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Abstract

With hundreds of epigenomic maps, the opportunity arises to exploit the correlated nature of 

epigenetic signals, across both marks and samples, for large-scale prediction of additional datasets. 

Here, we undertake epigenome imputation by leveraging such correlations through an ensemble of 

regression trees. We impute 4,315 high-resolution signal maps, of which 26% are also 

experimentally observed. Imputed signal tracks show overall similarity to observed signals, and 

surpass experimental datasets in consistency, recovery of gene annotations, and enrichment for 

disease-associated variants. We use the imputed data to detect low quality experimental datasets, 

to find genomic sites with unexpected epigenomic signals, to define high-priority marks for new 

experiments, and to delineate chromatin states in 127 reference epigenomes spanning diverse 

tissues and cell types. Our imputed datasets provide the most comprehensive human regulatory 

annotation to date, and our approach and the ChromImpute software constitute a useful 

complement to large-scale experimental mapping of epigenomic information.
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Introduction

Genome-wide maps of epigenetic information, including histone modifications, DNA 

methylation, and open chromatin, have emerged as a powerful means to discover sample 

specific putative functional elements and to gain insights into the genetic and epigenetic 

basis of disease1–9. Given the dynamic nature of epigenomic datasets across samples and 

conditions, discovery power increases with broader coverage of diverse samples. However 

due to cost, time or sample material availability, it is not realistic to map every mark in 

every tissue, cell type and condition of interest. Additionally, some analyses are restricted to 

comparisons of only those marks that have been commonly mapped across different 

samples, leading to exclusion of marks or samples that did not have full coverage. An 

additional, often underappreciated issue is that even when a mark is mapped in a sample, it 

is usually done with few (if any) replicates, which can cause experimental variability, which 

confounds biological comparisons. This situation is exacerbated when analyzing large 

compendiums of datasets where the sheer number of datasets increases the likelihood that 

there will be outlier datasets of lower quality. Lastly, even for high quality experiments, 

robustness of the resulting signal level inferences may be reduced due to insufficient 

sequencing depth, especially for broadly-distributed marks that span a large fraction of the 

genome.

To address these challenges we developed ChromImpute, which uses a compendium of 

epigenomic maps, such as those generated by the NIH Roadmap Epigenomics and 

ENCODE projects2,10, to generate genome-wide predictions of epigenomic signal tracks, 

including histone marks, DNA accessibility, and DNA methylation (our method is generally 

applicable to any coordinate-based signal-track dataset, as we demonstrate with RNA-seq 

data). We predicted signal tracks of histone modifications, DNA accessibility (DNase 

hypersensitivity), and RNA-Seq at 25-base pair (bp) resolution and whole genome bi-sulfite 

(WGBS) DNA methylation data at single-nucleotide resolution (we refer to all of these data 

types as ‘marks’ for simplicity). We annotated a total of 127 reference epigenomes, 

including 111 generated by the Roadmap Epigenomics project10 and 16 generated by the 

ENCODE project2,3. These span diverse cell types and tissues (we refer to them as 

‘samples’ for simplicity, even though some reference epigenomes were based on multiple 

independent samples10).

We provide a systematic evaluation of the imputed data and demonstrate that the imputed 

data for a mark in a sample better matches the corresponding observed data than the 

observed data from any other sample. We also demonstrate how comparison between 

observed data and imputed data provides a state of the art data quality control metric that 

complements and surpasses existing methods. Even when a mark has been experimentally 

profiled in a sample, we show that imputed data is generally more consistent, robust, and 

accurate, as it leverages information from hundreds of datasets and thus is resilient to noise 

arising in individual experiments. The prior expectation of genome-wide signal provided by 

the imputed data can also be used in conjunction with observed datasets for inference of 

surprising signal locations in high-quality samples. We also use imputation quality using 

subsets of marks to provide recommendations and insights into experiment prioritization. 

Lastly, we use a compendium of 12 imputed marks in all 127 reference epigenomes to 
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predict and annotate a set of 25 chromatin states, providing the most comprehensive 

annotation of epigenomic state information in the human genome to date.

Results

ChromImpute method and previous work on imputation

Imputation has been previously explored in a number of bioinformatics settings. For 

microarray experiments, missing gene expression values have been predicted for specific 

genes in specific experiments11. For genome-wide association studies (GWAS), missing 

genotype values are routinely predicted for SNPs not directly assayed, by exploiting 

common haplotype structure12. For epigenomic datasets, prediction of both DNA 

methylation and histone modification datasets has been undertaken from DNA sequence 

information13–15, but the static nature of genome sequence limits the ability to generate cell 

type-specific predictions for samples not previously used for training, as the motifs driving a 

given mark frequently differ across samples. Specifically for DNA methylation, imputation 

has been undertaken using sequence-based features and histone modification data from one 

sample16,17, for predicting high-resolution DNA methylation from lower-resolution assays 

in conjunction with sequence information and other annotations18, or by using an assumed 

phylogenetic relationships between cell types19. For histone modifications and other 

chromatin marks, methods have been developed by us and others, to infer chromatin states 

based on multiple marks, even in cases with missing data20–22, but these do not try to infer 

the actual signal for the missing marks. Several other methods have been developed to 

model correlations of histone marks with expression or with other marks in a single 

sample23–26, which have sometimes been leveraged for imputation on a limited scale, but 

have not considered across-sample information. In practice, studies interested in a given cell 

type sometimes use data from a related cell type, which can be viewed as one simple 

approach to imputation.

Here, we take an ensemble regression-based approach to epigenomic imputation. We impute 

each target mark in each target sample separately, by combining information from large 

numbers of datasets that were experimentally determined, but without using any data for the 

target mark in the target cell type (Fig. 1a, S1). We leverage two classes of features (see 

Methods, Fig. 1d):

• Same-sample (different-mark) information (Fig. 1b): The first class of features uses 

information from the signal of other marks mapped in the target sample, both at the 

target position and at neighboring sites.

• Same-mark (different-sample) information (Fig. 1c): The second class of features 

uses information from the signal of the specific mark of interest at the target 

position in the most similar samples. Similar samples are defined based on 

similarity with the signal of marks that have been mapped in the target sample both 

locally and globally (see Methods). The features in this class are effectively 

predictions that could be made by a K-nearest neighbor method for various values 

of K and distance functions.
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As no training data is available for the target mark in the target sample, we learn the 

relationships between the features and the target mark using other samples that contain the 

target mark. We use regression trees27, as they can handle nonlinearities (including the 

constraint that signal values are non-negative), they support combinatorial interactions 

among features, and they are relatively fast to train. The prediction for each target mark in 

each target sample is based on an ensemble predictor that averages the values resulting from 

regression trees trained on each sample in which the target mark is available, thus reducing 

the impact of biases from any one individual predictor.

Imputation of 4315 datasets in 127 reference epigenomes

We applied ChromImpute to a compendium of 127 reference epigenomes, including 111 

profiled by the NIH Roadmap Epigenomics project10 and 16 profiled by the ENCODE 

project2,3 (Fig. 1a). These span diverse tissues and cell types, including Embryonic Stem 

Cells (ESCs), induced Pluripotent Stem Cells (iPSC), ESC-derived cells, blood and immune 

cells, skin, brain, adipose, muscle, heart, smooth muscle, digestive, liver, lung and others.

Only 5 ‘core’ histone modification marks were experimentally profiled in all 127 reference 

epigenomes. These are promoter-associated H3K4me3, enhancer-associated H3K4me1, 

Polycomb repression-associated H3K27me3, transcription-associated H3K36me3 and 

heterochromatin-associated H3K9me3. Varying subsets of 34 marks were profiled in 

different epigenomes, including 30 histone modifications (11 histone methylation marks, 18 

histone acetylation marks, and H3T11ph), histone variant H2A.Z, DNA accessibility, DNA 

methylation data, and RNA-seq data.

Based on these experimentally-profiled (‘observed’) datasets, we imputed the 31 marks 

observed in at least two epigenomes in all 127 epigenomes, and the three marks mapped in 

only one epigenome in the remaining 126 epigenomes. In total we generated 4,315 datasets 

based on imputation, of which only 1,122 (26%) were also experimentally mapped and 

3,193 (74%) are only available as imputed data. Signal tracks for all marks were imputed at 

25 base pair resolution (121 million predictions per track) except for DNA methylation, 

which was imputed at single-nucleotide resolution for each of 28 million CpGs. Across all 

marks, samples, and positions, we generated a total of 526 billion predicted signal values.

We categorized the 34 epigenomic marks into four classes according to the number of 

samples in which they were experimentally profiled and our imputation strategy (Fig. S2):

• Tier-1 marks were mapped broadly across samples, were used to impute all other 

datasets, and were imputed using only Tier-1 marks. They consist of H3K4me1, 

H3K4me3, H3K36me3, H3K27ac H3K27ac, H3K9ac, and DNA accessibility.

