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STATISTICAL MODELS FOR HIGH ENCRGY NUCLEAR REACTIONS
Maurice Neuman
Radiation Laboratory, University of California
Berkeley, Célifomia
INTRODUCT ION
During 1950, E. Fermd (1) published an "attempt to develop a
- | _
orude theoretical approach for calculating the outcome of muclear
' : 1
collisione with very high energy.” 1In it he proposes a-model for
the multiple production of mesons "which deviates from the unknown
truth in the opposite direction from conventional. theory” based on
weak coupling expansions. His proposal has some resamblance to the
points of view adopted by c’:thers "who also stress the importance of
the strong coupling for production processes of high multiplicity"
and Peonsists in pushing this point of view to its extreme conseguences.”

In doing so he is motivated bry' the hope "that it may be possible‘ to

bracket the corresct state of fact between the two theories” and the
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- belief that it "may perhaps be a fairly good approximation to actual

events at very high energy.”

| Schemaﬁically the "crude theoretical approach” may be put in
the following form. According to the "Golden Ruie"l, the transition -
rate v(fl, tz,;.. I 1) from an 1nitial state .(i.) to a final state
consisting of‘ N mesons (£, tz, 'IR) 48 given by the exvression

w(ty £, ... 1, , 1) = (’6)‘3L 27 63“) [ xgv(r [ 1) lz , where M, 1s

- the transition matrix with the dimension of energy [E] s+ ®Valuated

- on the energy shell E, and PE is the classical extension '5_.n phase

o _ . -1
of this shell, divided by & , and hence of dimension [E] «+ If the
usual device of normalizing the wave functions in a finite periodicity

o (p) N
volume V 4s employed, (’E may be written as a product e = PE R
_ | , 2

wvhere eE(_p) i3 the momentum space projection of the phase integral.

3ince V cannot appear in any physically significant context, this

. quantity raised to a high power must be cancelled by a similar one

~

coming from the transition matrix. On dimensional grounds we then have
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. 2 -N . o 2
]HEI = ¥ "n(fl  SYRTI l i) [E] where v, is a quantity
with dimension (¥ ¥, and 16 80 defined that [E ] 15 the same for

all (£). The expression for the transition rste may then be represented

« < Ty

P

as wi(f [ 1) = 27/. ”P;(r [ 1), where P.(f | 1) = g (D) velfy ooty | 1),
. Let us compare this expression with ‘a‘ dietribution function that could be

obtained from g' solution of the Licuville equation by integrating over

the conrigm;atioml variables and -iétaining only ﬁhe variables specifying

the moments of the particles. {A) Unlike VN appearing in PE s

) » , o . ., N '
¥y in © cannot be represented as a cogstrained product TZ; A [f s]

with factors each depor;ding_dn vgriablea >of one p;\rti.gle Qn,ly. "(B) The ‘

,quantity‘ vN‘ depends on the ;;rariablas (1) of the inftial etate of the

system, Property ('A) in a solu‘bion.of a classical statistical problem |

u:«mld indicate that the particles are stoohaaticaliy deperv&oﬁt in an

_ 'esscntial‘ mannef; ‘propert;y (B) ) that ‘t.h.e.st,a.f.e is not one of equilibrium,

i'he ‘co;-é qf‘Fefm‘d.' 8 idea is to argue that at high energy

vno'(tl Ly e fN ’ 1) = 777’ v'(t‘) constitutes none the less a

legitimate zero point approximation.
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Let ug.note that this involvesvtw; completely indqpondont o

assumptions corresponding to (B) and (A) respectively. It ip,poéaibleb’v
to have v'n(f1 fa... ] i) :'viﬂ(fl...fn) implying an oquilibriﬁmAgtgt?_

in which each particle deﬁendn in an essential manner on all the otﬁars_

that emerge during the process; on the'othe? haﬁd one might aasﬁme

| & | AT

ity <o Iy l i) = gfr' v (£, ! ) thus expressing a condition of

N . s ,

statistical independence without an equilibrium state. Property (B),
."ganerally possessed by matrix elementa, ii argued éway as f0110w5; In
a high energy nucleér coilision, when “the nnc}eons with their |
surrounding retinué of pions hi£ against eaoh.otﬁer, all tga‘portipn
'9{ space ;ccupied by the nudieon and their plon fields is i;ddenly
loaded with a.very‘great aﬁgunt of energy. The 1nberactiong or»tho plon
fieldalbeing strong and the number of posaiﬁle.states.of a givqn energy,
large...this energy will be distributed among the various degrees of
freedom according ﬁo statistical lawal' This is qualified by the remark |
ihat tonly those states that are'eaaily reachable from the initial siaio

may actually attain statistical equilibrium” and "the only type of
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A t,rans?.i:ibﬁs that are believed to be fast enough are of the Yukawa t.ype."

~ -Property (A) is dropped in a somewhat offhand manner and 1ittle is said

against 1%, "Our assumption of statistical equilibrium consists in

vy
kT

_epdgtpl’e_;ting.thag the square of the matrix element is merely proportibr_nal ‘
T to the prabahility that for a state in question all particles" (préamziahly

,ijeg)a’_rd‘e&’-aé ird‘ependent) Rare contained at t'.p_é same time inside ,v.’""

r

“g ¥

' .. . The discussion in this article will be largely limited to this

Ty cgntral 'i‘de.a of ?em&.. - Less extreme proposals aiming at greater realism

~

" - ' that have been made in recent years will not be considered. Fermi's -

. ,.own attempt to aéduce the form of Vi(fi) will be briefly prqeénbe_d

fz;'m; a sqmewh'at different point of view in the last section. The

ol principal reason for "bracketing the correct state of fact" between two

-4

extremes is the hope of setting up bases in these peripheral territories

from which rorayg' into the interior where "the unknown truth® is

' intphnchod might be conducted. The very remoteness of the region

charted by Fermi would seem to afford some safety for such an enterprise.

With this in mind we start with a Lorents covariant formulation

of the classical theory of the microcanonical ensemble. The eonfigurét.ton



b

f‘epace pi'ojections of the phase space .expression have to be treated with

' - some care and the requirement of Lorents 4invariance ‘seems to lead
‘_‘natﬁi-'aliy to a more specific form of the Permi proposai; a static,

L R D S

" spherically eymmetric model, Within it we can easily taks into account

4,4.

o %' the donée,_r'yatior‘x'qf the six vector of angular momentum, The classical '

Ny
!,

_ . ¢ .phagg apace" 'integrgl. having thus been given a vm_specific forﬁ\-wé .
R ‘pi-oc‘eje‘d:to examine the quantum mechanical S matrix expression with a-
-l view of finding a corresponding, structure.  This leads us to whet

oy ’ " T e

‘" appeafs to be covariant version of the Wigner coordinate-momentum

t

: Qiatlebuiién function [ 2] used bty this author in-conmection with

. 1;quanfuq corrections to classical statistics. This identification permits

o

- us a_l;so ‘to make a plauaiﬁle guess on how to include spin effects,
. . ) . . Ve
_statistical correlations due to indistinguishability and intersction .

" . in the final state into-the Fermi model. A good: desl of .space is then
h ., . . - ' . C ¢ ’ Lot R
devo@ed to the discussion of thermodynamic approximatiéns at very pigh

enorgies, Not much has been done alérig these lines and some of the

proi:l-em encountered are unllk,e'{:hosa'_ of the more conventional situations



. '
in statistical mechanics, We have tried to follow a classical procedure
* which would avoid scme of the difficulties connected with indistinguish-
: -abi_lity, and permit us to take :S.pt.o account quantum corral;at.ions.
Finam against _thﬁ‘.g-background we present a very brief discussion of
the more iﬁter;s‘ting ard i:opoful of the x"econt. work; For less reveent
| \ work'zm;i for mosﬁ detaiia the reader 1is beiné referred ’c‘p a review
article by Milburn f 3] which could be read with advantage in conjunction
| uith' this paper. Much had to i:e left out or baro}y'touched upon. It is
?oit. none th_a’léa.a, that a reasonably unified’ presentation might be

more useful than ‘a comprehensive survey.
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RELATIVISTIC DENSITY FUNCTIONS
| | ‘ ol 2 (m) o
Although the expression w(f | 1) =~ 4™ 27 (e ] P vy

calculsted from a relativistice field theory is an obvious covariant,
- Fermi's gzeroth order approximation to it,
- ~ -1 1[ ‘2 (p) . ] ‘ : . . .>

wolt | 1) =8 27(E]" ¢ TI s £,] 4is not. This derives

o . ,
-f‘r?fn the fact that the transformation properties of PO = é 'lles
A S o

. are essentially those of (G - (J , the classical density, which

- _ 2
- becomes a covarlant only when multiplied by ’ M } . We accordingly

- proceed to find a relativistic version of (9 = ép) VH. This will

U

| .;‘e'stﬁct the form of the zeroth order approximation to e

In ﬁew of‘ later applications we discuss - (O | in a cdntext.-in
wi;ich‘ this @Mity is meaningful classically, that is, in connection
_with the mcmeaxionicgl aistribution. " The probabiuiy of finding & -
closed system of - Il distinguishable particles’with éoordinat"as' ESE T
3"‘2 = Pps X3 = : (93 %), = a, voo Xgy = Pay and a sinzle ene‘ergrv integral
H at the point x of phase space after it has reached eqﬁiiibriuxn is

given by the exnression

) = SE - H) oL
j@x:)&‘ S( - B(x"))




-Pe
where B 4s the value of the energy integral. Ve now introduce a

sequence of density functions

Ogley - xg) = 8B - Hlxy .. xg)
pE(xl ces xi.-l.xﬂ.{—l xéﬁ) = S dx, S}(E - H(x1 vor Xg))

LY

PE(XQ. ese xi-l xi+1 [N xj-l x3+l ) xw) - 5 dxi ad S(E"' H(xl...X&I))
312 = del see dx&‘ SZE*H(XI, 'rry x&q)) .
The right member of 1 is the ratioc of the first to the last member of
this sequence. With the aid of the notation just imtroduced we may write

not only for the total but also for the marginal distributions

s ey a® - - E

where Xx may now be any subset of the set of the 6K variables. Changes
in rendom variables can now also be affected with ease. If inetead of Xg
we are interested in the probability distridbution of f o = !_-a(x), we

obtain it with the aid of the expression
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W ‘L—fa]

"

A O A A )

H

-1
eE E( .? ‘) )
thus defining the density function for the } 's variables, Of particular
interest in thermodynamic applications is the case of an H consisting
‘ ' 1 2 s
of several independent parts H = H (xy) + H (1:2) + .o +H.(x8).
Chooaing the random energies of the several parte as new variables, we

| obtain | ’

. a
Wy [él _62 vos 58] = &S - éli" €y ..o -Ge) (’E .{oel' eez ‘...eesi—

~an exvression for the distribution of the energy among the several parts
of the system,

Since the concept of ecuilibrium ocoupies & central position in
Fermi's mo@t » it might be helpful to have a working icliea‘ on how the
migroeanonieal distribution 1 assoclated wi;hh it arises from exact
mechanics. Being of certain knowledgg that at %, 'x('t.o) = Xg» this
“discipline tells us how to cxmress x(t) = x(t; xg, to),-—é ‘task which

may be broksn un into two steps. We exnress x(t) = x(t; x(te), to)



1= b

without regard to our state of knowledge about x(ty); we.average the
- expression 60 c;btaihe'd_ over & distribution W [x(tg) ] - shich, in the

+ " ~‘cage of exact mechanics, is an improper f}métion-

s
&+

" [x(td)] o ‘T'r S(xi(to‘) - xoi). reflecting our certainly that at
.to',-' x_(tb) = Xg.- The transition from exact to étatiatiégl__ mec,hn_iidh'

PR

| consists in modifying the second step. Our doubts about the initial

&
v

"v'a],xi'ea_ of all the ;griablou might prompt us to .replaco the in.fin.ito]_-.!y

_ peakod product. o!‘d;elt.a_ Amt'u.:t“ion ‘by a completely regular'dis'trﬁlbﬁt.ion.

