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Abstract
Objective
To determine whether transcriptional risk scores (TRSs), a summation of polarized expression
levels of functional genes, reflect the risk of Alzheimer disease (AD).

Methods
Blood transcriptome data were from Caucasian participants, which included AD, mild cognitive
impairment, and cognitively normal controls (CN) in the Alzheimer’s Disease Neuroimaging
Initiative (ADNI, n = 661) andAddNeuroMed (n = 674) cohorts. To calculate TRSs, we selected
functional genes that were expressed under the control of the AD risk loci and were identified as
being responsible for AD by using Bayesian colocalization and mendelian randomization
methods. Regression was used to investigate the association of the TRS with diagnosis (AD vs
CN) and MRI biomarkers (entorhinal thickness and hippocampal volume). Regression was also
used to evaluate whether expression of each functional gene was associated with AD diagnosis.

Results
The TRS was significantly associated with AD diagnosis, hippocampal volume, and entorhinal
cortical thickness in the ADNI. The association of the TRS with AD diagnosis and entorhinal
cortical thickness was also replicated in AddNeuroMed. Among functional genes identified to
calculate the TRS, CD33 and PILRA were significantly upregulated, and TRAPPC6A was
significantly downregulated in patients with AD compared with CN, all of which were identified
in the ADNI and replicated in AddNeuroMed.

Conclusions
The blood-based TRS is significantly associated with AD diagnosis and neuroimaging bio-
markers. In blood, CD33 and PILRAwere known to be associated with uptake of β-amyloid and
herpes simplex virus 1 infection, respectively, both of which may play a role in the pathogenesis
of AD.

Classification of evidence
The study is rated Class III because of the case control design and the risk of spectrum bias.
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Alzheimer disease (AD) has a strong genetic component.1

Previous studies suggest that the relative risk of AD for those
with at least 1 first-degree relative with AD is 3.5 (95%
confidence interval [CI] 2.6–4.6)2 and possibly as high as 7.5
(95% CI 3.3–16.7) when 2 or more first-degree relatives are
affected.2 Large-scale genome-wide association studies
(GWASs) have identified more than 20 AD risk loci.3,4

However, it has been challenging to perform functional
studies of AD risk loci to identify underlying molecular
mechanisms.

It is known that trait-associated single nucleotide poly-
morphisms (SNPs) are likely to be expression quantitative
trait loci (eQTL).5 The risk SNPs identified by GWASs
may contribute to the pathogenesis of disease by con-
trolling expression of nearby genes, and the tran-
scriptomic analysis to identify target genes regulated by
the risk SNPs has been used to uncover molecular
mechanisms.6 Transcriptional risk scores (TRSs), a sum-
mation of polarized expression levels of functional genes
that reflect the risk of disease, have been proposed and
used to distinguish patients with Crohn disease from
healthy subjects.6

Here, we calculated the TRS using blood-based tran-
scriptomic profiles regulated by AD risk loci to investigate
whether the TRS demonstrates an AD diagnosis group dif-
ference and is associated with AD-related neuroimaging bio-
markers in 2 independent cohorts. In addition, we evaluated
whether target genes selected to calculate the TRS are asso-
ciated with AD diagnosis.

Methods
Participants
Data used in the study were obtained from Caucasian par-
ticipants (AD, mild cognitive impairment [MCI], and cog-
nitively normal controls [CN]) in the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) and AddNeuroMed co-
horts as discovery and replication samples, respectively. The
ADNI was launched in 2003 as a public-private partnership,
led by Principal Investigator Dr. Michael W. Weiner.7 The
primary goal of the ADNI has been to test whether serial
MRI, PET, other biological markers, and clinical and neu-
ropsychological assessment can be combined to accurately

capture the progression of MCI and early AD. The Add-
NeuroMed is a cross European, public/private consortium
developed for AD biomarker discovery.8 AD was di-
agnosed clinically according to the NINCDS/ADRDA
criteria for probable AD in ADNI and AddNeuroMed.9

MCI was diagnosed when there was objective memory
impairment but without meeting the criteria for
dementia.7,8 In ADNI, participants with MCI had a Mini-
Mental State Examination (MMSE) score between 24 and
30, memory performance approximately 1 SD below
expected education adjusted norms, and a Clinical De-
mentia Rating (CDR) score of 0.5. In AddNeuroMed,
participants with MCI had an MMSE score between 24 and
30 and a CDR score of 0.5.

