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X. Giroux,37 G. Grosdidier,37 A. Höcker,37 F. Le Diberder,37 V. Lepeltier,37 A. M. Lutz,37 T. C. Petersen,37

S. Plaszczynski,37 M. H. Schune,37 G. Wormser,37 C. H. Cheng,38 D. J. Lange,38 M. C. Simani,38 D. M. Wright,38

A. J. Bevan,39 C. A. Chavez,39 J. P. Coleman,39 I. J. Forster,39 J. R. Fry,39 E. Gabathuler,39 R. Gamet,39 D. E. Hutchcroft,39

R. J. Parry,39 D. J. Payne,39 C. Touramanis,39 C. M. Cormack,40 F. Di Lodovico,40 C. L. Brown,41 G. Cowan,41

R. L. Flack,41 H. U. Flaecher,41 M. G. Green,41 P. S. Jackson,41 T. R. McMahon,41 S. Ricciardi,41 F. Salvatore,41

M. A. Winter,41 D. Brown,42 C. L. Davis,42 J. Allison,43 N. R. Barlow,43 R. J. Barlow,43 M. C. Hodgkinson,43

G. D. Lafferty,43 J. C. Williams,43 C. Chen,44 A. Farbin,44 W. D. Hulsbergen,44 A. Jawahery,44 D. Kovalskyi,44 C. K. Lae,44

V. Lillard,44 D. A. Roberts,44 G. Blaylock,45 C. Dallapiccola,45 S. S. Hertzbach,45 R. Kofler,45 V. B. Koptchev,45

T. B. Moore,45 S. Saremi,45 H. Staengle,45 S. Willocq,45 R. Cowan,46 K. Koeneke,46 G. Sciolla,46 S. J. Sekula,46 F. Taylor,46

R. K. Yamamoto,46 P. M. Patel,47 S. H. Robertson,47 A. Lazzaro,48 V. Lombardo,48 F. Palombo,48 J. M. Bauer,49

L. Cremaldi,49 V. Eschenburg,49 R. Godang,49 R. Kroeger,49 J. Reidy,49 D. A. Sanders,49 D. J. Summers,49 H. W. Zhao,49
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We search for a charged partner of the X�3872� in the decay B! X�K, X� ! J= ���0, using 234�
106 BB events collected at the 
�4S� resonance with the BABAR detector at the PEP-II e�e� asymmetric-
energy storage ring. The resulting product branching fraction upper limits are B�B0 ! X�K�; X� !
J= ���0�< 5:4� 10�6 and B�B� ! X�K0; X� ! J= ���0�< 22� 10�6 at the 90% confidence
level.

DOI: 10.1103/PhysRevD.71.031501 PACS numbers: 13.25.Hw, 12.39.Mk, 14.40.Gx
The discovery of the X�3872� by the Belle Collaboration
[1] has been confirmed by the CDF [2], D0 [3], and BABAR
[4] collaborations. Numerous theoretical explanations have
been proposed for this high-mass, narrow-width state de-
caying into J= ����. The possibilities [5] include a
bound state of D�D very close the D�0D0 threshold [6], a
hybrid charmonium state [7], a diquark-antidiquark state
[8], and a conventional charmonium state [9].

In the Cornell potential model [10], the most likely
candidate is a 3D2 (JPC � 2��) charmonium state with a
3:830 GeV=c2 mass. This state is expected to be very
narrow since the decay to DD is forbidden by parity and
could decay into an isoscalar J= ���� final state. This
charmonium state, however, should also have a significant
branching ratio for the radiative decay to ��c1 [10], which
was not observed for the X�3872� by Belle [1]. A more
detailed examination of the X�3872� observed by Belle [1]
and BABAR [4] indicates that the ���� mass distributions
peak near the kinematic upper limit and are consistent with
the decay �0 ! ����. However, due to limited statistics a
spin-parity analysis has not been performed. If the ob-
served decay is X�3872� ! J= �0, it cannot be a charmo-
nium state. If the X�3872� and its decays respect isospin
symmetry, there must be a X�3872��, which decays to
J= ��, and the rate for B! X�K should be twice that
for B! X0K. This would make experimental detection of
the X� quite favorable. To test this hypothesis, we have
performed a search for the B-meson decays, B0 ! X�K�

and B� ! X�K0
S, where X� ! J= ���0 [11].

