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Abstract

Unprecedented opportunities in drug design now exist because the basis of disease is
being understood on a more molecular level. With the increasing number of known
protein structures, it is likely that the structure of the target enzyme will be known
or can be determined using X-ray crystallography, NMR techniques, or homology
modeling. The structure of the enzyme can be used to design new therapeutic agents
that are complementary to the receptor and bind with high affinity. In this disserta
tion I have developed a new system for the discovery and optimization of new lead
compounds in the drug design process. The system contains a molecular graphics
component as well as integrated molecular docking methods. Molecular graphics are
important in the drug design process. They identify receptor-ligand interactions and
suggest modifications to the lead compound that may improve binding. The system
uses the most recent developments in computer graphics to interactively compute and
display molecular surfaces and volumes of interest. Texture mapping is also used to
allow the chemist to more clearly render the information. Molecular docking methods
are invaluable for drug design. They are used to screen for new lead compounds and
identify chemically plausible structures for the intermolecular complex. Once a bind
ing mode is found, chemical modifications to the lead compound can be suggested.
In this dissertation I developed methods which use genetic algorithms to dock flex
ible ligands to rigid receptors. I studied the use of molecular mechanics force fields
and empirical estimates of the binding affinity as scoring functions. I found that the
latter work much better within the context of a genetic algorithm optimization. I
performed three different types simulations on seven different receptor-ligand com
plexes. With an initially docked fragment, my system performed as well as other
incremental construction approaches. I also demonstrate the my system is robust to
errors in the orientation of the base fragment. Furthermore, in all cases, when no
information about the binding was provided, my system found solutions very close
to the crystal structure. This system should prove to be useful for the design of new
therapeutic agents.
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Chapter 1

Introduction

Unprecedented opportunities in drug design now exist because the basis of dis
ease is being understood on an increasingly molecular level. Infectious agents create
enzymes that are necessary for their replication and survival, and knowledge of the
three-dimensional structure of these targets offers a direct route to the development
of therapeutic agents. Traditionally, most lead compounds have been found through
high volume random screening of corporate databases or natural products [1]. Fami
lies of related compounds are then synthesized and tested. Subsequent developments
are often assisted by quantitative structure activity relationships (QSAR) [2] or other º

related techniques [3,4]. An alternative approach has been to use an understanding
of the biological or biochemical mechanisms to direct the design of a new drug (5,6].
Structure-based drug design is a relatively new approach that has been brought about

■

largely by improvements in molecular structure determination and new computational &
tools. Using this technique, new inhibitors for thymidylate synthase [7], purine nu
cleoside phosphorylase [8], and HIV-1 protease [9, 10] have been designed. Some of º
these are now in clinical use.

º

1.1 Structure-based Drug Design |

7.The goal of drug design is to apply the principles of molecular recognition to
the development of novel ligands. Seymour Cohen proposed a general paradigm for

*



Known Receptor
Structure

Successful
Candidates

Figure 1.1: A four step strategy for the structure-based design of new therapeutic
agents.

the design of inhibitors of infectious diseases in 1977 [11]. Now, nearly two decades
later, the computational and experimental techniques have advanced to the state
that the approach shown in Figure 1.1 is now practical. This method depends upon
the existence of structural information on the receptor site. With recent advances in
methods for protein structure determination, it is likely that the structure of the target
will be available in the Brookhaven Protein Data Bank [12] or can be determined
through either X-ray crystallography, NMR techniques, or homology modeling. Model
structures of proteases from the schistosome and malaria parasites have recently been
used as drug design targets [13]. Given structural information about the receptor
site, ligands can be designed, synthesized, and tested. The information about the
structure of the ligand-receptor complex can be used to further optimize the ligand.
The procedure can be iterated until a potential drug has been designed. Although
not all targets are enzymes, I only consider these in this dissertation.



One technique for discovering new biologically active compounds is to search
databases of small molecules. There are two common approaches. The first involves
pharmacophore matching where a database is searched for structures that have sim
ilar arrangements of atoms or group of atoms [14]. Molecular docking, on the other
hand, searches for molecules that fit into a specific binding site. These algorithms
orient molecules into the receptor and by considering specific interactions with the
receptor and ranks the individual compounds in terms of their interaction energies.
The docking problem can be stated as follows: Given the structures of the free ligand
and receptor, predict the structure and binding free energy of the complex.

Computational approaches to predicting the binding geometries of ligands to re
ceptors are of interest because they yield insight into the mechanisms of molecular
recognition and for their utility in designing new therapeutic agents. Such techniques
are useful for the optimization of lead compounds. Once a compound has been found
and its preferred mode of binding identified, structural modifications of the compound
can be made to optimize the interactions with the receptor. The underlying assump
tion of structure-based design is that ligands must be structurally and chemically
complementary to their targets. This idea is not new to medicinal chemistry. Emil
Fischer introduced this “lock and key” concept [15, 16 to describe the interactions
between ligands and receptors over a century ago. Most molecular docking system
make use of this idea.

Ideally, a structure-based design system should be able to 1) screen databases of
small molecules for lead compounds, 2) rank a set of molecules according to their
binding affinities, 3) elucidate all the chemically plausible binding modes for a given
ligand and receptor, and finally, 4) provide methods for at least interactively opti
mizing lead compounds. The DOCK system, published in 1982, was one of the first
docking methods [17]. Since that time Kuntz and coworkers have continued to de
velop and improve various aspects of the algorithm (18, 19, 20). DOCK is one of
the most successful molecular docking systems. Its strongest feature is its ability to
rapidly screen compounds and identify potential leads, or alternatively, rule out those
that will most likely not have any chance of binding [13]. It has been used to discover
lead compounds for inhibitors of a variety of different macromolecular targets (see

* ... "…
& …
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Kuntz [1] and references therein).
One area where most molecular docking procedures, including DOCK, fall short

of the ideal is in the ranking of a set of compounds according to their relative binding
affinities. Docking simulations often find other binding geometries that are sterically
and chemically plausible, but cannot be distinguished by the particular scoring func
tion used. This has been seen in both protein-protein (21, 22 and protein-ligand [23]
interactions. The quantity of interest for the design of new ligands is the free energy of
binding, AGwind, in aqueous solution. Free energy perturbation techniques (24, 25, 26)
in the best cases can have accuracies of +1 kcal/mol. Although these calculations
are perhaps the most promising for the purpose of ranking compounds according to
their binding affinities, they are not without their limitations. First, they are com
putationally very costly because they require good sampling of the conformational
and configurational states of both the ligand and the receptor. Second, they require
an accurate model of the protein-ligand structure (27) which is usually not available
since the goal of the calculation is to identify the binding mode of the ligand. Further
more, the results are accurate only for closely related ligands and cannot be applied
to different molecules (28]. Quantitative estimates of binding affinity require relative
accuracies within 1 kcal/mol in free energy. An order of magnitude change in the
binding affinity is equivalent to a change in free energy of 1.4 kcal/mol. Force field
calculations rarely achieve accuracies better than +2 kcal/mol. For computational ef
ficiency, however, most evaluation schemes use much simpler scoring functions. These
are reviewed along with the molecular docking approaches in Chapter 2.

Another important characteristic of any molecular docking system is that it pro
vide a means of rapidly determining chemically plausible structures for the protein
ligand complex. This will assist the medicinal chemist to identify unforeseen binding
modes which can provide alternative design routes. The DOCK system generates a
list of possible binding orientations of a compound. There are cases where subsequent
crystallography has shown that DOCK incorrectly predicted the ligand's actual bind
ing mode (29, 30). One reason for this is that it is unlikely during a database search
to find a compound with a very high binding affinity. DOCK generally finds com
pounds with micromolar affinities, and there may be many orientations of a molecule



that would yield a similar affinity and be indistinguishable in terms of the scoring
function. A more important reason, however, is that DOCK is based on Fischer's
“lock and key” concept. Because ligands and receptors are flexible, changes in their
conformations should also be included in the docking simulations. These “induced
fit” effects seriously undermine the “lock and key” model [31, 32].

Typical drug molecules are small organic molecules that may contain several ro
tatable bonds. Recently, there have been many studies comparing the changes in

conformation [33, 34, 35, 36) and conformational energy [37, 38, 36) of a ligand in
its free and bound states. The evidence supports the “induced fit” model of ligand
receptor interactions; ligand and receptors do change their conformations when they
form a complex. One might propose that a possible solution to flexible ligand docking
might be to include several low energy conformations of a compound in the docking
simulation. The obvious drawback to this approach is determining how many and
which conformations of the molecule to use. If a favorable binding geometry is not
included, then a potentially potent inhibitor or binding mode may be missed. For
example, methotrexate, a potent inhibitor of dihydrofolate reductase and an anti
tumor drug, has two different conformations in the Cambridge Structure Database
(CSD) [39], but both are very different from the complexed conformation [40]. Fur
thermore, Nicklaus, et al. [36] suggest that ligands can “use up” a substantial part of
the energy gained by forming hydrogen bonds with the receptor in order to deform
its conformation. Inhibitors do not always bind in their minimum energy conforma
tions [41]. Therefore, including molecular flexibility is an important component to a
molecular docking system.

1.2 Outline of Dissertation

The first two stages in the development of a new drug are the discovery of a
lead compound and its optimization. New lead compounds can be discovered using a
variety of techniques including de novo design [42, 43,44, 45], computational screening
of databases of compounds [1], and high volume screening. With the development
of combinatorial chemistry techniques and high throughput screening with robotics,
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the latter approach has become the most popular approach in the pharmaceutical
industry. Current methods for computational screening are limited to rigid ligands
and receptors. One of the goals of this dissertation is to develop techniques for
computationally screening databases of flexible ligands.

Once a lead compound has been discovered the next step is to chemically modify
the ligand so as to optimize its binding affinity to its target enzyme. In order to
address this step of drug design, I have developed a molecular graphical ligand design
and optimization system which also includes methods for flexible ligand docking.
Interactive molecular graphics are invaluable for drug design [46, 47, 48]. They enable
the chemist to visualize various properties of the receptor — the van der Waals
surface [49], solvent-accessible surface [50], molecular surface (50, 51], and different
molecular interactions. With recent improvements in computer graphics hardware
and software, it is now possible to convey much more information. Because most
molecular docking systems are based on force fields or receptor surface properties
(see Chapter 2), molecular graphics can illustrate regions on the ligand where new
functional groups can be added to enhance the binding affinity. The system designed
in this dissertation has also been invaluable in analyzing the results of molecular
docking simulations.

Once a ligand has been optimized, it is important that the different binding modes
of the molecule be enumerated. A common mistake is to assume that closely related
compounds will bind nearly identically. Structural data have shown that even small
changes in a ligand can completely alter its binding geometry [38]. Therefore, a flex
ible ligand docking system is important for enumerating other chemically plausible
structures. These structures illustrate the states that a ligand can occupy and may
lead to new directions in developing a new therapeutic agent. One of the most impor
tant limitations of most molecular docking systems is that ligand flexibility up until
recently has been excluded. Much of this disseration describes the development of
a flexible ligand docking system. As mentioned above, there are two major compo
nents to a molecular docking system, predicting the structure for the intermolecular
complex and estimating its binding affinity. My approach has been to use genetic
algorithms [52], an optimization technique that combines a nondeterministic search

****



procedure with a “survival of the fittest” strategy. In my first system, I showed
that genetic algorithms could be used for both rigid and flexible ligand docking [23]
(see Chapter 4). There were a number of problems with the techinique. These are
reviewed along with other docking approaches in the next chapter. Several of the
limitations of my previous system and other docking methods are addressed in my
design of a new flexible ligand docking system. The remainder of the dissertation is
organized as follows:

Chapter 2 contains a description of the molecular docking problem with its
mathematical complexities and a survey of the approaches that have been used
to try to solve it. Particular emphasis is placed on the limitations of other
receptor-ligand docking systems and how my research has addressed these issues.

Chapter 3 contains a description of the molecular graphics portion of this
project. In this chapter I illustrate how new state of the art molecular graphics
can be used to allow the chemist to visualize much more information about the

receptor and how this can be used in lead optimization.

Chapter 4 contains a discussion of my flexible ligand docking system which
is based on a molecular mechanics force field. These results have been pub
lished [23].

Chapter 5 contains a description of a new flexible ligand docking system that
uses genetic algorithms with a binding free energy estimate as the scoring func
tion. I discuss a number of limitations of other methods, and I show how my
system addresses them.

Chapter 6 contains the conclusions of my research along with some areas for
future work.
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Chapter 2

Molecular Docking: A Review

Molecular docking is the prediction of the structure and binding affinity of a
protein-ligand complex given only the structures of the free ligand and receptor. This
is a complex problem that can be divided into two separate, but related tasks. The
first is a method to “dock” ligands to proteins. This involves searching the confor
mational and configurational space of the ligand within the receptor for chemically
plausible binding geometries. The second is a scoring function that can at least pre
dict which binding modes are favorable and which are not. Ideally, one would like
the scoring function to rank the set of compounds by their binding affinities. Both
of these components are essential for a successful docking system. The docking al
gorithm must sample the conformational and orientational space sufficiently so that
the favorable binding modes can be found, and the scoring function must be able to
recognize these structures when they are found.

In the case of rigid molecular docking where both the ligand and the receptor are
rigid and assumed to be in their crystal structure conformations, a direct search of
the six-dimensional space is not practical. Kuhl et al. [1], for the docking problem
defined as finding the orientation of the ligand that maximizes the number of pairwise
contacts made between the ligand and the receptor, showed that the brute force
method of finding all maximal matchings runs in time O(mºnº min(m, n)) where m
and n are number of atoms in the ligand and the receptor, respectively. Kuhl et al.
propose an algorithm that is based on a combinatorial graph of pairwise distances.
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For this problem, finding a maximal matching reduces to finding maximal cliques in
a graph, a problem known to belong to the class of “nondeterministic polynomial
time NP-complete” computational problems. Thus, any progress will depend on
the quality of the approximations used to search the conformational space of the
ligand and the scoring function used to evaluate the intermolecular complexes. In
the remainder of this chapter, I review some of the approaches to solve the molecular
docking problem, and I illustrate the relevance of my dissertation research in this
field. For convenience, the different docking approaches have been divided into several
categories. Furthermore, I focus only on the techniques that are applicable to docking
small molecules. I do not review the protein-protein docking literature.

2.1 Energy Minimization Methods

Energy minimization techniques use various methods to minimize the intermolec
ular conformation using a molecular mechanics force field. These methods include
ligand flexibility. Goodsell and Olsen [2] use simulated annealing to find the low
energy conformation of ligands within the receptor site. Caflisch et al. [3] used a
Monte Carlo method to dock a peptide inhibitor of HIV-1 protease. Yamada and
Itai (4, 5) developed ADAM, another energy minimization technique. Their system
includes flexibility in the ligand through a systematic search of the torsion space. An
initially docked structure is minimized with AMBER [6]. DiNola et al. [7] describe a
molecular dynamics approach to the docking of phosphocholine into McPC603. These
techniques consider flexibility in the receptor as well as the ligand. They can also
account for desolvation effects with discrete solvent molecules or with continuum sol

vation models (8, 9, 10]. Because of the complex topology of the energy landscape,
these techniques often get trapped in local minima, have long run times, and are
computationally too expensive.
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2.2 Descriptor Methods

Descriptor methods characterize the receptor in terms of various physico-chemical
descriptors and search for ligand orientations and conformations that maximize the
complementarity. The DOCK suite of programs [11] was one of the first methods
available for molecular docking. Although both the ligand and the receptor are con
sidered to be rigid, DOCK is still used to screen databases of small molecules. The
method consists of several steps. First, a negative image of the receptor site is cre
ated using spheres. A set of ligand atoms, typically four or five, are matched to the
sphere centers to generate various orientations of the ligand. Finally, the ligand ori
entations are scored. Recently, Meng et al. [12] used the grid-based approximation to
the molecular mechanics force field first proposed by Pattabiraman et al. [13] to score
docked structures. CLIX [14] is another rigid docking algorithm. It uses Goodford's
GRID [15] program which characterizes the binding site using twenty-three different
types of probe atoms. The ligand orientation is optimized with molecular mechan
ics. Bacon and Moult [16] describe a rigid docking algorithm that is based on a web
representation of the solvent accessible surface [17]. They apply a least squares fit
ting procedure to map the ligand onto the surface. The orientation is scored based
on electrostatics and steric interactions. Another class of approaches use graph the
oretical methods. Kasinos et al. [18] represent the problem of finding the largest
number of ligand/receptor matches as the problem of finding the maximal common
subgraph. The authors used potential hydrogen bonding sites as match points for
the algorithm. Smellie et al. [19] applied a similar approach to dock flexible lig
ands to rigid receptors. The major drawback of their algorithm is that the scoring
function was too simple, and many of the generated binding modes were sterically
impossible. FLOG (20 uses an approach similar to the approach in DOCK, but the
conformational space of the ligand is represented by a number of low energy ligand
structures. The methods described in this section all try to summarize the important
features of the receptor site and will most likely be of importance in any successful
flexible ligand docking system. The descriptors of the receptor provide targets which
can guide the placement of complementary groups of the ligand and thereby limit the
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search of orientational and conformational space.