• Tier-2 marks were mapped broadly only in ENCODE samples, were used to impute 

Tier-2 and Tier-3 marks, and were imputed using only Tier-1 and Tier-2 marks. 

They consist of H3K4me2, H3K79me2, H4K20me1, and H2A.Z.

• Tier-3 marks had limited coverage, were only used to impute Tier-3 marks, and 

were imputed using all three Tiers. They consist of the remaining 20 histone 

modification marks.
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• DNA methylation and RNA-seq datasets were treated separately. RNA-seq datasets 

were imputed using only Tier-1 marks and other RNA-seq datasets, and similarly 

DNA methylation datasets only using Tier-1 marks other DNA methylation 

datasets.

This tiered approach for histone marks and DNA accessibility datasets enables us to limit 

potential biases resulting from the lower number of samples for Tier-2 and Tier-3 marks 

(reducing only minimally the information available for making predictions), and to avoid 

confounders due to the very distinct nature of RNA-seq and DNA methylation datasets.

Imputed datasets capture missing marks effectively

As an initial control, we assessed by visual inspection the level of similarity between pairs 

of matching imputed and observed datasets, using nine randomly-selected 200-kb regions 

and two thousand randomly-selected 25-bp regions. For the nine broad regions, we 

randomly selected one sample in which the mark was also experimentally profiled, and 

visualized imputed and observed tracks in detail (Fig. 2a, S3). For the two thousand 

samples, we generated a dense heatmap showing the observed and imputed mark signal 

across every sample in which both are available (Fig. 2b, S4). Both visual comparisons 

showed strong agreement between observed and imputed signal, successfully recovering 

epigenomic features at high resolution, across broad regions (Fig. 2a, S3c), and in a tissue-

specific way (Fig. 2b). Beyond the visualizations provided in this paper, imputed and 

observed tracks are provided for the entire genome through public track hubs on the WashU 

epigenome browser (http://epigenomegateway.wustl.edu/browser/)28 and the UCSC 

Genome Browser29.

We also assessed the ability of ChromImpute to predict missing marks using seven 

quantitative metrics: the genome-wide correlation between observed and imputed data 

(“GWcorr”, Fig. 2c); the overlap between imputed and observed datasets in the top 1% of 

the 25-bp bins with the highest signal (“Match1”); the percentage of top 1% observed in top 

5% imputed 25-bp bins (“Catch1obs”); the percentage of top 1% imputed in top 5% 

observed 25-bp bins (“Catch1imp”) (Fig. S5-7); the recovery of top 1% observed and 1% 

imputed 25-bp bins based on the full range of signal of the other using the area under the 

curve (AUC) of a receiver operating characteristic curve (“AucObs1” and “AucImp1”, Fig. 
S5-7); and the AUC recovery of bases covered by observed peak calls based on the full 

range of signal of the imputed data (“CatchPeakObs”, Fig. S5-7). These 1% and 5% 

percentages are representative of the diversity of chromatin states for each mark (Fig. S8), 

and captured the majority of high-signal locations (Fig. 2b, S4; see also below, Fig. S14). 

For DNA methylation, we used GWcorr and “Methyl25”, a previously-suggested 

concordance measure that considered two DNA methylation values in agreement if they 

were within 0.25 of each other30, as focusing on the top few percent of signal is less 

meaningful (since the vast majority of the human genome is highly methylated).

To provide perspective on the performance of ChromImpute in each metric, we compared it 

to two stringent baselines, which can be thought of as alternative imputation approaches. 

The first baseline, ‘BestSingle’, predicts a missing mark based on the signal of the most 

similar experimental dataset for the target mark, according to the specific metric measured 
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across any other sample. This metric is unrealistic, of course, as the most similar experiment 

is not known in advance, and is not available to ChromImpute, or to any prediction method. 

The second metric, ‘SignalAvg’, predicts the average signal of the target mark across all 

other samples.

ChromImpute showed strong recovery of observed datasets, both in its overall performance, 

and relative to both stringent baselines. For the GWcorr metric, ChromImpute showed 0.68 

correlation on average per mark (vs. 0.49 for BestSingle and 0.50 for SignalAvg, Fig. 2c), 

outperforming BestSingle for 99% of datasets and SignalAvg for 91% of datasets per mark 

on average. ChromImpute showed AUC=0.95 recovery for Catch1 (vs. 0.84 and 0.88, Fig. 
S5) on average per-mark, and AUC=0.96 for CatchPeakObs (vs. 0.83 and 0.88) (Fig. 2d). 

For the Methyl25 metric, ChromImpute outperformed SignalAvg 97% of time, and 

BestSingle 76% of the time.

We also compared ChromImpute to several additional imputation approaches. First, we 

implemented ChromImpute-LR, using the same ensemble training strategy but linear 

regression instead of regression trees to combine features (see Methods). ChromImpute has 

overall similar or better performance than ChromImpute-LR for the Tier 1 and 2 marks and 

much better performance for DNA-methylation, although ChromImpute-LR shows 

somewhat better performance for some Tier 3 marks, which had fewer training datasets 

available (Fig. S9). Second, for Tier 1 histone marks in ES cells and iPSCs, we compared 

ChromImpute to a predictor based on averaging of increasingly large number of these near-

replicate datasets (Fig. S10). Predictive power increased by averaging more replicates, but 

ChromImpute showed better predictive power than 10 near-replicates for some marks, and 3 

near-replicates for all marks (Fig. S10). Third, ChromImpute also outperformed nearest 

neighbor predictors of a mark based on local and global distance, a predictor trained on only 

one sample instead of the full ensemble (Fig. S9), and a predictor based on averaging active 

marks in the same sample to predict other active marks and likewise for repressive marks 

(Fig. S11), in each case supporting our imputation strategy.

Increased robustness and annotated feature recovery

While the previous analyses demonstrated that imputed datasets provide a reasonable 

approximation to observed datasets, and thus can be beneficial when observed data is not 

available, we next investigated whether imputed datasets also have distinct advantages that 

make them valuable even if observed datasets are available. Two potential reasons may lead 

to advantages for imputed datasets: (1) imputed datasets are based on combining 

information from many experiments, and thus have the potential to be more robust to 

experimental noise and other confounders than the observed data; (2) by combining relevant 

information from many related experiments, imputed data can achieve a higher ‘effective’ 

sequencing depth, and thus potentially a higher signal-to-noise ratio.

We used the property that promoter-associated H3K4me3 frequently localizes near 

transcription start sites (TSS) and that transcription-associated H3K36me3 frequently 

localizes in gene bodies. We defined two metrics that quantify the extent to which the 

strongest H3K4me3 signal (at 25bp resolution) localizes within 2kb of annotated TSS 

(“PromRecov”, Fig. 3a) and the strongest H3K36me3 signal localizes in gene bodies 
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(“GeneRecov” Fig. 3b), using AUC for the portion of the receiver operating characteristic 

(ROC) curve that has a 5% false positive rate or less (we primarily focused on this metric 

instead of the full AUC as we expect many annotated locations to not be marked by the 

observed or imputed data in any one sample, but saw similar results based on the full AUC 

(Fig. S12a,b)).

We found that imputed data showed better annotation agreement than observed data for 

every dataset, often by a large margin (Fig. S13). In fact, the worst-performing imputed 

H3K4me3 dataset performed better than 96% of observed H3K4me3 datasets, and the worst 

performing imputed H3K36me3 dataset performed better than 91% observed datasets in the 

evaluations (Fig. 3a,b). Recovery of gene bodies for a few of the H3K36me3 observed 

datasets was only marginally above random, while for imputed data recovery was 

consistently high. Since these results are only based on the rank ordering of signal values, 

any normalization strategy which preserves the rank ordering (e.g. quantile normalization31) 

would not change these results. We also observed better overall agreement with annotated 

features when considering peak calls instead of signal level (Fig. S14, see Methods).

Additionally, imputed data showed a more robust and consistent signal profile than observed 

data. Observed H3K4me3 signal proximal to all TSSs shows up to 95-fold variation between 

samples (Fig. 3c), and observed H3K36me3 shows up to 7-fold variation in gene bodies 

(Fig. 3d). Suggesting that experimental variability indeed underlies some of these 

differences, rather than biological differences, two fetal brain samples (E081 and E082) 

showed large heterogeneity in their aggregate profiles for H3K4me3 and H3K36me3. E081 

showed very flat distributions (Fig. 3c,d), while E082 and the imputed data for E081 and 

E082 all showed much more recognizable distributions (Fig. 3c,d). Consistent with 

experimental confounders, these E081 datasets were among the worst in both the 

PromRecov and GeneRecov metrics (Fig. 3a,b).

Imputed marks also showed higher consistency than observed marks in their genome-wide 

signal distribution (Fig. S15). For example, the observed datasets for H3K36me3 for the two 

fetal brain samples (E081 and E082) had 11.6 fold difference between the amount of the 

genome that had signal values 3 or greater, while imputed data show only 1.4-fold 

difference.

