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The temporal and genomic scale of selection following
hybridization
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Genomic evidence supports an important role for selection in shaping patterns of
introgression along the genome, but frameworks for understanding the evolutionary
dynamics within hybrid populations that underlie these patterns have been lacking. Due
to the clock-like effect of recombination in hybrids breaking up parental haplotypes,
drift and selection produce predictable patterns of ancestry variation at varying spatial
genomic scales through time. Here, we develop methods based on the Discrete Wavelet
Transform to study the genomic scale of local ancestry variation and its association
with recombination rates and show that these methods capture temporal dynamics
of drift and genome-wide selection after hybridization. We apply these methods
to published datasets from hybrid populations of swordtail fish (Xiphophorus) and
baboons (Papio) and to inferred Neanderthal introgression in modern humans. Across
systems, upward of 20% of variation in local ancestry at the broadest genomic scales can
be attributed to systematic selection against introgressed alleles, consistent with strong
selection acting on early-generation hybrids. Signatures of selection at fine genomic
scales suggest selection over longer time scales; however, we suggest that our ability to
confidently infer selection at fine scales is likely limited by inherent biases in current
methods for estimating local ancestry from contiguous segments of genomic similarity.
Wavelet approaches will become widely applicable as genomic data from systems with
introgression become increasingly available and can help shed light on generalities of
the genomic consequences of interspecific hybridization.

hybridization | introgression | wavelet transform | Neanderthal

The greater recognition in recent decades that introgression is a common feature of
eukaryotic genomes has led to the view that species boundaries are semipermeable (1). In
this view, differential introgression along the genome is the result of selective filtering, with
some neutral or widely favored alleles able to permeate into the genome of a hybridizing
species, while others are restricted by genetic linkage to alleles with deleterious effects in
hybrids (2–4). While selection and assortative mating have long been thought to play
an important role in maintaining species integrity in the face of gene flow, advances in
genomic sequencing and analysis have brought forth the possibility of reconstructing
a more complete picture of genomic exchange between hybridizing species, forcing us
to reckon with the vast complexity of how the genomic outcomes of hybridization are
shaped by a dynamic interplay between recombination, genetic drift, and selection (5, 6).

Following a hybridization event, recombination over multiple generations progres-
sively breaks up contiguous segments of DNA inherited from the original source
populations (ancestry tracts) into finer segments. Numerous genomic methods are
now available to identify these tracts through genomic similarity to proxies for source
populations, and use the clock-like breakdown of tracts (or linkage disequilibrium
between introgressed alleles) to make inferences about the timing of past mixture events
(7–10). The changing spatial scale of coinherited genetic material along the genome
through time is simultaneously shaped by drift and selection acting at the population
level and will in turn influence how selection plays out in hybrid populations.

Genetic drift in a hybrid population shapes the ancestry proportion along the genome
by increasing either ancestry state at random. Along the length of a chromosome, these
deviations in the ancestry proportion will be autocorrelated due to the fact that an allele
from one ancestry background that drifts to high frequency will tend to carry with it
linked alleles from the same ancestry. For instance, if genetic drift is rapid during the early
generations of hybridization, while ancestry tracts are long, broad contiguous portions
of the genome might randomly fix for either ancestry. Conversely, in a large population
where genetic drift is slow, by the time an allele of one ancestry reaches fixation, it will
have been unlinked from all but the closest neighboring alleles from the same source
population. The progressive shortening of ancestry tracts is slowed and ultimately stopped

Significance

Selection against hybrids is
thought to play an important role
in limiting gene flow between
species that hybridize in nature.
While genomic methods are now
routinely used to detect signals of
hybridization, methods to
connect these patterns with
underlying evolutionary dynamics
of selection in hybrid populations
have been lacking. To understand
the spatial genomic scale of
hybridization signals, we apply
tools from signal processing (the
wavelet transform) and show how
this approach can track temporal
dynamics of evolutionary forces
within hybrid populations.
Applying these methods to
published datasets, we find
support for selection playing a
large role in shaping ancestry
patterns in the early generations
after hybridization.

Author affiliations: aDepartment of Evolution and
Ecology and Center for Population Biology, University of
California, Davis, CA 95616

Author contributions: J.S.G. and G.C. designed research;
J.S.G. performed research; J.S.G. and G.C. contributed
new reagents/analytic tools; J.S.G. analyzed data; and
J.S.G. and G.C. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2024 the Author(s). Published by PNAS.
This open access article is distributed under Creative
Commons Attribution License 4.0 (CC BY).
1To whom correspondence may be addressed. Email:
jgroh@ucdavis.edu or gmcoop@ucdavis.edu.

This article contains supporting information online
at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2309168121/-/DCSupplemental.

Published March 15, 2024.

PNAS 2024 Vol. 121 No. 12 e2309168121 https://doi.org/10.1073/pnas.2309168121 1 of 11

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2309168121&domain=pdf&date_stamp=2024-03-14
https://orcid.org/0000-0002-0444-4392
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:jgroh@ucdavis.edu
mailto:gmcoop@ucdavis.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2309168121/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2309168121/-/DCSupplemental


by genetic drift; once a genomic segment fixes for either ancestry
state, recombination events within the segment will cease to create
ancestry breakpoints in the descendant chromosomes (11–14).

Selection acting on hybrids will further shape variation
in levels of introgressed ancestry along the genome. Hybrids
often experience strong selection, as their genomes can contain
genetic incompatibilities or encode maladaptive phenotypes (15).
Selection for or against an introgressed allele in an admixed
population will lead to an excess or depletion of the corresponding
ancestry in the surrounding region, the length of which depends
on the strength and timing of selection relative to the timing
of admixture (16). This concept has been leveraged to identify
selected loci in recently admixed populations (17, 18) and date
the onset of selection on introgressed alleles (19). Similarly,
strong selection against introgressed alleles in specific genomic
regions is thought to have contributed to the formation of the
so-called ‘introgression deserts’ (20, 21). Analogously, variable
patterns of divergence between species along the genome are
thought to form at least in part through barriers to gene flow,
i.e., selection preferentially removing introgressed haplotypes
in regions harboring incompatibilities or loci contributing to
divergent adaptation (22–25).

