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Abstract 75 

Long-term plot-scale studies have found water limitation to be a key factor driving ecosystem 76 

productivity in the Rocky Mountains. Specifically, the intensity of early summer (the 77 

“foresummer” period from May to June) drought conditions appears to impose critical controls 78 

on peak ecosystem productivity. This study aims to (1) assess the importance of early snowmelt 79 

and foresummer drought in controlling peak plant productivity, based on the historical Landsat 80 

normalized-difference vegetation index (NDVI) and climate data; (2) map the spatial 81 

heterogeneity of foresummer drought sensitivity; and (3) identify the environmental controls 82 

(e.g., geomorphology, elevation, geology, plant types) on drought sensitivity. Our domain (15 x 83 

15 km) includes four drainages within the East Water watershed near Gothic, Colorado, USA. 84 

We define foresummer drought sensitivity based on the regression slopes of the annual peak 85 

NDVI against the June Palmer Drought Severity Index between 1992 and 2010. Results show 86 

that foresummer drought sensitivity is spatially heterogeneous, and primarily dependent on the 87 

plant type and elevation. In support of the plot-based studies, we find that years with earlier 88 

snowmelt and drier foresummer conditions lead to lower peak NDVI; particularly in the low-89 

elevation regions. Using random forest analysis, we identify additional key controls related to 90 

surface energy exchanges (i.e., potential net radiation), hydrological processes (i.e., 91 

microtopography and slope), and underlying geology. This remote-sensing-based approach for 92 

quantifying foresummer drought sensitivity can be used to identify the regions that are 93 

vulnerable or resilient to climate perturbations, as well as to inform future sampling, 94 

characterization, and modeling studies. 95 

  96 
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1. Introduction 97 

Ecosystems in headwater catchments are important for water resources, because they influence 98 

hydrology through evapotranspiration (ET) and nutrient cycling (e.g., Lukas et al., 2015; 99 

Maxwell and Condon, 2016). Recent global-climate-model ensembles predict increased 100 

temperature and earlier snowmelt in western North America (Higgins and Shi, 2001; 101 

Diffenbaugh et al., 2013). Additionally, some studies predict reduced spring precipitation and 102 

increased late-summer monsoon precipitation in the future (Seth et al., 2011). Together, these 103 

changes would increase the length of time between snowmelt and summer monsoon, or the 104 

“foresummer” part of growing seasons (Rauscher et al., 2008; Swain and Hayhoe, 2015). Low 105 

snowpack years with earlier snowmelt would expose plants to potentially longer and drier 106 

periods before the onset of monsoonal precipitation. Combined with predicted increasingly 107 

warmer temperatures, this foresummer period could become more drought-like.  108 

 109 

Recently, Sloat et al. (2015) documented the importance of this foresummer drought period by 110 

combining a watering manipulation experiment with 11 years of long-term monitoring data at the 111 

Rocky Mountain Biological Laboratory (RMBL) in Gothic, Colorado, USA. They found that 112 

peak and cumulative net ecosystem productivity (NEP) is negatively correlated with the severity 113 

of drought conditions in the primary growing season (June). They concluded that NEP will not 114 

increase in the future, despite the increase in temperature and longer growing seasons. This is 115 

consistent with other studies that reported water limitation of ecosystem productivity in the 116 

Rocky Mountain regions (e.g., Lamanna, 2012; Williams et al., 2012; Harte et al., 2015) and in 117 

the western USA (Berner et al., 2017). These regions are thus in contrast with other regions 118 

where water is not a limiting factor, and therefore early snowmelt lengthens the growing season, 119 
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and increases the rate of peak and cumulative ecosystem productivity (e.g., Euskirchen et al., 120 

2006; Ernakovich et al., 2014). 121 

 122 

Here, we address the key challenge of scaling up such plot-scale experiments in order to quantify 123 

overall ecosystem and/or plant productivity at the scale of watersheds. Ecosystems in 124 

mountainous regions are particularly heterogeneous, influenced by steep and complex terrains. In 125 

these systems, plant types can vary on a spatial scale of 50-100 m (Zimmermann and Kienast, 126 

