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STATISTICAL MODELS FOR HIGH ENERGY NUCLEAR REACTIONS 

Maurice NeUlll9.!1 

Radiation Laboratory, University of Calitorni& 

Berkeley, Calltomia 

INTRODUCTION 

During 1950, E. Fermi (1) published an "attempt to develop a 

crude theoretical approach tor calculating the outcome ot nuclear 

l 
collisions With very high energy." In 1t he proposes a·model tor 

' I' 

the multiple production ot meeons n.ntch deviates from the unknown 

truth in the Ol';)OSite direction from conventional. theory" based on 

weak coupling expansions. His proposal has some resemblance to the 

I 

poiJJts ot view adopted by others "who also stress the importance of 

the strong coupling for production processes of high multiplicity" 

nnd "cons!sts 1n pushing thie point of view to its extrem.e COMequences." 

In doing so he is motivated by the hope "th&t it may be possible to 

braclt'..et the cor:rect state of tact between the two theories" &n4 the 
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belief that it "~ perhaps M a fairly good awroximation to actual 

event,e at -verr high energy. u 

Schematically the 11orude theore\ical approachn may be put in 

the following form. According to the "Golden Rule", the transition ' 

rat~ v(tl, t 2 , ••• J 1) from an initial state (i) to a final state 

"'\. consisting ot N mesons (t1, t 2 , ••• t1) is 'gi-ven bT. the axnression 

~"' l 

.:~--- v(tl t 2 ••• tn J 1) : (11}-l 211' ~~(t) f Mz<t 11) {
2 

, vhere Mg is 
_.._~-,.;..~ 

· the transition matriX with the d..im.eneion ot energy [ E ] , evaluated 

on the energy shell E,. and fE 1.s the classical ext.ens1on in phase 

. N ( -~ 
ot this ehell, divided by 1i • and hence of dimensi<m E J _. U the 

ueual devi.oe of normalizing the wave functions in a .tinite periodicity 

VOl\JSrl• v is employed., eE. may be written. as a product fE = Pg (p) vfl, 

where e. {p) is the mcmentum. apace projection ot the t>h&se integral. 

Since V cannot appear in any physically significant context, this 

quantity raised to a high powezo must be cancelled. b;y e. td.m:Uar one 

caning from the transition matrix. On dimensional grounds we then have 

c \ 

• 
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. 2 
••• tN I 1) [ E 1 where v1 is a quantity 

with d1mertaion [v JN , aw:l is so defined that ( E J is the same for 

all (f). The expression for the transiticn 'rate may then be represented 
I --c ~c,..-

1 '?( ::.. ... 
ae w(t / 1) : 1i- 211" r.. (t /1): lfbere 

. E 

Let us compare this expression with a distribution function that could be 

obtained tr«ll a solution of the Liouv1Ue equation by integrating over 

·• 
the contigul"&tional variables and .retaining onl$' the variables specU'ying 

the moment~ of the particles. (A) Unlike vfl appearing in 

· "'N in 
~ • • > 2 f cannot. be repr-esented as a constrained product 

with taetors each depending on variables of one particle only. ·(B) The 
. . ' 

. qtt6nt1t:y vN depellds on the yariables (1) of the :l.n1t.1al etate ot the 

system. Property (A) in a solution ot a classical atatietical problem 

would indicate that the particles are stochaatica.l]Jr dependent in an 

essential manner; property (B) J that the state is not one of equilibrium. 

'l'he core of Fel"mi • s idea is to argue that at high energy 
' 

legitimate zero point approximation. 
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Let ue .note that tbia involves two completel:r independent 

ass~ ions corresponding to (B) and (A) !"espectivel.y. It !e possible 

in· 'Which eactt part.icle depende in· an essential manner on all .the other• 

that emerge.during.the process; on the· other hand one might aaswme 

* . . •n<t1 ••• t 1 j i) : 17" v
8
(f

8 
j 1) thus expressing a condition ot 

. . . . . ' 

etatistieal independence without an equilibrium l!ltate. Pl"opert.7 (B), 

·generally possessed by matrix elements, is argued awq a. tollon. In 

a high energy nuclear colliaion, when "the nuc;leonl!l with their 

surrour¥ling retinue ot pions hit aga·inst each other, all ttie portion 

ot apace occupied by the nucleon and their pion fields is suddenlY 

loaded w1 tb a verr great aount of energy. The 1nteract1ona or the pion 

~ielde being strong and the number of possible states of a given e~ergy., 

~a.rge .•• this energy will be d.istrilNted among the various degrees ot 

freedom according to statistical laws." this is qual1tied by the remark 

that "only those states that are eaaUy reachable from the initial state 

may actually attain etatistical equilibrium" and. "the on.l7 type ot 
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trans1ttorn. that are believed to be fast. enough are of the Yukawa type." 

.• 

. . . 
ig~inst. it. · "Our a.esumption ot statistical equilibrium consists in 

~, . 
1 .• 

· · pc)~~~ting. tha~ the square ot the matrix element is merel;y proportional 
. -- ' \ 

· · ~ -·to .the probability that tor a __ sta~e in question all part.icle&" (pres~b~ 

' .. 

.. 
.._ • 1 ' ·_ . . - ~ 

. .', ·re_ga.rd·~· as imependent) .a.e;re contailted at t~~ same time inside . v._u: 
- • • I 1 ' , ,• , 

. ·­~ .. . -

'l'he cliacussion in· this article will be largely limited to this 

.. 
. • • ·r central idea of Fermi. Less extreme ~roposals aiming at greater r~aliam 

... . . 
- • that have been' made in recent years ldll not be considered.. Fermi' 8 · -

I 

.. o~ a~tempt to deduce the torm ot · v1 (t1) will .be briefly pr~sented ·-.. 
. . . ,: r~ a SOtnewh~t -different point of view in the last section. The 

·~.. .._ 

principal reason for "bracketing the correct state ot tact" between two 
. ' 

eXtremes ie the hope ot setting up bases in these peripheral· territories 
. . .. 

!r<>m 'Which· tora~· into the interior where "the unknown trut~ai is 

, I 

irltreched might be conducted. 1he very remoteness ot tlie region 

charted by Fermi would seem to afford so~e satety tor such an ent~rpriee. 

With this in mincf we start with a Lorentz ·covariant formulation 

ot the claasie&l. theory ot the microcanonical ensemble. The configuration 
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· ··apace p~ojections ot the phase space -expression have to be ~reated with 

aeme care a!l;d·. the requiret~ent of Lorentz invarianca 'seem~ to lead 

.. naturally to a mo;e specific torm ot the Fermi proposal~ a static, 

J'. 
~ ' ~.f . 

· sphericallY 8711lZ!letric model·. Within it we can. easily take into· account 

. . 
,, . • .• the co~s~~ation ot the six vector of angular moment'ilm: The classical 

~ . .. , . . .. 
' ',4, • 

phase space integral having thus been given a very . specttic form ·~e - . 

. 
. proc~ to examine the quant~ mechanical S matriX expreasi~n· ~1th a . 

. ~ ·~ . -~ . , - . . ~· - . 
:, .. ' . . 

. ':: view or finding a corresponding~ structure •. 'this .leads us to :.U.at 
' 1f~ ~ 

' tt 
• , ~ , 11 I 

- t ... '• ·.~_' f ~ .: " , • - ~ • • •• • • • ' • 

· appears to ~ covariant v~rsion of the Wigner coordinate-~mentum 

' ' . . 
distribution function .. - .. . ueed bT this author in ·connect"ton. with . •, 

' .. 
.. 

· quantum corrections to classical statistiee. this identification permits . . . . . .,.. 
' "'"',) 

,· ~ ... . 

" · . us also to l!~Ake a plausible guess on how to include spin effects, 
/" 

. . 
statistical correlations due to indistinguishability and 1nteracti~n . . . ' . ~ 

. in the final etate into ·the Fermi model. A goOd· dea~ ·Of'. ~pe.ce ~s. then .,., 

devo!-ed to the discussion ot tbermod.,namic approximations at very ~igh 

·· e~rgies. Hot much· has been done along thes·e _lines and some ot the 

problems encountered are unlike·thoee ot the more conventional situations - . - . 
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in statieti~al mech.anics. We have tried to follow a olaaaical procedure 

' . 
~ich wo~. avoid some ot the difficulties connected with indist1hgUish-

·ability, am permit us to take into account quantum correlations. . . 

Finall1 against tbia-backaround we present a ver.r brief diecueeion ot 

the more interesting am hopeful of the recent work. For less recent 

work· and tor moat detalla the reader is being r$t.grred t
1o a ~ev1ew 

article by Milburn [ 3 ] which could be read . with advantage in conjunction 

with this paper. Much had to be left out or barely touched upon. It is 

felt, none the. less, that a reasonabl¥ unified presentation might be 

more useful than a comprehensive·~e,r. 

\. 
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RELATIVISTIC DENSITY FUNCTIONS 

Although the expresaio~ w(f J 1) = 1i""1 21( (E j
2 ~(p) •rz 

calculated from .a relativistic field theo17 ia an obvious covariant, 

Permi's zeroth order approximation to it, 

wo(f I 1) = 1i-l 211 (E ]
2 

e(p) 7l v!l [t8] is not. This derives 

.. ·from the f'act that the traneforma.t1on properties ot fa = ~p) '[f v
8

. 

e 

_ ar,e essentiallY those of f : (p} _N . 
~ v-· , the el.a.ss1~nl density, which 

. 2 . 
becomes a covariant only when multiplied by · J M } • We accordingly 

proceed to :fil¥1 a relativistic version of ~ = fp) yli. Thie will 
--~~-=~~L- ~-' 

restrict the· form of tbe zeroth order approximation to "N· 
In view of later applications we diseuse f in a context in 

which this quantity is meani.n.1ful classical]Jr, that is, in connection 

. with the llliorocanonical distribution.,; The probability of finding a 

closed system of· N distinguishable particles with coordinates xl : q1, 

H at the point x of phase apace after it has reached. equilibrium is 

given blr the exl)ression 

l-~(x) = 8(E- H(xU l.. 
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wbere E is the value of the enerBY integral. We now introduce a 

sequence or density functions 

. . . • • • • • • • • • 

• • • . . . . . . . . . • • • 

• • • . . . • • • • • • . . . • • • 

. The rlg)tt member of l is the ratio of the first to the lAst member ot 

this sequence. With the aid of the notation just introduced we· T.rJ/1¥ write 

not onl;r tor the .total but also tor the mtlrginal distributions 

2. 

where x may now be any subset of the bet of the 6M variables. Changes 

in random vnriabl~ oa.n now also be affected with ease. It instead or x8 

we are interested in the probabilitY' distribution ot } 
8 
= f• (x}, we . 

obtain it with the a1d or the expression 

• 
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thus defining the density tunetion for the l 's variables. Of ~cular 

interest in thermodynamic applications is the ease of an H consisting 

Choosing the random energies of the several paone as n~ variables, we 

obtain 

an mt!)reseion tor the distribution or the energy among the several part,e 

of the system. 

Since the concept ot equilibrium occupies a central position in 

Fermi's tho~t, it might be helpful to have a working idea on how the 

miorooanonical distribution l associated with it arises from exact 

mechanics. Being of certain knowledCJ~ that at t 0 , x(t0 ) : Xo, thia 

discipline tells us how to exmoese x(t) : x(t; Xo• t 0).-a 'ta:ak which 

ma.y be broken up 1nto two steps. We 6Xl')rese x(t) : x(t; x(t0), t 0) 
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• .._ I lo • • 

. .. without regalod ·-t~ our state ~f.knOwledge about x(t9); we. a~~a8e the 
.• . ' 

: expression eo obtainecS over a distri~ti~n W [~(t.o)] · -whic_h~· ill the . ' . 

. . · · ·case of exact mechanics, is an illproper function 
' • + • .""' • 

. . T! S (xi(t0)-- %.o1). reflecting o~. c~rlai~ ~h~t- at 
• • • f 

.t0~: x(tQ) : Xo·- 'fhe tranaitio~ trao. exact to etat1et1cal_ mechariioe 
. ' ' 

_c~meieta in mod.if71n8 the second step. Our doubts about th~ ~nitial 

. - ' 
:, · .. ' . · val.uea ot 'all the Y~ablee fD:ight prompt us to replace the intinitel:-7 

~ • ! 

-·:' peaked· product of d.elta function by a completely regular distribution • 

. \ . . . . 
_: Tjlis.hcnlever would be •17 bad methodology, . .Uthou.gh, in _practi~e, there 

. . . 
• • ·1Jla7 be eound grounds for assuming such broad ignorance, the underlyiJig •.. . "" . - . ; 

· · reaao!le are l?a&1caut dU.terent tor differtmt variables. It the total 

.• 
enerQ and.' momentum of the syStem are not known exactly, it ie becawse 

. 
of practical, limitation& on a macroscopic labo:roatoey measurement; t.he) 

( 
. ' 

·· · _vast majority, how8'18r-, of o~er variables are uncertain becauee ot the . 
. ' 

:.oau1plexity .e.nct inaceeasibil:itT ot the microscopic world. -We accordingq 

separate. the apec~alty ot analy11is ot laboratory~ d~ta trom tha't of. 

t.hermodJnamic&. For the l~tter we reserve the program ot inveetigat~ng 

the implicat.ione ot the replAcement 
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: r S (x(to) _ l!Q)-7 8 (E - H(x(t0))) w [x(t0>J 

S dx(t0) S(E- H (xCt0>]) w [xCt0>J 
4 . 

