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A Computer Model of Sequence Mutation, Molecular Distance

Measures, and the Parsimony Principle

by

Kevin Paul Scott

Abstract

We devise a simple computer model to study similarities

among biomolecule sequences such as DNA or protein molecules. We

use a model of exhaustive sequence mutation whereby a given

parent sequence undergoes every possible event - substitution,

deletion, and insertion - at every mutation site to result in an

ensemble of daughter sequences. Those daughters are then

subjected to the same process to create and ensemble of second

generation daughters, etc. A series of mutations can be described as

a “pathway”. There are many different pathways that can lead from

any parent to any daughter. This model of evolution allows us to

explore the concept of “closeness” or “evolutionary relatedness” also

referred to as distance or “sequence similarity”.

Sequence similarity is often measured by Hamming or

Levenshtein distances, which are based on the parsimony principle.

Parsimony, as applied to distance measurement, measures similarity

as the fewest number of mutations that convert one sequence to

another. But Our mutational model shows that parsimony sometimes



errs in rank ordering the closeness of sequence relationships. We

find that evolutionary distance depends not only the number of

mutations used to convert one sequence to another, but also on the

composition of characters in a sequence in terms of Order. We find

that homogeneous sequences (i.e. having all the same character:

{a a a ...}) are more interconnected by mutational pathways than

heterogeneous sequences (i.e. having different characters:

{a b c ...}). We introduce here the notion that the number of

pathways between two sequences affects the evolutionary

relatedness. We define the kinetic accessibility of daughter

sequences from their parent sequences to reflect this statistical

nature.

We follow the time evolution of mutational processes in this

model. Over time, a homogeneous sequence will develop a diversity

of characters, and over time a perfectly heterogeneous sequence will

grow somewhat “ordered” and a perfectly homogeneous sequence

will grow "disordered". In this regard sequence evolution has an

arrow of time. Sequence {a a a■ is more likely the parent of {a a b%

than the reverse. We hope that these simple model studies will be

useful for more accurate construction of phylogenetic trees from

biomolecular Sequences.
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Distance

This thesis focuses on the measurement of dissimilarity or

"distance" between sequences of DNA or amino acids, with emphasis

On the parsimony principle. The main use of distance measures is to

establish "phylogenies", the graphical trees describing the families

and interrelatedness among species. While the preponderance of

modern efforts focus on comparing sequences of biomolecules such

as protein or DNA, the construction of phylogenic trees predates

these efforts. Phylogenies were originally constructed by eyeball

Comparisons of wings, feather colors, bones, tail length and other

anatomical or morphological features. Defining these

interrelationships is called cladification. Organisms, or Operational

Taxonomic Units (OTUs) are compared in many different features, or

Categories, simultaneously. The features used in morphology may be

Guantitative or qualitative, which "may require some ingenuity as

well as some arbitrariness in coding states" (Camin and Sokal 1965).

What does similarity mean in these cases?

On the other hand molecular data is sequential. A monomer

Iposition in a biomolecule sequence is itself a “feature”. These

features are dynamic: positions may be created or destroyed. But

features which change position in a sequence may still be compared

to another unchanged sequence position because the possible

character states for any position are identical to those at other

IDOSitionS.

º
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Of fundamental importance to molecular sequence comparison,

and the classification of phylogenetic trees, is the concept of

parsimony. For sequence comparison, parsimony is the idea that the

distance between two sequences can be measured in terms of the

fewest mutations that convert one sequence to the other. Of course

true biological evolution from one sequence A to another sequence B

need not have occurred through the smallest number of mutations.

A deletion of a character from sequence A can be followed by

reinsertion of the same character to leave the sequence unchanged.

But how can we know whether, or how often, this happens?

Parsimony is not an idea that is based on any real model of evolution

or that necessarily reflects the true evolutionary distances between

Sequences. But parsimony has the advantages of being simple,

unambiguous and computationally inexpensive. Two simple distance

measures are based on parsimony: Hamming and Levenshtein (see

Kruskal 1983). The Hamming distance applies when there are no

insertions and deletions and counts the number of mismatches

between two aligned sequences. The Levenshtein distance is more

general and applies for sequence gaps: insertions and deletions are

counted as mismatching positions.

Using simulations of morphological data, Camin and Sokal

(1965) performed the first objective test of the principle of

parsimony as applied to phylogeny. They found the method to be

systematic, it gave trees that agree with known phylogenies, and is

suitable for implementation on a computer. Eck and Dayhoff (1966)



made use of a similar scheme for DNA sequences. The use of

parsimony for DNA sequences is simpler than the use of parsimony

for morphological features. Each symbol in DNA has equal weight

and these symbols can be compared from One sequence position to

the next. But for morphological characteristics and their phenetic

states, how do we compare wings to feet? While it is true that

mutations observed in the first codon position are more significant

than mutations observed in the third codon position, the use of DNA

data is less arbitrary and subjective than the choice of which

morphological features to include in a set of characters in a study.

On the other hand, there are problems with biological sequence

comparisons too. To compare two sequences, most algorithms

require that they first be aligned. The very act of aligning sequences

requires ignoring information contained in the sequences. The

alignment of a sequence with two adjacent identical characters, e.g.

the character "a", to a second sequence with one of those positions

deleted is arbitrary: either of the two characters could map to the

undeleted character in the second sequence. Compare this to a third

sequence where the adjacent characters "a" and "c" are mapped to

the second sequence; the choice is quite clear. But in both cases the

same choice, the deletion of the second position, will be made by an

arbitrary alignment. Information is lost. There are now standard

alignment methods applied to sequences (See Kruskal and Sankoff

1983). Good alignment methods can reduce errors, but no alignment

method can eliminate them.

º



Another difference between morphological and sequential data

is that morphological features are fixed in place by evolution. Many

morphological features are functional. But observed mutations in

sequences are not necessarily functional. Not all differences in

biological Sequences result in a discernible difference in the function

of an Organism. Mutation is a process of making mistakes. Evolution

is a process of figuring out which mistakes are not the wrong ones.

Sequential data sets, especially those which represent biological

Sequences that may be noncoding or may have synonymous

mutations, accumulate differences more easily than data that require

the fixation of a trait to define an OTU.

In 1969 Jukes and Cantor improved upon the Hamming

distance. Realizing that more than one substitution could take place

at the same site, Jukes and Cantor devised a corrected distance to

estimate the expected number of actual substitutions, based on the

number of observed substitutions and sequence length. The method

still uses a parsimonious alignment as input, however, and suffers

from the failings of parsimony, as will be described in chapter two.

The Original "One parameter" Jukes-Cantor method has led to many

refinements such as the two-parameter method based on transitions

(changes from one purine to the other or one pyrimidine to the

Other) and transversion (changes from a pyrimidine to a purine or

vice-versa) probabilities (Kimura, 1980), the three-parameter

method based on the transition and two transversion probabilities

(Kimura 1981), a four-parameter model that takes ratio of AT to GC

Content into account (Takahata and Kimura 1981) and a six



parameter method which takes the content of each nucleic acid base

into account (Gojobori et al 1982).

Although they have not received as much attention as the

Jukes-Cantor type distances, models based on the variability of codon

sites are useful when a known reading frame exists for a set of DNA

sequences. Under the neutral mutation hypothesis (Kimura 1983),

that most mutations are neutral with respect to biological function,

synonymous mutations (those that do not change the amino acid

coded for by a codon) do not suffer the constraints of selection. They

occur more often than nonsynonymous mutations. Perler et al.

(1980) categorized each possible visible and silent mutation by the

number of synonymous and nonsynonymous event possibilities

available at a given site for the apparent codon. The order of events

when two or three mutations appear within one codon is unknown SO

a fractional value could be defined and distributed among more than

one of these categories, e.g. the codon change for CUC to UUA could

involve two synonymous events, CUC (leucine) to UUC

(phenylalanine) to UUA (leucine), or three synonymous events, CUC

(leucine) to CUA (leucine) to UUA(leucine). A Jukes-Cantor like

correction is then made for each category of substitution. Miyata and

Yasanuga (1980) expanded the definition of synonymous by

incorporating the degree of acceptance for a visible mutation, e.g. a

change from valine to leucine is more “synonymous” than a change

from valine to aspartic acid. Rather than split the contribution of a

multiple event codon evenly among categories, a weighting Scheme is

implemented based on the degree of synonymity. Nonsynonymous



changes were not categorized. Nei and Gojobori (1986) found that

Miyata and Yasanuga's method gives essentially the same estimates

of distance when the weighting scheme is not used.

Building Phylogenetic Trees

One of the primary uses of distance measures, molecular or

morphological, is for building phylogenic trees (phylogenetic when

using DNA). In 1967 Fitch and Margoliash created phylogenies based

on amino acid sequence differences. A nearly identical method was

introduced independently by Cavilli-Sforza and Edwards (1967).

Under the Fitch-Margoliash method, the number of DNA mutations

required to obtain the observed amino acid mutations is used to

create a matrix of sequence distances. More mutations corresponds

to greater distance. The method is used to create trees. Parsimony is

used here in a different form: it is assumed that the correct topology

of the phylogenetic trees is that which minimizes the total distance

between all OTUs in the phylogeny. This process maximizes Overlap

of pathways along branches leading to multiple OTUS. It is simple

enough to join three OTUs so long as they do not violate a triangle

inequality. But when more than three OTUs exist it may not be

possible to find a position for an additional OTU which arithmetically

agrees with all the matrix distances between that OTU and the joined

OTUs. In such cases the closest OTU pair is joined and then treated as

a single OTU, averaging the distances between the clustered OTU and

the remaining OTUs in the new distance matrix. The process is



repeated, lowering the number of OTUs with each iteration until all

are joined.

Other methods exist for converting sequence data to

phylogenies using distance matrices. Described below are some of

the more popular: the neighbor joining method (Saitou and Nei

1987), the unweighted pair group method (see Sneath and Sokal

1973) and the modified (TatenO et al 1982) Farris method (Farris

1972). Methods of this latter type do not build phylogenies by

clustering OTUs together, treating them as new OTUs, and condensing

the phylogeny to one large cluster. Instead they use a nucleation

algorithm. Starting with a core of the two closest OTUS, successive

OTUs are added until the total phylogeny is built. The choice of the

next OTU at each step is based on the potential branch length

between each remaining OTU and the “already joined” OTU nearest

each potential branch point of the tree. Potential branch lengths for

all unjoined OTUS and all potential branch points are calculated

before adding the chosen OTU to the tree.

The Unweighted Pair Group Method - Arithmetic Average

(sometimes called UPMGA) system is similar to the method of Fitch

and Margoliash except that once a cluster has been redefined as an

OTU the distance between a composite OTU and another OTU is based

on the unweighted average distance between all members in the

composite OTU. For example, if a, b, c and d represent OTUs and dxy

is the distance between OTUS, then the distance between the

composite OTU ((a, b), c) and the OTU d is computed as dad/3 + dbd/3



+ ded/3 rather than dad/4 + dhd/4 + ded/2. This is Simpler than the

neighbor joining method, which uses all the sequence information.