' . Thishwavarvould be wery bad methodology. . ilt};ouéim, m.,;l_n.'act;i..qe, there

s maybo ‘apu;m grounds for as@!_.ﬂg such broad 1§norz;nce, the wé.derly:l'.ng

R .r.ea;o"gm are !_:a:nsi;:ally. different for difter@nt variablea; Ir t‘ho total

enar;gy &nd momentum of the sydt;sm ;re not known exactly, it is because

of .pracéical’.lim'it.atione on a macroaeo;-aic iaborat.ory moasuranoﬁﬁ the:
: - ' R

- vast -llmjority, hcﬂ;‘mr',_ of other vari.ablea_are uncertain boca{nee .of the

_ i,oompleidf_ty._.a;;d .inacéaaaiﬁil,iti of .‘1'.he micro;co._pi.? world. ."de accordingl_y‘
_aeperat.e“ tl'me spocialty of analysis of laborat;)ry.' data fro:;x that ot.‘

themMcs. l?or the l_at,'oer we reserve the program of investigating

the implications of the replacement



-12-

efx)] = T8 ey - xS € Hxt0)) v [xo)]
. S dx(to) S@' - H [x(to)]) w {x(t())]
kL.

alone, in vhich ihe ensrgy remains oert.ain ard the otfxer variables are
uoarod out. Putting W = const. amounts to the ass@hion of equal

& priori initial weights and makes 4 identical with the microcanonical
distriﬁution l. Itisa tundamonta.l (unproven) statement of statistical
mechanics that the actual value of x(t; tg, x.(to)) av'arago‘d over 4

. do§§ not_ differ méh from what would be obtained by ‘avoraging over 1,

it ¢ ‘13 appreciably different from ty. The time interval t - tg

nay be regarded as the relaxation time, and the ensuing state, that

of equilibriva for the sysf.om. Under its regime, macroscopic measurements
on systems wﬁ_ich started out from vastly different initiel conditions

yield substantially identical results. In formulas

- §axte) 25 toxte0)] (8 - nlteg)]) wfxieo)]

x(t3 to, x(tg)) = | e
S dx(ty) 8(1% - R [x(to)_]) w [x(to)] _—

Eq. 5 continued.




E

"

y
3 :

: ‘S{“F‘- f's:[s'-u_(;->]-w;fg‘3, o o

~13- »

-

[ 4

fx(i-.o)
I x(t) S[z . [x(t.o; t, x(t))_]] Sx(to; t, x(t))z

x(t) .

- . .
-

T ]
'. S ax(t) $f S[s H[x(to; t, x(t))_]} gx(to; t x(f-))t _

i zf(t)

’

s,

S.‘.’f" S(s-'n(fn'wt(g)-

&

‘fho seocond member is a representation of the first in t.e‘rms‘ of integrals‘

oy
4+

_ovér. x(to); the third, over x(t). To reéch the fourth we make use of

I.iouville's theorem which asserts that the Jacobian det.ermimnt

(t)

8l = 1, and define a new probability distribtution W, by means
P X(t) . .

.- ?N '.ot the relat.ion; v[x(i;o)] =- “5"“’0‘ t, x(t)z z ﬁth[x(t)'} ... .-Tha

‘new function satisfies the Liouville equation and, inserted in 4 instead.

of’ w[ x(to)] , represemts its time dependent normsliszed soi{zi_;ic;n on the

"
B

energy shell. It will in genersl depend on the initial conditions of

the system, as wﬂ.l the sequaﬁco ot densities ¢ 2’ e E(xl)... (’E(xl.‘.xw)

¥

.4‘_ 8 (E.= H(x)) wt(x) s derived from it. It wasa similarlty to such

a PE that was suggested in the introduction in connection with the



quantum mechanical transition probability. In formmla 5 ) to reach the last
member we also ha& to limit ocurselves to conservative @ngmical systems
for which Hy(x) = H(x), Obsérvé that if w [x(ta)] = const, then
also w, [x ] = const. A microcanonical distribution is thus seen to be
stable with ;'eapact to t.einporal changs. A broad cléas o_f other distributions
is balieved’to tend to this stable one when permitted to esvolve freely in
tame.

We shall mnow examine the simplest of the é's, PE’ with a view
of finding its relat-ivlstié generalization, The Hamiltonian of the
complete aystem is agsumed to be the sum of the Hamiltonian of free h

particles composing it and PE is written as |

*

.?E: XZ;T 3(m) 3\77’ 3(n).x()

(21715)

= j'{;{’ _L_sa(m; 8[—0 Z p,+m S'ﬂ" d“n)}(n(x)
. (27
6.

The symbol ’Xn(x) denotes the characteristic funotion of the finite domain

of the configuration space which is available to the particle n. Its



value is one when x 48 inside the dmin, zero vhen outside. It will

-be‘ com;nient t.o ext@nd this dafka.n.'t;ion.;zﬁ ‘1nc1ude ;:ther functions

_ which vanieh sufficiently rapidly at ;nrinigy. The eymgol.jjqn Iwiil_

Zrom now on denote members of tﬁio broacier ¢lass, Int.rod.ucing new Vagi’ablas

p ek, me oK, Es AC K, P’E . e Q°x . we rewrite 6 as
(s Y Sl T RE ] G .
, 8 n .
: 7.

which is readily seen to be equivalent to

j771[ (m)A () (m)” [Ko"Z%(BH

' o
v kg d},(s) y .,
S T W A

At %) = X el 8, - s )
27’ [ x?

" 8(kg)

1, ¥k >0

=0, kg4 O.
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The momentumn integrat@on 1&% invariant if not only the energy
but also momentum is conserved., We accordingly replace gK by PK

in which

s(xo SI:: y = 5k, - Zk“’)S[x Z*‘"]:S(x-s.#“’).

. I'rhe integral then becomes

‘(7‘]’ RN (k’“, Xy S - $76') -
s - _

(s) |
g7]§ Ko 432‘”)7((5)(::‘) :

It S8 now a ’aimp;le matter to make 10 form invariant and even
manifeétly 80, We deoiare _ ); to be a scalar, that is to have the‘ same
numerical value at the same geametrical point x without regard to the‘.
coordin;tinatidn (xl;' Xy Xg, xl.) -adapted for the point | x.b This
does nbt;i‘molva any asatﬁnption about the functional dependence of Z on
X. We further assume )\-1 k, dBi’ to be a scalar product of two four

Pl A

#*, the latter of which happens to reduce

~1
‘vectors X ])‘b. and dg-
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in our coordinate system to [O, 0, 0, ~ 163:? ] . Equation 10 may then

be written

ey = Sa ae® 4" (@) (), 577, ac, A (%) /Y(s)
| ol

11.
where 2( - k ?g . The restriction to flat surfaces (O~)
5a On
in carrying out the integration in 1l can also be removed. Nor need the
confinguration space of every particle be on the same apaco-;liko surface,
It 4s, however, in line with the idea of equilibrium to require that Px
does not dspend on the system of surfaces adopted. This requirement is

satisfied if

-] = O . 120

We ghall designate with the superscript zero quantities evaluated in a

frams, = (0, 0, O, koc), in which the particle is at rest. Because

0
k
o
of the svecial form Z w T :),,_ &S , condition 12 reduces in the

rest frame of the s'th particle to

o o
Z((;’.:) . 13.
s)



. 'k‘ . we iﬁposé a more 'stringe_ni requirement of covariancé_ on PK' This

... . but it ehall aleo adiit the group.  This requirement reduces to a

. .',,..i‘gﬁ;wsziu have Fx) = Xy, 2 X (2, ._..‘;z_?(x/;):.

-
,

.~ be the

-3

‘the third exprésses qur'dqniand. It will be satisfied 4f X(x).- commutes

-18-

A niodel satisfying this condition will be called statiec.

I't‘{ order to narrow: doimn the rarige of possible choices of /Z/-u,

-

e

e _"'qﬁg'giity gﬁall hot only .'transfoi'ml as a qcal.lar under the Lorentn'.:gyoup

L +

]
. - . *

hY

- ~.condition on A which e prev.ioually'd.aﬁned to be a acdl_ar.' , /’( shall

's’am‘_o'mnct,i.on 'of the 'oopx:diné.te'.variabléh .(xi, "Xy %3, xh) of

-

.=- " the point. x 'in whatever Lorents frame these are evaluated. Thus if

Ne o

1:1 one .tra;; 'ive' "hévg 3 x}* } and 1;; afniher i’;’,‘i .= _{lLk;,'x ) g s i

. .
v
.

' ,“In going from the first to. the. second member we express th_'e‘.'new'coqrdinht.e

L} . .
- T

wvariables xl',u, in terms of the old ones X by means of transformation

4.’ . Lo T 13

. cosffloients Lj the second equality sign is a definition of X'j the

-
P

i
N 4

with the écneratbra.éf the Lorents group‘.f Observe that the.‘ ;:haractjéristic
function apprqpriate't;o a large finite box which'is usually employod does

" not satisfy this requirement. It 1s in the gense of group invariance that

't.hp integration over a finite volume is & noncovariant operation.



B

* o
e

- 7( to be a function ot the dimensionlesa variable o

_ _1'9...

' To i:rched _'-;hipther we need some additionsl ass\mpf‘.iop.; ’_K.eeping

. 1:; mindthat ?K will ovehtual]j-bb accepted as a geroth Qt;d‘.at apvrcximntion

A

. ‘to'a quant\m mechanical problen, it 'o'qﬁa reasonsble to require that ¥
v - - ' w‘v;; : . « - . ! Al 4 ! ’ . - . ’ - * ‘ . . a

: -be'faphq‘n_'e;‘m': aymatrlq in ihe ,'fm s.n*uhilz'ti:the' "J'th pérticle s at,

. x; symbole. ggu ) = % g?:,;f 76 (3) = (x[’; o, *’"‘3 :

. e v
D -, N .
. oo :
SO AR . . Co
. . . . P . - R N I
s . + . . . N . .

LA T ' - ;..’ i . - e h [ 3 N . “ T :
' The )fi_ret,eqnalt:lfty sign 1s a definition of .. X ; the second makes use of

e f.h‘e‘ imo‘sed‘ group Warimioe; the third 'axpréeﬁes ourdemand ‘We regard
.'u\ e, oo~ 5 - - - »,' . . o+ .

I3 . . 1 i . . P

K hﬁw"‘ ,_13

o This impégeia-uo.aéditional restriction, ai.nc'o we. quality it with the

*' ‘gubscript - 8 - _d-n Xa . It is now readily seen that . ,

B SN IR R “/"°.(,) @ o
A TS E SR 70 A R
’ | 14.

(s) ‘ | | ¢
The symbol L,“) in li; is an abbreviation for tha mponsnt x

x/fa) k‘)(s) V( ) /,E s) o6f the angular momentum six veotor' of the e'th

particle, - We may acoordingly write
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Xs)(x) : 2‘/(a) }-—'I’(B)J L

and expression 11 becomes

(s)

Py = SZf ey 4 0, o) S @; agy @ 2.7 [L]
o

16

The mm&eristic function X limiting the configuration space avilable
to a particle thus depemnds on its onergy mamentum four veotor throuch o}% ,
A model of this form nay be called statio, spherically symmctric. Observe
that there need not exist a single frame in which all the % have this
symmetyry.

An obvious constraint restricting the range of integration in
configuration svace arises from the conservation of the six vector of

angular momentwn. In the absence of other constraints we have

% A M M M~ (n)

2 = a - d L-ST1
‘ | S’ 7571 (e) &S f’&f %) &, o % )
' ' 17.

where L denotes the values of coupenents of the six vector, and the

delta symbol stards for a product of six delta funetions. For o statie
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spherically syrmetrie modal,‘ [}: - l;(- 7-§ L('a)z) ] , the

multiple integrations may be carried cut and the result represented in

simple parametric form. To 1llustrate, we do it for a gaussian

PV
L))L

3 o

®
o

Z = Vv k/"‘ ( K
a X ‘2fF
normalized in the rest frame to volume +v. Fourier malyiing the delta

functions in 17 we write

S 2 —ko | dA e T 1 19.
(27)

where

Since every I s is an invariant we may also say that

"

(o) ] "b ’/\'/tﬁ(g‘)f*x)

(" @ [2.

o ] +1KxiA

RO

Exploiting the fact that )( ie group invariant )( - Z , We ¢an
0

express I, in terms of the Fourier image of X and do 80 in a



o . o
parpicnlar]y 'ai.mple_ manner for 18, 'ob'aaining Ia zves e

"4 1ittle reflection will ‘shiow’ that An an arhitra.ry rrame .{‘\_ u.'/\' W=

») « <+ K (k, ./\. k)‘, the square lehgth of I‘a}apee‘q-’like_

By vestar x' A k,,. —'uh_ich wo indicat,od in bracket notdtion. Collecting

rl

_-5t.he tema of the prodnet we have

- b

?
‘Z(:L) g -
o (27/ ) | ST
..t.‘lj"!.'_“x..\‘.‘ ' . - , . - o \'.'. ‘22*'
. ﬁ_ﬁhe‘r‘a 'we have‘ 'a.lao writ,ten‘ (A, I_ ) for (-é)/\_ ,Z: P _apd finally

e

S | - -m v x. <k A <s>,
LT e)ﬂ; "(l 6.44. 7]'* d“k L Aa(kﬂ’ 7(8).
vl (27f) o .

a BRI B
‘; .- £, .
[ ":
7. Making use of pecific features of the spherically_symetric,iodel, we are

v 4

-t.hn"s_" able to represent the 3N fold ‘configurationsl integral W'niéw of a
uix .,fold :i.ntégrﬁl with the angular.mamentm ;onaémtion law. 'explic.itly

‘A taken -i'ngo acébunb. It ds 'hoped-f.b investigate the restrictions imposed
ny this integral of motion in a future publication. For the remainder

of this art;iole we shall neglect its effect. . '
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R ﬁqu_at.ion ii":l’a a i*alz.;tigiébic v_arbip;i of ‘the last member of the
. equenog ot" d,éngity.,r'\'n{cffi'ona féllqii.‘hg 1. The form of ‘other members of

’r * . N . v

this oequenco .can be 1nrerred from it. 'l'hua . Lo
S _ N s :
e /*u | ,ﬁ' Fo,
Q (kll (R B4 ku; xl (LA ﬁ;) - ‘ A (k) X (kol xa) ‘!
e N .2,
. e tensor of rank N dinrgenoolh'gov in evary index 1s the analogue of
. © -the first. member . 'Tho'aymboia ka‘ and’ x; ‘;n 24, stand for the momentum

oo ,+-a',m_i..pgéition four vectors of the s'th particle. The total-minber. of

. ‘particles present is taken to be N. A statistical mechanics based on
o . . . ) . -- " s - . . . Lo ' -

' * .'the microcanonical distribution of Gibbs is, however, too rgitricfiv_e to
L LR - . ‘_.-' . « . . R _v'_ku‘\.r L e

.."  be appropriste to a iélétiviétic'hm-eﬁorgy ‘situstion. It is predicated

~ ' it P

" ‘oh the idea that ‘the nimber-of particles is fixed.and ite distribution
v tovw St ’ . - . ' "..'_' e . * o 1 ’;.A-'P ‘,
. - - s Lo -

.. funetion envisages only possibilities that ?all Within this narrow rangs. .