We also used the 28 marks that were mapped in two different ESC lines (H1 and H9) to 

compare near-replicates for observed and for imputed datasets. We expected that for high-

quality datasets, each mark mapped in H1 should show a higher correlation with the 

corresponding mark in H9 than with other marks in H9 (and conversely for H9 marks). 

Indeed, this property held more frequently for imputed data vs. observed data (Fig. S16), 

once more supporting the increased quality of imputed datasets.

Imputed data captures dynamics and sample relationships

To study whether imputed data can capture dynamic epigenomic information across cell 

types, we evaluated our PromRecov and GeneRecov metrics for tissue-restricted 

annotations, by focusing specifically on a set of the genes that were expressed in the 

corresponding samples (see Methods, Fig. S12c,d, S13c,d). Imputed data continued to 
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strongly outperform observed data for the set of expressed genes, with all but one imputed 

dataset for H3K4me3 showing higher PromRecov, and all imputed datasets for H3K36me3 

showing better GeneRecov.

We also compared the ability of imputed and observed data to recover expressed genes as a 

function of the number of samples in which they were expressed (Fig. S17). Recovery of 

both TSS-proximal regions and gene bodies increased greatly with the number of samples in 

which a given gene is expressed for imputed marks (as expected given the multiple 

informant samples for each mark) and for observed marks (suggesting that genes detected as 

more broadly expressed show greater agreement with histone modification marks even for 

observed data). Notably, imputed H3K4me3 showed higher PromRecov independent of how 

restricted the expression was to certain samples, even for TSS regions of genes expressed in 

a single sample. For H3K36me3, observed marks showed a modestly higher recovery of 

gene bodies for genes expressed in only six samples or fewer (3% of expressed genes in a 

sample, on average). However, for the remaining genes expressed in increasing numbers of 

samples, imputed datasets consistently outperformed observed datasets.

For all Tier 1-3 marks, we directly compared the correlation between observed gene 

expression levels and the signal data for both observed and imputed marks (Fig. S18). For 

nearly all positively-correlated marks, imputed signal showed a greater positive correlation 

with gene expression than observed signal, both in TSS-proximal regions (Fig. S18a), and in 

gene bodies (Fig. S18b). For negatively-correlated marks, observed data showed greater 

negative correlation with expression than imputed data, but this higher negative correlation 

was associated with lower-quality observed datasets (Fig. S18c,d), and the difference was 

reduced when focusing only on higher-quality observed data, both in TSS-proximal regions 

(Fig. S18c) and in gene bodies (Fig. S18d).

We also evaluated the ability of both imputed and observed datasets to capture the 

relationships between tissues and cell types based on genome-wide correlation analysis 

between pairs of datasets (Fig. 3e,f, S19). Specifically we compared the imputed and 

observed data for their ability to group samples in accordance to their tissue group (defined 

in ref. 10 and shown in Fig. 1a of this paper) based on the correlation of individual marks 

(Fig. 1, 3e). We found the imputed data showed a correlation matrix with a strongly 

pronounced block structure, corresponding to the biological groupings of cell types and 

tissues. This was substantially weaker in observed datasets (Fig. 3e), suggesting imputed 

data better captures sample relationships.

To quantify this difference, we evaluated the ability of each Tier-1 mark, DNA-methylation, 

and RNA-seq to distinguish same-group vs. different-group sample pairs (excluding the 

heterogeneous ‘ENCODE’ and ‘Other’ groups), based on the relative genome-wide pairwise 

correlation, evaluated as the AUC for both observed and imputed signal (Fig. 3f). Imputed 

data consistently out-performed observed data, showing an average AUC of 0.92 vs. 0.79 for 

observed data. The increase in classification power was most pronounced for H3K4me3, 

H3K36me3, H3K27me3, and H3K9me3, which are generally considered less cell type 

specific (AUC=0.93 vs. 0.70).
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These results also held for sample group classification based on histone mark peak call 

similarity (Fig. S20), when trying to distinguish pairs of samples having the same anatomy 

annotation from those that have a different one10 (with all marks except DNA methylation 

showing increased accuracy, Fig. S20, Table S1), and for higher-resolution distinctions 

beyond the tissue group level, as ChromImpute predictions showed higher correlation with 

corresponding observed data than predictions obtained by averaging all same-group 

experiments (Fig. S21). We reasoned that perhaps a weighted average of observed and 

imputed data may further improve classification power, but we did not see substantial 

improvement in a combination approach relative to just using the imputed data, except for 

DNA methylation where a balanced combination showed the highest classification (Fig. 
S22).

Imputed data improves GWAS enrichments

As epigenomic maps have recently emerged as an unbiased approach for discovering 

disease-relevant tissues and cell types3,32, we also evaluated the impact of epigenome 

imputation on the interpretation of trait-associated variants from GWAS. We quantified the 

enrichment (positive or negative) of trait-associated variants from the NHGRI GWAS 

catalog33 in both observed and imputed datasets for each mark. We evaluated enrichments 

both in aggregate across all studies, based on Area under an ROC curve up to a 5% false 

positive rate (AUC5%) for the signal level recovery of trait-associated SNPs, and at the level 

of individual studies, based on mark signal rank differences between each study's SNPs and 

all other SNPs in the GWAS catalog (see Methods). We evaluated both the number of 

studies for which there was a significant signal rank difference in at least one sample, and 

the total number of study-sample pairs that are significant, at varying p-value thresholds. We 

then compared both the number of significant studies and the number of significant pairs to 

the numbers obtained for randomized versions of the GWAS catalog, which also enabled us 

to obtain a false discovery rate estimate for each p-value threshold (Table S2, see 
Methods).

For all Tier-1 active marks, imputed data resulted in substantially greater recovery of SNPs 

in the GWAS catalog (Fig. S23) than the observed data, and more significant enrichments 

for both the number of studies, and the number of study-sample pairs, across all tested 

significance thresholds (Fig. 4a, Fig. S24-S25). In addition, the imputed data yielded a 

stronger enrichment for each enriched sample in the large majority of cases for nearly all 

marks (Fig. 4b, Fig. S26). We confirmed that the actual GWAS catalog yielded more 

significant associations than randomized versions, for both the observed and imputed data 

(Fig. 4a, Fig. S24-S25). Imputed data performance was substantially higher than that of the 

average mark signal across all available samples (Fig. S24b), emphasizing the increased 

performance was not simply due to averaging multiple samples. We also confirmed that the 

top most significant enriched samples for a given study were generally biologically relevant 

for active marks: for H3K27ac for example, we found that liver was enriched in various 

cholesterol phenotypes, that immune-related cells were enriched in various immune related 

disorders, ulcerative colitis in the colonic mucosa and many other biologically-meaningful 

enrichments (Fig. 4c-f, Table S2).
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These results help validate the biological relevance of imputed datasets based on an 

orthogonal annotation source, and help illustrate imputed datasets as a potentially useful 

resource for interpreting GWAS results.

Imputed datasets are informative for quality control

We next studied whether discrepancy between imputed and observed datasets is indicative 

of lower-quality experiments and can be used as a quality control (QC) metric. We ranked 

all H3K4me3 and H3K36me3 datasets based on PromRecov and GeneRecov scores 

respectively, providing an independent benchmark informative of dataset quality (Fig. 5a). 

We then compared several QC metrics previously applied to these datasets10 based on their 

ability to flag the worst-ranked datasets. These metrics are based on the proportion of reads 

falling in enriched regions as determined by various methods (Signal Proportion of Tags 

(SPOT)34, pre-binned regions enriched based on a Poisson distribution10, and FindPeaks35), 

and signal correlations between forward and reverse reads (normalized strand correlation 

(NSC) and relative strand cross-correlation (RSC))36.

Traditional QC metrics indeed flagged several worst-ranked H3K4me3 and H3K36me3 

datasets, but failed to detect several cases, especially for lower read depths. This was more 

pronounced for H3K36me3, where two metrics (NSC, RSC) failed to detect the majority of 

low-GeneRecov datasets, and several datasets (E104, E022, E087, E109) were not detected 

as problematic by any of the traditional QC metrics. A deeper understanding of the sources 

of lower-quality datasets is beyond the scope of this paper, but the low read depth of several 

flagged datasets (Fig. 5a, S27) suggests that deeper sequencing in some cases could improve 

overall quality.

By contrast, imputation-based QC metrics were consistently able to capture worst-ranked 

datasets, even when traditional QC metrics failed (Fig. 5a). We evaluated two imputation-

based QC metrics, the first based on our Match1 score (overlap of the top 1% of imputed 

signal with observed signal) (Fig. S8) and the second based on our GWcorr score (genome-

wide correlation in signal between imputed and observed signal tracks). Both performed 

well, showing the best agreement with PromRecov and GeneRecov at detecting the worst 

datasets (Fig. 5a). Notably, the E104 Right Atrium H3K36me3 dataset (which both the 

GeneRecov and imputation metrics ranked as the worst H3K36me3 dataset) was rated as the 

single highest-quality H3K36me3 dataset based on the NSC metric, and was considered 

among the ten highest-quality H3K36me3 datasets by SPOT. The meta-gene plot of this 

sample shows inconsistencies with the typical pattern for H3K36me3 and is suggestive of 

potential antibody cross-reactivity (Fig. 5d), illustrating how QC measures based on 

agreement with imputed data can be used to identify likely problematic datasets that are 

missed by other metrics that are ineffective in cases of label swaps or antibody cross-

reactivity.

