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Genome-wide association analysis of
composite sleep health scores in 413,904
individuals

Check for updates

Matthew O. Goodman 1,2,3, Tariq Faquih 1,2,3, Valentina Paz4,5,6, Pavithra Nagarajan 1,
Jacqueline M. Lane1,2,3,6, Brian Spitzer7, Matthew Maher6, Joon Chung8, Brian E. Cade 1,2,3,
Shaun M. Purcell 1,2,3,9, Xiaofeng Zhu 10, Raymond Noordam 11, Andrew J. K. Phillips12,
Simon D. Kyle13, Kai Spiegelhalder14, Michael N. Weedon 15, Deborah A. Lawlor 16,17,
Jerome I. Rotter 18, Kent D. Taylor18, Carmen R. Isasi 19, Tamar Sofer 1,2,7,20, Hassan S. Dashti 3,6,21,
Martin K. Rutter22,23, Susan Redline 1,2, Richa Saxena3,6,21 & Heming Wang 1,2

Recent genome-wide association studies (GWASs) of several individual sleep traits have identified
hundreds of genetic loci, suggesting diverse mechanisms. Moreover, sleep traits are moderately
correlated, so togethermay provide amore complete picture of sleep health, while illuminating distinct
domains. Here we construct novel sleep health scores (SHSs) incorporating five core self-report
measures: sleep duration, insomnia symptoms, chronotype, snoring, and daytime sleepiness, using
additive (SHS-ADD) and five principal components-based (SHS-PCs) approaches. GWASs of these
six SHSs identify 28 significant novel loci adjusting for multiple testing on six traits (p < 8.3e-9), along
with 341 previously reported loci (p < 5e-08). The heritability of the first three SHS-PCs equals or
exceeds that of SHS-ADD (SNP-h2 = 0.094), while revealing sleep-domain-specific genetic
discoveries. Significant loci enrich in multiple brain tissues and in metabolic and neuronal pathways.
Post-GWAS analyses uncover novel genetic mechanisms underlying sleep health and reveal
connections (including potential causal links) to behavioral, psychological, and cardiometabolic traits.

Sleep is an essential biological process, orchestrated by interrelated neuro-
logic and physiologic regulatory processes, responding to individual, social,
and environmental influences1–3. Positive sleep traits have been associated
with lower rates of cardiometabolic and neuropsychiatric diseases, as well as
higher productivity and well-being4. Moreover, general sleep health has
come into recent focus as a consequential andmodifiable health factor, with
the combined presence of multiple healthy sleep factors frequently being a
stronger predictor of positive health outcomes5,6. As a composite, sleep
health is recognized to involve multiple domains, including regularity,
satisfaction, alertness, timing, efficiency, and duration1.

Several recent studies leveraging biobank-scale data have resulted in
well-powered genome-wide association studies (GWASs) of sleep pheno-
types, capturing several aspects of sleep health, including self-reported sleep
duration7, insomnia8,9, sleepiness10, snoring11, and chronotype12. These
GWASs have begun to elucidate the genetic architecture of sleep, while
revealing the presence of widespread genetic correlations across both sleep
and related neuropsychiatric and cardiometabolic traits2,3. Associated
genomic loci and pathways are often shared across multiple sleep traits,

suggesting a shared genetic basis and co-regulated processes. Therefore, a
more complete and robust understanding of sleep may be achieved by
describing patterns across multiple traits, pointing toward underlying
domains, highlighting the potential utility in analyzing composite sleep
health scores (SHSs).

Recently, an additive sleep health score (SHS-ADD) consisting of five
self-reported sleep behaviors was studied in unrelated individuals in theUK
Biobank (UKB), yielding new genetic findings13. However, additive scores
compress data across multiple domains to a single metric, resulting in
potential information loss, increased genetic heterogeneity, and weaker
signal for genetic analyses.

Prior data-driven phenotyping of complex traits and correlated disease
conditions have often relied on principal components analysis (PCA). The
PCA algorithm is well-recognized for its ability to sensibly restructure multi-
dimensional phenotypes, by constructing statistically independent linear
composites, or principal components (PCs), sequentially prioritized in terms
of variance explained. The construction of PCs is informed by underlying
relationships across traits, with correlated traits tending to be combined,
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given the independence constraint, since a composite of correlated traits will
explain more of the remaining total variance. In the broader field of geno-
mics, PCA has been effectively applied as a dimension reduction technique
to derive composite phenotypes and to refine and improve investigations of
the genetic architecture of complex traits, with applications to both subject-
level phenotypic data and GWAS summary statistics. Multivariate analyses
with PCA have been used for various target phenotypes in genetic analyses,
including recently in cardiac imaging14, anthropometric traits reflecting body
shape15, metabolic profiling16 and lipid profiling17.

In this study,we expanded the priorUKBSHS-ADDGWAS to a larger
UKB sample and constructed five novel PC-derived SHSs as linear com-
binations of the same five underlying traits. We conjectured that, when
compared with SHS-ADD, SHS-PCs would create more precisely targeted
phenotypes, resulting in potentially greater heritability, as well as distinct
and interpretable domain-specific associations in secondary analyses.

Results
Sleep health score construction in UKB
The study population consisted of 413,904 UKB participants of European
ancestry with complete sleep and genomics data (“Methods”). Sample
characteristics are provided in Supplementary Data 1. Self-reported sleep
traits (sleep duration, insomnia, chronotype, snoring, and daytime sleepi-
ness) derived from the baseline questionnaire were used to construct SHS
traits (“Methods”). Briefly, SHS-ADD was operationalized as in previous
UKBstudies5,13, defined as the sumoffivedichotomizedpositive sleephealth
characteristics: sleep duration of 7–8 h, morning chronotype preference, no
snoring, infrequent insomnia symptoms and infrequent daytime sleepiness

(“Methods”). SHS-PCs were extracted from the original integer-scale same
underlying sleep traits, treated as linear continuous measures (after being
mean-centered and variance-standardized), and then oriented to positively
correlate with self-assessed overall health.

Several findings emerged in constructing the Sleep Health Score
Principal Components (SHS-PCs) in the UK Biobank, providing context
andguiding interpretation. SHS-PCs1–5 individually explained from25.2%
to 14.9% of the phenotypic variation (Fig. 1 and Supplementary Data 2).
Based on their PC loadings (Fig. 1 and SupplementaryData 2), higher scores
on SHS-PCs are interpreted as follows – SHS-PC1: longer sleep with less-
frequent insomnia symptoms and sleepiness; SHS-PC2: healthier sleepwith
less-frequent sleepiness and without snoring (i.e., without symptoms of
sleep apnea syndrome); SHS-PC3: morningness chronotype; SHS-PC4:
snoring with less frequent sleepiness; SHS-PC5: shorter sleep duration with
less-frequent insomnia symptoms. Substantial non-normality was observed
for SHS-PC2, SHS-PC3, and SHS-PC4 (Supplementary Fig. 1), resulting
from the underlying trait distributions (“Methods”). The direction and
loadings of the PCs follow from underlying covariance and corresponding
Pearson correlations among the self-report sleep traits (Supplementary
Data 3): SHS-PC1 was driven primarily by correlations between sleep
duration and insomnia (r =−0.24) and between insomnia and sleepiness
(r = 0.09); SHS-PC2 was driven by the correlation between sleepiness and
snoring (r = 0.08); SHS-PC3 loaded on chronotype, whichwas independent
of the other underlying traits; whereas SHS-PC4 and SHS-PC5 appear to be
driven largely by the PC independence constraint, such that they loaded on
both positive and negative sleep attributes, and does not imply these com-
binations constitute clusters in the data.

Fig. 1 | Loadings and variance explained for the five principal component (PC)-
based composite sleep health scores (SHS). a SHS-PC loadings on self-reported
sleep phenotypes. Interpretation of higher SHS-PC scores, based on loadings, are:
PC1—longer sleep with less-frequent insomnia and lower sleepiness; PC2—absence
of snoring and lower sleepiness; PC3—morningness chronotype; PC4—presence of

snoring and less frequent sleepiness; PC5—shorter sleep and less-frequent insomnia.
Radar plots display loadingmagnitudes (radial distance). Red dots: positive loadings;
Blue dots: negative loadings. b Percent of the phenotypic variance explained by each
sleep health score. SHS sleep health score, PC principal component.
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The interpretation of the SHSs was further clarified by their Spear-
man rank correlations (rs) with objective traits not used in their con-
struction (Supplementary Figs. 2a and 3a). For example, SHS-PC1 was
the SHS trait most positively correlated with accelerometry-based sleep
duration (rs = 0.09) and sleep efficiency (rs = 0.08) metrics. SHS-PC2 was
positively correlated with higher sleep efficiency (rs = 0.06), lower daytime
inactivity (|rs| = 0.10), lower BMI (|rs| = 0.19), and being female (|
rs| = 0.17), features which suggest the absence of sleep apnea. SHS-PC3
correlated with earlier accelerometry-based measures of maximum
activity timing (|rs| = 0.29) and sleep midpoint (|rs| = 0.27), (measure-
ments related to circadian timing). Notably, SHS-PC4 showed no sig-
nificant correlations with self-assessed overall health (p > 0.05) but was
nonetheless correlated with other measures of overall health, including
lower levels of self-reported disability (|rs| = 0.06) and lower numbers of
treatments/medications taken (|rs| = 0.05). Notably, SHS-ADD had the
strongest association with self-reported overall health (|rs| = 0.21), as well
as with the accelerometry-derived sleep regularity index (|rs| = 0.10).

