UC Berkeley UC Berkeley Previously Published Works

Title

Satellite-derived foresummer drought sensitivity of plant productivity in Rocky Mountain headwater catchments: spatial heterogeneity and geological-geomorphological control

Permalink

https://escholarship.org/uc/item/3b75g3q5

Journal

Environmental Research Letters, 15(8)

ISSN

1748-9318

Authors

Wainwright, Haruko M Steefel, Christoph Trutner, Sarah D <u>et al.</u>

Publication Date

2020-08-01

DOI

10.1088/1748-9326/ab8fd0

Peer reviewed

ACCEPTED MANUSCRIPT • OPEN ACCESS

Satellite-derived foresummer drought sensitivity of plant productivity in Rocky Mountain headwater catchments: spatial heterogeneity and geological-geomorphological control

To cite this article before publication: Haruko M Wainwright et al 2020 Environ. Res. Lett. in press https://doi.org/10.1088/1748-9326/ab8fd0

Manuscript version: Accepted Manuscript

Accepted Manuscript is "the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an 'Accepted Manuscript' watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors"

This Accepted Manuscript is © 2020 The Author(s). Published by IOP Publishing Ltd.

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 3.0 licence, this Accepted Manuscript is available for reuse under a CC BY 3.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence <u>https://creativecommons.org/licences/by/3.0</u>

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.

View the article online for updates and enhancements.

1		
2 3	1	Satallita daniyad Fanagumman Dugught Sangitivity of Plant Dugdugtivity in Daglay
4	1	Satemice-derived Foresummer Drought Sensitivity of Flant Productivity in Rocky
5 6 7	2	Mountain Headwater Catchments: Spatial Heterogeneity and Geological-
7 8 9	3	Geomorphological Control
10 11	4	
12 13 14	5	Haruko M. Wainwright
14 15 16	6	hmwainwright@lbl.gov
17 18	7	Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory
19 20	8	1 Cyclotron Road, MS 74R-316C, Berkeley, CA 94720-8126
21 22 23	9	
24 25	10	Christoph Steefel
26 27	11	cfsteefel@gmail.com
28 29 20	12	988 Belmont Terrace Unit 10, Sunnyvale, CA, 94086
30 31 32	13	
33 34	14	Sarah D. Trutner
35 36 27	15	strutner@mymail.mines.edu
37 38 39	16	Colorado School of Mines
40 41	17	1500 Illinois St, Golden, CO 80401
42 43	18	
44 45 46	19	Amanda N. Henderson
47 48	20	amanda.henderson3@gmail.com
49 50	21	^a Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO, 81224, USA
51 52	22	
55 54 55	23	Effhymios I. Nikolopoulos
56 57	24	Department of Mechanical and Civil Engineering
58 59 60		

2		
3 4	25	Florida Institute of Technology
5 6 7 8 9	26	150 W. University Blvd, Melbourne, FL, 32901
	27	
10 11	28	Chelsea F. Wilmer
12 13	29	chelsea.f.wilmer@gmail.com
14 15 16	30	Department of Ecosystem Science and Sustainability, Colorado State University
17 18	31	Fort Collins, Colorado 80523-1476 USA
19 20	32	
21 22 23	33	K. Dana Chadwick ^{a, b}
23 24 25	34	^a Department of Earth System Science, Stanford University
26 27	35	473 Via Ortega, Stanford, CA 94305
28 29 20	36	^b Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory
30 31 32	37	1 Cyclotron Road, MS 74R-316C, Berkeley, CA 94720-8126
33 34	38	
35 36	39	Nicola Falco
37 38 39	40	nfalco@lbl.gov
40 41	41	Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory
42 43	42	1 Cyclotron Road, MS 74R-316C, Berkeley, CA 94720-8126
44 45 46	43	
40 47 48	44	Karl Bernard Schaettle
49 50	45	kschaettle@berkeley.edu
51 52	46	Chemical and Biomolecular Engineering, University of California, Berkeley
55 54 55	47	Gilman Hall University of California Berkeley, CA 94720-1462
56 57		
58 59		
60		

1		
2 3	48	
4 5 6	49	James Bentley Brown
7 8 9	50	jbbrown@lbl.gov
10 11	51	Environmental Genomics & Systems Biology, Lawrence Berkeley National Laboratory
12 13	52	1 Cyclotron Road, MS 74R-316C, Berkeley, CA 94720-8126
14 15 16	53	
17 18	54	Heidi Steltzer
19 20 21	55	Steltzer_H@fortlewis.edu
21 22 23	56	Department of Biology, Fort Lewis College
24 25	57	Durango, Colorado 81301, USA
26 27 28	58	
28 29 30	59	Kenneth H. Williams ^{a, b}
31 32	60	khwilliams@lbl.gov
33 34	61	^a Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory
35 36 37	62	1 Cyclotron Road, MS 74R-316C, Berkeley, CA 94720-8126
38 39	63	^b Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO, 81224, USA
40 41	64	
42 43 44	65	Susan S. Hubbard
45 46	66	sshubbard@lbl.gov
47 48	67	Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory
49 50 51	68	1 Cyclotron Road, MS 74R-316C, Berkeley, CA 94720-8126
52 53	69	
54 55	70	Brian J. Enquist
56 57		
50 59		
60		

1		
2 3 4	71	benquist@email.arizona.edu
5 6	72	Department of Ecology and Evolutionary Biology, University of Arizona
/ 8 9	73	Tucson, AZ 85721, USA
9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28 29 30 31 22 23 24 25 26 27 28 29 30 31 32 33 45 36 37 38 39 40 41 42 43 44 50 51 52 53 45 56 57 58 960	74	

1	
2	
3	
4	
5	
6	
7	
2 2	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
<u>4</u> 0	
יד ⊿ר	
42 12	
43 11	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
59 59	
50	
59	
60	

75	Abstract	

76 Long-term plot-scale studies have found water limitation to be a key factor driving ecosystem productivity in the Rocky Mountains. Specifically, the intensity of early summer (the 77 78 "foresummer" period from May to June) drought conditions appears to impose critical controls 79 on peak ecosystem productivity. This study aims to (1) assess the importance of early snowmelt 80 and foresummer drought in controlling peak plant productivity, based on the historical Landsat 81 normalized-difference vegetation index (NDVI) and climate data; (2) map the spatial heterogeneity of foresummer drought sensitivity; and (3) identify the environmental controls 82 (e.g., geomorphology, elevation, geology, plant types) on drought sensitivity. Our domain (15 x 83 15 km) includes four drainages within the East Water watershed near Gothic, Colorado, USA. 84 We define foresummer drought sensitivity based on the regression slopes of the annual peak 85 NDVI against the June Palmer Drought Severity Index between 1992 and 2010. Results show 86 that foresummer drought sensitivity is spatially heterogeneous, and primarily dependent on the 87 plant type and elevation. In support of the plot-based studies, we find that years with earlier 88 89 snowmelt and drier foresummer conditions lead to lower peak NDVI; particularly in the low-90 elevation regions. Using random forest analysis, we identify additional key controls related to 91 surface energy exchanges (i.e., potential net radiation), hydrological processes (i.e., 92 microtopography and slope), and underlying geology. This remote-sensing-based approach for 93 quantifying foresummer drought sensitivity can be used to identify the regions that are vulnerable or resilient to climate perturbations, as well as to inform future sampling, 94 characterization, and modeling studies. 95

1. Introduction

Ecosystems in headwater catchments are important for water resources, because they influence hydrology through evapotranspiration (ET) and nutrient cycling (e.g., Lukas et al., 2015; Maxwell and Condon, 2016). Recent global-climate-model ensembles predict increased temperature and earlier snowmelt in western North America (Higgins and Shi. 2001: Diffenbaugh et al., 2013). Additionally, some studies predict reduced spring precipitation and increased late-summer monsoon precipitation in the future (Seth et al., 2011). Together, these changes would increase the length of time between snowmelt and summer monsoon, or the "foresummer" part of growing seasons (Rauscher et al., 2008; Swain and Hayhoe, 2015). Low snowpack years with earlier snowmelt would expose plants to potentially longer and drier periods before the onset of monsoonal precipitation. Combined with predicted increasingly warmer temperatures, this foresummer period could become more drought-like.