Data were collected at the PEP-II asymmetric-energy
e�e� storage ring with the BABAR detector, which is
described in detail elsewhere [12]. The data used in this
analysis correspond to a total integrated luminosity of
212 fb�1 taken on the 
�4S� resonance, producing a sam-
ple of 234:4	 2:6� 106 BB events (NBB). The BABAR
detector uses a silicon vertex tracker (SVT) and a 40-layer
drift chamber (DCH), both in a 1.5-T solenoidal magnetic
field to detect charged particles and measure their mo-
menta and energy loss (dE=dx). Photons, electrons, and
neutral hadrons are detected in a CsI(Tl)-crystal electro-
magnetic calorimeter (EMC). An internally reflecting ring-
imaging Cherenkov detector (DIRC) provides particle-
identification information that is complementary to that
from dE=dx. Penetrating muons and neutral hadrons are
identified by resistive-plate chambers in the steel flux
031501
return (IFR). Track-selection criteria in this analysis follow
previous BABAR analyses [13].

This analysis commences with charged and neutral can-
didate selections. Each charged-track candidate is required
to be detected in at least 12 DCH layers and to have a
transverse momentum greater than 100 MeV=c. If it is not
associated with a K0

S decay, the candidate must extrapolate
to a point near the collision axis.

A charged kaon or pion candidate is selected on the basis
of dE=dx information from the SVT and DCH, and the
Cherenkov angle measured by the DIRC. An electron
candidate is required to have a good match between the
expected and measured dE=dx in the DCH, and the
Cherenkov angle in the DIRC. The ratio of the shower
energy measured in the EMC to the momentum measured
in the DCH, and the number of EMC crystals associated
with the track candidate, must be appropriate for an elec-
tron. A muon is selected on the basis of energy deposited in
the EMC, the number and distribution of hits in the IFR,
and the match between the IFR hits and the extrapolation
of the DCH track into the IFR. A more detailed explanation
of particle-identification (PID) is given elsewhere [13,14].

A photon candidate is identified from energy deposited
in contiguous EMC crystals, summed to form a cluster that
has total energy greater than 30 MeV and a shower shape
consistent with that expected for an electromagnetic
shower.

The decay modes we use to identify B0 ! J= ���0K�

and B� ! J= ���0K0
S are J= ! e�e�, J= !

����, �0 ! ��, and K0
S ! ����. They are selected

to be within the mass intervals 2:95<m�e�e��<
3:14 GeV=c2, 3:06<m������< 3:14 GeV=c2, 0:119<
m����< 0:151 GeV=c2, and 0:4917<m������<
0:5037 GeV=c2. We take a larger mass interval for e�e�

than for���� to accept events in which part of the energy
is carried away by bremsstrahlung photons. The orientation
of the displacement vector between the K0

S decay vertex
and the J= vertex in the lab frame is required to be
consistent with the K0

S momentum direction.
The search for B signal events utilizes two kinematic

variables: the energy difference �E between the energy of
the B candidate and the beam-energy E�

b in the 
�4S� rest

frame, and the beam-energy-substituted mass mES 
�����������������������������
�E�

b�
2 � �p�

B�
2

q
, where p�

B is the reconstructed momentum
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FIG. 2. The m2�J= ��� versus the m2���K�� distributions
(a) for B0 ! J= ���0K� and the m2�J= ��� versus the
m2���K0

S� distributions (b) for B� ! J= ���0K0
S. A B!

J= K1 signal can be seen; however, there is no indication for
an enhancement in the J= �� mass spectrum.
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of the B candidate in the 
�4S� frame. Signal events should
have mES � mB, where mB is the mass of the B-meson
[15], and j�Ej � 0.