Genome-wide association analysis
We performed GWAS for the six SHS traits using linear mixed regression
models, adjusting for age, sex, genotyping array, ten genetic PCs and genetic
relatedness matrix (“Methods”). We identified 31,188 genome-wide sig-
nificant (GWS) SNPs (p < 5e-8), resulting in 45 loci for SHS-ADD (SNP-
h2 = 0.094), and 91, 48, 166, 26, and 24 loci for SHS-PC1-5 (SNP-h2 = 0.117,
0.093, 0.153, 0.070, and 0.068), respectively (Fig. 2a, Table 1, Supplementary
Figs. 4 and 5, and Supplementary Data 4 and 5; “Methods”). Function
annotation of all SNPs in linkage disequilibrium (LD; r2 ≥ 0:6) with the lead
SNPs in the risk loci was performed using FUMA18 (“Methods”; Fig. 2e, h).

To determine novelty, we compared the 400 unique GWS loci against
those found to be GWS in prior biobank GWASs of individual sleep traits
and the previously developed SHS-ADD in the UKB (“Methods”; Fig. 2c, d;
SupplementaryData 5). This identified 59unreported SHS-associatedGWS
loci with a lead variant at least 500 kb away from previously reported sleep
variants (Supplementary Data 4). Of these unreported loci, 28 passed a
stricter significance threshold (p < 8.3e-9) accounting formultiple testing on
six traits, which are defined as novel loci (Table 1). Locus zoom plots of the
28 novel loci are shown in Supplementary Fig. 6. Among the 28 novel loci,
two were independent (r2 < 0.1) but within 50 kb of one another:
rs201449027 (associated with SHS-PC1) and rs11494758 (with SHS-PC3),
both in theKLRG1 locus (a gene with reported immune system function19).
The other 26 loci were distinctly associated with one SHS trait. In addition,
there were two functional variants among the lead SNPs: First, SHS-PC1
associatedwith rs8074498, amissense variant inASPSCR1, a gene regulating
GLUT4 in glucose sequestration and transportation in response to insulin.
Second, SHS-PC5 associated with rs138572890 in the 3’ UTR of PAPD5, a
non-canonical poly(A) polymerase involved in the surveillance and
degradation of aberrant RNAs, including the glucose transporter GLUT1.
Functional annotation for the lead SNPs at the 28 novel and 31 additional
unreported loci is provided in Supplementary Data 6 and 7.

Among all 400 GWS loci, there were 62 loci colocalizing SHS traits
(Fig. 2b), including 18 loci colocalizing multiple SHS-PCs, suggesting the
presence of instances of pleiotropy across SHS-PC traits (“Methods”; Fig. 2b
and Supplementary Data 8). Several variants colocalized across multiple
SHS and were previously reported in multiple sleep GWAS, for example:
Rs113851554 atMEIS1 (colocalizing SHS-ADD, SHS-PC1, SHS-PC3, and
SHS-PC5)was reported inGWASsof insomnia, chronotype, and restless leg
syndrome.Rs2863957 atPAX8 (colocalizing SHS-PC1, SHS-PC2, and SHS-
PC5) was reported for sleep duration and insomnia. Rs1421085 at FTO
(colocalizing SHS-PC3 and SHS-PC4), a widely recognized obesity gene,
was reported for sleep duration, chronotype, snoring, andOSA. In addition,
SHS-PC4 and SHS-PC5 colocalized at rs576981040 in a novel locus con-
taining TNFRSF14, a gene involved in T-cell activation and signaling. The
infrequent colocalization of loci associated with SHS-PC traits is consistent
with their being largely genetic and phenotypically statistically independent
(Supplementary Figs. 2b and 3b).

Genetic overlap with individual sleep traits
Genetic correlations, between SHS traits with individual sleep and accel-
erometry traits, were qualitatively similar to the analogous phenotypic
correlations described above, while often stronger (Supplementary Fig. 2).
GWS SHS loci and their corresponding genetic risk scores (GRS; “Meth-
ods”) were associated with underlying self-reported and accelerometry
derived sleep traits, largely in keeping with expectation, based on the con-
struction of the SHS traits (Supplementary Data 9 and 10, Supplementary
Note 1). Conversely, approximately 50% of 1039 GWS loci previously
reported for SHS-ADDor individual sleep traits were associatedwith one or
more SHS traits (p < 5e-8; Supplementary Data 11 and 12).

Sensitivity analysis
We performed 22 distinct sensitivity analyses (“Methods”), for each of the
400 GWS loci across the six SHS traits in unrelated individuals
(n = 308,902), adjusting for various factors or restricting to one of three
subsets (males-only, n = 145,186; females-only, n = 163,716; healthy-only,
n = 115,297). Specific covariate adjustments led to modest average
attenuation (<15%) in SHS genetic effects across the GWS loci (Supple-
mentary Data 13 and Supplementary Fig. 7). For example, adjustment of
adiposity measures in SHS-PC2 (9.3%) and SHS-ADD (7.9%), mood
variables in SHS-ADD(14.1%) andSHS-PC1 (9.6%), and in ahealthy subset
without chronic diseases in SHS- SHS-PC1 (13.5%). Nearly all individual
loci remained nominally significant (p < 0.05) with similar effect size
(standard error [SE] change < 2) after additional adjustment.

Replication and validation analyses
We tested the replication of the 400 GWS loci in the Hispanic Community
Health Study/Study of Latinos (HCHS/SOL; n = 11,144) using the same
SHS PC loadings in UKB. Notably, HCHS/SOL differs in sample size and
continental ancestry, compared with UKB, as well as in the distribution of
key variables, such as age and sleep duration (“Methods”; Supplementary
Data 14). Chronotype was only collected in a subset of the HCHS/SOL
cohort and was imputed to the entire sample (“Methods”). Of the 400 loci
tested, 12 demonstrated nominal significance (P < 0.05) and consistent
directional effects compared to UKB (Supplementary Data 15). However,
we were able to validate the polygenic risk score (PRS) constructed using
genome-wide summary statistics for each SHS in HCHS/SOL (P < 0.008),
except for SHS-PC3, which showed nominal significance (P < 0.05)
(“Methods”; Table 2).We further examined the PRS associations with sleep
phecodes in theMGBbiobank (“Methods”; Table 2). ThePRSs of both SHS-
ADD and SHS-PC1 were associated with lower odds of 6 of the 13 sleep
phecodes: insomnia, obstructive sleep apnea, restless legs syndrome, sleep
disorders (unspecified), organic or persistent insomnia, and sleep apnea
(unspecified). PRS for SHS-PC2, SHS-PC4, and SHS-PC5 were associated
with 2 sleepphecodes: obstructive sleep apnea and sleep apnea.Whereas the
SHS-PC4 PRS was associated with higher odds for sleep apnea disorders
(likely reflecting its positive association with snoring), increases in PRS for
SHS-PC2 and SHS-PC5 were associated with lower odds for sleep apnea.

