + 1)),
i.e. the weights considered in the weighted degree ker-
nel [25]. Finally, we introduce a new set of weights,
ω(k) = 1/((n − k + 1)(m − k + 1)), where n and m are
the lengths of the two sequences S and T that are com-
pared. Note that there are n−k+1 andm−k+1 k-mers in
the two sequences S and T. The latter weight is therefore
equivalent to taking the average of the contributions of all
k-mers from the two sequences. We refer to this scheme
as the mean weight. For each weighting scheme, we have
tested a range of values for β from very small, 10−3, to
relatively large, 1, and a range of values for kmax, from 1
(i.e. single amino acid comparison) to 20. For pairs of
values (β , kmax) taken from their respective ranges, we
computed the similarity scores for all pairs of proteins in
CATH2833 and assessed the ability of those scores for
fold recognition using a ROC analysis (see Methods). The
resulting AUC scores are reported in Fig. 2. Note that the
higher the AUC, the better the performance.
There are striking differences between the Uniform

Weight and Degree Weight schemes on one side, and the
Mean Weight scheme on the other side. For the two for-
mer schemes, the results on the CATH2833 dataset show
two different behaviors depending on the β values: for
very small β values (below 10−2), all the AUC=f(kmax)
curves show an increase in performance, with relatively
high values close to 0.75, while for larger values of β

(> 0.1), the same curves show a second increase in per-
formance with different maxima for different kmax values,

with the β values corresponding to thesemaxima decreas-
ing as kmax increases. For the latter, however, the results
are very different: while the same behavior is observed for
the large values of β , poor fold recognition is observed for
very small β values. As the two schemes Uniform Weight
and Degree Weight are independent of protein length
while Mean Weight depends on length, the discrepancy
in behavior hints to WSeqKernel being able to pick differ-
ences in protein lengths for small β values under the first
two schemes, as already reported for the unweighted ker-
nel SeqKernel [29]. Using the MeanWeight scheme, how-
ever, the weighted kernelK3(S,T) associated to thematrix
of ones is equal to 1, independent of the two proteins
considered, leading to random behavior for fold recogni-
tion, and an AUC of 0.5.While interesting observations by
themselves, we note that a string kernel with the Uniform
or Degree weight scheme and a small value of β is not the
type of string kernel we are interested in, as such a kernel
is nearly independent of the actual sequences themselves,
and mostly captures length differences. These results sug-
gest to use the Mean Weight scheme instead, with large
values of β . Figure 2 indicates that any value of kmax is
possible, pending that the proper value for β is chosen.
We suggest using the pair (β , kmax)=(0.2,10), similar to our
original suggestion for the unweighted kernel [29].
To reduce the risk that these observations are valid

only to the specific proteins included in CATH2833, we
repeated the process of generating CATH2833 with differ-
ent initial random ordering of the proteins in CATH40e4
and generated ten independent CATH2833-like sets.
The average overlap (i.e. percentage of shared proteins)
between any of these sets and CATH2833 is 28%. For
each set, we computed a curve AUC = f (β) under the
Mean Scheme, with kmax set to 10. Results are shown in
Fig. 3. The differences over the ten sets are very small, and
not significant. Similar results were obtained with the two
other weighting schemes (results not shown).

WSeqKernel vs FASTA
With the exception of the length difference artifact, we
observed that WSeqKernel performs best for fold recog-
nition using the Mean Weight Scheme, kmax = 10,
and β = 0.2. With those parameters, the ROC analysis
of the performance of WSeqKernel in detecting struc-
tural similarity as defined by CATH leads to an AUC of
0.69 for CATH2833. We repeated the same ROC analysis
on CATH2833 using FASTA [39] for pairwise sequence
comparison, and STRUCTAL [37] for 3D structure com-
parison. FASTA SSEARCH tool [39] implements a fast
Smith and Waterman sequence comparison; the similar-
ity is given either as a raw score, or as an E-value; we
use the latter as a similarity measure. The ROC curve for
the FASTA measure are marginally above random behav-
ior, with an AUC score of 0.54 for CATH2833. This is
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a b c