The neighbor joining method treats the set of OTUS, at the outset, as a

star topology with all OTUs around one center node X. A cluster of

the two closest OTUs is separated by moving all the remaining OTUS

to a new node Y. The distances between all pairs of OTUs are used to

calculate the distance between the two removed clusters, the node Y,

and the node X. X and Y are dynamic. That is, once the two

separated OTUs are joined to form a new composite OTU, Y becomes

the center node X and the process is repeated. In both the neighbor

joining method and UPGMA we are left with one less OTU each time

we cycle through the process; eventually all OTUs are joined to a

single tree (or equivalently all nodes are reduce to three branches).

Because a loss of information accompanies distance measures,

construction of phylogenies directly from data is preferred. Tateno

(1990) observed that "In the construction of molecular trees, the

sequence data are more informative than the distance matrix". The

point is that when a phylogeny is built directly from the data, rather

than through an intermediate distance, there is less loss of

potentially useful information. The two most widely used methods

of building phylogenies directly from sequence data have created

some controversy. The method which has been in use for the longest

time, Maximum Parsimony (MP), is easy to calculate. Maximum

Likelihood (ML) methods are computationally more expensive but

reflect knowledge of biochemistry through model based assumptions

about Sequence mutation.



When applied to phylogeny, the parsimony principle assumes

that the topology which minimizes the number of steps (mutations)

connecting the observed sequences will produce the best

phylogenetic tree. Wagner (1961) invoked parsimony to analyze

phylogeny using nonsequential morphological data; that method was

modified by Fitch (1971) for use with biological sequences. Today

the best results are found (Huelsenbeck and Hillis 1993, Hillis et al

1994) using Weighted Parsimony (Sankoff 1975, Swofford and Olsen

1990), a modification of MP where the identity of mismatched

characters is used to calculate branch length rather than just a count

of mismatched characters.

Parsimony as applied to molecular phylogeny has been

described as “questionable at best” (Felsenstein 1988), not truly

having a stochastic model that consistently obtains the correct tree

(DeBry 1992, Sidow 1994) and converges on the wrong tree when

given enough data from systems where branches have disparate

rates of mutation per unit time (Cavendar 1978, Felsenstein 1978).

But no method can claim to always converge on the correct tree and

parsimony-based phylogenetic packages (Maddison and Maddison

1992, Swofford 1992) enjoy continued use (Stewart 1993).

Parsimony-based phylogeny methods have been tested against

theory (Goldman 1990), biological data (Atchley and Fitch 1991,

Hillis and Bull 1991, Hillis et al. 1992, Bull et al. 1993), and computer

simulation (Hendy and Penny 1989, DeBry 1992, Hasegawa and

Fujiwara 1993, Hillis and Swofford 1994). Debate continues over the

10



accuracy of biological data (Sober 1993, Hillis et al 1993) and the

choice of model for computer simulation testing methods (Hillis et al

1994). Parsimony-based methods have been favorably compared to

more computationally intensive methods (Huelsenbeck and Hillis

1993, Hillis et al 1994).

Maximum Likelihood (Felsenstein, 1981) systematically

determines the relative probability of obtaining the events necessary

to produce each step in a given topology of OTUS. There are two

parts to ML; propagation of probability for an event to affected OTUS,

based on a tree topology, and probability of observing the events

necessary to create that tree topology. The first part is an

organization of summations and "prior state probabilities" so that the

equation for calculating the likelihood of a tree accurately reflects

the topology of the tree. The second part is the calculation of the

prior state probabilities for the equation, a Markovian analysis of the

probability of observing the known characters of the OTUs assuming

all possible common ancestral characters. A “likelihood” of realizing

a given tree is obtained. This provides a measure for comparison

between possible phylogenies. There is a limitation: not all possible

tree topologies can be calculated in a reasonable time for higher

numbers of OTUs. While alignment is necessary for the original ML

method, an ML based method which allows insertions and deletions

has been presented (Thorne et al 1992).

11



Chapter 2

An Exact Simulation of Sequence Mutation to Study
Parsimony and Distance Measurement
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Abstract

We evaluate the parsimony principle as it pertains to measures

of "similarity" or "distance" between sequences of DNA or protein

molecules. The parsimony concept and its corresponding distance

measures (e.g. Hamming or Levenshtein distances, see Kruskal 1983)

assume that the relatedness of two sequences can be determined by

the shortest path, the minimum number of modifications needed to

mutate one sequence into the other. But true sequence evolution,

like processes of chemical diffusion, need not follow the shortest

path. Our computer model begins with a given parent sequence of

symbols and, through complete enumeration of successive

generations of every possible substitution, insertion, and deletion

follows every possible "pathway" from parent sequences to

daughters. We find situations where parsimony gives incorrect rank

orderings of the closeness of one parent/daughter pair relative to

another such pair. In particular, Sequences that are homogeneous

(predominantly composed of a single character) can evolve through a

larger number of pathways than sequences that are heterogeneous

(having a broader composition of characters), implying that monomer

placements in the sequence are not independent of their neighbors

with respect to evolutionary relatedness.

* --
- - -

-
.**

-º-º-
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Introduction

We develop a simple computational model of the evolution of

sequences of symbols, such as DNA or proteins. Our aim is to study

the principle of parsimony, the idea that "distances" or sequence

dissimilarities are given by the shortest mutational paths, i.e., the

smallest number of mutations that change one sequence into the

other. By using exact computer enumeration, we study all the

possible mutational paths, not just the shortest paths. In this way,

we test the parsimony assumption as it applies to molecular distance.

While parsimony underlies some distance measures, its most

common usage is in the creation of phylogenetic trees. Parsimony

was first used with biological sequences for purposes of phylogeny

by Eck and Dayhoff (1966). The justification for parsimony is based

more on convenience than on principle: determining a shortest

mutational pathway is simple and unambiguous. But Eck and

Dayhoff recognized that the evolutionary road may well have

involved superimposed substitutions or such superfluous pairs of

events such as an insertion later undone by a deletion at a particular

site on a DNA or protein sequence. Such complementary pairs of

mutations are neglected by the parsimony assumption, which treats

these instances as if they involved zero mutations. In this way

parsimony neglects the many possible real paths evolution could

have taken from a parent to a daughter Sequence.

14



The parsimony principle is applied to phylogeny through the

assumption that the best phylogenetic tree has branches defined by

minimal numbers of mutational steps between sequences. Wagner

(1961) invoked parsimony to analyze phylogeny using morphological

data. Fitch (1971) modified that method for use with biological

sequences. Today the best results are found (Huelsenbeck and Hillis

1993, Hillis et al 1994) using Weighted Parsimony (Sankoff 1975,

Swofford and Olsen 1990), a modification in which branch lengths

depend not only on the number of mutations but also on the specific

characters involved. Parsimony as applied to phylogeny has been

described as “questionable at best” (Felsenstein 1988): it is not based

on an underlying stochastic model that consistently gives the correct

tree (DeBry 1992, Sidow 1994), and it converges on the wrong tree

when given enough data from systems where branches have

different clock rates (Cavendar 1978, Felsenstein 1978).

On the other hand, no method currently provably converges on

the correct tree and parsimony has the advantage of ease of

calculation leading to the continued use (Stewart 1993) of

phylogenetic computer algorithms (Maddison and Maddison 1992,

Swofford 1992). Parsimony-based phylogeny methods have been

tested against theory (Goldman 1990), biological data (Atchley and

Fitch 1991, Hillis and Bull 1991, Hillis et al. 1992, Bull et al. 1993),

and computer simulation (Hendy and Penny 1989, DeBry 1992,

Hasegawa and Fujiwara 1993, Hillis and Swofford 1994). Debate

continues over the accuracy of biological data (Sober 1993, Hillis et al

1993) and the choice of model for computer simulation testing

* * * * * *

sº
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methods (Hillis et al 1994). Parsimony-based methods have been

compared to more computationally intensive methods (Huelsenbeck

and Hillis 1993, Hillis et al 1994). These efforts are important for

leading to better understanding of evolutionary relationships.

Although the "four taxon" problem (figure II-1) is of more

direct importance to phylogeny, our present work is restricted by

computer limitations to the modest goal of studying parsimony as

applied to simple parent/daughter distances. As noted by Yang

(1996), it is helpful to identify the underlying factors that account

for a method's successes or failures.

A

B

A B A C A B

X—C X-3 X-3 X-3
C D B D D C

Figure II-1 The 4 taxon problem. With three OTUs, only one branch point is necessary. With four

OTUs, the placement of branchpoints must be solved. Three possible configurations for the four OTUs A,

B, C and D are presented in the latter three diagrams.

The Model

Our aim here is to explore a simple computer model of

sequence evolution. We consider an alphabet of k characters

(a, b, c, ... ). For example k = 4 nucleotides represents DNA

molecules or k = 20 amino acids represents proteins. We begin at

-:
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time t = 0 with a parent sequence, labeled PO. At each tick of an

event clock, our computer algorithm inserts, deletes, and substitutes

every possible character at every possible site to create an ensemble

of daughter sequences. We call this ensemble the “daughter space”.

The first-generation daughter Sequences are then used as parent

sequences to produce the next generation, t = 2, of daughters, which

then serve as the parent sequences for the next generation, t = 3, and

so on. There can be multiple “pathways”; alternative series of

mutational events that lead to a given daughter sequence. The

extent to which a daughter sequence appears in daughter space is

determined by two factors: (i) the mutational frequencies of the

individual characters (for example, if insertions are more frequent

than deletions, then longer daughter sequences will be more likely

than shorter daughters), and (ii) the number of mutational paths

from parent to daughter. We define a daughter sequence's statistical

weight as the relative portion of sequence space taken by that

Sequence.

A principal tenet of the present work is that the evolutionary

distance between two sequences is not the length of the shortest

path; it is an average over all the possible paths. Thus evolutionary

distance is not just a matter of the length of the minimal path, the

basis for parsimony-based distance measurement. Rather,

evolutionary distance also depends on the numbers of paths. Two

sequences A and B may have a "closer" relationship than sequences C

and D by virtue of a larger number of paths from A to B for the same

given number of mutational events. In this sense we believe

º
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evolution mimics diffusion, where the time required for particles to

reach a particular point is better described by ensemble averages

than by shortest paths.

Our model is not intended as an accurate model of biological

evolution, with all the complexities of biological machinery that can

bias how mutations are made and kept. Ours is simply a model of

principle. Recognizing that real evolution follows paths that need not

be minimal, we simply use this idealized model to ask: what are the

errors incurred in neglecting the multi-pathway nature of

evolutionary processes and approximating them as shortest paths?

Sequence generation

Here we describe the generation method and define some

terms. The terms "parent" and "daughter" define the arrow of time

in the model for a relationship across any number of generations.

"Immediate daughter" and "immediate parent" specify a relationship

across one generation. A sequence is denoted by a string of

characters in braces, e.g. {a b ch, where a, b and c represent

characters from the given alphabet. A relationship between

daughter sequence D and parent sequence P is written DIP, e.g.

“{a b a■ as a daughter of {a a a■ ” is written as {a b a■ l{a a a■ .

Only one event can occur at each tick of the clock: a substitution,

deletion, or insertion. The relative frequencies are given by fs, fa,

and fi, respectively. The weighted daughter space, Dw(PO,t), is the set

º
;

º

18



of all daughters obtained after t mutations to the given parent

sequence, PO. Therefore Dw(PO, 0) is the space containing the single

parent sequence at time t = 0. The statistical weight for P0 is 1.