Implicated genes
We prioritized the genes at GWS loci using three mapping methods
(position, eQTL, and Chromatin Interaction [CI]) as well as MAGMA20

positional gene-based analysis in FUMA18 (“Methods”; Supplementary
Data 16–19; for gene-based GWAS Manhattan and QQ plots see Supple-
mentary Figs. 8 and 9). Hundreds of genes were implicated. Here we
highlight only those with the strongest evidence, as prioritized by all map-
pingmethods. The five novel SHS-ADD loci weremapped to 39 genes, with
five genes in two loci supported by all four mapping methods. The latter
includedFNIP2, whichbinds toAMP-activatedproteinkinase (AMPK)and
plays a crucial role in mTORC1 signaling and the regulation of heat shock
protein-90 (Hsp90)21,whichhasbeenpreviously linked to sleephomeostasis
and behavioral rhythms22,23;NRBF2, which is involved in circadian rhythm
via control of autophagy, and nutrient and cellular homeostasis24; and
JMJD1C, which plays a role in DNA repair25 and has been associated with
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Rett syndrome (OMIM 312750), which co-occurs with epilepsy and sleep
disturbance26.Ninenovel SHS-PC1 lociweremapped to 140 genes, withfive
genes in three loci mapped by all four methods. Of these,NMB encodes the
neuromedin B neuropeptide linked to the endocrine and exocrine systems,
body temperature, and blood pressure27, while at the same locus,WDR73 is
highly expressed in cerebellar Purkinje neurons, and ZNF592 has been
implicated in cerebellar atrophy; ANKFY1 is also involved in the

maintenance of cerebellar Purkinje cells that play a role in sleep-wake
regulation28,29; MAPK1 is part of the mitogen-activated protein kinase
(MAPK)/extracellular signal-regulated kinase (ERK) signaling pathway that
is linked to mental health and the circadian system30. Five novel SHS-PC2
loci were mapped to 97 genes (nine genes in four loci mapped by all
methods). Of these, SEMA3D encodes a member of the class III sema-
phorins that are involved in axon guidance during neuronal development31

https://doi.org/10.1038/s42003-025-07514-0 Article
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(two more class III semaphorins at this locus, SEMA3A and SEMA3E, also
mapped by CI); DRAM1 is a regulator of autophagy in the context of
mitochondrial dysfunction, implicated in neurodegeneration32;MAPK8IP3
is another MAPK/ERK gene essential for the function and maintenance of
neurons, with links to neurodevelopmental disorders33; FCHO1 is involved
in clathrin-coat assembly and clathrin-mediated endocytosis and has been
implicated in immune deficiency34,35. Three novel SHS-PC3 loci were
mapped to 62 genes, with five genes in three loci mapped by all four
methods. These include PDE1C a phosphodiesterase bound by calmodulin
that regulates proliferation of vascular smooth muscle cells and may play a

pathological role in cardiac remodeling and dysfunction36 and TCF20,
involved in neurodevelopmental diseases and sleep disturbances37,38. One
novel SHS-PC4 locus was mapped to three genes, including PCDH17
(mapped by position, eQTL and CI in hippocampal and neural progenitor
cells) involved in forming and maintaining neuronal synapses39. The two
novel SHS-PC5 loci mapped to 71 genes, of which two genes were mapped
by all four methods. These include SLC27A5, involved in bile acid synthesis
andmetabolism40,whichhas also been implicated inbrainhealth andneural
development41. In addition, fifty genes in 28 novel loci have shown drug
interactions (Supplementary Data 16). Implicated genes for additional

Fig. 2 | Genome-wide significant SNPs associated with SHS. a Number of
Genome-wide significant (GWS) SNPs (p < 5e-08) and risk loci (“Methods”).
b Number of risk variants that colocalized for each pair of SHS (HyPrColoc;
“Methods”). c Number of loci not reported by previous sleep GWASs in biobanks
(GWS loci with a lead variant at least 500 kb from any of the previously published
GWS sleep variants; “Methods”). d Number of loci reported by previous sleep
GWASs in biobanks (lead variant within 500 kb of published GWS sleep variants;
“Methods”). eDistribution of Functional consequences (FUMA18; “Methods”) of all
annotated SNPs in LD with independent GWS SNPs by SHS; 3.2% of the annotated
SNPs were in functional regions (exon, UTR, and splice site). f Regulome DB score

distribution (FUMA; “Methods”) of all annotated SNPs in LD with independent
GWS SNPs by SHS; 3.4% of the annotated SNPs were in regulatory regions with
Regulome DB score < 2. g CADD score distribution (FUMA; “Methods”) of all
annotated SNPs in LD with independent GWS SNPs by SHS; 6.8% of the annotated
SNPs likely deleterious effect with CADD score>10. h Chromatin state distribution
(FUMA; “Methods”) of all annotated SNPs in LD with independent GWS SNPs by
SHS; 74% of the annotated SNPs were in open chromatin regions with a minimum
chromatin state between 1 and 7. OSA obstructive sleep apnea, RLS restless leg
syndrome, SHS sleep health score, UTR5 5′ untranslated region: UTR3 3′
untranslated region, ncRNA non-coding RNA.

Table 1 | Significant novel loci associated with SHS with a lead variant at least 500 kb from any of the previously published
genome-wide significant sleep variants

SHS Loc. SNP Chr. Position (GRCh37) Nearest gene(s) Alleles (E/A) EAF INFO BETA SE P

ADD 1 rs75607302 4 159677732 PPID/FNIP2 A/AT 0.428 0.977 −0.013 0.002 2.8E− 09

2 rs10808575 8 130062388 AC068570.1/LINC00977 T/C 0.733 0.997 0.014 0.002 2.8E− 09

3 rs12257317 10 19457469 UBE2V2P1/MALRD1 A/G 0.685 0.997 0.013 0.002 5.7E− 09

4 rs7924036 10 65191645 JMJD1C G/T 0.497 1.000 −0.012 0.002 7.4E− 09

5 rs72896891 18 42632654 SETBP1 A/T 0.833 0.993 −0.018 0.003 6.8E− 10

PC1 6 rs12759956 1 18432831 RP11-174G17.2/IGSF21 T/A 0.713 0.995 0.017 0.003 4.0E− 10

7 rs12470733 2 200968215 C2orf47/SPATS2L C/A 0.798 0.993 −0.019 0.003 4.6E− 10

8 rs1571582 9 103663962 RP11-394D2.1/
RP11-62L10.1

T/C 0.498 0.997 −0.016 0.002 3.4E− 11

9 rs201449027 12 9142784 KLRG1/RP11-259O18.4 TG/T 0.561 0.965 0.016 0.002 1.4E− 10

10 rs4559781 13 28303803 NPM1P4/GSX1 C/T 0.153 0.994 0.020 0.003 2.1E− 09

11 rs139221256 15 85357857 ZNF592/ALPK3 T/TA 0.749 0.991 0.016 0.003 5.8E− 09

12 rs12601771 17 4108822 ANKFY1 G/A 0.433 0.995 0.015 0.002 5.6E− 10

13 rs8074498a 17 79954544 ASPSCR1 T/A 0.418 0.983 0.016 0.002 1.2E− 10

14 rs9610500 22 22221167 MAPK1 A/G 0.634 0.983 −0.015 0.003 4.8E− 09

PC2 15 rs2821226 1 203517292 OPTC/ATP2B4 A/G 0.473 0.984 −0.013 0.002 5.2E− 09

16 rs17559978 7 84677860 SEMA3D G/A 0.688 0.990 0.015 0.002 2.3E− 10

17 rs11111069 12 102271962 DRAM1 C/G 0.791 0.995 −0.016 0.003 2.4E− 09

18 rs113851179 16 1733479 LA16c-431H6.6/HN1L C/CT 0.925 0.987 0.026 0.004 8.6E− 10

19 rs12979056 19 17862131 FCHO1 G/A 0.542 0.992 −0.014 0.002 1.5E− 09

20 rs3788337 22 23412017 RTDR1 G/A 0.647 0.993 −0.014 0.002 6.5E− 09

PC3 21 rs56049037 7 32947201 AVL9 G/A 0.713 0.988 0.016 0.002 1.3E− 11

22 8:11053467-GA:G 8 11053467 XKR6 GA/G 0.555 0.914 0.014 0.002 1.6E− 09

23 rs11494758 12 9116542 KLRG1 C/T 0.622 0.997 −0.014 0.002 3.4E− 10

24 rs71272625 15 78166843 LINGO1/CSPG4P13 C/CT 0.331 0.931 0.014 0.002 8.8E− 10

25 rs11373181 22 42705672 TCF20 A/AC 0.482 0.990 −0.013 0.002 3.6E− 10

PC4 26 13:58551593-GA:G 13 58551593 PCDH17/RNA5SP30 GA/G 0.763 0.993 −0.016 0.002 2.4E− 11

PC5 27 rs138572890b 16 50264953 PAPD5 C/CTTTA 0.929 0.968 0.023 0.004 7.7E− 10

28 19:59007970-CA:C 19 59007970 SLC27A5 CA/C 0.366 0.948 −0.013 0.002 7.0E− 11

The significance threshold was adjusted for multiple testing across six traits (p < 8.3 × 10−9).
Loc. locus, Chr. chromosome, E/A effect and alternative alleles, EAF effect allele frequency, INFO imputation quality score.
aMissense variant.
b3′ UTR variant.
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unreported and reported variants are summarized in Supplementary
Data 17 and18. For completeness, all significant genes (p < 2.64e-6) in gene-
based analysis are reported in Supplementary Data 19. Note that genes
implicated by fewer mapping methods may also merit prioritization. One
intriguing example is that two GWS unreported SHS-PC2-associated var-
iants, rs2821226 (OPTC/ATP2B4; 5.20E-09) and rs1610263 (COL8A1;
4.10E-08), both implicate collagen-pathwaygenes thatmayplay akeyrole in
the physiology of obstructive sleep apnea (OSA)42. Lack of causal tissues
(e.g., specific brain andconnective tissues)may result in incorrectmappings.
Any definitive conclusions based on mapped genes will require functional
follow-up.