- . ¥ot only the four vector ‘K but also the number of particles, N, should.

. lappear as a oubsoript.of.the density function we have written betore.

LT g .
- vt P
r L . .

.. " .The distribution function that Le needéd’to teke into account the great

.’ variation in this mumber at high energy might be called the grand.

. ‘microcanonical distribution. The letter n 45 no longer fixed, but .



shbﬁld appear as a variable in the argument of the density function:
91(“‘1* oo Kot n). Thig dietfibﬁtion .»shoulcil be distinguished trom'ﬂ.ze
grand cénonical distribution where the mumber of particles in & closed
system s fixed and only for subsystems is 1£ a random varisble, The
new (. to be used in normalizing the doua'itj.ea in order to cormu'\t‘

- them to probabilities is now

an §'7”74”clk,3 Oy, ove kg3 0) . L 25,

A greater variety of marginal distribution and marginal densities §{s also

possible. Important will be ex(n) - g?’]”(d (3)) ?“‘1’ e k )11) s
the d‘mit.y for the appearance of n particle. In terms of it,
QK = E EK(n). The density for the first particle having.momentun
, - .

k when n_ others are also present is given, by

| b (o) |
k - d k LN ] k ) ]
R (g3 0) §'87=72’ e(kl 2 s n)

the momentum density of the first particle regArdless of the number of

others is ex(k) = > eK(k; a).
B
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' S<MATRIX FORMULATION

In the last section we arrived at an expression for the

far '/’h(kl. .

relativistic current function @ Kps %yoeeXy) which

might be regarded as a geﬁeralization of the nonrelativistic density

P S S t a relativi
f%(kl""kn’ rl...rn). With ite aid we can now construct a relativ stic.

probability current

. ,0)-‘. . oﬁh . ) l . "S_. . ‘/«(

o - . n, B .

~WK . (klo‘l I}(n’ xlooo’%) - PK eK - (kloookn, .xl.. -Xn)

" | ‘ - 26,

" wich is the generalization of the microcanonical distribution of Gibbs.

It is only the marginsl distridution

o | 1 a (R a0 MK
‘ wx(kl'...kn) - PK PK(kl"'kn) = _QK ‘gs (ks""‘$ eK |

‘(klo . .kn; xl. . .xn)
- 27.

that 1o relevant to quantum theory.

Ib this se?tion we uﬂdértako é deta?led cémparison ot‘27 with
the corresponding qu;nfﬁﬁ mechanicai expreséioh. ‘This pernits us %o
give a wave mechanical 1nte£pfatation to the ?ermi a#proximation,

enables us to see how té take into account exchange effects associated



26

with the indistinguishebility of elementary particles, and also how to
construct a gzeroth order Fe:tﬁ gpp?oﬁm;;ion for emeréing particles
which Iaré not scélér. ﬁhat éuggests ftself in this connection is that
we att;mpt to construct the quantum aﬁalogue not o_nl& qf 27 b\ﬁ; also of
: _;26. If the: Fermi mc;del is ev;sr t.é ,aérve aé a z;wth ;rder appthion N
L to 'a ‘quantuzm mechanical trangition probability we ahould:li.ke. to discern
the outlines of ite Father \deﬁ'nné maﬁl;;eniaticél shape int.he quantum
.exjoroagicn. }As auxilliary functions, simultaneous distributions for
c.zoordinato;s and momenta hafé 'bqenl iutroduced by Wigner (2) and usgd B
effectively to calculate quantum deviations from classical averages.
These quantities are not amenable to a direct physical 1nt.arpretations.
It is felt none the less that they might be of help in comstructing a
consistent Fermi approximation to field theory in the high energy limit.

For simplicity we consider a final .‘stat.e cons’iating of ‘two.
distinéuishablg mesoﬁs with field oﬁarator A(x), B(x). V.Cor:.'e;;sponding
. to each r_ield ‘(éhargcd or neutral) we construct @ set of functions

{ f(x)§ ‘ satisfying the free Gordon-Klein equation [_5 J and rendering
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_the expression

B T ,“;_ -
dc.f‘fcg# f:zjl:x‘ ds~ [:%;-%rd

(£, £), =
' P D

L
XK.
positive.tor'évery domain D. Some point normalization on the set £
‘. . N ) ‘ . >- ‘ ‘ | m
might -also be imposed to make it more definite. The plane wave e

satisfies for aexample

K= 15 820 9£0) 4 X K0) £(0) = 0.
: ~ vd)x’* é)x/“-

In these formulaes f denotes the complex conjugate of f£. The usuel
| orthonorma) set resuits if we choose & sub-sst rn(x) vhich vanishes

’
4

on the boundary of a domain D and normalize it to

. . f'n D ::' .fn(x) : .
. ? ]

The completeness relation may now be states as

A x50 = S5 G o 3 ) fEY
. -.n ? L n
(£, £,)

N\



~28.

'In the limit of D—>%0 we have the usual xfepresenﬁaucn‘
. | " 1k(% - x')
A(x x!) : 1.'un A(x x'); D) = 2/\’5 -8(k,) S(k +X2) .
L Ay - (2 7/)3 | | ' |
31
R ‘Expressi.on 28 can be extended in en obvious manner to define symbols
" "like (£, g). It may aleo be used in connection with functions F. which
%-kfior not sa.tis’fy the G .K ; eéuat.ion or.do 80 onl;" :_&symptoticaliy ;f‘fF(‘tT) —>t,
v'.Th,e‘ soalar product (F ?)DG" will in general 'depend" on the 'éuntacc;é‘ .

t For more general P it may exist even for unbounded D.  Besides

‘ ',".f-'i:'-—»-qu._;a‘rii;iti’ca' we é;.ls‘é'v-' considerAq«-quantities_vo'f. the form of a scalar }ﬁxfoduet.

mus A = ( ne A) 18 a destruction operator for the A field.

In connection with this genéra_li zation the ~folioﬂﬂg ghou],'_t,l ~b6'_z:oted. -
" Por an -.oxj-dinary -'scalér"' product we have (£, g) = (g, £)." To“get.“a." ) :
fom‘gil_‘g".of -comparable "B.".mpl'iqity' with qperagt.ors_'\'we' should 'éopsid-et;. :
- (s Ay = (A, £;) whers + denotes Hermitian adjoint. The latter -
. symbol may be use&: in the case of béth ¢ and q j qnantbigiejs}
 The probability of finding the system in the final state (f)
. conditional on the hypothesis that it was. originally in the initial .

state (1) may be written as " T -

r



‘ ~_2'9~
N w‘(f |1) : '2}/‘(1‘) 8. I/f(i) Vfi) 8 Qy(f) . - 32.
Qhere_ qu’uandu'7y” are state bra énd‘kgté ;ésﬁéctively and S 'ééﬁopés
..:t§é H9iae;berg 8 operator. Since according £§ Fermi's idea the fingl
1'§ut¢qﬁelié only Qa&kly?¢03ditionéd by the ofiginal stata itl#s;m;re ‘.
o nat,ural to replace ?‘32 by the finé;. probability .W(f): -_- Z Wi ]-.'1) w(1)
'.' ”.wh??§ 'w(i)aiia the pro#ébiliiy oftﬁ§'initial gtaté. Defining the
58¥;§i§§;§al Qﬁératorifgr‘tﬁg'ihitial étaté.By -U(i)=~ w(i)”yf(i) BL”(i)
ﬁ, wé“hai-gri£e | |

We) = W(r) 3U(1)'s Y}f(f) o | , 3.

v‘The distributien

w[f] ]V(f) S(P d ) Wf)
' Sp S(P -

_.m#y'ﬁe téﬁeﬁ,aé.tha quantum ggra;bﬁ'ofﬂthé micrﬁgaponical-éﬁéegble of

Giﬁhs.- Théllgtfar  85 rdeﬁ9£ea hgr@fﬁhe CegonQ_Qdan£;zéd expféd;i;n>for |
: the:totallééergy‘waﬁentﬁm roﬁr vécto¥ of ﬁhg»si;tem‘and ‘P 1§6Lpgftic#iar'_
51;§§£'of eigenvalues. The gﬁabi;ity_éf this éistgibution\may be ;euﬁ

" from the fact that for an initial statistical operator .



B = . S -P)
Sp (S(P-@)

" we have S U(;.)S* ‘= U(1), since 8 commtes with' @ .

Assume a final state consisting of an A meson in state a

R .
B -

~ and a B meson in state 'b. Thus

Yo = 7"“; b2 il L), 5) %
R {(fa’ ,fa)o‘ (£, fb)D

| where ']//6 denctes the vacuum ket. Equatidn 33 may then be put in the

‘ form

(fas f3)p (fy, fp)p

We, b D) = | af df an ay (E) £,(F) () £(17)

o | et e ot T
Y LS S RO I R) £9

| T B o T 34,
 defining the kernel K. ~Summing this expression over .thé labels a and

" .b we obtain for the probability of fi‘nding an A and 8 B meeon in the

- domain D
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W(h, B; D) = §d§ dE d)] dn}' A(? }’;n) adh F?'; D)

D

7/6* K(§ 7) (1) x*(§ ?)% .

Letting D cover all éa?ée we have

WA B) = Sa? af an a7 At f)A(v A K(E o) x*'(f n Y-

| , f 36.
The assumed in‘;'ariance c;f the theory under four dimensional

-'translations leads to the ikndwof restrictions we encountered ig the

elésaical phase space expresaiong. The invariance has two aspects %o it:

kin?ﬁatic énd dypamic. The first may be interpreted by ea&irxg that thé

field Qpéraég‘ra are effectively constants. If P denotes the

d;splaémoﬂt operator (h/i)(/a 7& x’u‘), t;.hen under a d_isplace:q'eﬁt

X —9X!' = X4 a .any ¢ number". function will undergo t.h; tranafdmaﬁien

R 4ap -dap _ _ :

f —rf! = @ fe . For a constant we have f! - f, A field

éperaﬁor 48 a second rank tensor in the apéce of oécupaﬁion numbers.

A t',mn'_h}ation of cc;ordifntes x -—-n:'. X4 a ﬁ;'hosev infiniﬁesm

generator is p will induce a corresponding representation of this
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operation in the occupation number spacs with generator  P. The total
. ‘ ta(p+P) ~ia(p+ P)

transformation may then be denoted as A-—>A!' = o Ae .
In a kinematically invariant field theory this reproéeptat.ion is so0

defined that A' = A. In this extended sense all field operators may be
looked Iupon as “constants” and this fact expressed by the relation
~ 4iaP -=4aP -iap +iap . :

e Alx) e = @ Alx) e = Al{x - a). S . 37.