Observed datasets varied substantially in their agreement with their corresponding imputed 

datasets (Fig. 5b, S28, Table S3). Moreover, the observed signal tracks for the worst-

scoring samples (Match1 metric) showed striking visual differences from the best samples, 

whereas the corresponding imputed signal tracks had a consistently strong signal (Fig. 5c,d). 

When correlating QC metrics and read depth across all samples (Fig. S27), the GWcorr 
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metric showed among the highest correlations with both PromRecov and GeneRecov, and 

was better correlated with sequencing depth for all histone marks, while being distinct from 

other QC metrics for all marks, highlighting that imputation-based QC measures capture 

important information that is complementary from existing QC metrics.

Imputed data prior identifies unexpected signal regions

While many high-quality experiments will globally agree with the imputed data, there could 

be specific locations for which the imputed data does not match the observed data. Since the 

imputed data constitutes a form of prior expectation on the observed data, genomic locations 

where the two disagree can pinpoint biologically-interesting locations and in some cases 

tissue-specific regulatory drivers.

To investigate this application of imputed datasets, we analyzed genomic locations showing 

strong DNA accessibility in observed data but weak or no DNA accessibility in imputed 

data (see Methods). Sequence motif analysis of these locations revealed an enrichment of 

biologically-relevant regulatory motifs with known cell-type specific roles (Fig. S29). For 

example NFKB motifs were found using Primary monocyte DNA accessibility (E029) 

consistent with immune regulation, and PAX237 motifs in Fetal Kidney DNA accessibility 

(E086) consistent with roles in kidney development.

Thus, even for high-quality datasets, building a prior expectation of signal across the entire 

genome can also be informative for identifying locally-dissimilar locations, which may be 

associated with cell type-specific and tissue-specific regulatory processes. However, if a 

mark that is highly-correlated with the mark of interest is already present, then the 

imputation will already provide a close enough approximation to the true signal that 

dissimilar locations may be due to biological or experimental noise, rather than cell type-

specific regulation.

Imputation feature usage varies across marks

We next sought to gain information about the utilization of different marks and features for 

imputing datasets. We first studied the frequency with which each feature was utilized in our 

regression trees, at the root (Fig. S30a) or at any position (Fig. S30b, S31) when it was 

available. We did this both for the primary imputation analyzed above, treating Tier-1, 

Tier-2, and Tier-3 marks separately given their differences in coverage, and only for the 

seven samples with deep coverage of many marks10,9, treating all Tier 1-3 marks uniformly 

given their similar coverage.

For nearly all acetylation marks, the most frequent feature at the root was another 

acetylation mark at the same genomic position in the same sample, reflecting the highly 

correlated and dynamic nature of acetylation marks. For H3K36me3, H3K27me3, 

H3K9me3, H3K4me3, DNA accessibility, RNA-seq, and DNA methylation, the most 

informative feature for the root was based on the same mark in the nearest K samples, 

consistent with their much more stable nature across cell types.

When considering any position in the regression tree, the most frequently used features were 

from other marks in the same sample and the same position, although all positions 
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surrounding the target genomic location were used substantially (Fig. S31). DNA 

accessibility was less frequently used at the exact target position compared to histone mark 

features (Fig. S31), reflecting the slight displacement of nucleosomes relative to open-

chromatin regions, and thus the offset of histone modification marks relative to DNA 

accessibility peaks.

Chromatin state annotation using many imputed marks

Given the importance of chromatin mark combinations for distinguishing biologically-

meaingful features and different classes of regulatory elements, we used ChromHMM20,21 

to discover chromatin states based on imputed marks. Chromatin state analysis in the 

Roadmap Epigenomics project was limited to only 5 marks in all 127 samples (H3K4me1, 

H3K4me3, H3K36me3, H3K27me3, and H3K9me3), or only 6 marks (with H3K27ac) for 

98 samples10, with the number of samples rapidly decreasing as additional marks are 

considered due to missing datasets. ChromHMM explicitly handles missing data, but 

absence of a particular mark can result in dramatic reduction in the genomic coverage of 

corresponding chromatin states in the samples that are missing a defining mark (e.g. a DNA 

accessibility dominated chromatin state shows 60-fold reduction for samples that lack DNA 

accessibility, Fig. S32). Epigenomic mark imputation circumvents these limitations and 

provides a practical alternative to the missing-data strategy of ChromHMM, enabling 

learning of chromatin states jointly on uniform signal tracks for large numbers of 

epigenomic features across large numbers of samples.

We first learned a 25-state model jointly3 across all 127 samples (Fig. 6b,c) using all Tier-1 

and 2 marks. This captured multiple types of promoter, enhancer, open chromatin, 

transcribed, and repressed states and shows specific DNA methylation and RNA-seq 

enrichments (Fig. 6b,c, S33). Compared to the 15-state chromatin state model based on 

observed data in the 127 samples (Fig. S33), the 12-mark model better distinguished active 

vs. poised enhancer states (using H3K27ac and H3K9ac), and captured novel states (e.g. 

state 19_DNase showing DNA accessibility but lacking enhancer/promoters marks and state 

5_T×5’ associated with 5'ends of transcripts and based on H3K79me2). Benefiting from the 

increased stability and robustness of imputed data, imputation-based chromatin states 

showed more consistent genome coverage across tissue/samples (Fig. S34), better 

agreement with annotated gene bodies and transcription start sites, both for all transcripts 

(Fig. S35a,b) and for the set of transcripts expressed in a given tissue (Fig. S35c,d), and 

better discrimination of evolutionarily-conserved elements (Fig. S36)38. Additionally we 

saw better recovery of samples that were not included in any of our training data (e.g. an 

osteoblast DNA accessibility dataset39, Fig. S37), while capturing major cell type specific 

differences in chromatin states (e.g. ESC/iPSC cell types showing consistently more 

abundant bivalent promoter states40, Fig. S38), with cell type specific differences even more 

pronounced than for chromatin states based on observed data (Fig. S38).

We also learned a 50-state model using imputed data for 29 marks across the seven deeply-

covered samples. The model showed distinct state emission parameters, diverse functional 

enrichments, and relatively consistent correlations in emission parameters and mark 

frequency across samples for nearly all states (Fig. 5d, S39-41).
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Accurate imputation using limited numbers of marks

To help priorize marks for experimental profiling in new cell types, we studied the subset of 

marks that provide the highest-accuracy imputation. We considered two settings, the first 

(‘unrelated setting’) assuming that new samples are largely dissimilar to any existing in the 

compendium and can only rely on same-sample features, and the second (‘related setting’) 

for samples that are related to the existing compendium of datasets with roughly uniform 

coverage of each mark to impute a new cell type.

In both settings, we assessed the predictive power of a subset of features by comparing the 

agreement achieved between observed and imputed signal using the subset of features, 

relative to the agreement achieved using all features. We chose this ‘relative agreement’ 

metric to avoid penalizing the prediction of marks that are hard to impute even when using 

all features (possibly due to low-quality signal). We evaluated this relative agreement using 

the Match1 metric (except for DNA methylation, where we used Methyl25), and using the 

coefficient of determination (R2). We restricted these evaluations to the seven deep-

coverage samples on chr10 and did not make distinctions between the Tier 1-3 marks (Fig. 
S8)

In the ‘unrelated’ setting (same-sample features only), imputation of H3K36me3, H3K9me3, 

H3K27me3, and RNA-seq showed the lowest relative Match1 scores (20-39%) (Fig. 6a, 
S42a), followed by DNA accessibility (70%), H3K79me2 (82%), and H3K4me1/2/3, 

H2A.Z, and H3K79me1 (92-93%), suggesting a prioritization based on the marks that are 

hardest to impute using same-sample features, even if all other marks are used. All 

acetylation marks showed higher relative Match1 scores (97-100%), but H3K27ac had the 

lowest relative score among them (97%), suggesting it contains the most unique 

information. Relative Match1 score recovery was 87% on average across all marks when 

using all same-sample features, 70% when using only the five core marks (counting 

experimentally-mapped marks as 100% recovered), 73% using the core marks and either 

DNA accessibility or H3K9ac, 78% using the core marks and DNA accessibility, and 85% 

using all Tier 1-2 marks (Fig. 6a, S42a). R2 recovery showed overall similar results and 

conclusions, but revealed a lower overall agreement for DNA methylation (Fig. S42b), also 

highlighting its unique information relative to other marks in the same sample.