1999). Slope and aspect affect solar radiation, which in turn influences energy balance and soil 127 

moisture (Korner, 2007). Soil moisture is also affected by plant types, soil types, and other 128 

factors (e.g., Mohanty et al., 2000). In addition, snow accumulation and melting – which leads to 129 

infiltration and provides a critical water storage mechanism for ecosystems in the growing 130 

season (Harte et al., 2015; Sloat et al., 2015) – are extremely heterogeneous in mountainous 131 

regions (Anderson, et al., 2014; Painter et al., 2016). 132 

 133 

In this study, we propose a new sensitivity metric for the Rocky Mountain region, and to map 134 

this sensitivity using historical satellite and climate data. The historical records of satellite 135 

datasets are valuable in evaluating the long-term trends and responses of ecosystems to climate 136 

variations, and also in inferring their future responses to changing climate (e.g., Zhao and 137 

Running, 2010; Seddon et al. 2016; Knowles et al., 2017, 2018; Stocker et al., 2019; Dong et al., 138 

2019). Given the water-resource limitation in this region during early growing seasons, herein 139 

we define foresummer drought sensitivity as the sensitivity of peak plant productivity to 140 

foresummer drought conditions. We then quantify this sensitivity based upon the historical 141 

records of the Landsat-derived normalized difference vegetation index (NDVI) at 30 m 142 
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resolution, which is known to be strongly correlated with plant productivity (e.g., Tucker et al., 143 

1985; De Jong et al. 2011; Dong et al., 2019). We represent the drought condition based on the 144 

June Palmer Severity Drought index (PSDI) in the same manner as Sloat et al. (2015). In contrast 145 

to other satellite-based studies, our drought sensitivity is based on plot-scale experiments and the 146 

associated system understanding shown in Sloat et al. (2015). In addition, we use a machine 147 

learning approach to investigate environmental controls on spatially heterogeneous sensitivity, 148 

including elevation, geomorphology, and geology, using publicly available spatial datasets. Such 149 

data-driven analysis provides useful insights into underlying processes, enhances our ability to 150 

predict future trajectories, informs mechanistic ecohydrological models, and also facilitates site 151 

characterization and sampling plans.  152 

 153 

2. Materials and Methods 154 

2.1. Study Area 155 

We consider an approximately 15-km-by-15-km domain near Gothic, Colorado, USA (Figure 1). 156 

Hubbard et al. (2018) provides a detailed site description. The domain is part of the Elk 157 

Mountain Range in the Rocky Mountains, with elevation ranging from ~2800 m to ~4000 m 158 

(Figure 1a). The major land cover types are rock outcrop (12%), evergreen forest (29%), 159 

deciduous forest (18%), and grassland (30%; Figure 1b, NLCD 2011). The domain includes four 160 

drainages (East River, Washington Gulch, Slate River and Coal Creek) and four of the five 161 

experimental plots used in Sloat et al. (2015).  162 

 163 

Historically, snow precipitation starts in October to November, and the first bare-ground date 164 

ranges from May to June. Carroll et al. (2018) analyzed the peak snow distribution in April, 2016 165 
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based on the NASA Airborne Snow Observatory, and found that the snow depth varies, ranging 166 

from 0 to 2.36 meters depending on the elevation, aspect and plant cover type. At the Butte Snow 167 

Telemetry (SNOTEL) station (Figure 1), the historical average of peak snow-water-equivalent 168 

and first bare-ground date are 400.5 mm and May 21st, respectively.  169 

 170 

2.2. Palmer Drought Index and Climate Data 171 

We used the June PDSI of Colorado Division 2 from NOAA 172 

(www.cpc.ncep.noaa.gov/products/analysis_monitoring/cdus/palmer_drought/) to represent 173 

foresummer drought conditions. PDSI is computed based on precipitation, temperature, and 174 

division constants (such as soil water capacity). Although the limitations of PDSI have been 175 

recognized (Alley, 1984; Dai et al., 2004; Trenberth et al., 2014), it is still the most widely used 176 

index for drought conditions (e.g., Dong et al., 2019). Note that although the data source is 177 

different from Sloat et al. (2015), we assume that the general climate variability is captured 178 

similarly by both PDSIs. In addition, we evaluated other drought indices (Text S1): Standardized 179 

Precipitation Index (SPI; McKee et al. 1993), and Standardized Precipitation Evapotranspiration 180 

Index (SPEI; Beguería et al., 2010; Vicente-Serrano et al., 2012).  181 

 182 

We also used snowmelt timing (i.e., first bare-ground date) and June mean air temperature from 183 

the Butte SNOTEL station (elevation 3097 m; www.wcc.nrcs.usda.gov/snow/). We used the 184 

homogenized SNOTEL temperature data provided by Oyler et al. (2015). All the data values are 185 

included in Table S1 and Figure S1. We also confirmed that the average June precipitation is 186 

significantly lower than the other months (Table S2). 187 

 188 
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2.3. Annual Peak NDVI and Sensitivity Measures 189 