2.3 Fragment-based Methods

Fragment-based methods dock a ligand by docking the individual fragments of a
ligand into the receptor. There are two approaches taken with the fragment-based
approaches. First, the individual fragments of the ligand can be docked separately
and then joined to form the complete ligand. One of the most challenging aspects of
this technique is to connect the fragments in a synthetically accessible way. The other
approach is the “grow” the ligand from an initially docked fragment. The fragment
joining approach forms the basis of many de novo design systems. Some examples of
these include GROW [21], LEGEND (22), LUDI (23, 24), GroupBuild (25), and Gen
Star (26). A number of flexible ligand docking systems are also based on this idea.
DesJarlais et al. (27) used DOCK to place an individual fragment of the ligand, and
the other fragments were subsequently added. This methods includes only partial
ligand flexibility. Hart and Read's (28) Multi-start Monte Carlo system used Monte
Carlo techniques to dock the individual fragments. Leach and Kuntz (29) describe
an incremental fragment construction algorithm. In this case a variant of DOCK is
used to place an “anchor” fragment of a ligand into the receptor, and a systematic
search algorithm is used to place the remainder of the ligand. Rarey et al. (30) re
cently described their incremental ligand construction algorithm called FLEXX. In
their algorithm a base fragment is chosen and docked using pose clustering, a pattern
recognition technique [31]. The ligand is constructed using a ligand conformation
generation program MIMUMBA [32], and the intermolecular conformation is scored
using an estimate of the binding free energy which is based on the work of Böhm [33].
Welch et al. [34] developed Hammerhead, another fragment-based approach ligand
docking system. The method starts with a fragment docked in placed, and the com
plex is scored using a variation of the same free energy estimation [33] procedure.
Their implementation of the scoring function, however, is differentiable and the lig
and's orientation can be minimized. The limitations of these techniques are covered
in the last section of the chapter.
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2.4 Genetic Algorithm-based Systems

Perhaps the newest approach to the problem of flexible ligand docking is the use
of a genetic algorithm (GA) [35] to search the conformational and orientational space
of the ligand. Genetic algorithms are non-deterministic optimization procedures that
are based on a “survival of the fittest” strategy. In 1994 Judson et al. [36] used
genetic algorithms to dock Cbz-GlyP-Leu-Leu (ZGLL) to thermolysin. This is the
first published account of the use of genetic algorithms for flexible ligand docking.
The authors used a molecular mechanics scoring function and the ligand was “grown”
from an initially docked fragment. Oshiro et al. [37] describe a flexible ligand docking
extension to DOCK. The genetic algorithm encodes a mapping between the ligand
atoms and the sphere centers of the negative image of the receptor in addition to the
torsion angles of the ligand. The receptor-ligand conformations are scored using a
molecular mechanics force field. In my first flexible ligand docking system [38], I used
a genetic algorithm search procedure with a grid-based molecular mechanics force
field [12, 13] (see Chapter 4). The purpose of the work was to study the applicability
of genetic algorithms to rigid and flexible ligand docking. Two different approaches
were taken with flexible ligand docking. The first was the combination of a systematic
search within the context of a genetic algorithm. The second was a fragment-based
approach where an initial fragment of the ligand was docked approximately in place.
The primary focus of this work was to determine how much information about the
binding mode might be necessary in order to find the crystal structure binding mode
consistently (at least 50% of the time). Jones et al. [39] describe a flexible ligand
docking system which encodes putative mappings between hydrogen bond donors
and acceptors as well as the torsion angles of the ligand. The scoring function is a
weighted sum of the van der Waals energy and the hydrogen bond energy. The authors
point out that the method is suitable for incorporating receptor flexibility into the
receptor side chains. Leach [40], however, has described the most detailed treatment
of receptor flexibility in molecular docking simulations. His approach uses the dead
end elimination algorithm [41] to enumerate the receptor conformations and the A*
algorithm, a well-known artificial intelligence algorithm for finding the optimal, least
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cost solution to a search problem. All of the genetic algorithm methods described
above have similar performance in that they all converge to local minima and often
take several runs to find the solutions.

2.5 Comparisons and Future Directions

The two most promising approaches to flexible ligand docking to date are the
fragment-based and the genetic algorithm-based approaches. Rarey et al. [30) have
described the most comprehensive system FLEXX to date for the fragment-based ap
proach. There are a number of limitations to their approach. First, the base fragment
for the docking procedure was chosen interactively. In fact, the choice of the base
fragment plays an important role in determining whether the system will find the
solution or not. If a fragment that has no clearly predominant directionality with
the receptor is selected, then their procedure will most likely not find the correct
binding mode. Second, the actual placement of the base fragment is context de
pendent. Ligands are known to deform when they bind to receptors [42]. There is
no guarantee that the orientation or conformation of the base fragment will be the
same in the ligand as it is when the base fragment is docked independently. Rotstein
and Murcko (25) have shown that it is difficult to dock ligands if the fragment is
not oriented properly. Uncertainties in the placement of the base fragment can be
particularly important if one is trying to design a drug from a model structure of the
target enzyme or if receptor flexibility is included. Third, there are many potential
sites in which the base fragment can be docked. Rarey et al. found that orientation of
the base fragment in the crystal structure does not necessarily correspond to the best
position of the base fragment docked independently. This brings up a very interesting
question. How many different orientations of the base fragment must be considered
to find micromolar or better inhibitors? Finally, the authors use a “greedy” construc
tion algorithm to “grow” the ligand. This approach begins with an initially docked
fragment and adds subsequent fragments in the orientation that maximizes the frag
ment's contribution to the score. It is not necessarily the case that the lowest energy
conformation of the entire ligand is the one where the fragments are added in their

*-*- * ---
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lowest energy orientation. This approach is most suited for docking highly optimized
ligands where each functional group is designed to maximize the complementarity
with the receptor. The purpose of this dissertation is to develop a molecular docking
system for ligand discovery and optimization so one most likely will not be docking
a highly optimized ligand to the receptor. The goal is to elucidate all the plausible
binding modes of a ligand to discover different strategies for the design of new ther
apeutic agents that optimize the complementarity between the ligand and its target.
Furthermore, the performance of the “greedy construction” approach will be affected
the other uncertainties in the base fragment that were mentioned above.

Methods that rely on genetic algorithms to search the conformation space of the
ligand have not been studied as well. The approaches described in the previous sec
tion all had similar results. The genetic algorithms converged prematurely to local
minima. Many runs were needed to find the crystal structure binding mode, and alter
nate solutions with scores similar to the crystal structures were found. Some classes
of problems are known as “GA deceptive” [35]. These problems are difficult to solve
using genetic algorithms because good partial solutions lead to poor global solutions.
In formulating a problem within the context of a genetic algorithm solution, one must
carefully choose the scoring function and the representation of the optimization pa
rameters. For molecular docking, the representation determines how the parameter
space is searched. It helps direct the search to areas where good global solutions are
likely to be found. For example, a representation that uses a mapping of putative
hydrogen bonding sites guides the search in the regions where these contacts can be
made. The scoring function, on the other hand, is linked directly to the dynamics
of the genetic algorithm through the selection operator. It determines which partial
solutions are favorable and are thereby explored further. If a conformation does not
score well even though it is close to the crystal structure, then it will most likely not
survive to the next iteration of the genetic algorithm. The genetic algorithm-based
molecular docking systems described in the previous section use different representa
tions but very similar scoring functions, an electrostatic or hydrogen bonding term
and a van der Waals score. In Chapter 5, I describe a molecular docking system which
uses genetic algorithms to search the ligand's conformational space. In this system,
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I use a scoring function similar to the Böhm free energy estimate [33]. Furthermore,
I use the system to address some of the limitations of the fragment-based docking
procedures. Finally, in the last chapter, I discuss some alternate representations
that address the other limitations of the fragment-based approaches and describe an
approach that may be more suitable for molecular docking.
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Chapter 3

A Ligand Discovery and

Optimization System

Most of the drugs in clinical use today were developed through high volume ran
dom screening of natural products or corporate databases of compounds. This is just
the first stage in the lengthy process of drug development. According to Table 3, the
ligand discovery and optimization process can take from two to four years. The pur
pose of this drug design system is to help further our understanding of protein-ligand
interactions, to assist structure-based drug design, and to decrease the development
time during the first two steps in the drug design process.

3.1 Drug Discovery and Optimization

As mentioned above, high volume screening is one of the most useful techniques
for ligand discovery. Other techniques include de novo drug design or computational
screening [1]. The latter, however, is currently practical only if the ligand and receptor
are rigid. Recently, with the development of combinatorial chemistry libraries and
high throughput screening techniques that use robotics to carry out standardized
biochemical assays, the high volume screening approach is being used more and more
in the pharmaceutical industry. This technology enables more rapid synthesis and
testing of compounds and identification of potential lead compounds. The challenge



29

| Drug development step |Years ||
Discovery and lead generation | 1 – 2
Lead optimization 1 – 2
In vitro and in vivo assays 1 – 2
Toxicology trials 1 – 3
Human safety trials 1
Human efficacy trials 1 – 2
Total development time 6 – 12

Table 3.1: This table, which appears in Kuntz(1], describes the steps required to get
a drug to the market. This chapter of my dissertation focuses on the first two steps
in the table.

once a lead compound is discovered is to determine how the compound binds and to
suggest chemical modifications that will increase its binding affinity.

The underlying assumption of structure-based drug design is that ligands and re
ceptors must have significant structural and chemical complementarity. In optimizing
a lead compound, a chemist exploits information about the receptor to suggest chem
ical modifications that will increase the binding affinity to the target enzyme. Even
when the structure of the receptor is known, this can be a difficult task. Interactions
between the ligand and receptor involve many non-bonded contacts. In many cases
the true binding mode may not be known (2, 3], and there may be several chemically
plausible structures. Each of these may provide a starting point for lead optimiza
tion. Furthermore, small changes in the ligand can have a profound effect on the
binding mode [4]. Therefore, two important components of any ligand discovery and
optimization system are a method for molecular docking and a molecular graphical
tool which highlights the potential interaction sites on the receptor. The remainder
of this chapter describes the details of the molecular graphics system, and the flexible
ligand docking methods are discussed in the next two chapters.
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3.2 A Ligand Discovery and Optimization System

Molecular graphics are an invaluable tool for providing structural insights for di
recting the design of new therapeutic agents [5]. By studying how different inhibitors
can be accommodated within the same active site of a receptor, we can develop a bet
ter understanding of the protein-ligand interactions that are applicable to structure
based drug design. Bohacek and McMartin [6] describe a molecular graphical tool for
drug design. They investigated several methods for displaying key interaction sites
on the receptor and illustrated how molecular surfaces are important for rendering
this information. Although their system used parallel contour lines to represent the
molecular surface, they demonstrated the value of displaying it interactively. Molec
ular surfaces illustrate the overall topology of the binding site and provide detailed
information about the which pockets are unoccupied. Functional groups can be pro
posed to extend the ligand to that it can interact with more sites on the receptor.
Bohacek and McMartin quantified the relationship between surface complementarity
and binding affinity. Their approach involves dividing the molecular surface into three
different regions – hydrophobic, hydrogen bond donor, and hydrogen bond acceptor.
For a set of nine thermolysin inhibitors, they found a good correlation (r” = 0.99)
between log 1/K, and the number of nonpolar carbon and complementary hydrogen
bond contacts. In the five years since Bohacek and McMartin developed their system,
there have been many advances in computer graphics hardware and software. It is
now possible to display much more information to the chemist.

This drug design system has been developed as an extension to Chimera [7], a
new molecular modeling system that is being developed in the Computer Graphics
Laboratory at UCSF to eventually replace MidasPlus [8]. The key features of the
system include:

• Extensible and user customizable

• Comprehensive graphical primitives

• Texture Mapping



31

Extensibility is one of the primary features of the new system. Chimera, in fact, will
contain only the core functionality of the molecular modeling system – the graphical
display, the user interface, and several extension mechanisms. All other functionality
and applications will be implemented as extensions to this core functionality. One of
the extension mechanisms is the use of Python [9], a complete programming language
with control flow constructs, as the Chimera command language. Through Python
application programmers will have access to the data in Chimera. Chimera's user
interface is also customizable, and extensions can be readily integrated into menus or
placed on Chimera's tool bar. More elaborate extensions to the user interface can be
made using X-windows Motif, Tk, or HTML libraries of Python. Thus, entire systems
such as a molecular dynamics or drug design systems can be developed as extensions
to Chimera's core functionality.

Another key feature of Chimera is that the graphics are based on OpenInven
tor [10], an object oriented toolkit of objects and methods for creating interactive 3D
graphics applications. OpenInventor greatly extends the graphics capability of the
system beyond that of Midasplus. Chimera can interactively display wire-frame, ball
and-stick, and ribbon style representations of molecules. Chimera can also display
non-molecular graphical objects such as points, lines, spheres, and polygons. The
orientation, color, and translucency of these objects can be changed interactively.
OpenInventor also supports texture mapping applications. Texture mapping is not a
new technique in computer graphics. It has been used for many years for creating re
alistic computer generated images where software-based rendering systems were fast
enough. Recently, however, advanced graphics workstations with special hardware for
texture mapping have appeared on the market. Three components are required. One
must have a vertex-based three dimensional object, a texture or set of parameters
associated with each vertex, and a mapping function which relates the texture to the
display of the object. Because texture mapping modifies pixel information interac
tively during the rendering procedure, it provides a new framework from which to
display and analyze scientific data. One important application of texture mapping is
volume visualization.

My ligand discovery and optimization system is implemented as an extension to
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Figure 3.1: The hydrogen bonds that are formed between VX-478 and the HIV-1
protease. The ligand is shown with a ball-and-stick representation, the neighboring
receptor atoms are shown in green, and the hydrogen bonds are shown in magenta.

Chimera. It consists of a set of applications written in C, C++, or Python for ex
tending the core functionality of Chimera so that it can be used as a drug design
System. Many of these applications are for visualizing various physico-chemical prop
erties of the active site of the receptor. Other extensions provide user interfaces for
computing and displaying these quantities or for browsing the results of a flexible
ligand docking simulation. The applications described here have been integrated into
Chimera and are available from Chimera's user interface. In the remainder of this

chapter, I present examples of these features using the real world example of an HIV-1
protease inhibitor VX-478 that was designed at Vertex Pharmaceuticals. Phase I/II
clinical trials for this drug began in 1995. The docking simulations of this system are
considered in Chapter 5.