Increasing attention has focused on forming a more general
understanding of how the distribution and frequency of intro-
gressed ancestry along the genome has been shaped by natural
selection (20, 26). Various studies have identified genome-wide
correlations between minor parent ancestry proportion (the
source population contributing <50% of total ancestry) and
recombination rate, indicating that selection has acted at many
loci throughout the genome to remove alleles from the minor
parent (27–31). Such correlations emerge due to the slower decay
of linkage disequilibrium (LD) between deleterious alleles carried
on introgressed segments in low recombination regions, allowing
for selection to more efficiently remove linked introgressed alleles
in these regions (32, 33). Whereas these correlations can represent
a snapshot of the cumulative effects of selection over tens to
thousands of generations, theoretical work has shown that the
strength of selection acting on hybrids likely varies dramatically
through time. Due to extensive admixture LD in early-generation
hybrids, the selective effects of many introgressed alleles combine,
creating very strong selection on individuals carrying introgressed
haplotypes (34). Thus, under a model of selection against
introgressed alleles at many loci throughout the genome, the
rate of removal of introgressed ancestry is greatest in the first
several generations following hybridization (33, 35).

We now have clear genomic evidence that selection plays a role
in maintaining species in the face of hybridization, but thus far
have lacked a methodology to disentangle the temporal effects of
selection, and to understand how selection shapes spatial ancestry
patterns in the genome. Here, we develop genomic methods for
analyzing temporal dynamics of drift and selection in hybrid
populations based on the Discrete Wavelet Transform (DWT), a
tool commonly used in time series analysis. After introducing
important features of the DWT, we show how the ancestry
variance present at different genomic scales can be captured by the
wavelet variance decomposition and how this captures the time
scale of evolutionary processes. We further show that a wavelet
decomposition of the correlation between introgressed ancestry
proportion and recombination rate, which decomposes the
correlation into contributions of different scales, tracks temporal
dynamics of genome-wide selection acting against alleles from
one source population. Finally, we apply these methods to three
empirical datasets: time-series data from a hybrid population of

swordtail fish (Xiphophorus), a hybrid swarm between yellow and
anubis baboons (Papio), and Neanderthal ancestry in modern
humans. Across all datasets, we find patterns consistent with
selection beginning early after hybridization and continuing
throughout multiple generations.

Spatial Decomposition of Genomic Signals
Using the Discrete Wavelet Transform
A common goal in the analysis of temporal or spatial signals is to
understand the scale of variation present in the signal. Here, we
make use of the Discrete Wavelet Transform (DWT), which like
the Fourier transform is used to understand the scale of variation
in a signal, but in addition captures information about local signal
features and so is appropriate for nonstationary signals. Although
widely used in physical sciences, the wavelet decomposition has
seen more limited application in population genomics (but see
refs. 36–39 for examples).

We start with a signal of interest, x(`), such as ancestry state x
measured at a set of evenly spaced locations ` = 1, . . . , L along
a contiguous chromosome of length L. If the data are not evenly
spaced, we first interpolate to obtain evenly spaced measurements,
along either a genetic or physical map of a chromosome. We will
use the DWT to decompose the variation in this signal—that is,
deviations in the signal around its chromosome-wide average—
into components associated with a discrete set of spatial genomic
scales. This is accomplished through multiplying our signal with
a set of wavelets, functions written as �,i(`) that capture changes
in the signal over varying spatial scales and locations. Informally,
each wavelet resembles a finite wave, oscillating equally between
positive and negative values over some characteristic scale �
centered on some location i. While many such functions exist,
we use Haar wavelets (examples shown as black lines in Fig. 1A),
which take a positive constant value for a stretch of sequence
of length �, switching to a negative constant value at location
i for another stretch of sequence of length �, and are zero
everywhere else.

Fig. 1. (Left) Ancestry states x(`) ∈ {0,1} along three hypothetical chromo-
somes, with examples of Haar wavelets overlaid in dark gray. From Top
to Bottom, ancestry tracts are shorter, representing different histories of
recombination. Shaded intervals highlight the portion of the ancestry signal
contributing to the resulting wavelet coefficient. (Top Left) Positive covariance
between a  �=6 wavelet and x within the shaded interval yields a positive
wavelet coefficient corresponding to a change in average ancestry state over
the two halves of the chromosome. (Middle Left) Negative covariance between
a  �=4 wavelet and x within the shaded interval yields a negative wavelet
coefficient. (Bottom Left) Positive covariance between a  �=2 wavelet and
x within the shaded interval gives a positive wavelet coefficient. (Right) The
complete set of squared wavelet coefficients determines the power spectrum
for the three ancestry signals, correspondence indicated in color.
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The DWT transforms our signal into a set of wavelet coeffi-
cients, w�,i, each of which measures the strength of association
between the signal and a corresponding wavelet:

w�,i =
∑

`

 �,i(`)x(`) ∝ cov( �,i, x). [1]

Because the mean of a wavelet is zero, a wavelet coefficient
is proportional to the covariance between the signal and the
corresponding wavelet and thus measures the extent to which the
wavelet captures variation in the signal over scale � and location i.
In the case of Haar wavelets, each wavelet coefficient measures a
deviation between two adjacent windowed averages of the signal
for a specific window size and location.

The set of wavelet coefficients produced by the DWT retains
all of the information in the original signal while avoiding
redundancy. To achieve this, the wavelet scales � are chosen to
form a doubling series (e.g., 1 kb, 2 kb, 4 kb, 8 kb, ...), and any two
wavelets of different scales have zero covariance. Thus, variation
in the signal at each scale is measured independently from
variation measured at any other scale. This property distinguishes
our approach from window-based approaches commonly used
in genomics research, where statistics calculated from genomic
windows of varying sizes are confounded, due to the fact that
smaller windows are nested within larger windows.

The wavelets at a given scale are simply shifted versions of each
other, with their nonzero portions covering different portions of
the sequence. In the traditional DWT, these are placed such
their nonzero portions cover the entire sequence without any
overlap. Thus, any two wavelets of the same scale also have zero
covariance, avoiding redundancy between neighboring wavelet
coefficients. We instead use a modified and more flexible version
of the traditional DWT known as the Maximum Overlap DWT,
which, for a given scale, uses wavelets placed at all positions
in the sequence (40). This yields less noisy estimates of the
wavelet variance and covariance (described below) and retains
the property of measuring variation independently across scales.
Further details on the wavelet transform are given in SI Appendix,
Text 1.