To create the jth generation, Dw(PO, j) from generation j-1: i)

all possible substitutions, deletions and insertions are made on every

sequence of Dw(PO, j-1) and ii) any sequence that appears more than

once is pooled and its statistical weights summed. The statistical

weight for a daughter sequence therefore arises from two factors: the

intrinsic weight due to the event frequencies and the number of

paths from parent to daughter. Multiple pathways to a given

daughter are called "degenerate" pathways, and daughter Sequences

that appear many times are called degenerate sequences.

The model has three principal assumptions:

1) Equiprobability of characters. Every character in the alphabet is

substituted, deleted, or inserted with the same probability as every

other. A substitution event may involve replacement of a character

x by an identical character x. Character probabilities are stationary

and symmetric (see Lockhart et al 1994) over all generations from a

parent sequence to a daughter sequence.

2) No sequence site is special. The mutation frequencies are

independent of the mutation site in the parent sequence. This is an

idealized model that neglects codon placement or conservation due to

evolutionary pressure (see Palumbi 1989; also Shoemaker and Fitch
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1989). A sequence site that is modified by a substitution or created

by an insertion event is fully susceptible to a subsequent event.

3) Mutation sites are independent. The probability or type of

mutation is not affected by the characters in the adjacent sites. For

example, a thymine next to a thymine is creates a spot that is prone

to mutation due to thymine dimerization (see Ayala and Kiger 1980).

The rate and type of mutation is not affected by sequence

Composition.

The Original Parent Sequence is a Subsequence of a Longer String

To establish how to treat certain end effects, we assume that

parent Sequence P0 is contained within a larger genome. That is, the

parent is bounded by a symbol x on the left and a symbol y on the

right; these symbols are immutable during the computer evolution.

The Original parent sequence is bound by positions to the left and

right which are assumed to be conserved and immutable. The need

for such a boundary condition arises because we need to define what

Constitutes a match between a parent and daughter. We assume the

daughter too is bounded by x and y. Therefore if we are interested

in some property of a daughter sequence {x a a a y; then a

Supersequence such as {x b a a a b y is not counted as

contributing to the statistical weight.

If the number of generations is larger than the number of

positions in the Sequence then it is possible for a sequence to incur

º
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enough deletions to reduce the sequence to zero length. Zero length

sequences are allowed to have insertions (substitutions or deletions

are not possible) in the following generation because positions x and

y have not disappeared and define a point of insertion. Unlike

Bishop and Thompson (1986) or Thorne et al. (1992), we do not

assume insertion probabilities at the ends of a daughter sequence to

be one half or take place at only one end of the sequence due to the

presence of the supersequence.

Example

Table II-1 shows an example computer simulation of sequence

mutation: Dw■■ a a c■ ,1) is the first generation obtained from the

parent {a a c■ . Weights are calculated on a per position basis (as

discussed later) based on the event type:.

1) Each substitution creates a new daughter with a statistical weight

wd = wipfs/k where wb is the weight of the immediate parent.

2) Each deletion creates a new daughter with a statistical weight

Wö = Wpfd.

3) Each insertion creates a new daughter with a statistical weight

Wö = wpfi/ k.

º

21



Substitution wa Deletion Wö Insertion

{a a c)* 1/12 {a c)* 1/3 {a a a c) *

{b a c) 1/12 {a c)* 1/3 {b a a c)

{c a c) 1/12 {a a) 1/3 {c a a c)

{d a c) 1/12 {d a a c)

{a a c)* 1/12 {a a a c)*

{abc} 1/12 {a b a c)

{a c c) 1/12 {a c a c)

{a d c) 1/12 {ad a c)

{a a a) 1/12 {a a a c) *

{a a b) 1/12 {a a b c)

{a a c)* 1/12 {a a c c)*

{a a d} 1/12 {a ad c)

{a a ca}

{a a c b)

{a a c c)*

{a a c d}

Wó

1/12

1/12

1/12

1/12

1/12 * * *

1/12 -

1/12

1/12

1/12

1/12 *** * *

1/12 * ..

1/12

1/12

1/12

1/12

1/12

Table II-1 The immediate daughter sequences of PO = {a a c) with fs= ■ q = fi = 0.333 and the character

set (a, b, c, d): k = 4. * denotes a degenerate sequence: it appears more than once in the table but once with

a total weight in the weighted daughter space. Bold indicates the changed character for insertions and

deletions. Below is the daughter space Dw({abc}, 1) with weights.

{a a c) * 1/4, {b a c) 1/12, {c a c)

{d a c) 1/12, {a b c } 1/12, {a c c)

{a d c) 1/12, {a a a) 1/12, {a a b)

1/12,

1/12,

1/12,
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{a c) *

{b a a c)

{a b a c)

{a a b c }

{a a ca)

{a a)

{c a a c)

{a c a c)

{a a c c)

{a a c b)

{a a d)

{a a a c) *

{d a a c)

{a d a c)

{a a d c)

{a a c d)

1/12,

1/4,

1/12,

1/12,

1/12,

1/12.

2/3,

1/12,

1/12,

1/12,

1/12,

1/12,

1/12,

1/12,

1/6,

1/12,
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Results

Kinetic Accessibility: A Consequence of Multiple Paths

A particular daughter Sequence DX arises from a given parent

sequence P0 according to a time distribution function. We define

w(DX,Dw (PO,t)) to be the weight of the probe sequence DX in the

daughter space Dw(PO,t)). Similarly, p(DX,Dw(PO,t)) is the fraction of

all possible daughter sequence comparisons that successfully identify

DX:

w(DX , Dw (PO,t))
X w(Dn, Dw (PO,t))

DnePw (POJ)

p(DX, Dw (PO,t)) = (1.1)

where Dn represents any daughter sequence n in the daughter space.

One of the main points of this paper is to introduce the kinetic

accessibility of a daughter sequence from its parent. High

accessibility means that a daughter sequence can arise from the

parent through either a greater number of different mutational

pathways and/or the use of higher probability events. Low

accessibility means there are fewer and/or less preferred pathways.

While the probability defined by eq. 1.1 is normalized over all

daughter Sequences that appear in event cycle t, our interest in the

distance between parent and daughter sequences requires an

additional normalization. We seek the expected time <t- at which the

daughter sequence DX is observed in the daughter space of PO (eq.

; R v
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1.2). The kinetic accessibility describes when the sequence is

observed, on average. Therefore we now normalize over generations

to find the expected event cycle t in which the sequence will appear:

■ o • p(DX, Dw(PO,t))dt

■ o p(DX, Dw(PO,t))dt
((Dx|Po)- (1.2)

We take this quantity <t as a definition of the evolutionary distance

between a parent and daughter sequence. Because it is not

computationally practical to cover an infinite number of event cycles

and our time steps are discrete, we approximate eq. 1.2 with:

Xt p(Dx,D,(Po,t))
--— = St.

((Dx|Po)- Xp(Dx,D,(Po,t)) X. A(DX, Dw (PO,t)) (1.3)
t

where A(DX,Dw (PO,t)) is the kinetic accessibility and the time t is

summed Over all generations of daughter space available:

p(DX, Dw (PO,t))
A(DX, Dw (Po,t)) =(pºp-ºo-ºº::::::::::::

t

(1.4)

In the section below, we compare such distances from parent

sequences to daughter sequences. On the one hand, we consider

parsimony-based shortest-path distances which are direct counts of

the minimum number of mutations required to convert one to the

other. We compare that measure of dissimilarities to the kinetic

accessibilities and <t-, the average number of mutations used to

-- ºr sº

sº

3 ■ º
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convert the parent to the daughter. We find cases in which

parsimony-based measures would find that two parent/daughter

relationships P1|D1 and P2D2 have the same shortest pathlength

while the accessibility measure shows their relationships to be quite

different. The figures below show accessibilities vs. generation

number t. The shape of the accessibility profile is a determinant of

the closeness of a parent to a daughter. To minimize arbitrariness,

the profiles below are computed using equal rates of substitution,

insertion, and deletion: fs = fa = fi.

Accessibilities

Figure II-2B shows one of the main results of this chapter, an

example where parsimony-based distance can err in rank ordering

the relative closeness of two parent/daughter relationships. We take

the simplest case of two relationships, each daughter being identical

to its Own parent. D1 is {a a a a a a■ , a daughter of parent P1:

{a a a a a a■ , and D2 is {a b c d a b$, a daughter of parent P2:

{a b c d a b%. The parsimony-based Hamming distance between

two aligned sequences is the count of the number of differences,

position-by-position. According to parsimony, both the

parent/daughter relationships above are equally close because both

have Hamming distances equal to zero. But figure II-2B shows that

the accessibilities are significantly different for these two

parent/daughter pairs. In all generations beyond the first the

sequence {a a a a a a■ is more accessible from its parent than

{a b c d a b% is from its parent.

Tº ■ º a
*-

! ■ y .*
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The difference is due to a property of the composition of

characters in the sequence that we call homogeneity, which is not

taken into account by parsimony-based methods. Sequence

{a a a a a a■ defines perfect homogeneity: all the characters are

identical. In contrast sequence {a b c d a b% is heterogeneous: the

composition of symbols is more diverse. More pathways connect

pairs of homogeneous sequences than pairs of heterogeneous ones.

This is because a deletion of the character "a" in the sequence

{a a a a a a■ at position 1 can be followed in a subsequent

generation by insertion of an "a" at any position to produce the given

daughter. But in the heterogeneous sequence a deletion at position 1

can Only be followed by an insertion at position 1 to produce the

given daughter. The same principle holds true for an insertion of the

character "a" followed by a deletion in a subsequent generation.

Hence there are more paths connecting homogeneous

parent/daughter pairs than heterogeneous pairs. This is an example

of how kinetic accessibility differs from parsimony. By definition,

parsimony takes no account of any sequence composition effects.

Using a thermodynamic analogy, parsimony resembles energy, and

neglects entropy, the number of different ways of achieving a given

energy. The real driving forces in nature are described by the free

energy, a combination of energy and entropy. In this sense, kinetic

accessibility is more akin to a true free energy, and parsimony-based

measures are akin to using energies to approximate free energies.
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Kinetic accessibility introduces the analog of entropy into sequence

Comparisons.

One consequence of following all paths, rather than just the

minimal path, is that the expected distance between a parent

Sequence and its identical daughter sequence will not be zero as the

mutational clock C On tinue S tC) tick. FOr

{a a a a a a■ l{a a a a a a■ , the expected distance is 2.1 t while

for {a b c d a b{|{a b c d a by the expected distance is 1.7 t.

Because this result is counterintuitive, given that homogeneity

leads to more paths to a daughter Sequence, it calls for explanation.

This result is a trivial consequence of normalization. Both pairings

have the same probability in the first generation because only the

substitution of a character by itself will produce the given daughter

Of either parent. But because homogeneous parent/daughter pairs

are connected by more pathways at all later generations (fig. II-2A),

the later probabilities are higher, but when normalized to 1 over all

generations, the homogeneous pairing distribution will be uniformly

reduced (fig. II-2B), hence the result above.
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O.08

0.07
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0.05 +

0.04 --

0.03 +

0.02 +

O.O 1 +

aaaaaalaaaaaa

-D- abodablabcdab

0.6

O.5 aaaaaalaaaaaa

| 0.4 - -D- abodablabcdab

0.3 -

O. 1 -

Figure II-2. A The probability of observing of {a a a a a a)|{a a a a a a) as a function of time and the

probability of observing of {abcd a b)|{abcd a b) as a function of time. B The accessibility of

{a a a a a a)|{a a a a a a) as a function of time and the accessibility of {abcd a b)|{a b c d a b) as

a function of time. k = 4.
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Figure II-3 shows another example of an error in

approximating an expected distance by a shortest path. This

example is more general in that it includes insertions and deletions.