Recently, Sloat et al. (2015) documented the importance of this *foresummer drought* period by combining a watering manipulation experiment with 11 years of long-term monitoring data at the Rocky Mountain Biological Laboratory (RMBL) in Gothic, Colorado, USA. They found that peak and cumulative net ecosystem productivity (NEP) is negatively correlated with the severity of drought conditions in the primary growing season (June). They concluded that NEP will not increase in the future, despite the increase in temperature and longer growing seasons. This is consistent with other studies that reported water limitation of ecosystem productivity in the Rocky Mountain regions (e.g., Lamanna, 2012; Williams et al., 2012; Harte et al., 2015) and in the western USA (Berner et al., 2017). These regions are thus in contrast with other regions where water is not a limiting factor, and therefore early snowmelt lengthens the growing season,

and increases the rate of peak and cumulative ecosystem productivity (e.g., Euskirchen et al., 2006; Ernakovich et al., 2014).

Here, we address the key challenge of scaling up such plot-scale experiments in order to quantify overall ecosystem and/or plant productivity at the scale of watersheds. Ecosystems in mountainous regions are particularly heterogeneous, influenced by steep and complex terrains. In these systems, plant types can vary on a spatial scale of 50-100 m (Zimmermann and Kienast, 1999). Slope and aspect affect solar radiation, which in turn influences energy balance and soil moisture (Korner, 2007). Soil moisture is also affected by plant types, soil types, and other factors (e.g., Mohanty et al., 2000). In addition, snow accumulation and melting – which leads to infiltration and provides a critical water storage mechanism for ecosystems in the growing season (Harte et al., 2015; Sloat et al., 2015) – are extremely heterogeneous in mountainous regions (Anderson, et al., 2014; Painter et al., 2016).

In this study, we propose a new sensitivity metric for the Rocky Mountain region, and to map this sensitivity using historical satellite and climate data. The historical records of satellite datasets are valuable in evaluating the long-term trends and responses of ecosystems to climate variations, and also in inferring their future responses to changing climate (e.g., Zhao and Running, 2010; Seddon et al. 2016; Knowles et al., 2017, 2018; Stocker et al., 2019; Dong et al., 2019). Given the water-resource limitation in this region during early growing seasons, herein we define *foresummer drought sensitivity* as the sensitivity of peak plant productivity to foresummer drought conditions. We then quantify this sensitivity based upon the historical records of the Landsat-derived normalized difference vegetation index (NDVI) at 30 m

2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
11	
יד ⊿ר	
4Z	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
57	
54	
22	
56	
57	
58	

143 resolution, which is known to be strongly correlated with plant productivity (e.g., Tucker et al., 144 1985; De Jong et al. 2011; Dong et al., 2019). We represent the drought condition based on the June Palmer Severity Drought index (PSDI) in the same manner as Sloat et al. (2015). In contrast 145 146 to other satellite-based studies, our drought sensitivity is based on plot-scale experiments and the 147 associated system understanding shown in Sloat et al. (2015). In addition, we use a machine 148 learning approach to investigate environmental controls on spatially heterogeneous sensitivity, 149 including elevation, geomorphology, and geology, using publicly available spatial datasets. Such data-driven analysis provides useful insights into underlying processes, enhances our ability to 150 predict future trajectories, informs mechanistic ecohydrological models, and also facilitates site 151 152 characterization and sampling plans. 153 154 2. Materials and Methods 155 2.1. Study Area We consider an approximately 15-km-by-15-km domain near Gothic, Colorado, USA (Figure 1). 156 157 Hubbard et al. (2018) provides a detailed site description. The domain is part of the Elk 158 Mountain Range in the Rocky Mountains, with elevation ranging from ~2800 m to ~4000 m 159 (Figure 1a). The major land cover types are rock outcrop (12%), every ev 160 deciduous forest (18%), and grassland (30%; Figure 1b, NLCD 2011). The domain includes four 161 drainages (East River, Washington Gulch, Slate River and Coal Creek) and four of the five experimental plots used in Sloat et al. (2015). 162

163

59 60 Historically, snow precipitation starts in October to November, and the first bare-ground date
ranges from May to June. Carroll et al. (2018) analyzed the peak snow distribution in April, 2016

2		
3 4	166	based on the NASA Airborne Snow Observatory, and found that the snow depth varies, ranging
5 6 7	167	from 0 to 2.36 meters depending on the elevation, aspect and plant cover type. At the Butte Snow
7 8 9	168	Telemetry (SNOTEL) station (Figure 1), the historical average of peak snow-water-equivalent
10 11	169	and first bare-ground date are 400.5 mm and May 21st, respectively.
12 13	170	
14 15 16	171	2.2. Palmer Drought Index and Climate Data
10 17 18	172	We used the June PDSI of Colorado Division 2 from NOAA
19 20	173	(www.cpc.ncep.noaa.gov/products/analysis_monitoring/cdus/palmer_drought/) to represent
21 22	174	foresummer drought conditions. PDSI is computed based on precipitation, temperature, and
23 24 25	175	division constants (such as soil water capacity). Although the limitations of PDSI have been
26 27	176	recognized (Alley, 1984; Dai et al., 2004; Trenberth et al., 2014), it is still the most widely used
28 29	177	index for drought conditions (e.g., Dong et al., 2019). Note that although the data source is
30 31 32	178	different from Sloat et al. (2015), we assume that the general climate variability is captured
33 34	179	similarly by both PDSIs. In addition, we evaluated other drought indices (Text S1): Standardized
35 36	180	Precipitation Index (SPI; McKee et al. 1993), and Standardized Precipitation Evapotranspiration
37 38 39	181	Index (SPEI; Beguería et al., 2010; Vicente-Serrano et al., 2012).
40 41	182	
42 43	183	We also used snowmelt timing (i.e., first bare-ground date) and June mean air temperature from
44 45 46	184	the Butte SNOTEL station (elevation 3097 m; <u>www.wcc.nrcs.usda.gov/snow/</u>). We used the
40 47 48	185	homogenized SNOTEL temperature data provided by Oyler et al. (2015). All the data values are
49 50	186	included in Table S1 and Figure S1. We also confirmed that the average June precipitation is
51 52	187	significantly lower than the other months (Table S2).
53 54 55	188	
56 57		
58 59		