Wavelet Variance Decomposition. The average of the squared
wavelet coefficients at a given scale, called a wavelet variance, �̂2

�,
has the interpretation of the variance in our signal associated with
changes in the value of the signal occurring at that scale:

�̂2
�(x) ∝

∑
i

w2
�,i. [2]

Each squared wavelet coefficient w2
�,i is a sum over pairs of loci

of a pairwise ancestry product weighted by a pairwise wavelet
product:

w2
�,i =

∑
`

∑
`′

 �,i(`) �,i(`′)x(`)x(`′). [3]

For Haar wavelets, this wavelet product is only nonzero over scale
� in the region centered on i; thus,w2

�,i measures local variation in
x in the corresponding region. The total variance of the original
signal along the sequence, �̂2(x), can be decomposed as the sum
of wavelet variances across scales:

�̂2(x) =
∑
�

�̂2
� [4]

(see also SI Appendix, Eqs. S9 and S12). The set of wavelet
variances above is known as the power spectrum. Since the
wavelet scales � are powers of two, if our sequence length is not
itself a power of two, then there will be an additional component
of leftover variance—referred to in the wavelet literature as scaling
variance—due to the largest-scale wavelet not covering the entire
sequence. As we average across chromosomes of different lengths,
we fix the resolution of measurement (e.g., 50 kb or 2−10

Morgans) such that L is not a power of two, and so we are
left with scaling variance. To simplify interpretation, we omit
this scaling variance from the results shown in the main text as
it represents only a minor component of the total variance in all
our analyses.

When applied to ancestry state of a haploid copy of a
chromosome, the power spectrum provides a summary of the
length distribution of ancestry tracts (Fig. 1), with long ancestry
tracts generating variance at broad scales (pink lines) and shorter
ancestry tracts generating variance at finer scales (blue lines).
This property is leveraged in the wavelet-based admixture dating
methods of Pugach et al. (37) and Sanderson et al. (39)
which rely on simulations. While recombination is the primary
force determining the lengths of admixture tracts for single
chromosomes, genetic drift and natural selection acting in a
hybrid population will cause homologous pairs of the same
chromosome within a population to covary in their ancestry state,
which is our focus here. The spatial extent of this covariance can
be captured by applying the power spectrum to mean ancestry
averaged over multiple copies of the same chromosome, i.e., the
ancestry proportion, which we will demonstrate using theory and
simulations.

To obtain a complete spatial decomposition of the variance
in ancestry proportion along the whole genome, we apply the
wavelet transform separately to each chromosome (e.g., the
ancestry proportion along chromosomes 1, 2, ..., N) and take a
chromosome length-weighted average of wavelet variances across
chromosomes at each scale. Due to heterogeneity in chromosome
sizes, variation at the largest scales is present only on some
chromosomes, and so we estimate wavelet variances using only
the chromosomes for which a given scale is present.

Finally, since wavelet variances give only the within-
chromosome portion of ancestry variance representing fluctu-
ations around the mean for each chromosome, we account for
the among-chromosome variance contribution by calculating a
weighted variance of chromosome ancestry means. This among-
chromosome variance will be labeled ‘chrom’ in the results.
We can separately calculate the proportion of total genomic
variance explained by each component; if all chromosomes have
the same length, these quantities will be the same up to a
constant. These components combined (wavelet variance, scaling
variance, and among-chromosome variance) form a complete
variance decomposition of our measured ancestry signal across
the genome.

Wavelet Correlation Decomposition. Wavelet methods can also
be applied to examine the scale of covariation between two signals
(e.g., ancestry state and recombination rate), which we will use to
examine temporal dynamics of selection. The overall correlation
between two signals x and y (measured at the finest resolution
available) can be decomposed into the sum of contributions from
each scale:

Cor(x, y) =
∑
�

c���(x, y), [5]
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where the wavelet correlation ��(x, y) between our two signals at
scale � is weighted by an average proportion of variance explained
by scale � in the two signals, c� (see, e.g., Text S2 in 36). The
correlation at scale � is computed from the wavelet coefficients
of x and y at scale � and measures the strength of association
between localized directional changes in x and y around their
mean values at that scale. As with the variance decomposition, a
complete decomposition of the overall genome-wide correlation
will include additional terms due to leftover portions of the
chromosome not covered by the largest wavelets, as well as an
among-chromosome component.

Results
The Wavelet Variance Captures the Time Scale of Neutral
Ancestry Change. We first illustrate the effects of genetic drift
on the wavelet variance decomposition of ancestry state in a
hybrid population in the absence of selection. Following a pulse of
hybridization as recombination shortens ancestry tracts, genetic
drift meanwhile generates deviations in the ancestry proportion
along the genome away from the initial mixture proportion. The
timescale of drift relative to recombination in hybrids determines
the spatial scale of autocorrelation in these deviations—that is,
the spatial scale of variance in mean ancestry along the genome.
If a genetic bottleneck occurs shortly after the mixture event, the
large deviations in ancestry proportion it causes will happen while
ancestry tracts are long, so these deviations will be autocorrelated
over broad scales (maroon, Fig. 2, Top panel). In contrast, drift in
a large constant-sized population generates comparable ancestry
deviations over much longer timescales (blue, Fig. 2, Top panel),
by which point recombination has had more time to whittle
down ancestry tracts, such that the variance in mean ancestry
along the genome due to drift is on finer spatial scales.

The wavelet power spectrum of mean ancestry provides an
elegant summary that captures these effects. A strong bottleneck

concurrent with a hybridization pulse generates large wavelet
variances at broad scales (maroon, Fig. 2, Bottom panel).
Importantly, this broad-scale variance is maintained through
time; even after 1,000 generations, these large wavelet variances
at broad scales retain the signature of the early bottleneck. So
long as ancestry remains polymorphic at many loci, genetic drift
continues to generate variance in mean ancestry at progressively
finer scales through time. Thus, following the bottleneck and
population expansion, wavelet variances build at finer scales
according to the rate of drift in the larger population. Contrast
this to the case of a large, constant-sized population where
variance along the genome only starts to become apparent at fine
scales many generations after mixture (blue, Fig. 2,Bottom panel).

The wavelet variance of mean ancestry is determined by the
pairwise product of ancestry at two loci (Eq. 3) averaged across
pairs of haplotypes i and j (SI Appendix, Eq. S15). Under a
neutral model with random mating, the expectation of this
product depends only on the recombination distance between
two loci and population size and can be derived using coalescent
theory. We describe here the simple case of a single pulse with
admixture proportion � and no genetic drift. For alleles on the
same haplotype (i = j), the product of ancestry states depends
only on whether the haplotype recombined between the two
loci between the present (with rate r`,`′ per generation) and the
time of admixture, t generations ago. For alleles on different
chromosomes (i 6= j), the expected product of ancestry states
at two loci depends only on whether they are independently
inherited from the same source population, as in the absence of
drift they cannot coalesce:

E[xi(`) xj(`′)] =
{
�e−r`,`′ t + �2(1− e−r`,`′ t) if i = j
�2 if i 6= j.