Before the data were analyzed, the selection criteria
were optimized and fixed separately for the charged and
neutral B mode using a Monte Carlo (MC) simulation of
signal and known backgrounds. The number of recon-
structed MC signal events nmc

s and the number of recon-
structed MC background events nmc

b (scaled to the
integrated luminosity) were used to estimate the sensitivity
ratio nmc

s =�a=2�
��������
nmc
b

p
� [16], where a, the number of

standard deviations of significance desired, was set to 3.
Note that the maximum of this ratio is independent of the
unknown signal branching fraction. This ratio was maxi-
mized by varying the selection criteria on �E, mES, the
X� ! J= ���0 mass, the K0

S��
���� mass, the K0

S
decay-length significance, the �0���� mass, and the
particle-identification criteria for electrons, muons, and
charged kaons. The selections jmES �mBj< 5 MeV=c2,
j�Ej< 20 MeV (signal-box region), and
jm�J= ���0� � 3872j< 12 MeV=c2 were found to be
optimal for selecting signal events. When there was more
than one candidate per event after applying the optimized
cuts (on average there were 1.3 candidates/event), the
candidate with the smallest value of j�Ej was chosen.
The plots that follow include only one candidate per event,
except for the plots showing �E itself.

The �E and mES distributions for the neutral and
charged B modes after we apply all the optimized cuts,
except the cut for the variable plotted, are shown in
Figs. 1(a)–1(d).

A clear peak is observed at zero in the �E distribution
and near 5:279 GeV=c2 in the mES distribution. The other
feature in the �E plots is a wide peak near 0.2 GeV which
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FIG. 1. The �E (a) and mES (b) distributions for the B0 !
J= ���0K� mode and the �E (c) and mES (d) distributions for
the B� ! J= ���0K0

S mode using the optimized cuts. The
dotted line shows the same with the additional cut 0:67<
m����0�< 0:87 GeV=c2.
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is due to B! J= K� decays combined with a random
pion.

The Dalitz plots in Fig. 2 for the charged- and neutral-B
modes use events in the signal-box region and include a
mass cut of 0:67<m����0�< 0:78 GeV=c2 to select the
�� mass region. There are clear bands for K0

1�1270� !
K��� and K�

1 �1270� ! K0
S�

� corresponding to the de-
cays B� ! J= K�

1 and B0 ! J= K0
1 previously observed

by Belle [17].
The J= ���0 mass spectra from the neutral and

charged B modes are shown in Fig. 3 without a � mass
cut. No charged signal, X� ! J= ���0, is evident at
3:872 GeV=c2.

Extracting an upper limit for X� ! J= ���0 requires
examining the J= ���0 mass,mES, and �E distributions.
A signal from B! X�K, X� ! J= ���0 should pro-
duce signal peaks in all three distributions. Background
from B! J= ���0K in which the J= ���0 is nonre-
sonant would produce peaks in the mES and �E distribu-
tions but have a flat J= ���0 mass distribution near
3:872 GeV=c2. The combinatoric background will not cre-
ate peaks in any of the three distributions and should
produce an mES distribution whose shape can be parame-
trized by an ARGUS function [18]. To estimate the number
of signal events �nS�, we count the number of observed
events �nobs� in the signal region and subtract the estimated
)2) (GeV/c0π-πψm(J/
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FIG. 3. The J= ���0 invariant mass in 10 MeV=c2 bins for
(a) B0 ! J= ���0K� and (b) for B� ! J= ���0K0

S. No
indication for the decay X� ! J= ���0 can be found.
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TABLE II. Percentage systematic errors on the branching ra-
tios from the neutral and charged B decay modes.

Systematic errors (%) B0 B�

NBB 1.1 1.1
Branching fractions 5.3 5.3
MC statistics 2.1 2.3
MC decay-model 1.1 3.0
Background parametrization 0.3 1.7
Particle ID 5.0 5.0
Tracking �� 1.4 1.4
Tracking K� 1.4   

Tracking K0
S ! ����    2.6

Tracking J= ! e�e�; ���� 1.8 1.8
�0 reconstruction efficiency 3.2 3.2
TOTAL (�sys) 8.8 9.7

TABLE I. Efficiencies, number of signal-box events, and esti-
mated number of background events nb (npeak � ncomb) for the
neutral and charged B decays.