' Mcal invariance on the other hand implies thet K 4n 35 and 36
depends on § and )7 through the operators A and ‘B only. Adopting
the convention that the vacuum is a state of zero energy and momentum we

mey write

%*'_k(gz, n) o) £(E, '55 Y, = %*e“? x4 .puca)ﬁg‘ ,'Fpe"'i’a P?/g

%.,'. e—-i.e{p" K(f ? )ei,.t p l'1.«’[ P U(i) -1 pP -1/3 .§. 6 +ip ’?,V

%*x(f -y, 7-}/) v,!.(li)-x*(f‘ -B> 3} - )B)%

B;t;h assumption of {nvariance were exploited in going from the second to
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. 'f:h;-t;l;ird‘.mmnber.vo{.’;t%;isv ch&in Wel _n,owj !.mka_‘.;the a,dduit'ionai’ slssm@ti’én ’that 4.
f§5°'f?“iti?‘1 ?Fah“' ts one of defisitte energy and mmentum In tems of -
the gtatiiégiaal Ppeﬁfor tpié my ,'? . "expré?é?.d as

L agp A P 1- 'fx' RN
s e e -’9 ,...';.'é~(?{_-ﬂ)i v

- where K-'is the value of the eﬁerg momentum four vector. Ingerting .
: ﬂéf;i}a'mtc 36, subtracting the resulting expression fram the ofiginal’

- form ef36 and changing variables in an obﬂbus'!'nanner*w.e'i.nfef .

(o; /m

R T

S fabor- PR

- ‘A‘:‘(.x-) A’B(Y) g

L 5 o o %“ o oY +'g“)f;:}~(i).‘:x<£ -;3 -2y
fof e values lot; the continuous para.met;ra c)/ /B ',l’.hia'rest.riclti;n
on the fornll of the vacuum.expectation valt;e is particularly si.mpl; 1n

' .the Fourier integral re,preséntat;{on of A . For every’.\Foux"ier' component

~ we have
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| o -BIE-% -k ]
0 = 4,0x) Aglky) [. ‘7’. A 1" %2 -1]

£ kyx + ik v | | o
dedye v 2’5&& %*x(x*l—.?’-z&,wg)tx(i)K(x-g,r-g)’%.

Thia Men;ity in two sets of cont..i;n_uoua paramcters' .cauld only be
‘ aa.t;sﬂad if the Poufier transform of the expectation value has a
Sk - k - lr;z) as & factor, There must however be two of them

' correspc;»nding to o and ﬂ re;s);ectivily. Ons of these is usually

interpreted in terms of a time integral and the expression written as

 ikyx + ik ' , :
de.dyeklx igdxd‘z%* x(x+§,z+§)v(1)x(x-§.r-§)%

2

’

" L

, 2 ) :
vhere T 18 an infinite time factor and l MK l 18 the usugl matrix

element on the energy shell here already averaged over the iniiia.l states,
Fourier amslyzing 36 and expresaing it as o transition rate w(k; k,)

(to absorb the infinite time factor) we obtain

L # S .
w(ky k) =z (;72 'ZT’ 8, * )Mx(kl k?) ‘ - 39.
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-~ tos : _35.
‘. . o« . : L &
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- " e i'_eas.oria'for' radériving this much derived formula were several.
et - The ‘usual versiofis do not  contain the factors A\ _which appearsd in the
b}&ssica'l phase spacs e?cpreaeiloi{,‘ because the final momentum pf.at.eé are

fa

e destribed in terms of th?éo,.rathex;‘thqn ?on:-—-jecbo_r'-a.'. We also wanted

4. .‘ ‘£o suggest &’ quantum 1nt'el?pruatioh for the integrals S d Cr/a 2;“ of

Loae T .
T . +

) _‘ , the 'q_lgsai'cal model . "These obvicusly ’éorrespo'm_i'to the 'mwiaia_t scalar
LE] ,‘A-' ) " . - - ' ‘

: . B B ' ~'.,{’;~ ) i ] - - k "’,_ .
.7 products (tp,'_tﬁ)-‘.» The usual normaligation factor (¥ -)é’. ) ~ appearing

AL hthBI. 1s seén to be of that, ‘r'm‘tg're. Finally a wave _mecha.-r‘u.éal'_ '

s ... interpretation of thé Perni model is intended to be aug'ggsted'_.‘_
M LT .'Let.' .'fl";"fn be the wave func£1§n for the particles in the final

: ",”stato. ‘With every f associate an- F(f); a wave “packet built’ about ot

n
l

.¢. " "and diffusing” into-it, Permi's approximetion is then schematically
b G Ju[ D@ [ %] £ 2g) =5 (P P (B o) (B B

. Hﬁat;'woulq',aeaﬁ to be ';nvclved'horo is an attempt to.an_a'l‘yzq the 'eftect. -

-

' :/,of the interaction ir terms of diffusion characteristics of individual
- e wavﬁ_ pgékbt," ;on'e_' for each emerging :idx;ti;ile. T6 the lowest aﬁpmximéﬁion. .
. - -.;— PR T . - . ) _\_:N 2 L . )

. enly their length _(F;P) seeus to be pf moment . The high energy collisions™

. are then 'intei:p;'ete&'on the basis of am;h an individual packet model. }

4 "
-
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We ghall now try .'to' arrive at the quantim analogue of

J . _4;«?#&.“&&1...&“; xl...xn) In »deduéing..the nonralati_viatliq axprese‘ion

W, 15, wagnar damanded that H(k) and H(r) obtatned from 1t be the
‘.‘mbab_l}ity d'ené‘ities',ln md&npntmn and,cénfig'urat.ioh epao'é réapectiveli. ~
. These _t'wé_-,re;q\ﬁremmts .turn out té_ be @gcompatiblé.vim tﬁe.positivc; .

. "..¢ ‘dePiniteness of u(k,_?)_ .and even overlooking this unpllaasgnt fact do

"“ _'znot_,&eteigdne W(i’, ;) \miquely'.’ In, our ,c_ase the requiregzqnt 'f,hat_ .W(k_l...k-n) '
bo the trnnsition probability 1nto 5tate (k) uill be satiafied trivially

'l‘he quantity H . (xl xz...xn) does not seem to havo any clear-cut.

‘--r

-t
i

.k‘. . ’ i

méqningfin’ a'rolativistic fleld theory, We,apall t.'h_'e:"efore be missing

kR the condition that. would oorreapond to the one of Wigner'a in '

" . . ) ’ - p .C./I L)
' conﬁguration space, we may, howerver, demand t.hat Q 1 ¢ /‘h o

] o B v . T @x , .’I.
ST It will now be comrenient to change to the mixed OUT-IN

";reﬁresehtatidn'or the S matrix.' In it the S 6porator;ié the'idenxity;

R}

i

st | 1)":'ﬁjyb01f'(r)qyis(i).‘.we have labelled the outgoing bre &nd the
f}m:mning ket with appropriate aupédript_é . In our previm._\a;'wdx;k ve
employed the pure IN-IN representation, since the S operator may be defined -

. alp -1 . |
. by the relation VOUT = 3 ';I/‘m. The emprese;on for the tranaiti‘on



um . %m (r) nmu) %m,m _ spv u) nm n et e

. probability now has the form, .’ ST,

LT R Coe T '

- ‘o . [ - -

“u v,
L

4 R - e . et v o
. M - «
. . .
Ty P d

-1 - PV
nd.th Um and UOUT related by 3 _Ums - Um-. 'r_enecf.'i‘ng tho‘_»_

._u‘ol]_.-kz_aown rcvers‘al of equivalence charactari.atic ‘of U. .:rhe" ﬁ.nal _a't;ate

Rl Ve . * .
- N 5

. | ' L T
may he oonstructed from the vacuum atatos V (a, b) = vAObT (a) BOU'If (k).%

B )

«.mere A (a) = (ra, Aom.),; Bom,(b) _,(fb, Bom) 'nie_,mrict"iong' 1,

-
!

and fb torm an ort.honomal aat. of free solutione of the G K. equation.

: “ 'Eq\ia‘i'iqn I;O' qow takes the form
w(a, b) % Aw,(a) B m(b) U, (1) Aom (o)’ aom * vy % . u :

. .\

» s z’lmg'four aca]_;&r products 'ﬁetweén wave runctioxis aﬁd"opémtora

A -

; Amplicit in A1 do not dep'erx_:{ on the space-like surface on which they are

d;f‘ingd._ This 18 a po'nsequ;znco of the fact that the outgoing fields and

. ,‘,- ) ’ '-.' L " _’ '. . A ) ' S .
< the orthonormal: sets satisfy the free particle G.K. aquaﬁ'a.ons,.; A.eimple

(althmlgh not{;u‘niqup); definition of a diy&gonmlese 'pmmhiuty f.en’éor
‘{e then

#y | +, . | o y i
Wil bix 3) = Yy Agpp(e) Bypp(®) (1) X7 (e, b5 xy) Yy

L2,



where

N : &y
M 1 J
;( (8, B 2 ) = = 2w £, (x) f,(¥) L Agyn(x) Bym(y) .
Xa Xp dx JIy
. ,102'.
The configurational transition current is most easily constructed if the
remaining two surface integralsimplicit in L2 are converted to volume

-int.égrations. Assuming that the particles precent in the final state are

abgent, in the same state initially we have

[ 2our(a) - Aggla)] upg(e)

Mo . Ua ac” 3, 3 Aug s
[o-.-,q-oo o-—y-wjg a & 4 )

-

Aggpla) Upg(1)

21X,

H

- 2
1 X a"f t (O3 - Xaz)AUm(i) .
a4 X, J

In going from the first to the second member we made use of the fact
that Am;(a.) 4s a destruction operator for the initial state; from the
s;cond to the third, ‘the quantum analogue of the classical Sommerfeld
radiation con&itign, Un  A(x) = Agy (x) , was taken for

% > 200 IN
granted. The essential voint in the next step is to write



- =39-
B (b) A (a) U_ (1) = —% Q" ta(E)(D° - %D

[ 2o &¢ p - M§) By @) | Upg(8)

lim

‘. = *?**; N -#- ALy -éL»
sty [ e o

m(jé) B(r? )) Uy s
. where T is the symbol of chronological ordering. The last expression
$s readily converted into & volume integral and with the ald of the

suggestive abbreviation

Wk p) - 2 L (O A2 XD k) s
§ 7 (2 X)) (ax,) f Ta Df b § 7
k3.

 expression 42 becomes

W, b %, 7) = 54"; d“y Yo 3 Q)nm(u/‘(""()a, b x7) £,(8) B(N).

Summing over the labels & and b we finally odtain for the configurational
transition current

w"J(x y) = f d“f dl’? %+ J(f 7) Um(i)xpg(j:, 7 3 xy) '}Vo

Lha.



where
(tn;=y = 1 (%) Byml¥) 2 DA (x,6)Aly,h)
A0 (21 x)(2 %) o our 5%, 53, * 540

Lib,
This tensor is sc¢en to be divergenceless because of the free particle
character of the outgoing operators and the A functions. Fourier

analysing the A functions in L4 we have in -an obvious notation

Wio Lixn = o D ug 2% LY A A .

| | k5.
The Vconatrainte ivherent in the vacuun expectation value as a oonsequenée
of inveriance under displacementé aré rezdily deduced by the method outlined

previously and the Fermi spproximation scen to amount to the replicement

Yo 3 &) vy X706 Lx 9y 801 - 2 0x 0 Tt L),

A much more detailed investigotion is clesrly needod before one could

decide whether a consistent approximation could be based on this nrocedure.
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Having sesn how to obtain the Permi 'appro:gimétién from a field

"thaot‘et:ical oxpﬁecé;on, we can.howeagpig;:t.,thp- appératué’:of field 't_h‘oory

1n order to inclnde into the Femi madel typical quant.um oftects. The

' gxprossipn for W _(x"y) , a8 'gh'ren'in _l;h, appeare_ tq',be‘au;ltéblé‘tér this

"\l» .
¢

‘. purpose. The modifications that are called for in the case when two mesons

are identigal are best exhibited in terms 6f the "vacuim representations”
: "_oi’.th’_A‘ funotions [h]. -Thus o s
PR , . : . . Lot

(-—--)A(x ?"%"1%‘)4(’?’ o
a - foo.

