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Use of projectional phase space data to infer a 4D particle distribution

A. Friedman and D. P. Grote
Lawrence Livermore National Laboratory, University of California, Livermore, CA 94550

C. M. Celata and J. W. Staples
Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720

(Dated: July 22, 2002)

We consider beams which are described by a 4D transverse distribution f(x, y, x′, y′), where
x′
≡ px/pz and z is the axial coordinate. A two-slit scanner is commonly employed to measure, over

a sequence of shots, a 2D projection of such a beam’s phase space, e.g., f(x, x′). Another scanner
might yield f(y, y′) or, using crossed slits, f(x, y). A small set of such 2D scans does not uniquely
specify f(x, y, x′, y′). We have developed “tomographic” techniques to synthesize a “reasonable” set
of particles in a 4D phase space having 2D densities consistent with the experimental data. These
techniques are described in a separate document [A. Friedman, et. al., submitted to Phys. Rev.
ST-AB, 2002]. Here we briefly summarize one method and describe progress in validating it, using
simulations of the High Current Experiment at Lawrence Berkeley National Laboratory.

I. INTRODUCTION

In Heavy Ion Fusion research, it is often desirable to
simulate beam dynamics over some section of an acceler-
ator or beamline, using measured data at the entrance to
that section to specify the initial beam particle distribu-
tion. Use of an idealized (e.g., semi-Gaussian) distribu-
tion with the measured low-order moments often fails to
yield the correct behavior (as shown below). We consider
beams which are described by a 4D transverse distribu-
tion f(x, y, x′, y′), where x′

≡ px/pz and z is the axial
coordinate. A two-slit scanner is commonly employed to
measure, over a sequence of shots, a 2D projection of
the beam’s phase space, e.g., f(x, x′). Another scanner
might yield f(y, y′) or, using crossed slits, f(x, y). The
key challenge is that a small set of such 2D scans does not
uniquely specify f(x, y, x′, y′). Thus, despite the under-
determined nature of the problem, we seek to synthesize
a “reasonable” f(x, y, x′, y′) which is consistent with the
measured data. We have developed Monte-Carlo tech-
niques to carry out such syntheses. These differ from
classical tomographic techniques used to synthesize 2D
distributions from multiple 1D views [1–4], and are de-
scribed in a separate document [5]. Here we briefly sum-
marize one method (Sec. II), describe progress in vali-
dating it using simulations of the High Current Experi-
ment (HCX) at Lawrence Berkeley National Laboratory
(Sec. III), and offer concluding comments (Sec. IV).

II. METHODS

The first viable 4D synthesis method was developed
by one of us (Staples), extended by discussions with J.
Stovall [6]. It has been applied to problems associated
with injecting a beam into an RFQ accelerator. This
method draws random points from a 4-box and accepts
each with a likelihood proportional to f(x, x′)× f(y, y′),
but then it applies “clipping,” i.e., removal of points out-

side a prescribed sampling 4-volume. A practical volume
consists of the intersection of the interiors of a 4-ellipsoid
and four 4-cylinders; the semi-axes of these volumes are
scaled to the extent of the data along the principal axes,
times user-specified multiplicative factors of order unity.
Due to the clipping, the synthesized (x, x′) and (y, y′)
densities differ slightly from the measured ones.

More recently, we have developed algorithms which ex-
actly reproduce, in the limit of many particles and fine
data grids, the measured (x, x′) and (y, y′) data, as well
as the measured (x, y) data when it is available. We
briefly describe one family of methods here, omitting
such details as data thresholding, recentering, etc. The
two-plane method with which we have had the greatest
success begins by assigning target “counts” N(x, x′) and
N(y, y′) of the numbers of particles to be loaded into each
“bin” in (x, x′) and (y, y′), proportional to the measured
f in that bin. The bin counts must be integers which
sum to the desired total number of simulation particles,
while f is often quantized to a set of discrete values by
the diagnostic. Because of this, scaling and rounding of
f(x, x′) and f(y, y′) to obtain the bin counts often fails—
a small change to the scaling factor either has no effect
or changes the counts in several bins at once, making it
impossible to obtain the correct sum. We address this
by adding a very small random number to the input f
values. The following steps are repeated until the req-
uisite number of particles have been generated and all
bin counts have been decremented to zero or a maximum
number of passes have been completed: (1) Generate a
random point in the 4-box bounded by the extremes of
the measured data; (2) Accept the randomly-placed point
only if it falls within the sampling region, and also in a
pair of bins both having nonzero counts; (3) If the point
is accepted, decrement the counts in the corresponding
bins by one. The use of bin counts minimizes statistical
noise since the correct number of particles (within ±1) is
loaded into each bin. The three-plane method proceeds
identically except that it employs a third set of bin counts
N(x, y).
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III. APPLICATION TO MODEL OF HCX