2	
3	
4	
5	
5	
0	
/	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21 วว	
22	
23	
24	
25	
26	
27	
28	
29	
20	
30 21	
31	
32	
33	
34	
35	
36	
37	
38	
20	
10	
40	
41	
42	
43	
44	
45	
46	
47	
 ΛQ	
40 40	
49	
50	
51	
52	
53	
54	
55	
56	
50	
57	
5 ×	

189 2.3. Annual Peak NDVI and Sensitivity Measures

190 Using Google Earth Engine (GEE; https://earthengine.google.com/), we processed Landsat 5 191 surface reflectance datasets over 19 years (1992-2010). These images were processed, including the atmospheric correction by the LEDAPS method (http://ledaps.nascom.nasa.gov/). We 192 computed NDVI at each pixel, and annual peak NDVI (i.e., the maximum value at each pixel) in 193 194 each year. Finally, we downloaded these annual peak NDVI images for further analysis. Since 195 two Landsat paths overlapped over this domain, the repeat cycle was 8 days, which contributed 196 to minimizing the effect of cloud coverage.

197

1

We first extracted peak NDVI at the pixels corresponding to the observation plots in Sloat et al. 198 (2015) to investigate the relationship between peak NDVI and June PDSI, snowmelt timing, and 199 June mean air temperature. We then defined the foresummer drought sensitivity as the slope of 200 peak NDVI as a linear function of June PDSI. The slope represented the change in peak NDVI 201 given the change in June PDSI. We also computed the average and standard deviation (SD) of 202 203 annual peak NDVI at each pixel. In addition, we analyzed the relationship between NDVI and 204 leaf area index (LAI) based on the ground-based measurements collected in 2019 (Text S2 and 205 Figure S2).

206

59 60

207 2.4. Random Forest Analysis for Environmental Controls on Drought Sensitivity

208 We investigated key controls on foresummer drought sensitivity, based on other spatial data 209 layers used in the hydrological modeling study within this domain (Pribulick et al., 2016; Foster 210 and Maxwell, 2019). The Random Forest (RF) method is a machine-learning method developed 211 by Breiman (2001) to predict responses based on mixed numerical and categorical predictors,

1 2		
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 24 25 26 27 28 9 30 31 32 33 45 36 37 38 9 40	212	and to identify important predictors for given responses (Hastie et al., 2001). RF generates a
	213	large number of regression trees from bootstrapped subsampled data, and averages over all the
	214	trees. RF is known to work well with correlated predictors similar to ridge regressions (Hastie et
	215	al., 2001). In environmental applications, Bachmair and Weiler (2012) used RF for identifying
	216	key controls on hillslope hydrological dynamics.
	217	
	218	We defined a regression of foresummer drought sensitivity as a function of environmental
	219	variables. Using Topotoolbox (Schwanghart and Kuhn, 2010), we computed topographic metrics
	220	based on the digital elevation model (DEM) from the National Elevation Dataset (30 m
	221	resolution, USGS, 2002), including slope, topographic wetness index (TWI), bedrock-weighted
	222	upslope accumulated area (UAAB), and topographic position index (TPI). TWI is the log of flow
	223	accumulation area divided by slope, and TPI represents the local-scale variation of topography
	224	after topographic trend (i.e., the moving average of 100-m scale) is removed (Gillin et al., 2015).
	225	Since solar radiation is known to be important for high-elevation mountain regions (Korner,
	226	2007), the annual sum of hourly potential solar radiation (including direct, diffuse, and reflected)
	227	was calculated from DEM, based on Hebeler (2016) and Kumar et al. (1997).
	228	
42 43	229	For geology, we used the digitized geological map from the USGS National Geologic Map Data
44 45	230	Base (Pribulick et al., 2016). We grouped geological classes into six main classes: shale, igneous
46 47 48 49 50 51 52 53 54	231	rock, alluvial, glacial, landslide, and unconsolidated deposits. Although a soil map was available,
	232	it was uniform except for outcrop regions and was thus not informative. We assumed that the
	233	geological map and topographic metrics could capture the variability in soil properties, since
56 57	7	
58		

Bailey et al. (2014) and Gillin et al. (2015) documented the strong correlations between
topographic metrics and soil properties.

Within the RF algorithm, the importance ranking of predictors was created by (1) setting aside a subset of data as a testing set (i.e., out-of-bag data), (2) predicting the drought sensitivity and computing the accuracy (i.e., out-of-bag error), and (3) computing the increase in the meansquared-errors (MSE) of prediction after permuting each predictor (i.e., randomly assigning the predictor values from the data values). In addition, we created partial dependence plots to visualize the dependence of sensitivity on each predictor. We used R's randomForest package (cran.r-project.org/web/packages/rpart/index.html). The number of trees was equal to 800, which was enough to achieve convergence. The number of candidate variables at each split was the number of variables divided by three, and the minimum size of terminal nodes was five.

3. Results

At the plot locations in Sloat et al. (2015), Landsat-derived peak NDVI is positively correlated with June PDSI and snowmelt timing (Figure 2a and b, Table S3), which is consistent with their findings for peak NEP (note that the data range of PDSI is different because of the differences in the PDSI sources). Increased drought conditions and earlier snowmelt are associated with decreased peak NDVI. Similar to peak NEP, the two subalpine-zone plots (elevation 3115 m and 3380 m) have higher peak NDVI than the montane-zone plots (elevation 2710 m and 2815 m). In addition, peak NDVI is negatively correlated with June mean temperature (June T) at all the locations (Figure 2c and Table S3). These findings are consistent when we use the other drought indices (SPI and SPEI; Figure S3) and the linear regression without the extreme years (Figure

1	
2	
3	
4	
5	
6	
7	
א	
0	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
∠ı רכ	
∠∠ วว	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
20	
20	
29	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
54	
55	
55	
20	
5/	
58	
59	
60	

S4). There are some differences between peak NDVI in Figure 2 and peak NEP shown in Sloat et 257 258 al. (2015). In Figure 2, the slope values of peak NDVI are distinctly different between the 259 subalpine and montane plots. At the subalpine plots, peak NDVI has lower dependency on June PDSI, snowmelt timing, and June T. By contrast, in Figure 3 of Sloat et al. (2015), the slope 260 261 values are similar at the four plots. 262 263 The average peak NDVI (Figure 3a) is spatially heterogeneous over the domain, ranging from 0.2 to 0.9 in the vegetated area. The heterogeneity is related to both elevation and vegetation type 264 (Figure S5). Within the grassland area (Figure S5a), the overall trend of peak NDVI increases 265 266 with elevation up to ~3100 m, and then decreases. The deciduous forest region (i.e., Populus 267 tremuloides or aspen) has higher average peak NDVI than the other vegetation types (Figure S5b). The evergreen forest has lower peak NDVI on average across the watershed (Figure S5c), 268 and also smaller spatial heterogeneity compared to the other vegetation types. Year-to-year 269 270 variability of peak NDVI is represented by SD at each pixel (Figure 3b). The region with the 271 higher average peak NDVI (Figure 3a) does not necessarily correspond to the one with high SD 272 (Figure 3b). Higher elevation portions of the East River drainage, for example, have high peak NDVI on average, but low SD. 273