Fig. 2 Parameterizing the weighted string kernel WSeqKernel. The string kernel defined in this paper is defined by two parameters, β and kmax , and
a weighting scheme to combine the individual kernels for different k-mer sizes (see text for details). We varied the two parameters in the respective
ranges [ 10−3, 1] and [ 1, 20]; for each corresponding pairs of values, we applied the corresponding kernel to compute the similarities of all pairs of
proteins in CATH2833 and checked the rankings of these similarities with the CATH classification of the proteins, using a ROC analysis. The
corresponding AUC values are reported in panels a, b, and c for the three weighting schemes that are compared, respectively. High values of AUC
indicate better fold recognition

expected, as by construction all protein pairs in those
datasets have little or no sequence similarity. Assignment
of structural fold is expected to work best when it is based
on 3D structural information. Indeed, the AUC of 0.93
obtained based on the SAS STRUCTAL scores [37] illus-
trates excellent classification results. We note that even
with X-ray structure information the classification is not
perfect. It is possible that a small fully α or fully β protein
is found to be similar to an α/β protein, based on local
alignment of the helical or strand regions of the proteins.

Fig. 3 Statistical differences for WSeqKernel on different data sets.
The mean performance over 10 randomized sets of proteins similar to
CATH2833 the weighted string kernel WSeqKernel with the Mean
Weight scheme and kmax set to 10, as measured by AUC, is plotted
against the value of the β parameter. Error bars correspond to ± one
standard deviation over these ten sets. Note the similarity with the
corresponding curve for CATH2833 (see Fig. 2), with the same
maxima around β = 0.2

That said, STRUCTAL scores based on X-ray structures
still perform remarkably well.
In Fig. 4, we compared the SSEARCH E-values, the

STRUCTAL SAS scores, and the kernel values com-
puted with WSeqKernel for all pairs of proteins that
belong to the same folds. We find that all protein pairs
whose sequence alignments have low E-values have in
parallel low SAS scores. The inverse, however, is not
true: many protein pairs with low SAS scores, i.e. that
are structurally similar, have high E-values, i.e. are not
detected to be similar by SSEACH. Again, this is not
unexpected as CATH2833 was specifically design to have
this property. In contrast, there is a higher correlation
(Pearson’s correlation coefficient of -0.42) between the
WSeqKernel similarity score and the SAS score (Fig. 4b).
This result supports the idea that WSeqKernel recov-
ers more structural information about the proteins in
CATH2833 than FASTA.

Amino acid properties recovered from protein structures
We can interpret Fig. 4b as follows: given a sub-
stitution matrix, an optimized sequence comparison
method recovers structure similarity scores relatively
well, enabling reasonable fold recognition. This leads,
however, to an interesting inverse problem: can we
identify a substitution matrix that provides the max-
imum similarity between sequence comparison scores
and structure comparison scores, and what is this opti-
mized substitution matrix telling us about amino acids?
As the equations defining the weighted string kernel
provide analytical expressions for the sequence simi-
larity score with respect to the scores for amino acid
comparisons, we are in the right conditions to answer
this question.
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a

b

Fig. 4 Probability–density distributions for protein comparison scores
S contoured against SAS, the STRUCTAL alignment score along the
horizontal axis and either ln(E-value) for the SSEARCH E-values (panel
a), or the WSeqKernel similarity value (panel b) along the vertical axis.
The densities are obtained by counting the number of pairs with
particular SAS, E-values, and WSeqKernel values. Because of the wide
range of density values, contours of log(S) are drawn with an interval
of 1 (a full order of magnitude). Zero value are set to 0.001

We first extracted all proteins from CATH2833 whose
lengths are between 120 and 180 residues (793 proteins).
By keeping the range of protein lengths small, we increase
the impact of amino acid similarity on the string ker-
nel. We performed an all-against-all comparison of the
structures of those proteins using STRUCTAL [37]. We
selected randomly a subset of pairs of proteins in this
dataset such that the SAS score of their structural align-
ment is between 0 and 20, providing a uniform coverage of
that range. This set includes 13177 pairs. The objective of
the optimization procedure is to maximize the Pearson’s
correlation coefficient between those SAS scores, and the
corresponding kernel values obtained with WSeqKernel
when comparing their sequences. The parameters that are
optimized are the values in the upper triangle part of the
matrix K1. We used the identity matrix as starting point
of the optimization. This matrix includes no information

on amino acid similarity. We note that the scores com-
puted from K1 remain consistent with a kernel if and only
if this matrix is maintained positive definite during the
optimization.
Two sets of optimizations were performed using the