. alone, in 1ilich the energy remains certain and the other ~aria.blea are 

•eared Ol,lt • P\ltting W : ConSt • amounts to the aaaumpt1on of equal 

a priorl ia:ltial. weights and makes 4 identical with the mierocanonical 

distribution l. It is a fundamental (unproven) statement of statistical 

aechanioa that the actual value ot x(tJ t 0 , x(t0)) averaged over 4 

. doee not ditter 111ch fran what would be obtained by' averaging over l, 

it t 1a &ppl"eciably different !rom t 0• The time interval t - t 0 

IIAY be :regarded ae the relaxation time, and. the ensuing state, that 

ot •qu:111brl.• for the syetem. Under ita regime, macroscopic measuremente 

on .,ystema Which started .out t.roz vastly different initial condttions 

li•ld. substantially identical results. In formulas 

x(t; to, x(to)) 
= . J dx(t0) x~; to,x<to>] S(E - H[x<t0>J) w~(t0}] 

S dx(t0 ) S'(E - R [x<t0>J) w [xCt0)] · 

Eq. 5 continued. 
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I_. 

__ ·.sdx(t.; _J f:::~>Jx<t> S(z :- ~ !(x<to.' .t. x<t»] J ~ ~x<to;' t, x<t»1 
-

-( dx(t.) Jfx<~o>J-_ its -~ (x<~i t, x(t))J] w! x(t
0

; t x(t)) l . J . x(t.) . L: ., . . . l ) 
. - \ ' . . . 
' .. 

~ 

1 ,, 
5. "' . .. ., 

S· r . ' 
~~B- H(f >] wt [f'] ... ., f •· -.. -: s 4}. . '• ·' ~(K ~ H( t)) vt(S) 

'· 
' ; 

!, 

· .. The &eoond member i_e a t-epreaentatiOA o! the first in terms ·ot integrals 

·' 
'. over . x( t0~ J the tbird; oYer x( t) • ~o reach the fourth we make ~se ot 

- ' 

. ; ·:_:~_;~[::•J'a:th~: ~:~·:~ev ::~:1:::
0

::~:::: bY means 
·· • · -· · x(t) . · · .. - .... 

·· : .· ~ ,ot the relation w-(x(t0)] :- w }x(t0 ; t, x(t) { : •t [ x(t) J : The 

... 
:new function _eatiel1ee the Liouville equation and, 1ns~t'ted in 4 inatead. 

. + • 

- ·' r 

~t· v [~(to> 1 : _represent.& 1ts time dependent no1"lll&liaed aoiutt~n on the 

'~~ • I ' .... 

entll'g aheU. It. will. in ge_neral depend on the 'initial oond.itione ~~ 

:: o (E.~ H(x)) •t(x), derived trom it. It waa a similarity to suoh 

a · f>_1 that. we.a suggested in the introduction ~ connection with the 
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quantutll mechanical transition probability. In formula S J to reach the last 

member we also had to limit ourselves to conservative ~amieal systems 

tor which fit (x} :: B(x) • Observe that it- w [ x( to) J : const, then 

also "t [ x J : const. A miorocanonieal. distr.Unition is thus seen to be 

stable with respect to temporal change. A broad class ot other diatr1but1ona 

ie believed to tend to this stable one when permitted. to evolve freely in 

time. 

We shall l'lfN examine the simplest ot the f •s, f E' wlth a. view 

ot find1~ it.s Nlat1v1stic general1Mtion. The HamUtonian ot the 

complete ayatem ie assumed to be the sum ot the Hamiltonian of tree 

particles composing it and f ie written ae E . 

--
6. 

The ~bol ·jACn(x) denotes the characteristic tunotion of the finite domain 

ot the cont1gurat1on space which is available to the particle n. Its 
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value is one when x is inside the dO!D&iu, zero wen outside. It w:U.l 

·be coDYenient to extend this definition and include other functions 

which vanieb sutticientl3' rapid]Jr at 1nt1n1~7. The eymbol Xn will _ 

trom 110w on denote members ot this broader class. Introducing new vanables . '\ 

~ -·· 

~ [x0 - L {k12~ x/j C1f d3,,5~>j.,<xn, , 
8 J D 

which ie readil7 seen to be equivalent t.o 

3 
it 

.A(k, 'K) = :X e(ko) 

(27f')3 

S(ko .. fk2 + )\21) 

fk2+ x2 .. 
J 

~{ko) = 1, to > 0 

: O, ko L 0 • 

7. 

J 

a. 

9. 



The momentum integration in 8 wUl be inVariant it not onk. the eneru 

but alao mamentum 1s ooneerved. We accordingly replace 

in which 

The ~tegral then becamee 

(e) 
ko 

(s) 
X 

It is now a etmPle matter to make 10 form invariant and even . ~ 

• 

:10. 

mah1leStly so. · We declare A; to be a scalar, that 1e · to have the same 

nwaer1cal value at the same geometrical point x without regard. to the 

. 
does not_·inYolve &1\1 assumption abot:tt the functional dc>pende11ce or ;t on 

-1 3-+ x. We turtber assume X ko d x to be a scalar pro<luct ot two four 

vectors ~ -l ~ and d cr 1"4 , the latter ot which happens to reduce 
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in our coordinate eystc to [ o, 0, O, - td3l] . Eqlla.t.ion 10 mq thm 

be written 

f, = ~ w· d4.,.(•) ct (k(•) )((m)) r 71'* d<rc.( (x) /;·> (x) 

\<rl 
u. 

where Cf : (!f" {.) - The restriction to flat aurtac" ( 0"') 

s.n C4M'7ing out tbe integration in ll can also be rGIOTed. Nor need the 

eontinguration epace of fiYer"l/ particle be on the same apace-like eurtaee. 

It is, howeJYG', in l:ble with the idea of equilibrit111 to require that f' 1 

doee not depend on the qat em of aurta.ees adopted. 'rhis requirement ia , 

eatisfiett it 

.~ Ct <x> = 0 . 12. 

lJ xp.. 

We shall designate with the supcn"scri~ zero quantities evaluated in a 

0 0 
frame, ~ : (0, O, 0, t 0 ), 1n which the particle 1e at rest. Because 

ot the • .,.,aial !onn ~,,. • c.:Y.. a; ' colld1t1on u reducoa in the 

rest frame or the s'tb particle to 

0 

~ t 

0 0 

~ 
...,. 0 
(x , t ) • 

e) 
13. 
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A model eatisfTlng this condition will be called static. 
• ·t • 

. - . 

.. _. -:,.~ . . xn_ ~~er to_-~r-· cioinl ~·_range of I"'O&ible cbo~··· ot ~~·j 
. .va inlpose a more ·etring~t requirement ot covariance ~. fg· ~is \ 

L r • .... . . . 
. ,. 

It • ~ .. • ' I > 

... <l'iantit7 eball not only t.ransto!m ae a scalar under the Lorenta .. group 
' • • , .I .... 

. ..... 
. . ' 

, but it _shall e.leo $dinit. the 'groUp •. this ~quirement recl~cee to· a 
~ . .. . - .. 

~ ... , '\ 

.·· 
'- · . .f .. · ·• : .... coDdition on 2( --~ich we prev1ou~zy·d·el1ned to be a_ seal~.- .A ehAu 

I I •. • ..... ' .... . .. 
r • 

.: .. ~:_ , .... ;~8 t.he ·same ·tun~1on _ot tb_e oo~~inate'.variablee . (li1, -~, ~~ x4) of 
. .. .. ... !... • • 

'· . :: . ·.the poipt_ x in 'Whatever Lorents frame these are evaluated. Thus -1t 
• I • ~ • • ,.• •' .. .. 

~ '\ 4 • .. 

·• ~ 
1 
·:\n ~n~ _tr~ we ·~~e ·-} x,.u ~ and in amther f ~ ~ . : \LJ:vx ~ ~ , 

= X<t~~ x~- =·:X: (x;J e 'X ex;;::_ 
... 

. . 

we mtist ·still ha~e J (x ~) 
'· . 

. \ . . 
;In goin.g from the first- to. the. second member we express the .·new coordinate 

• ~ .. ' .. t t • . . 
• I • I 

. ; .variables x.J.-'. 
. .. . .. ~ 

in terms or the old ones x by. meane of. transformation 
. . 

... .. ~ . ' .. ' . ~ .. 
' ' . 

·. :-_coetfioiente LJ tbe second equality sig~ is a clefinit~on ot X'} . the 
. ·, 

~ . ~ . ~ ... 
' 

' .. 

't~e: third expresses cur demand. 
. . . . ' 

It will .be satisfied it. ·)(.(:~)~ · ·aommutes 
'' .. , 

•• • .1111' - - t. 

with the generatora.ot the ~rentz gl'OUp.. Observe thl\t the charaot~ri-sttc 
• t . • I • p ~ 

.•. 
functiOn appropriate. to a large tildte box which ··ts ueu&ll7. empl~ does 

not satisfy tbie .requirement. It 'i.'s in the sense ot gr<)up 1mfariance that 

the integration OV8l" a finite Volume 115 & .1\0DCOTBriant. operation. 

•. 
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·_ i • • . .. • • ~ "'.. ... • 

. To proc~ed ·tu~her we need oome addit1ona~ assumption. Keeping 
I • . . . . 

. 
' '' ' ~. . ~ ' . 

. . .·.,in mind that . f 1 v1ll ovent.ual.l~. be accepted ae a t:e:J;'Oth ~rd~~ ap-prOXimation 
. . ' ,. ~ 

. ~- . 

..... -~:~ .. · .to:.a -~~~ mech~oa~ probl.~, it ~~~8 reaeo~ble ~ -r.e~~e· that ~ 
~ .~· ~~ • ., - ,'• #. - ~ •; ~-J·i-~ .~ •· ' .. • r .. 1. f ' • . .. • •· • • •, 8 

. . . . . 
• .jl. • + • • ~ . 1- - "' ' ~ ' • • ' • • • • • '1_ • -1> .. 

• -~. . ' be'_ epherlcal]J":~tric·in the frame in'whiah:the ;a'th pari.icle is at, 
,I , f~ • j • ' • ' • • J • ~ ~' ' ,• "' ~ • * • • ~ ~ .. t • _• • '1. • • ~ 

i' ·.: .. '::~~: In ~J:~;. _ ~ (x,J. : X· (:j : :. ;i: <~>. ~--X(~~-.~-2-t--~-2---r---~-2\. 
• · :· ., ~- ~ .' • · ' ·:·." • · i {e) ,- tJ!) · ~ ~- ~ ~.Xe) ... te) e . J J_ 

~ ' 

0 

l;,.• ~ : • .,; I I f '0 ~ fo .. • 0 ~ O 

' . ..:. ' "';., 
... I t : I • .... • o 

f.... ' ·.: .,: ' • . • ' •' ' 0 ' ,'' • "' • ' I 0 I ~ • ... J • ,~ ~ 4 

The tiret. equaltity atsn ie. a definition ot :.j(: ~; ·the eeconci makes' use ot 
' 'J .... . . : ,. . ' - •. ' • ' •. • .. .. • • • 

• '< 

... 

. -

- . ' . . "' ' . .. ·. . . . . . 
.. • · t tbe impo'eed group invar:lanoe; the third expr~ssea OUl" demand.: We regard 

.,, ..... ~~~--·~,.""·..- ""~"'~ ., ,. ,.. ~ ,· ' ". .""""'' ~. ' ~ •• ~ .~t.~~ .... 

·; .. :.~ ·. ~t.o ~'a fun~io~ cot, tb! dilli.eriSionle~·~ ·.&~ble ' .. ·. 

; 

I •" '""' 

.t. • '8ubacript, · s · on Y .It· 1s now :readil7 aeen tbat 1"-s .• • 

.. l ~:~ . (o) £ J~l I 
. f"AJ r .. .. -

. · (a) -.·(e) 

~ ~~ "j --
' 

14. 

(a) •. -· . . . . . . . { 
The s;,mbol Lf J 1n l4 ~a an abbrerlat1on tor th~ component ~-= 

(e) (s) (a) (a) 
x,.J4 kJ - xv k,}A- ot the angular momentum aix vector of the e'th 

pa1't1cle •. We mq aooording)Jr write . . 



-20-

15. 

and expression 11 becomes 

f>K = 11\m) L1 <~(m) • x.<m>) ~ '[!;" ~~w"" <x.> ~·> [;r}•>J • 

t:1"'" 
16 

The chara.cto.ristic tunction /( limiting the oonti~tion space avilable 

to a -oartiole thus depends on its enermr namenttml four vector throunlh ;f.; • . ~ ~· {~ 

A :nodel of this form nay be called statio, spheri.call7 synmctric. Observe 

that there need not exist a single frame in which all the ~ have this 

An obvious constraint restricting the range ot integration in 

configuration space arises tram the conservation of the six vector of 

angular momentum. In the absence of other constraints we have 

L(L) = 

17. 

where L denotes the values of components of the BiX vector, and the 

delta s,ymbol stands tor a product ot six delta fUnctions. For a static 



• 
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multiple integrationa ma.y be carried out and the result represented in 

simple parametric tonn. To illustrate, we do it tor a gaussian 

1.8. 

normalized in the rest frame to volume .., • Fourier a.nalyzing the delta 

functions in 17 we write 

~(L) - 1 
- (211)"& 

Since eve17 I 
8 

1e an invariant we 1JJ.83 also ~ that 

(o) (o) 

I• " 5 4ro/' toT< [ :Z.] .-i A,..,)<~>"",; 

--
• 

kploiting the fact that }( ie group invariant ;J. : /( , we can 

expreas 18 in terms of the P'ourier image of J( and do so in a 

19. 