In designing a therapeutic agent, it is important to be able to identify interactions
that are being made or can be made with the receptor. A number of applications are
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available in this system for this purpose. Hydrogen bonds, for example, are one of
the most important interactions that can be formed between a ligand and receptor.
During a molecular recognition event, hydrogen bonds with the solvent are replaced
with hydrogen bonds between the ligand and receptor. In some cases, water molecules
mediate hydrogen bonds between the ligand and receptor. Because these interactions
are so important in molecular docking studies, I have written a C++ application to
identify and display the hydrogen bonds within a complex or a given molecule. The
molecules are read into the program, and sets of atoms that satisfy various hydro
gen bond geometries are identified. Currently, the system searches for approximately
linear hydrogen bonds as described in Böhm [11] or those that satisfy the criteria
specified in LUDI [12]. Other geometries can be used simply by changing the in
put file. The output of the program is an OpenInventor file containing a graphical
representation of the hydrogen bonds. This file is rendered in the graphical display
using a core utility of Chimera for displaying OpenInventor files. The hydrogen bond
geometries are also written to Chimera's reply window using a Python script so that
the user can identify the atoms involved and evaluate the geometry. Figure 3.1 shows
the hydrogen bonds being made between VX-478 and the HIV-1 protease. Other
utilities are available for highlighting hydrogen bonding opportunities.

Bohacek and McMartin [6] illustrated the utility of a molecular surface in drug
design. My ligand design system has an application for interactively computing and
displaying a molecular surface. A number of programs now exist for the calculation of
a triangulated molecular surface [13, 14]. I have compared these programs and found
that the latter produces better molecular surfaces. Both systems generate the surface
in real-time, but the Varshney et al. surface had problems with degenerate triangles.
My system uses the MSMS [14] program to compute the surface which is represented
as a list of vertices and triangles that represent the molecular surface. I have written
a Python script to convert the the output of MSMS, a list of triangles, into OpenIn
ventor format so that it can be displayed within Chimera. The surface can be colored
using standard techniques or texture mapping. Furthermore, translucency can be
used to improve the interpretability of the data. Figure 3.2 shows the molecular sur
face of the HIV-1 protease that has been colored by the protein's chain identification
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Figure 3.2: The symmetric nature of the HIV-1 protease. The two dimers are shown
in gold and cyan.

Figure 3.3: The molecular surface of the HIV-1 protease colored according the the
hydrogen bond donors or acceptor sites on the receptor. Hydrogen bond acceptors
and donors are shown in red and blue, respectively. The yellow regions on the receptor
correspond to areas that are neither hydrogen bond donors or acceptors.



Figure 3.4: The interactions of the inhibitor with the protease as in Figure 3.3 after
part of the surface has been clipped away using transparency as one of the components
of the texture space.

number. The figure illustrates the symmetric nature of the protein. Figure 3.3 shows
the surface of the HIV-1 protease that has been colored according to the presence of
hydrogen bond donor or acceptor groups on the receptor along with a ball-and-stick
representation of the ligand. By implementing the coloring using texture mapping,
one can use transparency to interactively clip away part of surface and display those
features of interest. This is shown in Figure 3.4. In this case, I wrote an application
in C which computes the distance from a given vertex to a clipping plane. The out
put of this program is stored as the second texture component in the OpenInventor
file. Vertices above the plane and further than a distance threshold from it are made
transparent. The distance threshold can be changed using the texture editor, which
was written by Conrad Huang as part of Chimera. Notice how the different functional
groups interact with the different subgroups of the protease. The figure shows the
hydrophobic groups are docked into hydrophobic pockets (yellow), and the hydrogen
bonds are shown with yellow lines. This, however, is better illustrated interactively
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Figure 3.5: A hydrogen bond acceptor isosurface (cyan). This surface highlights
where acceptor groups on the ligand can be placed to form a hydrogen bond with the
receptor.

on a graphics screen. Because molecular surfaces are invaluable for visualizing a re
ceptor's binding site and identifying regions where functional groups can be added to
increase a lead compounds binding affinity, I have written a graphical user interface
to the surface calculation application in Tk and Python. This utility facilitates the
calculation of the molecular surface and allows the user to color the surface either

a solid color, the color of atoms closest to the vertex, or by using texture mapping.
The texture fields can be set to any program that can be executed from the Unix
command shell. The vertices are read into the program from the standard input, the
output is written to the appropriate texture field of the OpenInventor output file.
The molecular surface is displayed using a core utility in Chimera.

The examples considered so far have displayed lines or surfaces, but molecular
interactions are governed by quantities in the volume of the active site of the receptor.
Line segments can illustrate hydrogen bonds that have been made between the ligand
and the receptor. This is particularly useful when analyzing the results from docking

---
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(b)

Figure 3.6: a) The volume visualization of the electrostatic potential within the active
site of dihydrofolate reductase. b) The surface has been removed to show that the
pteridine ring lies in the region of higher electrostatic potential. The green corre
sponds to the regions of higher electrostatic potential.
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simulations. In designing a new ligand, however, one is interested in identifying the
properties in the volume of space of the active site. For example, one might be
interested in identifying those regions where new hydrogen bonds can be formed. For
this purpose, I have computed on a three dimensional grid the location of hydrogen
bond donor and acceptor potential and contoured the region using the isosurface
routine in the Molecular Inventor [15] software package, a chemistry visualization
toolkit that is based on OpenInventor. Figure 3.5 shows the regions of space where
hydrogen bond acceptor groups on the ligand can be placed to form hydrogen bonds
with the receptor. Notice how the ligand's acceptor atom lies in the cyan region and
forms a hydrogen bond with a donor group on the receptor surface. This utility of
this functionality is better illustrated with interactive molecular graphics instead of
an image. As another example of displaying volumetric data, I have computed the
electrostatic potential of a receptor's active site. The potential is computed on a
three dimensional grid as described in Chapter 4 and is displayed using a volume
visualization technique that is implemented using texture mapping. Figure 3.6 shows
the electrostatic potential for dihydrofolate reductase which has a strongly polarized
active site with a positive charge at one end and a negative charge at the other. The
potential that is stored on the grid is converted into a texture mapping object and
is displayed in Chimera. I have considered only two specific examples for visualizing
volumetric data, but the two C++ applications can be applied to any volumetric data
that is stored on a three dimensional grid. A graphical user interface is needed for
this application.

Lastly, the system has an integrated flexible ligand docking module. Although
flexible ligand docking, in general, cannot be done interactively, there are some simu
lations, particularly with an initially docked fragments, where this is the case. Even
tually, as computers become faster and our docking methods improve, this may be
more useful. My ligand design system has a browser for organizing and displaying
the results of a docking simulation. It is implemented in Tk and displays information
about the simulation, the score of the docked structure, and its rms deviation from
the crystal structure if it is known. Selecting an entry in the table transforms the
initial ligand conformation with the particular translations and rotations which are

º
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Figure 3.7: This figure shows Chimera with my ligand discovery and optimization
My applications are included in the toolbar on the left hand edge of

Chimera. The figure also shows my surface calculation and molecular docking browser
extensions.

extensions.
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| Extension | Implementation |
Molecular Surface Input: PDB file

Output: OpenInventor
Language: Python, Tk

Molecular Dock Browser | Input; GA output information
Output: PDB file
Language: C, Python, Tk

Hydrogen Bonds Input: PDB file(s)
Output: OpenInventor, ascii text
Language: C++, Python

Dock Score Input: Receptor (pdb), ligand (mol2)
Output: ascii text (see Chapter 5)
Language: C, Python

Isosurface Input: 3D grid
Output: OpenInventor
Language: C++, Molecular Inventor

Volume Visualization Input: 3D grid
Output: OpenInventor

| Language: C++

Table 3.2: This table list the extensions that are part of my ligand discovery and
optimization system.

read from the genetic algorithm docking output file (see Chapters 4 and 5). The
docked structure is then displayed within Chimera. Figure 3.7 shows Chimera with
my drug design extensions. My system is contained within the icons of the toolbar on
the left hand edge of the Chimera window. The “Surface” icon executes my surface
calculation application described above. The “GA Dock” icon brings up the browser
for the flexible ligand docking results. This application proved to be most useful in
the analysis of molecular docking simulations.

In conclusion, a ligand discovery and optimization system has been implemented
as an extension to the core functionality of Chimera. Table 3.2 shows a list of the
extensions. This system is useful for analyzing and visualizing data that can be
important for the design of new drugs. It can help us further our understanding of
the protein-ligand interactions that are applicable to structure-based drug design. It

* : **
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can be used to identify interaction sites on the receptor that may be used to improve
the binding affinity of a ligand to its target. The molecular docking browser facilitates
the analysis of the results. With basic methods for adding and replacing groups on a
molecule, this system will be useful for structure-based drug design. As new features
are added to Chimera, more extensions can be added which will greatly enhance the
discovery and optimization of ligands in the drug design process.

*****
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Chapter 4

Flexible Ligand Docking with a
Molecular Mechanics Force Field

Many of the functions performed by biological molecules depend on appropriate
interactions with each other. Molecular recognition is the process by which inter
molecular forces act to bring about a productive collision between molecules; it is
inherently a dynamic and stochastic process. One application where a better under
standing of the mechanisms of molecular recognition would be particularly important
is in the design of new therapeutic agents that bind to target receptors with high
affinity and specificity.

Molecular docking is one way to computationally formulate the problem of molec
ular recognition. Docking is simply the collision of the ligand with the binding site
in the correct relative conformation and orientation to form a complex. Within the
context of molecular docking, the problem is to identify the “best” conformation of
a ligand in the binding site of the receptor. There are two essential parts to any
docking algorithm – a scoring function and an efficient algorithm for searching con
formational space.

Different ligands can bind to a receptor in many different conformations with vary
ing affinities. A scoring function is used to rank these affinities. An important criteria
for the form of the scoring function requires a compromise between the complexity
of the function to maintain reasonable computational efficiency and its ability to cor
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rectly rank the bindings. A variety of scoring methods have been used in molecular
docking. For example, Kuntz and coworkers [1] use shape-based descriptors. Pattabi
raman, et al. [2], Goodford [3], and Meng, et al. [4] use three-dimensional grids to
evaluate energies (nonbonded, electrostatics, and H-bonds). Bohm [5] uses empirical
scoring functions based on experimental binding data.

Algorithms for efficiently searching conformational space are another integral part
of any docking algorithm. In the simplest formulation of the molecular docking prob
lem, both the ligand and the receptor are assumed to be rigid. Searching conforma
tional space is reduced to a search of the much smaller orientational space. DOCK [1]
was one of the first algorithms developed to address this problem. While most algo
rithms consider the receptor to be fixed, a few algorithms (6, 7] allow side-chains to
take on values from a limited set of well-defined conformations. Despite the simplifi
cations that are made, a brute force search of conformational space is not practical.
For example, in docking a rigid ligand in a 20x20x20A box with 5 degrees and 0.5A
rotational and translational resolution, respectively, there are more than 3 × 10° ori
entations to be tested. Methods based on distance geometry [8], Monte Carlo (9, 10],
graph theory and tree search algorithms [11] have been used. Kuntz, et al. [12] provide
an overview of these algorithms as they are used for molecular docking.

A useful molecular docking algorithm must satisfy at least the following three con
ditions: First, it should be computationally efficient while simultaneously providing
a reasonably thorough search of conformation space. Second, it should identify the
“best” binding modes consistently as brute force exhaustive searches are not feasible.
Without an exhaustive search, it is not possible to guarantee that a given minimum
is global. Third, the algorithm's parameters should not be too sensitive to the par
ticular ligand-receptor complex in question. Algorithm parameter searches should be
avoided especially since there is no independent way to verify a docking result in a
real-world application.

In this paper we explore the application of genetic algorithms (GAs) to the prob
lem of rigid and flexible ligand docking to fixed receptors. Genetic algorithms are
used because they are computationally efficient and easily parallelizable. They have
also been proven to robustly search complex spaces [13]. For our scoring function,

is-->
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we use an AMBER-type potential function [14, 15] to evaluate the “binding affini
ties” of the different ligand conformations. To improve the algorithm's efficiency we
employ a simplification used by others, namely, a grid based energy evaluation [2, 3].
Lastly, we introduce a masking operator, which provides a convenient mechanism by
which different binding hypothesis can be tested. This operator also improves the
consistency with which solutions are found. We report the results on four different
ligand-receptor complexes (in this paper we are concerned only proteins) using the
system, DIVALI (Docking with eVolutionary ALgorithms).

4.1 Methods

Scoring Function

We adopt an AMBER-type potential function [14, 15] to score the different ligand
orientations with the underlying assumption that the correct ligand binding confor
mation corresponds to the minimum of this function. In general, our scoring function
is

Score = Einter + Eintra + C (4.1)

where Einter and Eintra are the intermolecular and intramolecular energies, respec
tively, and C is a positive constant whose value is chosen to prevent negative scores
which would violate the assumptions with the selection operator. We use C = 100
kcal/mol.

In general, the energy of interaction between the ligand and the receptor is gov
erned by electrostatics, van der Waals, and hydrophobic interactions. This inter
molecular energy can be approximated by

lig recep

Einter = X. X. (;
-

# + *:#)
y (4.2)

where Air and Bir are the non-bonded parameters, e(r) is the dielectric constant,
qr and q are the partial charges on the receptor and ligand atoms, respectively.
The factor 332.0 converts the electrostatic energy into kilocalories/mole. A distance
dependent dielectric function, e(r) = 4r, is used to model the effect of the solvent.

*** * *
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As mentioned above, in order to improve the algorithm efficiency a grid-based energy
evaluation procedure is used. Following the procedure outlined by Pattabiraman et
al. [2], the intermolecular energy can be written as

E.-x(x:#1 ■ º-VFX:#) (19)e(r)rir r

Thus, the electrostatics and van der Waals contributions due to the receptor can be
pre-calculated and stored on a grid. We interpolate between the eight neighboring
grid points to calculate the receptor contributions on each ligand atom. The AM
BER all atom parameter set is used for both the receptor and the ligand atoms.
The partial charges on the ligands (except methotrexate) were obtained from the
Gasteiger-Marsili option within SYBYL [16].

The location of the grid is determined so that it encloses the active site or a large
enough cavity on the surface of a receptor. Potential binding sites can be identified
by using Connolly's MS algorithm (17, 18], for example. The spacing between the
grid points is 0.3 A. Clearly, the grid calculation is an approximation, but experience
has demonstrated that the ranking of different orientations is maintained (2, 4).

For rigid-body docking the scoring function is simply the intermolecular energy
added to a constant. For flexible ligand docking, the intramolecular energy of the
ligand must also be included. This energy is

#11 cºn■ e.-:) (4)ligand Alu Bur f

Eintra -
XC (;

-

# + 332.0 Qll Ql ) + XClº■ \ ri■ Tit, e(r)rly diheds

where the van der Waals and electrostatic sums are over the one-four and higher
interactions. The last term is the torsional angle component of the intermolecular
energy of the ligand. We have assumed the bond lengths, bond angles, and ring con
formations found in the crystal structures. These are not allowed to vary. Unlike the
intermolecular energy which is precalculated and stored on a grid, the intramolecular
energy must be calculated for each conformation. In AMBER [14, 15] certain atom
pairs are modeled using explicit H-bonds to fine tune the H-bond distances and ener
gies. This prevents unrealistically short H-bonds. In our implementation we do not
use a specific H-bond term. We assume that contributions due to H-bonding are in

* >

*** -º

reas --



48

cluded in the electrostatic term. We also remove all crystallographic water molecules
from the receptor.

Genetic Algorithms

A genetic algorithm is an optimization procedure that combines a probabilistic
search algorithm with a directed search strategy based on the fitness function. They
have been shown to search complex spaces robustly [13]. Genetic algorithms differ
from other optimization techniques in a number of ways. First, they explore the
different regions of the solution space with a population of points. Second, they
only need the value of the function being optimized. They are not limited by the
details of the function such as continuity or the existence of derivatives. Third, they
do not manipulate the parameters individually. The parameters are instead coded
as a continuous string, and the algorithm modifies this string without any direct
knowledge of individual parameters. A genetic algorithm can simultaneously process
local and non-local information within the string. This feature is known as implicit
parallelism [19] and is one of the most interesting strengths of genetic algorithms. It is
important to note, however, that implicit-parallelism is independent of the particular
choice of representation.