[6]

We derive the full result with genetic drift in a time-varying pop-
ulation size in SI Appendix, Text 2 (SI Appendix, Eq. S17). Our

Fig. 2. Wavelet variance decomposition through time of ancestry proportion in a 50/50 population mixture undergoing genetic drift with recombination and
no selection. We simulated using SLiM, (41) a population of constant size 2N = 20,000 (blue) and a population that undergoes a bottleneck to 2N = 200 for
just the first 10 generations of recombination in hybrids, then expands to 2N = 20,000 (maroon). (Top) Ancestry proportion along human chromosome 1 from
a single simulation run. From left to right, shown after 10, 100, and 1,000 generations of recombination in hybrids. (Bottom) Wavelet variance decomposition
showing the spatial scale of variance in ancestry proportion. Points and error bars show means and 95% CIs across 20 replicate simulations. Solid gray lines
show theoretical expectations. Vertical dotted gray lines indicate the expected distance between recombination breakpoints that have accrued along a single
chromosome since the hybridization pulse. Note that since results are shown on the genetic map, recombination rate variation does not influence these
patterns, other than through interpolation error.
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theoretical expectations show good agreement with simulation
results (Fig. 2, solid gray lines in the Bottom panel). We note
however that subtle biases in our simulated wavelet variances
(e.g., downward bias at fine scales in generation 1000) result
from the interpolation of ancestry state between simulated loci
that are evenly spaced on a physical map to locations that are
evenly spaced on a genetic map (SI Appendix, Figs. S2 and S3).

Measuring the Timescale of Selection on Introgressed Ances-
try. As with drift, selection generates deviations in mean ancestry
along the genome away from the initial mixture proportion, with
the extent of autocorrelation in these deviations determined by
the timing and strength of selection relative to the timing of
mixture, as well as variation in recombination rate along the
sequence. To explore the role of selection in shaping ancestry
variation, we performed forward simulations of a hybridization
pulse followed by selection acting additively against alleles fixed
in one ancestry background at many loci (10,000) genome-
wide on a genetic map modeled on the human autosomes (for
example representing selection due to polygenic adaptation of
one source population to the local environment). We chose this
highly polygenic model in part to provide fine-scale variation for

selection to act upon, but also discuss models with selection on
fewer loci below.

We find that selection acting to remove introgressed alleles at
multiple loci distorts the power spectrum toward proportionally
greater ancestry variance at broad scales relative to the neutral ex-
pectation (Fig. 3A). This effect is seen across a range of numbers of
loci (10 to 10,000) under selection in hybrids, with greater broad-
scale variance generated when the same total additive selection
strength is distributed across fewer loci (SI Appendix, Fig. S4).
Separately, selection can decrease levels of ancestry variance across
some or all scales (depending on the recombination map) relative
to the neutral expectation by virtue of moving the introgressed
ancestry proportion toward to zero (SI Appendix, Fig. S5). Note
that widespread weak selection may lead to departures from the
neutral power spectrum on the same order as those caused by
interpolation. Thus, in comparing empirical results to neutral
expectations it may in some cases be preferable to use simulations
that incorporate the interpolation procedure.

Critically, variance in mean ancestry along the genome
produced by systematic selection against one ancestry can
be distinguished from that produced by genetic drift; we
expect introgressed ancestry depletions against the genome-wide

A B

C D

Fig. 3. Simulations of selection following a pulse of hybridization starting from a 50/50 population mixture. (A) Genome-wide selection in conjunction with
broad-scale variation in recombination rates leads to differential removal of introgressed ancestry at broad scales, thereby biasing the power spectrum toward
greater variance at these scales compared to the neutral expectation (viewed after 100 generations). (B) Selection against many alleles on one ancestry
background rapidly establishes broad-scale correlations between recombination and minor parent ancestry in early generation hybrids. (C) Through time with
continued selection, the overall correlation remains dominated by broad scales, but finer scales contribute increasingly more. (D) Selection acting only on
the first 10 generations of recombinant hybrids generates significant positive wavelet correlations only at broad scales (brown) (viewed in generation 1000),
whereas continuous selection over 1000 generations continues to generate correlations on finer scales (red). When selection acts continuously but reverses
direction after 100 generations to favor the alternate ancestry, positive broad-scale correlations persist as negative correlations establish at finer scales (see
also SI Appendix, Fig. S7B). Only significant correlations are shown; error bars represent 95% CIs across 20 replicate simulations.
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background to be spatially associated with features that govern
the strength of selection, namely the recombination rate and the
density of selected sites. Indeed, positive correlations between
minor parent ancestry and recombination rate or negative
correlations with coding density are often the basis for inferring
genome-wide selection against alleles from one ancestry, e.g., refs.
27 and 28.

As selection over multiple generations establishes these corre-
lations against a shifting backdrop of the spatial scale of ancestry
variance due to recombination, the wavelet spatial decomposition
of the correlation between ancestry state and recombination
(Eq. 5) can be used to track the effects of selection through
time. In the early generations after hybridization, when selection
sees numerous selected alleles linked in long ancestry tracts,
strong correlations rapidly establish at the broadest genomic
scales (Fig. 3B). Correspondingly, as the bulk of variance in mean
ancestry at this stage is also at broad scales, these scales contribute
most to the total correlation (Fig. 3C ). Wavelet correlations at
finer scales increase more gradually through time as selection
continues to operate on an increasingly fine-scale mosaic of
ancestry tracts. As drift increases variance at finer scales and
selection generates correlations on these scales (selection may
be increasing or decreasing variances at these scales, SI Appendix,
Fig. S5), fine scale correlations contribute more to the overall
correlation through time (Fig. 3C ). In simulations where the
same strength of selection is spread over fewer loci under selection
in hybrids, we find that correlations are weaker and do not
continue to establish at finer scales through time (SI Appendix,
Fig. S6). This makes intuitive sense, as we only expect selection
to create fine-scale correlations with recombination if selected
loci are distributed over those scales. In each case, broad
scales continue to constitute a significant portion of the overall
correlation through time, indicating that early selection has an
outsized influence on overall patterns of ancestry in hybrids.