Gene set enrichment analyses
We performed pathway enrichment analysis, applying PASCAL43 to SHS
GWAS summary statistics, and identified significant enrichments of SHS-
ADDvariants inMAPK andNGF signaling pathways; SHS-PC1 variants in
neuronal system, ubiquitin-mediated proteolysis, and MAPK signaling
pathways; SHS-PC2 in ion transport; SHS-PC3 in circadian, mRNA pro-
cessing and splicing, G-protein, and metabolic pathways; SHS-PC4 in
neuronal system, neurotransmission at synapses, GABA receptor, and long
term depression pathways; and SHS-PC5 in the gap junction pathway
(Empirical p < 5e-4; Fig. 3a and Supplementary Data 20).

We also performed gene-set enrichment analyses20 (tissue, trait, cell
type, and pathway) on genes mapped by FUMA using MAGMA (Supple-
mentary Data 21–23). Tissue enrichment analyses identifiedmultiple brain
tissues for all SHS traits except SHS-PC4, with the highest enrichments in
cerebellum, hypothalamus, and frontal cortex for SHS-PC1 and frontal
cortex, cerebellum, and nucleus accumbens for SHS-PC3. All enriched
tissue findings were brain tissues, except the pituitary tissue for SHS-PC1
(p < 0.05/54/6 = 1.5e-4;Fig. 3b andSupplementaryData 21),whichhasboth
neural and endocrine functions, the posterior pituitary containing distal
axons of hypothalamic neurons. Cell type enrichment analysis identified
multiple brain cell types for eachSHS, and especially for SHS-PC1, including
GABAergic neurons in the human midbrain (Supplementary Fig. 10).

Enrichment of SHS-associated genes with phenotype-associated gene
sets from theGWAS catalog (SupplementaryData 22) revealed associations
with psychological traits (intelligence, neuroticism, impulsivity/risk-taking,

mood, and psychiatric disorders), behavior (e.g., regular activity patterns,
alcohol consumption), inflammatory markers and diseases (C-reactive
protein, IgG, and inflammatory bowel diseases), blood pressure, adiposity
(especially in SHS-PC2 and PC4), and reproductive aging. Gene sets for
Alzheimer’s disease and related biomarkers (cerebrospinal fluid tau and
amyloid β) were enriched in SHS-PC1, SHS-PC4, and most strongly SHS-
PC5. A hippocampal volume gene set was enriched in SHS-PC2 and SHS-
PC5. Dendrite gyrus brain volume and kidney disease gene sets were
enriched in SHS-PC2.Gene sets associatedwith intracranial and subcortical
brain region volumes, craniofacial microsomia, idiopathic pulmonary
fibrosis, and aortic root size were enriched in SHS-PC4. An iron biomarker
gene set was enriched in SHS-PC5.

Genetic and causal relationships between SHS and other com-
mon complex traits
LD score regression (LSDC)44 revealed numerous phenotypes genetically
correlated to SHS traits. Among 375 phenome-wide representative heritable
traits (“Methods”), 256 traits were genetically correlated with at least one
SHS (p < 0.05/375/6 = 2.2e-5; Fig. 4 and Supplementary Data 24). Genetic
correlations with SHS were strongest (magnitude ~0.3 to 0.5) with physical
andmental health, and (inversely) with socio-economic status (SES), stress,
pain, mental and emotional distress, and recognized health conditions and
risk factors. However, these genetic correlations had discernable patterns,
unique to each SHS trait. Compared with the SHS-PCs, SHS-ADD had
stronger genetic correlations with non-specific health markers, e.g., traits
related to overall health, physical conditioning, markers of socio-economic
status, healthy lifestyle factors, as well as stronger inverse genetic relation-
ships with pain, activities interfering with sleep, and depression.

Compared with the other SHSs, SHS-PC1 had stronger inverse genetic
correlations with anxiety traits, alcohol addiction, and self-harm behavior;
SHS-PC2 had comparatively stronger genetic correlations with daytime
napping, diagnosed sleep disorders, andmore moderate but, relative to other
SHSs, still comparatively stronger inverse genetic correlations with metabolic
and adiposity traits. Association patterns for SHS-PC3 differed markedly
from other SHS, having lower correlations with overall health and most
individual health conditions, inverse association with educational attain-
ment. Compared with the other SHS, genetic correlations involving SHS-

Fig. 3 | Pathway and tissue enrichment analysis. a Pathway gene sets significantly enriched for SHS genes (PASCAL43, “Methods”). b Tissue-specific expression gene sets
enriched for SHS genes (MAGMA20 via FUMA18, “Methods”).
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PC4 were often inverted, including a (non-significant) inverse association
with overall health rating (despite a weak positive phenotypic correlation) as
well as positive associations with BMI, and cardiovascular traits, congruent
with its positive loading on snoring. SHS-PC5 was preferentially genetically
correlated with fluid intelligence, educational attainment, and mother’s age.

We further conducted bidirectional Mendelian randomization (MR)
analyses to investigate potentially causal links between sleep health and
50 selected traits (Methods). We identified potential causal effects, estimated
via inverse variance weighted (IVW) method, of lower SHS-PC1 on codeine
or tramadol medication use (βIVW = 0.47; p = 4.1E− 07); lower SHS-PC5 on
Bipolar disorder (βIVW= 1.66; p= 1.6E− 05); and lower SHS-ADD on
smoking initiation (βIVW =− 0.42; p = 6.3E− 05) and years of schooling
(βIVW = 0.34; p = 1.1E− 04) (Supplementary Data 25). In the reverse
direction, MR identified potential causal effects of greater years of education
on higher SHS-ADD (βIVW = 0.15; p = 1.2E− 07) and SHS-PC5
(βIVW = 0.10; p = 2.7E− 06); lower BMI on higher SHS-PC2
(βIVW =− 0.10; p= 7.2E− 07); and Alzheimer’s disease risk on higher
SHS-PC5 (βIVW = 0.012; p = 1.5E− 05) (Supplementary Data 26).

Comparison with composite sleep health scores constructed
using genetic correlations in addition to phenotypic correlations
As a sensitivity analysis we constructed composite sleep scores informed by
genetic correlations rather than phenotypic correlations, using linear
combinations of the same underlying sleep phenotypes as used in the PC-
based approach. We constructed these phenotypes using the ‘MaxH’
maximally heritable approach45, which provides linear combinations of
phenotypes of maximum heritability, under an independence constraint.
The SHS-MaxH phenotypes were largely phenotypically concordant with
SHS-PCs, with similar heritabilities (Supplementary Data 2 and 27). SHS-
MaxH1 correlated phenotypically with SHS-PC3; SHS-MaxH2 with SHS-
PC1; SHS-MaxH3with SHS-PC2 (r > 0.9). Less concordantly, SHS-MaxH4
andMaxH5 correlated with both SHS-PC4 and PC5 (|r| > 0.5) but were no
greater in heritability.

Discussion
We performed the first large-scale sleep health GWAS investigating five
novel PC-based SHSs and compared these with an updated GWAS of

Fig. 4 | SHS genetic correlations with selected phenotypes. a SHS genetic corre-
lations (LDSC44, Methods) with sleep traits (*p < 0.05/132). b SHS genetic correla-
tions (LDSC44, Methods) with selected health outcomes (*p < 0.05/2250). SHS sleep
health score, act. derived from actigraphy, max. maximum, N number, noct. noc-
turnal, BMI body mass index, SBP systolic blood pressure, DBP diastolic blood

pressure, LDL low-density lipoprotein cholesterol, TG triglycerides, HbA1c glyco-
sylated hemoglobin, phys. act. physical activity, freq. frequency, T2D type-II dia-
betes, MI myocardial infarction, dx self-report of physician diagnosis to trained
interviewe, EHR electronic health record-derived, SES socioeconomic status, CVD
cardiovascular and metabolic disease, psych. psychological.
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SHS-ADDby including related individuals inUKB. Each SHSwas based on
five underlying self-reported sleep traits: sleep duration, insomnia symptom
frequency, daytime sleepiness frequency, chronotype, and snoring, resulting
in distinct sleep health composites interpretable via their loadings. The SHS
approach emphasizes the co-occurrence of multiple sleep traits, aligning
with the multi-dimensional view of sleep health, in which individual com-
ponents of sleep do not confer sleep health in isolation.

We identified 28 novel significant (p < 8.3e-9) loci and 31 additional
GWS (p < 5e-8) loci that were not reported by previous sleep GWASs. Our
findings were supported by sensitivity analysis and PRS validation and
associations with clinical sleep outcomes in independent studies. These loci
mapped to genes implicated in neurodevelopment, synaptic signaling, ion
channel transportation, cellular energy production, and metabolic pro-
cesses. The findings collectively suggest that studying SHSs has advanced
genetic discoveryby linking toplausible biologicalmechanisms andaligning
with established sleep health domains, thereby uncovering novel insights.