In the ‘related’ setting (both same-sample and same-mark features), the five ‘core’ 

modifications resulted in 80% Match1 relative recovery on average across all marks, which 

increased respectively to 86%, 82%, and 81% with inclusion of H3K27ac, H3K9ac, or DNA 

accessibility, and increased to 89% using all tier 1 and 2 marks (Fig. 6a). Recovery of 

acetylation marks was on average lower (66%) using only the five core marks, but increased 

to 77%, 71%, and 68% respectively with inclusion of H3K27ac, H3K9ac, or DNA 

accessibility. Using one or two marks led to sometimes surprisingly high recovery of many 

other marks. For example, H3K18ac alone resulted in 87% average recovery across all 

others marks (88% for acetylation marks), and greater than 80% recovery for all marks 

except H4K20me1, H3K79me1 and H3K23me2. Profiling of H3K79me2 was highly 

complementary, resulting in 98% recovery for H4K20me1 and H3K79me1, and in 

combination with H3K18ac resulted in 90% average recovery of marks in a new cell type, 
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when leveraging the entire existing data compendium -- but only 71% average recovery 

using same-sample features.

We also used chromatin states to evaluate the ‘unrelated’ setting, based on the ability of 

subsets of the 29 marks to recover each of the 50 chromatin states learned from imputed data 

in the seven deeply-covered samples when treating the remaining marks as missing20 (Fig 
6d, S43; see Methods). We found that holding out any of DNA accessibility, H3K9me3, 

H3K36me3, H3K4me1, H3K27me3, or H3K27ac resulted in at least one ‘missing’ state 

(less than 20% recovery) (Fig S43). No single mark in isolation led to substantial state 

recovery beyond the states that were primarily defined by that mark (Fig. S43d). Holding 

out any of H2A.Z, H3K79me2, H4K20me1, H3K79me1, H3K4me3, or H3K4me2 resulted 

in at least one state with less than 70% recovery. Using only the five core marks and treating 

all remaining marks as missing data resulted in 31% average recovery of assigned locations 

for each state (Fig 6d, S43c). Including any of H3K27ac, H3K9ac or DNA accessibility 

increased average recovery to only 35-37%, and the greatest average state recovery of any 

mark was 43% with the additional inclusion of H3K18ac. Using all Tier 1 and 2 marks 

together increased the average recovery to 65%, with only 12 states showing 30% or less 

recovery (Fig. 6d, S43b). Inclusion of H3K18ac with the Tier-1 and Tier-2 marks increased 

average state recovery to 77%, with all states showing greater than 30% recovery. These 

results suggest substantial additional diversity of chromatin states not captured based on the 

chromatin marks that have received extensive mapping by the Roadmap Epigenomics and 

ENCODE projects.

Discussion

In this paper we introduced a computational approach for prediction (imputation) of 

genome-wide epigenomic signals applied at 25-nucleotide resolution. The method imputes 

both missing and existing datasets by leveraging correlations of epigenomic marks within a 

given sample, and similarities in the epigenomic landscape of related samples, and it is 

applicable to any type of functional data that can be represented as a signal track. We 

developed and applied an array of quantitative metrics and tests to evaluate the accuracy of 

the imputed data. We showed that the imputed data signal is of high resolution, and a better 

match to observed data signal than using the average of all observed datasets of that type (an 

important baseline comparison for any such study), and it is also a better match than even 

the single closest dataset (a benchmark that would require knowledge of the target mark, and 

is thus not possible in practice).

We showed that imputed data outperforms observed data based on a number of analyses: (1) 

similarity to annotated gene features; (2) consistency across closely related samples; (3) 

capture of biological relationships between tissue/cell types; (4) correlation with observed 

gene expression; (5) enrichment of SNPs identified in GWAS; (6) chromatin state capture of 

transcription start sites, gene bodies, tissue-restricted activity, and conserved elements. The 

observed data were only advantageous in identifying genes with the most tissue-specific 

expression patterns (only 3% of genes). Furthermore, disagreement between observed and 

imputed data was usually due to lower quality experimental datasets, and not low-quality 

imputation.
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Our benchmarks show that in practice, observed data is not always an uncontested gold-

standard, but that both observed and imputed data are of important and complementary 

value, each with its own merits, and each likely to have both false negative and positive 

signals. Certainly, when high-quality, deeply-sequenced, and extensively-replicated 

experiments are available, they remain a gold standard. However, with the reality of 

budgetary and sample limitations, our work establishes imputed data as an important 

complement to experimental studies. For any fixed number of budgeted experiments, 

imputation allows projects to explore a larger diversity of samples, assays, or conditions, 

and to increase robustness by leveraging automatically-learned correlations in these datasets, 

rather than relying solely on direct experimental profiling and replicates to increase 

robustness. Moreover, replicates are not always available, do not determine which replicate 

is problematic in case of disagreement, and do not handle the situation when both replicates 

have the same confounding factors, while imputation-based QC addresses all these cases.

Moreover, the combined use of observed and imputed data opens many new applications 

that were previously not possible. Imputed data can be used as a prior expectation for an 

experiment, against which observed data can be compared and benchmarked. We 

demonstrated two applications of such comparisons, using global discrepancies between 

observed and imputed data as a QC metric, and identifying surprising locations which we 

found enriched for regulator targets. For QC in particular, we showed that low agreement 

between imputed and observed data revealed problematic datasets that were missed by many 

existing metrics that focus on signal-to-noise properties of the data, and thus can miss 

sample mix-ups, cross-reacting antibodies, or other experimental errors. With more densely 

sampled epigenomic datasets, we expect that next-generation QC metrics will increasingly 

exploit imputation-like measures, such as our stringent baselines defined earlier, or the more 

sophisticated agreement with ChromImpute.

Our work also has implications for experiment prioritization for large scale epigenomic 

mapping efforts. The Roadmap Epigenomics project mapped a set of six histone marks at 

highest depth: H3K4me1, H3K4me3, H3K27me3, H3K9me3, H3K36me3, and H3K27ac. 

Our results validate this strategy, as H3K27me3, H3K9me3, and H3K36me3 could not be 

imputed effectively using same sample data even if every other mark in the same sample 

was mapped, and H3K4me1, H3K4me3, and H3K27ac all had substantial unique 

information that could not be predicted from just using same sample features of the other 

five marks. Our results propose extending this core set with H3K18ac, which led to better 

imputation of non-H3K27ac acetylations, and H3K79me2, which led to better capture of 

transcription-associated marks. Both marks have evidence of being important in their own 

right, in pathogen response41 and cancer42–45 for H3K18ac, and in epigenetic memory46, 

development and cancer47 for H3K79me2.

It is also important to recognize limitations of the imputation approach. If the presence of 

mark signal is highly specific to one or a few samples and it does not correlate with other 

marks mapped in the sample or has a different correlation structure than in samples used for 

training, then it would not be possible to accurately impute the mark at those locations. 

When the target mark has been mapped in only few samples, the features pertaining to the 

same mark in other samples may be less informative or more biased. For example, 
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imputation of transcription factor (TF) binding may be more challenging, as their correlation 

structure with other marks can vary greatly across samples, depending on whether a TF is 

active or not, and most have only been mapped in a limited number of samples. A limitation 

of our current framework when imputing datasets across individuals is that we do not 

currently incorporate genetic variation as an input, and this is potentially an important area 

of future development given increasingly-available datasets on chromatin marks and 

genotype across individuals48–50. For tissue samples that reflect mixtures of multiple cell 

types, our imputed maps will most likely reflect the same mixture as the observed data, 

though deconvolution of mixed samples is a potentially important direction for future work.

Lastly, our paper contributes the most comprehensive epigenomic resource to date, 

including 4,315 imputed datasets across 127 samples and 34 marks (of which only 26% have 

been experimentally profiled). The remaining 74% (3193 datasets) only exist as imputed 

data, dramatically expanding the number, diversity, and completeness of even the most 

complete existing epigenomic maps. We also provide an annotation of 25 chromatin states 

based on 12 imputed marks across 127 samples, and of 50 chromatin states based on 29 

epigenomic marks across 7 samples, providing the most comprehensive collection of 

regulatory annotations across the human genome to date. As our initial analyses 

demonstrate, the resulting annotation of the non-coding portion of the human genome can 

increase the power of future studies of gene regulation, cellular differentiation, genetic 

variation, and human disease.

Online Methods

Signal Tracks

For the histone mark and DNase signal tracks we used the version of the reference 

epigenomes signal tracks based on the –log10 P-value of enrichment relative to input control 

based on a Poisson distribution from (Roadmap Epigenomics Consortium et al, 2015)10 

available through http://compbio.mit.edu/roadmap/. Some of these reference epigenomes are 

based on multiple biological samples that were pooled, but we refer to each reference 

epigenome as a ‘sample’ here. We only used the signal for chromosomes 1-22 and X. For 

the RNA-Seq data we converted the uniformly processed unstranded signal tracks, also 

available from the same site, to normalized RPKM values, then added one, and then took the 

log base 2 value. The normalized RPKM values were computed based on multiplying the 

unnormalized signal value by 109 then dividing by the product of the read length and the 

number of exonic reads excluding the mitochondria, ribosome, and the top 0.5% of signal 

values10. We converted these signal tracks for the histone marks, DNase, and RNA-seq data 

to a 25bp resolution by taking the base level average of signal overlapping each 25bp-bin. 