20. 

21. 
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0 . 0 

. .. . . ·- ~;\.14A~ .. 
. pa~icularlT simJU.e_ marmer tor 18, ·obta~ng I 8 : v e.··. . ..-. ." · • · 

. . . .. . 
~. . . . . . ' . . . . . . . . . . • 0 •. ·~· .. 0 . 

~ little renec~io~ Vill :ehw· tba~ ,in .an arbit~ tre:me- ~14·_:_..1\.. 14 = 
-2 . . 2 . ·' . ·.· . .. . . 

. + X (k, ../\ k), the square length or a ·,apac~~ilce. 

. . 

1 vect~r X -lj\; · ~ ky· ··w~ch we indica~ed in b~k~t notatio~~ Ool;locting 
~ . . ' . ' . 

. -.'.the ·tcmna' ot the .product we have 
. ~ . . 

. . . .· '·· .• i .. .... - . 
' -'" "( 'It .. ,. 

tor 

... 
v -2 .(a)· A2 .(e) 
0. (k ,· ..( \. k )· a . . , 

·' 

·~ ... 
·~· 

•. · . i,2.3 • 

. t' ,.,. ;;, ' .. · :· +' 

J -'II • • • ~ f ... ' ,f' 

:···:.. ~'use of SP.!CUio teai~~~-ctf~., ... a.l>b.tr1~-~Af~~r1ct_in~~ .. ~e are 
_,. ~~,·· ' .. ' .. . .... 

.. J 'I . ' 

Un:ls· ~ble· to represent the 3N 'told ·configurational integral b7· ~eans =or a 
,. - ·- ' . . ' . 
• • f t I 

. 
' 

a1x _fold 'integral with the angular momentum conservation lalf· axpl:ioit]J' 
4 • 'I• • ...~ • ~ 1 

0 

. . ~ -~ . 
. taken int.o account. It ie hoped· to inve8tiga.te the restrictions imposed 

~ ~ • II ~ • I 

·by thie int'egral ot motion in a tuture pttbllcation. For the remainder . . 

ot this article we shall neglect ita effect.. . ' 
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-- . . ~ -

. '. ' "· ' . ' . - . 
· ·· Equation u·ts a r&lativistic vare1ori of-the last ·member. ot the 

- I> t• ' I '~ • o 

. . 

. • I 

... \,. . ' ~ 

: ee~ence ot den~~l"-~ctiona toll~ 1: - 'the totm ot ·other· members ot 
' .. . . ., . . . . 

• ·', ... , ,i ~~ .. " I f .~ ' ' ' 

th~e ·aequene~.;_can be Werred r~~ it. Thus:. • 
.- . 

~' . . 

• •• 

.. .. -, 
~-

• ,iO',. 

. . ' .. 
... 

· . - · a tensor ot rank N divergenoeieae in f1VOrT ind.ex 1e the analogue C?f 
'· . , . 

. . ,- .. 
···· . · -the ·tint. member. The e;vmbols k- and' x

8 
1n 24 stand tor ·the· inomentum 

. ,8 . . . • . . ,r:,-
.• r !'• , 

' ... 
·~. ': ... -~ .~8it.ion.tour Yectore ot the e'th particle. The tot.ai-~r. ot' 

~ 1 . ~ • ' I * 

'0 ~ • • ·\' lo of • • ~ f I \, -·· . 
. · ~. -~ _ :· J,an,i~lee present ·ta ~~ to be N ~ A etatiatictll mechanics -~sed .on 

" • • ... ~ .,·. • .. • • - .... ... • 1 •. 

I ~~. I , I I + ' * 

' ,0: lit ' 0 
• 'f r 

• . i ... • - . f - + • .. • 

· · ·the il1cJ"'ocanonical. diet~bution of-Gibbs is, however, too restrictive to 
t - • . j 

1- ••• ~. 
... ... r ' 

II - • • • ,. ' • • ;. I r ~ .,. • P" • • 

t t • • • ~ ,a "' 

;. ,_ · : l;le ap}'ropriate to a relativistic high eriers1 a1t~tion. It ie, Predicated 
t .. . ,. ." • • 
'\ .. ' 

J. 
' , I • 

- · :oh the_ idea that'tbe -~er··o!' part.i'elee ia fiXed· and 1te;,dis\'r1but1on 
..- tl(o ~ ... ' • ' .0. ' ol \ .... t ... • ~ 

\_ I 
-. ' ~· - j f. 

•c. ·--~tion ~~88 ~nly-P,)BtsibUitie~ that··rall ~t~in tns.~· m~ r~e •. 
: .. • . ·, ·-· • ' .. t • - • ' ' ~ • • .... ... ~ • - • 

. ' , . '. 
+ ~ ... 

' . ., . '~ . '· . -~ ~ 

,'· ·iot onl7 the tow: vector :I" ·but ~leo. th~ ~ ot. ~~~~··· ~,_-.,~ould . 
... ,a. ~ ,- • " I o • 

'• I t .::., o 

~. : •• • " , ~ ~ ~;~ r • , ~ "" • • " 1 • :"" .. 

_ .appear ae a .&U;baol"l-pt.. ot .. t.he ·density· function we hav.e writ~~: before~ 
· .... '~- . . ' ~· •, • • .• ·• " ." • ~ ~ ' • • r • • • ·, ;:, ! ·.... ,. ,. ., 

JJ. • t • , f -'t • ~ • ... • t r ~ 1 0 0 ~.. .. .,. ' ~. 

. The dist,:rib\ltion funoti'On that 18 nGeded I tO take .intO ACCOunt l,he great' 
' ' ' . . ... 

... - ' ·. 
• p • , 

' varl.ation in thia ·immbe_r at high erierD ~t· be. called the SJ"Glld . 

'microcanonioal distribution;, The letter n is no longer fixed. but. . 

. .. . 
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should appear a.e a Ta.riable 1n the argument of the density functiont 

~K(kv ••• ~~ n).. 'this 4istr1bution should be dist.ingaished from the 

grand canonical distribution where the riumber o! part.icl..es in a closed 

eyetan 1a fixed and onJ.;y tor eubsyat.ems is 1t a random variable. ~he 

nev pK to be used in normalising the d.enait1es in order to conv.art 

them to probabilities is now 

25. 

A greater variety ot marginal di.striwt.ion and marginal denaitiee is. also 

( 1/ 4 (a) · 
·pOssible. Important lrlll be ~:g(n) : J • (d k ) ~ (~, ••• kn)n) , 

the density for the appearance of n particle. In terms of it, 

~K : ~ K(n). The density tor the first pa~iele baving"momentum 

k when n . others are also present is given by 

·the momentum density of the first particle regardless of the number of 

others is Z ~K(kJ n). 
n 



·s-MATRIX FORMULATION 

In the last section we arrived at an expression for the 

relativistic current function 

might be regarded as a generalization of the nonrelativ1et1o density· 

probabU1t7 current 

. f'J_·. •fit 

_WI{ (~···~' ~···~) : 

26. 

wich is tbe generalization ct the m1crocanon1ca..l distribution ot Gibbs. 

. . 

It is only th• marginal dietr1but'-·on 

27. 

that is relevant to quantum theory. 

In this section we Widert.ake a detailed comparison ot 2:1 with 

the corresponding quantum mechanical expression. This permits us to 

give a wave mechanical interpretation to the Fermi approximation, 

enables us to eee how to take into account exchange effects associated 
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with the indistinguishability of _elementary particl"e, and als.o how to 

conatrnct a seroth order t'ermi appt>oximation tor emerging particles 

which are not scalar. What suggests itself "in this connection ie that 

we attftllpt to construct the quantum analogue not only- or 27 but also of 

26. If the Fermi model is ever to serve as a zeroth order approximation 

-
to a quantlUi mechanical transition probabUit.y we should _like to discern 

. . 

the outlines or ita rather ·definite mathematical .shape in. the quantum 

elq)reseion. As auxilliary functions., simultaneous dietrtbutions tor 

coordinates and momenta have been introduced by Wigner (2) and used 

ef.fectivel7 to calculate. quantum deviations from claesical averages • 

. 'lhese Qllantities are not amenable to a direct physical interpretations. 

It is teit none the lees that they might be or help in constructing e. 

eoneietent Fermi approximation to !ield theory in the high energy limit. 

. - . 
For simplicity we consider a final state consisting or two 

distinguishable mesons with field operator A(x), B(x) •. Corresponding 

t~ each fiel4 (charged or- neutral.) we construct a set or £unctions 

1.t(x) J . satititying the· tree Gordon-Klein equation [5 J and rendering 
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_ the expression 

positive tor- every domain D. Some point norm&l.1zat1on on the eet t 

might ·also be imposed to make it more detinite. 'l'he plane wave 

satisfies for eXample 

f(O) : 1 J 

-
o2t(O) 

p. dX 

2. 
~ X t(O) t(O) = o. 

1kx 
e 

In these formulae t denotes the ccmplex conjugate ot f. 'l'he ueue.l • 

orthonormal set results' if we chooa~ a aub-eet t 11(x) 'Which vanishes 

., 

on the· boundatT ot a domain D and normaliz-e it to 

t' = n,D 

'fhe completene-ss relation may now be states as 

..A(x x•; D) : s t 1 
0
(x) t' n,D(x') = n n, 

' 

2: 
n 

-
fn(x) . fn(xt) 

(tn' rn) 

28. 

29. 

30. 



In the limit ot D ~oo we have the u&Ual representation 
' ' ' 

'. : · · J ~- 2 ik(x - x, > 
A{x x') ~ · lim · A{x x•).; I)} : 2k d'~. · 9(k0 ) S(k +x2)e 

· D~ 3 . 
. " . . . (2 7!') . 

31. 

: ',,t 

.. Expression 28 . -can .be extended 111 an obvious tna.nner tc) define symb~ls 

:like . (f:, · g) • It may also be used in connection with funct-ion~·. F· ·whiCh· 

,: " ' 

· · ~ ·'<io no~ satisfy the G.K • equation or do so onl7 .asymptotioal13' ~ f'(t') ~~. 

'' " 

1'he spalar product (F !) . will in general.depend on the ·surtaee:c:::r: • . . D,o- . . . . . , 

1,· 
·. ror m~tt g~eral F . it may exist, even tor unbounded D~ . Besi'des 

· : . ·. c-<Nali~itittS' W~ ~s·o Consider. q-quantitiee of the. £om of a scalar produot. 
··. 

.Thus.· An = 
{fn,· A) · · . . · 

j 1 · 1. is a destruction operator· for the 

7 (tn,. fn)D . . ... 
A field •. 

. . In connection with this generalization the tollowittg shoW,:ci ·be· noted. 

For an o~inary :scalar product we have (!, g) = (g, · t) .. ·· To get a . 

. : tol'fllU.l4 · ot ·comparable i.d.mplicit:y w1 th operators we should ·consider : 
'· . ·. ' . . . . . - .. •. . 

s;riribol ~ar•~ used. in the ease of· l'loth c an4.· q · quantiti~s. 

The p~bability of· .tindirig the system in the final state (t) · . 

. ;. ~nditional on the bypoth~!51S that it ,'WA.e. Originally in the initial · 

state (1) ··may be writt.e~ as 
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32. 

where .<f' t" and .. 1(" are state bra and kets respectively and 8 denotes 

. · :the H~isenberg S operator. Since acoord.ing to Fermi's idea. th~ .final 

: . outcome is only weakly conditioned by the original ·state 'it. is .more 

-. "" ~ ' . . 

natural to replace t~32 by the final probabilitY. . W(.f) : b W(t Jt) w(1} 
i 

-where w(i), is the probability of the initial et.ate. Detihing the 

statistical ope~a.tor for the initial state. b;y U(i) ;:: ·L ~(i)lf'_(1}. rCi): 
. . 

. . " . . -t- .. . . 
W(£) : : 1jl (£) S U(1) . S -t ?n·t) 

.. 

~ . . .~. 

the distribution 

w [ rJ = lf:(t) ~{P - ~) ?jl(£) 

Sp. S<P- p) 

. ' 

.rruiy be t.&ken. as the quantum version ot' the m1crocanon1oal .ensemble or 
• .r." ~ • ' • . . . 

33. 

the total enetgy niomantum tour vector of the system and P its ~icular 

· · · .eet · .ot eigenvalues. The etabili t;y of this distribution may be seen 

trom the tact tha.t for an initial statistical operator . 
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U(i,) : d (P - @) 
Sp £(P - [j.>) 

we have S V(~)st- : U(i), -since S oonmutes 'With· f_f) • 

Assume a final etate consisting ot an A meson in state a 
1_ 

and a - B meson 1n state ·b. Thus 

y<r) = rca, b) =- ){A, f )(B, fb) a . 

l(t , t ) _ (f , tb)D_ 
/'a aD b-. 

~ere ro denotes the 'v-acuum ket. Equation 33 may then be put in the 

f'orm 

34. 

defining the kernel K. -Summing_ this expression over _the labels · a ~ 

. . 
. b n obtain tor the pro~ability of finding an A a.J1,d a B meson· i-n the 

domain D 
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W(A, B; D) : s d! df d7 di £1(~ f l D) 6.(~ if; D) 

D 

Letting n cover all ~e we have 

W(A B) : J dj df d? d? A(~ , f) il(7 , ~) ?(t J((J 7 )0(1) K+(f ?> fo· 
36. 