As we observed that the power spectrum of mean ancestry
could preserve a memory of an early bottleneck after hybridiza-
tion, we next asked whether the wavelet correlation decomposi-
tion could similarly be used to detect temporally localized effects
of selection. We thus simulated a scenario where selection acted
only on the first 10 generations of recombinant hybrids after
admixture. In that case, correlations between recombination and
ancestry proportion remained restricted to only the largest scales
and remained present after 1,000 generations of recombination
in hybrids (Fig. 3D, brown). This suggests that observing
significant fine-scale wavelet correlations between recombination
and ancestry proportion on the genetic map indicates that
selection continues to have widespread effects on ancestry in
later generations of mixture. We next simulated two additional
scenarios, where 1) selection begins only after 500 generations of
neutral mixture, and 2) where selection acts in every generation
following the hybridization pulse but switches directions after
100 generations to favor the alternate ancestry allele at each
locus (these model were chosen for illustrative purposes and
not to necessarily reflect biologically realistic scenarios). We find
that while selection acting only in later generations also readily
generates significant broad-scale correlations with recombination
(scenario 1), broad-scale correlations that are established by early
selection are not reversed even by subsequent generations of
selection acting in the opposing direction (scenario 2) (Fig. 3D
and SI Appendix, Fig. S7). Thus, the wavelet decomposition of the
correlation between mean ancestry and recombination is capable
of revealing disparate effects of selection in different time periods.

In the analyses above, we modeled a single pulse of admixture
to provide intuition for how the wavelet decompositions capture

temporal dynamics of drift and selection on introgressed ancestry.
In reality, hybrid populations may receive multiple influxes of
parental-type individuals, or exist as a hybrid zone between
populations exchanging migrants. Under such models, the
lengths of introgressed segments will have a mixture distribution
reflecting the cumulative effects of multiple hybridization events,
and the resulting wavelet decompositions will capture the effects
of selection and drift on this combined distribution of segments.
While we demonstrated the wavelet decompositions using a spe-
cific model of demography and selection, the methods themselves
are agnostic to any assumptions about the underlying model
of hybridization. Indeed, these methods could be applied in
alternative scenarios such as stable hybrid zones. Here, researchers
may wish to compute wavelet summaries for subsets of individuals
across space, or according to average ancestry proportions.

We next apply the wavelet methods illustrated above to previ-
ously published ancestry calls from several empirical datasets. In
our theoretical and simulation work, “ancestry” can be defined
precisely, as we directly track the descent of haplotypes from
either of two well-defined populations that form a mixture at
a specified time in the past. In reality, this information is not
known and may be poorly defined, and ancestry for hybrid (or
admixed) populations is defined with respect to genetic similarity
to sets of reference samples (A and B) that are thought to be
representative of the variation present in the original mixing
groups. Thus, in describing specific analyses, we use terminology
such as A-like haplotypes to refer to regions of the genome that
have been computationally identified as more similar to reference
sample A than sample B (42, 43). We use the term ancestry
when we discuss the inferences we draw from these analyses,
e.g., that selection acts against alleles from the species A ancestry,
reflecting the fact that our inferences are placed in a conceptual
model of two divergent populations mixing upon secondary
contact.

Application to Hybrid Swordtail Fishes. To examine the roles of
recombination, drift and selection in shaping ancestry patterns
in a recently formed hybrid population, we analyzed time-
series whole genome data from a hybrid population of swordtail
fish from Acuapa river in Hidalgo, Mexico. This population is
thought to have formed from hybridization between Xiphophorus
birchmanni and X. malinche within the last 100 y (44). In several
independently formed hybrid zones between the same species,
Schumer et al. (27) observed positive correlations between
recombination rate and minor parent ancestry proportion,
implicating selection in shaping ancestry patterns genome-wide.
Furthermore, numerous incompatibilities are known to segregate
in these hybrid populations (45, 46).

We made use of previously inferred local ancestry patterns
in a set of temporally staggered samples ranging from 2006
to 2018 (44). Genotype posterior probabilities of matching
allopatric X. birchmanni/X. malinche alleles were called using
a Hidden Markov Model (HMM) at a set of loci along the
genome that are highly differentiated between the species, and
we interpolated the average marginal posterior probability of
matching the X. malinche allele to yield the sample proportion
of malinche-like haplotypes at evenly spaced intervals along the
genome.

To illustrate the effects of recombination across the sampling
interval, we visualized the power spectrum of the proportion of
malinche-like haplotypes on the genetic map for each collection
year. As expected by the shortening of ancestry tracts through
time, the power spectrum shifts toward greater variance at finer
scales across the temporal sampling interval (Fig. 4A). Increasing
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A B C

Fig. 4. Wavelet analysis of hybrid genomes in a population of X. birchmanni × X. malinche swordtail fish from Acuapa River in Hidalgo, Mexico. (A) Power
spectrum of the malinche-like ancestry proportion for five time points between 2006 and 2018. Points are weighted averages across chromosomes, and error
bars are 95% jackknife CIs. (B) Correlations at each spatial genomic scale (on the physical map) between wavelet coefficients for the proportion of malinche-like
haplotypes and wavelet coefficients for recombination rate. Squared values give an estimate of the proportion of variance in ancestry state explained by
systematic selection against malinche-like alleles. Data shown only for 2006, patterns similar across years. (C) Contribution of each genomic scale to the overall
correlation.

levels of overall variance in the signal through time are not due to
differences in sample size and are consistent with expected effects
of genetic drift following hybridization (SI Appendix, Fig. S8;
and may also reflect selection).

Turning to the role of selection in shaping ancestry patterns,
we next applied our wavelet methods to examine the spatial
structure of the correlation between the proportion of malinche-
like haplotypes and the recombination rate along the genome.
Recall that genetic drift will not produce any systematic associ-
ations between ancestry state and recombination rate, but that
selection acting systematically against alleles from one ancestry
will generate positive correlations between the recombination
rate and the proportion of the ancestry being selected against.
To match previously reported correlations, we analyze these
correlations on the physical map of the genome. We find an
overall positive correlation between the malinche-like proportion
and recombination that is largely driven by broad-scale patterns
(Fig. 4 B and C ). While finer scales contribute progressively
more to the overall correlation across the sampling interval (SI
Appendix, Fig. S9), this pattern appears to be driven by the
increasing variance at finer scales rather than increases in the
correlations at these scales (Fig. 4A and SI Appendix, Fig. S10).
Thus, while we observe strong broad-scale correlations consistent
with selection acting against malinche alleles early on in the
formation of the hybrid zone, we do not find evidence that
much of the change in genome-wide ancestry patterns across
this sampling interval (2006 to 2018) reflects selection against
malinche alleles. Nonetheless, selection may still be shaping
patterns of local ancestry; Powell et al. (44) reported evidence of
contemporary selection against the malinche allele at a QTL for
tail length in this population.

When viewed on the genetic map, we find that strong positive
correlations are largely restricted to broad scales, consistent with a
recent origin of the hybrid population (SI Appendix, Fig. S10B).
We note however that we also detect weak but significant positive
fine-scale correlations on the genetic map, e.g., at 2−10 Morgans,
which would suggest selection acting on ancestry variation at
finer scales than expected given the estimated age of the hybrid
population. These finer scale correlations could possibly reflect
older admixture present in the source populations that formed

this hybrid population, or errors in either HMM similarity calls
or recombination rate inference at fine scales.