Using Google Earth Engine (GEE; https://earthengine.google.com/), we processed Landsat 5 190 

surface reflectance datasets over 19 years (1992-2010). These images were processed, including 191 

the atmospheric correction by the LEDAPS method (http://ledaps.nascom.nasa.gov/). We 192 

computed NDVI at each pixel, and annual peak NDVI (i.e., the maximum value at each pixel) in 193 

each year. Finally, we downloaded these annual peak NDVI images for further analysis. Since 194 

two Landsat paths overlapped over this domain, the repeat cycle was 8 days, which contributed 195 

to minimizing the effect of cloud coverage.  196 

 197 

We first extracted peak NDVI at the pixels corresponding to the observation plots in Sloat et al. 198 

(2015) to investigate the relationship between peak NDVI and June PDSI, snowmelt timing, and 199 

June mean air temperature. We then defined the foresummer drought sensitivity as the slope of 200 

peak NDVI as a linear function of June PDSI. The slope represented the change in peak NDVI 201 

given the change in June PDSI. We also computed the average and standard deviation (SD) of 202 

annual peak NDVI at each pixel. In addition, we analyzed the relationship between NDVI and 203 

leaf area index (LAI) based on the ground-based measurements collected in 2019 (Text S2 and 204 

Figure S2). 205 

 206 

2.4. Random Forest Analysis for Environmental Controls on Drought Sensitivity 207 

We investigated key controls on foresummer drought sensitivity, based on other spatial data 208 

layers used in the hydrological modeling study within this domain (Pribulick et al., 2016; Foster 209 

and Maxwell, 2019). The Random Forest (RF) method is a machine-learning method developed 210 

by Breiman (2001) to predict responses based on mixed numerical and categorical predictors, 211 
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and to identify important predictors for given responses (Hastie et al., 2001). RF generates a 212 

large number of regression trees from bootstrapped subsampled data, and averages over all the 213 

trees. RF is known to work well with correlated predictors similar to ridge regressions (Hastie et 214 

al., 2001). In environmental applications, Bachmair and Weiler (2012) used RF for identifying 215 

key controls on hillslope hydrological dynamics.  216 

 217 

We defined a regression of foresummer drought sensitivity as a function of environmental 218 

variables. Using Topotoolbox (Schwanghart and Kuhn, 2010), we computed topographic metrics 219 

based on the digital elevation model (DEM) from the National Elevation Dataset (30 m 220 

resolution, USGS, 2002), including slope, topographic wetness index (TWI), bedrock-weighted 221 

upslope accumulated area (UAAB), and topographic position index (TPI). TWI is the log of flow 222 

accumulation area divided by slope, and TPI represents the local-scale variation of topography 223 

after topographic trend (i.e., the moving average of 100-m scale) is removed (Gillin et al., 2015). 224 

Since solar radiation is known to be important for high-elevation mountain regions (Korner, 225 

2007), the annual sum of hourly potential solar radiation (including direct, diffuse, and reflected) 226 

was calculated from DEM, based on Hebeler (2016) and Kumar et al. (1997). 227 

 228 

For geology, we used the digitized geological map from the USGS National Geologic Map Data 229 

Base (Pribulick et al., 2016). We grouped geological classes into six main classes: shale, igneous 230 

rock, alluvial, glacial, landslide, and unconsolidated deposits. Although a soil map was available, 231 

it was uniform except for outcrop regions and was thus not informative. We assumed that the 232 

geological map and topographic metrics could capture the variability in soil properties, since 233 
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Bailey et al. (2014) and Gillin et al. (2015) documented the strong correlations between 234 

topographic metrics and soil properties.  235 

 236 

Within the RF algorithm, the importance ranking of predictors was created by (1) setting aside a 237 

subset of data as a testing set (i.e., out-of-bag data), (2) predicting the drought sensitivity and 238 

computing the accuracy (i.e., out-of-bag error), and (3) computing the increase in the mean-239 

squared-errors (MSE) of prediction after permuting each predictor (i.e., randomly assigning the 240 

predictor values from the data values). In addition, we created partial dependence plots to 241 

visualize the dependence of sensitivity on each predictor. We used R’s randomForest package 242 