When insertions and deletions are involved, parsimony requires a

generalization of the Hamming measure called the Levenshtein

distance. The Levenshtein distance treats inserted Or deleted

positions as mismatches. Figure II-3 shows parent/daughter pair

{a a a■ l{a a a a a a■ , which has a Levenshtein distance of 3 and

{b a a a a c■ l{a a a a a a■ , which has a Levenshtein distance of

2. Therefore, according to parsimony, the latter parent/daughter

relationship is closer. However, the average calculated distance for

the first pair is 3.82 t and for the second is 3.97 t. The latter

daughter emerges from its parent later than the former daughter

does from its parent. The shapes of the accessibility profiles

demonstrate the preference for the former relationship: the former

pair is more accessible at generation 3 then less accessible at later

timeS.
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Figure II-4 shows a different test of parsimony. Using all
-* -

■ º
*g a * f : . ;

sequences of length 6, we have collected all the parent/daughter ■ º
..

pairs having a Hamming distance exactly equal to One (i.e. differing L.
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Figure II-4The distribution of expected distance for all possible parent/daughter relationships having a
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Hamming distance of one using sequences of length 6. k = 4.

Convolution: Another measure of relatedness

The expected value, <t-, is only one measure of a time

distribution function. Other measures could also be chosen to define

the relatedness between two sequences. Now rather than use the

mean value <t- to determine the relative closeness of two

relationships, we ask: Which of two parent/daughter relationships is

more likely to be separated by fewer event cycles? This is a

measure of closeness that uses all the information in the distribution

functions between two parent/daughter relationships, rather than

using Only the single quantity <t-.

32



R(A → B), the precedence of A over B, is defined as the

probability that parent/daughter relationship A is closer than

parent/daughter relationship B.

'max i–1

R(A → B) = Xºn.” X A(Da,Dw 0.9) (2.4)i-2 j=1

or for the reverse situation,

'max i–1

R(B - A) = Xºn.” , i)) Sºº) (2.5)i-2 j=1

We neglect cases in which both relationships have identical distances

("dead heats") therefore R(A → B) + R(B & A) may sum to less than

One.

tº ■ º a
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Figure II-5 The accessibility of {a a a a a a)|{a a a a a) as a function of time and the accessibility of

{d b a a cd}|{d b a a cd} as a function of time. k = 4.

Relation\t |1 2 3 4 5 6

A 0.62046 |0. 13415 |O. 12526 |0.05741 |0.03971 |0.02297

B 0.53865 |0.29756 |0.08651 |0.0454.1 |0.02060 |0.01 123

Table II-2. The accessibility of A, (a a a a a a)|{a a a a a), and the accessibility of B,

{d b a a cd}|{d b a a cd}, for generations 1 to 6. k = 4.

Figure II-5 records an instance in which both ºt- and the

Levenshtein distance show that relationship A,

{a a a a a a■ |{a a a a a■ , is more distant than relationship B,

{d b a a c d?|{d b a a c d?. But the precedence quantity R

disagrees with both of them. The expected distance for A is 1.83 t

and for B is 1.745 t, but R(A → B) = 0.320 while R(B & A) = 0.291
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(see table II-2). The implication is that time distributions can be

Complex. Not Only do shortest path approximations Sometimes err,

but also other various simple measures are not always

unambiguously correlated with each other.

Conclusions

We have presented a simple computer algorithm that generates

all possible mutational pathways from a parent sequence of symbols

to all daughter sequences. Because this study involves exact

computer enumeration, it is not a practical algorithm for sequence

comparisons and is limited to short chain lengths. This is simply

intended as a model study of how evolutionary processes can follow

different mutational pathways and how the numbers of mutational

routes can contribute to the relatedness of two different sequences.

We find that distance measures based on parsimony — shortest

mutational paths — can err in predicting the greater similarity

between two parent/daughter relationships, even following strict

assumptions (constant molecular clock, equiprobable characters).

The main implication is that the relatedness between two sequences

is not just a matter of character-by-character counts of mismatches,

as if the probability of obtaining a sequence was independent of the

total Sequence. Rather, relatedness also depends on the overall

composition of characters — the relative populations of each symbol

type, and also whether a symbol in the string is identical to the

symbol of a position nearby. This result also bears on methods that

35



extrapolate distance measures from parsimonious measures (e.g.

Jukes and Cantor 1969, Kimura 1980).

Nevertheless, two aspects of our model are reflected by

parSimony as applied to distance measurement. First, the shortest

path may often be a reasonable approximation to the accessibility

time distribution functions which invariably converge to zero as the

number of generations increases. That is, kinetic accessibility is

highest in the early generations, even within a model which has no

generational bias. Second, kinetic accessibility requires a

normalization Over all generations to separate the probability of

Observing a sequence from the probability that an observation is

made at time t. Parsimony, in its simplicity, involves an implicit

normalization Over One data point.
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Chapter 3

HOW Mutation EVOlves Order and DiSOrder in

Biomolecular Systems
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Abstract

We consider the process by which a parent sequence evolves to

an ensemble of daughter sequences through an exhaustive set of

every possible substitution, deletion, and insertion. "Daughter space"

can be thought of as a multidimensional grid, with each node

representing a daughter sequence, and each connecting link

representing a mutation. Each node carries a "degeneracy",

representing the frequency of appearance of that daughter. We find

that daughter space looks much like cities on a roadmap. Just as

there are large hub cities interconnected with small towns, daughter

space has sequences of high degeneracies and low degeneracies. The

evolutionary process is like the flow of traffic through this grid.

While greater similarity of a daughter sequence to its parent

sequence results in higher degeneracy, another contributor to

degeneracy is sequence “homogeneity”. A perfectly homogeneous

Sequence is one having all identical characters (e.g. {a a a ...}); a

heterogeneous sequence has all different characters (e.g. {a b c ...}).

The degree of homogeneity provides an “order parameter”, which we

use to follow the kinetics of evolutionary change. Such ordering and

disordering processes imply an arrow to evolutionary time.
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Introduction

Our aim here is to explore a model for the mutational processes

by which a parent sequence mutates to its daughter sequences. The

set of all sequences with a given character set can be viewed as a

multidimensional lattice. The sequences constitute the nodes of this

lattice. The connections between the nodes represent mutational

events: substitutions, deletions and insertions. The possible

evolutionary routes interconnecting any two sequences can be

determined by tracing the possible paths through intervening

sequences on this multidimensional grid. Starting from a given

parent sequence PO, which is one point on this lattice, our computer

algorithm systematically finds all daughter sequences that are one

Step away, then two steps away, etc.

We define two properties: the "degeneracy" of a daughter from

a given parent, and the "homogeneity" or "heterogeneity" of a

Sequence. A degenerate Sequence is a daughter sequence that can be

Obtained using multiple mutational paths from the parent sequence.

The number of evolutionary paths from the parent defines the level

of degeneracy of the daughter. Homogeneity and heterogeneity

define a property of the composition of a given sequence. If a

sequence is a string of identical symbols, £b b b b%, it is perfectly

homogeneous; if the characters are all different, {a b c d?, it is

heterogeneous. This measure of composition provides an "order

parameter" - homogeneous sequences are highly ordered and

***

º
:
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heterogeneous sequences are disordered. We explore the time

evolution of ordering and disordering of sequences in our model.

In this chapter, we ask two questions. First, how "clustered"

are the nodes in this daughter space? Are there "favored" daughter

sequences? Parsimony-based distance measures assume that all

first-generation daughters are equally populated. We find here that

they are not. Second, what is the time evolution of order and

disorder as a parent sequence mutates to its ensemble of daughter

sequences? Homogeneity and heterogeneity of a sequence define the

relationship of a symbol in a sequence with its next neighbor. Such

relationships are neglected by parsimony-based distance measures.

Parsimony is unable to define an evolutionary arrow of time: it

cannot tell a parent from a daughter. Any two sequences are on

equal footing. But here we find time dependent ordering and

disordering, an arrow of time, and sometimes an ability, in a

probabilistic sense, to decide which of two sequences is an

evolutionary predecessor. Random mutation causes sequences to

move toward random mix of symbols having neither perfect

homogeneity nor perfect heterogeneity.

The Model

We use the model defined in the previous chapter. We

consider an alphabet of k characters (a, b, c, ...). For example k = 4
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nucleotides represents DNA or k = 20 amino acids represents

proteins. We begin at time t = 0 with a parent sequence, labeled PO.

At each tick of an event clock, our computer algorithm inserts,

deletes, and substitutes every possible character at every possible

site to create an ensemble of daughter sequences. The first

generation daughter Sequences are then used as parent Sequences to

produce the next generation of daughters, t = 2, which then serve as

the parent sequences for the next generation, t = 3, and so on. Unlike

the weighted model of the previous chapter, multiple instances of a

daughter sequence are not collected together and assigned a single

statistical weight. Rather, we can now tabulate the number of

daughter sequences with the same levels of degeneracy. This is

compared to the weighting of the previous chapter.

Results

Parent Sequence Composition and Daughter Sequence Degeneracy

Figure III-1 shows the distribution of the number of daughters

of the given parent having a given level of degeneracy after two

generations. It is clear that the homogeneous parent sequence

{a a a a a a■ has only 31 different levels of degeneracy after four

generations. The amount of degeneracy ranges from 18225 daughter

sequences having a 24 fold degeneracy to 1 daughter sequence

having a 92008 fold degeneracy. The heterogeneous parent sequence

{a b c d a b%, on the other hand, has 393 different levels of

... rºse

*
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degeneracy, from 19875 daughters having a degeneracy of 24 to one

daughter having a degeneracy of 40050. While there are more levels

of degeneracy for the heterogeneous parent, they are less populated.

Most degeneracy levels for the heterogeneous parent are populated

by only two daughter sequences.

Both plots show that the majority of daughters have relatively

small degeneracies after four generations. In analogy with the cities

On a roadmap, it is equivalent to having few big cities and many

small towns. This is because the number of paths (number of

permutations of events) is independent of the distribution of

characters in original parent sequences of the same length. It is

interesting that the number of sequences at the lowest level of

degeneracy (24 fold degenerate for either daughter space) is greater

for the daughter space from the heterogeneous parent, it essentially

has more "Small towns".

*
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Figure III-1 A The number of daughter sequences by specific level of degeneracy for the parent sequence

{a aaaaa) after four events. B The number of daughter sequences by specific level of degeneracy for the

parent sequence {abcd a b) after four events. Tick marks are absent for the columns, all 393 categories

can not be labeled so X axis labels are for reference only.
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The distribution of weights within homogeneous and

heterogeneous daughter spaces is disparate after four generations

(fig. III-2). While there is only one daughter sequence with the

weight 33.15 for the homogeneous parent, this equals 153% of the

combined weight of all 18711 of the sequences with a weight of

0.001157 (the most common weight) and 1.84% of the total weight of

daughter space. Not only are some sequences favored in

daughterspace but the extent of this preference can be greater than a

hundred fold and the biggest "city" is larger than all of the smallest

"towns" combined. The largest weight for a sequence in the

heterogeneous daughter space is 10.62, only 24% of the combined

weight of the most highly populated weight state, 19428 daughters

weighing 0.002315, and only 0.59% of the total weight of daughter

space. While this is comparatively less striking than the example of

the homogeneous daughter space, it is important to note that without

homogeneity there are still mechanisms for creating degeneracy and

One Sequence can be favored Over another.
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after four events. All 71 categories can not be labeled so X axis labels are for reference only. B The

number of daughter sequences by weight for the parent sequence {abcd a b) after four events. Tick
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marks are absent for the columns, all 580 categories can not be labeled so X axis labels are for reference

only.