The assumed invariance o! the theory under four dimensional 

· · translations leads to the ld.D:1 or restrictions we encountered in the 

cla.ss1cal phase .apace expressions. The invariance has two aspects to it: 

kinematic and dynamic. 'The first may be interpreted b;' saying th~t the 

field. operatol's are effectively constants. If ~ denotes the 

clisplacemetlt operator (b/1) (d ~ xrv)' then mider a dieplae~ent 

x ~x' : x + a . aey c number· function ·wil:l und~rgo the tranet'ormat1on 

iap -iap 
t __,t, :: ·e f e • For a constant we have t 1 : r. A field 

operator is a second rank tensor in the apace of occupation numbers. 

A t~lation ot coordinates x ~ x' :: x + a whose infinitesimal 

generator is p will induce a corresponding representation of this 
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operation in the occupation number space with generator - P. The total 

. 1a{p +P) -ia(p t- P) 
transformation J!1a7 then be denoted as A---t A' :: e A e 

., · -In a kinematically invariant field theory this representation is so 

defined that A• : A. In this extenqed sense all !1eld operators may be 

looked upon as 11 con.sianteil e.n<l this fact expressEKi by the relation 

1aP -o..ia.P -lap +ia'J) 
e A(x) e = e A(x) e : A(x - a) • 37. 

·' 
Dynamical invariance on the other hand implies that K in 35 and 36 

depends on ~ and 7 through the operators A and ·B only. Mopt.ing 

the convention that the vacuum is a state of zero energy and momentum we 

may write 

..,. - + - _;, - '+ 1 ~ p - + - - -1 (!J p fo .K( f, ( ) U(i) K ( S, ? ) ifO : fo e K( t , ? )U(i)ft (J , ~ )e - 1(o 

"' ~· ' I 

Both assumption o! iavariance were exploited in going trom the second to 



'the thi·rd member of this eh&in. We now make ~he additional at?sumptlori that 
~ ' . l • . . . . . . . ' . . . ' -~ 

· .. 

. ·. 'the ·initial .state is one of de1'1riite energy. and ~:~entum. :m tel"JM ot . 

. · t}\e statistical operator thie -may bo ~pressed as 

·. , . 

. . . u' (i.)., · ic(P . ~ifl P, · . l(cy ~ ~ )K _ ·. 
- e U(i) .e . :.:•· . ·. U(i) 

. .: ' :- ·~·~! . _i . c 
. . 

f .· ~ere It ·. is the ?alue ,of the energ motnentum tour veetor. · Inserting 
. J • - - •. : • 

,'• 

. . . .. ' . : . . ~ . . . . - . . . . ' 

. th~s into 36,. subtracting the resUlting expression tram the original' 

. tox-in or. 36 and ch.in~ng variables 1~ an ob\rious manner" we ·tnfer 

. . ~ . 
-. ,. · .. ,.. t~:- .u V'al~ee _of th~. cont.inu6us paranietere . r ' . ·(3 • ibis ~str.tction 

~ . . 

: · .. on the form of th~ vacuum expect~tio~ value .is· particularly' ·e1mpl$.··in . - . . ·, ~ .· -

· ·the Fo'urier integral rePresentation of A o For every .Founer component 

we have 



?}'o+ K(X f ~' Y + ~) '1(1) K(X - ~~ Y - ~) 1(o . 

1'hie i4entity ill two tete of continuous parametere could onl.y be 

aatistied 1t the F~urier transform of the expectation value has a 

S<K- ~- k2) as a !actor. There must however be two ot them 

corresponding to of and (3 re$pectively. One ot these ia usually 

tnterprete4 in terma ot a time integral and the expression written as 

wheN T t.s an infinite time factor and. l ~ \2 
is the ~ual matrix 

element on the energy shell he~e already averaged over tbe initial statea. 

Fourier analyzing 36 and expressing it as a transition rate w(k1 k2) 

(to absorb the infinite tiJrie tactor) we obtain 

* 1J • 
2 

LJ.,+ (kB) I ~(kl k2) l 39 • 



····~ . 

' \ . 
' . 

.· 

•' 

.. ... l • - .. 
.. · ; ~ . . ' . . . . . . .. . 

The reasons tor red~riving this much derived to~ -''!'ere several • 
• " • ,' i I . 

' . . 
. 'The ·US~l Verai~ris do. -~t contain the t~ctora Ll which &pPh!"ed ~ the. 

. . ·. ,\ • ""' * • ' ' ... · • 

. .;. ~ .. ' . . - ' ,. 
,. - ' • -. 4 ' , , 

' . classical pbaee space expression, because the finAl momentum states are 
' ~ ;- • .... • • • • • ~ • 4 ' .. • • .. ; ;o. ' t ... • ~ 

"" . ~ 
0 >; 0 o < ~ • ( •. .1. 1 \ o'"i I 

, ,.. described in terms. ot tntee-rather than tour-vectors.·. We ateo ~ted 
. . 

~ ' • lt. ... 

:r'_. ·, i. :~ .;..~ •• ~ a· Qua!it,;;. i,i~rpreta~io~ !or th~ ~~· S ;;,_ c!-;" Jt.. · ot 
,• •• :~,. + :· • ,. • 4 • -... ~~. ' • 1 + .... 

r • ' : • ~... . . ' • ' ' • : •' • • . 

: t ' • the 'cU..aeieal model: These obviouslJr correspond to the inYarlant scalar 
• , • _ ... "" ... ,·· ..... . . . . . - ; t . . . 

~ •;f.\ .. ·- .. · · ..... ~.> . . . . . - . ·k ·•:- ... 
·. ~~ ·. .:·. :. prOducte, (~P'.·· ~pl~. Th~ u~. nonilalieation ~actor (V ·t ~ appearing 

• .. •• t ' - t· • ... 

. .. " ... · .. 'iia 34 is seen to be ot that .nature. Pinall)r a. wave _mechanical 
·~ .. ""· •, • ' • . -., I •', • .. - • 

. ' ·~· ••• ~:. ·, • j _· ~ ;,..' • ,. t ~ ~ • • ~ • 

. h · ·~ .• 1ntez1,retatien ot the ·Fermi -model is intencted to be suggested. · · ·· 
:" t' • r. ~.. .... ·~ ,. ' ... ~ • ... • t • - ... _. - J - r ~ ,...- • • 

• ·• ~ '· f • • .. . 

.· .'~ \ . • ·: .··. Let_ :ti .• . tn be't~e ·wave tunct.ion .tor tbe part1~~a ·1n the final 
, f ~ " 

\.·>.·:.'~,<Stat~~- ·.Wlt.h·everi. t ~e.,soc1ate ~.· F(t); ~.w~ve-'packet ~.t·about · ·r 
1 t ""!',' ..,.' : ' .;' • ' • r o ~ • 

" , ~ .· •. 
:· ~< ·~: <·and ~dirt~dngn into ·it~ Fmd•s apt>roximation is then scht~~J&t1ea~ 
• ,.. 1 ~ r 

0 - . · I , · ~ , . ~ , • "< 

•• t • 
~... .. . ' .,. ' 
;·· . · . ,.<r1·, -~~·, •. · •• t~ J M / ~J.(i '/ ~ /. t 1 .... t0)~(F1 )F1){F2 ,'2) ••.• (FriJ'n>· 

• >. • ,J •• 

1
. .Wha~, ~~ ·.ee~ to be ~olved · he:re is an attc;mPt to_. ana.lJ'z'! the ette~ · 

;• •• .. • .· - • .. • .. .. • • • ..,.· " •- • ~ r : - • .. ' • 

. . .. 
; ~ ' ' • .. .. • • /' • • 4 . • t 

· · : ,.; ot the ·interaction in terms ot dittueion characterietice of individual · 
' . . ' ~ . 

J • ~ I" 

+ ; 'I • ~" o '._' • o" • \ ~ ...... " ~ I ' .. 

. ·on:cy- .~eir ~~~ .. (~ ;P) se.ema _to b~ ~~ moment. _The h~ ene~~ ~~lliaione ~ 
~ . ... ' " . 

... . ~.... . .. ... ', 

·• 

.. are then int.erpreted on the :basis .ot such an inc11vidual packet 'model. ·... ' \ ' -
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We ehaii now trr ··to· arrlve at. the quant.lim analogue ot 

. . . 
, t ' ~ • 

. li(~~.1), .. Wigne~ d~ilded that W(k) and W(;). obtained t~·it b~_the 
. r. .· . ·• . .. . .. ~ 

o ' • • • ' • ,.. I • ·' 

-: . ~. . . -probab~t.7 densities .ln m~ntum and. configuration space respeot1velt • 
. ·~ ·' . ~ 

...._ .. 
J ~ .• f .... 

-~. ? • • These two '~remanta. turn out to be incompatible with the. positive . 
•• •' + o ... ) I . ' 

,.. • ·t' .. ··· 
I 

:·_;,_._ ·:·_ ~-..,.· --.· .. --· 'l • 

·d.e.f~teneaa ot W(k, r) . &;01 even oYerlooking this unpleasant ·tact· do 
. ' . 

I 4, ' ' ... 

-~: . ~ . ·;~: ,;. ~h~- t~tion p~ba~Uit:y -int.o ·~ate (k) wUJ. ·be ~tldi~ ~:rirl~. 
I o • l 

0 
t. ~ 

0 
° • 0 1 ~ .# I • ,. 

.. . .'- . ~. . . . )1. IJ-2;•. ~ - :. . : . . ' 
· .'fbe ·qUarttity W • · . (~-~·. ·Zu) ·does not seem to ~ave arv 'clear-cut • r .......... 

· ... , ... 
j ~ .. 

~. ' ' ' . . - . ' . .. 
meaning in a·relati~atic field theory. We .shall therefore be missing 

• .• .. . t ' ~ • f' 

-.' 
i . 

. .. ' . . .. , '• ~ - - . "' . -

• • - ~10 condition that WOl:lld' oorrea'pond .t'o tb_e one ot- Wiglier 1a in . ' . 
' . . ' . . 

.. 
'-

~ . /Ji~ .. ,.u.~. ·fh 
---~--·- w . ·. 
-~ x/1-.e ·: ,· . 

·= 0. 
~ . - . 

configuration space~· We may, however, demand that 
·' -. ' 

.. .. It will now be ~nven1ent to change .to the mb:ed.'OU'l-IN 

;z-eP,..sentat.ion ·ot the S matrix.- In it .the S opttrator. is the ldentit:r; 

. . :. ..... '. . . ·. 
'. _S(t.-.f i)·. :'. YoUT (t)ty~~i). ' w~ have. labelled_ t~~. ~:tg~ing bra and the 

' ' 

employed tbe ~· m.;...m representation, since the S operator .ID8.7 be defined -

by the relation Tlie expression for the transition 



.. 
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¥, • prObabUity noW ~s the· torin. · . ' .. : 

\ .... ·. ~ ..... .. .. . ' . ,. . . . .. 

'. 
,1 t •• f 

' 
\ ·, 

·' 
. . 

. ~~ ' : . ·, 'f- . . ' -- . . l, • - • ,. • 

. : __ _'~(~) ·=· Vorrt (r~ UIN(1):- foiJt(t) . _: .· ~P u1~(1) _U~(t) 
. '. . . ... . - .· ' . 

• I . .... 
'\ - . ... . . 

. .... 

. ., .. 

' ~ 

',' 

~ ~ ' . 
....:: ::', . 

. . . 
~ ·, f.·.... • '" 
' . ' .. . . 
. ..... '.,. . 

,. 

t. ~.... .. .... : -:; 

·.;-. ·: ~ .. .:Wi:t~ UIN ."atd UOUT relat.ed_·b.Y~ S-l U~ s,': u001 ~etieet~ the'-. 
".. •. 'If ' ..... .,. • ~ .. 

~ j .... • .. ·. 
; ' . ' 

40. 

" . . .. . 
.. -~ .. -.. ·• . ~ell-lmow reveraal· ot eqUlvalence cha:ra0t.er1et1c 'ot U. . 'l'he· tiiiAl etate 

~ r. • • . ' - • ' • . 

~· .,. .--.· f ' : t • I • 

.,'f I .• 

'"-~· .4 ••• .. .. ... • • ·!" . ... . : .. .. .. • • ' + . 
; ... · ·.,q ~ ~nst.ruCted t';' the va~ ~ateo frm(a, b) : AOO';t'~a) Boor (b)?/Q 

·~·-_·111h~~·-·~A~(~).: (t6,-~tn');:·;.· B
0

ur(b) :~(tb,; BoUT)• 'lhe.~ctiona· ·ra 
I l • " "":, '' ~.. i. :_ ~ • - : ' 4 ' ~.. I l : • • • • .,. • • ( • . ' 

.·.anti. ,fb; form an o~~normal e.rt. ot tree.·aol.Utione ot the G.K •. eqliat,.on._ 
·• ... 

.. "/ ... ~ 

··· EqUaiion 40 now takes the fol"l!l 
' \. ~.:..- .... • .. ~. • ., \ • ': • • # ,., 

' I+ • . . 
,• ·... . .. 

. : :·:· ·· V(a, b); 1J'O + ~(~) liOUT(b) u111(1) "otn+ (~)'rl011/<bl1(0 · .. 41. · 
,r,.. ' - • ,, - .. 