For the DNA methylation we used the uniformly processed whole genome bi-sulfite data10, 

which provided a fraction methylated value at each base within all CpGs that had more than 

3 reads covering it. We filled in missing values for bases within CpGs by replacing them 

with the genome average for DNA methylation when training and the chromosome average 

when applying the predictors as this step was done on each chromosome independently.

We selected the –log10 p-value signal tracks opposed to the fold change tracks for histone 

marks and DNase as they were designated the primary signal tracks for analyses in 
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(Roadmap Epigenomics Consortium et al, 2015)10 based on having better signal to noise 

properties. In particular both sets of tracks were generated based on down-sampling highly 

sequenced datasets to the same sequencing depth, thus in the –log10 p-value track no dataset 

had a disproportionately high signal simply due to being sequenced very deeply, while on 

the other hand under-sequenced datasets were included and in some cases had locations with 

high fold change signal that were the result of noise and did not have as high values on the –

log10 p-value track. Additionally focusing on the –log10 p-value tracks is more consistent 

with the basis of default binarization of ChromHMM21 used for the chromatin state learning.

ChromImpute Method

The ChromImpute method predicts the signal of a target mark in a target sample based on 

two classes of features: (1) other marks mapped in the same sample and (2) the target mark 

in other samples. Predictors that integrate these features are trained based on each sample for 

which we have the target mark available excluding the target sample. The ensemble of 

trained predictors are then each applied in the target sample and their predictions are 

averaged to obtain the final predictions. The ensemble approach would be expected to tend 

to average out biases associated with any one predictor.

Formally, let oc,m,p represent the observed value of mark m in sample c at position p. Let 

Mc,m denote the set of marks in sample c among those eligible to be used to predict mark m. 

Let Cm denote the set of samples in which mark m has been mapped. Let mt denote the 

target mark and ct the target sample. To predict mark mt in sample ct for each sample ct’ ∈ 

Cm
t {ct} we separately define features. For a sample ct’ we let MI denote 

 which is the subset of common marks between ct and ct’ that can 

be used to predict the target mark mt, and then define the two classes of features to predict 

the signal of mark mt in sample ct’ at a target genomic position p:

• Features based on the set of other marks mapped in the same sample: We define 

features sm,n for each mark m∈MI and each value of n such that n=500i or n=25i for 

integer values of i=-20,...,20. The feature sm,n is assigned a value oc
t’

,m,p+n. In our 

notation p+n refers to a position on the same chromosome as p, but a base position 

shifted by n. This corresponds to having features at the target position and every 

25bp within 500bp, and every 500bp within 10,000bp both upstream and 

downstream of the target position.

• Features based on the target mark in other samples: We define features fm,g,k for 

each mark m∈MI, g∈{local,global}, and k=1,...,min(10,|CI|) where we define CI to 

be Cm
t∩Cm{ct’,ct}. CI corresponds to all samples having the target mark and the 

mark that will be used for determining similar samples excluding the overall target 

sample and the sample being used for training the predictor. fm,g,k has the value 

 where cj is the sample of CI that is in the ranked position j when 

each sample c∈CI is ordered in increasing value of dm,g (ct’, c). If g=global, then 

dm,g(ct’, c)=1-ρ(oc
t’

,m,oc,m) where ρ is the pearson correlation coefficient applied to 

the genome-wide signal of mark m in samples ct’ and c. If g=local, then at the 
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position p dm,g(ct’ c) =  which uses the signal 

at target position and every 25bp interval within 500bp to determine the nearest 

samples. Ties for the nearest sample based on local distance were broken 

arbitrarily.

We construct feature vectors by combining all the sm,n and fm,g,k features defined above. 

Features when applying a predictor in sample ct trained based on sample ct’ are defined as 

above except ct’ is interchanged with ct.

The specific predictors we used were regression trees27. Formally we define a regression 

tree, T, to have a set of split nodes S and a set of a leaf nodes N. A split node s∈S can be 

represented by the 4-tuple (f, v, l, r) where f is a feature used to the split the data, v is the 

value of feature f on which the split is based, and l and r are nodes in S∪N. A leaf node n∈N 

can be represented by a 1-tuple (e) which is the prediction value associated with the node. In 

addition one node w∈S∪N is designated as the root of the tree. We let u denote a vector of 

feature values for which an output prediction should be generated. To generate a prediction 

we start by setting a variable z to the root node w, and then while z is not a leaf node, if u.

(z.f) ≤z.v we let z=z.l and otherwise z=z.r where u.x refers to feature x of vector u. Once z is 

a leaf node the prediction of z.e is made.

We learn regressions trees for a mark mt based on sample ct’ for a set of sampled positions P 

recursively. We define a node creation procedure that takes as input a set X of positions and 

identifies a feature, f, and split value, v, on which to split the positions. In the procedure we 

define the sets  and  where 

 corresponds to the feature value f of the feature vector for position p as defined 

above when considering mt based on sample ct’. If the set 

 is empty meaning there is no split that can be created 

with both subsets of the partition containing at least 20 data points, a constraint intended to 

reduce overfitting, then we create a leaf node n where the associated output prediction of the 

node n.e is set to  that is the average value at all positions in X, otherwise 

we create a split node s and set s.f and s.v to f and v respectively based on:

This chooses a split that minimizes the squared error of the resulting output prediction 

subject to the constraint that both subsets of the partition have at least 20 data points. We 

then set s.l and s.r to the nodes created by applying the node creation procedures to set of 

positions  and  respectively. Ties for the best split feature and value were broken 

randomly. Input data was rounded to the nearest tenth, for generating features, training, and 

applying the predictors, and only those values present in the training data were considered as 

split values. DNA methylation values were treated as percentages for the purposes of this 
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rounding, but the final output for DNA methylation was reported as a fraction. The node 

creation procedure is initially called with all positions in P which creates the root node.

To make a prediction in sample ct for mark mt at position p we compute

where b is number of sets of sampled positions and  denotes the prediction 

made by the regression tree trained on sample ct’ to predict mark mt using the set of sampled 

positions Pi when applied to the feature vector defined as above for predicting mark mt in 

sample ct at position p.

Each set of positions for training contained 100,000 randomly sampled positions. We used 

one set of positions for training, except for predicting the Tier-3 marks in the primary 

imputation and all marks in the imputation restricted to the seven samples with deep 

coverage of many marks (E003, E004, E005, E006, E007, E008, E017)10 where we trained 

predictors based on three independent 100,000 position samples since we had a limited 

number of different samples based on which to train predictors. If the set of features that 

could be defined for a target sample in training is empty, which happened when evaluating 

predictive performance when holding out some features, we excluded that predictor from the 

ensemble.

All predictions except for DNA methylation were at a 25bp resolution. For DNA 

methylation we made base predictions just at the positions of CpGs, but the features based 

on other marks were still computed at a 25bp resolution. We did not make explicit 

predictions for positions within the first and last 10kb of each chromosome, and instead 0 

was used as the signal value there except for DNA methylation where it was 0.5.

For the primary imputation the tier assignments of marks determined which marks were 

eligible to be used to impute other marks (Fig. S2), and we made predictions across chr1-22 

and chrX. For the purpose of evaluating imputation performance with subsets of features 

and marks unbiased by the deep coverage of certain marks, we did a separate set of 

imputations using only the seven samples with deep mark coverage. For this set of 

imputations we treated the Tier 1-3 marks the same and the method could use any of the 

available marks within these tiers to predict any other mark. For these evaluations we made 

predictions only on chr10.

In order to handle the computational demands of training an ensemble of predictors and then 

applying them to generate genomewide predictions for more than 4,000 datasets we first 

wrote out to disk for the randomly sampled positions feature instances for each mark and 

sample. The set of feature instances for a mark and sample written out were sufficient to be 

used to train predictors based on the sample for the goal of predicting the mark in any other 

sample. Depending on the overall target sample, different subsets of the features would be 

used consistent with what is described above, but this step allowed significant reuse of 

computation and memory when imputing the same mark across multiple samples. Once the 
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training instances were written out different predictors could be trained in parallel. Applying 

the predictors to impute genomewide values was parallelized over different samples, marks, 

and chromosomes. To more efficiently compute the ordering of the locally nearest samples 

at each position when making genomewide predictions, a computationally demanding step, 

we leveraged information on the ordering of the nearest samples at the previously 

considered position, which would often be highly similar.

Comparison with Linear Regression, Nearest Neighbor, and Single Sample Training 
Predictions

For the linear regression and nearest neighbor comparison we limited the predictions to 

chr10. The linear regression was the weka (v.3.7.3)51 implementation with a ridge 

regularization parameter set to 1. For the comparison with nearest neighbor approaches we 

used up to the ten nearest neighbors defined by H3K4me1 and for both the local and global 

distance as defined above. We selected H3K4me1 as it was defined in all samples and 

associated with more sample specific patterns3,4. For predicting H3K4me1 we used 

H3K4me3 instead. Similarly for the comparison with training based on a single nearest 

sample we selected the nearest sample based on global H3K4me1 correlation, except using 

H3K4me3 when predicting H3K4me1.