(cran.r-project.org/web/packages/rpart/index.html). The number of trees was equal to 800, which 243 

was enough to achieve convergence. The number of candidate variables at each split was the 244 

number of variables divided by three, and the minimum size of terminal nodes was five. 245 

 246 

3. Results 247 

At the plot locations in Sloat et al. (2015), Landsat-derived peak NDVI is positively correlated 248 

with June PDSI and snowmelt timing (Figure 2a and b, Table S3), which is consistent with their 249 

findings for peak NEP (note that the data range of PDSI is different because of the differences in 250 

the PDSI sources). Increased drought conditions and earlier snowmelt are associated with 251 

decreased peak NDVI. Similar to peak NEP, the two subalpine-zone plots (elevation 3115 m and 252 

3380 m) have higher peak NDVI than the montane-zone plots (elevation 2710 m and 2815 m). In 253 

addition, peak NDVI is negatively correlated with June mean temperature (June T) at all the 254 

locations (Figure 2c and Table S3). These findings are consistent when we use the other drought 255 

indices (SPI and SPEI; Figure S3) and the linear regression without the extreme years (Figure 256 
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S4). There are some differences between peak NDVI in Figure 2 and peak NEP shown in Sloat et 257 

al. (2015). In Figure 2, the slope values of peak NDVI are distinctly different between the 258 

subalpine and montane plots. At the subalpine plots, peak NDVI has lower dependency on June 259 

PDSI, snowmelt timing, and June T. By contrast, in Figure 3 of Sloat et al. (2015), the slope 260 

values are similar at the four plots. 261 

 262 

The average peak NDVI (Figure 3a) is spatially heterogeneous over the domain, ranging from 263 

0.2 to 0.9 in the vegetated area. The heterogeneity is related to both elevation and vegetation type 264 

(Figure S5). Within the grassland area (Figure S5a), the overall trend of peak NDVI increases 265 

with elevation up to ~3100 m, and then decreases. The deciduous forest region (i.e., Populus 266 

tremuloides or aspen) has higher average peak NDVI than the other vegetation types (Figure 267 

S5b). The evergreen forest has lower peak NDVI on average across the watershed (Figure S5c), 268 

and also smaller spatial heterogeneity compared to the other vegetation types. Year-to-year 269 

variability of peak NDVI is represented by SD at each pixel (Figure 3b). The region with the 270 

higher average peak NDVI (Figure 3a) does not necessarily correspond to the one with high SD 271 

(Figure 3b). Higher elevation portions of the East River drainage, for example, have high peak 272 

NDVI on average, but low SD.  273 

 274 

The foresummer drought sensitivity of peak NDVI (Figure 3c) is positive in 94.1% of the 275 

vegetated area, although it is highly heterogeneous across the domain. Although the sensitivity 276 

map is fairly similar to the SD map (Figure 3b), the spatial heterogeneity of sensitivity is more 277 

pronounced than the SD. The southern (or lower elevation) part of the East River watershed 278 

(lower elevation and grassland areas) is particularly sensitive to the June drought condition. The 279 
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northern (or higher elevation) part of the East River watershed has lower sensitivity, although the 280 

average peak NDVI is high (Figure 3a). The spatial heterogeneity of sensitivity depends heavily 281 

on plant types and elevation (Figure 4). Summary statistics (Table S4) show a clear dependency 282 

of drought sensitivity on plant types, confirmed by Tukey’s pairwise comparison test (p-values < 283 

1´10-4). Grasslands (Figure 4a) have higher sensitivity than the other plant types, particularly at 284 

lower elevation, and also has larger spatial heterogeneity across the domain. Elevation 285 

dependency (Figure 4d) in the grassland region is much more apparent than in the SD map 286 

(Figure S6d). Evergreen forests exhibit the lowest sensitivity to the foresummer drought, 287 

although the sensitivity is still positive in 92.6% of the area. In addition, sensitivity is spatially 288 

less heterogeneous without significant elevation dependency (Figure 4f).  289 

 290 

We applied the RF analysis to foresummer drought sensitivity within the grassland region. 291 

Although we have the results in other plant types (Table S5 and Figures S7 and S8), we focus 292 

our discussion on the grassland region, because the grassland region has (1) higher spatial 293 

heterogeneity than other plant types, (2) the locations corresponding to the long-term plots in 294 