' . 
~ ..... . . ~ ..... 

._ I .(' ~ • ·- o ' • .p~ o : • - .. • 

. .- <_~ \ . .' · : : .. -~The· tour aca~r j>r~uCte -between wave tunctiona an.d· ~paratora 
- ' . 

. ., ', 

. . ' . ~ 

.. . . · > :implicit 1n U do riot depend on the apace-like eurtao~ o~ ..dti.ch the,y are 
. ... . . 

.' 

\., . ' . 
.. detin~. This. is a -~·naequenc~ ot the tact that th~ out.g?ing ·rields .and 

,·' . . . ., 
. tht! orthonormal· sets .satiety the tree ~icle G.lt. equations,.: A- simple . . 

· ....... 
(although not~--~que); definition ot a d~v~genceleas prob&~lit.y tensor 

. . - . . : .. .. 

ia then 

42. 

' 
~ .. _. 0 ,oo I I ' ' ~ 



where 

The configurational transition current is most easily constructed U' the 

remaining two surface integrals implidt in 42 are converted to volume 

integrations. Assuming that the particles present in the final state are 

absent in the same state initially' we have 

AoUT(a) UIN(i) - [Aour(a)- AIN{a)J UIN(i) -

- l [ Um - lim 1 I d~~ ~ l A UIN(i) - cr..., teO a--t-CIC a 
21 )\a 

<I"' 

s i'f - 2 2 - 1 ta ( 0 - "Xa ) A UIN(i) • -
2i Xa 

In going from the first to the second member we made uae of the fact 

that AIN(e.) is a destruction operator for the initial stll.te; from the 

second to the third, the quantum analogue or the classical Sommerfeld 

radiation condition, 11m 
Xo~±oo 

A(x) : AotJT (x) , was taken fof' 
IN 

granted. The eesent1.al. 'DOint in the next step is to write 
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where T ie the S1JIIbOl of chronological ordering. The last. expression 

is read.ilJr conYerted into a volume iritegral and ·with the aid ot the 

suggestive abbreviation 

2 2 2 2 
l 1 (r:Jk - ·Xa )([J~ - )(b) T(A( ~) B(t))) 

(21 )(.> (21 )\b) j $ J ( 
43. 

expression 42 becomee 

Summing over the labels a and b we finally obtain tor the configurational 

transition current 

44&. 
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were 

H <E-=" 
Aatrr(x) Sour(y) L .L LlA (x, fJ) ~(,-,? ), 

a~ <9 r~ ) . 

44b. 

This tensor is seen to be divergenoeless because of the tree particle 

character of the outgoing operators and the A functions. Fourier 

functions in 44 we have in ·a.n obvious notation 

pll ~ 1 W (k, J X y) : 
j.JJ . 

1'o+ J(k J..) UIN ~ (k f. J x y) ro A(k} t;l ( ~) • 

The constraints i.Ilherent in the vacuum expectation value as a consequence 

ot imraria.nce under displaceraente are reo.dily deduced b7 the method outlined 

previously and the Fermi a;l)proxirnation soen to ~ount to the repl·3.Cement 

A much more deta.iled investigo.tion is clearl,y needod before one could 

decide whether a consistent a~tion could be based on this moooedure. 



.· 

¥ • 

. . ' -41- ·' .· 

">'• ,.. I 

. 
-t t •· " .. ""' - ~. . 

c ' 

. ' 
_ .:theotoet1~1 expression. we can now· ~i~it-. th~ apparat.us~ .. ot tielcf.theo:ey 

':.. ~ ._ • • " f 1 ' ·, j •. • ~ ~ r ~ . . ' . . . 
. ~ order to iitclude ·into the Fermi mOd~l t,.Ptcal ~tum. etteet~ •. The 

. . • • i - • - ' .. - ,. 

,. • - I ~ • t 1 ;, 

' .' 

' II ~~ • • ~ • ' ~ o ;' ' o I f ' ~ • . • .. ,f 

expression tor W. (x y), as given in _44, appears t~ be suit!ble.tor this 
"" .. - "' , . ; \ . - . . . ~ .. 'c • • ,l· ·_ :~ • • , 

·... · .. ' . .... 

-~- : :.- purpose:· The ~i·cations ~tare c_alled·~ol"·in ~e case_.when two mesons_ 
' ~ - • • • - • ~ • • ~ j • • • • 

'\. l' : . . _are identreal are best exhtbited-~n terms ot the nv&~um rep~es~nt~tion8~. 
. ' . ~ . . . ' . .., -

· >~-- .. ~~.~he - A, ~otions [ 4]. · ~ue 
. ... .. t. t •. 

' ... 

•' .. 
-· ~ .. 

-i · . · ( l ) d(x ~) ( ~ ). ACT ? ) -~ ~ 
..... 2'){'. s . 2){ . . 

t ~ ra I> a .,. I.,. 

.. 
~­.. ' ' 

.... .· . 
t ._:Were. A+(x). is the u_destruction" part of field. A and· ~,J.- (x) .ita 

He~tian a~joint. and _similarl.T !or the.· B tield... It is· not too hard to 

~ 

see that tor identical fields this expression should be replaced b,y 
~ . ' . . ' . 

The Wick contraction rules 4 may now be used to decompose this into a eum 

o! products ot .L\ functions and the Fermi approximation_ carried out. It . 



ie &lso eaey to see how spin ettecte may be included. The. scalar A 

and B tield• ah:ould be replaced in th1e representation \dth appropriate 

. epinor lield optuoators and the definition ot the scalar prod'!lct (f, f) 

modified in an obrlous manner. 1'o include· ttnal state. interaction we 

could· replace the tree part~cle lm's in the bilinear representation 30 

by wave !unctions depelding on a fflW parameters fixed by experiment. 



-43-

III. TH!:RMODnAMIC LIMIT 

A. Introduction 

Statistical models are based on the close ·structural resamblence 

between the marginal. claseic&l distribution over momentum va:ria.bles and 

the exnresaion for the quantum mechanical transit ton probability. Both 

are of the form 

is the square or the matrix element 1n the qu&ntwn caee. Claeeical.l7, 

result.& trom integration over configuration&! variables and will not . . 

in general be factorable. However tor essentially uncorrelated s.ysteme 

we may vrlte ~ : 

* volumes. The classical distribution then becomes 1f A
8
(k

8
)./l.

8
(k

8
). 

s 

It the number ot factors in the product ie large, it lll&7 be treated. b7 

the aethods of statistics or independent random Ta.riables or "statistics" 

tor short. In this asymptotic limit there is a marked lack of sensitivity 

in the detailed nature ot the ..fl-
111

• 

What one usually understands b;y a model is an attemut to inter 

the torm ot ~ : 
2 

J M / without resort. to detailed ~ioal theory. 

' 2 
An equillbrillll model would argue that J M I is in:lependent ot inittal 



.- .. 

'• . . ·.-44-' 
". 

" , 
cohditiona. ~~nd reet~ctions imposed· b,y.conservation laws, a .statistical 

'.. .. ' 

'. 
;: one would favor the:..., tbat \ K j2 = · ·.r.r * ~~ ·: 'l'he tWo d~ta 

. ~ ~ . -

· ~ · · . ; .. are 1)-equentiT combined. · The crudest version· ot · an eciu111br1tmf etatietical 
. . ;, . 

';, 'I'· I 0 ' ... 
t ~, • 1 

/ . ... i. \ 

•'L 
;· .. ' 

. .. 
' . .. ' ~ .; . ·' 

·Iri thi.s chajal-,' one shall be conoerne4 with the iech¢gtie8 
... . .,.. ' • ' • • • .. 1 

' .. 
...... 

.. 
-, 

"':; L 

... ('" . " 
:. . . I· . . , , ' . . 

· .: .. ~~ · ·. tsnperat~ ~and entroPi come into pl&y. It can ~ apecitied ~What 
: . i. t 4 , • .. 'h,. ' • '· 

... ~ , ' ~ .. • ~ • ' t • • •• 

.: : >·,~~'·c~o~e~ ... -~esi~es -~ (k1 •• ·.~]-·ve f!eed ~gi~l'diat~bu~ioris·~ .. · 
.. I ~ \ "' ' 

1 ' .~ < .. w,· [~r- ~·~ k.] derived .. rrc;~ it.· . 'l'be eet ~:r .vartabl.es .[ .k~-.. -. \k~ ] \ may 
~ . ' . ~ - .... 

. '' 
. , ..• : ~~ ,tb~t or as refe~ng _t.o th~ system of 1nt~rest 1 the ot~er~ ' 
· .. ./. .· 

.. irrtoegrat'ed out set 

. ' . 
I , , ' .,., ..,. 

(k8 +l" :~].·to thO ,;~tb,• .· Por OTetOm,; ot 'oi•• 
'l 

· com.pa~le to their _baths, one is lead to Gaus~ian distribution it .both 

SJrstem and bqU;lm large; tor small qetem in large baths, to Gibbsian 
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;._' . · ···dietii.butiona. It is the latter liD:dt ·t.hich will interest us here 
. "· ,t 

•. 
.. .. 

· and the ~eneity 

'' ''t • 

. upanc:~· JtlO~ ot o1lr computational efforts. In partioular we discuss 

·' 
' .. . . 

• ' ·: · .... ·. t~ose feat~re& which. are ~rta~ 1ri the high energ limit and are not 

.. 

. . . , 

' ... ~ ,. 
. . ~ ~ .. ' 

{ - . 

.· ~. t~eated adequa.teli in standard textbooks. The. cases dealt with are .. ·- ... : -~,... . ' ~. . : ' . . ' ' 

' . 

intended: ~lT to illustrate' prooedu~ee and have been ·Chosen fr~ · 
• I . 

j , ' • J. . ~ 

.the. point ot :rtaw o~ simplicity. · It is ·hoped that t.ll~ read~ tdll see 
' . . 

: how to' appJ.7 tneae techniques singly or ~n n~.es8aey combinations to 

·, . th.~ more complex sitUations encountered in practice •. 

.. . 4 
B.· Approximation to Densities 

, · • ·.In thie .section we sho~d llke to outline the techniques thai a,- be 
t.. . . .. ; 

·. emp.loyed ·to obtain apJ'l'Ox:iDiate expressions for .. 

-..._ .' I 

..:.""'in ·the Umit of large n at¥i to··re·eord some ot the results eo· obiained. 

nte simplest reasonable assumption that one can make about ~8 is 

or that the configurational volume available to each 

. 
( . 
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panicle ·1n it• own rest frame ie of the order ot the cube of ita 

Compton wave length. Introducing nh dim~n.aionleee va.ri&blea t 8 : Xa k' 8 

(and droppiqg primea), we have 

--
47. 

An alternative to 47 has been proposed by Fermi. Ita torm~invariant 

.. .., 
~ 

~(a) l:,..v- l 

Xl 
48. . 2 ><s 

...... 
where X

1
_ is proport.ion&l to the mass or one of the initially' colliding 

t\ucleons and ~ is the total momentum: tour vector ot the •yetem. In a 

frame in which ~ : (0, 0, 0, X0 ), expression 48 r~ucee to 

= 2Xa -K . 
0 

. {e) 
ko . l 

"'< 8) -=;;; 
The first tact.or in 46• ccpraesea the ~Yolume contraction" idea of Fermi. 

Because ot t.he eecond factor • the integration will assume an especiallY 

eiapl• tom 
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47'. 

in a frame in which the spatial component• of the total momentum V8tlieh. 
·-· -~~ ~·~·- ,.,..: _ __,_ --- - = -.,~ ~- ~-0-" ---- • ~ 

Unlike 47, expr•esion 471 ld.U not retain ita tom vhen transferred to a 

different frame. 

In the nonrelativistic limit, 47 a.nd 47 1 become identical and equal to 

p -11> -
Jm\ B P -

dp ~ 
3 (a) 

1! (21f'>'j 

They ditter radically 1n the ultra relati'f'istic limit' 

1 

49. 

50. 



' ' . 
· - . In :the ·N .R •. ~imit, it. 1s also ot eoma interest to· inVestigate the denait:y 

,. . ~ ' ' . ~ ' . ...,._ .. 
f • ;..· 

• • ' • # • • 

. ~:.tUnct.ion. 'Where ·energy &lone· is a good constant ot. motion . . . ... - "'" . . ... ~ ' ~ : . . . -'\ ' " . . . . ., 
·-

49&. 

. . 
' . · .. -· ·-~~ . ·.' . . . . ' . ' . . . . . - . 

. •. · · , ·. · F,enni •s original calculations were done in the ultra-relatb1.stic domain 
- - - . . - . 

,~ • ~ ,f , .. .. 
.. ""' . ~ 

· but with energ alone coneel"Ved. 
. . ~ ~ . . 
. . . 
•' 

• • ,' PR P. - r·Tl "v·~ Slio- L x<•> \ k<~> t •) 
. F ·Ko. - J ·e (21f) '\ 

50 1a • 

' . . ' 

··-

.. 
. · We sltall first treat the densitiee i.twolving a einale constiint ·ot 

' . .·' ' . ' .. 
• The discussion ot i!l detailed and 

· · r · · UR 
~t~on . b . ~net .-e· 

'';· tm\E F X 
•. .. ' ' . 0 

._ " t 

• •" I' • 

. · the· simple calculations are used as an opportunity to introduce· 
.. .. 

· •.. t.h~c concepts •. The second density is dealt ·with~ 1n 

r . . 