Genotyping and imputation
Genotyping for the ADNI and AddNeuroMed was performed
using blood DNA samples and a combination of Illumina
GWAS array platforms (Illumina Human610-Quad Bead-
Chip, Illumina HumanOmni Express BeadChip, and Illumina
HumanOmni 2.5M BeadChip).10,11 APOE genotyping was
separately conducted using previously described standard
methods to yield the APOE e4 allele defining SNPs
(rs429358, rs7412).10,11 Using PLINK 1.9 (cog-genomics.
org/plink2/),12 we also performed standard quality control
(QC) procedures for samples (sex inconsistencies and sample
call rate < 95%) and SNPs (SNP call rate < 95%, Hardy-
Weinberg p value <1 × 10−6, and minor allele frequency
[MAF] < 1%) as described previously.13 Then, to prevent
spurious associations due to population stratification, we used
multidimensional scaling analysis to select only non-Hispanic
participants of European ancestry that clustered with Hap-
Map CEU (Utah residents with Northern and Western Eu-
ropean ancestry from the Centre d’Etude du Polymorphism
Humain collection) or Toscani in Italia populations.14,15 After
QC procedures, because the 2 cohorts used different geno-
typing platforms, we imputed ungenotyped SNPs separately
in each platform using MaCH with the Haplotype Reference
Consortium data as a reference panel.16,17 Following the
imputation, we imposed an r2 value of 0.30 as the threshold to
accept the imputed genotypes.

Blood-basedRNAexpressionmicroarrayprofiling
The PAXgene Blood RNA Kit (Qiagen Inc., Valencia, CA)
was used to purify total RNA from whole blood collected in a
PAXgene Blood RNA Tube.10,18 The Affymetrix Human

Glossary
Aβ = β-amyloid; AD = Alzheimer disease; ADAS-cog13 = Alzheimer’s Disease Assessment Scale Cognitive Subscale 13;
ADNI = Alzheimer’s Disease Neuroimaging Initiative; CDR = Clinical Dementia Rating; CI = confidence interval; CN =
cognitively normal controls; eQTL = expression quantitative trait loci; gB = glycoprotein B;GWAS = genome-wide association
study;HSV-1 = herpes simplex virus 1; ITIM = immunoreceptor tyrosine-based inhibitory motif; LD = linkage disequilibrium;
MAF = minor allele frequency;MCI = mild cognitive impairment;MMSE =Mini-Mental State Examination;OR = odds ratio;
QC = quality control; SMR = summary data–based mendelian randomization; SNP = single nucleotide polymorphism; SUV =
standardized uptake value; TRS = transcriptional risk score.
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Genome U219 Array (Affymetrix, Santa Clara, CA) in the
ADNI and the Illumina Human HT-12 v3 Expression
BeadChips (Illumina Inc., San Diego, CA) in AddNeuroMed
were used for expression profiling.10,18 All probe sets were
mapped and annotated to the human genome (hg19). Raw
expression values were preprocessed using the robust mul-
tichip average normalization method and robust spline
normalization method in the ADNI and AddNeuroMed,
respectively.19,20 We evaluated discrepancies between the
reported sex and sex determined from sex-specific gene ex-
pression data, including XIST and USP9Y. We also de-
termined whether SNP genotypes were matched with
genotypes predicted from gene expression data.19 After QC,
the RNA expression profiles, which contained 21,150 probes
in the ADNI and 5,141 probes in AddNeuroMed, were
preadjusted with batch effects and RNA integrity number
values using linear regression. Finally, if a gene contained
more than 1 microarray probe, we selected only the probe
with the greatest variance.