Genetic drift alone does not generate any systematic association
between local recombination rates and local ancestry proportion,
but this pattern is readily generated by genome-wide selection
against introgressed alleles. Thus, the percent of variance ex-
plained from a regression of ancestry wavelet coefficients on
recombination rate wavelet coefficients at a given scale can be
interpreted as the percent of ancestry variance at that scale that
can be attributed to selection under such a model. Applying this
logic, we find that∼20% of variance at the broadest scales on both
the physical and genetic map (i.e., >3.2 Mb, >0.125 Morgans)
can be attributed to selection against minor parent ancestry. We
consider this a lower bound estimate, given that it treats genomic
similarity to X. malinche as a proxy for the locations of selected
loci and that it assumes a model where selection always acts
against malinche alleles. This approach can easily be extended by
including wavelet coefficients for other genomic features such as
the density of coding base pairs as predictors in the regression. For
simplicity and consistency across datasets, we only present results
using recombination rate as a predictor, although we note that in
this dataset, including wavelet coefficients for coding sequence
density as a predictor did not generally improve model fit.

Application to Hybrid Baboons in Amboseli. Genome-wide se-
lection against hybrids has also been inferred in the case of hybrids
between yellow baboons (Papio cynocephalus) and anubis baboons
(P. anubis). Vilgalys et al. (2022) (31) analyzed whole genome
sequence data from 442 baboons sampled near the center of a
hybrid zone in the Amboseli basin of Kenya. This population
is comprised of a complex mixture of early and late generation
hybrids (potentially reflecting recurrent admixture over hundreds
of generations), with most individuals having majority yellow-like
ancestry. Although overall levels of anubis-like ancestry have been
gradually increasing in this region over time due to immigration
of anubis-like individuals into the hybrid zone (31, 47, 48),
Vilgalys et al. (31) reported positive genome-wide correlations
between recombination rate and anubis-like ancestry, consistent
with widespread selection against alleles carried on this ancestry
background within the hybrid zone.
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We took advantage of the complex history of hybridization
in this system to further demonstrate how the power spectrum
can reveal demographic trends in hybrid zones. We apply the
wavelet variance decomposition to an interpolated estimate of
the proportion of anubis-like haplotypes within diploids at a set
of loci differentiated between allopatric reference panels of yellow
and anubis baboons. Overall, the majority of ancestry variance
is present at finer scales on the genetic map compared to the
swordtail hybrid population, suggesting hybridization occurring
over much deeper timescales (Fig. 5A). We also find that the
power spectrum varies according to an individual’s genome-wide
proportion of anubis-like ancestry, with the most anubis-like
individuals showing greater ancestry variance at broad genomic
scales. This pattern is consistent with the most anubis-like
individuals in the sample being recent descendants of migrants
with longer contiguous tracts of anubis-like ancestry, and implies
multiple bouts of admixture rather than a single pulse. In sum,
the power spectrum for ancestry state is consistent with this
population being the product of both recent and historical
hybridization events as previously inferred.

We next applied the wavelet methodology to examine the
structure of a previously reported positive correlation between
recombination rates and the proportion of anubis-like haplotypes
along the genome (31). We again find positive correlations
across multiple scales on the physical map, with broad scales
contributing the most to the overall correlation (Fig. 5B).
Comparable to the swordtail population, we find that ∼20% of
broad-scale variance in the proportion of anubis-like ancestry can
be explained by systematic selection against anubis alleles, using
just recombination rate as a predictor (Fig. 5B, squared values).
When viewed on the genetic map, we find positive correlations
across multiple scales consistent with ongoing selection against
anubis-like ancestry, again with the strongest correlations at
broadest scales (SI Appendix, Fig. S11).

Application to Neanderthal Ancestry in Modern Humans. As
modern humans expanded out of Africa ∼60,000 y ago, they
interbred with Neanderthals present in Eurasia (49). Despite
some introgressed Neanderthal variants having been adaptive
(50), a number of studies have inferred that Neanderthal

ancestry was on average deleterious in the modern human
lineage, as Neanderthal-like haplotypes in modern humans are
relatively depleted near conserved elements and in regions of low
recombination (20, 26, 27, 51).

We applied wavelet methods in order to understand the
relative contributions of drift and selection in shaping variation
in Neanderthal ancestry along the genome. Here, we use three
different call sets of Neanderthal-like haplotypes, inferred for
the CEU 1,000 genomes samples (20, 52) and a large sample
of modern Icelanders (53). Analyzing the power spectrum of
the sample proportion of Neanderthal-like haplotypes on the
autosomes for each set, we find reasonable agreement between our
estimates and theoretical expectations under a model of a single
pulse of neutral admixture 2,000 generations ago (Fig. 6A). Thus,
while previously identified deserts of Neanderthal ancestry likely
reflect early purifying selection against Neanderthal haplotypes,
overall most of the variance in the frequency of Neanderthal-like
haplotypes is on finer scales, largely consistent with the long-
term effects of genetic drift. While this is perhaps surprising
given previously inferred negative fitness costs of introgression, we
found in simulations of dispersed weak selection assuming 10,000
loci contribute to a 20% fitness reduction in human–Neanderthal
F1s, e.g., refs. 35 and 26) generates only subtle deviations from
the neutral power spectrum (SI Appendix, Fig. S12). The sample
average calls of different methods are in good agreement at broad
scales (upward of several Mb), but are only weakly correlated
at finer scales of measurement (e.g., tens to hundreds of kb,
Fig. 6B). This is expected given the low inferred proportion of
Neanderthal ancestry and the old age of the admixture event.
All of the methods have substantially reduced power to detect
short fragments, particularly in the presence of recombination
rate heterogeneity (54).