A genetic algorithm maintains a population of individuals with an associated
fitness. Each individual represents a possible solution to the problem. A genetic al
gorithm alters the individuals of the population and thereby searches different regions
of the solution space in two separate stages. During the selection stage a new popula
tion is created by proportionally selecting the more fit individuals from the previous
population. The members of the populations are then transformed in the alteration
step. The mutation operator creates a new individual from a single individual by
randomly changing an element in its representation. The crossover operator, on the
other hand, exchanges information between two (occasionally more) members of the
population. We use a two-point crossover operator where two points are chosen at
random, and the information between the two points is exchanged. We chose this
implementation because there is evidence that it works better than a single point

**
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#1: 0 1 0 1 00 0 1 0

#1: 0 1 0 1 00 0 1 0

#3: 1 1 1 0 1 1 0 1 0

#4: 1 0 1 0 1 0 1 00

P(t+1)

Figure 4.1: Shows the basic operations of a genetic algorithm that uses bit strings. We
show the mutation and crossover operators (top figures) and the selection procedure
(bottom figure).
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| PDB Center Dimension | Bonds | Translation |Bits |
2gbp 43.1 × 31.8 x 51.5 20 × 28 × 20 | 6 8, 8, 8 || 114
3cpa –1.1 × 31.7 x —7.4 18 x 18 x 22 8 7,7,8 132
4dfr || 25.0 x 68.0 x 46.0 || 25 x 15 x 25 11 9, 8, 9 166
6rsa || 33.2 x 11.8 × 11.1 || 28 x 18 × 24 6 8, 7, 8 113

Table 4.1: Summarizes the data representation issues for the four complexes studied.
The first column corresponds to the PDB descriptor for the complex. The box center
and its dimensions are given in the next to columns. The remaining entries are the
number of rotatable bonds, the number of bits to represent each of the translation
components and the total number of bits used to represent the solution for each
complex.

crossover [13]. The selection step is based on a simple heuristic idea that we would
expect to find the best solution in that region of space which contains a large number
of good solutions. Mutation and crossover operators extend this region to the space
of potential solutions. Figure 4.1 illustrates these operators. Our implementation of
the genetic algorithm is based on the GAucsq package [20]. We also use the so-called
elitist mode while running the GA. In this mode the best member of the population
in each generation is copied into the next.

In our formulation of the molecular docking problem, the binding mode is de
scribed by three translations (T, Ty, T,), three rotations (R, Ry, R.), and a number
of bond rotations. The translational components usually specify the position of the
centroid of the molecule, but they can also specify the transformed coordinates of a
given atom. The rotational components are the Euler angles of rotation. As in most
applications of genetic algorithms we chose to use a binary representation. In par
ticular, we use Gray-coded binary strings throughout because the genetic algorithm
literature has amassed substantial empirical evidence that Gray-coding performs bet
ter than a simple binary representation. With Gray-scale coding the closest values
within the representation differ by at most one bit. Furthermore, because this repre
sentation is periodic, it is well suited to representing rotations. The number of bits for
each translation component b, is given such that 2" > 2L/0.3 where Li is the dimen
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sion of the box in the ith direction, and 0.3 is the grid spacing. All rotations whether
Euler angles or bond rotations are represented with 10 bits. Table 4.1 summarizes
this information for each of the complexes studied.

Receptor-Ligand Complexes

Four widely differing well-resolved crystallographic complexes from the Protein
Data Bank (21, 22 are used to demonstrate our method. These are periplasmic
binding protein-glucose (2gbp), carboxypeptidase A-glycyl-L-tyrosine (3cpa), dihy
drofolate reductase-methotrexate (4dfr), and ribonuclease A-uridine vanadate (6rsa).

The periplasmic binding protein (2gbp) binds the sugar with about thirteen hy
drogen bonds, and the structure is known to a resolution of 1.9 Å. The bound sugar
is completely engulfed in the cleft between the two domains of the protein. The X
ray results indicate that the final geometry of the binding site depends both on the
final folded protein and any conformational changes induced by the ligand [23]. The
glucose binding is not strongly controlled either by charge (net charge zero) or shape
(a rough ellipsoid).

The structure of carboxypeptidase A glycyl-L-tyrosine complex (3Cpa) is known
to a resolution of 2 A [24] at low temperatures. The hydroxybenzyl group of tyrosine
resides in the hydrophobic pocket of the S subsite. The dipeptide appears to bind
with the hydrolytically important zinc-bound water displaced and excluded from the
active site.

The structure of methotrexate bound to dihydrofoloate reductase (4dfr) is known
to a resolution of 1.7 A (25). There are two independent protein molecules in the PDB
file with a methotrexate inhibitor bound to each. We use the molecule designated
“B” in the PDB file. The p-aminobenzamide is bound to the enzyme by hydrophobic
and van der Waals interactions. There are bound water molecules in the active site.

The ribonuclease A and uridine vanadate (6rsa) structure (26) is known to a res
olution of 2 A. The uridine vanadate appears to be a transition state analog. The
position and orientation of the uridine base is completely clear in the electron density
map, but the structure of the sugar ring is less obvious. The reported structure devi
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ates from ideal geometry, and some difficulties were encountered in interpreting the
electron density map in the neighborhood of the vanadium atom. To make it possible
to use AMBER based parameters, we replace the vanadium atom by phosphorus [4].
The X-ray structure of uridine vanadate (phosphate) is restrained energy minimized
after replacing vanadium with phosphorus (see figure 4.2). The ligand conformation
can, therefore, no longer be thought of as a transition state analog.

4.2 Results

Rigid Ligand Docking

We began our studies in the simplest possible way. Given a ligand in the crystal
structure conformation, we wanted to test whether the genetic algorithm could find
the correct orientation of the ligand within the receptor. That is, we wanted to find
the correct translations and rotations. The GA was initialized with a population of
random T's and R's. The masking operation maintained the centroid of the ligand
within the box. Ligand atoms outside the box were assigned large positive energies
(10° kcal/mole) for both rigid and flexible simulations. Assigning a large positive
number to these atoms does not bias the search as the box in all four cases lies well

outside the region of interest of the receptor.
Different population sizes, number of generations, and mutation and crossover

rates were considered in many different combinations. For each combination of pa
rameters twenty runs with different initial populations were attempted. The results
were not encouraging. Occasionally, we would find the solution, often we would not.
No solution was found for the rigid body docking of glucose to the periplasmic binding
protein after hundreds of different runs. The GA consistantly found solutions about
8–10 kcal/mole higher than the crystal structure. Similarly, the GA was unable to
find the binding orientation of glycyl-L-tyrosine complexed with carboxypeptidase A.
We did find solutions for rigid docking of methotrexate to dihydrofolate reductase
and uridine vanadate to ribonuclease A. The results, however, were not consistent
and involved different mutation and crossover rates. The only reasonable conclusion
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is that the standard GA recipe is inappropriate.
There are a number modifications that could be made to this system. Recall

from the discussion in the introduction that we would ideally like to have an efficient
algorithm that consistently converges to reasonable binding modes without system
dependent parameter adjustments. We could, for example, use a different represen
tation, provide a method to search space more thoroughly, introduce new genetic
operators, or even alter the selection procedure. The simplicity of the binary repre
sentation and the fact that a binary coding offers the maximum number of schemata
per bit [13] led us to retain the binary representation. We decided to introduce a new
operator to the GA which promotes a more thorough search of the orientational or
conformational space. We address the other possible modifications in the discussion.

The idea behind the new operator is to introduce the notion of precisely-defined
and well-maintained sub-populations. In a binary representation the most significant
bit of the representation divides the region into two halves. The next significant
bit divides the region into fourths and so on. In the context of molecular docking
by fixing the most significant bit of each of the translation components, we create
eight different sub-populations, each of which explores one of the mutually exclusive
and collectively exhaustive regions of the box. Deciding to search in any one of the
different regions is equivalent to testing a different binding hypothesis. We could
equally well have defined eight different regions in rotation space, but using sub
populations based on translation space is more intuitive. This operator is called a
masking operator, and because it constrains the search to subpopulations, it ensures
a wider and more thorough search in the space of possible conformations.

As far as the GA parameters are concerned, we decided to fix them for all other
simulations. We chose the crossover rate to be 0.6 because we wanted the crossover

rate to be greater that half while simulataneously avoiding a GA that was completely
dominated by crossover. We tried a variety of mutation rates before deciding to use
a mutation rate of one bit in approximately 1000. The population size n and the
number of generations were determined in an ad hoc fashion. The population size
was determined with the following considerations: (1) it should not be too small so
as to avoid pre-mature convergence, (2) it should not be too large as it increases the



54

2gbp 3cpa. 4dfr 6rsa
ETrms (Å)||E|rms (Å)||E||rms (A) | E |rms (Å)

–23.9 || 0.35 –47.8 || 0.07 –63.0 || 0.25 –61.6 || 0.98
—23.4 || 0.36 –47.7 || 0.12 –49.3 || 4.49 –61.2 || 0.65
–23.6 || 0.35 –47.6 || 0.14 –54.6 | 1.98 –60.8 1.00
–23.8 || 0.30 -47.9 || 0.19 –27.4 || 9.04 –61.4 || 0.74
–23.9 || 0.33 –47.7 || 0.12 –48.2 || 2.02 –61.5 1.00
–23.9 || 0.38 –47.6 || 0.18 –49.3 || 4.68 –61.5 || 0.84
–24.1 0.33 –47.6 || 0.10 –65.6 || 0.37 –61.0 || 0.91
–24.0 || 0.36 –47.7 || 0.09 –66.3 || 0.26 –61.0 1.05
–23.3 || 0.41 –47.9 || 0.07 –65.7 || 0.21 -60.1 1.06
–20.3 || 0.53 –47.5 || 0.24 –62.0 || 0.76 –61.4 || 0.75

4s 4s 17s 5s

Table 4.2: Shows the results for rigid ligand docking for all four complexes. The
energies (in kcal/mole) and the RMS deviations are given for each of the ten different
GA runs. The last row summaries the times that are required for a single GA run
each system.

computational burden, and (3) larger ligands may require larger n. We chose the
population size to be 64 and 256 for rigid and flexible docking, respectively. Three
of the four systems (not 4dfr) satisfied the condition that the solution be found five
out of ten times with a population of 32 for rigid docking. Finally, the number of
generations N, should depend on the size of the problem or number of parameters
that are being optimized. This implies a certain minimum number of generations
that the GA needs to be run. For the upper bound we tried to find the number of
generations that would be necessary to find the solution in at least five out of tens
tries across the four systems. For rigid docking, No = 500, and for flexible docking
we chose Na = 1000. One reason why a priori bounds on N, is useful in docking
studies is because not all initial populations converge within reasonable CPU time
to the solution (minimum energy conformation), and in our experience it was always
better to restart a run with a new population. The robustness of this methodology
is demonstrated by the fact that it works consistently across four different ligand
receptor complexes.
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(a)
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Figure 4.2: Shows the ligands with the dihedrals that change for each of the four com
plexes studied. (a) [3-D-glucose, (b) glycyl-L-tyrosine, (c) methotrexate, (d) uridine
phosphate. The rectangular box around a part of methotrexate is the rigid-part used
in the anchoring simulations.
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Energy vs RMS'

6.0 8.0 .

Figure 4.3: Shows the energy versus RMS of the rigid docked conformations for
carboxypeptidase A-glycyl-L-tyrosine. The results are shown for the sub-population
that yields the lowest energies.
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Figure 4.4: Best rigid docked (dashed) and crystal conformations for all four com
plexes. (a) periplasmic binding protein-glucose (2gbp), (b) carboxypeptidase A
(3cpa), (c) dihyrofolate reductase (4dfr), and (d) ribonuclease A (6rsa).
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With this modification we have been able to satisfy the requirements of a successful
docking algorithm described above, namely, computational efficiency. Table 4.2 gives
the RMS error and energies of the docked conformation. In all the rigid docking
systems we were able to find the crystal structure conformation at least six out of
the ten runs with differently initialized populations. No genetic algorithm parameter
adjustments were necessary. Our rigid body docking runs converged very quickly for
all four systems including the pteridine part alone and the complete methotrexate
(see figure 4.2). The crystal and rigid docked conformations of all four complexes are
shown in figure 4.4 for comparison. The scoring function appears to work very well.
We have not been able to find any conformations with Es Emin +0.5 kcal/mole that
does not correspond closely to the X-ray structure. Also all the structures within
0.5 kcal/mole of the lowest energy structure have pair-wise RMS errors of 0.5 Å or
less. Furthermore, we do not require a final energy minimization step like many other
procedures [4, 27]. Considering the accuracy of the scoring function used it appears
that the computational efficiency of the method is sufficient to perform rigid database
searches. As figure 4.3 shows, there are many structures within 5 kcal/mole of Emin
that have an RMS deviation within 1 A of the crystal structure. This is not too
surprising due to the rugged nature of the energy function. No other generalizations
seem possible across systems from this (and similar) figure(s). Table 4.2 also gives the
timing details for each complex. For an exhaustive analysis the total time required
will be eighty times (eight sub-populations and ten runs for each population) the
numbers in the last row if no other information about the receptor is used.

Flexible Ligand Docking

The flexible docking procedure follows the one used for rigid docking. The GA
parameters are generated in the same fashion. That is, pc = 0.6, and pm is as
calculated as above. Clearly, allowing the flexible ligands greatly increases the size of
conformational space. Therefore, larger populations (n = 256) and longer GA runs
(N, + 1000) are used. Masks on the translation vectors are also applied in order
to create and maintain different sub-populations. Table 4.1 gives the details of the
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| Complex | PDB | Enter | E.
periplasmic binding protein/glucose 2gbp -24.0 |-22.2
carboxypeptidase A/glycyl-L-tyrosine || 3cpa -47.9 |-63.2
dihydrofolate reductase/methotrexate | 4dfr -72.0 | -87.7
ribonuclease A/uridine vanadate 6rsa | -59.8 || -66.8

Table 4.3: Lists the four complexes studied with the intermolecular energy and the
variable part of the intramolecular energy.

number of rotatable bonds and the total number of bits used in each case to represent
the problem.

A genetic algorithm is also capable of simple energy minimization. We seed the
initial population with the crystal structure, and within 50 generations we obtain a
local minimum structure with a lower energy. Table 4.3 shows the energies after this
minimization. It would be interesting to compare this local minimum structure to the
local minimum structure obtained using a simple gradient descent procedure. The
RMS deviation after this minimization step is less than 1 A in all four cases. However
the RMS deviations reported in the tables uses the original crystal structure and not
the one obtained after this minimization.

There are many questions that arise in comparing the flexibly docked ligand with
the X-ray structure. First, it is possible to maintain important ligand-receptor inter
actions with differences in the two structures. This is especially true when parts of
the ligand do not take part in explicit interactions with the receptor. Second, other
differences can also appear because of the particularities of our implementation. For
example, crystallographic waters including the ones that mediate H-bonding interac
tions between the ligand and the receptor were removed. In addition, hydrophobic
interactions are not accounted for in the energy function. Lastly, other differences in
two structures arise because the X-ray structure is an average over different confor
mations and not an energy minimum structure.

Comparing the docked and X-ray ligands is not necessarily straightforward. If
we find structures with small RMS deviations, then obviously the agreement must
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be quite good, and it would be expected that most of the important interactions
are maintained. On the other hand, a structure with a higher RMS deviation does
not necessarily mean that the docked structure is incorrect. It is quite possible that
the some ligand conformations may satisfy the important specific interactions while
other parts of the ligand which do not take place in such interactions can exhibit
torsional freedom. Thus, structures with varying RMS deviations can actually be
similar structures because they participate in the same interactions. Therefore, we
adopt two methods by which the comparisons are made. First, total and flexible RMS
deviations are calculated. These two measures differ in that in calculating the flexible
RMS, which we shall refer to as simply the RMS, we subtract out the contributions
due to the centroids not overlapping. Stereo images of the ligand within the active site
are also provided so that the specific interactions can be inspected. Another method
to compare the structures is to perform a detailed examination of the important
interactions that contribute to the energy (Einter) of the structure in both the docked
and X-ray structures. However, no systematic conclusions could be drawn from the
complexes studied except for 2gbp.