Gene Annotations, Expression, Conserved Elements

For gene annotation enrichments we used a modified version of the GENCODE 10 gene 

annotations52 that only included long transcripts as used in (Roadmap Epigenomics 

Consortium et al, 2015)10. For defining a set of expressed genes in each sample we 

combined the protein coding genes and non-coding RNAs sets selecting those transcripts 

that had an RPKM >=0.5 as processed in (Roadmap Epigenomics Consortium et al, 2015)10. 

The evolutionary conserved elements were the hg19 liftover of the PI conserved elements 

previously reported38,53.

Signal Heatmap Clustering

The signal heatmaps were generated by first randomly selecting 2,000 25-bp intervals in the 

genome, which form one dimension of each matrix. The other dimension corresponds to 

different samples in which the mark was observed. The ordering of elements in both 

dimensions of the matrix were determined using the Matlab implementation of hierarchical 

clustering and optimal leaf ordering54 applied to the observed data. Correlation distance was 

used except to cluster the rows for DNA methylation, H3K23me3, H4K5ac, RNA-seq where 

Euclidean distance was used because of zero variance rows. The imputed data matrix is 

based on using the same ordering of rows and columns as generated based on the observed 

data.

Chromatin States Based on Imputed Data

Chromatin states were learned on the imputed data using ChromHMM21. The data was 

binarized at a 200-bp resolution by averaging the eight 25-bp intervals overlapping and 

using an average signal threshold of 2. Two types of models were learned. One model used 

the 12-Tier-1 and 2 marks across all 127 samples. The second model was based on all 

Ernst and Kellis Page 20

Nat Biotechnol. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Tier-1-3 marks imputed in all the seven samples with deep mark coverage, where we had a 

more confident imputation of the Tier-3 marks. Both posterior probabilities soft-assignments 

for each state and hard assignments based on the maximum posterior were produced, but all 

the chromatin state analyses were based on the hard assignments. Chromatin states based on 

the observed data were obtained from (Roadmap Epigenomics Consortium et al, 2015)10.

The chromatin state assignment recovery based on the maps of a subset of marks was 

determined using the EvalSubset command of ChromHMM21. This is similar to a procedure 

previously described20, but based on hard assignments.

Single Mark Peak Calls

Macs2 (version. 2.0.10)55 was used to call peaks on the imputed signal data. The 

bdgpeakcall command was used to generate narrowPeaks while the bdgbroadcall command 

to generate gappedPeaks with the ‘-c’ cutoff flag set to 2. These peak calls were compared to 

corresponding peak calls based on the observed data obtained from (Roadmap Epigenomics 

Consortium et al, 2015)10 that were also generated based on Macs2 but based on the 

callpeak applied to aligned reads.

Comparison with Genome-wide Association Study Analysis

We obtained the contents of the NHGRI GWAS Catalog33 on September 12, 2014 through 

the UCSC Genome Browser56. We grouped entries into studies based on a unique 

combination of pubmed ID and trait combination. We filtered the set of SNPs in each study 

such that no two SNPs were within 1MB of each other on the same chromosome. We did 

this by ranking the SNPs in a study based on their p-value significance, and then filtering a 

SNP if it was within 1MB of any higher ranked SNP that was not filtered. We tested the 

significance of the signal level for observed and separately imputed data associated with a 

set of SNPs in a study compared to all other GWAS catalog SNPs after the filtering using a 

Mann-Whitney U Test as implemented in the Apache Commons Math 3.3 library. For each 

mark and separately for the observed and imputed data, we computed estimated False 

Discovery Rates (FDRs) at each p-value threshold controlling for testing multiple study and 

sample combinations. We did this by generating 100 random permutations of the study 

assignments among the set of filtered SNPs across all studies, and then re-computed the 

significance of the signal associations. The FDRs corresponding to a p-value were estimated 

by computing the average number of sample-study combinations that reached that 

significance threshold for a permuted catalog divided by the total number of combinations 

that reached the significance threshold based on the actual catalog. If a less significant p-

value had an initial lower FDR estimate than a more significant p-value, then the more 

significant p-value also received that lower FDR estimate. We displayed the first ten 

permutations generated in the p-value comparison plots. For the comparison of the most 

significant imputed sample with the average signal, the FDR for the average signal only 

needed to control for testing multiple studies as there was not sample specific predictions. In 

this specific comparison the FDR for the imputed data was determined as above, but by only 

considering the most significant p-value across all samples for a specific study for both the 

actual and each randomized catalog.
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Motif Analysis

The motif analysis was conducted for each sample in which there was DNase data available. 

The foreground for the enrichment was those locations which had DNase signal above 5 in 

the observed data and below 1 in the imputed data. The background for the enrichment was 

restricted to all locations which had observed DNase signal above 5. An additional analysis 

was done where the foreground was all locations that had observed DNase signal above 5, 

with a genomewide background. The motif analysis was conducted using a previously 

described software and assembled compendium of motifs57.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Application and Method Overview
(a) Matrix of observed and imputed datasets across 127 reference epigenomes (‘samples’), 

including 111 from the Roadmap Epigenomics project (rows 1-111) grouped and colored by 

cell/tissue type, and an additional 16 by ENCODE (rows 112-127), with reference 

epigenome identifier (EID) and short sample/tissue description. Epigenomic marks (top) are 

grouped by Tier1-Tier3 plus RNA-seq and DNA-methylation, based on experimental 

coverage and imputation strategy. Black dotted arrows on the top right denote E017 datasets 

shown in panel b (horizontal arrow), and H3K36me3 datasets shown in panel c (vertical 

arrow), illustrating the two dimensions of correlations used in ChromImpute and shown in 

panel d. (b) Correlation between epigenomic marks in the same sample, one of the two 

classes of features used for epigenome imputation. Datasets from sample E017 are shown 

illustrating their highly correlated nature, comparing the observed signal for H3K4me1 from 

E017 (gray), the imputed data (red) which was imputed without using the observed data, and 
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the observed tracks for other marks (blue), ordered based on their correlation with the 

H3K4me1. Imputation of H3K4me1 in E017 (red) does not use the observed data (gray), 

and instead uses the other samples to learn relationships between H3K4me1 and other 

marks. For the primary imputation of H3K4me1, not all marks shown were used, as only 

Tier-1 marks are used to impute Tier-1 marks. (c) Multiple signal tracks for H3K36me3 

across samples illustrate the highly correlated nature of a given mark across samples, 

exploited in the second class of features used for epigenome imputation. This example uses 

the same region as panel a to compare the observed signal for H3K36me3 in E017 (gray), 

H3K36me3 in several other samples (blue), which constitute the basis for highly-

informative features for H3K36me3 imputation in E017 (red). Observed tracks (blue) are 

ordered by their global correlation to the observed H3K36me3 signal in E017, though 

ChromImpute does not have this information when imputing H3K36me3 in E017, and 

instead determines sample similarity based on other marks, both globally and locally at each 

position, and then uses the H3K36me3 signal in up to ten most-proximal samples for each 

definition of similarity to compute individual features for each predictor of the ensemble 

(panel d, center). (d) Ensemble strategy for signal track imputation using features that 

exploit correlations between marks in the same sample (left) and correlations between 

samples for a given mark (right). We assume that no information is available for the target 

mark in the target sample (gray targets). Thus, we learn relationships between marks (left 

side) in other samples (column of E1 sample is not used), and learn relationships between 

samples (right side) using other marks from which we compute same-mark features. The 

ensemble predictor that combines features across marks (b) and across samples (c) is learned 

only in other samples (top), and the marks in the target sample are only used during the 

actual application of the learned ensemble predictors to compute the imputed signals.

Ernst and Kellis Page 26

Nat Biotechnol. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Imputed data is a close match to observed datasets
(a) Visualization of one of the randomly-selected 200kb regions, illustrates high-resolution 

concordance between observed (blue) and imputed (red) signal tracks. Imputed tracks are 

generated at 1-bp resolution for DNA methylation and 25-bp resolution for all other marks, 

and trained without using the observed track. For each mark (row), we show a randomly 

selected sample (EID from Fig. 1a), which also contains observed data for comparison (light 

purple entries in Fig. 1a). This region was selected among nine randomly-selected 200kb 

regions (Fig. S3) as the one with the most signal across all marks. Larger 1.5Mb context, 
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and example 5kb close-up are shown in Fig. S3c, illustrating concordance at multiple 

resolutions. (b) Visualization of 2,000 randomly-selected 25-bp regions (columns), and their 

signal (yellow=high, blue=low) across up to 127 samples (rows, colored as in Fig. 1a), for 

Tier-1 marks(yellow sidebar) and RNA-seq and DNA-methylation (green sidebar) (Tier-2 

and Tier-3 marks are shown in Fig. S4). Rows and columns are clustered for each mark 

independently to highlight structure based on observed data (top), and imputed data 

(generated without using the corresponding observed dataset) is shown below, in the same 

order, showing clear similarity. (c) Quantitative comparison of observed signal correlation 

for ChromImpute (red), averaging the mark signal from all other samples (green), and the 

best-case for selecting a single sample (blue), which is not a realistic method when the target 

mark signal is not known, as it would be needed to determine the single-best sample. 