Selection of AD-associated SNPs and
candidate genes
To select AD-associated SNPs, we started by considering 29
SNPs that had genome-wide significant associations (p < 5 ×
10−8) in a recent AD GWAS meta-analysis3 and 406 SNPs
that were in strong linkage disequilibrium (LD) (r2 > 0.8)
with them. Then, after pruning the 435 SNPs by removing
SNPs in LD (r2 > 0.1) using LDlink 3.7 (ldlink.nci.nih.gov),
we were left with 24 AD-associated SNPs. In addition, we
selected SNPs (2,533, 3,288, 4,968, 9,909, 29,894, and
175,262 SNPs) that were associated with AD in the GWAS
with p values less than 1 × 10−7, 1 × 10−6, 1 × 10−5, 1 × 10−4, 1
× 10−3, and 1 × 10−2, respectively.3 After pruning, we had 92,
115, 188, 617, 3,237, and 20,978 AD-associated SNPs, re-
spectively. Then, using the public blood eQTL database
from CN (genenetwork.nl/bloodeqtlbrowser), we identified
candidate genes that are located within ±1 Mbp of AD-
associated and pruned SNPs that have a direct impact on
gene expression (false discovery rate–corrected p < 0.05 for
eQTL).20,21

Selection of target genes from AD-associated
candidate genes using COLOC and summary
data–based mendelian randomization
A significant association between an SNP and a gene from
the aforementioned integration of AD GWAS summary
statistics and the blood eQTL database does not necessarily
imply that a gene is associated with AD. Therefore, to de-
termine whether a gene regulated by an SNP is associated
with AD, we estimated the colocalization of signals using
COLOC and summary data–based mendelian randomiza-
tion (SMR).6 We applied both methods to distinguish target
genes from candidate genes. COLOC uses a Bayesian
framework that calculates posterior probabilities for hy-
potheses about the presence and sharing of causal SNPs by
GWAS summary statistics and eQTL data.22 We selected
genes supporting the hypothesis of 1 causal SNP common to

both AD diagnosis (AD vs CN) and gene expression with
80% or greater posterior probability (H4 > 80%).6 The SMR
combines GWAS summary statistics and eQTL data to
identify target genes whose expression levels are associated
with AD diagnosis (AD vs CN).23 Multiple testing correc-
tion was performed using the Bonferroni method (pSMR <
8.4 × 10−6).

Calculation of the TRS
We calculated the TRS using the following steps.6 First, we
transformed expression levels of each gene into a normal distri-
bution with a mean of 0 and variance of 1. Then, we used the
eQTL activity of AD-associated SNPs to infer the direction of risk
at each gene selected for theTRS. The concept of high expression
and low expression was used to denote whether an AD risk allele
was associated with increased (high expression) or decreased
(low expression) gene expression levels. In rare cases, genes were
labeled as both high expression and low expression because the
same gene could be associated with different SNPs in the eQTL
data. Genes with both labels were excluded from the analysis.
Next, we polarized gene expression levels by changing the sign of
the expression levels (z-score) for genes labeled as low expres-
sion. Thus, elevated risk from gene expression, irrespective of the
direction of risk, could be additively incorporated in the TRS.
Finally, we calculated the TRS for each individual by summing
the polarized z-scores over the corresponding genes.

Statistical analysis
We performed logistic regression analysis to compare the TRS
of AD with CN and made violin plots that included MCI. We
then performed linear regression analysis to evaluate whether
the TRS is associated with the following AD biomarkers: (1)
hippocampal volume and entorhinal cortical thickness mea-
sured from T1-weighted brain MRI scans using FreeSurfer
version 5.1 (surfer.nmr.mgh.harvard.edu),24 (2) global cortical
amyloid accumulation as mean standardized uptake values
(SUVs) using preprocessed (coregistered, averaged, standard-
ized image and voxel size, uniform resolution) [18F] florbetapir
PET scans with a whole cerebellum reference region,25 and (3)
Alzheimer’s Disease Assessment Scale Cognitive Subscale 13
(ADAS-cog13).26 Covariates included age and sex. Intracranial
volumes (ICV) and MRI field strength were also used as ad-
ditional covariates for hippocampal volume and entorhinal
cortical thickness. Educational level was also used as an addi-
tional covariate for ADAS-cog13. ADAS-cog13 and amyloid
PET data were not available in AddNeuroMed. In addition, we
also performed logistic regression analysis to evaluate whether
the TRS is significantly different between patients with ADwith
positive amyloid PET (SUV ratio ≥1.17) and CNwith negative
amyloid PET (SUV ratio <1.17) in the ADNI.