Sloat et al. (2015), and (3) the ground-based LAI-NDVI relationship (Figure S2). The coefficient 295 

of determination (R-square) is 0.58, with the p-value less than 10–15. In the importance ranking 296 

(Table 1), elevation is the strongest predictor for foresummer drought sensitivity, which is 297 

consistent with the clear dependency on elevation (Figure 4e). Net potential radiation, 298 

topography position index (TPI), geology, and slope follow in the ranking. The three topographic 299 

metrics (TWI, UAAB and curvature) are relatively weak predictors. In addition, we have 300 

analyzed the datasets in different resolutions up to 600 m, which showed the same predictors as 301 

the 30 m resolution results (Texts 3; Table S6).  302 
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 303 

Partial dependence plots are shown for the top four predictors in the importance ranking (Figure 304 

5). The dependency on elevation (Figure 5a) is approximately linear, which is consistent with the 305 

elevation trend in Figure 4d. The dependency on net potential radiation (Figure 5b) is nonlinear, 306 

with the effect more pronounced for the higher radiation regions. The dependency on TPI 307 

(Figure 5c) is close to a step function, such that the regions having higher than the overall 308 

elevation gradients (i.e., microtopographically elevated) have higher drought sensitivity. With 309 

respect to geology (Figure 5d), the igneous rock region is associated with decreased drought 310 

sensitivity, while glacial, landslide, and unconsolidated deposits are associated with increased 311 

sensitivity. We also investigated the correlations among the predictors such as elevation with 312 

radiation and aspect (Figure S9). 313 

 314 

4. Discussion 315 

At the long-term study plots in Sloat et al. (2015), the satellite observations of peak NDVI are 316 

consistent with peak NEP such that (1) peak NDVI is positively correlated with June PDSI and 317 

snowmelt timing, and (2) peak NDVI is greater at the subalpine plots than at the montane plots. 318 

These consistent responses confirm that plant dynamics are water limited in this region and that 319 

early snowmelt decreases plant productivity, as suggested by previous studies (Harte et al., 2015; 320 

Sloat et al., 2015). The subalpine plots are considered less water limited, given deeper snowpack 321 

and later snowmelt. In addition, we find that peak NDVI is negatively correlated with average 322 

June temperature. Higher June temperature is known to be associated with earlier snowmelt and 323 

higher ET (Foster et al., 2016), which exacerbates the foresummer drought condition and has a 324 

negative impact on plant growth.  325 
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 326 

There are differences between peak NDVI and NEP. While peak NEP responds similarly to June 327 

PDSI across the elevation gradient in Sloat et al. (2015), satellite-derived peak NDVI is less 328 

sensitive at the subalpine plots. This could result from the fact that NDVI represents only 329 

aboveground plant dynamics, while NEP includes soil respiration. Sloat et al. (2015) found that 330 

soil respiration was less affected by watering experiments, suggesting that soil respiration was 331 

less sensitive to droughts. Although NDVI has been used for upscaling NEP (e.g., Sturtevant and 332 

Oechel, 2013), the applications in mountainous regions may not be straightforward, owing to 333 

nonlinear responses along the elevational gradient. 334 

 335 

We considered the potential effect of the NDVI saturation at the high LAI region. Although this 336 

grassland region is not a high biomass region (Gao et al. 2000; Huete et al., 2002; Gu et al., 337 

2013), NDVI at the two high elevation locations (Figure 2) are as high as 0.85. In the NDVI-LAI 338 

relationship (Figure S2), we observe possible saturation in NDVI above ~ 0.85. We fitted these 339 

datasets with a linear and second-order polynomial function for NDVI < 0.85. Since the R2 and 340 

BIC are comparable, we may use the linear function up to NDVI = 0.85. We would note that 341 

peak NDVI is less than 0.85 in 92.4% of the domain even in 1995, when peak NDVI is the 342 

highest. In parallel, we considered the potential effect of such saturation on our results. If the 343 

effect of the decreased sensitivity were due to NDVI saturation, the sensitivity – defined as the 344 

slope of peak NDVI as a function of PDSI – would decrease in high NDVI regions. In Figure 4d, 345 

the sensitivity decreases as the elevation increases, while the average peak NDVI (Figure S5d) 346 

also decreases above ~3100 m. Therefore, we may conclude that the decreased sensitivity at high 347 

elevation does not result from the saturation effect. In addition, we examined the correlation 348 
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between sensitivity and average peak NDVI, which was not significant (correlation coefficient of 349 