Mean Weight scheme with two values of kmax, namely
2 and 10, respectively. Both optimizations significantly
improve the correlations between structural comparison
scores and sequence comparison scores, from -034 to -
0.63 for kmax = 2, and from -0.42 to -0.67 for kmax = 10.
Interestingly, the optimization leads to increased values
for the WSeqKernel scores compared to those computed
with K1 set to the identity matrix. We note that the latter
matrix is non-informative on similarities between amino
acids of different types. It is inclined to favor perfect
matches between k-mers. The correlations between the
WSeqKernel scores and the SAS Structal scores obtained
with this matrix are non significant. There are large ranges
of WSeqKernel values for each SAS value. Those ranges
are significantly reduced through the process of optimiza-
tion, both for kmax = 2 and for kmax = 10 (see Additional
file 1: Figure S1).
We use a graphical representation to highlight the infor-

mation content of the corresponding optimized matrices,
derived from Principal Component Analyses (PCA) of
those matrices (see Additional file 1 for details). The
principal components of amatrix identified by PCA corre-
spond to linearly uncorrelated variables that best explain
the data it contains. Once the principal components of
a matrix K1 are known, amino acids are assigned “coor-
dinates” along these components. In Fig. 5, we show
the corresponding vectors in three dimensions for the
un-optimized BL62, and BL620.2 K1 matrices (where the
exponent corresponds to the power of the matrix entries,
not of the matrix), as well as for the two optimized matri-
ces Optim2 and Optim10 corresponding to kmax = 2 and
10, respectively. The choice of three dimensions is justified
by considering the “energy” partition along the principal
components. The first three components of the matrices
Optim2 and Optim10 explain 87 and 95% of the energy
of the matrix, respectively. For BL62, the first three com-
ponents only explain 75% of the variance, and for BL620.2,
this number goes down to 63%. For those two matrices,
a higher dimension would have probably been better. We
kept it to three, to maintain the ability to plot the data and
for comparison with the Optim matrices.
There is a striking difference between the two graphical

representations of the matrices BL62 and BL620.2. While
the former shows a regrouping of most amino acids, with
the exception of W, P, C, H, and Y, the latter shows a bet-
ter spread of the amino acids, with groups that match with
the physico-chemical properties of the amino acids. All
the hydrophilic amino acids (in red) appear together, well
separated from the hydrophobic amino acids (in blue).
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a

c

b

d

Fig. 5 3D vector representations of amino acids as derived from the kernel matrices K1 = BL62 and K1 = BL62β with β = 0.2 (panels a and
b, respectively), and from the optimized kernel matrices K1 for kmax = 2 and kmax = 10, (panels c and d, respectively) . The proximity of these
vectors relate to the chemical similarities of the amino acids they represent. To highlight this fact, we show the known polar amino acids (Q, R, E, K,
N, D, T, H, and S) in red, the hydrophobic amino acids (M, V, L, I, P, and C) in blue, and the aromatic amino acids (Y, F, and W) in magenta. Note that
the two small amino acids, A and G (shown in green), stand out

This difference validates the use of a β value to scale
the input substitution matrix, and hints to using values
for β below one, probably close to 0.1–0.2, in agreement
with the parametrization results described above. The
most striking result, however, is that the optimized K1
matrices Optim2 and Optim10 delineate amino acid simi-
larities that are consistent with those observed in BL620.2.
Recall that those matrices were optimized against struc-
tural similarity scores, using the identity matrix as input
to the optimization. The separation of hydrophilic ver-
sus hydrophobic amino acids is clearer in Optim10 . Note
that the optimized matrix Optim10 features W and C
as being different. Cysteine can form disulphide bridges,
while tryptophan is a large aromatic amino acid; both
impose geometric constraints on protein structures. The
differences between Optim2 and Optim10 also reinforce
that a higher kmax value is preferred for applications of
WSeqKernel to structure recognition.
The graphical representation of the substitution matri-

ces shown above are informative on the similarities
between amino acids that they capture. This information,
however, is purely visual, therefore qualitative. We note
that it is difficult to interpret the meaning of the princi-
pal components derived from a PCA analysis, as these are
mathematically constructed to provide sub-components
of the matrices with decreasing energy/information con-
tent. In order to provide a quantitative assessment of these
principal components, we compared those components
with the 544 amino acid indices available in the AAIn-
dex database [41–43]. We performed this analysis on both