Turning to correlations between the proportion of
Neanderthal-like haplotypes and recombination rate, we find a
consensus across datasets of positive correlations at broad scales on
the physical map (Fig. 6C and SI Appendix, Fig. S13). However,
at the finest scales, we find significant negative correlations for
some of the call sets. These are not due to a confounding
correlation between recombination and gene density, which are
negatively correlated at these scales (SI Appendix, Fig. S14). The

A B C

Fig. 5. Wavelet analysis of hybrid genomes between yellow and anubis baboons in Amboseli, Kenya. (A) Power spectrum of the proportion of anubis-like
haplotypes within diploids on the genetic map, stratified by quintile of genome-wide average anubis-like ancestry. Error bars are 95% CIs using the SE of the
wavelet variance across individuals within each quintile. (B) Correlations at each spatial genomic scale (on the physical map) between wavelet coefficients for
sample proportion of anubis-like haplotypes and wavelet coefficients for recombination rate. Squared values give an estimate of the proportion of variance in
ancestry state explained by systematic selection against anubis-like alleles. Weighted-jackknife 95% CIs shown for all but the largest scale which is present only
on a single chromosome. (C) Contribution of each scale to the overall correlation. Although there is a strong negative correlation at scale 102,400 kb, this scale
is only present on chromosome 1 and does not contribute substantially to the overall positive correlation.
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Fig. 6. Wavelet analysis of inferred Neanderthal ancestry in modern humans. (A) Normalized power spectra of the proportion of Neanderthal-like tracts for
three different studies (colored points) compared to a neutral expectation for 2,000 generations of admixture in a population size of 10,000 diploids (gray line).
Error bars represent 95% CIs from a weighted jackknife across chromosomes. (B) Correlations across scales between different similarity calls from different
datasets. (C) Contribution of each scale to the overall observed correlation between the proportion of Neanderthal-like haplotypes and log-transformed
recombination rates. Shapes correspond to different studies as indicated in panel (A).

negative correlations could conceivably be generated by selection
in late generations systematically favoring Neanderthal ancestry
(as seen in our simulations of the case where introgressed variants
are first deleterious but then later favored, Fig. 3D). However, we
suggest they more likely reflect an inherent bias toward detecting
Neanderthal-like haplotypes in regions of lower recombination.
The estimated correlations at fine scales are variable across calling
methods and appear at genomic scales where different sets of calls
are only weakly correlated, suggesting these negative correlations
are an artifact of the methods rather than underlying biological
signal. Furthermore, we note that correlations at fine scales
were highly sensitive to the posterior threshold applied in at
least one dataset, further suggesting that inference of ongoing
or recent selection based on fine-scale patterns of Neanderthal-
like haplotypes is limited with current methods (SI Appendix,
Fig. S15).

Discussion
Wavelet analyses are a promising tool for studying evolutionary
forces acting in hybrid populations using genomic data. We have
shown with theory and simulations how a decomposition of the
variance in ancestry state along the genome contains signatures
of demographic history under a simple population genetic model
of admixture. Further, we used simulations to illustrate how
selection against introgressed alleles impacts the scale of both
the variance in ancestry and the correlation between introgressed
ancestry and recombination rate. In total, these methods offer
a compact summary of genome-wide admixture signals and can
inform a more general understanding of the role of selection in
shaping patterns of introgression across the genome.

In applying the method to several systems, we can observe
generalities in the genomic consequences of hybridization. Most
notably, the observed positive correlations between introgressed
ancestry and recombination rate are largely dominated by
patterns at broad genomic scales. Simulations indicate that
these patterns establish rapidly in the earliest generations after
hybridization when selection acts against multiple alleles from
one ancestry across the genome. Thus, this evidence accords
with our understanding that selection is strongest in the early

generations after a hybridization event (33–35), and suggests
that this effect can be detected even hundreds or thousands of
generations later. In all three cases, a reasonable proportion of
the variation in ancestry state along the genome at the broadest
scales is attributable to recombination rate variation (roughly
10 to 20%). As these estimates are a lower bound on the
contribution of selection, we can say that selection plays a key
role in shaping the genomic composition of early generation
hybrid populations, with lasting effects. Weaker correlations
at finer genomic scales also agree with our understanding that
the strength of selection on hybrids dramatically decreases over
generations (33), and suggests that genetic drift may be the
dominant force shaping fine-scale genomic ancestry patterns. A
related approach to estimating the contribution of selection to
ancestry patterns across scales would be to apply these analyses to
the correlation in ancestry state between independent replicates
of hybrid populations derived from the same source populations.
This approach may be more powerful in that locations and effects
of selected alleles are internally matched when similar parental
sources repeatedly hybridize under similar ecological conditions.

In demonstrating the effects of selection on wavelet-based
statistics, we considered a simple additive model of selection
against alleles at multiple loci carried in one ancestry background.
However, the wavelet methods themselves are agnostic to the
form of selection, and in real hybrid populations multiple forms
of selection likely interact (6). Alternative models of selection
that incorporate dominance and epistasis could generate different
signatures in the wavelet statistics, such that these methods could
potentially be applied toward distinguishing among models. For
instance, Harris and Nielsen (35) found that if deleterious muta-
tions in human and Neanderthal haplotypes are largely partially
recessive, the direction of selection on introgressed Neanderthal
variants in human populations could change through time due
to the contrasting effects of purifying selection and selection
for heterosis (see also ref. 55). We have shown here that such
a reversal in the direction of selection on one ancestry can in
principle be detected using the wavelet decompositions (Fig. 3D).
One parameter explored here is the total number of loci under
selection in hybrids. Using the same additive model with the
total additive strength of selection held constant, we found that
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the wavelet decompositions vary with the overall number—and
correspondingly the density—of sites under selection in hybrids.
Importantly, a high density of sites under selection is required
to generate fine-scale correlations between introgression and
recombination. Thus, the scale at which correlations between
introgressed ancestry and recombination rate are generated is
indicative of the scale at which selected loci are distributed in the
genome.

An important caveat to these methods is that any systematic
biases in the input data, including estimation of recombination
rates and local ancestry inference, will be propagated into the
wavelet transform. For example, biased detection of introgressed
fragments toward low recombination regions may generate spu-
rious signals of selection favoring introgressed ancestry genome-
wide. We have suggested this may be the case for Neanderthal
introgression into humans, where we see negative correlations
over fine genomic scales (Fig. 6C ). These potential biases,
together with inconsistent patterns across sets of calls and high
sensitivity to posterior probability thresholds, also suggest more
generally that inferences of selection on Neanderthal ancestry
relying on fine-scale genomic patterns might need to be revisited
(26, 56). Other issues such as the need for phased reference panel
haplotypes and the potential for model mis-specification limit
wider applicability of local ancestry inference with HMM-based
methods in nonmodel systems.

One promising direction to overcoming these limitations
is that the wavelet transform can be applied to single-locus
admixture statistics (37, 39) to avoid directly inferring the
boundaries of ancestry tracts. While these statistics contain
additional noise unrelated to the admixture process, future work
could develop a theoretical framework for applying these methods
to single-locus admixture statistics, thereby avoiding biases arising
from local ancestry inference with HMM methods. Additional
theory is also needed to better understand the impact of selection
on the wavelet variance and correlation decompositions, and to
extend these ideas to scenarios with ongoing gene flow and hybrid
zones.