–0.026). 350 

 351 

Satellite-derived NDVI allows us to extend our plot-scale understanding to the watershed scale. 352 

Landsat 5 has provided long-term historical images at high-enough resolution to distinct plant 353 

types and gauge the effect of topography and geology on sensitivity. In the subalpine zone 354 

(around 3000–3300 m), peak plant productivity is high on average, and has small interannual 355 

variability without significant dependency on the regional-scale June PSDI, possibly because this 356 

zone has more snow and water compared to lower elevations. In addition, our results show that 357 

the magnitude and spatial variability of drought sensitivity is clearly dependent on plant type, 358 

with the grassland regions having higher sensitivity and higher spatial heterogeneity. This 359 

dependency on plant type is considered to result from rooting depth as well as geographic 360 

location—evergreen trees tend to occupy north-facing slopes that have more snow accumulation 361 

and higher soil moisture. At the same time, foresummer drought sensitivity is predominantly 362 

positive within the evergreen forest regions, suggesting that the increased drought severity—due 363 

to early snowmelt and/or increased spring temperature—would decrease forest productivity, 364 

which is consistent with a basin-scale study by Knowles et al. (2018). In addition, we observe 365 

that 6% of the region, primarily at high elevation, has increased peak NDVI in drought years. It 366 

suggests that the high elevation regions are temperature-limited rather than water-limited. This is 367 

consistent with Dong et al. (2019), which found that MODIS-based NDVI increased at higher 368 

elevation in drought years. 369 

 370 
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In this study, we defined the foresummer drought sensitivity by the slope of the linear regression 371 

between peak NDVI and June PDSI. With respect to sensitivity measures, there are slope-based 372 

and variance-based measures in general to represent sensitivity (e.g., Morris, 1991; Saltelli et al., 373 

2008; Wainwright et al., 2014). Several studies have used variance or variance-based metrics to 374 

represent ecosystem sensitivities (e.g., Seddon et al., 2016). In our results, we find that the slope-375 

based sensitivity measure is more informative in this type of analyses, since we can identify 376 

positive or negative changes associated with foresummer drought conditions.  377 

 378 

We consider that PDSI and other drought indices (such as PSI and SPEI) represent the regional-379 

scale climatic variability being driven by precipitation and temperature. Vincente-Serrano et al. 380 

(2012) found that ecosystem responses (i.e., tree-ring growth and wheat yield) to droughts were 381 

captured by SPEI, as well as other drought indices. In our analysis, the response of peak NDVI 382 

was consistent to each other among these three drought indices (PDSI, PSI, SPEI), confirming 383 

the impact of water limitation on plant productivity over this region. At the same time, we 384 

highlight that this study focuses on the spatial variability of foresummer drought sensitivity at the 385 

local-scale (30 m), so that we can resolve the effect of topography, plant type, and geology. 386 

While these local-scale environmental characteristics could be viewed as secondary factors, 387 

recent studies have found that such characteristics (e.g., geology) are important for subsurface 388 

water storage (Markovich et al, 2016) and the resilience of ecosystems (Rempe et al., 2018). 389 

 390 

The RF analysis enables us to identify key environmental controls on foresummer drought 391 

sensitivity within each plant cover type. Elevation and net radiation are the two most dominant 392 

factors, possibly because they control surface energy balance and snow accumulation and 393 
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melting. We would note that the higher-elevation hillslopes tend to be north-facing in our 394 

domain, which could amplify the effect of reduced drought sensitivity in high-elevation regions. 395 

The topography position index (i.e., indicator of microtopography) and slope are known to 396 

control soil moisture (Mohanty et al., 2000; Gillin et al., 2015). Falco et al. (2018) found a 397 

significant correlation between slope and soil moisture in the grassland regions within this 398 

domain. In addition, the results show the importance of underlying geologic composition on 399 

drought sensitivity. Well-drained soil developed upon glacial and landslides deposits are likely to 400 

shed near-surface soil moisture (associated with plant rooting) rapidly after snowmelt. In 401 

contrast, the region underlain by shale and igneous rocks has lower drought sensitivity. Rempe et 402 

al. (2018) found that fractured bedrock can retain water during droughts and is less affected by 403 

year-to-year variability. Having shallow bedrock may provide resilience to droughts.  404 