Average correlation is computed based on all samples for which both observed and imputed 

signals are available. ChromImpute shows consistently higher correlation of observed 

signals than the two alternate methods (including the unrealistic best-case) for all marks and 

for both metrics. For additional comparisons see Fig. S5-7. (d) AUC for recovering bases 

covered by a narrow peak call on observed data10 when ranking based on predicted signal.
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Figure 3. Imputed data shows higher TSS/gene recovery, robustness, and biological group 
recovery
(a,b) Quantitative comparison of observed (blue) and imputed (red) data in their recovery of 

annotated promoters (a) and gene bodies (b), based on the area under the ROC curve up to a 

5% false positive rate (y-axis) for H3K4me3 signal recovery of locations within 2kb of 

transcription start sites (a) and H3K36me3 signal recovery of gene bodies (b). Arrows 

indicate two fetal brain samples (E081 and E082) with very different values in the observed 

data, which show much higher (and more consistent) recovery for imputed data. (c,d) 
Comparison of aggregate signal for imputed (red) and observed (blue) datasets based on -
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log10 p-value of H3K4me3 surrounding the TSS (c) and H3K36me3 in gene bodies (d). 

Imputed data show significantly more consistent profile across all datasets, and in particular 

for the two fetal brain samples (E081, E082), which show substantial differences in the 

observed data. (e) Pairwise comparison of genome-wide signal correlation for all samples 

using observed (blue) and imputed (red) data for H3K4me1, H3K27me3, and DNase 

(additional marks shown in Fig. S19), with samples ordered and colored as in Fig. 1a (left 

sidebar). Imputed datasets better capture biological relationships between samples than 

observed datasets, with their correlation structure clearly delineating pluripotent cells, 

immune cells, adult brain, and multiple tissue groups (Fig. 1a), while observed datasets are 

much less correlated even for highly similar samples. (f) Area under the ROC curve for 

classifying whether two different pairs of experiments belong to the same group when 

ranking the pairs based on their correlation. A value of 0.5 could be achieved by a random 

guessing and a value of 1.0 is the maximum possible score. The ‘Other’ and ‘ENCODE’ 

groups were excluded from this analysis as well as imputed pairs that were not present in the 

observed data. This shows quantitatively that the relative similarity of imputed data sets is 

more consistent with the biological groupings of the samples.
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Figure 4. Overlap with trait-associated genetic variants from GWAS
(a) (Left) The x-axis shows the number of genome-wide association studies for which there 

was at least one sample for which the H3K27ac signal was significantly different than based 

on a background of all GWAS catalog SNPs at significance level indicated on the y-axis 

using a Mann-whitney U Test (see Methods). This is shown for the observed data (blue), the 

imputed data restricted to the 98 samples with observed data (red), and the observed and 

imputed data based on ten randomizations of the GWAS catalog. (Right) The same as on 

left, but counting study-sample combinations opposed to just studies. (b) A scatter plot 
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showing the –log10 p-value computed for each study-sample combination based on the 

observed data (x-axis) and imputed data (y-axis) for each combination that had a p-value of 

10−3 or better based on either the imputed or the observed data for H3K27ac. The diagonal 

line is the y=x line showing most of the highest significant studies based on either the 

observed or imputed data are above it. Additional marks can be found in Fig. S24-26. (c-f) 
Enrichment matrices (heatmaps) showing all studies (rows) with uncorrected -log10 p-value 

≥3.5 for at least one reference epigenome (columns) based on H3K27ac imputed data c,e 
and observed data d,f. For each study (rows) is shown the trait, most-significant p-value (-

log10 p), max-sample abbreviation (Abbr), and pubmed identifier (PMID). Only samples 

that showed the highest-significance positive enrichment for at least one study are shown. 

c,d: studies that were significant (-logP≥3.5) for both observed and imputed. Top three rows 

show studies with broad enrichment across samples. e,f: Same enrichments for studies that 

were only significantly enriched using imputed (e) or observed (f) H3K27ac signal. Stars 

denote H3K27ac signal tracks that only exist as imputed data. Expanded enrichments for all 

samples, all Tier-1 marks, and additional GWA studies are in Table S2.
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Figure 5. Low similarity between imputed and observed data reveals low-quality datasets
(a) Comparison of quality control (QC) metrics (columns) for the ten datasets (rows) 

showing lowest agreement with gene and TSS annotations (Fig. 3a,b), based on H3K4me3 

PromRecov (top) and H3K36me3 GeneRecov (bottom). Each entry shows rank (out of 127) 

for PromRecov/GeneRecov, read depth, and each QC metric (Poisson statistic, Signal 

Proportion of Tags, FindPeaks, Normalized and Relative Strand Correlation between 

forward and reverse strands (NSC and RSC)), and similarity between imputed and observed 

data (Match1 and GWcorr). Orange-shaded EIDs denote the five worst-agreement datasets 
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from panel b. Data sets with the same read depth, (due to highly sequenced data sets being 

previously downsampled to the same number of reads10), are given the same expected rank 

if ties were broken randomly. Most-problematic datasets (based on lack of gene or +/−2kb 

TSS annotation recovery) are sometimes missed by traditional QC measures, but 

consistently show low imputation agreement. (b) Distribution of agreement between top 1% 

observed signal and top 1% imputed signal locations for H3K4me3 (top) and H3K36me3 

(bottom), highlighting five worst-similarity (orange) and five highest-similarity (green) 

datasets. (c) Observed (blue) and imputed (red) signal tracks for worst-similarity (orange) 

and best-similarity (green) datasets for H3K4me3 (top) and H3K36me3 (bottom) for the 

entire chromosome 10 (0-135Mb). Datasets with the lowest agreement have relatively flat 

signal, suggesting that when observed and imputed datasets disagree most, it is usually the 

observed datasets that are of lowest quality. (d) Aggregation of observed signal for 

H3K4me3 in TSS (top) and H3K36me3 in gene bodies (bottom) for the 5 best-agreement 

(green) and worst-agreement (orange) datasets, highlighting the unusual profiles of some 

worst-agreement datasets, suggesting they are of lower quality, even though they were not 

flagged by traditional QC metrics.
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Figure 6. Imputation using mark subsets and chromatin state learning
(a) Imputation agreement for each mark (columns) using subsets of features (rows) in top 

1% signal bins, or 0.25 concordance measure for DNA methylation, for Chr10 relative to 

agreement achieved when using all features based on the seven samples with deep mark 

coverage without making distinctions between the Tier 1-3 marks. Same-sample features are 

most important for acetylation marks, and same-mark features most important for 

H3K27me3, H3K36me3, H3K9me3, and RNA-Seq. Profiling of only H3K18ac and 

H3K79me2 imputation allows higher relative imputation agreement than all five core marks 

assuming a compendium with uniform coverage of marks. Performance for additional 

subsets is shown in Fig. S42. The last two columns show the average performance of the 

feature subset over all target marks and specifically for acetylations. For the purpose of 

computing these averages for mark subsets, if the target mark was included in the subset 
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then a value of 1 was used for the target mark, though the imputation performance restricted 

to other marks in the subset when available is provided in the table. The H3K18ac

+H3K79me2 and Tier-1 and 2 mark evaluations were limited to the five samples that were 

deeply-profiled across marks and also had experimentally-profiled H3K79me2. (b) Portion 

of a chromatin state segmentation using imputed data of 12 marks across 127 samples using 

the 25-state model and colors shown in panel c. Segmentation is highly consistent for similar 

samples, but able to capture highly dynamic regulatory elements across different samples. 

(c) Chromatin state model using 12 marks and 25 states, learned jointly using imputed data 

across all 127 samples. For each state (rows) are shown its emission parameters, genome 

coverage, relative functional enrichments for diverse annotations and conserved elements, 

and median observed and imputed DNA methylation and RNA-Seq signal (also see Fig. 
S33), followed by a candidate state annotation. (d) Expanded chromatin state model learned 

using 50 states and 29 marks in seven samples with deep mark coverage. States are grouped 

and labeled by the maximum-enrichment 25-state model match. Emission parameters and 

functional enrichments (similar to c), and percentage of locations recovered for each state 

using subsets of marks (also see Fig. S40,S41,S43). +H3K18ac denotes the subset of Tier-1 

and 2 marks extended by H3K18ac. When the same chromatin state was not maximally-

recovered with Tier-1 and 2 marks, the last two columns denote the best other state and its 

percent assignment.
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