2GBP

The flexible torsions are shown in figure 4.2. Table 4.4 shows the energy and
RMS deviations of some of the best structures found. Notice that the structure with

the smallest energy (-22.1 kcal/mole) corresponds to the structure with the smallest
RMS error. Figure 4.5 shows a stereo picture of the best conformation and the crystal
structure of the ligand in the active site. The results indicate the the docked structure
is quite close to the crystal structure. One reason for such small RMS deviations
is that most dihedral changes affect only the location of the hydrogen atoms. As
crystallographic water molecules in the active site take part in the glucose binding to
the protein, work is currently in progress examining how docking results will change
on including them. Because ring geometries are fixed in our implementation, we have
not examined whether our procedure would reproduce the preference for 3-D-glucose
in the “C, conformation.
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2gbp 3cpa 4dfr 6rsa
E |rms (Å) || ET rms (Å) || ET rms (Å) || E |rms (Å)

-13.0 |0.6/0.3 || -57.2 7.4 / 1.8 || -40.5 2.8 / 2.3 || -70.6 | 1.6 / 1.0
8.2 || 4.1 / 0.4 || -63.6 | 1.4/0.9 || -71.2 | 1.9 / 1.2 || -67.8 || 4.9 / 1.3

-14.9 || 0.7 / 0.3 || -63.9 2.3 / 1.8 || -85.2 2.3 / 2.0 || -62.4 3.3 / 1.0
–22.1 |0.4/0.3 || -60.5 | 1.7 / 1.1 2.1 | 8.1 / 3.0 || -68.9 2.0 / 1.2
-17.3 |0.7/0.5 || -64.7 | 1.7 / 1.1 0.2 | 8.8 / 2.8 || -69.8 || 4.8 / 1.0
-13.4 |0.9/0.7 || -58.0 |7.5 / 1.1 || -82.1 | 1.5 / 1.1 || -71.0 | 2.2 / 1.1
-19.5 |0.5/0.4 || -58.4 2.0 / 1.0 || -0.9 || 8.4 / 2.9 || -67.0 || 4.9 / 1.3
-19.8 |0.9/0.8 || -55.1 || 7.4 / 1.2 || -77.1 || 2.3 / 1.9 || -71.7 | 1.6 / 1.2

5.1 || 3.3 / 1.1 || -61.8 2.3 / 2.0 || 19.8 8.1 / 3.3 || -69.3 | 1.3 / 1.0
-4.3 || 3.5 / 0.4 || -61.8 | 1.4 / 1.0 || -74.1 || 2.0 / 1.9 |-64.1 || 5.1 / 1.0

1208 540s 950s 370s

Table 4.4: Shows the results for flexible ligand docking for all four complexes. The
energies (in kcal/mole) are given along with two different measures of the RMS de
viations. The first number is the total RMS between the docked structure and the
crystal structure. The second number refers to the flexible RMS values which reflects
the RMS error with the orientational component removed. As with the rigid results,
the last row refers to the times for a single GA run of each system.

ASN 91
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Figure 4.5: Best flexible docked and crystal conformations for periplasmic binding
protein-glucose (2gbp). The docked structure is in gray.
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3CPA

The flexible torsions are shown in figure 4.2. The energy and corresponding RMS
deviations of the docked structures are in table 4.4. The energies of the docked
structures vary from −55.1 to -64.7 kcal/mole with total RMS deviations from 7.5A
to 1.4A. The structure with the lowest energy (-64.7 kcal/mole) is quite close to the
crystal structure. Figure 4.6 shows two different binding orientations with energy
differences of 4 kcal/mole. Interestingly, the two docked structures are rotated by
almost 180 degrees but still have energies quite close to the crystal structure energy
and to each other. The flipped docked structure has the tyrosine ring towards the
surface of the protein. We expect that including a solvation term in the energy
function will weed out the 180° rotated structure. In addition several water molecules

are also displaced upon binding of GY. Therefore, the entropic effects of the release of
the these water molecules will play a major role in its binding. The overall agreement
is quite good. Higher RMS deviations compared with 2gbp arise because the location
of a larger number of heavy atoms are unknown and also due to the larger number of
atoms in the ligand.

4DFR.

Figure 4.2 shows the 11 rotatable bonds in methotrexate, the largest ligand among
the four systems considered. Docking methotrexate to dihydrofolate reductase turned
out to be quite difficult using the masking operation described above. We do find
solutions close to the crystal structure occasionally, but it is more by chance. We
do not consistently find the solution. The GA exhibits “premature convergence” in
these runs. This is equivalent to getting stuck in a local minimum (see section 4.3).
To verify that our system could, in fact, find the crystal structure conformation,
we narrowed the region of our search. We assumed that the centroid of the ligand
in the crystal structure conformation must lie in a 6 × 4 × 6 box about the true
centroid and that the rotations are within 90 degrees of the actual rotations. In
practice, it might be possible to formulate such a hypothesis with knowledge about
the structure of the receptor. The energies and RMS deviations for the ten runs is
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Figure 4.6: (a) A good flexible docked solution and the crystal conformations for car
boxypeptidase A with glycine-L-tyrosine and (b) the best flexible docked and crystal
conformations for carboxypeptidase A with glycine-L-tyrosine. The docked structure
is dashed.
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| E | total rms (Å)|rms (Å)
-

-81.2 3.48 2.56
–79.6 9.90 2.80
–89.3 4.73 2.68
–80.0 6.41 3.20
–90.0 4.11 1.81
–84.2 4.88 2.73
–85.4 4.68 3.28
-83.2 3.90 1.91

|-85.9 4.93 2.73
|-81.2 3.48 2.56

Table 4.5: Shows the results for the flexible docking of methotrexate to dihydrofolate
reductase using the masking operator to keep the pteridine ring approximately in
place.

given in table 4.4. The best energy structure (-85.2 kcal/mole) that the GA found
had an RMS deviation of 2.3A. Three solutions had an RMS deviation of less than

or equal to 2.0A. The best energy of these structures is —82.1 kcal/mole while the
crystal energy (after minimization) is -87.5 kcal/mole. Thus, with the region of space
narrowed as described above, the GA is able to find solutions within 20A of the
crystal structure.

We also tried a more “intelligent” masking operation, one that incorporates more
specific information about the binding mode. It is known that the pteridine ring of
methotrexate is rigid and binds to the receptor in roughly the same site (25]. We,
therefore, docked the pteridine moiety as a rigid unit using the methodology described
in the rigid docking section (see also [4]). As with the rigid docking for 2gbp, 3cpa,
4dfr and 6rsa, this was also a simple problem for the genetic algorithm. A structure
very close to the crystal structure was obtained. We created a mask that would keep
the pteridine ring of the methotrexate in the vicinity of the rigid-docked structure.
The mask allowed each translation and rotation component to vary the position of
the ring by approximately 1A and 22.5 degrees. These results are shown in table 4.5.
Unlike any of the previous runs, all the runs converge. That is, all runs result in
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(a)

(b)

Figure 4.7: The crystal structure and two docked conformations of dihydrofolate
reductase with methotrexate. The top figure, (a) shows the docked structure with E.
= -85.9 kcal/mol; and the bottom figure, (b) shows a very different conformation
with comparable energy (E = -86.2 kcal/mol to the crystal structure (E = -87.7
kcal/mol). The docked structures are dashed.
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energies very close to the minimized crystal structure energy. The most interesting
part of this result is that widely differing structures have energies close to the crystal
structure energy. In fact, the 10 A structure follows the NADPH binding site. Some
of these conformations along with the crystal structure are shown in figure 4.7.

The placement of the benzyl moiety of MTX in a hydrophobic pocket formed
by Leu28, Phe■ 1 and Ileš0 is a major source of binding free energy, but this is not
accounted for in our energy function and contributes primarily to the alternative
binding modes found in the pteridine docked structures. There are many interesting
aspects to the methotrexate docking results, e.g., the differences between the many
ways of masking (centroid, one atom, pteridine ring), the differences between charged
and uncharged methotrexate.

6RSA

Recall that the vanadium is replaced by phosphorus, and the structure is energy
minimized to obtain the “crystal” structure to which the docked structures are com
pared. Figure 4.2 shows the variable torsions. The vanadium atom occupies the
center of a distorted trigonal bipyramid with the ribose O2 at the apical position.
There are two water molecules in the active site (26), and one of the water molecules
exists close to O3’ and O7. Replacing the vanadium with phosphorus and minimizing
the structure with no explicit water molecules alters the structure of the ligand. It is
this minimized structure that we consider to be the “experimental” structure against
which RMS deviations are calculated. Table 4.3 shows the total and intermolecular

energy of this structure. Notice that the intramolecular energy is positive.
The systematic masking operation is quite successful in finding good solutions.

Table 4.4 shows the energy and RMS deviations of the docked structures. The en
ergies of the docked structures vary from —64.1 to —71.7 kcal/mole with total RMS
deviations from 5.1.A to 1.3A. The minimum energy structure (-71.7 kcal/mole) has
a total RMS error very close to the minimum RMS. Furthermore, there is a struc
ture with an total RMS of 4.8A with an energy of -69.8 kcal/mole. The difference
in energy between this structure and the structure closest to the crystal structure
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Figure 4.8: (a) The best flexible docked solution and the crystal conformations for
ribonuclease A-uridine vanadate and (b) another solution which is very close in energy
to the crystal conformation. The docked structure is dashed.
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is only 0.5 kcal/mole. It appears that uridine-phosphate and uridine-vanadate bind
in similar orientations. Figure 4.8 shows the best energy structure and the smallest
RMS deviation structure.

Timings

The timing results for the flexible docking simulations are also included in ta
ble 4.4. All simulations were run on a DEC Alpha running OSF/1. The times in
the table indicate the time for one GA run of 1000 generations. In our method we
propose that the GA should not be run until a majority of the bits have converged.
Instead, it is computationally more efficient to run a number of shorter GAs in par
allel. For all the complexes studied we found around five conformations close to the
crystal structure in ten runs of the GA. The actual times are ten times the numbers
shown in the table. Furthermore, if we wanted to automate the system or if none of
the sub-populations could be eliminated by experimental (SAR) information, the GA
would have to be run in the other eight regions as well.

We would like to emphasize that these timings guarantee that DIVALI finds struc
tures with energies very close to the crystal structure energy. DIVALI has not op
timized for speed, hence, the timings can be improved. For example, the results
show that the time required by the GA scales approximately with the number of
atoms in the ligand. This is expected since most of the time is spent in calculating
the intramolecular energy. In the present implementation of the system, the vari
able component of the intramolecular energy is computed for every individual for
every generation of the genetic algorithm. We could realize significant savings in run
times by aborting the calculation after bad contacts are detected. Future versions of
DIVALI will include this enhancement.

4.3 Discussion

The formation of a ligand-receptor complex results from a balance of contribu
tions from direct binding, desolvation, entropic and and environmental effects. In
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addition protein ligand complexes exhibit fluctuations at many rates. These struc
tural fluctuations help to determine the specificity of binding. It is well known that
closely related molecules can bind quite differently, and sometimes the same molecule
can bind with more than one conformation or binding mode with close binding en
ergies. This implies that molecular recognition is inherently a dynamic phenomena.
These features provide the major theoretical hurdle in our understanding of molec
ular recognition. We approximate this problem using an optimization procedure for
computational tractability.

All molecular mechanics methods depend fundamentally on the quality of the
energy function used. Clearly, molecular recognition is not equivalent to energy min
imization, it is much more likely that the bound conformation is the global free
energy minimum. Because binding is directed by electrostatic, van der Waals, and
hydrophobic interactions, a well-established force field like AMBER is used in our
studies [14, 15). Hydrophobic interactions between two molecules depend on the
existence of water. Solvation effects, for the most part, have been neglected. Never
theless, in both the rigid and flexible ligand docking simulations, the energy of the
crystal structure appears to be close in magnitude to the global minimum. Verifying
this, however, would most likely require an exhaustive search of conformational space.
In the case of rigid ligand docking, the lowest energy orientations were consistently
within 0.6 A of the crystal structure in all four complexes. Although the crystal
structure appears to be close to the energy minimum in the flexible ligand docking
simulations, a number of different conformations with similar energies can be found.
With glycyl-L-tyrosine docking to carboxypeptidase A, for example, a low energy
binding mode within 4 kcal/mole of the lowest energy structure in which the tyrosine
ring points towards the surface of the protein is found. With uridine vanadate binding
to ribonuclease A, there are many ligand conformations and orientations that are very
close in energy but vary in RMS from 1.3 to 5.1.A from the crystal structure. This
may be due to the peculiarities of substituting the vanadium with a phosphorus. The
simulations of methotrexate binding to dihydrofolate reductase with the pteridine ring
approximately fixed in the active site demonstrated that it is possible to find widely
differing conformations with scores similar to the crystal structure's. Although the
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score of the crystal structure may be close to the global minimum of this particular
scoring function, it is not the only such structure. This scoring function, therefore,
lacks specificity. The implication of this is that there exists a limit to how well the
energy can be calculated, and all structures within this limit should be included in
the list of possible binding modes. A reasonably safe limit that many people have
proposed seems to be about 5–7% of the crystal structure energy [12]. Each of the
contributing terms to binding energy (electrostatics, hydrogen bonding, hydrophobic,
loss of conformational, translational and rotational flexibility) may be as large as
any other. Therefore, it is important to calculate each to within an accuracy of 2–3
kcal/mole.

Water molecules play an important role in molecular recognition, but this role is
often underrepresented in theoretical studies. There are two related but different as
pects to including water molecules. First is the role of the crystallographically known
water molecules. Our simulations do not include any waters. An interesting ques
tion is whether we can simultaneously optimize the position of the ligand and water
molecules known to bridge the interactions between the ligand and the protein. In all
four of the complexes that we studied, we were able to find excellent structural agree
ment between the crystal structure and at least a few docked ligand conformations
without including the bound waters. Interestingly, Guida, et al. (28), on the other
hand, found that they had to include a continuum solvation model to obtain good
agreement between the docked and crystal structures of thermolysin and its inhibitors
once the crystallographic waters were removed. Second, we must account for the hy
drophobic interactions that govern ligand binding. A solvation term might improve
the rank ordering of the different conformations. For example, it might eliminate
the flipped glycyl-L-tyrosine structure in the 3cpa complex. Historically, estimating
Solvation energies has been the most difficult part of binding mode energy evaluation.
A number of continuum solvation models have recently appeared. Two such models
include the Wesson and Eisenberg model (29) and the Clark Still model (30). We are
currently exploring different solvation models.

Given the computational requirements of molecular docking, our GA performed
surprisingly well. For all four complexes, our GA with our new masking operator was
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able to find structures with energies close to the crystal structure energy. For all our
rigid and flexible docking simulations except the docking of flexible methotrexate, it
was necessary to mask the most significant bit of each of the translation components.
The set of all such masks is equivalent to specifying eight mutually exclusive, col
lectively exhaustive binding mode hypotheses. For docking flexible methotrexate to
dihydrofolate reductase, we were able to find structures with energies similar to crys
tal structure and RMS deviations less than 2A with the hypothesis that the centroid
of methotrexate is located within a region approximately 6 × 4 × 6A and the angular
rotations are within 90 degrees of the actual angles of rotation. Without masking
the GA converges prematurely to a local minimum. As an alternative hypothesis
for docking methotrexate to dihydrofolate reductase, we used the docked pteridine
ring structure and allowed it a translational movement of about 1A in each direction
and an angular rotation of 22.5 degrees. With this docking hypothesis the GA found
good solutions (energies close to crystal structure energy) for all the ten runs. These
conformations vary in RMS error from 3 to 10A from the crystal structure. This
implies that a variety of binding modes are possible even with a good potential en
ergy function. We would like to point out that DIVALI reproduces the conformations
(less than 1.5 Å error) of the ligands in all four systems once the translational and
rotational degrees of freedom have been removed.