We now appreciate that introgression is a common feature of
eukaryotic genomes, and the proliferation of genomic sequence
data presents an opportunity to study hybridization events across
systems and time scales. Combined with the increasing avail-
ability of more complete genome assemblies and recombination
maps, wavelet approaches should enable patterns in the strength
and time scale of selection on hybrids to emerge across systems.

Materials and Methods

All code used to produce results shown in this manuscript can be found at
https://github.com/jgroh/selection-against-introgression.

Simulation and Data Processing. All simulations were performed in SLiM
4.0 (41). Each locus in our simulations represented a genomic window of fixed
physical length (e.g., 50 kb). Recombination rates between adjacent windows
were modeled off a genetic map of the human autosomes (57). In simulations
withselection,wefixeddeleteriousalleles inonesourcepopulationat10,000loci
placed uniformly at random on the physical map in each replicate run. We used
a model of polygenic selection against introgressed ancestry where the fitness
of individual i, (wi), declines linearly with the fraction of introgressed alleles the
individual carries (p, with the slope given byS:wi = 1−pS; similar models were
studied in refs. 34, 2, and 33). For the analyses shown in the main text, we set
S = 1, corresponding to F1 hybrids having a relative fitness of 0.5. Simulations
used tree sequence recording (58), and ancestry along the genome was extracted
from the tree sequences using tskit (https://tskit.dev/software/tskit.html).

For downstream wavelet analysis, we require signal values at evenly spaced
positions, either on a physical or genetic map. For our simulations where
simulated loci represented genomic windows of fixed physical length, we thus
performed interpolation of ancestry and recombination signals to a grid of evenly
spaced positions on the genetic map.

Wavelet Analysis. For all wavelet analyses, we used the Maximal Overlap DWT
with Haar wavelets (40) implemented in the R package waveslim (59). Further
background on the wavelet methods is provided in SI Appendix, Text 1.

As the wavelet transform only operates on contiguous signals, we perform
the variance and correlation decompositions to each chromosome separately
and then combine results across chromosomes in one of two ways. Due to
heterogeneity in chromosome length, not all scales will be present on all
chromosomes. Thus, for estimating wavelet variance magnitudes, we average
over only those chromosomes for which a given scale is present, taking a
weighted average where the weight is chromosome length. Separately, we
calculate the proportion of total genomic variance contributed each scale by
assigning a variance value of zero to those chromosomes for which a given
scale is not present, and then performing the same weighted average across
chromosomes. Values were then adjusted to account for the proportion of total
genomic variance due to variance among chromosomes in their mean values of
a signal. The among-chromosome portion is also a weighted average weighted
by chromosome length.

Generic functions to perform the main analyses shown in this paper
are contained in the R package gnomwav available at https://github.com/
jgroh/gnomwav. The function gnom_var_decomp returns the genome-wide
variance decomposition for any signal, including both forms of averaging
over chromosomes. Likewise,gnom_cor_decomp returns genome-wide wavelet
correlations for each scale. The contribution of each scale to the overall correlation
between signals can be obtained from the output of these two functions. These
functions are not specific to the investigation of admixture and should be broadly
applicable to many genomic signals of interest.

Swordtail Analysis. We used genomic similarity calls from Powell et al. (44),
consisting of posterior probabilities for diploid genotypes matching reference
panels of X. malinche or X. birchmanni at a set of SNPs that are highly
differentiated between the species. The frequency of the minor parent allele
(X. malinche) for each individual was taken as a weighted average of the
posterior probabilities of being homozygous and heterozygous for matching
X. malinche, i.e., p̂A = P(AA) + 1

2 P(Aa). We interpolated these estimates to

distance of 50 kb and separately 2−12 Morgans and averaged across individuals
for the admixture proportion. For analyses on the genetic map, we used an LD-
based recombination map (Schumer lab, pers. comm.). Since these estimates
were in units of 2Ner, we converted distances to Morgans using an estimate of
2Ne from the slope of a regression between the genetic lengths of chromosomes
estimated from a cross-over map and those estimated from the LD map. As we
observed extreme outliers in values of 2Ner, we first truncated the distribution
of 2Ner at 0.005, corresponding to 1.6% of the total genome (a threshold was
also applied in ref. 27). We applied the lowest threshold possible beyond which
we saw relatively stable estimates of 2Ne, and we also observed a significant
improvement in the fit of the above regression using the chosen value. We
also found that results applying this threshold show better agreement with a
previously inferred age of the hybrid zone (Schumer lab, pers. comm.).

Amboseli Baboon Analysis. We used genomic similarity calls from Vilgalys
et al. (31), i.e., posterior probabilities for diploid genotypes matching reference
panels of P. anubis or P. cynocephalus at a set of SNPs that are differentiated
between the species. Estimates were interpolated as described above using an
LD-based recombination map. As we again observed extreme outliers in values
of 2Ner, we applied a threshold at 0.01 (corresponding to 1.4% of the total
genome). To visualize the wavelet variance spectrum on a genetic map, we
converted genetic lengths to units of Morgans as described above, using genetic
lengths of chromosomes (60).

Neanderthal Introgression Analysis. We compared results using three
separate estimates of Neanderthal-like haplotype frequency (20, 52, 53). We
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interpolated the estimates as described above. For the frequency estimates from
ref. 53, we used the sum across identified archaic fragments of a weighted
average of the frequency of each fragment in the sample of Icelanders, with the
weight being the portion of the window covered by the fragment. For the data
from refs. 20 and 52, we used Neanderthal allele frequency estimates in the
CEU sample of the 1000 genomes project (2N = 170). For these two studies, we
tried two separate measures of Neanderthal-like haplotype frequency. First, we
directly used marginal posterior probabilities of a site matching Neanderthal,
averaged across individuals in the sample, e.g., column 11 in the output files
provided by ref. 20. Next, following the analyses of the original authors, we
applied a threshold to the marginal posterior probabilities, calling sites with
marginal posterior probability above 0.90 from ref. 20 and above 0.42 from
ref. 52 as Neanderthal-like, then taking the average of calls across haplotypes,
e.g., column 15 in the files provided by Sankararaman et al. (20). Recombination
rate estimates are from ref. 57. We ran the analyses separately using both hg19

and hg38 assembly coordinates. Results were similar in both cases, results are
shown for hg38 coordinates. We note that recombination rates in humans are
likely estimated with greater resolution relative to the datasets above; consistent
with this, we found considerably greater variance in the recombination rate across
scales and thus used log-transformed recombination rates for the analyses shown
in this paper.

Data, Materials, and Software Availability. Previously published data were
used for this work (20, 31, 44, 52, 53).
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