L

%3_..2 ‘% A(x)A (%)1}’0% (y)B.,.U?)%

-

where A;,(x)- is the nqestruction” part of field A and 4;;(:;)? :it@ |
- ‘H"."“?i.*'*”‘. a‘?ioir;t“andl»pimihﬂ& for the. B field.” It is‘nlot.‘top hard to
' se‘:a tha'g...fo;"i.de;:tical ﬁ;eldes_ this gx;?ression should l;a re;ﬂ_.ac;; by
'%4' A,(x) B () ,Ai“(}» ) nf( MYp=rd Y 4, ‘;+<y>_g(} O, ..
- _
;_'I’he -Wick contraction rules h may now be used to decompose this into a a'm-n=

of Nucta of A functions and the Fermi approximation carried out, It .
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is also easy t§ se‘o how apin etfect;s may be includ#d. The scalar A

and 8 fields ahonﬁ be replﬁced 1n thia‘repreacntatibn wiﬁﬁapﬁmpriate
: apiﬁor field operators andl the déti_hition of the Qcmr product (f ’ f)
modiﬁe.d. in an c;bvi-ou; manner,  To includo'tinal sf..‘atov i.nterac;tionl we
_eould replace the free particle f,'s in the bilinear repfeaentat'ioq‘ 30

by wave functlons depending on a féw parameters fixed by experimeﬁt.
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II11. THERMOUYRAKIC LIMIT
A. Intpeduction
‘ S'_gatiatical models are based bn the close '.stru‘ctural resemblence
between the marginal claseical distribution over momentum vamble‘s and
the exvression for the quantum mechanical transition probability. | Both
are of the form f[]" dylky) Sk - Z k(a) ) m(kl“‘ka) , where
5 _
)’Y‘l is the square of the matrix elemsnt in the Qua,ntum case, claaaically,
}r‘ results from integration over configurational varisbles and will not
4in general be factorable. However for essentlally uncorrelated systems
we may write )7 - W" ___Q_.B(k.). where the ., have the character of
volumes. The classical distribution then becomes ’[T' . A a(.k") ﬂ.;(k').
. s !
If the number of factors in the product is large, 1t may be treated by
the methods of statistics of independent random variables or "stat_istics"
for- sﬁqrt. In this ;sympt.otic 1imit there is a marked lack of sens;tivity
i’u tﬁg detailed nature of the ey
What one ﬁsually' understands by a model is an attemot to i»nfor
the form of )42 = ]n }2 without resort to detailed dynamical theory.

o .
An equilibrium model would argue that l M ] 1s independent of inital



,' ooijxdi_t.‘i.one__ bozgnd restr@.otiozla 1mpoeed"byaconsomti‘.on nws, a"stat._istical

AT [

one would favor the view t.fu_zt \!4 '2 . " ] -n"c ‘The_ two ﬂ.ewpoint.s '

i are rrequortbly combined * The crudost voraion of an equilibrium atatia’bioal

T ) i . ‘ ’ . ) . .‘ ".‘ )
'modo]. 15 obtained l_vy‘ setting Che' métrix eleme_'m-. aqﬁal "f°‘.v ons. .. e

N o

('l w T In this chanpr, one shall be concerneq with the techpiguea

-

, emplcyad in handling integrala over products ot the type 77' A (k )
: '-':I - N, . L . . e

e tthat 10. with the calculatiqnal machinary of atatiatioal mechanioa.

\ " . A - . [ . -' :', “_ ’
r ot : ) l
12 . . t

‘ _‘~;‘,i'__§_S,p'ecl_'§i egxpl}aaia will be p;aééd 'on the l-i.mit"iﬁ"-whiéh; the.nin:n'b:ax_-" N - of '

s :
. .
PR LR

L . L - . LIRS < v
. . T .

'+ factors. becomss large--the thermodynamic 1imit. Becausé of the observed
" coplous. production of particles at high energles, it is likely fo bs .

- - . -
v Co.
.

"'.relevant. In this limit new qualitative features imvolving concepts. of
r;e&pomui-o;md 'entropy‘ come into pliy. It can be specitied mwhé't;

-_’i - - +

moro cloaoly Besides W [kl. . .kn] we nesd mrginal distrihut.iona

- Lo -' . -
<o

U[kl.a.k ] Jerived from 11;. The et of variables [kl...k ] nay '

,"...bq ‘t.hoixgh_t of as referring to the system of iut'.eroat , the other,

. integrated out set [ke +1"‘kn] , ‘to the 5b;th_." - Por systems of sise
- ‘11 . . . . . ..

- comparable to their baths, one is lead to Gaussian distribution if both

'syat_e:n and bqbp‘are large; f_or' small aystem in large baths, to Gibbsian



‘s . Tdiet#ibutions, It 4s the latter limit which will interest us here
and the density Op» 81l bath--no system, s the one on which we ‘shall

.. . expand most of our éomputauonal efforts. In partioular we discuss
1 ' .< . thobe features which are 'i:mportant._, in the high energy limit and are not

. L

- . treated adequately in standard textbooks. The cases dealt with are’

PR

'-;- ) intende'd.: prlmarily to illustrate procedurss e_i’nh have been .chosen from -
“II . -"l _‘ ." A.' ':‘.' . . . "' . ". ' -' .
i, . the point of view of simplicity. "It is hoped that the reader will see .

‘how to apply these techniques singly or in h&cpaéary combinations to

* the more complex situations encountered in practice. .

B.- Approximation to Densitiee”
' In this saction we should like to outline the techniques that may be

P '.an'ployed to obtain spproximate expressions for J’ ( RS Al “') ‘{3 v
b . . h '
‘ K (s)

j‘(d“k) S(x g k(°)) 'ﬂ" A[ks, ].A— [k

- , (s) L
o . - ’ .ﬂs = f.'!,- "/Lusw-l K’ 16,
"‘.(r' . . o . H (»’)
, “ T

N et

' _«J..Mih the 1imit of largs n and to record some of the reeults 86 obtained.

' The'si_.mplest reasonable assumption that one can make about /. s is

S o= 7{5 » or that the configurational volume available to each

oot

S

Wi
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particle in its own rest frame 18 of the order of the cube of its
Compton wave length, Introdnoing new dimensionless variables ky = Xy k's

(snd dropping primes), ‘;uo have

: *
P = S(a"k)“ S(x - S e k) T A (kg 1)
n (8) | | 2 | - -5
. 7711 " S(Ko - 220G Thy t1) 8K -5 x, k) -
0l ,
@1’ fe2+ 1
| S | .
An alternative to 47 has been proposed by Fermi. Its form- invariant
version ie
- (o) S
_n_s hz 2KH 1. . L8,

- UL 1
, | 7/ J (8) f |
whers X 1s proportionsl to the mass of one of the initially colliding .'

nuéleon,s and K/u is the total momentum four vector of the system. In a

~ frame in which K/"“ = (0, 0, 0, K,), expression 48 reduces to

.ﬂ: : 2 XH ko( sf)" 1 ‘ . . 48,

- KOII Ks) 7<13

The first factor in 48 axpresses the '?voime contraction” ides of Permi.

Becauss of the second factor, the integration will assume an especially

simple form



47~

"
PPx - ‘zx' ) by
o h,?'..
| &”/’
L=\ 70 288G, -5 KO 1 )86 ZX‘”"‘”)
| =1 (2m3

in a frame :i_.:}_yhgct_x__ j:.h‘t_a“gpgt_.;gl component s ofi”tho total momentum vanish,
Unlike 47, expression 47' will not retain its form when transferred to a
different frams.

In the nonrelativistic limit, A7 and 47' become identical and equal to

Fe - "-:nr Fe
EP (M) NR ' E,P
49.
| RO 32 -
KR(OE P = g777 (277)5 (E e) S(P "Z p(s))
They differ redically in the ultra relativistic limits
- &) L (s) | (s) > e
= - K, -5 X7 |k | )SE-ZXE)
°, Sﬁ o T St -Zx" | ‘ 1) 8&-3x8,
50.
. £’ (o) | () y ¢ -
= ) (K~ k,)
e SIS S 58

50'.
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| ot td.th energy alone conaorVed

i)

., 'tho'fmodwnamic concélp’ta.. fhé' second density FK is &ealt with" in
B ' ) 4 o _ '

'=ﬁl¢8~

' In:ﬁhe'-B.R.']j.imiﬁ, 11'.' 131 alao of som'interas-t t_o’-inv'eatigata the density

).

fnﬁction where emrgy alone 5.5 a good constant ot motion )
—-Lg(a 3 T 98
me B W (27,) ( ) I )

Femi'a original oalcuhtions vero done in tha ultra~relativiat.ic domain

-~

1

) | 50'a.

(o) | s)
fﬂ' & §( 5 X \g.

" We shall first treat the densities involving a single constant ‘of

S 2 | -  detetlad ert
‘_x':iotj.on 4 ' . and e e Tho discussion of NRQE i..-;. detailed' and

‘ .!%B . h
the simple caloulations are uaed as an opportunity to mtroduce

S8

""bara ontl-ino. A set of dansit.iea, involving four dalta'tnnctibna is

considcred nea:f. - The new problem encountered is t.hat or temporatures

) conjugate to 'menta. 'ﬁmsa -azja'derj.ve;(-i in detail,for :c e -I? and

’lm . . ..
e } the result for. ::Rex ’ only, racorded ~ The donsities meutioned

?

80 far are susceptible to both exact and thermodynamic treatment in the

“energy 1imits considered. It is hoped that the example predented W1l
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illustrate the principles involved in dealing with the more complicated

cases which cannot be carz;ied out exactly.

(a) Densities with energy conservation only.

We shall now give an outline of the thermodynamic approximation
scheme, uncluttered by details of x;:at-h‘emtical rigor. As typlcal of the
two density funotions to be considered, we take the somewhat more general

expression

0, = (dlz g(z “(fr" £) > 51.
| (27f) '

where H 48 regarded to be positive but it need not be 3 sum pt
noninteracting Hamiltordans. With a Fourier represent;gtioﬁ of the t.ielﬁa

” tunction we have .

. »PE ) ;3.7?_ S\ﬂ ‘-i'rE g(%}m eiTH( ?1"'?]5!) - 5?.

Ob_serve that a new function 7/‘[1‘} (the Planck free energy) defined by

y[-w] g( \N emi()kl...}n) | .

exists for Re T > 0O in the complex T plain. With the aid of another

" function, the entropy S dofined in the same domain
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5y [-gr] = -iTE + 'yf[-rr] , , - 5k
we rewrite 52 in the form |

j Sg -7
()E:;%?gdfo' J

Introducing a Cartezian coordinate system in the complex T plane: T =t+ 17,

. | | 55.

we have

. » H } _ ‘ ” . ‘ .
ew(’t) = S(—di) e TH(}) 531, 7
| 27/ ' :
5,01 = ET +WD | | g,
, ' 5.(T ¥ 1t) | 7
e = "}- dat .E - --E- S 4aT OSE[ J,
E 27 - 274 5 :
| 551,

with the integration in 55¢ alongb a3 line parallel to the imaginary axis.
The quantities 'l}/‘ and S are seen to be the real axis.

Ths basic observation to be‘made is that on the real axis the
resl function 38(7*) has a unique minimum. The modulus of S along ©
perpendicular to it wiﬁ then have a maximum, We shall thei'efore be able
to collect most 61’ the integrand along a small segment of the line about

the real axis. The point on the real axis ’F at which S(7) hae its
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minimuom dﬁp;r\dl on the energy of‘th'e Asyatemr and may be called its
intrinsic t’.emporaturc [ it't@a out to 'b§ (l/k’l')] ‘3';21‘)6 value of 5 at

t'hat point-~the proper sntropy of the mtom; Beca;lse of f.his minimal
| px;opart.y, ﬁm sun of two 'onbropies, one propér to system A, the other, - -
tp system B will be less than the entropy proper to the connected system
AB. "_If one is convinced of tﬁe existence of a unifersal tend;ncyvtowards
wxeré of small {nto 1arg§ uﬁtw , one may assert that this quantity
- tends to 1nor§aao.

The minimal property of S(7T) 1s readily exhibited in terms of

an auxilliary (‘a.t this stage) diatribution, the canonical, In oﬁer to

see this, let us differentiate ' 5i' using the definition 53'. Thus

_ Sepraps ™Y

S‘(dﬁn ;—?H( f )
) YD

. With the aid of the canonical distribution f(f; T)=zo

S'E< T) = B

2

depending on an arbitrary parameter U , this may be written as

s'En) A Y2 | 56.

where the bar denotes an average., Differentiating again we have



u S"E(T) = [H-ETJZ > 0 . o 57.

It is then the canonical distribution labelled with the particmlar value of
the parameter corresponding to the temnerature out of a whole ons paramster

family of distributions which renders the expsctation value of the total

_ -
Hamiltonian equal to the energy of the system: E -~ H - 0,

For the purpose of expanding closs to the real axis,we introduce a

new variable ¢ = =1 s Where n 4is large, and write
n

’ = SE('C-itn'&)
E " 2’!7'{"’ 5 ° .

Expanding S, we have

2 . 3
8 = S(P)-di-to (T -3 37 + At R(T).
If the remainder R( 7)) happens to be of order not higher than n, we /
may neglect the last term and carry out the integration. This yields  ©
, 2 -
. 3(7) " Lecndl S(7)
?E(n) ?: e & 23n (t o~ ] _— .
- {z'n’ st () = {27 su(%)

(o

58.
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The statistical interprstation of S{7') follows from equation 3.

Combining it with 58, we have the statement

log¥[B, €, €,.. ¢ ]

1]

> log e,

- log £
5 s B

11

T 8Ty, €)-8(T, E) ¢ .