There are a number of improvements that are being explored. For instance, to
address the premature convergence of the GA, one could introduce other genetic oper
ators that are designed to maintain the diversity of the population. We are presently
investigating the utility of these operators. Convergence of the population is one
important characteristic of most GA applications. Our results do not show any con
vergence of the population, this is because of the extremely rugged nature of the the
van der Waals function. In our experience this non-convergence of the population
has not been a negative feature. In molecular docking with the AMBER [14] po
tential function, the energy landscape is extremely rugged. Because of the van der
Waals interactions, a slight displacement of an atom can result in a several orders
of magnitude change in energy. Consider, for example, structures where just one
atom forms a bad contact with the receptor and all other atoms are in the desired
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positions for optimum binding. These structures will result in a large energy, and
because of our selection procedure, they will most likely not survive to subsequent
generations. Furthermore, once a low energy structure is found, it tends to dominate
the population with a corresponding loss in population diversity. This can result in
premature convergence, longer runs, and a decreased likelihood of finding the correct
binding mode. We are presently trying different selection procedures and multiple
optimization functions to address this problem. Our new selection procedure allows
individuals with larger energies, but fewer bad contacts to survive to the next gener
ation. Similarly, the multiple optimization function tries to minimize the energy and
the number of bad contacts simultaneously.

Much of the success of our system is due to our novel masking operator which by
fixing certain schemata, provides a means for maintaining different subpopulations.
This operator provides a convenient mechanism for trying out different binding hy
potheses. Experimental data on the binding mode could be used to constrain the
population. A 1-D NMR spectra of the complex, if a well-resolved structure of the
receptor is known, can be used for this purpose. If the ligand is capable of form
ing a large number of specific interactions with the receptor, then QSAR studies
can constrain the possible binding sites for the ligand. In all of our docking simula
tions we found that it was necessary to provide additional information to the genetic
algorithm. We had to decompose the full docking problem into a smaller, more man
ageable problem for the GA. In the rigid docking of glucose to the periplasmic binding
protein, for instance, the crystal structure orientation was only found after localizing
the search to a particular region of the receptor with the masking operator. The
procedure used to dock MTX can be used as part of a fragment based design strategy
to computationally create novel ligands. Thus, experimental data about the actual
binding mode can be incorporated easily using the masking operation.

The masking operation provided another advantage also. It greatly improved the
performance of our system and made it more like the ideal system that we described in
the introduction. By decomposing a docking problem into a set of mutually exclusive
and collectively exhaustive smaller docking problems, the masking operator was used
to improve both the thoroughness of the search as well as the consistency of obtaining
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the solution. For all the systems studied we found the solution on average about
five times out of ten with the masking operator. The masking operator is easily
automated. Therefore, since GAs are easily parallelizable, it is possible to extend the
present system so that each processor explores a different binding hypotheses.
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Chapter 5

Flexible Ligand Docking Using

Genetic Algorithms and Binding

Free Energy Estimates

Many of the functions performed by biological molecules depend on appropriate
interactions with other molecules. Small organic molecules, for example, can bind
specifically to biological macromolecules and modulate their function. The goal of
computer-aided drug design is the ability to design putative ligands that bind to a
particular therapeutically relevant target protein. If the three dimensional structure
of the target molecule is known, then the problem can be formulated as the molecular
docking problem. Within this context, the problem is to find the best conformation
for the intermolecular complex. This requires an efficient algorithm for searching the
ligand's conformational space within the receptor and a scoring function for ranking
the binding mode. Molecular docking systems provide a means for identifying the
chemically plausible structures of a ligand-receptor complex and may ultimately allow
for the screening of large databases of flexible ligands for new lead compounds.

Automated ligand docking has been the subject of intense research. DOCK [1],
one of the first molecular docking systems, is still widely used even though it consid
ers both the ligand and the receptor to be rigid. It can rapidly screen databases of
Small molecules for new lead compounds. Computational screening of flexible ligands,
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however, is still not practical. Other methods for screening databases of rigid ligands
include CLIX [2] and FLOG [3]. The conformational space of each ligand is repre
sented by a number of low energy conformations in the latter. A more detailed review
of these techniques is included in Kuntz et al. [4]. In Chapter 2, I discussed some of
the different approaches to flexible ligand docking. A brief review of this discussion
is described below in order to highlight the issues addressed in this chapter.

One approach to flexible ligand docking is to use energy minimization techniques.
Goodsell and Olson [5], for example, used simulated annealing to dock a flexible ligand
into a receptor. GRID [6] interaction energy maps were used to more efficiently
compute the energy of the intermolecular complex. Hart and Read [7] describe a
multi-start Monte Carlo system for flexible ligand docking. Yamada and Itai (8, 9]
developed ADAM, another energy minimization technique. Their system includes
flexibility in the ligand through a systematic search of the torsion space once an
initially docked structure is minimized with AMBER [10]. DiNola et al. [11] describe
a molecular dynamics approach to the docking of phosphocholine into McPC603.
Because of the complex topology of the energy landscape, these techniques have long
run times and are computationally too expensive for docking simulations.

Another approach is to use fragment joining techniques. These systems either
dock the individual fragments of a ligand into a receptor and then join them together
or, more commonly, start with an initially docked fragment and “grow” the com
plete ligand. This technique forms the basis of many de novo design systems. Some
of these include GROW [12], LEGEND [13], LUDI [14, 15), and GroupBuild [16].
One of the first fragment-based ligand docking systems is described by DesJarlais et
al. [17]. Their system included only partial ligand flexibility. Leach and Kuntz [18]
describe an incremental construction approach that begins with an initially docked
structure. Rarey et al. [19] developed FLEXX, another incremental construction tech
nique. In their system a base fragment is chosen interactively and docked using a pose
clustering algorithm (20). For scoring the positions of the individual fragments and
the entire intermolecular complex, a modified version of Böhm's binding free energy
prediction function [21] is used. Welch et al. [22] describe a similar system. The
docking procedure begins with an initially docked fragment and “grows” the ligand.
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The scoring function is also based on Böhm's binding free energy estimate, but in
their approach it is differentiable, and the ligand's conformation is optimized using a
gradient descent algorithm. Although the fragment-based methods perform very well,
there are a number of limitations with these approaches. First, the base fragment for
the docking procedure must be chosen interactively. In fact, the choice of the initial
fragment can have a significant impact on whether the ligand's true binding mode
will be found. Second, the actual placement of the base fragment is context depen
dent. Ligands are known to deform when they bind to a receptor [23]. There is no
guarantee that the orientation of the base fragment will be the same in the ligand as
it is when the base fragment is docked independently. Rotstein and Murcko [16] have
shown that it is difficult to dock ligands if the initial fragment is not oriented properly.
Third, Rarey et al. [19] found that there are many potential sites in which the base
fragment can dock. Each of these initial fragments could be tried separately, but how
many different initial fragment locations have to be tried to identify micromolar or
better inhibitors? Finally, Rarey et al. use a “greedy” construction algorithm to add
subsequent fragments to the ligand. As described in Chapter 2, “greedy algorithms”
are best applied to problems where the optimal solution to the problem is the solution
that is obtained by choosing the best orientation of the fragment at each step of the
construction procedure. This technique may perform very well for highly optimized
ligand- receptor interactions, but in general, we will not have such a structure. This
is the purposes for this flexible ligand docking system.

Finally, another approach is to use a genetic algorithm (GA) [24] to search the
conformational space of the ligand. Judson et al. (25) published the first account of
the use of genetic algorithms for flexible ligand docking in 1994. In their system an
initial fragment is docked, and the ligand is grown. Oshiro et al. (26) describe a flexible
ligand docking extension to DOCK. The algorithm encodes a mapping between the
ligand atoms and sphere centers which form the negative image of the receptor site
as well as the torsion angles of the ligand. In earlier work, we described our system,
DIVALI (27]. We developed a method which combines a systematic search option with
a genetic algorithm search procedure by introducing a new genetic algorithm operator.
The primary focus of this work was to investigate how much information would be
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required to consistently find the crystal structure binding mode. We also explored
the approach of docking with an initial base fragment docked only approximately in
the correct orientation. Jones et al. (28] describe a flexible ligand docking system
where the genetic algorithm encodes the putative mapping between hydrogen bond
donors and acceptors on the ligand and the receptor in addition to the torsion angles.
All of these systems employ very similar scoring functions which consist of a van der
Waals term and either an electrostatic term or hydrogen bond energy. The results
are also very similar. The systems converge to local minima and often require many
runs to find the best solution. Furthermore, solutions with energies similar to the
crystal structures are often found.

Despite the limited success of the genetic algorithm-based methods described
above, we believe that these approaches have a great potential for docking flexible
ligands to rigid, and ultimately, flexible receptors. Some problems are known to be
“GA deceptive [24]” and are difficult to solve using genetic algorithms because good
partial solutions can lead to poor global ones. This can occur when van der Waals
penalties in the binding site can cause the genetic algorithm to search elsewhere for
a solution. Therefore, in formulating a problem for a genetic algorithm, one must
carefully choose the scoring function and the representation of the optimization pa
rameters (see the next section for a detailed description of genetic algorithms). The
representation determines how the conformation space is searched. It provides a way
to specify which interactions are important. Jones et al. (28), for example, used puta
tive mappings between hydrogen bond donors and acceptors. The scoring function,
on the other hand, is linked directly to the dynamics of the genetic algorithm through
the selection operator. If a conformation does not score well even though it is close
to the crystal structure, then it may not survive to the next generation. The issues of
representation and scoring function are very closely linked, and both have to be con
sidered before applying a genetic algorithm to the flexible ligand docking problem.
The approaches above have employed very similar scoring functions with different
representations. The goal of this work is to develop a new genetic algorithm-based
flexible ligand docking system that is based on a more GA conducive scoring func
tion. We leave the issue of representation to future work, and we encode the ligand
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translations, euler angles, and bond rotations in the genetic algorithm. Although this
is a rather naive representation, it represents an intermediate step between other rep
resentations and the transformation of the ligand. There are applications where this
would be useful. For example, this provides an excellent framework for the chemist
to introduce hypotheses about the ligand’s binding mode.

In this paper we describe a new flexible ligand docking system that uses genetic
algorithms. We introduce a smoother scoring function, we change the basic genetic
algorithm operators to more efficiently search the conformational space of the ligand,
and finally, we show that this system can be applied to a variety of different problems
in docking flexible ligands to rigid receptors. In particular, we describe three different
simulations. First, we show that this approach can be used to dock ligands with
initially docked base fragments with results similar to the other methods. We also
assume that the initial fragment is docked incorrectly and show that the system can
dock the base fragment in context with the entire ligand. The centroid of the fragment
is allowed to move up to 2A along the r, y, and z directions, and the Euler angles are
allowed to vary over a range of 45 degrees. Finally, we also dock the ligands using
the method described in our previous work (27). The primary purpose of the last
simulation is to evaluate the scoring function. The centroid of the ligand is allowed
to vary within a box of approximately 10A on a side. These simulations are applied
to seven different ligand/receptor systems which have differing sizes and bind through
a variety of interactions.

5.1 Methods

Genetic Algorithms

Reviewing briefly the discussion of genetic algorithms from Chapter 4, a genetic
algorithm is an optimization procedure that combines a probabilistic search algorithm
with a directed search strategy based on the fitness function. Genetic algorithms have
been shown to search complex spaces robustly [24] and differ from other optimiza
tion techniques in a number of ways. First, they explore the different regions of the
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Figure 5.1: The effect of the new crossover operation on the genetic algorithm perfor
mance. This graph show that on average fewer than 10 additional crossover opera
tions are required to generate 128 conformations of methotrexate with no bad internal
COntactS.

Solution space with a population of points. Second, they only need to compute the
value of the function being optimized. They are not limited by the details of the
function such as continuity or the existence of derivatives. Third, they do not ma
nipulate the optimization parameters individually. The parameters are instead coded
as a continuous string (usually binary digits), and the algorithm modifies this string
without any direct knowledge of individual parameters. A genetic algorithm can si
multaneously process local and non-local information within the string. This feature
is known as implicit-parallelism (29) and is one of the most interesting strengths of
genetic algorithms.

A genetic algorithm maintains a population of individuals with an associated fit
ness. Each individual represents a possible solution to the problem, and the algorithm
alters the individuals of the population and thereby searches different regions of the
Solution space in two separate stages. During the selection stage a new population is
created by proportionally selecting the more fit individuals from the previous popu
lation. The members of the populations are then transformed in the alteration step.



84

The mutation operator creates a new individual from a single individual by randomly
changing an element in its representation. The crossover operator, on the other hand,
exchanges information between two (occasionally more) members of the population.
We use a two-point crossover operator where two points are chosen at random, and
the information between the two points is exchanged. We chose this implementation
because there is evidence that it works better than a single point crossover [24]. The
Selection step is based on a simple heuristic idea that we would expect to find the best
Solution in that region of space which contains a large number of good solutions. Mu
tation and crossover operators extend the region to the space of potential solutions.
Figure 4.1 illustrates these operators. In our earlier work (27], we observed that many
of the individuals within the population contained bad intramolecular van der Waals
interactions and that the conformational space of the ligand was not being search
efficiently. Therefore, we have changed the basic crossover and mutation operator
to avoid this. In each case, before the conformation is included in the population a
bump check between the ligand atoms is performed. For all atoms A, and A; that
are greater than four bonds apart, we compare the distance between the two atoms
rij with the sum of the van der Waals radii, R, and Rj. If rij < R, + R; – 0.3, then
the structure is not included in the population. The atoms are allowed to overlap
by 0.3A. The mutation or crossover operation is performed again. This continues
until the population is complete or the appropriate number of mutations have been
performed. Figure 5.1 shows the performance cost of the modified crossover operator.
The simulation described in the figure is the docking of methotrexate to dihydrofolate
reductase (4dfr) for a population size of 256 with a crossover rate of 0.5. The genetic
algorithm was run for 1000 generations. In order to generate 128 new members of
the population from crossover, fewer than 10 additional crossovers must be performed
at each generation. This approach not only assures us that our population does not
contain bad intramolecular van der Waals contacts, but also improves the overall ef
ficiency of the algorithm since we do not bother to evaluate individuals which would
ultimately score poorly. Our implementation of the genetic algorithm is based on the
GAucsó package (30).

A number of parameters are associated with a genetic algorithm simulation. One
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must choose the population size, the number of generations, the crossover rate, and
the mutation rate. One of the primary focuses of this work was to try to determine a
set of parameters that would work across all of the receptor-ligand complexes. This,
however, must be determined within the limitations of the other components of the
system such as the scoring function. We chose the population size and the number
of generations so that the genetic algorithm would perform almost as well for all the
systems. For the simulations with the base fragment docked only approximately in
place and with no initially docked fragment, we chose the the population size and
number of generations to be 256 and 1500, respectively. For a number of systems
this was far more computations than were necessary to solve the problem. These
parameters have a dramatic effect on the length of the simulation. The population
size controls the extent to which the solution space is searched in each generation. The
number of generations determines how long the genetic algorithm is run. As shown in
Chapter 4, for some formulations of the molecular docking problem many runs have to
be performed to find the solution. Therefore, the simulations do not converge to the
same solution, and they must be terminated. Doubling either one will approximately
double the simulation time. For the simulations with an initial fragment docked in
the crystal structure orientation, the genetic algorithm has less space to search and
these parameters can be changed to reflect this. For these simulations, the population
size and the number of generations were chosen to be 128 and 1000, respectively. The
crossover and mutation rates determine the convergence of the population. The two
most important operators for the genetic algorithm are the selection procedure and
the crossover operator. These are the primary operators for the convergence of the
optimization procedure. The mutation rates are traditionally chosen to be small, and
their purpose is to introduce a little diversity into the population. For our simulations
we chose the crossover and mutation rates to be 0.5 and 0.005, respectively. This
choice of parameters slows down the converge of the genetic algorithm, and allows
the genetic algorithm to explore more of the solution space.