The plots of weight and degeneracy decay more rapidly for

heterogeneous sequences than for homogeneous sequences. This is

not simply because there are more degeneracy values among which

daughter sequences can be distributed: the maximum occupation of

the lowest degeneracy and weight values are very similar. For

heterogeneous sequences, there is a more rapid decay in the

occupation of both the higher degeneracy and weight values. Among

heterogeneous sequences, we observe degeneracy mostly due to the

predisposition of a sequence to return to a state similar to the parent

sequence. By analogy, random walking crosses most Often through

the origin regardless of the number of paths. For homogeneous

sequences, degeneracy is increased by the ability of events in One

part of a sequence to correct for those in another part.

The evolutionary processes of homogeneous sequences are

different than for heterogeneous sequences. There are more

heterogeneous than homogenous sequences to which a homogenous

parent sequence can mutate. But a homogeneous pattern in a parent

sequence has more degenerate paths to daughter sequences

containing that same pattern or a permutation of that pattern. It is

interesting to note that repetitive sequences such as a TATA box

have a propensity to attain a daughter Sequence similar to the parent

sequence even when they are affected by mutations other than

slipped strand mispairing (Levinson and Gutman 1987), a simple
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misalignment of DNA strands facilitated by the repetitive pattern of

a TATA box. According to our model, homogeneous patterns are

better conserved than heterogeneous sequences. The actual

characters and sites may change but the patterns shared by these

sites with their neighbors are more likely to re-emerge.

Characterizing Sequence Heterogeneity Ordering

Here we explore the time dependence of sequence ordering and

disordering as a parent evolves through mutation. We define order

parameters based on three different patterns:

1) Dyads: the same character appears in two adjacent positions in a

Sequence e.g. {V y a a z}.

2) Triads: the same character appears in three adjacent positions, e.g.

{y a a a z} (a a a is also counted as two dyads).

3) Dyad Pairs: a pair of characters appear adjacent to the same pair

of characters, e.g. {y a b a b z}.

The "ordering" of a daughter sequence D, Odpattern(D), with

respect to a given pattern is the number of occurrences of the

pattern divided by the maximum number of times the repetitive

pattern could possibly appear in that sequence:
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N

#º (III-1.1)
S "O

Od.pattern(P ) =

where ls is the length of sequence D, lo is the length of the repetitive

pattern and Npattern is the number of times the repetitive pattern

appears in sequence D. Normalizing this by the total weight of all

Sequences in a daughter space, the Order of a daughter Space,

Ogºpattern(PO, t), within each generation tis calculated as

X W(Dr Dw (PO,t)) • Od pattern(Pn)
- DnCD, (Po ,t) III-1 2

Og.pattern(Pot) X W(Dn,Dw(Po,t)) ( .2)
D,ED, (Po,t)

where Dn is a member of Dw(PO,t)

The expected amount of order for a random collection of

sequences, <Opattern-, is dependent upon the number of repeated
characters and the size of the character Set:

1

(*)-IIºn (III-1.3)

where R is the number of distinct characters which repeat, k is the

character set size and NR is the number of repetitions in the pattern.

Thus for k = 4, the expected value of «Odyad is 0.25 (with one

run R = 1 and N1 = 2). For a dyad pair, there are two repetitions (R =

2), both of two characters (N1 and N2 both equal 2), and the product
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must be taken over two character repitions making <Og, pair =

0.0625. For a triplet R = 1, N1 = 3 and <Ox, triplet- = 0.0625. As the

mutational clock ticks, Ogºpattern tends toward its expectation value

whether approached from higher homogeneity (figure III-3) or

lower homogeneity (figure III-4).

This defines an arrow of time. A sequence having perfect

homogeneity or perfect heterogeneity is more likely to be a parent

sequence, and a more "randomly mixed" sequence is more likely to

be a daughter. Given a family of related daughter sequences it is

possible to determine if the sequences were derived from a parent

with more or less order than the daughter sequences. If the

sequences are above the steady-state value it is likely the ancestral

sequence was more Ordered. If the sequences are below the steady

state value it is likely the ancestral sequence was less ordered.

When the ancestral sequence is extremely homogeneous or

heterogeneous it provides a basis for estimating the relative clock

rate of clades and OTUs from the relative degrees of ordering within

a subset of the daughter sequences.
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Conclusions

We have explored a simple computer model of the random

evolution of sequences of symbols such as the monomers in

biomolecules. It is not an exact model of biological evolution. There

is no selection, for example. Rather, this is simply a model of

principle to explore unbiased mutational processes from a parent to

its daughter Sequences, in part to assess parsimony-based distance

measures. Here we have explored first the distribution of

degeneracies of daughters from a given parent sequence. We find a

sort of clustering - some sequences have high degeneracies (i.e. many

mutational routes) and some have lower degeneracies (fewer

mutational routes). Even when the Same number of events are used

the probability of realizing a more or less favored daughter sequence

is determined not just by the probability of the events occurring but

by the degeneracy of the daughter. These factors together determine

the weight of a daughter sequence.

By defining relationships between neighboring characters in a

Sequence, we can establish order parameters that are useful for

studying the time dependence of sequence evolution. We have

explored the time dependence of ordering and disordering as

homogeneous parent sequences evolve to broader compositions of

symbol types and heterogeneous parent sequences evolve to more

"randomly mixed" distributions of character types. An arrow of time

is able to distinguish, in a probabilistic sense, which of a pair of

sequences is more likely to be the parent and which the daughter.
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Chapter 4

Testing End Effects in an Exact
Enumeration Model of Sequence Mutation
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Abstract

In previous chapters, we explored an exact enumeration model

of mutational change in biomolecule sequences. In those chapters,

we studied "bound" sequences, sequences that are assumed to be

taken from a larger genome that provides a fixed set of "bookends"

defining the beginning and end of the sequence. In this chapter, we

ask whether our conclusions about limitations of parsimony-based

distance measures are an artifact of end effects that might arise

because of our assumption that the sequences in our simulations are

bound by immutable positions next to both termini. Here we

consider “unbound” sequences, which are unrestricted at the ends.

Despite the added complexity of the calculation, we find the same

problems with parsimony-based measures from this model of

unbound Sequences as we found in the model of bound Sequences,

implying that our conclusions about the limitations of parsimony are

robust and independent of how end effects are treated.

Introduction

In this chapter we explore the sequence evolution model

described in earlier chapters using different assumptions about how

mutations can affect the ends of evolving sequences. In previous

chapters sequences such as {a a a■ were regarded as being taken

from some larger genome, bound at the beginning and end by
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immutable characters, say x and y. This assumption has a

consequence for defining whether a particular sequence is identified

as a daughter sequence or not. Using italics to represent the

immutable positions, {x a a a y} is not considered to match

{x b a a a b yi. But if instead a sequence {a a a■ is taken to be

unbound, i.e., not contained between two immutable characters, then

the appearance of a daughter sequence {b a a a b% can be said to

contain {a a a■ for the purpose of testing what daughters can be

observed from a parent.

Therefore we define a "probe" sequence to be a detector

({a a a■ in the case above) that is passed through a daughter space

to establish statistical weights. A “match” is counted when a probe

recognizes any sequence or subsequence in daughter space. We then

pool the weights Of all matching supersequences when calculating the

probability of realizing the probe sequence as a daughter sequence.

Bound sequences are denoted by a “B:” before the parent sequence,

e.g. {B: a b a a■ . Unbound sequences are denoted by a “C:” before

the parent Sequence, e.g. {C: a b c d?.
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The Model

The model is the same as in previous chapters, with two

differences. First, we must treat insertions differently at the ends.

The total weight of all daughter sequences created by insertions is

equal to the weight of all daughter sequences created by deletions

when fi = fa. The probability of a substitution, insertion or deletion is

a "per position per generation" quantity. This is maintained by

treating insertions as if they occurred at an existing position in the

sequence, just as deletions do.

Following Bishop and Thompson (1986), we take the insertion

probability at either side of a position in the sequence to be half the

probability of an insertion (per position), fi/2. The probability of an

insertion at a given site depends upon whether there are one or two

characters adjacent to the site. To determine the contribution of a

daughter sequence created by insertion to daughter space: if the site

is internal it contributes fi; if it flanks the sequence, adjacent to only

one site, the weight is fi/2. The weight of a sequence created by an

insertion at a site flanking an unbound sequence is adjusted by fi/2,

since there is only one position adjacent to the insertion site.

Therefore a weight factor, F, is included in the simulation of sequence

mutation to reflect the diminished probability of flanking insertions

for sites at the ends of unbound sequences (see example below).

Bound sequences are not modeled in their entirety. Two

portions of the supersequence are removed from the sequence which
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is used in a simulation of mutation, one trimmed from each side of

the bound sequence: there are conserved sequence positions adjacent

to the insertion site flanking the bound sequence. The model for the

mutation of bound sequences demonstrates a tendency for growth in

the length of a daughter sequence. This should not be dismissed as

artifactual under this model. The growth is permitted due to the fact

that insertions at the site flanking the bound sequence simulation do

not alter the trimmed sequences.

The second difference in the simulations in this chapter,

compared to earlier chapters, is that here we delete sequences of

zero length from daughter space. Sequences are not allowed to arise

from nothing. In the simulations of bound sequences, because there

are delimiters at the ends, insertions are permitted.

Example

Table IV-1 shows an example computer simulation of sequence

mutation. Dw({C:a a c■ ,1) is the first generation obtained from the

parent {C:a a c■ . Weights are obtained as follows.

1) Each substitution creates a new daughter with a statistical weight

wd = wrfs/k where wb is the weight of the immediate parent.

2) Each deletion creates a new daughter with a statistical weight

Wd = WPfd.
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3) Each insertion creates a new daughter with a statistical weight

wd = wbf{F/k where F is the flanking factor (F = 1/2 for insertions

at the flanking sites of unbound sequences, otherwise F = 1).
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Substitution wa Deletion Wd Insertion Wö.

{a a c)* 1/12 {a c)* 1/3 {a a a c) * 1/24

{b a c) 1/12 {a c)* 1/3 {baac) 1/24

{c a c) 1/12 {a a) 1/3 {c a a c) 1/24

{d a c) 1/12 {d a a c) 1/24

{a a c)* 1/12 {a a a c)* 1/12

{abc} 1/12 {ab a c) 1/12

{a c c) 1/12 {a c a c) 1/12

{ad c) 1/12 {ad a c) 1/12

{a a a) 1/12 {a a a c)* 1/12

{a a b) 1/12 {a a b c) 1/12

{a a c)* 1/12 {a a c c) * 1/12

{a a d} 1/12 {a ad c) 1/12

{a a ca} 1/24

{a a c b) 1/24

{a a c c)* 1/24

{a a cd} 1/24

Table IV-1 The immediate daughter sequences of PO = {C:a a c) with fº = fa = fi = 0.333 and the

character set (a, b, c, d): k = 4... * denotes a degenerate sequence: it appears more than once in the table but

once with a total weight in the weighted daughter space. Bold indicates the changed character for insertions

and deletions. Below is the daughter space, and weights, for Dw({C: a b c), 1).