'l'h_a lqgarithm of the probability for th; energy ‘E to be partitioned
into smounts (6‘1, 62,... én) among parts of the system is egual go
the difference bet.éeen the sum of the proper entropies. of these parts
and the prépor antropy of the whoie systém. I‘tx making the’.stat.emerxt.,

 we have overlooked an inconsequential small additive term.

(e{ ) rhé = FE- density.

Using the specisl form of the Hamiltonian of 498 4in 53, we

- n _
obtain S{T) = B+ g 2 log 8- . The point T on the
: | ) 2w T

real axis is given by ’F(E/% n) = 1. We should like to rescale the
- energy and write this as f & = 1. Tho quantity & 4s the

conventional temperature of the system in energy units. | Its relation

T



~Sl~
to the total energy will depend on the model used and the energy range in
which the a,nproﬁmatioh 12 made. In the present case we have the well-known

relation €& =« E@ n . The relevant expressions now bacome

(%) B E . gmir) - 2
S(T)zgni’%glog T S(t)_%né

and we finally obtain

%n -/

C o \3/2
%e
T zrr’)

The integration leading to the asymptotic expression 58 may also be

s

]

L] 2 n
carried out exactly. Substituting the expression for the entropy into

55’ ) We have |

‘

| | 1“ | gne(zlm - n, 13/2
= - dt . .
wle = 7 g ° : 7974[2#(?: 1t) ]

é n€ g . 7 5;;
; Vo
: - de o? 774 [ Ts -
Toavi %n s |27
c z '

s8t.

"

\./
<
N

:,rw

=4

¢

£

NP
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In the last step we made use of the fact that . 4 i; Sj_ - .._...3.'....._...
. - - 274 ER (-

<

hY

Pormila 58' ie obviously identical with 58 whenever the factorial may be

»

replaced by its Stirling' asymptotic form.

’ UR
(8) The density.
R

The notation T = t+ 47 18 now conveniently replaced by
) S xo - ifo , and the T by fo' Expressed in these varia§les,
‘ ' 3 3 - '
8 [fo] = K, fo - 2; log [7/2 Xa fo J The relation between
energy and temperature now how the form (K./3N) § = 1. We denote K /3N
. . by m, and write this as m Fo = 1. The asymptotic approximation _toi-

the density i{s then
R | 3 3N
WP T A 774 2"'-" ; ] — , 59.

vhereas the rigorous expression is given by

~

= : 3 :
' m -~ )
Y o ..L -—52 — m . 59¢,
ele, 5 ;,: 7 x,’] (38 - 1)1 .

(¢]

\

\(\
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(b) Densities with emergy and mementum conserved.

Corresponding to T 4n (a), we shall now have a "vector

t.emperatuz"e" with four component;a ; one for each constant of motion.

.((7 ) The density NRPE ;," .

" Pourier anslyzing the delta functions in 49, we have

- ET +4B-X + W[-11, -4X | .
wles = — gdwd3f. W[ 1]

?

g [-17, -1X]
:l——,‘-l Sdrd3x o =
S (=)

e A

N . .
." ‘and regarding T and X as complex variables T =t + i7T, X = XY +1i f ,

we may write

a‘yffz«,}’] i g I (a)] -H [5;,...3“] +'§. s B

For Hamiltonians of physical interest, S existe for
-§O (? L 403 0 € T &=L . In the case of a system of

independent particles, ”l,l/ = ZE—: 7% . The function

60.
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8T E) -
SRR 27)

is readily seen to satisfy a kind of diffusion equation,

'[.._..-;-n(z.?_)] g, (‘c,p -

The extremal propoﬂy of S has now to be proved in a four rather than
one dimensiongl space.

Our previous 56 is replaced by the set

ST g = B-R (T gy = -P1+'13';.

and 57, by the even more ample

» ey ) — " - ) - —
Spy = W=D, 8,7y -PYW-H) , 8447 (B - PPy~ Py) .
| | | é3.

The subscripts 7 and i denote cnrferantiati;n with z"e’apect to T and

lfi’ respectively; the bars, averages over the can§n1031 distribution with
Iour free paramdters .xp l: YH + 7/( X, f )] To simplify
the ,mtatioz_x, we have not specified the distribution by indicating the

parameters next to the bars, With the aid of 62 and 63, we obtain
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s [T+, b, *48,] - S[T.t]

1

~ - - 2
EATE-M - AR PO+ [AT0H-B) - Afy(7 - D ]

Thus for the values of the parameters ('Z:, .E;i) for which the right
mambers of 62 vanish, we have for a sufficiently small (47, 4 f i)
neighborhood 8 [ X +47, g vAg] -8[r, E,] > 0. 1nthe
spgcial cages considere& here, the reader will have no diffioculty in convincing
hinself t;hat the f;_, i: point is unique by observing that 5 in
addition to belng convex beccomes 'nnbonnded whenever its argument
approaches the boundary of the dorain 1;1 which the funcf.ion exists.

In view of the relstivistic case to be tz-egted in the next section,
it is convenient 'to introduce 4 more symmetric four dijﬂens_ional ﬁotation:

fﬁ = U P, = -H. We shall also write for 62

) or S(l) = ~(pP - ;S The set 63 then becomes

(2) | -g' =6y — . @ ) ()
%u;) :(a";)(i’y-?y)-' =3/* 8, :'(8 » 377),

§(2

(2) 7( may be written as (x, 8  'x) .

and the quadyatic form ,?/A
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In this notation the superscrists (1) and (2) indtcate that the tensor

~

ie of first or szecond rank whenever this ie not obvious. Ve also

introduced a bracket symbol for the acalar product. The positive

definite character of 18(2) 18 now axpressed by the ste.tmmf.'_
1) .2 | |
{x, 3(2)1) = _(S( )x) . In this compact notation.
L (4, slE+ o] 1 P“‘S“’x) 2ox, %
EE?;-.--—-—Z- dx e ﬁa——-—z dxe
| (27} | T em

-1
stel (s, [s9] s

,cms

At the intrinsic températux'e fixed by the requirement _S/,;(l) ( g) - 0y
S[ f ]
,'a
/v det 277’ ( §)

64,

Pep =

M
%

" For the spacial case of H [pl,...pn] = ,--t‘he

defining equations 61 yleld

2
s(7, F):TE ;1'-2-3%_? +_§;; %log 27::9(

65.



vhere M =~ Z : Mge From it, one deduces for the temperatures (?' » }:1)
-

the relations

——

e Py | | 66a.
fos 27 |
:E[En.:;;_]/(%n) =1 . | 66b.

‘ It is thus the internal enefgy of a systein of particles which replaces the
| energy of the previous section in the definition of temperature, We also
soe t.ﬁat the temperature conjugate to the momentum is thé temperature
oonjugaﬁe to'. the energy multiplied by the velocity. In terms of a new
unit of energy € 'E'. = 1, the asymptotic expression for the R eE p

may be stated as
e e 3/2
P ; L 1 (2'_..)
_NR‘°EP & mey” ZT 2

T
(zml’.%n
; 6

The exact expression 1s 67, medified by the replacement

7.

in-z
A

7 ——p
{27 - §n (3°-3)"

Comparing 67 with 58, we conclude that in the nonrelativistic limit the




~fl=

the conservation of momentum does not produce any drastic changes in the

density functions., It 1s obvious on physical grounds that in 67 & ghould

refer to the internal rather than fotal energy; on dimensional grounds that
_ - =3/2 »

an additional energy dependence of the nature (M &) would have to be

introduced because of the three éxtra delta functions, We shell see

’ ie.ter tﬁat the modifications are less cbvious in the ultrarelativistic

1imit.

UR
( 3) The density.
fs F C,K
Subjecting 50' to the treatment of the previous section, we obtain
' —~ ’ n
1"[? 0’5’ J .1 1 3

. o ]
(k) - §D

“p
|
J>(

- Alternatively, we could start with % appropriate to FFK t

.%[go’ §1 (S X [§ ;+ 1 - ¢ -il'j‘ .
I - g djk 1 o X [fo [‘:E:; “F':J
Xe 9% J 27 (u2t1 |

Equation 68' continued.
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K:a[x 7?02 Efj
[7< -8 1

vhere K, denctes a Hankel funotion o_f imsginary argument. The function ’}V'

o 4 -y
_ :Lg seen to exist for fo" ”.'/ > 03 fo + / ?/ > 0.(Exnanding
this representation about )ﬁ = 0, we also obtain 68. The noncovariant
nature of these expressions is quite evident. The axact result of the

intogration' is

UR - n | ] K ]
F K (£t77)3/2 ™ s 712 K; (2n - 1)1 (3n - &)1
' . : 69a.
where ‘m, = K,/3n. For large n this becomes
m .3 ’

P = 1 11; 77’ B o . 690.
: - 2 2 _ oo .

PX | (37/“)3[ ®o S KgB /' 27 3n

_, : : ; 4

Compared with 59, which was caloulated 'on't.he basis of energy conservation
. | R -3/2 | .

alone, we notice the factor (.s’fn) in 69b., The additional three

. conservation laws thus. msrkodly restrict the phase space avajlabls fqr high

multiplicity processes at relativistic energies.
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(.7)/) The density ‘OK' ,
We shall now evaluate the covariant expression 50. Rigorously

ot] -,-K ¢ +Z%<f>‘~m
. ey(?) g &k 1 e")g ;om * Ka?'z

(:m“)3 {4 1

70.
in the domata §, - };:/ S o, '}ro + }?/ S 0. It 1is easy to
see that ¢a' obeys the Gordon-Klein equation with "imaginary mass"

(2® + x4, =0

and may be identified with the solution

A z__;___xl[mf—ffz S
S X T

of this equation. In the ultrarelativietic limit (71) simplifies to

‘sl/(f)

zn” X, (y ff) - 2;" (;Tg)'

The relations

s - - + lo -.-.];— 1 1
/"f/"- E:S' & [‘2772 Kaz (t.f)]




[

i ey ]
der s = - [2H/(§'§,)]la

are resdily verified. The defining relation for the temperatui‘éa may

.4 -»m
<
"

be expressed in terms of m A - /2n = O as
| . o= P "'/‘

— :ﬂii . ‘- ',72‘_
A

Oompariﬁg the present definition of no' with the one of the last section,
we notice that the equipartition law for energy is quite different for the
the two 'fypoa of statistics _in the ultrarelativistic domain. The final

asymptotic txpreasioﬁ for the covariant density turns out to be

m Nl Y /«2. x|
e T T TN = == e,
. /A ' ® 271 x.g m
| .
C/‘L
LU\ =
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c. Statieiical Correlatione

In the previous ché.ﬁter, .we indicated a method based on second
quantisationﬂ which could be used to take into accourxt.. statistical
.corroblati‘ons having tr;eir source in the indietinguishabllity of
elemantary particles. VIn this section, we should 1like to deal with
the problem in a manner closer in spirit to the thinking of Planck in
connection with the quantum hypothesis, Because of the somewhat clumsy
distincbionb betwsen generic and specific phase space and tha entropy
Apa.radox which it entails; we should like to picture the c];assical
situation sommdmt differently.

et W[ @), 2@ 227 ve the probavility of finding
n _ distinguishable particles at the following places: the first

particle at a particular point of its /«\ space /ul whosa coordinate

. . —.0; .
| vector is f 3= ?:(l) » the second in its. /u— space /i, at
fz = x(z); the n'th at fn = x(n). Each particle vhose coordinate

- vector appears as an argument of W may he regarded Aa a single
represéntative of a species of particles indistinguishable among

themselves, Ths conventionsl /.’ space (reduced to n dimensions) is
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~ now the spacev pr t;he distinct species; the /« space of each species
is populated by its ihdis’cinguishable members,

Weé now transcribe W [ 3:"(1)] » reduced to a single Npresenta.tiv?
. of a singla species, ;.nto this new language. Dividing the /« space of
the specles into a denumberable set of neighbo%hqods , sach centereq about

@ potnt §,, we introduce & neighborhood function n [g’i] with property

_n[;@i]:‘} ?1 5_1.;;(1)
T6a.

n{f{_’ = 1 Ei = ;<l) .
Ei:n {Ei] = 1 . _ | 76%.

The 'pmbability W[?] may now be replaced by w{n I$y1, n{E2b.cmn [f,,]] R

‘normalised sccording to

o S Z e W n;‘ ,nft T..nfe ... oL
SRR S TR f o] =

, 7.
‘This awkward division into neighborhoods may be dispensed with if we

| introduce a function _)/( g ) with the property that its integral over
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e '%, neighborhood o( §,) is equalto n [{,]. Relations 76

expressed in tems of »/( } ) read '

]
O

1n | Cde He) - © 42
°(§1)-'9° c(g . E § ?i#x

§) ) g,o= 3 T6a?