Although we designated target genes as high expression and
low expression based on the integration of GWAS summary
statistics and the public blood eQTL database, expression
levels of the target genes in the ADNI and AddNeuroMed
may not be different between AD and CN. Therefore, for
target genes used to calculate the TRS, we performed logistic
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regression analysis of gene expression levels using the AD
diagnosis group, with age and sex as independent variables
and diagnosis as an outcome, to identify which genes are
significantly upregulated or downregulated in AD compared
with CN. We also used a heatmap to visualize the expression
pattern across the participants. In this study, we used R ver-
sion 3.6.0 (R-project.org) for analysis unless otherwise spec-
ified. The study is rated Class III because of the case control
design and the risk of spectrum bias.

Standard protocol approvals, registrations,
and patient consents
Written informed consent was obtained at the time of enrollment
and included permission for analysis and data sharing. The pro-
tocol and informed consent forms were approved by the In-
stitutional Review Board at each participating site. ClinicalTrials.

gov identifiers are NCT00106899, NCT01078636, and
NCT01231971.

Data availability
Anonymized data used for this study are available from the
corresponding authors on reasonable request.

Results
In this study, a total of 1,335 participants were included from 2
independent cohorts (661 from the ADNI and 674 from Add-
NeuroMed) (table 1). Using large-scale AD GWAS results and
the public blood eQTL database, we selected candidate genes
that are within ±1Mbp of AD-associated SNPs and have a direct
impact on gene expression (table 2). Then, using COLOC and
SMR (table 2), we identified target genes that have strong

Table 1 Demographics of study samples

Cohort Diagnosis N Female, n (%) Age at blood sample collection, mean (SD) RIN, mean (SD)

ADNI (N = 661) CN 213 107 (50) 76.4 (6.4) 6.91 (0.51)

MCI 345 144 (42) 73.2 (7.9) 6.98 (0.55)

AD 103 38 (37) 77.6 (7.8) 6.98 (0.64)

AddNeuroMed (N = 674) CN 243 147 (60) 74.2 (6.6) 8.96 (0.73)

MCI 208 120 (58) 75.5 (6.5) 8.50 (0.59)

AD 223 146 (65) 76.8 (6.8) 8.43 (0.64)

Abbreviations: AD = Alzheimer disease; ADNI = Alzheimer’s Disease Neuroimaging Initiative; CN = cognitively normal older adults; MCI = mild cognitive
impairment; RIN = RNA integrity number.
The mean and SD of age at onset in patients with AD in the ADNI were 75.5 and 7.83, respectively.
The table was modified from a previous study.40

Table 2 Candidate genes under control of AD-associated SNPs (±1Mbp) and target genes after applying COLOC and SMR

Criteria for selecting
AD-associated SNPs

No. of
candidate
genes Target genes identified using COLOC and SMRa

p < 5 × 1028b 17 B4GALT3c, BCKDKc, CD33, CR1c, EPHA1, MS4A2d, MS4A4A, MS4A6A, PILRA, STAG3c, and ZNF668

p < 1 × 1027 15 B4GALT3c, CD33, KLC3d, PILRA, STAG3c, and TRAPPC6A

p < 1 × 1026 18 B4GALT3c, CD33, KLC3d, PILRA, RTN2c, STAG3c, and TRAPPC6A

p < 1 × 1025 24 B4GALT3c, CD33, CTSH, HSD3B7c, KLC3d, PILRA, RTN2c, STAG3c, TRAPPC6A, and ZNF668

p < 1 × 1024 47 B4GALT3c, CD33, CTSH, HSD3B7c, KLC3d, PILRA, PLEKHA1c, RTN2c, SLC24A4d, STAG3c, TRAPPC6A, and ZNF668

p < 1 × 1023 171 B4GALT3c, BCKDKc, CD33, CTSH, HSD3B7c, KLC3d, PILRA, PLEKHA1c, PTK2B, RTN2c, SIGLEC11c, SLC24A4d,
STAG3c, TRAPPC6A, and ZNF668