Findings for SHS-ADD, combining 5 positive binary sleep traits,
suggest a phenotype that captures global sleep health by integratingmultiple
independent regulatory signals and sleep domains. Notably, SHS-ADDwas
the SHS most strongly associated with accelerometry-derived sleep reg-
ularity index, both phenotypically and genetically, suggesting the conjunc-
tion of multiple independent sleep health traits may be a prerequisite for
sleep regularity.Genetic correlationswere strongest between SHS-ADDand
overall health and SES, with MR indicating a potential bidirectional causal
relationshipwith SES. SHS-ADDwas sensitive to several adjustment factors,
including health behaviors and health status, as well as both psychological
factors (with SHS-PC1) and BMI (with PC2). Moreover, for SHS-ADD,
evidence of enrichments, particularly in neuronal tissues and cell types, was
not as strong as for other traits such as SHS-PC1 and SHS-PC3. Together
these findings suggest SHS-ADD to be a broad sleep health phenotype, that
retains significant heterogeneity, combining multiple independent sleep
domains and/or sleep disorders with distinct etiologies. It nevertheless
highlights the connections between global sleep health, sleep regularity, and
overall health and well-being.

SHS-PC1, longer sleep with less frequent insomnia and sleepiness,
reflects correlated self-reported sleep traits across the domains of satisfac-
tion, duration, and alertness, while demonstrating higher heritability than
SHS-ADD and each of its underlying sleep traits. SHS-PC1 was the SHS
most strongly genetically correlated with accelerometry-based sleep effi-
ciency and duration, suggesting shared genetics with both longer and more
efficient objective sleep. Additional genetic correlation and MR analyses
suggest negative relationships with chronic pain (potentially causal), anxi-
ety, and neuroticism. Enrichment analyses identified the ubiquitin-
proteasome system pathway, important for circadian rhythm regulation
and sleephomeostasis46, aswell as theGABAergicneuronal cell-type, central
to neural orchestration of sleep. Overall, these findings suggest a phenotype
capturing neurobiological sleep regulation, and support a bidirectional
relationship with anxiety47 via shared GABAergic regulation48, while
pointing to further mechanisms involving presence or perception of dis-
tressing stimuli, including chronic pain.

SHS-PC2, interpreted as healthy sleep characterized by absent snoring
and sleepiness, cardinal symptoms of sleep apnea syndrome, may serve as a
surrogate indicating absence of under-diagnosed and poorly captured
clinical sleep-disordered breathing conditions. Correspondingly, SHS-PC2
showed strong inverse (causal) associationswith adiposity-relatedmeasures
like BMI, consistent with the strong association between OSA and obesity.
Likewise, SHS-PC2 was the SHS most sensitive to BMI adjustment, which
nevertheless only modestly attenuated estimated GWAS effects. SHS-PC2
had inverse genetic correlations with cardiometabolic traits, notably type 2
diabetes, which has previously been linked bidirectionally to OSA49.
Enrichment analyses also link SHS-PC2 with neuronal pathways and hip-
pocampal volume, suggesting neurological involvement in OSA, and with
connective-tissue genes (collagen pathway) and traits (adolescent idiopathic
scoliosis, aortic root size), consistent with a role for connective tissue in
pharyngeal collapsibility related to sleep-disordered breathing50.

SHS-PC3 largely recapitulates chronotype and confirmed known
associations with circadian genes and pathways. It is notable that chron-
otype was largely independent not only from other SHS-PCs but was also
more weakly genetically correlated with phenome-wide health outcomes,
while being moderately genetically correlated with healthy lifestyle beha-
viors, such as physical activity and time spent outdoors in summer.

Though SHS-PC4 and SHS-PC5 have more complex interpretations
due to both positive and negative loadings on healthy sleep traits, they were
nonetheless roughly as heritable as the least heritable individual trait
(sleepiness) and contributednovel geneticfindings. SHS-PC4, interpreted as
snoring without sleepiness, showed genetic enrichment in neurotransmis-
sion pathways and craniofacial structure, suggestingmechanisms that could
lead to sleepiness without snoring, and/or snoring without sleepiness. The
latter would be consistent with a sleep-disordered breathing phenotype
resulting from reduced craniofacial dimensions that cause pharyngeal
narrowing and turbulent airflow (or snoring) without the severe airway
collapsibility, sleep fragmentation, and inflammation characteristic of
obstructive sleep apnea syndrome51,52.

SHS-PC5, characterized by short sleep without insomnia, was geneti-
cally correlatedwith later objective sleepmidpoint and fewer accelerometry-
measured sleep episodes, as well as positive genetic correlations with mar-
kers of cognitive decline, including memory loss, cerebrospinal fluid t-tau
levels, and Alzheimer’s disease, and with enrichment of genes in the gap
junction pathway, implicated in amyloid-β clearance by astrocytes in Alz-
heimer’s disease (AD)53. Additionally,MR showed a potential reverse causal
association between AD and SHS-PC5. This suggests that SHS-PC5 may
characterize shorter, delayed sleep, without insomnia symptoms, indicative
of acceleratedbrain aging, rather than a natural short sleep or ‘super-sleeper’
phenotype3. The low likelihood of insomnia in this subtype is consistent
with lack of consistent data implicating insomnia in cognitive decline,
potentially due to the heterogeneity of conditions underlying insomnia.

Colocalization analyses revealed selective cases of shared regulation, but
also pointed to sometimes differing relationships with underlying components,
particularly in the special cases of PC2 vs PC4, and PC1 vs PC5, which share
underlying traits with opposite loadings. For example, DLEU7, proximal to
rs592333, colocalized opposite associations with PC2 and PC4, consistent with
a role in snoring (which loaded positively in PC4 and negatively in PC2) and
consistent with prior associations of the DLEU7 locus with adiposity54. Con-
versely, rs1846644 colocalized positive associations with both PC2 and PC4 at
the KSR2 locus, a gene highly expressed in cerebellar Purkinje neurons55,
suggesting a link to sleepiness regardless of the presence of snoring, in keeping
with a role for Purkinje neurons in sleep-wake transition56. Similarly, for SHS-
PC1 and PC5, PAX8 colocalized with opposite directions, in keeping with
opposite loadings on sleep duration, while MEIS1 colocalized with similar
direction in keeping with consistent loading on insomnia.

Several additional findings pointed to mechanisms shared across SHS
indicating broad-based involvement in sleep health. For example, PC2 and
PC4 at the KSR2 locus, a gene highly expressed in cerebellar Purkinje
neurons, which were again implicated in PC1 by two novel loci, ANKFY1
andWDR73/ZNF592, suggesting cerebellar regulation of sleepmaintenance
efficiency. Additional findings consistently reinforced the role of neural
development, as well as consistently implicating neurotransmitters and
synaptic signaling. The association of SHS-PC2 with FCHO1 at rs12979056
gives further support for a role of clathrin-coat vesicle transport in sleep
health, presumably in synaptic function, a mechanism previously impli-
cated by the STON1-GTF2A1L, TOR1A, TOR1B, AP2B1 (PC3) and AP3B2
(PC1) loci. Pathways and genes related to MAPK, GAP-junction, immune
signaling, and energy metabolism processes were found to associate across
multiple SHS. Interestingly, the two identified novel functional variants,
rs8074498 in PC1 and rs138572890 in PC5, the PC phenotypes loading on
duration/insomnia, were connected to glucose transporters (respectively
GLUT4 andGLUT1). Moreover, enrichment analysis for individual SHS all
highlighted gene expression in brain tissues and cells, and associations with
metabolic, inflammatory, and psychiatric traits, which reinforce critical
roles for central nervous system,metabolic, and immune systemfunctionon
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sleep regulation. Multi-trait genetic correlation analyses further suggested
more broadly interrelatedness of sleep health with overall health, lifestyle,
behavioral and psychological traits, as well as pain, physical frailty, and
deconditioning. However, some caution is warranted as some apparent
genetic relationships could be induced by factors relating to the subjective
rating of sleep health, remaining heterogeneity within SHS traits, or unad-
justed confounders, including remaining population stratification57.