S’d} ‘j(f) - 1 . | 76b!

It is cloar that 76' will be aatiafied 1f we set

"(1) 78.

W ; ) :' §¢ §
The probability dist.ribution function W [n(j: l) R § s) .. ]
.- . on sets of occupation ;mmib'ars 3 n{ } B) § 48 now _replacéd' by a functional
w§ ))( _’f ); on "complexiona® l}( S ). The sums appearing in the
normalization condition 77 will be replaced by a “sum over complexions"
(in obvious :ana‘logy to Feyrman's "intogral over paths") and the expression
transcribed as

8 W )) ) ‘ - 1. | 77! .
V(E) §X03

In actusl computations; 77' will be regarded as the limit of 77 when the -

.S ? " % becomes very dense.
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It is thé ij.me ‘da;'oendent quantity, J(f , t) = g({f - x(t)), which
replaces the coordinateé and romentass a new dynamical variable. When
: déaling with single representatives of each svecies, its use is optional;
otherwise, if not compulsory, at least sometimes desirasble. The dynamical
equations of 'V(} , t) are those of a hjdrod&namic density: 4ts time
derivative may be expressed as the divergence of & current, the tige
derivitive of the current involves the divergence of a stress tensor, and
80 forﬁh. Equatién 76a', regarded as a restriction on the admissable
_aingﬁlarities of # hydrodynamic denéity, in effect quantiges it. Only a
single point contributes t§ the integr;l 76%!

To include more than one member of the spscies, we retain the
functional form of W 51)( f) g but augment-it.s range by modifying 76.

Thus for n particles of the species, we should have

| gdf ﬂ(f) = n . .‘ 760",
To retain the quantization, we permit 76a" to produce only integral

contributions from singularities. A crucial point, however, turns out

to be whether we retain 76a' in the fom
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mc(:?:)wo g d(); _)}(})

= 1
of fi)
or replace it with a more general
Max lim ,d% V(}):N. T6an

| We shall refer to N as t.ha_ ntatistic;l capacity of the apaoieaf I
appears to assume only two val;us, N~ 1 and N Q0 . We retain,

‘ ‘hoﬁwar, the letter N in order to deal with both cases togoth;r.
Condition 76b* 1a. gat especially pertinent to the high on.ergy dorfw.in. A

wore detailed version of 76a" would be

~ d§ J(}),: Yy 3 Max Y = K,
e( j__) ‘
with the corresponding generalization of the representation 78 to
Yie) = S(F-% )>/'. | 78!
o= 3T SE T,
For the diseussion to follow, 4t will be convenient not to regard f‘ as

necessarily the momentum or coordinate variable of a single particles

but to admit more generel parametrizations of the /—k spaca. We ghall
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thus write i?(f) where, of courss, :(k) - ; The paramstrizations
called for in quantum »thoory may be s§ degenerate as to refef to a discrete
set of points only. With this added flexibiiity we‘ ca;n treat th’a claasicai
and 'quan.t.um case in & uniform manner.

As an elementary exsmple, let us o;moidor the microcanonical
distribution »
wgl)% : S(B-S d} V(?)H(f))
5,)_(}, se- ( oy Aprmgn %

790

for a system of noninteracting identical particles of statistical capacity
¥ having only one constant of motion E. To evaluate fg s e represent

it, as before, in the fom

. S | -17
(’E:._LngO[ /

27
where now, howsver,

IR @(p;ﬂf&ﬂ}ﬂ Mg

Cua s K TRERCE) - TR IRCY ) - e
i n% £)=0  a(f)=0
(¥ +1) TH - 1
- 7711-0( ™ [F‘] =‘W[Zlogl-em+1) HL?J
]

1- o HLES] 1- e THCEY
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Introducing a new density e( S ) = > $( }: - F a), we rewrite
. " _

the last equation as

-m+1)m(;)

o - S ?Q(})ml-im(;) | ‘

1

The form €0 survives the transition from clessical to _quanttm
theory. Concepts from thg latter are needed only for Qhe parametrization
.of the /u. space and the @uatim' of @F and are basically a problem
in exact rather ¢han statistical qua.hﬁum,dynamics.' Thus if a1l but &
d.c'nmnerablé set (¢ 1 €0 .‘..) of valges of H is -erxc‘lud;ad by & wave
mschanical boundary condition, the /.. sp@me becox_noe diaérete .’ Taking
the value of (’ at these points as g4, the‘degeneracy of the' levols,

we have the familiar expression

-(N+1) T é;

Al 1-0 . 801,
'}0(?) - ? ga ‘/tes' i .

l-eg

Forb 8 quasi~contimmm of states of free scalar particles, we use

f

k, el F.') = -—--1— and 0 becomes
em’

- R . ;(n + 1) TR “
() = Vv =5 log 2= . "
V | (27 1. W : '
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The thermodynamic formalism of the previous section was a
simplification resulting from the fact that W(T) consisted of a s
of a large mmber n of bounded terms and was in essence an expansion in
(n)'é as & 'pai-ameter of emallness., In forms typ:lfied by 80" it is the
magnitude of (S d? ¢ S)) that 1is used as & parameter. With this
modification, the él_assical machinery can be taken over and the intrinsic

temperature defined as that value of ¢ for which

’ |2 ¥4+ 1
B = d () B(E) - . - .
| g § s § JHE) L xmela(y)

8L.

It is naﬁur;l to interpret 8l es E = 5‘6 ? E(,?) where E(i: ) 4s an
snergy density, the energy pér unit volums of /u spacs. ,It.. then follows
that Q( ?) | 18 the number of states per unit volume at the point }; ',
H(E) the value of the énergy of a particle when located at that péint.,

and

n(},) - 1l - N+l , a.
TH(E) C X(MHH(E)
e -1 8 -1

the expected number of particles in a state at the point f . Equation 82
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contains in it the usual "P.D. and E.B, fermulas." What is of greater
interest in connection with high energy modsels is not the expectation value
n( S ) but the underlying probability W [n( § )] over which n(js) is

sumed i{n order to arrive at n??)

o) = Sy wineg)| . 8.

An elementary and somewhat loose derivation of 82 may be of help.
Let us consider a # space for a species with statistical capacity X,
focussing our attention on a particular point j: . It 1s in the spirit of
Maxwell-Boltzmann statistics to say that the probability of finding a

system at the point'f , i¢ 1ts energy there is H(} )}, is given by
-?’H(f )

W}'[IJ = Ae

energy happens to be 2H( } ), it is plausible that

» Where A is a normalization constant; if .ite

Hf [2] - A e-.?:m(? ).
ﬁemeuboring that the capacity of the species is N, we may say

wg. [a] - Ae-r‘.ﬂ(r') it s< N and wF[s] - 0 if s >N,
Thus the correlation introduced by the exclusion principle affects only

N - .
the normalization canstant A. We find from 2 wg [a] - 1 that
. 530 .



The

-a'Z‘H(%)
W [s] = W (0) e , 8 < N
§ § |
- 0 s > 0 3
W, (0) = ;-;ka) . 8i.
F -~ (M+1) n(j.')ﬁ’
l-e

This then is the probability distribution which underlies 82 as may be readily
verified with the aid of 83,
| To make 84 more conv;neing and to 1llust.rate a point of tgchnique,
we shall derive it directly from 79. Le;t us considér a dogmain E in
/4-\ space yrith the chnré.cteriatic funotion U D( f ). Thé probability

W [n; DJ of firding n particles in D 4is clearly

1]

w{n; D] 6”5) Sn-g at v‘(;) Xp(6)) WS”(M - @E‘legcn; D)
| éSa.
5),(§) Sa- (ay J(§>7(D(§)>S(E-g 'aﬁ A HCED) -

85b.

i

se (n: D)

The first S aymbol in the right member of 85b is & Kronecker rather than
a Dirac delta. The Pourier parameter associated with its axpansion will

be denoted by ./\. . Ve thus have
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O5(n, D)‘ - SQL es [-ar]-o {175 n, D] .

86,
27 |

The entropy function S8 in 86 is the same as that encountered in commection

" with the revresentation of ()E. It 45 thus G which renders the Fourier

- N,D . |
image of QE( D) different from that of PE. We shall shortly relate

it to the generating function for the production of various pumber of mesons.
In example 86 G(73 n, D) 4s explicitly given Yy

<[5 n, 0 f” sn e (T3 A, D)
-]

e . - -duﬂ e » ‘870
0 27

where G(7 ;/\-, D) after the evaluation of the sum over complexions

" ay be written as

~TH+LA SN+ T H

./\, ) ' 1-e l-e
a(rs A, ?) = Sdf Q(f)%%) 1°51 T L JRTE Fi(RA
. - 8 . - 8
88,

In the thermodynamic limit, according'to 58, |

o - C-fe® )
E - : —

“ -{27r [sw(f) - G"(%)]ﬂ

89a.
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where we have made use of the fact that S'(’f') -0, and

8(X)
eE - i . ’ 89b.

{211’ s*(7)

It 1s at this stage where the assumption, that the system of interest is

small compared with the bath, can be used to obtain a simovle expression of
W [n; DJ . In this case

~G( 'Z‘-; n D)

e R
W Ln; D] - ~E(n, D) = e . 90.
fE
In arriving at 90, a certain amount of caution must be exercised in
subtracting large quantities not to throw out the system with the bath.

Going baok to 87, we transform the right member into a contour

integral about the origin

-G[T:nDJ g d -G["C;z, D]
e - e £ e 910
2"71 Sﬂ“*’l
C
and seﬁarat.o out from G[’I,"; %, D] a term independent of z:
(Tiam = o(rs 00+ d(x3ad) 9%2.

G (Y-ion) =

-(N +1)7TH
$ep vep mip gy .
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. o |
deviep - Sdf ALY 1ose ! :
K+l -T(N+1)H
l1-3 L]
: 92b.
The probability W [n..D] may then be upress'end as .
-G['E';on] ' N - -,A[?‘;znj
W n, D - . __!-__ d .
[n J _ ° : n! ;;ﬂ e '
_ 8=0
or S | | } -
e s AEe s
| u[n, n] - g[q, D] o oox e . 93.

Speciaiiéing the déﬁmh@ D toa point one .readily. recovers 8i.
Expressions of the type 93 ?or the production of mesohs at high
energies frequently exng;'ge, Ias a re;ult _of ,clertain.apprmdhation in n;m
theory. We have gj.VQ;x’the derivation of 93 1ri soms detail in order to
exhibit the very §imp1e statistical assumption that these eatpresaions -
involve. Tl;e» relation of 93 to th; averaged | n 'of the F.D, and E.D;
formmla should aleo be borne in mind as a useful guide j;o interpretation.
More useful at high energieé than the approximation 93 of 85 would

be one to a relativistic density with not only energy but also momentum
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conserved. We shall use Ferml's

i) = S - Y Sd}: y(‘e)(kzu);)'f-:u‘%)5(?’~ x§ ap /() K(E))
| A

as an example and indicate only the kéy formilas, since the calculational

t.echniqués wore illustrated on the previous eﬁe.mplta. We have in this case

(ﬂ+ l)li(y'k) ¥k :?'g- k

‘\}r(yo,?) gdf e(F)log -8 ; - Yoﬁo
10 A(y-k) k, = {k + 1)< .,

%.

This exprescion may be used to define the relativistic taﬁperatures
(;5-, ? ). The analogue of 93 emerges without complications and with the

altered definitons

‘d ‘ k
alo, o] - 35. ¢ Ap(h)eg) tog 1.2 T HE DK
k() XN +1)

l -

9.

X(y'k(g ))

,Z][y;z,n] = S d}%(f)log 1-2 e

1 N+l (B-f—l)l((y-k(}))

9.
Making the f and } idemtification which led from 80 to 80" and denoting

by D an angular range, formila 97 could be used to esstirate the number of
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partic1e§ scattered into & given solid angle. A great many other axampiea

and apﬁlications'oeuld be given.
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- DISCUSSION iy
. It is customary to include in an article 3¢ this nature a more

or less detailed survey of recent caloulations, note their ‘agreement, or

A -oa te

r . ' . . . ' ‘. .' ' ) . ” ’ 4 .
.~ disagreement with experiment, eriticize the loglcal and physical assumption

. that-went into them. None of this seems to be called for in the present

) . . . ' . , “ . - ) : ' !
* case, The rather detalled assumptions that have to be made in order to
- obtain definite predictions involve so few intellectual conmitments that

to. note, disagreement (or even agream;nt) with the experiment would hg_z.-dly

- “n

L '_b'e a rewarding experiet}ce.. - The interested reader may be referred to the

oot .