p < 1 × 1022 536 B4GALT3c, BCKDKc, CD33, CTSH, EPHA1, HSD3B7c, KLC3d,MS4A2d,MS4A6A, PILRA, PLEKHA1c, PPOXc, PRR14c,
PTK2B, RTN2c, SIGLEC11c, SLC24A4d, STAG3c, TRAPPC6A, and ZNF668

Abbreviations: AD = Alzheimer disease; ADNI = Alzheimer’s Disease Neuroimaging Initiative; SMR = summary data–based mendelian randomization; SNP =
single nucleotide polymorphism.
The microarray gene expression data for MS4A2, SIGLEC11 and STAG3 were not available in ADNI. The microarray gene expression data for CR1, EPHA1,
HSD3B7, KLC3, MS4A2, MS4A4A, PPOX, RTN2, SIGLEC11, SLC24A4, STAG3 and ZNF668 were not available in AddNeuroMed.
a Unless otherwise specified, genes were identified by both COLOC and SM.
b SNPs in strong linkage disequilibrium (r2 > 0.8) with the SNPs that had genome-wide significant associations (p < 5 × 10−8) were also included for analysis.
c These genes were identified by COLOC only.
d These genes were identified by SMR only.
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evidence for colocalization of association signals. When
genome-wide significant SNPs (p < 5 × 10−8) were selected to
identify candidate AD-associated genes, the TRS of the can-
didate genes without the colocalization step was significantly
different between AD and CN in the ADNI (odds ratio [OR]
1.06, 95% CI 1.01–1.13) (table 3). However, when the TRS
was calculated only from target genes identified by COLOC,
the diagnosis group difference of the TRS was slightly larger
(OR 1.08, 95%CI 1.02–1.15). As shown in table 3 and figure 1,
when AD-associated SNPs with p < 1 × 10−7 were selected to
identify candidate genes, the diagnosis group difference of the
TRS for target genes identified by COLOC or SMR was the
largest (OR 1.18, 95% CI 1.07–1.31 for COLOC; OR 1.18,
95% CI 1.06–1.33 for SMR) (table 3 and figure 1). The result
remained significant when the TRS was compared between
patients with AD with positive amyloid PET and CN with
negative amyloid PET (OR 1.21, 95% CI 1.07–1.39 for
COLOC; OR 1.24, 95% CI 1.08–1.43 for SMR). In Add-
NeuroMed, the TRS was also significantly different between
AD and CN (table e-1, links.lww.com/NXG/A321). Further-
more, the diagnosis group difference of the TRS for target
genes identified by COLOC or SMR was the largest (OR 1.20,
95%CI 1.12–1.30 for COLOC;OR 1.23, 95%CI 1.13–1.35 for
SMR) after AD-associated SNPs were selected with p < 1 ×
10−7 or 1 × 10−6 (figure 1).

The TRS of target genes identified by COLOC or SMR was
associated withMRI-based imaging biomarkers (hippocampal
volume and entorhinal cortical thickness), cortical amyloid

accumulation and ADAS-cog13 in the ADNI (tables e-2 to
e-5; figures e-1 and e-2, links.lww.com/NXG/A321). In
AddNeuroMed, the TRS of target genes identified by
COLOC or SMR was also associated with entorhinal cortical
thickness (figure e-1 and table e-6). There was no significant
association between the TRS and the hippocampal volume in
AddNeuroMed.