The foresummer drought sensitivity of peak NDVI (Figure 3c) is positive in 94.1% of the
vegetated area, although it is highly heterogeneous across the domain. Although the sensitivity
map is fairly similar to the SD map (Figure 3b), the spatial heterogeneity of sensitivity is more
pronounced than the SD. The southern (or lower elevation) part of the East River watershed
(lower elevation and grassland areas) is particularly sensitive to the June drought condition. The

2		
3 4	280	n
5 6	281	a
7 8	282	0
9 10	283	0
11 12	284	1
13 14 15	285	1
15	265	Ю
17 18	286	d
19 20	287	(]
21 22	288	a
23 24	289	16
25 26 27	290	
27 28 29	291	V
30 31	292	Д
32	-	
33 34	293	0
35 36	294	h
37 38 30	295	S
39 40 41	296	0
42 43	297	(
44 45	298	c
46 47	299	to
48 49 50	300	n
50 51 52	301	a
53 54	302	ťl
55		
56 57		
58		X
59		

1

orthern (or higher elevation) part of the East River watershed has lower sensitivity, although the verage peak NDVI is high (Figure 3a). The spatial heterogeneity of sensitivity depends heavily in plant types and elevation (Figure 4). Summary statistics (Table S4) show a clear dependency f drought sensitivity on plant types, confirmed by Tukey's pairwise comparison test (p-values < $\times 10^{-4}$). Grasslands (Figure 4a) have higher sensitivity than the other plant types, particularly at ower elevation, and also has larger spatial heterogeneity across the domain. Elevation lependency (Figure 4d) in the grassland region is much more apparent than in the SD map Figure S6d). Evergreen forests exhibit the lowest sensitivity to the foresummer drought, Ithough the sensitivity is still positive in 92.6% of the area. In addition, sensitivity is spatially ess heterogeneous without significant elevation dependency (Figure 4f). We applied the RF analysis to foresummer drought sensitivity within the grassland region. Although we have the results in other plant types (Table S5 and Figures S7 and S8), we focus our discussion on the grassland region, because the grassland region has (1) higher spatial eterogeneity than other plant types, (2) the locations corresponding to the long-term plots in Sloat et al. (2015), and (3) the ground-based LAI-NDVI relationship (Figure S2). The coefficient of determination (R-square) is 0.58, with the *p*-value less than 10^{-15} . In the importance ranking Table 1), elevation is the strongest predictor for foresummer drought sensitivity, which is onsistent with the clear dependency on elevation (Figure 4e). Net potential radiation, opography position index (TPI), geology, and slope follow in the ranking. The three topographic netrics (TWI, UAAB and curvature) are relatively weak predictors. In addition, we have nalyzed the datasets in different resolutions up to 600 m, which showed the same predictors as he 30 m resolution results (Texts 3; Table S6).

2 3	202	
4	303	
5 6 7	304	Partial dependence plots are shown for the top four predictors in the importance ranking (Figure
/ 8 9	305	5). The dependency on elevation (Figure 5a) is approximately linear, which is consistent with the
) 10 11	306	elevation trend in Figure 4d. The dependency on net potential radiation (Figure 5b) is nonlinear,
12 13	307	with the effect more pronounced for the higher radiation regions. The dependency on TPI
14 15	308	(Figure 5c) is close to a step function, such that the regions having higher than the overall
16 17 18	309	elevation gradients (i.e., microtopographically elevated) have higher drought sensitivity. With
19 20	310	respect to geology (Figure 5d), the igneous rock region is associated with decreased drought
21 22	311	sensitivity, while glacial, landslide, and unconsolidated deposits are associated with increased
23 24 25	312	sensitivity. We also investigated the correlations among the predictors such as elevation with
25 26 27	313	radiation and aspect (Figure S9).
28 29	314	
30 31	315	4. Discussion
32 33 34	316	At the long-term study plots in Sloat et al. (2015), the satellite observations of peak NDVI are
35 36	317	consistent with peak NEP such that (1) peak NDVI is positively correlated with June PDSI and
37 38	318	snowmelt timing, and (2) peak NDVI is greater at the subalpine plots than at the montane plots.
39 40	319	These consistent responses confirm that plant dynamics are water limited in this region and that
41 42 43	320	early snowmelt decreases plant productivity, as suggested by previous studies (Harte et al., 2015;
44 45	321	Sloat et al., 2015). The subalpine plots are considered less water limited, given deeper snowpack
46 47 48	322	and later snowmelt. In addition, we find that peak NDVI is negatively correlated with average
48 49 50	323	June temperature. Higher June temperature is known to be associated with earlier snowmelt and
51 52	324	higher ET (Foster et al., 2016), which exacerbates the foresummer drought condition and has a
53 54	325	negative impact on plant growth.
55 56		
56 57		
58		

2		
3 4	326	
5 6 7	327	There are differences between peak NDVI and NEP. While peak NEP responds similarly to June
7 8 9	328	PDSI across the elevation gradient in Sloat et al. (2015), satellite-derived peak NDVI is less
) 10 11	329	sensitive at the subalpine plots. This could result from the fact that NDVI represents only
12 13	330	aboveground plant dynamics, while NEP includes soil respiration. Sloat et al. (2015) found that
14 15	331	soil respiration was less affected by watering experiments, suggesting that soil respiration was
16 17 18	332	less sensitive to droughts. Although NDVI has been used for upscaling NEP (e.g., Sturtevant and
19 20	333	Oechel, 2013), the applications in mountainous regions may not be straightforward, owing to
21 22	334	nonlinear responses along the elevational gradient.
23 24 25	335	
26 27	336	We considered the potential effect of the NDVI saturation at the high LAI region. Although this
28 29	337	grassland region is not a high biomass region (Gao et al. 2000; Huete et al., 2002; Gu et al.,
30 31 22	338	2013), NDVI at the two high elevation locations (Figure 2) are as high as 0.85. In the NDVI-LAI
32 33 34	339	relationship (Figure S2), we observe possible saturation in NDVI above ~ 0.85 . We fitted these
35 36	340	datasets with a linear and second-order polynomial function for NDVI < 0.85 . Since the R ² and
37 38	341	BIC are comparable, we may use the linear function up to $NDVI = 0.85$. We would note that
39 40 41	342	peak NDVI is less than 0.85 in 92.4% of the domain even in 1995, when peak NDVI is the
42 43	343	highest. In parallel, we considered the potential effect of such saturation on our results. If the
44 45	344	effect of the decreased sensitivity were due to NDVI saturation, the sensitivity - defined as the
46 47 48	345	slope of peak NDVI as a function of PDSI – would decrease in high NDVI regions. In Figure 4d,
49 50	346	the sensitivity decreases as the elevation increases, while the average peak NDVI (Figure S5d)
51 52	347	also decreases above ~3100 m. Therefore, we may conclude that the decreased sensitivity at high
53 54	348	elevation does not result from the saturation effect. In addition, we examined the correlation
55 56 57	7	
58 50		
56 57 58 59		

1	
2 3 4	349
5 6	350
7 8	351
9 10 11	352
11 12 13	353
14 15	354
16 17	355
18 19 20	356
20 21 22	357
23 24	358
25 26	359
27 28 29	360
30 31	361
32 33	362
34 35 26	363
30 37 38	364
39 40	365
41 42	366
43 44 45	367
46 47	368
48 49	369
50 51	370
52 53 54	570
55 56	
57 58	
59	

between sensitivity and average peak NDVI, which was not significant (correlation coefficient of 349 50 -0.026).