This study has several limitations. First, SHS-PCs incorporated sleep
traits in a linear fashion, which may not reflect the complexity of their
contribution to sleep health, e.g., the U-shaped contribution of sleep
duration asmodeled in SHS-ADD. Second, SHS-PCs only focus onfive self-
reported sleep questions to maximize sample size and to be more com-
parable to SHS-ADD as previously published on in UKB by using the same
underlying sleep phenotypes. This could limit our ability to fully capture a
comprehensive sleep health composite, due to limitations of subjective
assessment or the ability of these questions to fully capture well-being in
sleep health. Third, the data-driven PC approach may limit generalizability
across different studies and populations. We were able to identify HCHS/
SOL as having similar questionnaire data, however, PC loading general-
ization to this cohort was challenging due to population and age differences.
A potentially productive approach to future validation studies would be to
average PC loadings across different studies in a meta-analysis58. None-
theless, using the same PC loading in UKB, we did not replicate individual
GWS loci but validated the PRSs constructed by genome-wide variants.
Lastly, we note that the SHS-PCs were based on phenotypic correlations,
which could limit the ability to derive heritable composite phenotypes.
However, in a sensitivity analysis we constructed sleep scores informed by
genetic correlations using the ‘maxH’ maximally heritable approach45, for
which the loadings and heritability of the derived phenotypes were
numerically and qualitatively similar. Nonetheless, genetic correlation
information could be valuable in future research integrating additional
objective sleep-related phenotypes.

In summary, this study introduces a novel approach to understanding
sleep genetics using PC-based SHS, which effectively distinguishes differing
mechanismsof distinct, domain-specific sleep-related traits. In keepingwith
the large influence of insomnia (related to SHS-PC1) and sleep apnea
(related to PC2) on sleep health in the population, along with the inde-
pendent role of chronotype (PC3), our approach appears to have enhanced
genetic discovery by separately targeting these domain-specific sleep health
scales. Future research involving SHSs incorporating accelerometry data
and other objectively measured sleep and activity data may provide
enhanced targeting of psychosocial domains and neuroregulatory sleep
mechanisms, resulting in further genetic discovery.

Methods
Population and study design
The discovery analysis was conducted on participants of European ancestry
from the UK Biobank study59. The UK Biobank is a prospective study that
has enrolled over 500,000 people aged 40–69 living in the United Kingdom.
Baseline measures collected between 2006–2010, including self-reported
heath questionnaire and anthropometric assessments, were used in this
analysis. Participants taking any self-reported sleep medication (described
before7,8,10) were excluded. The UK Biobank study was approved by the
National Health Service National Research Ethics Service (ref. 11/NW/
0382), and all participants provided written informed consent to participate
in the UK Biobank study.

Genotype
DNA samples of 502,631 participants in the UK Biobank were genotyped on
two arrays: UK BiLEVE (807,411 markers) and UKB Axiom (825,927
markers). 488,377 samples and 805,426 genotyped markers passed standard
QC60 and were available in the full data release. 452,071 individuals of
European ancestry (based on K-means clusters on genomics PCs) were
studied with available phenotypes and genotyping passing quality control.
SNPs were imputed to a combined Haplotype Reference Consortium (HRC)

and 1000 Genome panel. SNPs with minor allele frequency (MAF) > 0.001,
BGEN imputation score >0.3, maximum per SNP missingness of 10%, and
samples with a per-sample missingness of 40% were kept in the GWAS.

Sleep trait assessment
The UK Biobank baseline questionnaire assessed chronotype, sleep dura-
tion, insomnia symptoms, snoring, and excessivedaytime sleepiness via self-
report responses. Self-reported sleep duration was recorded as an integer-
valued variable via responses to the question “About howmany hours sleep
do you get in every 24 h? (please include naps).” The remaining questions
had ordinal responses, which were assigned to an integer scale as follows.
Chronotype (morningness): “Do you consider yourself to be:” -2. Definitely
an ‘evening’person; -1.More an ‘evening’ than a ‘morning’person; 0.Donot
know; 1. More a ‘morning’ than an ‘evening’ person; 2. Definitely a
‘morning’ person; NA. Prefer not to answer. Insomnia Symptoms: “Do you
have trouble falling asleep at night, orwake up in themiddle of the night?” 1.
Never/rarely; 2. Sometimes; 3. Usually; NA. Prefer not to answer. Snoring:
“Does your partner or a close relative or friend complain about your
snoring?” 1. Yes; 0.No;NA.Donot knoworPrefer not to answer. Subjective
daytime sleepiness: “How likely are you to doze off or fall asleep during the
daytimewhen youdon’tmean to? (e.g. whenworking, reading, or driving?)”
0. Never/rarely; 1. Sometimes; 2. Often; 3. All of the time; NA. Do not know
or Prefer not to answer. Individuals with any missingness (NA) from any
sleep questionnaires were excluded from the analysis.

Sleep health score construction
For the UK Biobank additive sleep health score (SHS-ADD), consistent with
previous studies5,13, we assigned one point to each of five positive sleep traits, as
follows: Chronotype: More a ‘morning’ than an ‘evening’ person or Definitely
a ‘morning’ person; Sleep Duration: from 7 to 8 h (inclusive); Insomnia
Symptoms: Never/rarely; Snoring: No; Subjective daytime sleepiness: 0. Never/
rarely. No subjects were excluded; those who did not report the positive
attributes were coded as zero for that trait. The final SHS-ADD rating is the
total number of positive sleep traits for each individual on a scale of 0-5. We
performed principal component analysis of the above-described integer-scale
self-report sleep question responses, after centering and scaling to standardize
each response tomean zero, variance one, to compute SHS-PC1 through SHS-
PC5. SHS-PCs were oriented so that they were positively correlated with self-
assessed overall health (UKB Data-Field 2178: Overall health rating).

Covariate measurements
Covariates used in the sensitivity analyses included potential confounders
(depression, socio-economic deprivation based on residential area, alcohol
intake frequency, smoking status, caffeine intake, employment status,
marital status, neurodegenerative disorders, and use of psychiatric medi-
cations). Depression was recorded as a binary variable (yes/no) corre-
sponding to question “Ever depressed for a whole week?”. Social economic
status was measured by the Townsend Deprivation Index based on aggre-
gated data from national census output areas in the UK. Alcohol intake
frequency was coded as a continuous variable corresponding to “daily or
almost daily”, “three or four times a week”, “once or twice a week”, “once to
three times a month”, “special occasions only”, and “never” drinking alco-
hol. Smoking status was categorized as “current’, “past”, or “never” smoked.
Caffeine intakewas coded continuously corresponding to self-reported cups
of tea/coffee per day. Employment status was categorized as “employed”,
“retired”, “looking after home and/or family”, “unable to work because of
sickness or disability”, “unemployed”, “doing unpaid or voluntarywork”, or
“full or part-time student”. Neurodegenerative disorder cases (N = 517)
were identified as a union of International Classification of Diseases (ICD)-
10 coded Parkinson’s disease (G20-G21), Alzheimer’s disease (G30), and
other degenerative diseases of nervous system (G23, G31-G32).

Accelerometry data
Accelerometry data were collected using Axivity AX3 wrist-worn triaxial
accelerometers in 103,711 individuals from the UK Biobank for up to 7 days,
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3–10 years after baseline61. Sleep period time (SPT)-window and activity
levels were extracted using a heuristic algorithm using the R package GGIR62.
Briefly, for each individual, a 5-min rolling median of the absolute change in
z-angle (representing the dorsal-ventral direction when the wrist is in the
anatomical position) across a 24-h period. The 10th percentile of the output
was used to construct an individual’s threshold, distinguishing periods with
movement from non-movement. Inactivity bouts were defined as inactivity
of at least 30min duration. Inactivity bouts with gaps of less than 60min
were combined into blocks. The SPT-window was defined as the longest
inactivity block, with sleep onset as the start of the block and waking time as
the end of the block. This algorithm provides comparable estimates of sleep
onset time, waking time, SPT-window duration, and sleep duration within
the SPT-window with polysomnography-derived metrics62. After quality
control based on missingness, wear time, and calibration, eight metrics were
generated and analyzed in this study, namely: M10 (midpoint of the 10
consecutive hours of maximum activity), L5 (midpoint of the 5 consecutive
hours of minimum activity), sleep midpoint, sleep duration, sleep efficiency,
diurnal inactivity, number of nocturnal sleep episodes, and sleep regularity
index (accounting for wake after sleep onset and daytime napping63).