Mode � nobs npeak 	 �peak ncomb 	 �comb nb 	 �b

B0 10:65% 96 35:2	 8:4 77:6	 6:6 112:8	 10:7
B� 8:50% 36 2:0	 5:0 29:3	 4:1 31:3	 6:5
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number of combinatoric background events �ncomb� and the
estimated number of peaking background events �npeak�.

We obtain nobs by counting the number of events sat-
isfying jmES �mBj< 5 MeV=c2, j�Ej< 20 MeV, and
jm�J= ���0� � 3872j< 12 MeV=c2. We extract ncomb

from the mES distribution obtained after requiring j�Ej<
20 MeV, and jm�J= ���0� � 3872j< 12 MeV=c2.
These mES distributions for the neutral and charged B
modes are separately fit with the sum of a signal
Gaussian function and an ARGUS function. The resulting
ARGUS function is integrated over the mES range, jmES �
mBj< 5 MeV=c2, to produce ncomb. The error �comb is
obtained from the fit error on the normalization of the
ARGUS function. The resulting values for ncomb and
�comb are listed in Table I.

We extract npeak from themES distribution obtained after
requiring j�Ej< 20 MeV, and 48< jm�J= ���0� �
3872j< 72 MeV=c2 which is twice the mass range of the
signal band. These mES distributions for the neutral- and
charged-B modes are separately fit with the sum of a
Gaussian function and an ARGUS function. We calculate
npeak by counting the number of events in the jmES �

mBj< 5 MeV=c2 region, subtracting the number of com-
binatoric events obtained from integrating the ARGUS
function over the same range, jmES �mBj< 5 MeV=c2,
and finally dividing the result by two. Note that the
Gaussian distribution used in all fits has a width fixed to
the value determined from a fit to the mES distribution
obtained using both the J= ���0 signal band and the
J= ���0 sideband. The error �peak is obtained by adding
in quadrature the Poisson errors on the number of events in
jmES �mBj< 5 MeV=c2 and the fit errors on the normal-
ization of the ARGUS function. The resulting values for
npeak and �peak are listed in Table I.

The total background nb is the sum of the peaking and
combinatoric backgrounds and its error �b combines in
quadrature the errors from the peaking and combinatoric
backgrounds. The backgrounds and their errors are sum-
marized in Table I.

The efficiencies � for the processes, B0 ! X�K�,
X� ! J= ���0, and B� ! X�K0

S, X� ! J= ���0

are determined by MC simulation with an X� signal of
zero width, mass 3:872 GeV=c2, and a model consisting of
the sequential isotropic two-body decays B! X�K,
X� ! J= ��, and �� ! ���0.

These efficiencies are corrected to account for the small
differences observed in PID, neutral-particle detection, and
031501
tracking efficiency that are found by comparing well-
understood control samples taken from data and MC.
The final efficiencies for each mode are listed in Table I.

The systematic errors include uncertainties in the num-
ber of BB events in the data sample, secondary branching
fractions, efficiency calculation due to limited MC statis-
tics, decay-model for the generated events, background
parametrization, PID, charged particle tracking, and �0

reconstruction. The individual uncertainties are given as
percentages in Table II. The secondary branching fractions
[15] include B�J= ! e�e�; ����� � 0:1181	 0:0010
and B�K0

S ! ����� � 0:6895	 0:0014. The decay-
model uncertainty is estimated by comparing the efficien-
cies for phase space and different decay models [19] with
JPC � 1�� and JPC � 2�� for the X�.

The background parametrization uncertainty is esti-
mated by varying the background sideband width, refitting
the mES distributions, and recalculating the number of
events. The uncertainties in PID, charged-tracking effi-
ciency, and �0-reconstruction efficiency are determined
by studying control samples [13]. The total fractional
errors �sys, listed at the bottom of Table II, are determined
by adding the individual contributions in quadrature.