52 Satellite-derived NDVI allows us to extend our plot-scale understanding to the watershed scale. 53 Landsat 5 has provided long-term historical images at high-enough resolution to distinct plant 54 types and gauge the effect of topography and geology on sensitivity. In the subalpine zone 55 (around 3000–3300 m), peak plant productivity is high on average, and has small interannual variability without significant dependency on the regional-scale June PSDI, possibly because this 56 zone has more snow and water compared to lower elevations. In addition, our results show that 57 the magnitude and spatial variability of drought sensitivity is clearly dependent on plant type, 58 59 with the grassland regions having higher sensitivity and higher spatial heterogeneity. This 60 dependency on plant type is considered to result from rooting depth as well as geographic location—evergreen trees tend to occupy north-facing slopes that have more snow accumulation 661 and higher soil moisture. At the same time, foresummer drought sensitivity is predominantly 62 63 positive within the evergreen forest regions, suggesting that the increased drought severity—due to early snowmelt and/or increased spring temperature—would decrease forest productivity, 64 which is consistent with a basin-scale study by Knowles et al. (2018). In addition, we observe 65 that 6% of the region, primarily at high elevation, has increased peak NDVI in drought years. It 66 suggests that the high elevation regions are temperature-limited rather than water-limited. This is 667 consistent with Dong et al. (2019), which found that MODIS-based NDVI increased at higher 68 elevation in drought years. 69

2	
3	
4	
5	
ر د	
6	
7	
8	
9	
10	
11	
17	
12	
13	
14	
15	
16	
17	
18	
10	
17	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
21	
24	
32	
36	
37	
38	
39	
40	
41	
12	
42	
45	
44	
45	
46	
47	
48	
49	
50	
50	
21	
52	
53	
54	
55	
56	
57	
50	
20	
59	

1

In this study, we defined the foresummer drought sensitivity by the slope of the linear regression between peak NDVI and June PDSI. With respect to sensitivity measures, there are slope-based and variance-based measures in general to represent sensitivity (e.g., Morris, 1991; Saltelli et al., 2008; Wainwright et al., 2014). Several studies have used variance or variance-based metrics to represent ecosystem sensitivities (e.g., Seddon et al., 2016). In our results, we find that the slopebased sensitivity measure is more informative in this type of analyses, since we can identify positive or negative changes associated with foresummer drought conditions.

We consider that PDSI and other drought indices (such as PSI and SPEI) represent the regional-379 380 scale climatic variability being driven by precipitation and temperature. Vincente-Serrano et al. 381 (2012) found that ecosystem responses (i.e., tree-ring growth and wheat yield) to droughts were 382 captured by SPEI, as well as other drought indices. In our analysis, the response of peak NDVI was consistent to each other among these three drought indices (PDSI, PSI, SPEI), confirming 383 384 the impact of water limitation on plant productivity over this region. At the same time, we 385 highlight that this study focuses on the spatial variability of foresummer drought sensitivity at the 386 local-scale (30 m), so that we can resolve the effect of topography, plant type, and geology. While these local-scale environmental characteristics could be viewed as secondary factors, 387 388 recent studies have found that such characteristics (e.g., geology) are important for subsurface 389 water storage (Markovich et al, 2016) and the resilience of ecosystems (Rempe et al., 2018).

390

60

391 The RF analysis enables us to identify key environmental controls on foresummer drought 392 sensitivity within each plant cover type. Elevation and net radiation are the two most dominant 393 factors, possibly because they control surface energy balance and snow accumulation and

1	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
2J 24	
24	
25	
26	
27	
28	
29	
30	
31	
27	
J∠ 22	
22	
34	
35	
36	
37	
38	
39	
40	
41	
<u>4</u> 2	
12	
43	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52	
23	
54	
55	
56	
57	
58	
- 0	

melting. We would note that the higher-elevation hillslopes tend to be north-facing in our 394 395 domain, which could amplify the effect of reduced drought sensitivity in high-elevation regions. 396 The topography position index (i.e., indicator of microtopography) and slope are known to control soil moisture (Mohanty et al., 2000; Gillin et al., 2015). Falco et al. (2018) found a 397 398 significant correlation between slope and soil moisture in the grassland regions within this 399 domain. In addition, the results show the importance of underlying geologic composition on 400 drought sensitivity. Well-drained soil developed upon glacial and landslides deposits are likely to shed near-surface soil moisture (associated with plant rooting) rapidly after snowmelt. In 401 contrast, the region underlain by shale and igneous rocks has lower drought sensitivity. Rempe et 402 403 al. (2018) found that fractured bedrock can retain water during droughts and is less affected by 404 year-to-year variability. Having shallow bedrock may provide resilience to droughts. 405

This study used publicly available PDSI and Landsat data to estimate foresummer drought 406 407 sensitivity of peak plant productivity in headwater catchments. We did not explicitly include 408 other datasets, for example, the spatial distribution of snow accumulation/snowmelt and 409 precipitation, since these factors are difficult to map in space and time (Lettenmaier et al., 2015). 410 Instead, we assumed that the topographic metrics are reflective of snow and precipitation 411 patterns, given that the effects of topography on these patterns have been well documented in many studies (e.g., Anderson et al., 2014). Both these assumptions, and our approach, open the 412 413 door for upscaling plot-scale analyses and understandings to a large area, using publicly available datasets. We acknowledge that the overlapping coverage of Landsat paths was 414 advantageous for our domain to minimize the impact of cloud coverage. At the same time, our 415 416 analysis based on different spatial resolutions found that the effects of key drivers (i.e., elevation

2		
3 4	417	and radiation) were consistent up to the resolution of several hundred meters, which would
5 6	418	suggest that we may use lower-resolution high-frequency satellites such as MODIS. Remote-
7 8	419	sensing-derived drought sensitivity can be a useful metric for identifying the regions that are
9 10 11	420	resilient or vulnerable to climate perturbations and long-term climatic shifts, as well as for
12 13	421	identifying key underlying processes.
14 15	422	
16 17 18	423	Acknowledgment
19 20	424	This material is based upon work supported by the U.S. Department of Energy, Office of
21 22 22	425	Science, Office of Biological and Environmental Research, Earth and Environmental Systems
23 24 25	426	Sciences Division and Data Management Program, under Award Number DE-AC02-
26 27	427	05CH11231, as part of the Watershed Function Scientific Focus Area and the ExaShed project.
28 29	428	Sarah Trutner was supported by the U.S. Department of Energy, Office of Science, Office of
30 31 32	429	Workforce Development for Teachers and Scientists under the Science Undergraduate
33 34	430	Laboratory Internship program, E. I. Nikolopoulos was supported by the US National Science
35 36	431	Foundation under Grant Number 1934712. We thank two anonymous reviewers for constructive
37 38 20	432	comments.
39 40 41	433	
42 43	434	Data Availability Statement:
44 45 46	435	The data that support the findings of this study are openly available. All the datasets in this study
46 47 48	436	are publicly available through the data source specified in the manuscript.
49 50	437	
51 52	438	
53 54 55		
55 56 57	7	
58 59		