To assess various prescriptions for synthesis we em-
ployed a self-consistent WARP [7] simulation of HCX.
This, rather than early experimental data, was chosen as
a first step because we wished to know the true 4D dis-
tribution as a benchmark, and such information was not
available from the experiment. The reference simulation
used a 6D phase space through the injector exit, then
a transverse 4D phase space thenceforth. For a depic-
tion of such a simulation, see [8]. Input to the syntheses
consisted of projectional phase-space densities (obtained
by nearest-grid-point weighting) in the (x, x′) and (y, y′)
planes, and, for the 3-plane synthesis, the (x, y) plane.
Projections of the input distribution are shown in Fig. 1.

FIG. 1: Projections of sampled particles onto principal planes
at exit of injector, for the self-consistent reference simulation.

The results of the syntheses are shown in Fig. 2; here
the input planes (x, x′) and (y, y′) are not shown because
they are faithfully reproduced. In the two-plane synthe-
sis, the absence of a “rim” in the (x, y) view is note-
worthy; the three-plane synthesis captures this feature,
which seems to have an important effect on the down-
stream dynamics. Note also that neither of the syntheses
recreates the structures in the (x, y′) and (y, x′) planes.

The results of simulations initiated with synthesized
particle distributions [9] are compared with the self-
consistent WARP run, beginning at the injector exit, in
Fig. 3. Even in the “full” HCX with 30 or 40 quadrupoles,
no near-steady state is reached. Thus, understanding

(a)

(b)

FIG. 2: Projections of sampled particles onto principal planes
at exit of injector, for (a) the two-plane reconstruction, and
(b) the three-plane reconstruction.

the oscillations of the phase space will be important.
The semi-Gaussian utterly fails to capture the dynamics.
The “two-plane” synthesized distribution did much bet-
ter, but good fidelity was not achieved until the spatial
density data was incorporated in the “3-plane” synthe-
sis. That spatial information guarantees that the poten-
tial energy will be correct. Because the kinetic energy
involves the velocity components in quadrature, and all
synthesis methods reproduce the x and y velocity dis-
tributions well, inclusion of this information guarantees
that the total initial transverse energy will be correct.

Finally a synthesis using a coarse grid with just a few
cells across the beam was carried out; the (x, x′) projec-
tion is shown in Fig. 4. This resolution is typical of that
used in the experimental system commissioning. Simu-
lations using such a synthesis showed diminished fidelity
relative to those using a fine data grid.
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(a)

(b)

FIG. 3: (Color) WARPxy simulation results: downstream
evolution of (a) (x, x′) and (b) (y, y′) emittances for self-
consistent, 2-plane reconstruction, 3-plane reconstruction,
and semi-Gaussian beams.

IV. DISCUSSION

The methods described in this paper performed well
on the HCX model problem, while an idealized distribu-
tion performed poorly. This provides a strong incentive
to employ the best available synthesis techniques. The
superior performance of the three-plane synthesis moti-
vates the use of crossed-slit scans in HCX experimental

practice. These results also indicate that high-resolution
scans are needed if key features are to be represented
accurately in the synthesized distribution.

It should be possible to improve on the methods.
A “parameter-free” method (without a user-specified
sampling region) should be sought. Our first attempt
at such a method, described in Ref. [5], worked well on
a model problem but poorly on the HCX example. It
would also be desirable to be able to incorporate any
extra information, e.g., localized data at high resolution,
into the synthesis. An axisymmetric method specialized
to synthesis at the “gun” exit would be valuable.
Finally, the application of traditional maximum-entropy
methods [2] to 4D syntheses should be explored.

FIG. 4: Input (x, x′) projection (left) and synthesis at low
resolution (right).
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