The probability distribution of the signal events is mod-
eled as a Gaussian with a mean ns and standard deviation
�s. For each B-decay mode, the mean is ns � nobs � nb
and the sigma is �s �

����������������������������������������
nobs � �2

b � n2s�
2
sys

q
. The system-

atic error is added in quadrature and scales the errors on
nobs and nb by the same fraction. We note the mean values
ns, for the charged and neutral modes are consistent with
zero, within errors.

The number of events N90 corresponding to the 90%
confidence level (C.L.) upper limit is calculated using the
Gaussian probability distribution with the assumption that
the number of signal events is always greater than zero.
The integral of the distribution from zero to N90 will be
90% of the total area above zero. Combining N90, �, NBB,
and the secondary branching fractions, we obtain 90% C.L.
-6



TABLE III. The estimated number of signal events, 90% C.L.
upper limit of signal events, the branching fraction upper limits,
and the branching fraction B for the decay modes B0 ! X�K�

and B� ! X�K0
S.

Mode ns 	 �s N90 90% C.L. ( � 10�6) B ( � 10�6)

B0 �16:8	 14:7 15:9 <5:4 �5:7	 4:9
B� 4:7	 8:8 17:8 <11 2:0	 3:8

SEARCH FOR A CHARGED PARTNER OF THE X�3872� . . . PHYSICAL REVIEW D 71, 031501 (2005)
upper limits for the neutral and charged B modes of
<5:4� 10�6 and <11� 10�6, respectively. For com-
pleteness we include the central value (68% confidence
interval) for the branching fraction using the ns 	 �s
values. The results are summarized in Table III.

We test the isovector-X hypothesis at a mass of
3872 MeV=c2 using a likelihood ratio test [15]. Here we
determine the ratio of the two probabilities from the null
(H0) and signal (H1) hypotheses using our experimental
observation of 96 events in the signal-box.

The null hypothesis assumes the background produced
all the observed signal-box events. Assuming the back-
ground probability distribution is a Gaussian function with
mean nb and width �b, we calculate a probability of
P�H0� � 5:82� 10�2 to measure 96 or fewer events.

The isovector signal hypothesis predicts the product
branching fractions to be related by B�B! X�K;X� !
J= ��� � 2�B�B! X�3872�K;X�3872� ! J= �0�.
Using the BABAR branching fraction [4] B�B� !
X�3872�K�; X�3872� ! J= ����� � �1:28	 0:41� �
10�5 and assuming all���� decays originate from �0, we
expect B�B0!X�K�;X�!J= �����2:56	0:82��
10�5. This would produce 75	 25 observed signal events
in a data sample of 234� 106 BB events. The error com-
bines the uncertainty on the branching fraction and the
systematic error �sys on our efficiency. The probability
distributions for the signal events and the estimated back-
ground events are modeled as two uncorrelated Gaussian
functions. The probability of observing 96 or fewer events
(including background) with this probability distribution is
P�H1� � 8:41� 10�5.

The likelihood ratio (") test of the null hypothesis
relative to the signal hypothesis yields " �
P�H0�=P�H1� � 692. This corresponds to a probability of
031501
less than one part in 600 that the isovector-X hypothesis is
compatible with the outcome of our search for B0 !
X�K�, X� ! J= ���0. Performing the same study in
our search for B� ! X�K0

S, X� ! J= ���0, we obtain
" � 17. The combined likelihood ratio is 1:1� 104. Our
result does not support the hypothesis that the X�3872� is
an isovector particle decaying to J= �.