1		
2 3 4	439	References:
5 6 7	440	Alley, W. M. (1984). The Palmer drought severity index: limitations and assumptions. Journal of
7 8 9	441	climate and applied meteorology, 23(7), 1100-1109.
10 11	442	
12 13	443	Anderson, B. T., McNamara, J. P., Marshall, H. P., & Flores, A. N. (2014). Insights into the
14 15 16	444	physical processes controlling correlations between snow distribution and terrain properties.
17 18	445	Water Resources Research, 50(6), 4545-4563.
19 20	446	
21 22 23	447	Bachmair, S. and Weiler, M. (2012). Hillslope characteristics as controls of subsurface flow
24 25	448	variability. Hydrology and Earth System Sciences, 16(10), 3699-3715.
26 27	449	
28 29 20	450	Bailey, S., P. Brousseau, K. McGuire, and D. Ross (2014), Influence of landscape position and
30 31 32	451	transient water table on soil development and carbon distribution in a steep, headwater
33 34	452	catchment, Geoderma, 226, 279–289, doi:10.1016/j.geoderma.2014.02.017.
35 36	453	
37 38 39	454	Beguería, S., Vicente-Serrano, S.M. y Angulo, M., (2010): A multi-scalar global drought data
40 41	455	set: the SPEIbase: A new gridded product for the analysis of drought variability and impacts.
42 43	456	Bulletin of the American Meteorological Society. 91, 1351-1354.
44 45 46	457	
47 48	458	Berner, L. T., Law, B. E., and Hudiburg, T. W.: Water availability limits tree productivity,
49 50	459	carbon stocks, and carbon residence time in mature forests across the western US,
51 52	460	Biogeosciences, 14, 365–378, https://doi.org/10.5194/bg-14-365-2017, 2017.
53 54 55	461	
56 57		
58 59 60		

2		
3 4	462	Breshears, D. D., et al. (2005), Regional vegetation die-off in response to global-change-type
5 6	463	drought, Proc. Natl. Acad. Sci. U. S. A., 102(42),15,144–15,148, doi:10.1073/pnas.0505734102.
7 8	464	
9 10 11	465	Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
12 13	466	
14 15 16	467	Carroll, R., L. Bearup, W. Brown, W. Dong, M. Bill, and K. Willlams (2018), Factors
10 17 18	468	controlling seasonal groundwater and solute flux from snow-dominated basins, Hydrological
19 20	469	Processes, 32(14), doi:10.1002/hyp.13151.
21 22 22	470	
23 24 25	471	Dai, A., Trenberth, K. E., & Qian, T. (2004). A global dataset of Palmer Drought Severity Index
26 27	472	for 1870–2002: Relationship with soil moisture and effects of surface warming. Journal of
28 29	473	Hydrometeorology, 5(6), 1117-1130.
30 31 32	474	
33 34	475	Davi, H., Soudani, K., Deckx, T., Dufrene, E., Le Dantec, V., & Francois, C. (2006). Estimation
35 36	476	of forest leaf area index from SPOT imagery using NDVI distribution over forest stands.
37 38 39	477	International Journal of Remote Sensing, 27(05), 885-902.
40 41	478	
42 43	479	Davison, A. C. (2003). Statistical models (Vol. 11). Cambridge University Press.
44 45 46	480	
40 47 48	481	De Jong, R., S. de Bruin, A. de Wit, M. Schaepman, and D. Dent (2011), Analysis of monotonic
49 50	482	greening and browning trends from global NDVI time-series, Remote Sensing of Environment,
51 52	483	doi:10.1016/j.rse.2010.10.011.
53 54 55	484	
56 57		
58 59		

1 2		
3 4 5 6	485	Diffenbaugh NS, Scherer M, Ashfaq M. 2013. Response of snow- dependent hydrologic
	486	extremes to continued global warming. Nat Clim Chang 3:379–84.
/ 8 9	487	
10 11	488	Dong, C., MacDonald, G. M., Willis, K., Gillespie, T. W., Okin, G. S., & Williams, A. P. (2019).
12 13	489	Vegetation responses to 2012–2016 drought in Northern and Southern California. Geophysical
14 15 16	490	Research Letters, 46(7), 3810-3821.
17 18	491	
19 20	492	Duncan, J. M., P. M. Groffman, and L. E. Band (2013), Towards closing the watershed nitrogen
21 22 23	493	budget: Spatial and temporal scaling of denitrification, J. Geophys. Res. Biogeosci., 118, 1105-
24 25	494	1119, doi:10.1002/jgrg.20090.
26 27	495	
28 29 30	496	
31 32	497	Euskirchen, E. S., McGuire, A. D., Kicklighter, D. W., Zhuang, Q., Clein, J. S., Dargaville, R.
33 34 35	498	J., & Romanovsky, V. E. (2006). Importance of recent shifts in soil thermal dynamics on
35 36 37	499	growing season length, productivity, and carbon sequestration in terrestrial high-latitude
38 39 40 41 42 43 44 45 46 47 48	500	ecosystems. Global Change Biology, 12(4), 731-750.
	501	
	502	Falco, Nicola, Haruko Wainwright, Baptiste Dafflon, Emmanuel Léger, John Peterson, Heidi
	503	Steltzer, Chelsea Wilmer, Joel C. Rowland, Kenneth H. Williams, and Susan S. Hubbard. 2019.
	504	"Investigating Microtopographic and Soil Controls on a Mountainous Meadow Plant Community
49 50	505	Using High-Resolution Remote Sensing and Surface Geophysical Data." Journal of Geophysical
51 52 53	506	Research: Biogeosciences, May. https://doi.org/10.1029/2018JG004394.
54 55	507	
56 57		
58 59		

Foster, L., L. Bearup, N. Molotch, P. Brooks, and R. Maxwell (2016), Energy budget increases

reduce mean streamflow more than snow-rain transitions: using integrated modeling to isolate

2	
2	
3	
4	
5	
5	
6	
7	
Q	
0	
9	
10	
11	
11	
12	
13	
11	
14	
15	
16	
17	
17	
18	
19	
20	
20	
21	
22	
23	
23	
24	
25	
26	
20	
27	
28	
29	
20	
30	
31	
32	
22	
33	
34	
35	
20	
30	
37	
38	
20	
59	
40	
41	
⊿ว	
-72	
43	
44	
45	
-1-	
46	
47	
ΔR	
-10	
49	
50	
51	
51	
52	
53	
51	
55	
56	
57	
57	
58	
59	