The genetic algorithm encodes three translations (T, Ty, T,), three rotations
(R, Ry, R.), and a number of bond rotations. The translational components usually
specify the position of the centroid of the molecule, but they can also specify the
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transformed coordinates of a given atom. The rotational components are the Euler
angles of rotation. As in most applications of genetic algorithms we chose to use a
Gray-coded binary representation for these parameters. With Gray-scale coding the
closest values within the representation differ by at most one bit [24]. Because this
representation is periodic, it is well suited to representing rotations. The number of
bits for each translation component b, is given such that 2" > 2L/0.3 where Li is
the dimension of the box in the ith direction. All rotations of 360 degrees whether
Euler angles or bond rotations are represented with 10 bits of precision.

Scoring Function

One of the major requirements of the scoring function is that it should be “smooth”
so that good local solutions lead to good global ones. We choose a scoring function
that is based on the one developed by Böhm (21]. The scoring function estimates the
binding free energy of a ligand, and it consists of primarily of terms that measure how
different types of interactions enhance the binding affinity. There are no large penalty
terms that will cause the genetic algorithm to converge to regions far from the actual
binding site. Böhm represented the binding free energy as a sum of several types of
interactions and performed a linear regression using several crystal structures. In its
functional form, the Böhm binding free energy estimate is

AGuinding - AGo + AGhbond + AGionic + AGhydration + AGrotation (5.1)

where

AGºona = khona X w(r,a)
hbonds

AGonie = kionic X w(r,a)
ionic

AGhydration - Khydration Ahydration

AGrotation - krotation Nrotation

AGo represents the loss of overall translational and rotational degrees of freedom.
AGhbond and AGionic are the free energies of hydrogen bonded and ionic interactions,
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respectively. AGhydration is the free energy due to burying hydrophobic surface area
Ahvaration. AGrotation is the free energy lost from freezing the Nrotation rotatable bonds
in the ligand. The weighting function w(r, o] penalizes deviations from the ideal
hydrogen bond or ionic interaction geometries. It has a distance dependence wi(r)
where r represents the deviation from the ideal hydrogen bond or ionic interaction
distance of 1.9 Å and 2.0 A, respectively. The angular dependence wa■ o) represents
the deviation from the ideal hydrogen bond angle of 180°.

w(r, o] = wi■ r)wo (o) (5.2)

where

| 1 rs 0.2A
wi(r) = { 1 – (r – 0.2)/0.4 0.2 < r < 0.6A

| 0 r > 0.6A

r 1 Cy s 30°

*(a) = | 1-(o-30)/50 30 < e < 80°
0 O > 80°

\

Bohm determined the values of the regression constants, khbond, kionic, and khydration,
to be -4.7 kJ/mol, -8.3 kJ/mol, and -0.17 kJ/mol, respectively. Because our docking
studies which involve comparisons between different conformations of the same ligand,
we assume that AGo and AGrotation do not vary much and are, therefore, assumed to
be constant.

In order for the above formulation to be useful within the context of optimization
with a genetic algorithm, a number of changes were made. First, the estimation of
the area of hydration Ahydration is computationally too expensive to calculate at each
step of the procedure. This would involve p x g calculations of the area of hydration
where p is the population size and g is the number of generations. The purpose of
this term is to model the burial of hydrophobic groups on the ligand away from the
Solvent and into hydrophobic pockets on the receptor. A simpler form is used during



the search phase of the algorithm.

AGºvaration
-

*varation XC 10h (r) (5.3)
atoms

where

0 r < —0.3A
1 –0.3 < r < 0.7A

wh(r) =
1 – (r – 0.7)/0.5 0.7 - r < 1.2A
0 r > 1.2A

r is the difference between the distance between the ligand and receptor atoms minus
the sum of their respective van der Waals radii. This term represents the number
of lipophilic atoms within 5.0 Å of the ligand atom, but those atoms that are closer
are weighted more heavily. This is similar to the idea described by Bohacek and
McMartin [31] for characterizing hydrophobic pockets in receptors. The summation
above is taken over the ligand atoms as well as the receptor atoms, and this allows

us to consider intramolecular lipophilic interactions. In these simulations khyaration
is -0.25. During the first half of the simulation, however, this term is not computed
So that the genetic algorithm can identify the surface and those regions where other
interactions can be formed. The primary reason for this approach is that hydrogen
and ionic bonding terms have some directionality that can be used to effectively place
the ligand.

The Böhm estimate of the binding free energy does not have a van der Waals term.
Instead of penalizing atoms that make van der Waals contact with the receptor,
we reward those that do not. Other docking techniques [1, 18] have used similar
rewarding functions, but unlike those approaches, we do not penalize bad contacts.
This results in van der Waals interactions which are much smoother. It allows the

genetic algorithm to find the conformation and orientation that places the ligand
atoms at the surface where they can make other favorable hydrogen bond, ionic, or
lipophilic interactions. The contact score is

fontact - kcontact weontact(r) (5.4)
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where
1 2.5A s r < 4.8A
0 otherwisewcontact(r) = {

and kcontact was chosen to be 2.0. The genetic algorithm keeps track of the contact
score for each member of the population so that the solutions with good contact scores
can be identified, and the contact contribution to the score can be subtracted. A good
contact score implies that most of the atoms lie adjacent to the receptor surface, and
few form bad van der Waals interactions with the receptor. The scoring function is

Score = AGhbond + AGionic + AGºvaration + frontact (5.5)

There is no intramolecular energy calculation for the ligand. We want our algorithm
to be able to find the crystal structure when a ligand undergoes some deformation
to form the intermolecular complex. We have instead changed the basic crossover
and mutation operators of the genetic algorithm so that the population contains
only conformations that do not have bad intramolecular contacts. This improves the
efficiency of the conformational search of the ligand without too large a computational
penalty. In essense, the receptor is represented by a shell and the genetic algorithm
searches through the conformational and orientational space of the ligand and tries to
find orientations that place most of the atoms close to the surface in such a way that
favorable hydrogen bonding, ionic, or lipophilic interactions can be made. Because the
scoring function is based primarily on distances between ligand and receptor atoms,
it can potentially be used in conjunction with flexible receptor docking simulations.
Here, however, we consider the receptor to be rigid. Therefore, for convenience of
implementation and efficiency, we have implemented much of the scoring function on
a grid with a spacing of 0.25 Å.

Receptor-ligand Complexes

A set of seven receptor-ligand complexes were used to test the flexible ligand
docking system. Six of these are available from the Protein Data Bank [32, 33], and the
last one is an HIV-1 protease inhibitor that was developed at Vertex Pharmaceuticals
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| PDB file | Receptor/ligand complex
1stp Streptavidin■ biotin
3cpa Carboxypeptidase-A/glycyl-L-tyrosine
121p H-RAS P21/5'-B,G-methylene-triphosphate
4dfr Dihydrofolate reductase/methotrexate
3dfr Dihydrofolate reductase with NADPH/methotrexate
p478 HIV-1 protease/VX-478
1dwc Thrombin-argatroban

Table 5.1: A list of the complexes used to test this system.

and is now in the clinical trials stage of development. These systems were chosen
because of the differing sizes and degrees of flexibility in the ligands and the types of
interactions that are involved in binding. These complexes are a subset of the systems
analyzed by Rarey et al. [19]. Jones et al. (28] chose systems where the hydrogen
bonds were the primary interactions involved in the formation of the complex. Many
of the system have major hydrophobic regions in addition to hydrogen bonding and
ionic interactions. Table 5.1 shows a list of these complexes. In the remainder of
this section, we describe the steps taken to prepare the ligands and receptors for the
docking simulations.

The ligands were extracted from the PDB file and converted into SYBYL “mol2”
file format. Using the SYBYL system, hydrogen atoms were added and the correct
atom and bond types were assigned to the molecule. Rotatable bonds were rotated
at random, and the molecule was randomly oriented at the origin of the crystal
structure coordinate system. For the receptor, all water molecules were removed,
and polar hydrogens were added using the “protonate” program of the AMBER [34]
System. No optimization of the ligand nor receptor was performed. The physico
chemical properties of the atoms within the active site were assigned using software
and template files that we developed. The scoring function described above was
evaluated on a scoring grid with a spacing of 0.25 Å. The locations of hydrogen bond
acceptors on the receptor were stored on the grid since the score depends on the
orientation of the ligand's donor group and cannot be precalculated.
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5.2 Results

In this section we describe the results of three different simulations on seven

different receptor-ligand complexes. First, we dock a flexible ligand given that we
know the position of a base fragment. Then, we assume that the base fragment is
positioned incorrectly and dock the flexible ligand while correcting the base fragment
orientation. The error in the position of the initial fragment can be as much as 2A
in the ac, y, and z directions, and the rotations about each of the axes can be off by
as much as 45 degrees. Finally, the last simulation performed on each of the systems
assumes only that the centroid of the ligand must lie within a box with a dimension
on each side of approximately 10A. This simulation allows us to test the usefulness
of the new scoring function and to compare our results with those that we have
published previously (27). Fifty runs were performed in each case. In the remainder
of this chapter, the results for each complex are discussed in the following subsections.
Table /reftbl:FlexDockResults summarizes the performance of the docking procedure
on each of the different types of simulations.

1stp

Biotin binds to streptavidin with a very high affinity due to the formation of
specific hydrogen bonds and overall steric fit. The structure of the complex has been
solved to 1.55 A resolution [35]. Biotin contains a fused ring system with a ureido
group that is linked to a carboxylate group through a four member alkyl chain. The
dominant effect contributing to biotin binding is the polarization of the ureido group
so that the negative charge is located on the ureido oxygen which binds in an oxyanion
“hole” on the protein. Biotin contains five rotatable bonds, and the fused ring system
is used for the fragment-based docking simulations.

For the simulations with the initial fragment docked in the crystal structure orien
tation, the correct binding mode was found in all runs. The solutions varied from 0.16
to 1.02 Arms deviation from the crystal structure, and all solutions were within 5
kJ/mol. Most of the variations in the solutions were due to the alkyl chain. When the
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Figure 5.2: The crystal structure binding mode of biotin to streptavidin (red) and
another solution that is 5.94A rms deviations away (blue).

initial fragment was only approximately placed in the crystal structure orientation,
the performance was still very good. Most of the solutions were between 0.67 and 1.53
A rms from the crystal structure. In these simulations the genetic algorithm quickly
converged to solutions with good contact score. Most of the atoms were placed near
the receptor surface, and no bad van der Waals contacts were made with the receptor.

Without the initially docked fragment, there were a variety of other solutions
found. In this case the centroid of the ligand was allowed to vary over a box with
dimensions 9 × 9 × 12A. Most of the simulations converged to solutions close to the
crystal structure. The closest solution was at 0.88 Arms deviation from the crystal
structure. Another potential binding mode was found at 5.94 Å from the crystal
structure and had a score that was approximately 5 kJ/mol less than the score of
the crystal structure. This difference in energy is slightly more than the energy of
one hydrogen bond. This solution is shown with the crystal structure in Figure 5.2.
The proximity of these two solutions in energy, however, may be due to the fact that
water molecules and the polarization of the ureido group have not been included.
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The carboxylate group on the biotin is known to form additional hydrogen bonds
with water molecules. In nearly all simulations the solutions had good contact scores.

3cpa

Carboxypeptidase A is a zinc protease. The structure of the complex with glycyl
L-tyrosine is known to 2.0 A at low temperatures [36]. The hydroxybenzyl group of
the tyrosine resides in the hydrophobic pocket of the S site. The dipeptide has five
rotatable bonds and appears to bind with the hydrolytically important zinc-bound
water displaced from the active site. As in Rarey et al. [19], the carboxylate group of
the glycine residue is chosen as the base fragment.

With the initial fragment docked in the crystal structure orientation, the genetic
algorithm quickly found the crystal structure conformation. All solutions were within
3 kJ/mol of each other, and most of the variation in the rms deviation from the crystal
structure was in the placement of the hydroxybenzyl group. These results are not sur
prising given that the binding site is a very deep pocket, and a fragment of the ligand
is initially docked. When error is introduced into the base fragment, more variability
is seen in the solutions found by the docking procedure. The most commonly found
solution is very close to the crystal structure, but other solutions are found between
2.2 and 2.6 Å rms deviation from the crystal structure. In all simulations, the final
Solutions had good contact scores. Without the carboxylate group initially docked,
the docking procedure again found a variety of solutions including structures close
to the crystal structure. It is important to point out that the genetic algorithm did
converge prematurely to the solution that is approximately 6 Å rms from the crystal
structure as in our previous work (27). However, in these simulations this inverted
Solution is not found as often, and the energy difference between this structure and
the crystal structure is greater than 14 kJ/mol. Thus, with carboxypeptidase-A the
new scoring function improves the results of the simulations (see Table 5.2).



94

Figure 5.3: A couple of solutions from the 121p docking simulations. The crystal
structure is shown in red. The 3.35 and 5.08A solutions are shown in magenta and
blue, respectively.

121p

The structure of the oncogene protein H-RAS P21 and bound guanosine 5'-B,G-
methylene-triphosphate has been solved to a resolution of 1.54 A. [37]. The Mg” is
included in the active site. The inhibitor has seven rotatable bonds, and the guanosine
group is chosen as the initial fragment.

For the docking simulations with the base fragment fixed, the crystal structure
binding mode was found in every run. The solutions varied from 0.27 to 1.05 Å. When
the initial fragment is docked incorrectly, and the docking algorithm has to reposition
it within the context of the entire ligand, most of the simulations generated solutions
that were within 14 Arms deviations from the crystal structure. These structures
had the best scores. The best solution in terms of score and proximity to the crystal
structure had an rms deviation of 0.81 A. A few simulations that did not converge
to a conformation close to the crystal structure did not have near optimum contact
Scores. Many atoms were positioned away from the receptor surface. Longer run
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Figure 5.4; Results from the 4dfr docking simulations. The crystal structure binding
mode is shown in magenta. The 1.64 and 2.5A solutions are shown in blue and red,
respectively.

times may help solve this.
When the centroid of the ligand is allowed to vary within a box with dimensions

15× 10× 10A, three distinct binding modes appear. The solution closest to the crystal
structure has an rms deviation of 1.68 A. This solution also had the best score which

turns out to be about 3.6 kJ/mol better than the crystal structure solution without
any optimization of the crystal structure. The other binding modes are 3.35 and 5.08
A from the crystal structure. The scores for these structures are 3.3 kJ/mol and 4.5
kJ/mol worse than the best scoring solution. These solutions are shown in Figure 5.3.
As above longer simulations may be required to get better contact scores. The rms
deviations in these structures are due to the placement of the guanosine group.

4dfr

Dihydrofolate reductase is an enzyme which is vital for the replication of DNA
and has thus been the target for anti-bacterial and anti-cancer drugs. The structure
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of methotrexate bound to dihydrofolate reductase is known to 1.7 A resolution [38].
There are two independent protein molecules in the PDB file; we chose the molecule
designated “B”. Dihydrofolate reductase has a rather large active site which is strongly
polarized. One end has a positive charge while the other end has a negative charge.
Methotrexate has ten rotatable bonds which divide the molecule into three different

regions – a pteridine ring, a hydrophobic p-aminobenzoyl group, and a flexible chain
with two carboxylate groups. In our simulations the pteridine ring was chosen to be
the initial fragment.

With the pteridine ring docked in place, most of the simulations converged to
solutions less than 1.64 Arms deviations from the crystal structure. The closest
solution was 0.51 A away. The best scoring solution, however, was 1.64 A from the
crystal structure and scored 4.3 kJ/mol higher in energy. This solution is shown
with the crystal structure binding mode in Figure 5.4. The most commonly found
solutions were approximately 1.5 Å rms deviations away from the crystal structure.
These score approximately 2.5 kJ/mol worse than the best scoring solution. When
the pteridine ring is initially docked incorrectly, many different solutions are found.
Most simulations found solutions with rms deviations between 1.1 and 1.8 Å. Two

simulations converged to solutions that were approximately 2.5 Å away. One of these
is shown in Figure 5.4. Most of the rms deviations resulted from trying to position
the last carboxylate group so that it could hydrogen bond with the receptor. This is
due to the absense of the solvent molecules and the attempts of the genetic algorithm
to satisfy the hydrogen bonding potential in the flexible tail of the methotrexate
molecule.