··bare outline. A set ·or. densities involving tour delta ·tunctione is . ' . . ' 

considered next. •. The new problem encountered is that of .• temperatures 
< I ,.--' 0 ~ I 4 • • ~ 0 ,.:. 0 < • ' .. ' 

•.· 
conjugate t·o momenta. Theee -u:e derived in 4etail. tor c ~ ~- and 

l~ .~,P 
UR . . . . 
-f J the result tor. 

E. 

tm . . • . . .· 
F e K '· o~, recorded~ The de~sities me~_~oned 

t 
. . 

so tar are euscept;ible to both exact and thermo<:lynam1c treatment in the 
- . -

·,energy liJid.ts cone1dere4. l:t is hoped that the example preeerit'ed Will 
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Uluetrate the prinoil>lee involYed in dealing with the more oomplieated 

oases which cannot be carried out exactly'. 

(a) Densities with energ.y conservation only. 

We shall now give an ou.tline or the tho:rmodyna.mic approximation 

scheme, uncluttered by detaUa of mathmr.a.tical rigor. As typical or the 

two density functions to be eonaidered, we take the some\fhat more general 

eJC!.)ression 

51. 

where H is regarded to be positive but it need not ,be a sum of 

noninteracting Hamiltonians. l'Tith a Fourier represent~tion of the delta 

function ~ have 

52. 

Obe-erve that a. new £unction r ( T] (the Planck tree energy) defined by 

8 
1f[ -iT] 

e 
iTH( j 1· • ·1 n> 

5.3. 

exists for Re T > 0 in the oomplax T plain. With the aid of another 

function, the entropy S defined in t.he same domain 
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54. 

we rewrite 52 in the form 

f) - l ~ Ss [-it] 
~ E - ·-;:; df a · 

211 . 
• 

Inttodueing a Cartezian coordinate system in the complex T plane: T : t r it', 

we have 

8 1jl('t) : r (:}/ 8 -tHCfl 53'. 
,'. 

SE( 1:') = E "t' +- 1f< CJ 54'. 

l --- 211' ~ 4t 
l 

=-271'1 

55'. 

with the integration 1h 55• along a line parallel to the imaginary axis. 

The quantities -r- and S a~ seen to be the real axis. 

The basic observation to be made ie that on the real axis the 

real function S( '(-') bas a unique l!linimllm. The m~ulue of S along C 

pert>endicular to it will then have a maximum. We shall therefore be able 

to collect. most of the integrand along a small segment of the line about 

-the real axis. The point on the real axis 'C' at which S{ t> bae its 
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mini.mum depend• <lin t.he energy of the .syetem and mq be called its 

intrinatc temperature [it· turns out to be (1/k'r)] J the Yalue. ot S at 

t.hat point-the proper ent.ropy ot tne systel'.ll. Because ot thi• mini mal 

property, the eum ot two entropies, one proper to &)"stem A, the other, 

to system B will be lees than the entrop,r proper to the connected system 

A.B. It one is convinced ot the existence ot a universal t«ldeney toward• 

mergers of small into iarge epteme, one m&7 assert that thie quantity 

tenet a to ino:reaee. 

The minimal -properly ot S( '(') is readily exhibited in terme ot 

an aux1111aJ7 (at this stage} distribution, the canonical. In ot-der to 

••• thie, let ue <lifter.ntiate ·~54' ueing the detihition 53' • Thus 

- tH( J) -1(('() 
With the aid ot the canonical distribution t( J ; t) : • · · , 

dependlng on an ..-bitraey para~Mtter 1: • th1a 1t1a7 be written as 

' 56. 

where the bar denotes an &Yerag•. Differentiating again we have 
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-----~ 

> 0 57. 

It is then the canonical distribution labelled with the particular value of 

the parameter corresponding to the temperature out ot a whole one parameter 

family of clistributlona whiCh renders the expectation value of the total 

--'t 
Hamiltonian equal to the energy of the system: E - H : 0. 

For the purpose of expanding close to the real axis, we introduce a 

new variable t = , where 

Od:J 

~E : 
l 5 dt 

...QlO 

~andiilg $, we have 

n ie large, and ~te 

• 

It the remainder a( 1') happens to be of order not higher than n, we 

1118¥ neglect the last term a.nd carry out the integration. This yields . 

-
S('t'} s('t'). 

e ,.,..; e - -- (' 

·v 

58. 

I 
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-
The statistical interpretation of S( 1:) follows from equation ). 

Combining 1t with 58, we have the statement 

-- L: log P~ - log PE 
8 8 

The logarithm of the probability for the energy E to be partitioned 

the d.if!erence between the sum of the proper entropies .. of these parts 

a.nd the proper entropy ot the whole system. In making the state:nent., 

, 
we have overlooked an inconsequential small additive term.. 

Using t.he special. form ot the Hamiltonian ot 49a in 53, we 

obtain S( '[') : lH'+ i ~ l~g me • fhe point i on the :~, 
1!1 21( t' ----

real axis is given by f (Efi n) ~ 1. We should like to rescale the 

energy and wri.t.e this as ?: e : l. The quantity . f t.s the 

conventional temperature ot the a;ystem in energy unite. Its relation 
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to the total energy will depend on the model used nnd the energy range in 

Which the anproximation is made. In the present case we have the well-known 

relation l: ::: E/i n • The relevant express1orie now become 

8"( t') - J. n ~2 
- 2 

and we finally obtain 

(~)3/2 1[ 211' 

j 

• ;s. 

'l'he integration leading to the asymptotic expression $8 may also be 

carried out. exactl?. Substituting the ~reeeion tor the entropy into 

5;•, we have 

sd. l nE: a 
' 1 f 

< t' \ /,.. 
1 82 71 1 m .·. - - " 8 ·. - 211'1 ~n e .\-:i'i ; 

\ 

0 z 

. ~1 

1 T!(#//2 i 2 c = -· (_ D) . 

E <in ... 1)! / 
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In ~he last e~ep we made use ot the tac~ that l . \ d~ .d.- 1 
i1(1 ~ f } N - (N - 1)1 

... 

Formula 58 1 ia obrlously identical with 58 whenf!IYer t.be tacrt.orial JDal'" be 

reJ)laced. by its Stirling as1"11¢ot1c form. 

UR 
( R J Th.. a daneity. 
r F r' 0 

the ootat.ion T : t f- i t' is now conveniently ~placed b7 

-xo :: "/\ + 1 r 0 • and the (; by j 0. ExpressGd. in these variables, 

. s [ i 0 1 = lo f 0 - ~ log [ .,?- ):.8
3 r 0 31 . The relation betlrteen 

. ener§ and temperature now how the form (!of'JN} § 
0 

: 1. We denQte K/3N 
., 

. bT_ lllo and write thi-s ae mo ¥0 : l. The asymptotic approximation _tor 

tbe density ie then 

,...,...!.... -- IDo 
7!' IDo 

[ 3 I 
8 1f2 x.' 

3N 

' 

'Nbereas the rigorous· Gpreseion ie g1 ven b;y 
~ 

,. 

59. 

59 1 
I 

• 

c --
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(b) Densities with enersr and momentum conserved. 

Corresponding to '(" in (a), wq shall now have a "vector 

temperature" with four components; one tor each constant. ot motion. 

(or ) The dena1tr tm e $ P'. 

Fcurier an$lyzing the delta functions in 49, we have 

r 3~ -m +- if.i -rlJ'[ -11", -U. 1 . 
J dT d X e 

60. 

' ~] s [ -1T, -u 
e . , 

~ ~- - ~ 
and regarding T and X aa complex variables T = t + 1.1", X : fi + i J , 
we mar write 

= 

. 
For HamUtoniana ot }:h;yaical interest, S exists for 

- 1::10 < f "'-~; 0 < t' ct.. oO • In tbe case of a ayetem ot 

independent particles, '1{ : 2: 'f, . The function 
8 

' 
6la. 

6lb . 
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= 

ia readilY seen to eati•fY a kind ot d1ttus1on equation. 

·[ d +H( d)] 
d( 8 d i 

0 . 

the . extr.al property ot S has nov to be pro.od in a tour rather than 

one dimenaio~ space. 

Our previoua 56 1a replaced by the set 

... 
: E.;... H 

62. 

and 57, b7 the ~en more ample 

s 
i'C 

2 
: (H - _.R) ' , SiJ : (Pi - ~)(Pj - PJ) 

63. 

The subscripts t and 1 denote ditterentia.ti.on with respect to '! anct 

j 1, respeet1Yel.7J t~e bars, averages over the canonical distribution with 

[ ~~ ~ ] 
tour tr.e parameters exp - "t H + 1 ·p - 1(Ct, S ) . To simplity' 

the .notation, we have not specified the distribution by indicatil'l8 the 

parameters next to the bars. With the aid ot 62 and 63, we obtain 
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Thue for the values of the parametere ( f, .ft> for which the right 

members of 62 vanish, we have tor a sufficiently small (~ ( , .6 J 1) 

special cases considered here- the reader will have no difficulty in convincin~ 
' 

himself that the f1, f point is unique bY observing that S in 

addition t.o betns convex becomes unbounded. whenever its argument 

approaches the boundar.r of the domain in whlch the function exists. 

In view of the relativistic case t.o be treated in the next section, 

it is convenient to introduce a more 8,Ymmetric tour dimensional notation: 

x4 :: t, ~ 4 : t, P4 : -H. We shall e.lso write for 62 

S (l) - ( - ~) .. p - p 
/4 - ~ !-'--

or s(l) : -(P - P~. The set 63 then becomes 

and the quadratic form ;/" S . ~ 2) X J may be written as (x, S (
2

) x) • 
J'll 
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In thie notation the superscripts (1) .and (2) ind.ieate that the tensor 

1e of firet or second. rank whenever this is. not obvious. We alec 

1ntro~ced. a bracket symbol for the scalar product. The positive 

(2) . 
det1nite character ot S is now expressed by the statement 

( ) (l) 2 
(x, S 2 x) : (S x) • In this compact notation 

s[f] 
= e 

. -foet 2 7f s (2
)' 

At the intrinsic temperature fb:ed by the requirement Sr-(l) ( l) : O,, 

sf~ 1 
~E,P : 

e. 

- For the special case ot 

defin1ll8 e~uations 61 yield. 

s(-t,f): n-f·;Tft r+.~ 

= 

l log 
2 

p 2 
.-!.. , tbe 
2ins 

64. 

64'. 

6S. 



where !! : E" m
8

• From it, one deducee for the temperatures ("'t , .f 1) 
8 

the relations 

p . 
1 
M 

66a.. 

66b. 

It is thus the UJt,ernal energy of a systan ot particles which replaces the 

energy of the previous section in the definition of temperature. We also 

e.ee tha.t the temperature conj~ate to the cementum is the temperature 

conjugate to the energy multiplied by the velocity. In tems of a new 

unit of energy e t : l, the asymptotic expression for the UR fE p 

may be stated ae 

NRfE1 
,.,_,~ 

- 1 --~ 1! .( )3/2 m8 E -2fT 

The exact expression is 67, modified by the replace111ent 

ln-2 
2 2 

( ;! n) 
2 

~n 
e 

Comparing 67 with S8, we conclude th3t in the nonrelativietic limit the 

67. 
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the eoneervatlon of momentum doe• not produce any drastic changes in the 

density f'unctiona. It is obvioua on physical grounds that in 67 & ,nould 

reter to the int.erilal rather than total energy; on dimensional grounds that 

-3/2 
an additional energy dependence ot the nature (M E- ) would have to be 

introduced beoauae of the thNo extra delta funQtions. We shell see 

later that the moditioationa are less obvious in the ultrarelativistic 

llmit. 

( f3) density. 

Subjecting 50' to the treatment ot the pre~ua section, we obtain 

- _L 
- 2n 

l 
• 68 • 

1( 

AlternatiYely, we could start with Cfe appropriate to Ff K t 

l 
=- ~e 

l 

- f •kj 

AI 

Equation 68' continued. 
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were 1t , denotes a Hankel function ot im&ginary argument. The !'unction ~ 

_, _,. 
i~ teen. to Uiet. tor } 0 ... J r J > 0 ; fo + / ~ J ~ 0. ExPanding 

this representation about )\ : O, we also obtain 68. '!'be noneovariant 

nature ot these cxpreeeione is quite evident. The exact result of the 

integration 1a 

3n-4 ir (; fao3 ) (2n - i> t (3n) 

• tr2 Xe, 3 . (2n - l)! (3n - 4) t 

where . m0 : X0 /3n. For large n this becomes 

1 7! 
" 

tl3 
0 

3n 
e 

69a. 

69b. 

Compared. with 59, which was calculated on the basis of energy conservation 

. """ -'J/2 . 
alone. we not.ice the factor (8 P n) in 69b. The additional three 

conserration laws t.hua markadl.Y' t-eetr1ct the phase epe.ce available for high 

multiplicity processes at relat1vi.t1c energies. 
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( '() '!'he densit7 UR f K. 

We shall now evaluate the ~ariant expression 50. Rigorously 

1n the domain ! 0 - J ~ j '> o, ·r 0 + J f / > o. It is eaST to 

see that -,; obqs the Gordon-.Klain equation with n1mag1nary .mass" 

and mar be id.~titied with the solution 

71. 

ot thie equation. In the ultraralativ1et1c limit. (71) simplit1ee to 

• 

71'. 