BL620.2 and Optim10, as those two matrices appear the
most informative in Fig. 5.
For the first component of BL620.2 that represents 33%

of its variance, five of the 544 indices were selected with
a correlation coefficient greater than or equal to 0.94:
the “buriability” of Zhou and Zhou [44], an interactiv-
ity scale designed to correlate with hydropathy [45], a
stability scale also from Zhou and Zhou, an hydropho-
bic parameter derived from free energy values for the
transfer of amino acids to hydrophobic environment [46],
and a normalized hydrophobicity scale [47]. Note that all
these indices are related to amino acid burial and their
hydrophobicity. These results are in agreement with the
original findings of French and Robson [48], Swanson [49],
Tomii and Kanehisa [42], and Gu et al. [50]. The best cor-
relations between the second and third components of the
matrix BL620.2 with the amino acid indices contained in
AAIndex are 0.77 and 0.70, respectively. The second com-
ponent is found to correlate well with an amphiphilicity
index, i.e. an index that characterizes amino acid prefer-
ence at membrane-water interface [51], while the third
component relates to statistics on turns in proteins [52].
Very similar results are found for Optim10. Its first com-

ponent, which represents 73% of its variance, is found to
correlate best with an accessibility reduction scale [53]
and a normalized hydrophobicity scale [47]. Six of the
top ten amino acid indices that best correlate with the
first PCA component are shared between BL620.2 and
Optim10. All those ten indices relate to hydrophobicity.
The second component for Optim10, which represents
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19% of the variance, is found to correlate best with amino
acid preferences at the C-termini of alpha-helices [54].
The third component, which only represents 2% of the
variance, correlates with the third “principal property” of
amino acids that was derived byWald et al. [55] using PCA
on twenty physico-chemical properties of amino acids.
Interestingly, the behavior observed for the first com-

ponents differs from the results described by Kinjo and
Nishikawa [56], who performed spectral analysis on sub-
stitution matrices compiled from protein structure align-
ments, including proteins with varying levels of sequence
similarities. Using the same AAIndex database that we
used [43], Kinjo and Nishikawa showed that at high
sequence identities hydrophobicity plays a minor role, and
that the “relative mutabilities” of Dayhoff [4] and Jones
et al. [57] dominates. The difference between our results
and those of Kinjo and Nishikawa is unclear.

Improved fold recognition with the optimized kernel K1
Our aim in optimizing the input amino acid kernel K1
for WSeqKernel starting from the identity matrix was to
extract information on amino acids from protein struc-
tures. We checked if the resulting optimized matrix led to
improved fold recognition. We performed ROC analyses
of protein fold recognition based on SSEARCH E-values
for pairwise sequence comparison, and on four conditions
for WSeqKernel, with the input matrices BL62, Optim10,
MIQS, and VTML, respectively. VTML was selected as
it provides improved global pair-wise alignment on exist-
ing protein sequence alignment benchmarks [58], while
MIQS was developed as an improved substitution matrix
for fold recognition [59]. For all WSeqKernel runs we set
the parameters β and kmax set to 0.2 and 10, respectively,
and use the Mean Weight scheme. Results are shown
in Fig. 6.
We find that all the ROC curves based on WSeqKer-

nel are significantly better than the ROC curve for the
FASTA score. The AUC for the FASTA curve is 0.53, while
the AUCs for WSeqKernel with BL62, MIQS, VTML, and
Optim10 are all equal to 0.69. It is worth noticing that
there are not noticeable differences between the perfor-
mances of those four substitution matrices, at least on the
database we considered, Cath40e4.