 405 

This study used publicly available PDSI and Landsat data to estimate foresummer drought 406 

sensitivity of peak plant productivity in headwater catchments. We did not explicitly include 407 

other datasets, for example, the spatial distribution of snow accumulation/snowmelt and 408 

precipitation, since these factors are difficult to map in space and time (Lettenmaier et al., 2015). 409 

Instead, we assumed that the topographic metrics are reflective of snow and precipitation 410 

patterns, given that the effects of topography on these patterns have been well documented in 411 

many studies (e.g., Anderson et al., 2014). Both these assumptions, and our approach, open the 412 

door for upscaling plot-scale analyses and understandings to a large area, using publicly 413 

available datasets. We acknowledge that the overlapping coverage of Landsat paths was 414 

advantageous for our domain to minimize the impact of cloud coverage. At the same time, our 415 

analysis based on different spatial resolutions found that the effects of key drivers (i.e., elevation 416 
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and radiation) were consistent up to the resolution of several hundred meters, which would 417 

suggest that we may use lower-resolution high-frequency satellites such as MODIS. Remote-418 

sensing-derived drought sensitivity can be a useful metric for identifying the regions that are 419 

resilient or vulnerable to climate perturbations and long-term climatic shifts, as well as for 420 

identifying key underlying processes. 421 

 422 
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 682 
(a)(b) 683 

Figure 1. Study domain with (a) elevation and (b) USGS land cover map (NLCD 2011). The 684 
black lines are the boundaries of the four watersheds (from right to left: East River, Washington 685 
Gulch, Slate River and Coal Creek), the white circles are the long-term observation plots in Sloat 686 
et al. (2015), and the red square is the Butte SNOTEL location. The red region in (b) is the 687 
developed area. 688 
  689 
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 690 
(a)(b) (c) 691 
Figure 2. Landsat-derived annual peak NDVI as a function of (a) June Palmer Drought Severity 692 
Index (PDSI), (b) first bare-ground date, and (c) average June temperature at the long-term 693 
observation plots in Sloat et al. (2015). In (a) – (c), the line is based on linear regression. In (a), 694 
PDSI less than -4.0 is extreme drought, -3.0 to -2.0 is severe to moderate drought, -1.9 to +1.9 is 695 
normal, and +2.0 above is unusual to extreme moist conditions. The correlation coefficients are 696 
shown in Table S3.  697 
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 698 
(a)     (b)         (c) 699 
Figure 3. (a) Average of the annual peak NDVI, (b) standard deviation (SD), and (c) foresummer 700 
drought sensitivity (the slope of peak NDVI as a linear function of June PDSI) between 1992 – 701 
2010. The black lines are the boundaries of the four watersheds.  702 
  703 
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 704 
 (a)(b)(c) 705 

 706 
(d)(e) (f) 707 

Figure 4. (a –c) Foresummer drought sensitivity within each plant type, and (d – f) its 708 
dependency on the elevation at all the pixels: (a, d) grassland, (b, e) deciduous forest and (c, f) 709 
evergreen forest. In (a)-(c), the black lines are the boundaries of the four watersheds. In (d) – (f), 710 
the red lines are based on quadratic-fitting as a function of the elevation. 711 
  712 
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 713 
(a)                                                                       Elevation (m) 714 
 715 

 716 
(b)                                              Annual Net Potential Radiation (W/m2)  717 

 718 

 719 
(c)                                                   Topographic Position Index (m)  720 

 721 

 722 
(d)                                                                       Geology  723 
Figure 5. Partial dependence plots from the RF analysis results within the grassland region: the 724 
partial dependence of foresummer drought sensitivity on (a) elevation, (b) annual net potential 725 
radiation (Radiation), (c) topography position index (TPI) and (d) underlying geology. The 726 
foresummer drought sensitivity in the y-axis is scaled to represent the positive or negative effect 727 
of each predictor.  728 
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Table 1. Parameter importance ranking from the random forest analysis; the parameters 729 
influencing the spatial heterogeneity of foresummer drought sensitivity within the grassland 730 
region. The importance measure (i.e., %MSE) is normalized by one for elevation, so that it 731 
represents relative importance compared to elevation. The shaded cells indicate the top four in 732 
the importance ranking.  733 
 734 
 735 

  Normalized %MSE 
Elevation 1.00 
Slope 0.44 
Curvature 0.24 
TWI 0.28 
Geology 0.56 
Radiation 0.63 
TPI 0.61 
UAAB 0.24 

 736 
 737 
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