The relations 



).v = <~ ;>2 [!r jy ~! ~>~<~ · j >} 
4et 8 = _ r 21!'/( ~ • j) l 

are readily vel"itied. The defining relation tor the temperatures ri.ay 

be «xpreased in terms of ~ :: ~/2n , 
1"-- 2 . 

&.,A m +-/- : 0 as 

72. 

Oomparlng the present definition ot 11o with the one ot. the last section~ 

we notice that the equipartiticm law tor energy is quite different; tor the 

the two types ot statistics in the ultrarelat1Vist1c domain. 'l'he final 

aa,mptotic expressi~n for the covariant denait7 turna out to be 

UR 1· 11[~ Lj .21t 
e'lt 

.,...,., - ·? x2 i 2Tr·2~ -
·It 

73. 

\ 
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0. Statistical Correlations 

In the previoue chapter, we indicated a method baaed on second 

quantiation which could be used to t.ake into account statistical 

correlations having their source in the indietinguieb&bility of 

~. 

eleaar1'tal7 particles. In this aect.ion, we should like to deal with 

the probl.m in a manner closer in spirit. to the thinking o! Planck in 

connection with the quantum bypotheeie. Because of the somewhat. cl'Wll15y-

dietinotion between generic and specific phase apace and the entropy 

paradox which it e1taile, we should like to picture t.he clAssical 

situation somewhat differentlY. 

Let w [ x(l), ~(2), ••• i(n) J be the probability or finding 

n disttngul.shable particles at the !Qllorlng placee1 the first 

partial• at a particular point ot :s.ta I space h whoee coorct:s.nat.• 

. -, ...,.(1) . 
. vector is S 1 = x , the second in its ·r apace ~ 2 at 

~ ~ ~ . f2 : . -:<2) 1 the n•th at Jn = x(n). Each particle 'Whose coordinate 

"t'ector appears as an arsument. ot W may be regarded aa a single 

representative ct a species ot particles indistinguishable among 

theaael"t'ea. The conventional /" space (reduced to n dimensions) is 
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now the apace of the distinct species; the r apace of each species 

ie poJ)Ul.ated by its 1n4istinguiehe.ble members. 

We now ·transcribe W rtl}J , reduced. to a. single representative 

of a single species, into this new language. Dividing the~ apace of 

the species into a. denumbera.ble set of neighborhoods, ea.ch centered about 

..,/;> 

a point ! 1, we introduce a neighborhood fun~tion n [ S 1 ] w1 th property 

76a. 

~ = ~(l) 
~1 

76b • 

. normalized according to 

· · • ~-= · · · W [n ff 11 • .n H 2 J. • .n l~ sJ · · .J : 1 • n [~ al . 
77. 

This awkward cH..rls.ion into neighborhoods may- be dispensed. )d.th 11' we 

introduce a fUnction ~( ! ) with the property thAt its integral over 
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~ 

the ·ji neighborhood c(j1 > is equal to n [ ~i] . Relatione 76 

expressed in terms of ,, ( ! ) read 

0 

-- 1 

It is clear that 76' will be satisfied if we set 

11 f -;Cl) 

~ ~(l} 
J 1 : X 76a• 

76b' 

78. 

The probability distribution function ·lf [ n(J' 1) ••• n( J 
8

) •• -} 

on sets of occupation numbers } n(j 
8

) f is now replaced by a .tunctional 

W J ')) ( ~ ) } on 1'comp;lexione0 Y( ~ ) • · The sums appearing in the · 

normalization cord.ition 77 will be replaced by a "sum over complexions" 

(in obvious anal.og;v to Fe)"m!J.an's "integral over paths") and the exnreesion 

transcribed ae 

= l. 77' • 

In actual co~putatione, 77' 'Will be regarded as the lind,t of 77 when the 

set 1 f 1 1 becomes very dense. 
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It. is the t.ime dependent quantity, ) (} , t) = ~ ( J - x( t)) , which 

replaces the coordinates and momentam a new dynnmical variable. When 

dealing witJl single representatives of each soocies, its use is optional; 

otherwise, if not compulsory, at least sometimes desirable. The dynamical 

equations of -J(J , t) are those of a hydrodynB.mic density: its time 

derivative may be expressed as the divergence of a current, the t~e 

derivative ot the current. involves the divergence of a. stress tensor• and 

eo forth. E(IUntion 76a•, regarded as a restriction on the admissable 

ei.ngul.ar1t1es of a h)"drodyns.mi.c density, in effect quantizes it. Only a 

single point contributes to the integral 76b 1 • 

To include more than one member of the species, we retain the 

functional fonn of W ' Y( J ) ~ but augment its range by modifying 76. 

Thus for n particles or the species, we should have 

To retain the quantization, we permit 76a" to p:-o'duce only integral 

contributions from singularities. A crucial point., howe'ler, turns out 

to be whether we retain 76a' in the form 

76b". 
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or replace it With a more general 

N • 

We aba.ll refer to N as the etatietical capacity of the species. It 

appeal"8 to aeaume only' two valuea, N : l and N :. fS) • We retain, 

'however, the letter N in order to deal with both caeee together .. 

Condition 76b" is not especially pertinent to the high .nergy domain. A 

more detailed vtinion of 76a" would be 

' Max l11 = N , 

with the correaponding generalization ot the representation 78 to 

78 1 

P'or the discussion to follcnr, it will be convenient not to regard J as 

necee$&1"111 the momentum or coordinate variable of a single particles 

but to &dmi t more general parametrizat ions ot the ~ eJ)&ce. We &hall 
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..., - ... tbua writ• k(S) where, of course, k(k) : k. The parametrizations 

called tor in quantwl theory may be eo degenerate as to refer to & disoret• 

set ot points only. With this a4ded flexibility we can treat the classieal 

and quantum oaee in a uniform manner. 

Ae an el-.nentar;y example, let us conaider the micl"'canonical 

diatribution 

--
79. 

tor & ~stem of noninteraoting identical particles of statistical capacity 

J haYing only one constant of motion E. 1'o evaluate fg , we r.epresent 

it, as before, in the torm 

. 
5
. s [-i!J 

D - l d'fe \E--
27r . 

where now, however, 

• '1/J( 'l;") -- p. . - 'i' ~ H( ~ ) Y( f )d ~ 
'iJ( ~) • 

= 
t1J1 . . -(lf +1) t'H [ F .. J 
/,/ 1-e 

1 - .-1'H ( f a J 

r -(N +1) 1.'H [f sJ 
: exp L .2::, log .;;.1_-_e..._ _____ _ 

II 1- e- "t'H(~e) 
• 
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Introducing a new deM1ty e ( l ) = ~ ( f - ~ 8 ) , we rewrite 

the last equation as 

-(N t- 1) 'tH( J ) 
~ d ~ ~ ( ~) log 1 - e · r s . -"t<H< ~ > . l- e r 

• 

80. 

The form eo aurvtves the tranai tion from classical to quantum 

theoey.. Concepts from the latter are needed o~ tor the parametrization 

. ot the I space and the evaluation of, e F and are ba.sicall.y a problem 

in exact rather than statistical quantum dynamics.. Thus it all but a 

denumerable set ( t 1, e 2, •.• ) ot values ot H is excluded by a wave 

mechanical boundary condition, the ~ space becomes discrete. Taking 

the value of f at these points as·· g
8

, the degeneracy of the levels, 

we have the familiar expression 

ge 

-(N f 1) 1:' e. 
1 ~ e 8 

- ~ E--8 l- e 

For e. quasi-continuum ot States of free scalar pa.rt.iole$, we use 

f - k, E>'f' - I and SO becomes - -
(2 7f)3 

s d3k 
-(N -t l) t'H(k) 

<f<'t> - v (2'ff)3 
log A .... lie - 1- e- ?;H(k) 

80'• • 
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The thennodyne!ni.c formalism of the previous section was e. 

simplitication resulting from the fact that yc 't) oonaist.Gct of a sum 

. . 
of a large number n o~ bounded terms and was in essence an expansion in 

(n)-t ae a t:mraznetor of mnallness. In forms ty-ptfied by 80" lt is the 

lllll&llitud.• of ( r cl F e<! ~ ~ t.hat. is used .... a parameter. With this 

modification, the classical machinery oan be taken over and the int.rinsic 
,. 

tei!lperature defined as that value of l for which 

E :: r d ~ e< (!) e< ~> l- . 1 
j S S 5 . e 't'H( ~) - 1 

N + 1 ] 
e "t(N t-l)H( ~ ) _ l 

• 

81. 

It is natural to interpr¢ Sl es E = S d f E(J) where E( f) is an 

energy density, the energy per unit volume of ,P- apace •. It then follows 

that ~ ( f) is the number of states per unit volume a.t .the pc>int } , 

the va.lu~ of the energy of a pa.J:Itiole when located at that point, 

N +-1 82. 
"t(N t-l)H( J ) 

e - l 

the expected number of particles in a state at the point J . Equation 82 
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contains in it the usual "F.D. and E.B. formulas." What is of greater 

interest in connection With high energy models is not the expectation value 

n{ l) but the underlying probability- W [ n( ~ ) ] aver Which n( f) is 

-
stmmed ~n order to arrive at n{ ~ ) 

. ' 
An elementar.y and somewhat loose derivation of 82 may be of help. 

Let us consider a ~ space for a species with statistical capacity N, 

tocusaing our attention on a particular J,oint j . It is in the spirit of 

Maxwell-Boltzmann statistics to say that the probability ot finding a 

qat• at tlte point·} , it ita energy th~re is H(} ) , is given by 

[ 
-?'H( J) j 1 ] : A e , where A 1e a normalization constant 1 if ita 

- ('-2H(~ ) 
energy happen~~ to be 2H(j=), it is plausible that W} [ 2 ] :: A e • 

RemGIIlbering that the ca'J)aeity ot the species is N, we may 88.1' 

- -?:H(~) w! f •] :. A e • S it a~ N and w~ [ s J :. o it e > N. 

Thue the correlation intN>d.uoed by the exclusion principle affects only 

N 
the normalization cenat.ant A. We find from r w~ (s] 

•=<> s 
:: 1 that 
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-s 'hi(~) 
:::: w (0) e r 

.r . 
s ~ N 

0 8 > 0 J 

84. 
l _ 

6
- . (N + 1) H(j)t" 

This then is the probability distribution which underlies 82 as ~ be readily 

verified with. the aid ot 8.3. 