Among 6 target genes identified by COLOC and SMR from
AD-associated SNPs with p < 1 × 10−7, 2 genes (CD33 and
PILRA) and 4 genes (B4GALT3, KLC3, STAG3, and
TRAPPC6A) were labeled as high expression and low expres-
sion, respectively. In the ADNI, expression levels of 2 genes
(CD33 and PILRA) were significantly increased, whereas 1 gene
(TRAPPC6A) was significantly decreased in AD compared with
CN, which was consistent with the prediction based on the
integration of GWAS and the public blood eQTL database
(figure 2, figure e-3 and table e-7, links.lww.com/NXG/A321).
Expression levels of the remaining 3 genes in ADNI were not
significantly different between AD and CN. In AddNeuroMed,
expression levels of 2 genes (CD33 and PILRA) were signifi-
cantly increased, and 2 genes (B4GALT3 andTRAPPC6A) were
significantly decreased in AD compared to CN, as predicted by
the GWAS and the eQTL database (figure 2, figure e-3 and table
e-7). Expression levels of the remaining 2 genes in AddNeur-
oMed were not significantly different between AD and CN.
Thus, the diagnosis group difference and directionality of gene
expression levels of CD33, PILRA, and TRAPPC6A that were
identified in ADNI were replicated in AddNeuroMed.

Table 3 Difference of the TRS between CN (N = 213) and AD (N = 103) according to various criteria for selecting
AD-associated SNPs in ADNI

Criteria for
selecting SNPs

TRS using all
candidate genes,
mean (SD)

OR of the TRS
(95% CI, p value)

TRS using target
genes from
COLOC, mean (SD)

OR of the TRS
(95% CI, p value)

TRS using target
genes from SMR,
mean (SD)

OR of the TRS
(95% CI, p value)CN AD CN AD CN AD

p < 5 × 1028a −0.477
(5.05)

1.10
(4.13)

1.06 (1.01–1.13,
3.02 × 10−2)

−0.467
(4.92)

1.39
(3.86)

1.08 (1.02–1.15,
6.03 × 10−3)

−0.238
(3.56)

0.807
(2.92)

1.08 (1.00–1.17,
5.01 × 10−2)

p < 1 × 1027 −0.264
(4.40)

1.11
(4.05)

1.08 (1.02–1.14,
1.33 × 10−2)

−0.209
(2.69)

0.881
(2.33)

1.18 (1.07–1.31,
1.19 × 10−3)

−0.0973
(2.39)

0.809
(2.23)

1.18 (1.06–1.33,
2.58 × 10−3)

p < 1 × 1026 −0.324
(4.90)

1.40
(4.71)

1.08 (1.02–1.14,
4.77 × 10−3)

−0.122
(2.58)

0.771
(2.35)

1.15 (1.05–1.28,
5.20 × 10−3)

−0.0973
(2.39)

0.809
(2.23)

1.18 (1.06–1.33,
2.58 × 10−3)

p < 1 × 1025 −0.339
(6.04)

1.67
(5.18)

1.06 (1.02–1.11,
7.45 × 10−3)

−0.140
(3.23)

1.25
(2.86)

1.14 (1.05–1.24,
1.44 × 10−3)

−0.139
(3.03)

1.16
(2.63)

1.16 (1.06–1.27,
1.34 × 10−3)

p < 1 × 1024 −0.644
(7.80)

1.64
(6.21)

1.04 (1.00–1.07,
3.31 × 10−2)

−0.0544
(3.00)

1.11
(2.78)

1.14 (1.05–1.24,
3.28 × 10−3)

−0.0961
(2.75)

1.04
(2.46)

1.16 (1.06–1.28,
2.20 × 10−3)

p < 1 × 1023 −0.314
(13.5)

1.47
(11.5)

1.01 (0.988–1.03,
4.89 × 10−1)

−0.228
(3.91)

1.54
(3.39)

1.13 (1.05–1.21,
7.03 × 10−4)

−0.189
(3.22)

1.26
(2.92)

1.15 (1.06–1.25,
8.73 × 10−4)

p < 1 × 1022 1.07
(24.5)

2.95
(23.4)

1.00 (0.994–1.01,
4.84 × 10−1)

−0.282
(5.38)

1.92
(4.73)

1.08 (1.03–1.14,
2.88 × 10−3)

−0.257
(3.89)