Comparisons with other string kernels
We repeated the ROC analyses presented above on the full
Cath40e4 database using five possible distances between
protein sequences, all derived from string kernels. The
first and second distances correspond to the weighted ker-
nel WSeqKernel with the parameters β and kmax set to
0.2 and 10, respectively, with the Mean Weight scheme,
and with BL62 and Optim10 as substitution matrices,
respectively. The other three distances between sequences
are derived from other string kernels. We included the

subsequence string kernel introduced by Lodhi et al. [23],
Subseq, the Spectrum string kernel originally proposed by
Leslie et al. [24], and the weighted string kernel WDegree
of Rätsch and colleagues [25, 26]. For those last kernel-
based distances between sequences, we used the package
Harry [60, 61], with all parameters set to their default
values. Results of the classification experiments are given
in Fig. 7.
The classifications obtained with WSeqKernel with the

Mean Weight Scheme and (β , kmax) set to (0.2,10) are
similar to each other, with AUC values of 0.69, and signif-
icantly more accurate than those observed with the other
three sequence-based distances, whose AUC values are
0.63, 0.62, and 0.60 for Subseq, Spectrum, and WDegree,
respectively. We note that the latter approaches, while
they resemble the WSeqKernel method, do not consider
similarities between amino acids, the way the K1 kernel
does; this kernel is at the core of WSeqKernel.

Discussion
This paper draws from the concept of string kernels
applied to biological sequence analysis [12–14]. It
describes an alignment-free method for protein sequence
comparison that is based on a modified version of the
string kernel introduced by Smale and collaborators [28] .
In contrast with the previous studies on string kernels, we
do not include at this stage our kernel into any learning
algorithms. Instead, we assess directly its ability to classify
proteins into structural folds based on sequence informa-
tion only. We note that our string kernel, WSeqKernel,
relies on two options, namely the choice of the weight-
ing scheme that modulates the impact of the lengths of
the sequence substring considered, and the choice of the
substitution matrix that is used to score matches of pairs
of amino acids, as well as on two parameters, β that
modulates the input substitution matrix, and kmax that
defines the maximum size of the k-mers that are con-
sidered. We provide an exhaustive analysis of the effects
of these two options and of the two parameters on the
performance of the kernel for fold recognition. Such an
analysis, which is necessary as a first step to improving
string kernel methods, was only partially included in the
presentations of the equivalent kernels defined by Saigo
et al. [27], and by Smale and co-workers [28]. It is the
first focus of this paper. Using a dataset that only con-
tains remote homologs, we have shown that WSeqKernel
performs remarkably well for small values of β (< 10−2)
with a uniform weighting scheme, independently of the
choice for kmax. This behavior is similar to the results
obtained with SeqKernel, the unweighted version of the
string kernel [29]. With such small values of β , however,
SeqKernel is tuned to capture the difference in lengths
of the protein sequences being compared, which is not
of interest for fold recognition [29]. Using a weighting
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Fig. 6 Choosing the substitution matrix for fold recognition. We compare the efficiency of FASTA pairwise sequence alignment method SSEARCH
(black), with the weighted string kernel WSeqKernel method with four different input K1 matrices, (BL62) (red), Optim10 (cyan), MIQS (blue), and
VTML (magenta) to detect fold similarity. “True” relationships are defined according to CATH topologies. The analysis is performed on CATH40e4
that contains 10619 sequences corresponding to 1363 folds (see Methods for details)

Fig. 7 The weighted string kernel WSeqKernel versus other string kernel methods. We compare the performance of five different distances between
protein sequences for detecting remote homologies. Those distances include the distances based on the weighted string kernel defined in this
work, with (β , kmax )=(0.2,10), the weights set according to the Mean Weight scheme, and the BL62 substitution matrix and Optim10 substitution
matrices, and three other string kernel distances, Subseq [23], Spectrum [24], and WDegree, a weighted string kernel with different weights [25, 26])
“True” relationships are defined according to CATH topologies. The analysis is performed on CATH40e4 that contains 10619 sequences
corresponding to 1363 folds
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scheme that averages out the contributions of all k-mers,
we have shown that we can significantly reduce this behav-
ior. We have shown that for larger values of β , there are
pairs of values (β , kmax) that provide significant perfor-
mance in fold recognition. We suggest to use the pair
(β , kmax)=(0.2,10).
WSeqKernel, just like any alignment-based sequence