Genome-wide association analysis
We performed a genome-wide association analysis (GWAS) of six SHS
traits as continuous variables using linear mixed regression models
adjusting for age, sex, genotyping array, 10 PCs, and genetic relatedness
matrix in BOLT-LMM. Association testing was based on p-value from the
non-infinitesimal mixed model association test provided in the BOLT-
LMMoutput. Reference 1000 genome European-ancestry (EUR) LD scores
and genetic map (hg19) were utilized in this analysis. X-chromosome data
were imputed and analyzed separately (with males coded as 0/2 and female
genotypes coded as 0/1/2) using the same analytical approach in BOLT-
LMM as was done for analysis of autosomes. FUMA was used to annotate
the genome-wide significant (GWS) risk loci (p < 5e-8), lead independent
SNPs (r2 < 0.1), and all SNPs in LDwith independent SNPs (r2 ≥ 0.6)within
a genomic region (including ANNOVAR functional consequence, CADD
score, RegulomeDB score, as well as 15 chromatin states, and GWAS Cat-
alog associations). LD is derived from the built-in “UKB/release2b
EUR_10k” referencepanel.GWAS lociwere defined inFUMA18 bymerging
LD blocks within 250 kb of one another.We compared the GWS loci to loci
reported by biobank-based GWAS of sleep traits published by June 2022,
including insomnia8,9, sleep duration7, daytime sleepiness10, chronotype12,
snoring11, daytime napping64, obstructive sleep apnea (OSA)65, restless legs
syndrome (RLS)66, and prior SHS-ADD in UKB unrelated individuals13.
GWS loci with a lead variant at least 500 kb from any of the previously
published GWS sleep variants were noted as unreported. To account for
performing six simultaneous GWAS, we report significant novel loci
defined as the unreported loci passing a stricter significant threshold cor-
recting for six traits (p < 8.3e-9).

The constructed SHS traits, as sums of ordinal and integer-valued
variables, were somewhat non-normal, which has the potential to affect
Type-I error. Consistent with prior UKB-GWAS of ordinal sleep pheno-
types, conductingGWASusing linearmixedmodels implemented in BOLT
is expected to mostly ameliorate this concern. BOLT has previously been
shown to preserve Type-1 error adequately for non-normal ordinal and
binary phenotypes, as long as the sample sizes in different groups not
markedly imbalanced67.

Gene mapping and gene-based analysis
We used FUMA tomap SNPs with r2≥ 0.6 with the lead-independent SNP in
each locus to genes using three methods: positional mapping (≤10 kb), cis-
eQTL (≤1Mb) in GTEx v8 tissues (FDR< 0.05), and 3D Chromatin inter-
action (CI) in 127 tissue/cell types (FDR<1e-6). We also looked up ensemble
phenotypes using R biomaRt package and drug interaction evidence using
DGIdb for mapped genes. We next performed a supplementary gene-based
association analysis using genome-wide summary statistics using MAGMA20

in FUMA. Input SNPs were mapped to 18,931 protein-coding genes.

Genome-wide significance level was defined as p< 0.05/18,931= 2.641e-6.
Gene-level association results were used to aid prioritization of genes at loci
identified as significant in the primary SNP-level multi-GWAS analysis.

Gene set enrichment analysis
Weperformedpathway enrichment analysisusingPASCAL,which estimated
a combined association p-value from the summary statistics ofmultiple SNPs
in a gene43. Significant KEGG, Reactome, and BIOCARTApathways for each
SHS traitwere identified using empirical p < 0.05.We also performed gene set
enrichment analysis on positional, eQTL and CI-mapped genes in FUMA
MAGMA20 adjusted for gene size. Significant tissues were identified using
p < 0.05/54/6 accounting for 54 tissues in GTEx v8 and six traits. Significant
pathways (KEGG, Reactome, and GO pathways in MSigDB), and GWAS
gene set (GWAS Catalog) were identified using adjusted p < 0.05. PASCAL
pathway enrichment incorporates effect sizes and LD at individual loci,
whereas FUMAMAGMAgene set enrichment is basedonlyon theoverlap in
sets of associatedgenes anddoesnot account forLD, impacting interpretation.

Colocalization analysis
Weperformed colocalization analysis across SHS traits usingHyPrColoc68 and
genome-wide summary statistics to assess the shared genetic risk factors. Given
the independence of the SHS-PCs, we expected less colocalization and for
colocalized loci to reflect pleiotropic effect and play a central regulatory role.

Sensitivity analyses
Sensitivity analyses of all GWS loci were performed additionally adjusting for
potential confounders (including adiposity, socio-economic status, alcohol
intake frequency, smoking status, caffeine intake, employment status, marital
status, and psychiatric problems) individually in 308,902 unrelated indivi-
duals using PLINK in additional to adjusting for age, sex, genotyping array
and 10 PCs in PLINK 1.9. We used a hard-call genotype threshold of 0.1,
SNP imputation quality threshold of 0.80, and aMAF threshold of 0.001.We
also performed the analysis excluding shift workers and individuals with
chronic health or psychiatric illnesses (N= 115,297) and in males
(N= 145,196) and females (N = 163,716) (without adjusting for sex).

Genetic risk score analysis
We constructed a weighted Genetic Risk Score (GRS) comprised of GWS
loci for each SHS and tested for associations with other self-reported sleep
traits (sleep duration, long sleep duration, short sleep duration, insomnia,
chronotype, and snoring), and 7-day accelerometry traits in the UK Bio-
bank. Association testing was conducted in a sample overlapping with
sample which was used for the SHS GWAS, consisting of the available
unrelated complete-case subset of UKB for each tested outcome. Weighted
GRS analyses were performed by summing the products or risk allele count
multiplied by the effect estimate reported in the SHS GWASs using R
package gtx (http://cran.nexr.com/web/packages/gtx/gtx.pdf). We also
tested the GRSs of reported loci for sleep traits using the same approach.

Genetic correlation analysis
We estimated genetic correlations among SHS and with other self-reported
and accelerometry sleep traits using LDSC44 and genome-wide SNPsmapped
to the HapMap3 reference panel. To understand the genetic overlap with a
range of common health problems, we selected 381 representative UKB traits
by choosing the 232 most heritable traits using UKB hierarchical phenotype
categories (selecting at most one ‘level’ per phenotype, at most 5 phenotypes
per phenotype category, and at most 25 phenotypes per category group), as
well as all 195 (partly overlapping) traits in the PanUKBB maximally inde-
pendent set of phenotypes (https://pan.ukbb.broadinstitute.org/blog/2022/
04/11/h2-qc-updated-sumstats/index.html). Of the 381 selected traits, 375
passed heritability thresholds and were carried on for LDSC analyses. Traits
passed heritability QC if stratified LD score regression in theUKB Europeans
defined in the Pan UKBB GWAS (sldsc_25bin_h2_pval_EUR) was sig-
nificant with p < 0.05/381. Multiple-testing-corrected significance level for
genetic correlation was defined as p < 0.05/375/6 = 2.2e-5.
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Mendelian randomization analysis
Bidirectional mendelian randomization (MR) analyses, as implemented in
the TwoSampleMR R package69, were conducted to investigate potentially
causal links between sleephealth and50 representative traits fromacross the
phenome, selected (prior to performing MR) based on their relationships
with sleep traits, either in prior literature, or based on results of interest from
the genetic correlation analysis. The final list of traits (below) was also
determined by manual review of availability of non-UKBGWAS summary
statistics in the IEU open GWAS project database (non-overlapping sam-
ples required for valid inference). We report associations that were sig-
nificant correcting for testing 50 phenotypes and 6 sleep health traits
(p < 0.05/300), under 2-sample inverse variance weighted (IVW) metho-
dology, while also requiring effects estimated under MR-Egger to be con-
sistent indirection, and that theputative causal directionwasnot invalidated
in a Steiger directionality test, such that the selected instruments for the
exposure had a greater R2 variance explained in the exposure phenotype
than the outcome phenotype (neither the MR-Egger nor Steiger tests were
required to be statistically significant). SNP heterogeneity was evaluated by
Cochran’s Q (for IVW)70 and Rücker’s Q’ (for MR-Egger)71 statistics.
Horizontal pleiotropy was assessed by MR-Egger intercept.