To make 84 more convincing and to illustrate a point of technique, 

we shall derive 1t direct.ly .fr®l 79. Let ue consider a domain E in 

r space with the characteristic function /(
0

( S). The probabiUty 

W [n; D J of finding n particles in D is clearly 

W (n; D] 
. -l 

: (=> f (nJ D) 
E E 

85a. 

~~~(n, D) : C>'(_i) b(n- s d~ ,I(Jl_;;(D(~))~(E- ~ dk ,1( p H(p) • 

85b. 

The first ~ symbol in the right member of 85b is a Kronecker rather than 

e. Dirac delta. The Fourier parameter associated with its axrmneion will 

be denoted by A . l'ie thus have 
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s [-iT]- o [ ... iTJ n, o] 
e . 86. 

The entropy function S in ·86 ie tbe same ae that encountered in connection 

. with the ~presentation ot eE' It ie thus Q whieh renders the Fourier 

. (N,D) . 
image of e E different trom that of f'E. We shall shortly relate 

it to the generating function for the production of various munber of mesons. 

!n example 86 G(l'a n, D) ie explicitly given bJ' 

d./\.. -21r' 

-tn~... -a< r ;A, n> 
e e , --

where G( 7J A, D) after tbe evaluation of the sum ov~ complexions 
• 

'may be ·written as 

-rH+i..A 

~ ( r ) Ao { f ) log 1 - e- t H 
l- e · 

In the thermodynamic Um1 t, according' to 58, 

- 2 - (G•( 1:)] 

..(N•l) ~ H 
1-e 

-tN+i)tH fi(Ntl)A • 
l ... e 

sa. 

S(i=) - G(f) 2 rsn( f) - G"( .f)J 
89a. : . 

~{=2'11'::::::;:[ s=n =( i=)= .. -=G=" (=Lt:::) J::"' 
• 
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where we have made use ot the tact that S' ( i) : 0 , and 

..... 
5{ 1:') 

e • 89b. 

It ia at this et.age where the aatrOl!lp'tiion, that the system of interest is 

aall tlontoared with the bath, can be used to obtain a sim!)le expression ot 

'If [nJ D] . In this case 

-
w(nJ oJ : --

-G{ 7:; n D) 
e 90. 

In arriving at 90, a cert.a1n amount of caution tmat be exereieed in 

subtt-aot1ng large quantities not to throw out the syetem with the bath. 

Going baok to fT'/, •e transform the right member into a conto\ll" 

integral about the origin 

...Q [1:; z, D] 
e 91. 

c 

and separate ottt from Q [ '!' ; z, D ] a term independent ot z 1 

G(1"';~D): G(t'JOD)+J:l(-t;zD) 92. 

92a.. 



r 
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-1H 
b - z e 

R 1-1 - 1::(N + l)Ji 
1- z e 

.: 

• ... 92b • 

'tbe p;robabil1t7 W [n
1
D] IDaY' then be expressed as 

Speeial1sing tbe doma~ D to a point one rea~ recove:e 84 • 

.Expressions ot the type 9) tor the product~on ot me&ofts at high 

energies trequentl.7 emerge • as a result of .certain approximations in .fie~ 

theor;y. We hav$ given the derivation ot 93 in some detail in order to 

exhibit the VerT simple statistical assumption that these expressions 

involve. Tbe relation ot 93 to the averaged n ot t.he P.D. an4 E.D. 

formula abO\ll.d. aleo be borne in mind as a usetul guide to 1nt.erpreiat1on. 

More useful at high energies than the &?proximation 93 ot 85 would 

be one to a relati'f'iatic density with not onlJ' energy but also momentum 
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conserved. We shall use Fermi 1s 

94. 

a.s an example and indicate onlT the key tormulas, since the ealcul.ational 

teehniquee were illustrated on the previous example. We have in this case 

~.,. 

7•k = Y·k - Yo ko 

k0 : (k
2+ l)~ • 

This expreeoion may be used to define the relativistic tm:tperat.ures 

--(y 0;, Y ) ~ The analOg\19 of 93 emerges without COI!lplications and with the 

altered Qefinitons 

w [o. n] log 1 - e 
(y·k{ f ))I( 

1 
_ 

8 
(y•k( y ) ) ~(N + 1) 

96. 

9.,. 

Making the f and J identification which led from 80 to son and denoting 

by D an angular range, forliillla 97 could be used to ast1r .. ate the number of 
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part1c1Gs scattered into a gi.\ren solid angle. A great me.n:y other examples 

and appllcationa·could be given. 
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DISCUSSION- ' . -, 

It is CU~O!I!A%7 to include ~~ an artiele of this ·nature a. mere 

•• <#•' ""). ·. 

th_at ·vent into ·them. None of this seems· to be called for in the present 

'' • 
case~ The rather detailed aswmptions that have to be made in order ~o 

' . 
obtain definite _predictions involve so tw intellectual conmitments that 

·· to-note. dlsagrecent. (or even agream~t) with the experiment would h'!rdl:Y 
. .. .... 

be a :rewarding experience. The- interested reader may be referred to the 
'' ' '• 

~i~t> ~iew'articie' by' MUbum refle~ing the state ot atta1re until about 

' .-~h~ 'middle ot 1954 and to a_ paper b.r Lindenb4um. ·in this volmne tor references 
.. 

to more r~cent work. Ne~ther ehall we criticize the-various assumptions 
·. 

' that were l'DaCie b;r various &utbors. This would hardly' be charitable, since 
f . . - - . 

~· 
., . . ~ ... ~ 

most ot than are aware .. ot the tentative and exploratory na~Ul'e. ot their work 

. ' ' ' . ' I . . . 
:and are: only_ too eager to point to its shortcomings. · Inetead we should like 

• 4 . - - ~ • 

. .. ~ . 
4 to· cSiscuse s«Weral .themes which have appeared 1n the literature that- seem . ' 

to' be eapable ot further development ~ 
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The Ferrn.i Contraction 

Foremost among these is . the "Contract_ion Hypothesis" of Fermi [ l] • 

· . Its statement. in 49 may be written in the form 

k (e) 
= o ...fLo ; 49'. 

K_(s) 

The taotor (kof 'K_) multiplies the covariant element of volume lS. d.?;\ 
•. ko 

turning 1t into the noncovariant d
3k. It is difficult to see· how it 

could e!llerge from any o.t. the eovariantly-tormulated theoriee; we shall 

therefore disregard it and focus o~ attention on ~0• 

. 1'he "Fermi Contraction" derives some support from the idea ot the 

Lorentz contraction. We therefore start by treating the latter in the 

context ot our di~oussi.On with some care.. We consider .n... : k ..(l....M.: . r /. 

~ -~: ;d 'i- .Jf"', , where ~ is a spaoe-like surface. Fo~ a nat 
cr''' . 

. 0""' , ..1}..
0 

baa the character. of a volume.· It is. evident trom its 

0 

construetion that ..1\- is a scalar. Hence tor any two frames 0 and C 1 

0 
we must have ..{\.;. : 

I 
..(l.... • ExplioitlT (with some additional equations) 

0 0 
~f)..,t,o.. - k' .n.. t , / - r r 

0 0 

; k k = )' r-· 
98. 
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0\. 0 0 
We now' choose· C from among the frames in whiCh k~ c (0, · o, o, k0) ; 

and c• , :ln ~icb· ..1\!r.·= (0~ 0, b, ~0). This 18 pcia·sible because of 

the tiine'-like · nat.ure of k and JL • . We can also take · k
1 

.. · = ( k 
1

1 , 0, . 0, k 
1 

0 ) 
F 

·. 98 in these specialized f.ramee, we deduce 

t 
. .../>- ..;.. 

.· . 0 . -

0 . 
·.~·o, 

Th~ .first of ~hese is the usual expression for the Lorent~ e~ntractions; 

· · the secohd tells us that the velocity ot· 0' relative to C must. be 
\. 0 . 

. re~~ to the time-like tilt of the space-lik~ surfaoe in g . We are 

·. :not tree to choose bo~h arbitrat-ily •.. In the ca~e of two colliding 
·.4-. 

nucleons a and b, one ·oan show that there exis~s a s~ngle frame which 

is. a ow (a) and . 0'' (b) am at. the same time CM frame ('~nat is one in which ·. 

we have 
o · · o· · • .. t 

.1\-.. i/ ...(). 0 = k';' /1{0 
a . . a ~ . a 

J tar. G1(b), , 
· ·o . o , . , 
..o- I ...(l.. 0 = . k1 I -k0. • 

b ·b .. b b 

0 0 0 0 
.Hence by taking ~ 1/ _r;to : - Jl;' 1/ -'to we attain the d·esired 

trame. _In it. kf'· = (t, (k
2 + x 2>J~, k =· c~tt. o?+,~2)~) ,··where 

a . . b~ 

. 2 2 2 
k ie related to the total energy of the system K by k a t K . · - )\; • 0 o. 
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The contraction factor tor each volume is now ('1 - k1: ) i 
' ko 

In the Fermi scheme, the same ~ is taken for every particle 

.. . . . 0 
em&J'ging tram th~ collisic;,n and is also. identified with the ....n..... ror each 

. · c N N 
oolllding nucleon. Thus ..n- : ~ -';r . Let us condder the collision 

in the OM frame which is also a C t frame tor each nucleon. Xn it 

c I N t N 
.f'l- . - k 

0 
~0 • Fermi pictures the collision as proceeding in 

three stages. In the first, 
,N 

k 0 is ver,r large because of the "ordered" 

·translational kinetic e~ergy of the nuc1eon. The two nucleons ld.th very 

N (ord) . N (ord) 
high k

0 
collide and are struck. 'The k

0 
is now reduced 

to 2 Me¥ .t most of it having turned into dieord.ered energy which is 

~rtitioned among various degrees ot freedom of the qstem according to 

statistical laws. Finally the quae1-equ1libr.ium state breaks up, and the 

probability of disintegration into va.rioue modes is taken to be proportional. 

t.o their statistical weights. The basic assumption ot Fermi is equivalent 

to postulating an approximate high energy collision invariant Which 

' survives the transition between the incident. and the "stuck" stage. The 

invariant in queetion is expreesi~le as 



• 99 • 

In this SXJ)reseion k ord J = k N ...n. ord ] is the ·qua.ntit-a 
· o inc o J o inc " 

· ordJ · 
ot interest; k0 stuck : Mc/fi because almost all energy is now 

thermal.J tinalls. for ...f"L ord] we may take a spherical volume of 
· -:- ~ stuck ' 

radius of the compton wavelength of the ~ mesons, "s1noe the pion 

iield surrounding the nuclelia1 extends to this distance... All these 

quantities at"e «alua.ted in the OM system in which the stuck nucleons are 

at ~at. We see no reasons for the volume of the pions surrounding the 

etuck nuclett& to apPear contracted f.or an obserYer in that frame. The 

B.l"gwnent .sometimes presented, that the contracted kinematic state ot a 

. . . . . ' 
rno:ving nucleon is "frozen in" when the nucleon stops and that i tJl thawing 

t~e is longer than th~ life time o! the . quasi-equilibrium state, i$ 

eom.e-what unconvincing. However with the assumption of a high energy . 

collisional invariant and without this strange kinematics, we deduce from 99 

' 99. 
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the Fermi contraction tact or 99 1 ~ee numerica_ll.T with -the Lorentz 

cont~ction ·.taotor obtained previously. It is well to realize. hOw-ever, 

that such agreement is not ·required by any physical principles and 99' 

·.· canti~ be. derived from 98 1 • Regarded -merely as an attempt to invent a 

', 
.new h~ ~ergy colU.ision inva.t-iant, this idea or Fermi merita close study .. 

·'· 

.. 
.. ' 

.• 
,· ... 



.. 

Additional constants. ot motion. 

In his original paper Fermi carried out hie calculations witb 49a 
. ' ' ' 

. fot- nucleons and .501a for mesons and tried to allow for the conservation 

of momentum by an essentially dimensional argument. The _explicit 

¢Uculatio~e of.· Lepore and Stuart' [ g 1 have ehqwn that one. mll$t :rll-oceed 

. . 

their. r-esUlt~ dlffere·d considerably fro~ those cit ·Fermi .. ' In e441tion to . .· 

\t ,· 

poitlting Q~t· the need .f~r· careful treatment of these 'integra:~:s ·of motions, 
. . ' . . . ·. . . . 

. these aut~ors also introduced a po~erful t~chnique that enables one to do · 

. . . Somewhat later, . L~pore. and rqeuman. {9] investigated ~-~e ~ffe-cts. of 
' . 

. including ·the ce~ter of mass ot .the system among the c~nserved. quantiti~s~ . ' ' . . .. ". . 

For relativistic · .. particles the new conservation· law tu%119 ou:t to be quite 

Wi~h thle flcontraotion fact·or-" supplied by relativity thes~ authors felt · 

that ·tpey could afford .to drop tho Fermi contraction hypothesis. This 

modified ·model would seem to favor low energy high multiplicity events. 

A"crude attempt to stu~ the effects of conservation of angular 

momentum on the angu.lar distribution of particles emerging from a high 



energy ooiDs! on wa.e made b:Y Penni· [ 10] • The subject is of ·considerable 

physical interest in connection with high energy stars. It is hoped tha.t the 

et.t;ie spherically sy.mmetric model discussed in the .first chapter may be 

.ot · ·aoJM help in· this connection. 

Final state interactions. 

Retaining the basic statistical outlook and the structure 11 for 

' ' ' + ' ' 
th\9 denaity functions, one could modify the propagators ..6. defined b,y 

31 and represented bilinearly in 30. Instead of free particle tm (x) •. s, 

one could insert. wave functions depending on a tew parameters fixed by 

eipertment. The mOdified pr(,pagators would no longer have to ea.tisty the 

Gordon-Klein equations, and through them some of our knowledge about 

the actual final states of interacting particles could be made to bear 

on the predictions ot the statistical model. l1ork on thts much need$<1 

ilnprovement ot the etat.istical model was initiated by Kovac [ 11] with 

encouraging results. 

The LindenlaJD..Sternheimer isobaric model. 

There may- be some features of high energy interaction which are 

too strong not to leave their individual marks on the outcome of the collision 
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: process in spite of the randomizing effect of. the ample energy and large 

muube're of· degre~s of freedom. By singling these out f'or ... epeo:ial attention, 

. '· 
,.·.• one ··could make the model more suitable for the treatment of the remainder. 

. · · Thts · i:s th~ View repres~n~ed by Lindenbaum and Sternheimer [12 J .. . 'In, 

, .. · ·, their· ~·cent attempt. in this dire7tion they s:Lngle out tne lso~ric 

- ... 

:.-~· : j. ~tat~ observed. in pion nucieon scattering for special treatment~. ·the 
' .. 

. . 

. . ~ .. ' .. :, ' reader .is referred t.o a forthcoming publication by these authors for a 
'. ':· . . -~ .. 

. · ~ •... 

. . . . . . . 

. ·. 

;" . 

' . '. 

r,' '' ' 



FOOTNOTES 

l. .The material quoted .in this ·~·~at~fl is from [11 0 

2. · ·The. meaning of th~ starred product symbol 1f* will best be explained 

on examples. · I·f an element of volume in phase space is wi-tt ten as a 

free prod\lot 

••• 

~he sym.bol 
. . * ·rJl? 3~ 3-> 
·'~l d P(s) d q(e) ma;r denote an .expression of t}le type 

' ·' . : ( 

_:.It mar also contain more than ~ne delta. function.. A CJ.uS:t1tity·. :YN [t1 •• • rN1 
. . . ~ ' . 

. . 

-.'.'· 

: g [F'l - Fl (.tl • • • t,.>] S [P '2 - p 2(1'1. • .fn) J . • • vl (fl) vli2) • •. , · .. 

· .~- irlaependent if t~.e joint distribution tunotion ~(xi x2 · ••• Xn) may 

be put in th~ form . S ~l - g1 (x1 •• ··XnU S (~ :- &.2Cxl •• • ) ~l (xl) (' 2(x2) • • • . • 
.• 

~· . . ' 

. · .3. .The tu.nction A frequently emplo;red in f.ield theor;r ie re;Lated to our 
-1'··~.. . 

+-4 by A .: .2 X Ll· • We have chosen the mu.ltipli·cative constant 

' in this manner in order to have the bilinear .representation 30 with f n 

normalized ln convection current 28 • 



4. 'lhias section-leans hea.rll.7 on 6 and 7 • 

. . ~ 

·,. 

·. 

·, 
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