1.47
(3.44)

1.12 (1.05–1.21,
1.15 × 10−3)

Abbreviations: AD = Alzheimer disease; ADNI = Alzheimer’s Disease Neuroimaging Initiative; CI = confidence interval; CN = cognitively normal older adults; OR
= odds ratio; SNP = single nucleotide polymorphism; TRS = transcriptional risk score.
ORs and 95% CIs of the TRS were derived from the logistic regression analysis with adjustment of age and sex.
a SNPs in strong linkage disequilibrium (r2 > 0.8) with the SNPs that had genome-wide significant associations (p < 5 × 10−8) were also included for analysis.
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Discussion
In this study, we selected candidate AD-associated genes by
integrating large-scale AD GWAS summary statistics with
the public blood eQTL database. Candidate genes were
prioritized using COLOC and SMR to identify the target
genes. Then, the TRS was calculated using blood-based
transcriptome profiles of the target genes from 2 in-
dependent cohorts (ADNI and AddNeuroMed). The TRS
was not only significantly different between AD and CN but
also significantly associated with entorhinal cortical thick-
ness in both of the cohorts. When AD-associated SNPs
were selected from GWAS summary statistics with p values
less than 1 × 10−7, the TRS showed the largest associations
with diagnosis and AD biomarkers in general. In addition,
we found that expression levels of 2 genes (CD33
and PILRA) were significantly increased, and 1 gene

(TRAPPC6A) was significantly decreased in AD compared
with CN in the ADNI and AddNeuroMed, which was
consistent with the prediction based on the GWAS and the
public blood eQTL database. The expression of these genes
in peripheral blood may be associated with the corre-
sponding AD-associated SNPs and have an impact on the
pathophysiology of AD.

CD33 encodes a sialic acid–binding transmembrane glyco-
protein expressed on the surface of immune cells27 and is one
of the top-ranked AD risk genes identified by the GWAS.3 It
contains immunoreceptor tyrosine-based inhibitory motifs
(ITIMs) that inhibit cellular activity such as phagocytosis.27

As demonstrated in this study, the C (risk) allele of rs3865444
(rs3865444C) is known to be associated with increased ex-
pression levels of CD33 on peripheral blood monocytes.28

Although overall phagocytic activity of peripheral monocytes
is reported to increase in subjects with positive amyloid PET
scans compared with subjects with negative amyloid PET
scans,29 rs3865444C was found to be associated with reduced
uptake of β-amyloid (Aβ) on peripheral blood monocytes.28

This suggests that increased expression levels of CD33 by
rs3865444Cmay interfere with peripheral uptake of Aβ, which
could play a role in the pathogenesis of AD.

PILRA encodes paired immunoglobulin-like type 2 receptor
alpha that is a cell surface inhibitory receptor with ITIM on
immune cells.30 The A (protective) allele of rs1859788
(rs1859788A) is a missense mutation that causes a confor-
mational change of PILRA by a glycine-to-arginine sub-
stitution near the sialic acid–binding pocket and inhibits the
binding of ligands to PILRA.31 One of the ligands for PILRA is
glycoprotein B (gB) of herpes simplex virus 1 (HSV-1), which
is important for HSV-1 to enter the cells.30 The transfected
cells with rs1859788A had reduced binding of PILRA with
HSV-1 gB and decreased levels of HSV-1 infection.31 In ad-
dition to the conformational change of PILRA, our study
suggests that rs1859788A is associated with reduced expres-
sion of PILRA in blood. Considering that the HSV-1 infection
causes the accumulation of Aβ and phosphorylated tau,32 al-
tered expression of PILRA by rs1859788A may be protective
for AD due to decreased reactivation of HSV-1.