In the docking simulations without the pteridine ring initially docked, the centroid
of methotrexate is allowed to vary over a box with dimensions 12.5 Å on each side.
In this case over half of the simulations converged to structures with good contact
scores. Six solutions were found within 2.0 Å rms deviation of the crystal structure.
The closest solution was 1.24 A away, and the best scoring solution again was the
1.64 A solution. This is much better than results we reported previously (27) and
demonstrates that this scoring function is better suited to flexible ligand docking
with genetic algorithms (see Table 5.2).
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Figure 5.5: Results from the 3dfr docking simulations. A 1.93A solution (blue) is
shown with the crystal structure binding mode (red).

3dfr

In this complex methotrexate is bound with dihydrofolate reductase and NADPH.
The structure has been determined to 1.7 Å resolution [38]. An interesting feature
of this system is that the amide bond on methotrexate appears to deviate markedly
from being planar. This illustrates the importance of being able to consider strain in
the ligand as suggested by Nicklaus et al. [23].

With the pteridine ring docked in the crystal structure orientation, most of the
simulations find solutions within 13 A rms deviations from the crystal structure.
The closest solution found is 0.80 A from the crystal structure, and the best scoring
solution is 1.11 A away. When the orientation of the pteridine ring is also allowed to
vary, the overall rms deviation of the solutions from the crystal structure increases,
but all solutions lie within 1.97 A from the crystal structure and have good contact
SCOreS.

In the centroid-based docking strategy, the centroid of the methotrexate molecule
can be placed anywhere within a box with dimensions of 10 A on a side. The two
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Figure 5.6: The HIV-1 protease inhibitor, VX-478, that was designed at Vertex Phar
maceuticals. Nitrogen atoms are colored blue, oxygens are blue, sulfurs are yellow,
carbons are gray, and hydrogens are white.

closest solutions are 1.93 and 2.03 Arms deviations away from the crystal structure.
The first of these is shown with the crystal structure in Figure 5.5. Only about half
of the simulations had contact scores near optimum, and this suggests that longer
simulation times may be needed. Again, much of the error may be due to the fact
that water has been excluded, and the genetic algorithm is trying to form hydrogen
bonds between the last carboxylate group and the receptor.

p478

Inhibitors of HIV-1 protease have recently been introduced to help in the treatment
of AIDS. Here we describe the docking simulations of VX-478, a drug that has been
designed at Vertex Pharmaceuticals. Phase I/II clinical trials of this new HIV-1
protease inhibitor began in 1995. VX-478 is the largest inhibitor that we consider in
this paper. It has thirteen rotatable bonds and is shown in Figure 5.6. For the base
fragment we chose the ring system with the nitrogen atom.

With the initial fragment docked in its crystal structure orientation, two different
Solutions were found. Several simulations converged to solutions within approximately
3A rms deviations from the crystal structure. Almost all of the other simulations,
however, converged to conformations within 1.0 and 1.3A rms deviations from the
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Figure 5.7: Results from the HIV-1 protease inhibitor docking simulations. The
crystal structure binding mode is shown in red. The 1.27 and 3.02A solutions are
shown in magenta and blue, respectively.

crystal structure. The best scoring solution is also the closest to the crystal structure
(1.01A). This solution is approximately 9kJ/mol better than the score of the 3A
solution. When the orientation of the initial fragment is allowed to vary, other possible
binding modes were found. The best scoring solution is 3.02A rms deviation from the
crystal structure and scores about 2k.J/mol worse than the 101A solution. The closest
solution is 1.27A from the crystal structure. These solutions are shown in Figure 5.7.
The difference between these two solutions is that in the 3.02A solution the benzyl
group and hydrophobic chain are docked in the opposite hydrophobic pockets. The
receptor also seems to be able to accommodate some variability in the placement of
these groups. In the simulations with the incorrectly docked initial fragment, many of
the solutions placed many of the atoms away from the receptor surface. Furthermore,
many of the solutions have large rms deviations from the crystal structure. This
demonstrates the sensitivity that docking simulations can have to the placement of
the initial base fragment.
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Figure 5.8: The results for the 1dwc-argatroban binding simulations. The crys
tal structure (red) is shown with 1.14 and 2.29A solutions in magenta and blue,
respectively.

Because the protease has C2-symmetry, we allowed one of the Euler angles to
vary over T radians, and the position of the inhibitor's centroid was allowed to vary
over a 10A box. The closest solution was 1.35A rms deviations away from the crystal
structure. Other good solutions were found at 3, 7.4, and 9.3A. All of these structures
have scores approximately 9kJ/mol worse than the best solution. Most of the solutions
had good contact scores.

1dwc

The structure of the thrombin-argatroban complex has been solved to a resolution
of 3.0 Å [39]. Argatroban consists of two hydrophobic ring systems (a piperidine and
quinoline group) and a guanidinium group which is connected via an alkyl chain.
According to Banner and Hadvary [39], the piperidine group binds in the proximal(P)
pocket, and the quinoline group binds in the distal(D) pocket and packs tightly
against the piperidine group. An important feature of binding in this case is the
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Complex || Fixed Fragment || Variable Fragment | No Fragment
rms (A) | N. ||rms (Å) N, rms (A) | N.

1stp 0.16 50 0.67 12 0.88 19
3cpa 0.38 50 0.82 28 0.79 22
121p 0.27 50 0.81 31 1.68 4
4dfr 0.51 50 1.10 34 1.64 6
3dfr 0.80 50 1.03 50 1.93 2

p478 1.01 37 1.27 3 1.35 1
1dwc 0.69 23 1.14 2 2.29 0

Table 5.2: A summary of the fixed fragment, variable fragment, and no initial frag
ment docking simulations. For each, the best rms structure and the number of struc
tures with rms deviations less than 2.0 Å (N.) are reported.

strong interaction between the two hydrophobic groups on the ligand. There is also
an oxyanion “hole” in the receptor that is not used directly by argatroban. The
guanidinium group was chosen to be the base fragment.

With the initial fragment docked in place, almost half the simulations had so
lutions within 2.0 Å rms deviations from the crystal structure. The best solution
was 0.69 A away, and the best scoring solution had an rms deviation of 0.73 A. The
performance of the docking system worsened when the base fragment orientation was
allowed to vary from the crystal structure orientation. Only two solutions with rms
deviations less than 2.0 Å were found. These solutions are 1.14 and 1.71 A from the

crystal structure. The latter solution had the best score. Other solutions were found
at 3.3 and 5.2 A. Many of the simulations did not had good contact scores. Longer
simulations may improve the results, but the major limitation in this case appears to
be with the scoring function.

In the docking procedure with no initially docked fragment, the crystal structure
solution was not found. The closest solutions had rms deviations of 2.29 and 2.77 A.

A number of solutions were found near 4.0 A, but their scores were approximately
12kJ/mol worse than the best docked structure, the 2.29 A solution. This solution is
shown in Figure 5.8. The docking procedure had trouble docking the quinoline group,
but it did well with the rest of the ligand.
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5.3 Discussion

Molecular docking has been the focus of intense research for a number of years.
The goals of this research are to be able to predict the conformation for a protein
ligand complex and ultimately, to screen databases of flexible ligands for new lead
compounds. The formation of a receptor-ligand complex results from a balance of
contributions from direct binding, desolvation, entropy, and environmental effects.
Therefore, the key to any molecular docking system are the underlying approxima
tions. Two different types of approximations are often made. The first have to do
with the scoring function used to evaluate the complexes. Ideally, this function would
rank the different conformations by their binding affinities. Two commonly used
scoring functions are molecular mechanics force fields and empirical estimates of the
binding free energy [21]. Another set of approximations deal with the formulation
of the docking problem. A number of systems, for example, consider the ligand to
be rigid or only partially flexible. Almost all docking methods except for the energy
minimization techniques treat the receptor as rigid. Even in the case of flexible ligand
docking to rigid receptors, a number of approximations are often made. A common
one is that ligands can be docked from an initially placed fragment, but as pointed
out above, there are many limitations to this approach.

In this paper, we have described a new flexible ligand docking system which uses
a genetic algorithm to search the conformational space of the ligand. The scoring
function is based on the binding free energy estimate developed by Böhm (21]. Vari
ations of this function have been used in some fragment joining docking systems. In
order for this empirical scoring function to be useful within the context of docking
with a genetic algorithm, a number of modifications were made. The most notable
of these is the inclusion of a “good contact” score with no penalty for bad van der
Waals interactions with the receptor. Our results show that the docking simulations
generally converge to solutions with near optimal contact scores with most atoms
being placed near the receptor surface and few overlapping with the receptor. Three
different simulations were performed on seven receptor-ligand complexes.

The first two simulations were designed to address some of the limitations of
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fragment-based flexible ligand docking procedures and to evaluate the performance
of the docking method if some information about the binding mode were given. In
all cases where the base fragment is docked in the crystal structure orientation, our
docking system converged to solutions close to the crystal structure in terms of both
score and rms deviations. By using a genetic algorithm to search the ligand's con
formational space, we have avoided the problems associated with using a “greedy”
algorithm as in the incremental construction procedure [19]. Another limitation of
the fragment-based docking approach is that the position of the base fragment must
be context dependent; its position must depend on the conformation of the entire
ligand. Our docking system allows errors in the placement of the initial fragment to
be corrected during the docking of the ligand. In all complexes considered, our dock
ing algorithm found solutions close to the crystal structure when the base fragment
was initially docked incorrectly. These solutions were found consistently in every
case except for p478 and 1.dwc., the two largest and most hydrophobic ligands. Our
approach offers an alternative to the incremental construction procedure. Another
limitation of the fragment-based approach is that the initial fragments often dock
in many different locations on the receptor. One solution could be to make many
runs, possibly in parallel, with each of the initial locations. Another solution, which
is not presented here, would be to use the representation of the genetic algorithm
parameters to encode mappings to the different initial fragment docking positions.
This approach can also be used to address the final problem of the fragment-based
approach, the choice of the initial base fragment. Instead of choosing one initial
fragment, the ligand can be divided into a number of different “hot spots”, and the
genetic algorithm can encode mappings between the different parts of the ligand and
their positions on the receptor surface. Work is currently in progress to address these
issues of optimization parameter representation.

The last set of simulations were designed for the purpose of evaluating the perfor
mance of the scoring function and to compare our approach with other methods that
dock flexible ligands without an initially docked base fragment. By using the naive
translation and Euler angle representation for the ligand's orientation, we could better
separate the performance of the scoring function from that of the representation and
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compare our present results with those that we published earlier. In all our simula
tions, our docking procedure found solutions that were close to the crystal structure.
In most cases, the solutions had good contact scores. For 3cpa and 4dfr, our results
with the new scoring function are much better than the results that we reported
previously (27]; we found the crystal structure solution more consistently. The two
most difficult complexes for our system were the two largest and most hydrophobic
ligands, the HIV-1 protease inhibitor and argatroban. These systems highlight the
need for improvements in the scoring function. This is particularly important in the
modeling of hydrophobic interactions. For example, in the simulations with the HIV-1
protease inhibitor a number of solutions were found where the benzyl group and hy
drophobic chain were docked in the incorrect hydrophobic pockets. With argatroban,
the piperidine and quinoline hydrophobic groups interact strongly with each other.
These intramolecular interactions must be better characterized. Another limitation

of the current scoring function is that effects of water molecules are not included.
This is particularly noticeable in the streptavidin and dihydrofolate reductase dock
ing simulations. In each case, carboxylate groups form hydrogen bonds with water
molecules in the crystal structure. The high binding affinity of biotin to streptavidin
results from the additional hydrogen bonds that form with the solvent. Because the
water molecules have been removed, the docking procedure greatly underestimates
the binding affinity. In the methotrexate-dihydrofolate reductase simulations, much
of the rms deviations from the crystal structure resulted from changes in the con
formation of the flexible tail of methotrexate to form hydrogen bonds between the
carboxylate groups and the receptor. Discrete water molecules can also play an im
portant role in complex formation by mediating hydrogen bonds between the ligand
and the receptor. Guida et al. [40] found that they had to include the effects of solvent
to obtain good agreement between the docked and crystal structures of thermolysin
and its inhibitors once the crystallographic water molecules were removed. Despite
these shortcomings in the scoring function, our docking procedure performed very
well on a number of complexes with a variety of different types of interactions.

We have developed a flexible ligand docking system that is versatile and can ad
dress different formulations of the molecular docking problem. In this paper we have
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focused on the issues involved with the scoring function that is used with a genetic
algorithm since this is directly related to the dynamics of the genetic algorithm. In
future work we will address the issue of parameter representation. Jones et al. (28)
considered one possible representation with putative mappings between hydrogen
bonding groups on the ligand and receptor. This approach may perform well with
ligands that bind primarily through hydrogen bonds, but as we have seen, there are
many complexes of interest that do not fall into this category. We are currently devel
oping a docking procedure that combines a genetic algorithm search procedure with
features of fragment-based docking methods. In particular, the genetic algorithm
encodes mappings between different “hot spots” on the ligand with complementary
regions on the receptor. As we have seen in Chapter 3, molecular docking is impor
tant for the optimization of lead compounds in the drug design procedure. These
simulations provide information about the possible binding modes of the ligand so
that modifications can be suggested to improve the binding affinity of the ligand to
its target.
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Chapter 6

Conclusions and Future Directions

In this dissertation I have designed a ligand discovery and optimization system
for structure-based drug design. There are two key components to this system —
an interactive molecular graphics system and methods for docking flexible ligands
to rigid receptors. The molecular graphics system is implemented as an extension
to Chimera, a new molecular modeling system under development at the Computer
Graphics Laboratory at UCSF. Currently, the system has methods for finding and
displaying hydrogen bonds, computing and displaying molecular surfaces, and for
interactively visualizing any volumetric data that is represented on a grid. Texture
mapping is available and provides the user with a means for further controlling how
the data are rendered. For example, the user can interactively change the color
or transparency of an object to highlight regions where new functional groups can
be added to increase the binding affinity of the ligand to the target receptor. The
system has not been used to design a new therapeutic agent, but this is a goal of
future work. Nevertheless, the system has been very useful for analyzing the results
of docking simulations. It has also been used to visualize how different ligands are
accommodated in a common binding site. This has been invaluable for understanding
the principles that govern protein-ligand interactions.

The other component of the system is a flexible ligand docking module. Molecular
docking is essential for a drug design system because in order to propose chemical
modifications to a lead compound, one has to know the ligand's binding mode. Fur
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thermore, once a change has been made to a lead compound, it is good practice to
verify that the molecule binds in the expected conformation and orientation. A com
mon mistake is to assume that the molecule does. Even small changes in a ligand
can change how it binds to the target enzyme. In this dissertation, I have chosen
flexible ligand docking methods that use a genetic algorithm to search the confor
mational space of the ligand. I have compared the molecular mechanics force fields
and simple, empirical binding free energy estimates as potential scoring functions
for docking flexible ligands to rigid receptors. I have shown not only that the sim
ple binding free energy scoring function can be used with genetic algorithms, but
I have developed a docking system that performed very well with several different
receptor-ligand complexes. The system also addresses a number of limitations of
other docking approaches. My docking system can be used as an alternative to the
incremental construction approach. A genetic algorithm is used to search the con
formational space of the ligand within the receptor as an alternative to a “greedy”
procedure. My system also allows the initial base fragment to be docked within the
context of the entire ligand. The focus of my research has been on developing better
scoring functions for genetic algorithm-based docking procedures, but I have also de
scribed ways in which the choice and representation of the parameters can be used to
address other aspects of flexible ligand docking. Two areas of future work are devel
oping new representations for molecular docking and improving various aspects of the
Scoring function. Another goal is to ultimately develop methods for computationally
Screening databases of flexible ligands for new lead compounds.
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