60

1

508

509

510 climate change impacts on Rocky Mountain hydrology, Environmental Research Letters, 11(4), 511 044015, doi:10.1088/1748-9326/11/4/044015. 512 M. Foster, L., & M. Maxwell, R. (2019). Sensitivity analysis of hydraulic conductivity and 513 514 Manning's n parameters lead to new method to scale effective hydraulic conductivity across 515 model resolutions. Hydrological processes, 33(3), 332-349. 516 Gao, X., Huete, A. R., Ni, W., & Miura, T. (2000). Optical-biophysical relationships of 517 518 vegetation spectra without background contamination. Remote sensing of environment, 74(3), 519 609-620. 520 Gillin, C., S. Bailey, K. McGuire, and J. Gannon (2015), Mapping of Hydropedologic Spatial 521 522 Patterns in a Steep Headwater Catchment, Soil Science Society of America Journal, 79(2), 440, 523 doi:10.2136/sssaj2014.05.0189. 524 525 Gu, Y., Wylie, B. K., Howard, D. M., Phuyal, K. P., & Ji, L. (2013). NDVI saturation 526 adjustment: A new approach for improving cropland performance estimates in the Greater Platte River Basin, USA. Ecological Indicators, 30, 1-6. 527 528 Harte, J., S. Saleska, and C. Levy (2015), Convergent ecosystem responses to 23-year ambient 529 530 and manipulated warming link advancing snowmelt and shrub encroachment to transient and

1		
2 3 4	531	long-term climate–soil carbon feedback, Global Change Biology, 21(6), 2349–2356,
5 6 7	532	doi:10.1111/gcb.12831.
7 8 9	533	
10 11	534	Hastie T., Tibshirani, R., and Friedman, J. H. (2001), The elements of statistical learning: data
12 13 14	535	mining, inference, and prediction, Springer, New York, USA.
15 16	536	
17 18 10	537	Hebeler (2016) Matlab File Exchange: Solar Radiation
19 20	538	https://www.mathworks.com/matlabcentral/fileexchange/19791-solar-
21 22 23	539	radiation/content/solarradiation.m
24 25	540	
26 27	541	Higgins RW, Shi W. 2001. Intercomparison of the principal modes of interannual and
28 29 30	542	intraseasonal variability of the North American monsoon system. J Clim 14:403-17.
30 31 32	543	
33 34	544	Hubbard, S. S., Williams, K. H., Agarwal, D., Banfield, J., Beller, H., Bouskill, N., & Falco,
35 36 27	545	N. (2018). The East River, Colorado, Watershed: A mountainous community testbed for
37 38 39	546	improving predictive understanding of multiscale hydrological-biogeochemical
40 41	547	dynamics. Vadose Zone Journal, 17(1).
42 43	548	
44 45 46	549	Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview
47 48	550	of the radiometric and biophysical performance of the MODIS vegetation indices. Remote
49 50	551	sensing of environment, 83(1-2), 195-213.
51 52 53	552	
54 55		
56 57		T T
58 59		
60		

2		
3 4	553	Kim Y., Kimball J.S., Zhang K, McDonald KC (2012) Satellite detection of increasing Northern
5 6	554	Hemisphere non-frozen seasons from 1979 to 2008: implications for regional vegetation growth.
/ 8 9	555	Remote Sensing of Environment, 121, 472–487.
) 10 11	556	
12 13	557	Körner, C. (2007). The use of 'altitude' in ecological research. Trends in ecology & evolution,
14 15 16	558	22(11), 569-574.
17 18	559	
19 20	560	Knowles, J. F., L. R. Lestak, and N. P. Molotch (2017), On the use of a snow aridity index to
21 22 23	561	predict remotely sensed forest productivity in the presence of bark beetle disturbance,
24 25	562	Water Resour. Res., 53, 4891–4906, doi:10.1002/2016WR019887.
26 27	563	
28 29 30	564	Knowles, J. F., Molotch, N. P., Trujillo, E., & Litvak, M. E. (2018). Snowmelt-Driven Trade-
31 32	565	Offs Between Early and Late Season Productivity Negatively Impact Forest Carbon Uptake
33 34	566	During Drought. Geophysical Research Letters, 45(7), 3087-3096.
35 36 37	567	
38 39	568	Kumar, L, Skidmore AK and Knowles E (1997), Modelling topographic variation in solar
40 41	569	radiation in a GIS environment. Int. J. Geogr. Info. Sys. 11(5), 475-497
42 43 44	570	
45 46	571	Lamanna, CA (2012), The Structure and Function of Subalpine Ecosystems in the Face of
47 48	572	Climate Change, PhD Dissertation, University of Arizona.
49 50 51	573	
52 53		
54 55 56		
57 58		
59 60		Y

1							
2 3 4	574	Lettenmaier, D., D. Alsdorf, J. Dozier, G. Huffman, M. Pan, and E. Wood (2015), Inroads of					
5 6	575	remote sensing into hydrologic science during the WRR era, Water Resour Res, 51(9), 7309-					
7 8 9	576	7342, doi:10.1002/2015wr017616.					
10 11	577						
12 13	578	Lukas, J., J. Barsugli, N. Doesken, I. Rangwala, and K. Wolter (2015), Climate Change in					
14 15 16	579	Colorado: A Synthesis to Support Water Resources Management and Adaptation, Second ed.,					
17 18	580 Western Water Assessment, Cooperative Institute for Research in Environmental Sciences						
19 20	581	(CIRES), Boulder, CO.					
21 22 23	582						
24 25	583	Maxwell, R.M. and Condon, L.E (2016), Connections between groundwater flow and					
26 27	584	transpiration partitioning. Science, 353:6297, 377-380 doi:10.1126/science.aaf7891.					
28 29	585						
30 31 32	586	McKee, T. B. N., J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and					
33 34	587	duration to time scales. Proc. Eight Conf. on Applied Climatology. Anaheim, CA, Amer.					
35 36	588	Meteor. Soc. 179–184.					
37 38 39	589						
40 41	590	Mohanty, B. P., Famiglietti, J. S., & Skaggs, T. H. (2000). Evolution of soil moisture spatial					
42 43	591	structure in a mixed vegetation pixel during the Southern Great Plains 1997 (SGP97) Hydrology					
44 45 46	592	Experiment. Water Resources Research, 36(12).					
40 47 48	593						
49 50	594	Morris, M. D. (1991). Factorial sampling plans for preliminary computational experiments.					
51 52	595	Technometrics, 33(2), 161-174.					
53 54 55	596						
56 57	7						
58 59							
60							

2 3 4	597	Markovich, K., R. Maxwell, and G. Fogg (2016), Hydrogeological response to climate change in
5 6 7	598	alpine hillslopes, Hydrological Processes, 30(18), 3126–3138, doi:10.1002/hyp.10851.
, 8 9	599	
10 11	600	Molotch, N. P., & Margulis, S. A. (2008). Estimating the distribution of snow water equivalent
12 13	601	using remotely sensed snow cover data and a spatially distributed snowmelt model: A multi-
14 15 16	602	resolution, multi-sensor comparison. Advances in Water Resources, 31(11), 1503-1514.
17 18	603	
19 20	604	Oyler, J. W., S. Z. Dobrowski, A. P. Ballantyne, A. E. Klene, and S. W. Running (2015),
21 22 23	605	Artificial amplification of warming trends across the mountains of the western United States,
23 24 25	606	Geophys. Res. Lett., 42, 153–161, doi:10.1002/2014GL062803.
26 27	607	
28 29 20	608	Painter, TH, DF Berisford, and JW Boardman (2016), The Airborne Snow Observatory: Fusion
30 31 32	609	of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water
33 34	610	equivalent and snow albedo, Remote Sensing of Environment, doi:10.1016/j.rse.2016.06.018.
35 36 27	611	
37 38 39	612	Pribulick, C., L. Foster, L. Bearup, A. Navarre-Sitchler, K. Williams, R. Carroll, and R. Maxwell
40 41	613	(2016), Contrasting the hydrologic response due to land cover and climate change in a mountain
42 43	614	headwaters system, Ecohydrology, 9(8), 1431-1438, doi:10.1002/eco.1779.
44 45 46	615	
40 47 48	616	Rauscher, S. A., Giorgi, F., Diffenbaugh, N. S., & Seth, A. (2008). Extension and intensification
49 50	617	of the Meso-American mid-summer drought in the twenty-first century. Climate Dynamics,
51 52	618	31(5), 551-571.
55 55	619	
56 57		
58		
59 60		