TRAPPC6A encodes trafficking protein particle complex 6A.
Although it is not clear how it affects the pathogenesis of AD,
genetic variation of TRAPPC6A is reported to be associated
with nonverbal reasoning.33

Given that we identified candidate and target genes from the
public blood eQTL database and calculated the TRS using
blood transcriptome data from the ADNI and AddNeuroMed
cohorts, mechanisms that were identified in this study were
observed in peripheral blood. Although AD is viewed pri-
marily as a neurodegenerative CNS disease, many systemic
manifestations have suggested that AD is a multifactorial
disease that affects both the brain and the periphery.34 In
general, the systemic manifestations parallel the progressive

Figure 1 Violin plots for the TRS between CN, MCI, and AD

Target genes identified from SMR at p value of AD-associated SNPs less than
1 × 10−7 were used to calculate the TRS. The violin plot shows the probability
density of the TRS data as well as median and interquartile ranges in ADNI
(A) and AddNeuroMed (B). AD = Alzheimer disease; ADNI = Alzheimer’s
Disease Neuroimaging Initiative; CN = cognitively normal older adults; MCI =
mild cognitive impairment; SMR = summary data–based mendelian ran-
domization; TRS = transcriptional risk score.
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functional decline associated with neurodegeneration.34

However, some systemic manifestations are also observable
before the presence of CNS symptoms of AD.35 Because
blood interacts with all organs in the body, including the brain,
blood-based profiles might provide an accessible and effective
tool for evaluating the complex interplay between the brain
and the periphery in the pathogenesis of AD.36

The present study has some limitations. First, we used the
public blood eQTL database generated from CN, not from
patients with AD. As the relationship between gene expres-
sion levels and SNPs may be different in normal subjects and
patients with AD, it would be better to use a blood eQTL
database including patients with AD. However, there is no
public blood eQTL database generated from cohorts in-
cluding patients with AD. Further study using the eQTL da-
tabase including patients with AD is needed to identify
pathogenic genes more precisely. Second, the ADNI partici-
pants may not be representative of the general population of
older adults. To generalize our findings, we need to validate
our findings in larger community-based prospective cohort
studies. Third, blood-based transcriptomic profiles could be
influenced by confounding factors such as medication, as well
as blood collection, processing, and storage procedures.36,37

The transcriptome samples in the ADNI and AddNeuroMed
were collected, processed, and stored following the standard
protocols to minimize these risks. Fourth, transcriptome
profiling was performed on different microarray platforms in

the ADNI and AddNeuroMed. Therefore, in this study, we
did not perform a mega-analysis but calculated the TRS in the
ADNI and AddNeuroMed separately. Finally, we analyzed
cross-sectionally collected gene expression data. Our findings
thus represent association not causality. Longitudinal studies
are needed to understand the role of altered transcriptome
profiles in the onset of AD as well as cause-and-effect
relationships.

In conclusion, we selected genes to calculate the TRS by
integrating AD GWAS summary statistics with the public
blood eQTL database, and we demonstrated that the blood-
based TRS was significantly associated with AD biomarkers
by using the transcriptomic database from the ADNI and
AddNeuroMed cohorts. Looking toward the future, given the
extensive omics data generated by various studies with better
integrative approaches, it will likely become easier to de-
termine the relation to relevant pathophysiologic mechanisms
and discover novel biomarkers for clinical use.38 With more
omics data and sophisticated integrative approaches for
analysis, multilayer omics data are likely to become useful for
predicting, diagnosing, and personalizing treatment for AD.39
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Figure 2 Heatmaps of gene expression between CN and AD

Two genes (CD33 and PILRA) that were predicted to have increased expression in patients with AD from the integration of GWAS summary statistics and eQTL
data showed significantly increased expression in patients with AD in ADNI (A). Among 3 genes predicted to have decreased expression in patients with AD, 1
gene (TRAPPC6A) showed significantly decreased expression in patients with AD in ADNI (B). In AddNeuroMed, the expression level of two genes (CD33 and
PILRA) was significantly increased in patients with AD (C), whereas the expression level of two genes (B4GALT3 and TRAPPC6A) was significantly decreased in
patients with AD (D). The gene expression values were transformed into a normal distribution with mean 0 and variance 1. AD = Alzheimer disease; ADNI =
Alzheimer’s Disease Neuroimaging Initiative; CN = cognitively normal older adults; eQTL = expression quantitative trait locus; GWAS = genome-wide
association study.
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