In conclusion, we have performed a search for a charged
partner of the X�3872� decaying to J= ���0. Our results
set upper limits on the product branching fractions of
B�B0 ! X�K�; X� ! J= ���0�< 5:4� 10�6 and
B�B� ! X�K0; X� ! J= ���0� � 2�B�B� !
X�K0

S; X
� ! J= ���0�< 22� 10�6 at the 90% confi-

dence level.
We exclude the isovector-X hypothesis with a likelihood

ratio test which favors the null hypothesis by a factor 1:1�
104 over the isovector signal hypothesis.
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des Particules (France), the Bundesministerium für
Bildung und Forschung and Deutsche Forschungs-
gemeinschaft (Germany), the Istituto Nazionale di Fisica
Nucleare (Italy), the Foundation for Fundamental Research
on Matter (The Netherlands), the Research Council of
Norway, the Ministry of Science and Technology of the
Russian Federation, and the Particle Physics and
Astronomy Research Council (United Kingdom).
Individuals have received support from CONACyT
(Mexico), the A. P. Sloan Foundation, the Research
Corporation, and the Alexander von Humboldt
Foundation.
[1] Belle Collaboration, S. K. Choi et al., Phys. Rev. Lett. 91,
262001 (2003).

[2] CDF Collaboration, D. Acosta et al., Phys. Rev. Lett. 93,
072001 (2004)

[3] D0 Collaboration, V. M. Abazov et al., Phys. Rev. Lett. 93,
162002 (2004)

[4] BABAR Collaboration, B. Aubert et al., hep-ex/0406022.
[5] C. Quigg, in Proceedings of the 2004 La Thuile
Rencontres Results and Perspectives in Particle Physics,
edited by G. Bellettini, G. Chiarelli, and M. Greco
(I.N.F.N., La Thuile, 2004); hep-ph/0403187; E. S.
Swanson, Phys. Lett. B 598, 197 (2004); C. Quigg, in
Proceedings of the 6th International Conference on
Hyperons, Charm and Beauty Hadrons, 2004, edited by
-7



B. AUBERT et al. PHYSICAL REVIEW D 71, 031501 (2005)
N. Solomey (Elsevier, Amsterdam, 2004); hep-ph/
0407124.

[6] N. Tornqvist, Phys. Lett. B 590, 209 (2004);
M. B. Voloshin, Phys. Lett. B 579, 316 (2004);
F. Close and P. Page, Phys. Lett. B 578, 119
(2004); C. Y. Wong, Phys. Rev. C 69, 055202 (2004);
E. Braaten and M. Kusunoki, Phys. Rev. D 69,
074005 (2004); E. Swanson, Phys. Lett. B 588, 189
(2004).

[7] F. Close and S. Godfrey, Phys. Lett. B 574, 210
(2003).

[8] L. Maiani, F. Piccinini, A. D. Polosa, and V. Riquer, Phys.
Rev. D 71, 014028 (2005).

[9] E. Eichten, K. Lane, and C. Quigg, Phys. Rev. Lett. 89,
162002 (2002); T. Barnes and S. Godfrey, Phys. Rev. D 69,
054008 (2004).

[10] E. Eichten, K. Lane, and C. Quigg, Phys. Rev. D 69,
094019 (2004).

[11] Charge conjugate reactions are included implicitly
throughout.
031501
[12] BABAR Collaboration, B. Aubert et al., Nucl. Instrum.
Methods Phys. Res., Sect. A 479, 1 (2002).

[13] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 65,
032001 (2002).

[14] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 66,
032003 (2002).

[15] Particle Data Group, S. Eidelman et al., Phys. Lett. B 592,
1 (2004). See section 32.2.1 for a discussion of the like-
lihood ratio test.

[16] G. Punzi, physics/0308063.
[17] Belle Collaboration, K. Abe et al., Phys. Rev. Lett. 87,

161601 (2001).
[18] The original ARGUS function is described in H. Albrecht

et al., Phys. Lett. B 185, 218 (1987); Phys. Lett. B 241,
278 (1990).

[19] S. Pakvasa and M. Suzuki, Phys. Lett. B 579, 67 (2004). In
this reference the authors assume the relative orbital
angular momentum between the J= and the di-pion state
is L � 0. This is justified for di-pion events near the
kinematic upper limit.
-8