1 ว				
2 3 4	620	Rempe, D. M., & Dietrich, W. E. (2018). Direct observations of rock moisture, a hidden		
5 6 7	621	component of the hydrologic cycle. Proceedings of the National Academy of Sciences, 115(11),		
7 8 9	622	2664-2669.		
10 11	623			
12 13	624	Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., & Tarantola, S.		
14 15 16	625	(2008). Global sensitivity analysis: the primer. John Wiley & Sons.		
17 18	626			
19 20	627	Schwanghart, W., & Kuhn, N. J. (2010). TopoToolbox: A set of Matlab functions for		
21 22 23	628	topographic analysis. Environmental Modelling & Software, 25(6), 770-781.		
23 24 25	629			
26 27	630	Seddon, A. W., Macias-Fauria, M., Long, P. R., Benz, D., & Willis, K. J. (2016). Sensitivity of		
28 29	631	global terrestrial ecosystems to climate variability. Nature, 531(7593), 229-232.		
30 31 32	632			
33 34	633	Seth, A., Rauscher, S. A., Rojas, M., Giannini, A., & Camargo, S. J. (2011). Enhanced spring		
35 36	634	convective barrier for monsoons in a warmer world?. Climatic Change, 104(2), 403-414.		
37 38 39	635			
 636 Sloat, L., A. Henderson, C. Lamanna, and B. Enquist (2015), The Effect of the Foresum 				
42 43	Drought on Carbon Exchange in Subalpine Meadows, Ecosystems, 18(3), 533–545,			
44 45 46	638	doi:10.1007/s10021-015-9845-1.		
47 48	639			
49 50	640	Stocker, B. D., Zscheischler, J., Keenan, T. F., Prentice, I. C., Seneviratne, S. I., & Peñuelas, J.		
51 52	641	(2019). Drought impacts on terrestrial primary production underestimated by satellite		
53 54 55	642 monitoring. Nature Geoscience, 12(4), 264.			
56 57				
58 59				
60				

2 3	643	
4 5 6	644	Sturtevant, C. S., & Oechel, W. C. (2013). Spatial variation in landscape- level CO2 and CH4
7 8	645	fluxes from arctic coastal tundra: influence from vegetation, wetness, and the thaw lake cycle.
9 10 11	646	Global change biology, 19(9), 2853-2866.
12 13	647	
14 15 16	648	Swain, S., & Hayhoe, K. (2015). CMIP5 projected changes in spring and summer drought and
10 17 18	649	wet conditions over North America. Climate Dynamics, 44(9-10), 2737-2750.
19 20	650	
21 22 23	651	Trenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., &
24 25	652	Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4(1), 17-
26 27 28	653	22.
28 29 30	654	
31 32	655	Tucker, C. J., Vanpraet, C. L., Sharman, M. J., & Van Ittersum, G. (1985). Satellite remote
33 34 25	656	sensing of total herbaceous biomass production in the senegalese sahel: 1980–1984. Remote
35 36 37	657	Sensing of Environment, 17, 233–249.
38 39	658	
40 41 42	659	U.S Geological Survey (2002), National Elevation Dataset; ned.usgs.gov.
42 43 44	660	
45 46	661	Vicente-Serrano, S. M., Beguería, S., Lorenzo-Lacruz, J., Camarero, J. J., López-Moreno, J. I.,
47 48 40	662	Azorin-Molina, C., & Sanchez-Lorenzo, A. (2012). Performance of drought indices for
49 50 51	663	ecological, agricultural, and hydrological applications. Earth Interactions, 16(10), 1-27.
52 53	664	
54 55 56		
57 58		
59 60		Y

1 2							
2 3 4	665	Wainwright, H. M., Finsterle, S., Jung, Y., Zhou, Q., & Birkholzer, J. T. (2014). Making sense of					
5 6 7	666	global sensitivity analyses. Computers & Geosciences, 65, 84-94.					
7 8 9	667						
 668 Williams, P. et al. (2012), Temperature as a potent driver of regional forest drought stress 669 tree mortality, Nat Clim Change, 3(3), 292–297, doi:10.1038/nclimate1693. 670 							
						17 18	Woodhouse, C. A., G. T. Pederson, K. Morino, S. A. McAfee, and G. J. McCabe (2016),
						¹⁹ ₂₀ 672 Increasing influence of air temperature on upper Colorado River streamflow, Geopl	
21 22 23	673	Lett., 43, doi:10.1002/2015GL067613.					
24 25	674						
26 27 28	675	Zhao MS and Running SW (2010) Drought-Induced reduction in global terrestrial net primary					
²⁸ 29 676 production from 2000 through 2009. Science, 329, 940–943. 30							
31 32	1 677						
 ³³ 678 Zimmermann, N., and F. Kienast (1999), Predictive mapping of alpine grasslands in Switz ³⁵ 679 Species versus community approach, Journal of Vegetation Science, 10(4), 469–482, ³⁷ 							
					38 39 40	680	doi:10.2307/3237182.
40 41 42	681						
43 44							
45 46 47							
48 49							
50 51							
52 53 54							
55 56							
57 58							
59 60							

691 (a)(b)(c)

692 Figure 2. Landsat-derived annual peak NDVI as a function of (a) June Palmer Drought Severity

693 Index (PDSI), (b) first bare-ground date, and (c) average June temperature at the long-term

694 observation plots in Sloat et al. (2015). In (a) – (c), the line is based on linear regression. In (a),

695 PDSI less than -4.0 is extreme drought, -3.0 to -2.0 is severe to moderate drought, -1.9 to +1.9 is

696 normal, and +2.0 above is unusual to extreme moist conditions. The correlation coefficients are697 shown in Table S3.

radiation (Radiation), (c) topography position index (TPI) and (d) underlying geology. The
foresummer drought sensitivity in the y-axis is scaled to represent the positive or negative effect
of each predictor.

1 2 3 4 5 6 7 8 9 10	729 730 731 732 733 734 735	Table 1. Parameter importance ranking from the random forest analysis; the parameters influencing the spatial heterogeneity of foresummer drought sensitivity within the grassland region. The importance measure (i.e., %MSE) is normalized by one for elevation, so that it represents relative importance compared to elevation. The shaded cells indicate the top four in the importance ranking.		
11 12 13	155			Normalized %MSE
			Elevation	1.00
14			Slope	0.44
15 16			Curvature	0.24
17			TWI	0.28
18			Geology	0.56
19 20			Radiation	0.63
21			TPI	0.61
22			UAAB	0.24
$\begin{array}{c} 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$	737			