{a a c) * 1/4, {b a c) 1/12, {c a c) 1/12,

{d a c) 1/12, {a b c } 1/12, {a c c) 1/12,

{a d c) 1/12, {a a a) 1/12, {a a b) 1/12,

{a a d} 1/12, {a c) * 2/3, {a a) 1/12,
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{b a a c)

{a b a c)

{a a b c }

{a a ca}

{c a a c)

{a c a c)

{a a c c)

{a a c b)

{a a a c) *

{d a a c)

{a d a c)

{a a d c)

{a a c d)

5/24,

1/24,

1/12,

1/12,

1/24.

1/24,

1/12,

1/12,

1/24,

1/24,

1/12,

1/8,

1/24,
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Results

Accessibilities

With this model of unbound sequences, we make the same

tests as in earlier chapters for bound sequences. Figure IV-1 shows

a case in which the parsimony-based shortest path correctly ranks -

the closeness of two parent daughter relationships. The relationship
*

D1|P1 is {d a a a a b{|{C: b c d a b c and the relationship D2|P2

is {d a a a a b%|{C: C d a a b ci. The latter parent/daughter

relationship is rapidly ascending over the course of the simulation

and will not converge to zero. In this computational sense, unbound

Sequences are more challenging than bound Sequences.

O.45 +
- daaaab |

0.4 + C:bcdabc k=20

0.35 +

=A -D- daaaab | -= 0.3 + C:cqaabc k=20

- 0.25

# 0.2
§ºf 0.15

0.1

0.05

Figure IV-1 The accessibility of {d a a a a b)|{C: b c d a b c) and the accessibility of

{d a a a a b)|{C: c d a a b c) as functions of generation time.
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Figure IV-2 shows a problem with parsimony. Figure IV-2

corresponds to figure II-1, where we considered two cases in which

the daughter is identical to its parent. D1 is {a a a a a a■ , a

daughter of parent P1: {B: a a a a a a■ , and D2 is a b c d a b%, a

daughter of parent P2: {B: a b c d a b%. In this simple case,

parsimony defines both parent/daughter relationships as being

equally close, since both have Hamming distances equal to zero. In

contrast, it is clear from the figure that the accessibilities (closeness

of the relationships) are different.

In early generations there is less difference between the

accessibilities of the unbound homogeneous and heterogeneous

relationships when compared to figure II-1 for bound Sequences.

Because the probe sequence recognizes subsequences, the unbound

homogeneous relationship accessibility profile is smoother than the

corresponding profile for the bound relationship. An insertion of the

appropriate character at any site in the unbound Sequence Or the

insertion of any character adjacent to the unbound sequence does not

require a balancing deletion.

This smoothing effect is best illustrated using high insertion

and deletion probabilities. The bound parent/daughter relationship

in figure IV-3 has large oscillations in its accessibility. The majority

of pathways to reach the given daughter from a parent require

paired mutations, an insertion and deletion. The unbound
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parent/daughter relationship can make use of pathways where

insertions Outnumber deletions.

0.6 + abodablC:abcdab
k=4

0. 5 -

-D- aaaaaa!C:aaaaaa

k=4
0. 4

i 0.O 23
0. 1

O

Figure IV-2 The accessibility of {a b c d a b)|{C: a b c d a b) as a function of time and the

accessibility of {a a a a a a)|{C: a a a a a a) as a function of time.
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Figure IV-3 The accessibility of {a a a a a a)|B: a a a a a a) and {a a a a a a)|C: a a a a a a) as a

function of time with fa = 0.06 fi = 0.47 fi = 0.47.

Figure IV-4 tests the parsimony-based Levenshtein distance,

as a generalization of the Hamming distance test in figure IV-2.

These parent/daughter relationships are companions to the tests

shown in and figure II-2 for bound sequences. Here too, the

Levenshtein distance would rank these two parent/daughter pairs as

equally close, but figure IV-4 shows they have very different

accessibilities. There is a significant difference from the bound

accessibility in the ability to realize the sequence {a a a■ as a

daughter of {C:a a a a a■ because the daughter can be recognized as

a subsequence of a daughter space sequence. It is clear that the

unbound relationship is closer than the bound relationship. One

must question, however, the value of analyzing parent/daughter

relationships where the daughter sequence can be immediately

63



recognized as a subsequence of the parent sequence without

mutation; because none of the insertions are internal the Hamming

distance could be used on aligned sequences.

aaalC:aaaaaa k=4 -P- baaaacIC:aaaaaa k=4
O.3

O.25

-

0.2

i

Figure IV-4 The accessibilities of {a a a)|{C: a a a a a a) and {b a a a a c)|{C: a a a a a a) as

functions of time.

End Effects for Unbound Sequences

End effects can cause asymmetries in parent/daughter

relationships. In figure IV-5 the probability of observing

{a b c |{C: a a a■ is higher than that of observing

{a a a■ l{C: a b c due to the insertion probabilities at flanking

positions. After two events, the doubly inserted daughters

{a b c a a■ , {a a b c a■ and {a a a b c of the parent sequence

ºf
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{C: a a a■ match the probe sequence {a b ch. Similarly, for the

parent sequence {C: a b ch, the doubly inserted daughter Sequences

{a a a b cº, {a a a b c and {a a a b c match the probe

sequence {a a a■ . However, the first set of matching daughter

sequences has only one instance where flanking insertions play a

role ({a a a b c ) while the second set of matching daughter

sequences has two instances where flanking insertions play a role

({a a a b c and {a a a b ch). The weights of daughter Sequences

having flanking insertions are half those of daughter sequences

having internal insertions. Therefore the total weight of all the paths

connecting the former parent/daughter relationship is greater than

the weight of all paths connecting the latter relationship.

Also, when there are many paths to a given daughter sequence

that involve events occurring within an “ordered object” (a pattern of

similar characters in either the parent sequence or daughter

sequence) the daughter arises more frequently than when there are

fewer paths involving events occurring within an ordered object.

Characters from the parent sequence that are irrelevant for matching

the probe sequence can be shifted aside in mutational paths. There

are more permutations available, and thus more pathways, using

irrelevant characters than when all characters play a role in realizing

a daughter sequence (see table IV-2).
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Figure IV-5 A The sequence {abc} is more likely to be seen as a daughter of {C: a a a) than the

sequence {a a a) as a daughter of {C a b c). B The parent/daughter relationship {abc}|{C: a a a) is

less closely related than the parent daughter relationship {a aa)|{Cab c).
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{a a a)|{C: a ba}: {a ba) -> (a a a)

{a ba) l{C: a a a): {a a a) -> (a ba}; {a a a) -> (a b a a); (a a a) -> (a a ba)

The heterogeneous sequence is favored as a daughter sequence after one generation

{a a a)|{C: a a b): {a a b) -> (a a a); (a a b) -> (a a a b); (a a b) -> (a a a b) ;

{a a b) -> (a a a b)

{a a b)|{C: a a a): {a a a) -> (a a b); (a a a) -> (a a a b)

The homogeneous sequence is favored as a daughter sequence after one generation

Table IV-2 Pathways for realizing a daughter sequence using one event. Surfeit characters are italicized.

Figures IV-6 and IV-7 show the asymmetries in

parent/daughter accessibilities for unbound Sequences.
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Fig. IV-6 A The relationship {a a a)|{a a b) is more likely to be seen in early generations than the
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Conclusions

Earlier conclusions made about parsimony are robust with

respect to two different models of sequence mutation. In earlier

chapters, we considered bound sequences, which are assumed to be

bracketed by immutable bookend characters within a larger

Sequence. In this chapter we have considered unbound sequences to

test whether our earlier conclusions about parsimony are altered.

Although this model of unbound sequences is more unwieldy insofar

as the computations are less convergent, nevertheless this model

leads to the same general conclusions, namely that parsimony errs as

a measure of sequence distance in its neglect of the multiple

mutational pathways from a parent to a daughter.
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Chapter 5

Convergence of the Kinetic Accessibility Property
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Abstract

In previous chapters, we have studied the kinetic accessibilities

of daughter sequences from parents through mutational cycles of

evolutionary events. The kinetic accessibility is a quantity involving

a normalization over time, t, i.e. mutational event cycles. Because

mutational events Occur even as tapproaches oo, we are interested in

the question of whether the kinetic accessibility is convergent or

divergent in the limit as t → co. We analyze the asymptotic nature of

a simple model of accessibility. We find that probabilities of

Observing a daughter sequence and kinetic accessibilities are

generally convergent quantities in this model.

Introduction

In earlier chapters, we studied the generation of daughter

Sequences from parent sequences in a model of exhaustive

mutational change. All the possible daughters of a parent in the first

generation beget all the possible second generation daughters, which

then beget all the possible third generation daughters, etcetera. If t

defines the generation number, then this process can proceed

indefinitely, t → o. In this chapter we explore whether certain

properties converge or diverge in the limit t → co. In particular, we

raise the questions;
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1) Does the probability of observing a particular bound sequence

approach zero?

That is, does p(DX, Dw(PO,t)) -> 0 as t-> 00 7

2) Does the expected distance converge?

That is, how does to p(DX,Dw(PO,t)) behave as t → o 7

3) Does the probability of not seeing a particular unbound sequence

approach zero?

Specifically, does 1- p(DX,Dw(PO,t)) → 0 as t-> oo 7

4) How does its expected value,

to (1 - p(DX,Dw(PO,t))), behave as t → co 7

The Convergence of Sequence Lengths

Does the probability of a given daughter sequence converge as

t – of Let uS COnsider two cases. First consider no insertions Or

deletions, fi = fa = 0. Then it is clear that as t → 00 p(DX,Dw (PO,t))

converges to a constant, (1/k)n, where k is the alphabet size and n

the sequence length. Second, consider any non-zero insertion and

deletion rate. Over time, the daughter space sequences will grow or

shrink in length if there is an imbalance of insertions and deletion.

If the daughter space sequences tend to grow, then as t → x the

average length of daughter Space Sequences will also approach

infinity and the probability of observing a finite length daughter

approaches zero.
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The perfect balance of growth and shrinkage does not occur at

fi = fa (fs = 1) because of two factors that promote an increase in the

mean length of daughter space sequences. The first is the “absorbing

boundary condition”, i.e. zero length sequences disappear from

daughter space. This creates an imbalance by constantly removing

heavily deleted sequences while heavily inserted sequences may

grow without limit. The second factor is the sequence propagation

effect. The probability of an event occurring takes place on a per

position basis. Immediate parent sequences make a contribution to

the immediate daughter space proportional to the number of

positions they contain.

A most interesting situation arises that for any given daughter

Sequence length there will be some ratio of deletions to insertions,

fd/fi, above which daughter sequences grow and below which

daughter sequences shrink. High deletion probabilities will not cause

daughterspace to disappear, probabilities of observation will simply

be calculated using the daughter space that is extant. At precisely

that One value of fa/fi, p(DX,Dw(PO,t)) converges to some finite value,

not to zero; daughter space will balance the effects of absorption,

which emphasize longer length sequences, with the effects of high

deletion probabilities, which emphasize shorter length sequences.
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Convergence of Distance in Sequences

In order to study convergence over the largest possible

number of generations on the computer, we consider the shortest

possible sequence {a} as a daughter of {B:a}, in a character set of size

k = 2.