Qvtir;,e‘ review article by Milburn reflecting the state of affairs until about

,'f.h_e ‘middle of 1951; and to .a‘ paper by Lind'enbéum in this volume for re‘f_orenﬁoa

"

to yzcz;e r'_acent. work Neither shall we oriticise the .various assumptions

‘that were made by va_rioﬁd authors. This would hardly be charitable, since
‘most of them are aware, of the tentative and exploratory nature of their work

. T . ‘ - ., ,‘ \“ --, ..- - ) « o ‘ '
‘and are:only too eager to point to its shortcomings. ~Instead we should like

* %o discuss sevéral themes which have appas'u-ed in the literature that seem

.,
k]

to be capable of further development

+



-8~

The Fermi Contraction
' Féremost anmong these is the "Contraction Hypothesis" of Fermi [17].

. Its statement 4n 49 may be written in the f_om

: t (s) | M .
k S 1 t
JUs = Bl g 3 N, = _M__B . 49t.

The factor (ky/X) multiplies the covariant eleément of volume .)%S ds)'?«
: _ _ > ' (s

tuéning it iﬁto the noncovarianf; % . It is difficult to see how it
oould amerge frc;m any of -the -c§ﬁMnth-fomﬂated theories; we shall
' ..there_forev disregard it and focﬁs our attention en 1. .

. The "Fermi Gont.:action" derives some support from £he igle‘a of the
Lmre,nt; contraction. f‘{e therefore start by treating the latter in the
context of our discussion with some care. We consicier .n. : lﬁ& _n}‘~ -

1§‘~§ ;dc}’/‘(/w' , where,' o~ 435 a space~like surface. Fett a flat
Qs -, hes the character qf a volume. It is evident from its
o

construction that N-1s a scalar. Hence for any two frames C and C!

we nust have _k.L = .l ., Explicitly {with some additional equations)

ko skt kK k' k3 v Az A
P E T P e B e D e e B e e

98.
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We now choose C from among the frames in which ‘k/“ « (0,0, 0, kg) ;
and ci . ,Jin' wm.cﬁ-- _m/w‘: (0, 0, o, mio). ‘This ié'po‘s‘siblé because of

1
0, 0, ko)

Vthe time-1ike nature of % and 1. ~We can also t.ake k/u_ (k 12

, 9 ) - ; . .
_and :..(L;‘;’zJ"(xulg.,o, 0 f_“_'.o) (‘Zwm ?.1 # 0 and 14 #o0. Transcribing
. 98 in these spéoialized frames, we deduce

7/['1_.-.<.k";/k'o>zj Algs Ay = K,

‘ The ;f-il_‘;i‘% Q’f:t?héée is 't‘.he. t;sual escpre'saion for ?he Lorentz cqntractionsg
the .vé.eféohd.?t,ells ﬁé that the _velocity- oJr" Gv ?glati?e t§ ¢ must be

R relat.ed to the time-like tilt of the space-11ke surface in g . We are
,m,me to cho;ae both ~ar$i§r§xj1];y; In the case of two e#lzgding

".'nu-cl'a‘c.m)é a ;md ‘ b, one can Qbo§ thaﬁ the}-’e :ead.sf.:—;_ a tsi,’r_nsg'ie‘T _;‘:;me which

v"ia"fa‘l :_o‘il(:ab)v and | 'XC‘-' (b) and at'th§ samie‘t,vj.me C%I frame ﬂ(t‘.‘hat. is 6:'19 i.n which

. Ky + ki 0) Consider a collision along a s;traight'line». For G'(a)
& \ o |

b o ,

. i S0, 0 - : t.oor. . - 0 ,.0 t,. 1
s have ;i So = “for C'(b, =k, /x .
we | “,e_ A _1/,a° _ ﬁ&o 3f _.‘(_)., .(g—/.%a ’bl/‘b" |

o T - ,-.o,‘ol '
. Hence by taking .n_ 1/ _(‘1_0 - - ._{L- '1/ Fo¥ Lo we attain the desired

frame. Init lc (k (x +-)< )’) -(-‘ (x +-7()%) ,where

o . o . 2 2 2
.k ie related to the total energy of the eystem K, bty k = LK -X.
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2 \4
The contraction factor for each volume is now ( - .k_l.z ) S
, .k,

In the Fermi scheme, the same ..n_c. is taken for every particle

. emerging from the collision and is also identified with the > for each

L H
colliding nucleon. Thus _n?- - k _n_N

o

in the OM frame which is also a (! frame for each micieon. In it

. Let us consider the coliision

N N
_(f_.: k' o _{)_'.o . Permi pictures the collision as proceedi_ng in

| | ' N
three stages. 1In the first, k' o

is very large because of the "ordered®

translational kinetic energy of the nucleon. The two nucleons with very

high II;ON (ord) collide and are st.ruck. The kex (ord). is now reduced

to 2 Mc/h’ » most of it having turﬁéd into disordgmd energy which is
partitioned among various degrees of freedom of the system &ccor;ding to
gta:;tistica; laws. Fin;ally_ the qua.ei-?equilibnixm state breaks u;;, and the

| probg@ty of diéintegration into various ‘mo.des is taken to be proportional
to their statistical weights. The ﬁagio'asoumption of Fermi 1s equivalent

© to pgst_ulating an aﬁpi;cximate high eﬁergy colii'sion imﬁént which

survives the transition batueafz the mci_dent and the "stuck" stage. The

invariant in question i expressible as

3



Bl
- ord

{ ord ‘l '
K o ]incident. = ko, stuck _ 9.

‘ ‘- N . ord o
inc - ko ;.n.o ]inc is the quantity

In this expression 'koo-_ ]

- v o | _ | |
of interest; ko Jetuck ~ MeA because almost all energy ias now

ord ]

stuck ’ we may take a spherical volume of

th'emal‘; finally for .nb

radius ;f the cémpton w_aveiength of the 77’ ﬁxesons, "sinée the pion

tield sr;i'r&unding ‘the nucleus:; .axtends to this distance." All these |

‘quér’ltitiea are av&luat.ed in the OM system in whiéh the 'svtuckv nucleons are

"at r_qet.r. .We see no reasons for the volume of the pions aur‘rout;&ing. the

cat.uék 'nucla‘njs to appear contracted for an observer in that frame. "?Iyle

! ; arguﬁenz sometimes presented, that the coﬁtracted kinematic sﬂ§té»gf 8

| .méying‘ micleon is "frozen in" when the nmucleon s_tOpsl and t.ﬁat itdj t.i;awing“
| tiﬁe is longer than the l'i't-'e t.im;“o: the ,qugéi-equiiibmum state, 1;'

somewhat, unclot.zvinciné. However 'v;vith thq assumption of a high emr@.

collisional invariant and without this strange kinematics, we deduce from 99

~ o 1 .
‘A‘o ]inc = m: . » 990
: o X7
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wnera'w}é ?emeé kon by | 2,; Ky It is pex;hap:s‘ gmtifying %o £ind that
tﬁe Fb;m@‘oéﬁtracgion f;cﬁér.99' ggreéa.ﬁumérica}ly with}éhe Lorentz’
co;tgictioéﬂfaétor obtéiﬁéd §reviously. Iﬁ is.wéll to realige, ﬁéwéver,
‘.that $u§h agteé@eﬁg is po£'fequir§& by any phyéieal brinciples and 99!
]?] ¢apﬁq£,bolﬁerivedAfrom 98!, Eeg;rﬁedamérely 48 én aytempﬁ to invent a

S néw"&igh_énargy collision invariant, this ides of Fermi mer;ts cloeé study.



Additional constants of motion.

| AIvrnv his ;oxv'igi}_miﬁ paﬁer Fermi carriqgl' out his ealculations with.'h%
‘ for r_mclé_ons and ,5@& for mes()risl'-a.m;.! tried to é.liow for the qgﬁservdtion v
ot‘ :momenfum hy an ‘essia’lnfhf.t..a,‘l.isvr diméﬂsional .arén;gnt; The explicit
, calculations of -'.Lepore ,Hanbdsguéft‘ f 81 haveahown that ‘o'nekxzm‘_avt. 'pi@d_eed
. wit.h great.ér Qare;_ in gﬁé high eééjcéy domain Using 50'rather than | 50%a ,
theirresults differed considerably from ft_;l%ose of Fermi In additionto
’ pointing opt', thel: need for .égrefnl treatment. o;’gtt_};es-e' 1ntegrals ‘of"z;o‘.t,ioﬁé ’
.,"f,!fiése anthors a1~so'i;ntr6&ncer‘;l' a p@%eﬁul technique tﬁaﬁ ena’o'ieja {_one to do N
So
'Someﬁr;e{t,' later, Lepore and meuman [s ] -im@stigatadﬁéé .;fiféiet;s of
g “i.."j.s_.nemging the §;qter ot m_é.“ss t.)f‘.,‘-the 'systam' anong f,ﬁe cd_;xaqxﬂve_;i:_qu’a-ntiti;s;

-

For relativistic particles the new conservation law turns out to be quit.e |
ﬂnpcrbant,v:rqplacing thel-fa*etor (k + ) 3 in 9 by (k + K )

© With this Scontraction factor" supplied by relativity these aut.hcs:s felt

that they could afford to drop the Fermi contraction hypothesis. This
: ‘quiﬁed modél would seem to favor low energy high multiplicity events,

A crude attempt to study the effects of conservation of angular

momentum on the angular distribution of particles emerging from a high

'
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a énergy collision was made by Permi [10] . The subjéeb’is of ‘considerable
physical interest in contiection with high energy stars. It is hoped that the
etatic spherically symmetric model‘diacuseed in the first chapter_may be

of soms help in this connection.

| Final sﬁaﬁé interaétions.

Bétaining the;basic.étatisti§al outlook.and the stfuéture.ll for
tﬁé‘deqaity functions; one could.modify the propagaﬁors 43#'definad hf'
31 aﬁd r@preaenﬁed bilinearly in 30. Instead of free particl§ fmﬁx){s;
cneiéould insert wavglfunctioga d;peﬁding‘on a few parameter% tixed by
aipgriment. The mb#ified propagators would no longer have to ;atisfy the
vGordbn-Klein equatioﬁa, and through tkem some 6f our knowledgé about
the actual final atagea of 1nteraeting particles could be madé to beér |
on the predictions o# the statistical model. Work on this much ﬁeeded
mprovemnt oi"the’ statistical model was initiated by Kovac [ 11] with
encouraging reéults.

The Lindentsim-Sternheimer isobaric model.

There may be soms featurss of high energy interaction which are

too strong not to leave their individual marks on the outcome of the collision
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- . process in 'api_t;g ‘of the randomizing effect of the ample energy and large
numb.e‘ra ‘of‘,degreés of freedom. By singiing these out for-,speciai éf,bention, '
one “éould make the model more au_itable for the treatment of the remainder. -

e Th‘iac»gs ‘the ﬁew.répfeséntqd by Lindenbaum and Sternheimer [12 [ . In

LTl i.lr‘ieix":z"s'cent a_t.t;em'ﬁt in this direction 'they.single out the.\isqb;aric

e state obsérved in pion nucleon scattering for special treatment. - The

t

pea,der 1s referred to a fortheoming pub;l:lcatioh by these authors for a :

" .. detailed sxposition of their views.



FOOTNOTES
1 .The 'iﬁatat'ial quoted in this 75‘;@&&& is from [l'&
2. Themeaning of the starred product amnb'ol 7 wiil best be explained
o on e;{;gmplea. - If .an element of volué; in‘ phase smcé ié writtan .?s a

| A f:_'_ee producﬁ

._\ . N . ’ ‘ - :
3> .3 37 3 . | 3.
,:  77" dP(a)d&’(a) < d (l)dq(l) .dq( o &°P, d7q

Bal (2) © %2 ™ )
S @be:s‘ymbol' W 3? () d  may denote an _éacpresaioh of the type
. 8zl L ' S
3, 3

X It may als'o ‘oonf;!ai‘n _xhore ‘than-éne _t:ielta"funcﬁidn. A qua.ntity [!‘ voe 1

will be refeﬁed to as éssentially tact.orable if 11: may e written as
S [F'l.. Fi‘fl fn)] Vgl[p"z - -Pz(fi.;.fn)] vl(fl) v;ffé) ey e
Aset ot‘ fandém_‘;'aﬁabies #1. ,-.j.xn' | nn be re_g'ardeg:l{ as eséenti{all? B

' ...-,;:inde;.a»exﬁént :'Lf the Joint distribution function Q(i' .x;;, '.... %) may

i | " be pu'c !m the form SEJ_ gl(xl...xnﬂS(Ag 32("1"' ) Ql(xl) ez(xz).....
| 3 'I'he tfunctibn: s} 'fre'qqufc_.ly anplgygd in field theory is reJ@t_ed to our
| . A by A_ = 2X A*. We have chosen the multiplicativé eqnétant

in this manner in order to havé t.he‘ ﬁilinear -represen;a'».tic.mv,‘io with f'n

normalized kn convection current 28 .
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