The following GWAS traits were selected for MR from the IEU open
GWAS project database: finn-b-R18_COUGH: Cough, finn-b-RX_CODEI-
NE_TRAMADOL: Codeine or tramadol medication, ieu-a-73: Waist-to-
hip ratio, ieu-b-103: HbA1C, finn-b-F5_NEUROTIC: Neurotic, stress-
related and somatoform disorders, ieu-a-832: Rheumatoid arthritis,
ieu-a-962: Ever vs never smoked, finn-b-G6_PARKINSON_EXMORE:
Parkinson’s disease (more controls excluded), ieu-a-44: Asthma, ieu-b-18:
multiple sclerosis, ieu-a-89: Height, finn-b-KRA_PSY_ANXIETY:
Anxiety disorders, ebi-a-GCST002216: Triglycerides, finn-b-R18_PAIN_-
THROAT_CHEST: Pain in throat and chest, ieu-b-2: Alzheimer’s disease,
finn-b-ANTIDEPRESSANTS: Depression medications, finn-b-Z21_PER-
SONS_W_POTEN_HEALTH_HAZARDS_RELATED_SOCIO_PSYCHO-
SO_CIRCUMSTANC: Persons with potential health hazards related to
socioeconomic and psychosocial circumstances, finn-b-K11_DIVERTIC:
Diverticular disease of intestine, ieu-a-113: Neo-agreeableness, ieu-a-115:
Neo-extraversion, ieu-a-1009: Subjective well-being, finn-b-PAIN: Pain (limb,
back, neck, head abdominally), finn-b-ALCOHOL_RELATED: Alcohol
related diseases and deaths, all endpoints, ieu-b-4855: FEV1/FVC, ieu-a-294:
Inflammatory bowel disease, ieu-a-16: Childhood intelligence, finn-b-
F5_SUBSNOALCO: Substance use, excluding alcohol, finn-b-F5_PANIC:
Panic disorder, ieu-a-114: Neo-conscientiousness, ieu-b-4859: Physical
activity, ieu-a-116: Neo-neuroticism, finn-b-F5_GAD: Generalized
anxiety disorder, finn-b-I9_IHD: Ischemic heart disease, wide definition,
finn-b-F5_DEPRESSIO: Depression, ieu-b-4820: Age at first birth, ebi-a-
GCST002223: HDL cholesterol, ieu-a-1001: Years of schooling, finn-b-
RX_PARACETAMOL_NSAID: Paracetamol of NSAID medication,
ebi-a-GCST003116: Coronary artery disease, ieu-b-38: systolic blood pressure,
ieu-b-41: bipolar disorder, finn-b-M13_ENTESOPATHYLOW: Entheso-
pathies of lower limb, excluding foot, ieu-b-73: Alcoholic drinks per week,
finn-b-K11_REFLUX: Gastro-esophageal reflux disease, finn-b-E4_DIA-
BETES:Diabetesmellitus, ieu-a-1095: Age atmenarche, ieu-a-835: Bodymass
index, ieu-a-117: Neo-openness to experience, ieu-b-39: diastolic blood
pressure, ebi-a-GCST002222: LDL cholesterol

Replication analysis
HCHS/SOL is a community-based study in theUSA,which includes 16,415
adults aged 18–74 with self-identified Hispanic/Latino background72,73.
Individuals were recruited from randomly selected households near four
centers inMiami, SanDiego, Chicago and theBronx area ofNewYork. Self-
reported sleep duration, insomnia (assessed by Women’s Health Initiative
InsomniaRatingScale [WHIIRS]), daytime sleepiness (assessed byEpworth
Sleepiness Scale [ESS]), and snoring were collected in 13,268 individuals at
baseline. Chronotype was only available in 1855 individuals enrolled in the
Sueño sleep ancillary study.

We converted the sleep data in HCHS/SOL to UKB scale. For
insomnia, we used two questions that were part of the WHIIRS ques-
tionnaire in the HCHS/SOL: (1) “Did you have trouble falling asleep?” (2)
“Didyouwakeup several times at night?”. Eachquestionprovided5 choices:
1. No, not in the past four weeks; 2. Yes, less than once a week; 3. Yes, 1 or 2
times a week; 4. Yes, 3 or 4 times a week; 5. Yes, 5 ormore times a week.We
converted the sum score of the two questions (2–10) to UKB scale as:
2–4 = “Never/rarely”; 5–8 = “Sometimes”; 9–10 = “Usually”. For sleepiness,
we converted the ESS score (0–24) to UKB scale as: 0–10 = “Never/Rarely”;
11–14 = “Sometimes”; 15–18 = “Often”; 19–24 = “All the time”. For snor-
ing, we converted the 4-level answers for the question “How often do you
snore now?” toUKBscale as: 0 if the answerwas “Never”or “Rarely” and1 if
the answer was “Sometimes” or “Always”. Chronotype was collected in
Sueño using the same questionnaire to UKB. We performed multiple
imputation to calculate and impute themissing chronotype in the rest of the
samples in HCHS/SOL (N = 11,413) using chained equations method with
linear regression on relevant variables, specifically, sex, age, BMI, and four
sleep timing questions “What time do you usually go to bed in the week-
day?”, “What timedoyouusually go tobed in theweekend?”, “What timedo
you usually wake up in theweekday?”, and “What time do you usually wake
up in the weekend?”. We found the post-imputation distribution of the
chronotype responses matched those observed in Sueño. We then con-
structed SHS in HCHS/SOL using the same loadings from UKB.

Of the 13,268 individuals with imputed phenotype data, 11,144 indivi-
duals with genotype data and consented to genetic research are available for
replication. Genotyping was conducted using an Illumina Omni2.5M SNP
array with additional customized content, including 2,536,661 SNPs and
imputed to TOPMed reference panel using TOPMed imputation server.
Genetic association analysis for the 400GWS loci were performed using linear
mixed model in R Genesis software adjusting for age, sex, study center,
samplingweights, five principal components of genetics representing ancestry,
with random effects corresponding to kinship, household, and block unit.

We construct Polygenetic risk score (PRS) for each SHS trait in the
HCHS/SOL data using Polygenic Risk Score–Continuous Shrinkage (PRS-
CS)74 with the UKB SHS genome-wide summary statistics and the 1000
GenomeEuropean linkagedisequilibrium(LD) referencepanel. PLINKwas
used to compute the PRS scores by summing the product of the effect allele
count and the effect size across all SNPs in the PRS.

ValidationofSHSPRSonclinicalphenotypes inaclinical biobank
The Mass General Brigham (MGB) Biobank is a clinical biobank enriched
for disease states supplementedwith genetic data from theMGB healthcare
network inMassachusetts. Since 2009, patients have been recruited through
online channels or in person fromvariousMGBcommunity-basedprimary
care facilities and specialty tertiary care centers. Among the enrolled
patients, a subset (n = 64,639) providedblood samples for genotyping.DNA
extracted from samples was genotyped using the InfiniumGlobal Screening
Array-24 version 2.0 (Illumina). Imputation was carried out through the
Michigan Imputation server with the Trans-Omics for Precision Medicine
(TOPMed) (version r2) reference panel, and haplotype phasing was per-
formed using Eagle version 2.3. Low-quality genetic markers and samples
were excluded75. Pairs of related individuals (kinship > 0.0625) were iden-
tified, and one sample from each related pair was excluded75. To correct for
the population substructure, principal components of ancestry were com-
puted using TRACE and the Human Genome Diversity Project76,77. Indi-
viduals with non-European ancestry were excluded to limit genetic
heterogeneity in the present analysis.

Among 47,082 adult patients included in the present analysis (mean
age = 60.4 ± 17.0; 53.8% female), PRS for each SHS trait were generated
usingPRS-CS74. Case ascertainment for sleepdisorderswas basedon clinical
phenotypes identified from ICD-9/-10 billing codes and mapped to Phe-
WAS codes (i.e., “phecodes”) based on clinical similarity generated by the
PheWAS R package78. A total of 13 sleep disorders were considered in the
analysis. For each disorder, participants with at least two codes were set as
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cases, and those with no relevant codes were set as controls. Associations
between the PRSs and each disorder were tested via the Wald test using
logistic regressions adjusted for age, sex, genotyping array, batch, andPCs of
ancestry. Significance was determined using Bonferroni-adjusted P values
for the total number of tests (0.05/(6 PRSs × 13 phenotypes) = 6.4e-4).

Comparison with composite sleep health scores constructed
using genetic correlations in addition to phenotypic correlations
We applied the MaxH method45 to our phenotypic and genetic data to
construct linear combinations of the self-reported sleep phenotypes that
maximize heritability of the composite, subject to an independence constraint.
From BOLT-REML analyses conducted with the regression model corre-
sponding to the GWAS described above, we obtained the residual phenotypic
covariance in the analytic sample for sleep duration, insomnia, snoring,
sleepiness, and chronotype, as well as the corresponding genetic covariance.
The heritability-optimized MaxH phenotype loadings were derived from
eigenvectors of the Rayleigh quotient matrix, following the MaxH method.
Calculations were done in base R, from BOLT-REML outputs.

Statistics and reproducibility
Statistic used are as described above. P-values calculated from the described
regression models are based on Wald tests of the appropriate parameter,
unless otherwise specified. Reproducibility was maintained by use of ver-
sioned scripts and packagemanagement systems, such as the R package renv.

Data availability
Summary GWAS statistics are publicly available at the Sleep Disorder
Knowledge Portal (http://sleepdisordergenetics.org/).

Code availability
The code used in this study is customized from standard genetic software
(listed below) and is available for sharing upon reasonable request.
BOLT-LMM, FUMA, HyPrColoc (https://github.com/cnfoley/hyprcoloc),
LDSC, PASCAL, PLINK 1.9 (https://www.cog-genomics.org/plink/), PRS-
CS (https://github.com/getian107/PRScs), R package bioMart (https://
bioconductor.org/packages/release/bioc/html/biomaRt.html), R package
GENESIS, R package PheWAS (https://github.com/PheWAS/PheWAS), R
package TwoSampleMR (https://mrcieu.github.io/TwoSampleMR).
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