Figure V-1 shows the expected distance between parent and

daughter versus t. Figure V-1A shows the case offs = fa = fi =1/3,

where the distance converges (slowly), as indicated by the reduction

in differences shown on the figure. Two asymmetric cases, fa = 0.1,

fi = 0.9 and fa = 0.9, fi = 0.1 are also shown in figures V-1B and V

1C. The higher the insertion probability, the more rapid the

convergence.

i 5
Expected
Distance

—D— A Expectation

1 2 3 4 5 6 7 8 9 1 0 1 1 12

Events (t)
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Figure V-1 A The expected distance of {a}|{B:a} as more events t are included in the simulation.

fs = f& = f; = 0.33. The lower curve plots the change in the expected observation between each event and

the event before it. B The same plot with f3 = 0.1, fi = 0.9. C. The same plot with fa = 0.9, fi = 0.1.
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Unbound Sequences

There is a large qualitative difference between bound and

unbound sequences. For unbound sequences, we use a daughter

sequence of finite length to search a daughter space of growing

sequence lengths. As t approaches infinity, the mean length of

daughter Sequences approaches infinity, SO the probability

approaches one that the probe will match some subsequence of the

daughters. In this case, what should converge to zero is the

probability that the probe fails to find a match, 1-p(DX,Dw(PO,t)). The

expected distance is now

Xt n(Dx,D,(Po,t))
— ——

-

((Dx|Po)- Xn(Dx,D,(Pot) (V 1)
t

Figure V-2 shows the three examples used above, but now for

unbound sequences, and shows that these values converge as

expected.
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event and the event before it. B The same plot with Ed = 0.1, E = 0.9. C The same plot with f3 = 0.9,

fi = 0.1.

Conclusions

We have studied the convergence of properties of daughter

Sequences in the asymptotic limit of large numbers of mutational

events t. We find that for non-zero insertion and deletion rates, the

probability of a observing a given daughter approaches zero since

the daughter space becomes biased against sequences of the

appropriate matching length. For unbound sequences, this requires

calculating the probability of not observing the probe sequence and

the expected distance of not making an observation when the mean

length of daughter space sequences approaches infinity. There will
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be a particular value of fa/fi at which there is a perfect balance of

insertions and deletions, where the mean length of daughter Space

sequences will not vary and the accessibility does not decrease

rapidly enough to attain convergence.
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Methods

This appendix describes the computer algorithm we used for

the sequence generation work in my thesis. The principle of the

algorithm is as follows. The original parent sequence P0 is given. It

comprises the “daughter” space Dw(P0,0) which is used to generate

the daughter sequences which comprise Dw(PO,1). The collection of

all possible immediate daughter sequences created from Dw (PO,1) are

treated as immediate parent sequences to form the set Dw (PO,2).

Each subsequent generation is recursively dependent on the

generation before it. This is how the algorithm works in theory. But

in practice it is computationally intensive to implement directly. We

use four tricks to improve performance.

1) COndensation

The first trick is a condensation step. Degenerate daughter

sequences are removed (except for one instance) from the daughter

space as each generation is formed, even if the generation is an

intermediate generation in a simulation proceeding to generations of

greater t. The final operation when creating any generation of

Dw (PO,t) is to pool the weight of each instance of a degenerate

daughter sequence in the calculated daughter space and assign that

weight to the one instance of the daughter sequence present in

Dw(PO,t), e.g. the daughter Sequence {a a C c■ Of the parent {C:a a c■
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appears twice in Table IV-1 (with the weights O.04166 and 0.08333)

but is present once in Dw (PO,1) (with the weight 0.125). The

condensation step reduces i) the number of sequences used to

calculate Dw (PO, t-1), ii) the corresponding calculation time for

Dw(PO, tº-1), and iii) the amount of computer storage required by

Dw (PO, t). Under most circumstances condensation is desirable;

calculation of all Dw(PO,n) for 0 < n < t is performed so savings due

to condensation are compounded in later generations. Some

information is lost. The actual count of degeneracy is no longer

known for each Sequence and any information about a pathway that

could be inferred from the weight of one instance of the degenerate

sequence is forfeited.

2) Wildcards

The Second trick is the introduction of “Wildcards” for

insertions and substitutions. A wildcard is the character "?"

introduced into a sequence as the replacement for a substituted

character or an inserted character. The wildcard is a placeholder

Symbol that Stands for all possible characters in the character set. A

Sequence containing a wildcard represents all k possible daughter

Sequences that are created by a substitution or insertion. A

ramification of this is that a true Dw(PO,t) is not created. Rather, we

Create a database containing wildcard sequences. A wildcard

sequence carries the weight of all sequences it represents. Another

program is used to extract specific daughter sequences from the

database by i) finding all sequences which match the probe sequence
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(the wildcard matching any character) and ii) adjusting the weight Of

the matching daughter sequences for the character set size. Under

the assumption of equiprobability of characters, the weight of a

database sequence is distributed evenly among all sequences

possible when all the wildcards are expanded to all possible

characters. This saves computer time in two ways: i) the same

database calculations for a given parent may be reused for any

applicable alphabet and ii) a substitution or deletion that falls On a

previous insertion or substitution may represent all k paths between

the two wildcard generating events. An applicable alphabet must

have a character set size greater than the number of discrete

characters in the original parent sequence; it is not possible to use an

alphabet where k = 3 if the original parent sequence has four

different characters (e.g. {a b c d?).

3) Pattern Databases

The third trick is that of the creation of a pattern database. A

pattern sequence may be used to represent all original parent

sequences having a length equal to that of the pattern sequence used

to create the pattern database. The pattern sequence uses

placeholder symbols for every position in the original parent

sequence. If there are 10 positions in the original pattern sequence

then 10 different placeholder symbols are used to hold each of the

positions. Once the pattern database is created the daughter space

for any specific Original parent sequence of the same length may be

extrapolated from this database. Using a mapping program, the
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characters in each position of a given PO are mapped to the

placeholder symbols in the pattern daughter space. This produces an

intermediate database of daughter sequences containing wildcards.

Given that the mapping of characters from PO may reveal degenerate

sequences which can be condensed, the wildcards may be treated as

characters with respect to a condensation step. Then a program for

wildcard expansion is run and the list of daughter sequences without

wildcards is condensed a second time yielding Dw (PO,t) for the given

PO with a character Set size k.

The calculation time is longer for pattern databases because

fewer degeneracies can be removed during the condensation steps

between the calculation of each generation: each position is a unique

symbol and no overlap of symbols from different positions, other

than wildcards, can occur until the pattern is replaced with the

characters of an original parent sequence. The pattern database is

larger than a regular wildcard database for the same reason. It also

takes more time to extrapolate a parent/daughter relationship from

daughter space using the pattern database; much of the workload for

the calculations needed to analyze sequence properties has been

"back ended" from the up front cost of building a database to the

analysis stage after the database has been created. This is

compensated for by i) the decrease in storage space due to there

being only one database for all PO's of a given length and ii) an

Overall calculation time decrease for multiple PO's that can make use

of the pattern database as a starting point for building their own

weighted daughter spaces.

92



Condensation steps made before a pattern is replaced with a

given parent sequence reveal that there are two main classes of

degeneracies, "event" and "character" degeneracies. Degeneracies

that occur in pattern databases prior to the replacement of the

pattern with characters from a parent sequence are those created by

the order of events. Event degeneracies do not depend on the

characters in a sequence: the creation of a position followed by a

later deletion of the same position or the deletion of two positions in

any order will create degenerate daughters regardless of the

characters at those positions. These event degeneracies can be

observed in the pattern database before the mapping step used in

data extrapolation. Character degeneracies, on the other hand,

cannot be observed until a pattern has been replaced with

characters. These can be further subdivided into two classes,

“compositional” and “insertion” degeneracies. Compositional

degeneracies occur when a discrete character is present at more than

One position in a sequence, e.g. {a a a b% -> a a b% and {a a a b%

-> (a a b% shows multiple instances of the same degenerate daughter

created by one deletion (using the form "->" to indicate a step across

one event). Insertion degeneracies are an inherent property of

insertions, {a x} -> a x x} and {a x} -> a x x} show that an

insertion degeneracy must occur if insertions are allowed no matter

what character is used for x. An insertion may be considered an

event that may force a local homogeneity regardless of the

homogeneity or heterogeneity of the parent Sequence.
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4) Event Databases

The fourth trick is an event database that allows one database

to be used for all fs, fa, and fi. Three variables called event counters

are associated with each daughter sequence pattern. These

correspond to the number of substitutions, deletions and insertions.

The number of each type of event is counted but not used in the

calculation of weights while the database of sequences is generated.

This creates a database whose weights are influenced only by the

aforementioned event degeneracies and flanking insertion factors

because i) the character Set size is not introduced until wildcards are

expanded, ii) character degeneracies are not introduced until the

pattern has been replaced with characters from an original parent

sequence and iii) event weights are not introduced until the database

is queried for daughter sequences using a specific set of weights.

Condensation steps made before event weights are implemented can

only pool sequences with the same event counter values. The added

flexibility of a database with event counters decreases calculation

time Overall and decreases storage space if and only if calculations

will be performed for the same parent/daughter relationship using

varying substitution, deletion and insertion probabilities.

94



ºf
-

cº ~ -r ~ * - --, --~~
N. % -— sº -* - 2 - º J º , º, * –– S -: , /* … --vº IIC ºvugin º UC º,2, º º º --

ºf ■ (2/? % º *
º, sº tº J/11//lº10 - º

-

Sº sº. Odº/7′■ ic. To sº.
-

J ^*.º ~

- *

*
S. !////nl/tºu _º -

sº *. sº *o

p/ le Y-sº L! B RARY s L ■ º O) le sº […] -2 -

... L. B RARY is ºr
O J. &

-

2.

-- 9 *o & * _x- 9, ~

– sº ºvº gº º L J's TAC º, s' ºvºi gin º sº cº-/e- ~ º
[…] | ||º º N.%, > O _º4 sºº º -> º sº

º, Nº. 1 / / /7//? *2 S
~

% ºf cºlº/” 5 * sº C■ .
---º cºpiº º/ºSº sº cºncº S &

-
sº, º*

* *

-

O/2 - sº º, º y O)) tº- 42 &º * 42 Sº º D º

r] 'º cº [...] º, L. B RARY_s º, ~2 … [...] º &º,

Q- cº _* Q- […] 3. U ºr!C * Tº sº. […] sº ~/C º' -- ºvugin º L–J. º

~ 2, ~ * ~,
4. º '4. * z -> º g * * * * : * *

7— , ºf S * * - “... - - - & JºJ1/?? / / º (º) 2 -ºncºco º ºu/º $º Sºftºncºco gº tºº/* -> *.

* >
º "... 0) , º, * Liaº ■ º O■ ) se

RA R_Y .* L. %, sº °, , ºr º, t ~2 sº
—r- sº 9. […] Sº

-

o, & Q-C Sw * -y - *-- º º■ ºn tº sº º
% -º- 2 º ->

º º *z, * 4 sº !, Nº , , , ;" ; : y
2 º' *

* > 0.7%) 1/11////?"C 2.S. * * * - * ~ *- * - Cºl. 1,3-1,
* * Sº 7.1/101■ t U. S Ø º

Nº 42 1////ºcº sº, –
*

º, sº %. * º -

*

4.%.
Jº 1.