comparison method, depends on a substitution matrix.
Such a matrix provides a quantitative measure of the
similarities of amino acids. Inclusion of such informa-
tion has already been shown to improve the power
of string kernels applied to sequence analysis [28, 62].
The main contribution of this paper is to propose a
framework for optimizing this matrix so that sequence
similarity scores show improved correlation to structure
similarity scores. Otherwise stated, we have reversed engi-
neered the problem of protein fold recognition: given
scores that provide good fold recognition, we have devel-
oped a mechanism that allows us to find which amino
acid similarity matrix would enable a string kernel to
mimic those scores. We have shown that starting from
no information on similarity between different amino
acid types, we were able to derive with this frame-
work a kernel matrix Optim10 that captures similarities
between amino acids reflecting their physico-chemical
properties. That we are able to retrieve this informa-
tion from Optim10 reinforces the idea that it is pos-
sible to extract the sequence information embedded in
protein structures.
We have tested different substitution matrices as input

to WSeqKernel: the well-recognized BLOSUM 62 matrix
that is used by default by many sequence comparison
methods, recently optimized matrices such as VTML [58]
and MIQS [59], and our own optimized matrix Optim10.
We observed similar results in terms of fold recognition
on a large database of non-redundant protein sequences,
Cath40e4. The lack of differences can be assigned to two
possible reasons. First, WSeqKernel itself may be insensi-
tive to the input substitutionmatrix.We did observe, how-
ever, that WSeqKernel performs better than other string
kernel methods that do not consider relative similarities
between amino acids (see Fig. 7). A second possibility is
that all the matrices we have considered are not signif-
icantly dissimilar to each other. This is for example the
case for BL62 and Optim10, as illustrated in Fig. 5. We are
currently testing more amino acid substitution matrices
to confirm that the second reason is valid. We do believe
that there is still room for improvement when designing
substitution matrices.
We have proposed a simple algorithm for computing

the kernel score between two sequences S and T. The
time complexity of this algorithm is O(nmkmax), where
n andm are the lengths of the sequences S and T, respec-
tively, and kmax is the maximum length of the k-mers

considered. Even if kmax is set to a small value (such as
the value of ten suggested in this paper), this compu-
tational cost remains high as it is of the order of the
square of the protein sequence lengths. This should be
compared to the computing time of other approaches for
alignment-free sequence comparisons that are based on
frequencies of occurence of k-mers. Those methods have
linear time complexities with respect to sequence length,
which makes them amenable to whole genome sequence
comparison (for review, see for example Song et al.
[63]). However, we see those methods and WSeqkernel
as serving different purposes. While the former pro-
vides fast filtering when comparing a large number of
sequences, or very large sequences, WSeqKernel pro-
vides a rigorous mathematical framework for comparing
sequences using an exact metric. We acknowledge, how-
ever, that WSeqKernel comes with a high computational
cost. We are currently looking at possibilities to reduce
this cost, by considering for example random selections
of k-mers.

Conclusions
This paper represents work in progress. We do not claim
that we have designed a string kernel that can solve the
fold recognition problem.We have made progress in char-
acterizing and parametrizing such string kernels, and we
have shown that they provide a framework for extract-
ing sequence information from structure. There are many
open questions, however, that need to be addressed. String
kernels do provide a mathematical framework for com-
paring protein sequences. They assume independence of
neighbor amino acids, an hypothesis whose impact needs
to be tested. It is unclear whether the weighting scheme
proposed in this paper is optimal. More generally, it
remains to be seen if additional information can be incor-
porated in those kernels. We are also interested in extend-
ing the applications of such kernels to study 3D struc-
tures of proteins. We intend to address these questions in
future studies.

Additional file

Additional file 1: Method: Optimization of an amino acid substitution
matrix. Comprehensive description of the method for optimizing the
substitution matrix given as input to WSeqKernel. (PDF 809 kb)
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