-

~

f

sº

Q. º º, O)) Sº º L■ B R A R_Y gº º Jº
Oy:

-- **, L■ B RARY S. | ”, 4–2 * [T] º \C
-

º |
* t *

% y

*O X- º, º 9, * 9. [
º

vº. 9 in º L. S. ~ (C ■ ºlº Jºvº. 9 in º. | || º -(C º
—---'4.

- ----
º, S. 42, N -

2 <> *
& S. 0.) pº■ ” "O 2. C■ .

- - - - - - *.*

sº C■ .g/■ w!CI, WUU * 2 º o * § 4. º//71//cº. Nº ºº C - s y º
º º, L. B RARY S –– tº

-

// >
~ 2, LI BRARY lsº r

S | k º RA Cº. | | º, t-
º […] º ~ º | |

9, º º *-

º º, S- * * º, is
-

º, S. f º, Sº
z

º, S º
º/?

º * Qº º
-º, cºol/ º/ºSº

- *

º/7. incº gº º■ ºl Sº **, º 7.I.'

º ~~ J’ º

º
N

n A- sº *.
- S. ~~

-* > O —r- C º, ~ O ºr- -

~ + | | º C, | | * * º | || & * - --
* - --- - -Ts A. R. vº■ G | T * N.

~/C * -- sº ºvug in º-'gº ºf
Nº. 42

-

sº tº sº º,
ar

-

º O © () > * 4. n
-

º º
-| ”. /2 º [T] °, L. B RARY sº | º, O■ lº º [...] º, L. B R A

º
[…] sº •o L. > Oc […]

• * °o —r--2-y (s < *
- ºf ~ (s º

-
*(C º'-' ºvugin º-' s - C -- ºvºgº º L.

º
-

º s 7. > * S- º,
-

* 12. Sº º 42, NS Z, Sº º *o ->
- -- - - Nº. ■ ■ 2 < * * * - -* +. y’■ 21/?? "■ ºº" - 2.

ºcíº º % cºlº■ ? » s”, cºncº º 4 dy / º S. º.
º 'º. cº º & 4 ■ sº º

■ ' A ■ º Y sº -- r -
º O/le º […]”. L! B RA R_Y s —r-

º, O le sº
• | | A- -> J • L– - |

--
-
º 9. ■ º sº > o, & & º ■ º- sº > ---- ** * -N- 2-y y & ** ººc º■ lºvº º º■ ss.

- ** º
-

S-
--- **

ºs V. Z.A., "as ºpin º/º 5 * sº ... …, º º■sº 17///7.7/101■ t U -S º
-

> * l///7.1/10 ■ ºlº -S º -* 1, S. º. -º- 'º. S 4. *T* * *...” La RARY sº º 0)! sº º, L. B RARY sº º Dy

- • 2'o [] _º Q. ■ º- º –4 •o | || sº |-- C. ■ ººf ~ * (* ~ f ~
-

º i
º, TX; ; ; ; */ • º º, lº-J º ~ */ s ~ , , , º, --
v \! ... : T 4, cº (/C º, º A. & vº 9 |T º, º *

(0. * .2

~, *// > Sº- *1. -> º, ~12, N º, sº º tº. Sº ~y **

nº■ º ( 2. C■ .
- - - - - - - 4.S. pºly pº/” (O & - - - º! *- -S º 7///7.1//c■ .■ tv º 4.

-

*S S tº º 7.71, ■ º J 5- c.
- ~ * -

* º * , &- !. -O) º - .*, 92
*

sº tº
*

-
sº __ 2, L i B RA R_Y s – r-

º, O) le sº º, L C R A R Y s
-- - - -

a.
º T •o - ºr & L. ‘o. _º -- º – ri- c |--

T - ºf g in º. L J's - º T - ºvº on tº
s - 2

º yº- º
_º ... --- sº

º

* -
'4. sº 2-y

C/C *. ºf ~, º, _º --- º
ºf º■■ º º º■ º * > 0 \\ } //, / º * -\ ... ...,

t
* * ~ º 7 º’clºco sº. 4- * :- º~. l *- st- & ~ º,

-
ºt º *-

a . c * > º, * ))) s -
-

º & - - - - : -"º ..)" sº tin Rºº, º ■ º. ... 3 º' ---, *z, * : * R \,



-*ºvºi g 17 º -- sº * (IC º, – sº 1 * ºn tº 1-1 º, |-- sº-/
4. ** ººº/” 'O ºs C■ .

- .*

■ 1. § 2, ºf 7.7, (D Not to be taken º,O)) sº 93 from the room. º(- is […]” -
º, | º v. >

-º'-' s ■ ºvº g in … [… ºf G
~,

~r

• *, L1 tº R A R Y ~
* >

º
-* L

*n º
-7

º sº º ”, sº
* ~ yº l g * 12 ST -

º
ºf . 0.0. outº■ º

y - 2. * -
- - - * - U-57. Vºl. 'A' : 2. º - - - -1) Q &.

-
l/? - & lº■■ il■ /cººl) -S &

-

y Sº º -Yº,
et- * - w -- -

– º
* , / º ^2.

º

C ''.

CYº! 7.1/1, ■ º .* *

-■ -

º º, &- º - º
-

-º- ". *~~

º «. - O º ar
o º

-
o,

sº —r- º, O/ le sº [T] º, L | B RA R_Y sº
r- +. ”, 4-2 / *—" r

º [...] * º L ■ T ■ º .*tº ºn .." ºn
º ºf ~

-

1.
- ~ * * * * -- *** * * ^ -----

*
(10 % - sº ºvº. 9 in º º (10 º, --' ºvugin º

(Y º, sº º /) * > *- º, sº o Yºº º ~ *, *
º - - - - +. º y 2 -

- - -, -- º tº'''//?' ■ ■ º J * >
º/Zºo sº, cºlº/”Sº sº º Sºft incº º // y sº

-º- º ~ º -º- */ -
º

& ‘p o * C 2 . * – º,
-

9 n , -tº BRARY is ■ ºlº, , /le s [T]”, tº sº, ■ º . /lº s ■ º
-

~& O C
-

~. s º c - - -
º * º » O C a _*tº ■ º. ºn tº ºn
º, sº º '… sº ºvºº g in ºr sº -: /C * -- sº AR v \i

º, sº * ** º sº º %, sº~ ** -

º %.S.
* * * * - * -- º ºnº■ º ºs- C■ . - *.*.*, *- *, * tº-1,Nº. 42 ,7/■ , /i/10. TJ .S & A- Nº *z, º, i■ !'■ ...W. J. S 2 *

sº 1. ~ 12,
- - º - !,

-º s - º ~ ** ~ 1.
&

*

* º
O*

e C
º

> º
[…] º O _º *

ºvº G in * L- sº º/C º,
-*--
º ºvº gº º, L. s’ cº- (C º tº

y º
*

º sº º 2. - "-- s

... r
[…]”. L. B RARY sº | || º, O/l º […] *. Li BRARY sº L. | º, , ■ º

*

- º * *
% - * - Sº 'a. 2-y * .º/* 5 * V, Z.A. 4. Sº ºut■ º > * > c) tº ■ ºciº º

-

SS 4. d////º/■ cºv * *.
-

-S º 7//7.1//■ 1.■ º) ..sº

* Y ºf º 9, & ** o º * * *O) > * […] º, L. BRARY ST-Mº, , // > sº […] º, Li B R A R Y sº --
- -*– *. … " L– sº -* - - --

9.
º 2

---- - !/. N

4 º' U º/ºr º
º, sº1) S &

-
> */

- z. *
- *

;

º * * J.

º,
C) º º'- c

-
ty º

º
-

º, sº dº ■ º º, sº
º

* >
* - * -, *, * - - - * - - - *** * º - -

Yº!//ºncºco º 4.
º sº, Ç º/7. !C■ tº ºr o,

** º, _{* *
--

N º º *~
* - 1- *- º -º- 3.

--> *… }
* e º ‘. o n

- o

rº L *,.* / le º […]
w

*3 L■ B RA R_Y ºr.º
--- J.º, 4. / –2 tº […] %,tº ºn ■ ºlº º! ºn [...]

r —f __J . Sº */ [...] * * ** ..º
-

*/(/C º * A ºf v ºf 9 IT s TúC º ºvugin º

* *
-

s &
-

~
L. B RARY º L r l º,Q- O/ le […] º, L■ B RA R_Y º L– º O) le s [.

º, • *-
-

2. sº * * *-

*
■ º- × O *

9. T-
* so r- & r

* * * r - º -
* --

- y ~
-

º, º -f ~ * .* -y

& -- sº ºvºi giºi º L J's ~/C 2 *---' sº ºf Vº■ J in [...] º cº,!.

º *: sº ~ 4. -y

! -- * * º/º
* ºs

- º
.

Sº ■ ºciºlo sº. Sº c).º
y

L 5 ■ º a

*

pººl º * >-

º —-r--- º » •o --- & CA *
-----

r L. º -r .* o T º
-

* | | * tº- --- º

º, TAC º -- ºvugin º-, -Z/C º lsº ºvº* - - -
Q *- -

> --
--- º- º º f º, º e

-^1 º -y º * ºn º -y 12 - Y, , ,

º º, J º !/ -://- cº- º gº. '','!' º * S * * * * , - , , , ,-, cº- * * (º, '■
...Nº *... \ 0° 7. / / // ( JUU sº Ç.

-
º º, 11//, //, // ■ º sº 4. * **

O
º •o sº %. O jº º J.

-

sº ---, *, L. B RARY Sº ºr lº 1774–2 lº -- º, L ■ : R ARY º
r

º, a. * *
* *

[...] J |--
J- *

I J
- -

|-- C.C º,

•o —r- » C. -
■ - & O º * * *-

ºuvvuri º | || s TAC º, º ºv's gri º L. Jºs - (C º ■ º~ º J.
…” -* - -* -

º º º S- ~, **. -
-

º, sº 4 º º *4. Nºº/1-1/l/?'C 2.<
-

- - - - - - º tº 9/11/ / / / (Tº 2 -
*~ * *

sº, Cºº■ Zººlºo sº, º
*S. Sº,

º ** º % ■ º sº

-

■ n Sº 9. y -w *. * ,O, A-2 * º, L. B R A R Y S – tº O)
* * ~ *º'-' s [...] … * L. Jº, - [...] l

º * *

º

-

-
ºf ~Sºmeº , - .

L 1 P R & R.Y. L
*

-- --º- …” O --- º º, ■ º
- -- r- sº *"º, ■ º sº ºvº■ º in º L J's TAC º, sº ºvº. 9 in º. L. sº

º ->

*
e a *º, º O -

-
* Sº

º
º

º º, O)) º 4, → * . O *3, r , '92.
-

/ ? º , º, I ■ º Q & Q Y tº - ºr- * , , * ~"

"A
º, ~ ~, -

º º s n ,-, *2, º * -* > 0-1)!/J//?'. A / /*(, 2 º' * -- * > (1,0,\'l 1/?". '■ º' - 2.s - * . - * *

U º 2
-

* *. C), ■ º ■ ºlº Cú■■ ) $ 4, y sº º / , ,
- * - - *-

- - * * *- *

º, R. R.



-

-




