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PERSPECTIVES

Many international neu-
roscience initiatives are 
in different stages of 
progression—although 

they have different goals, they will all 
produce large amounts of data. Much 
attention has been focused on the 
technological challenges of measur-
ing and manipulating neural activity 
from large numbers of sites for long 
periods, but much less attention has 
been paid to the computing challenges 
associated with the vast amounts of 
data these technologies will generate. 
As a result, potential advances offered 
by neurotechnologies are threatened by a lack of comput-
ing tools. The neuroscience community is not alone in 
this challenge, as other science fields are being trans-
formed by advanced analytics being applied to an ever- 
increasing volume of experimental data. Co-location 

of massive datasets hosted in open repositories with 
high-performance computing (HPC) will allow for 
community-driven exploratory analysis and integration 
with simulations. This is required to extract universal 
design principles of biological computation, which might 

Neuroscience initiatives aim to develop new 
technologies and tools to measure and manipulate 
neuronal circuits. To deal with the massive 
amounts of data generated by these tools, the 
authors envision the co-location of open data 
repositories in standardized formats together 
with high-performance computing hardware 
utilizing open source optimized analysis codes.
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provide insight into and inspiration for 
new models of in silico computation.

GRAND CHALLENGE 
PROBLEMS IN 
NEUROSCIENCE
To understand the brain is to know 
how its structure (wiring diagram) and 
function (activation dynamics) give rise 
to specific computations and behav-
iors. Following the goals of the Brain 
Research through Advancing Innova-
tive Neurotechnologies (BRAIN) Initia-
tive and the EU Human Brain Project 
(HBP), we propose four grand challenge 
problems in neuroscience for which 
HPC will likely play an important role 
(see Figure 1): neuroanatomy and struc-
tural connectomics; neural population 
dynamics and functional connecto-
mics; linking sensations, brains, and 
behaviors; and synthesis through sim-
ulations. While each challenge would 
provide useful information by itself, 
integrating them will result in syner-
gistic understanding. Taken together, 
the results of these challenges will 
deepen our understanding of network 
mechanics that generate complex 
behaviors and the transformation of 
sensory inputs into neural representa-
tions of sensations. Furthermore, the 
results will provide insight into how 
brains achieve near-optimal computing 
capabilities and link structure to func-
tion across many spatiotemporal scales.

Neuroanatomy and 
structural connectomics
Across species, brains consist of hun-
dreds to billions of individual neurons 
that are connected by thousands to tril-
lions of synapses (see Figure 2). These 
anatomical features are the structural 
backbone from which all neuronal 

function is generated. In its most micro-
scopic form, structural connectomics 
refers to the reconstruction of tissue at 
sufficient resolution to trace the finest 
neuronal processes and identify syn-
aptic connections. Currently, the only 
approaches that offer the required res-
olution over large volumes are based on 
automated serial electron microscopy.

Advances in microscope design have 
improved resolution and acquisition 
time so that segmentation and anno-
tation is the rate-limiting step.1 The 
result of such anatomical reconstruc-
tion could be a full 3D representation 
of each neuron or a graph of the result-
ing structural connectivity matrix with 
some measure of synaptic strength (the 
matrix Cs: N neurons x N neurons). A 
structural connectome would provide 
a compact summary sufficient for some 
analyses, and is required to link struc-
ture to function in the nervous system.

Neural population dynamics 
and functional connectomics
Although neuroanatomy defines the 
possible interactions among neurons, 
it is the dynamically modulated spatio-
temporal patterns of activations across 
neurons that give rise to sensations, 
actions, cognition, and consciousness. 
New technologies enable increasingly 
large numbers of brain signals to be 
recorded simultaneously, and these sig-
nals can be derived from diverse record-
ing modalities. Furthermore, the duration 
of recordings is concurrently increasing, 
and it will soon be possible to record con-
tinuously for weeks to months. Thus, it 
is becoming increasingly important to 
develop data-analysis methods capable 
of revealing structure from heteroge-
neous, nonstationary time-series mea-
surements at scale.

Two complementary approaches to 
this problem are dimensionality reduc-
tion and functional connectomics. 
Dimensionality reduction methods aim 
to find low-dimensional spaces that con-
cisely summarize high-dimensional 
spatiotemporal patterns of activity, and 
can be used to gain insight into network 
dynamics. Functional connectomics 
aims to determine time-resolved causal 
influences among spatially distributed 
neural recordings (for example, the data 
array Cf: N neurons x N neurons x time 
for cellular-level data). Together, these 
complementary methods will provide 
insight into dynamic interactions among 
individual neurons and neural popula-
tions that can be linked to underlying 
structural connectomics and behavior.

Linking sensations, 
brains, and behaviors
Brains have evolved to produce behav-
iors in response to sensory events that 

Challenges

Scaling:  modalities × time
Dataset: sensory and/or behavioral measurements
Product: computations performed by circuits

Sensations, brains, and behaviors

Structural connectomics
Scaling: neurons3

Dataset: serial electron microscopy of brains
Product: circuit wiring diagram

Scaling:  neurons2 × time
Dataset: in vivo activation levels of neurons 
Product: circuit dynamics

Functional connectomics

Scaling:  synapses × time
Dataset: connectivity and biophysics of neurons
Product: bridge across spatiotemporal scales

Biophysically detailed simulations

FIGURE 1. Grand challenge problems in 
neuroscience. We pose four grand challenge 
problems in neuroscience, which, at scale, 
will require high-performance computing 
(HPC). This figure summarizes how problems 
approximately scale with key features and 
provides example inputs (data types) and 
outputs (insights gained) associated with 
each problem. Note that each of these prob-
lems scales approximately as the product of 
at least two key features of the dataset (for 
example, neurons2 x time). (Source: Christian 
Swinehart, Samizdat Drafting Co.)
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increase the probability of organismal 
survival and reproductive fitness. As 
such, our ability to infer brain func-
tion depends on linking brain mea-
surements to events and objects in 
the external world. In many cases, the 
stimuli and behaviors used in neuro-
science studies have been relatively 
simple (low-dimensional), which eases 
data analyses but elicits neural activity 
far removed from activity underlying 
naturalistic sensations and behavior. 
Indeed, it has recently been noted that 
simple tasks result in simple neural 
activity patterns.2 Thus, it is insufficient 
to record from more neurons without 
simultaneously monitoring behavior 
during increasingly complex sensory, 
motor, and cognitive tasks. This brings 
with it challenges of acquiring, analyz-
ing, and integrating such multimodal 
data (for example, visual, audio, haptic, 
and movement) with the brain data.

A causal understanding of the 
brain requires combining measure-
ments with closed-loop manipula-
tions of neural circuits triggered by 

neuronal and behavioral observations 
during complex tasks. However, this is 
very challenging because the activity 
of many neurons is rapidly modulated 
(tens of milliseconds) by sensations, 
cognitive tasks, and behavior. Given 
this complexity, manipulations need 
to be targeted to specific neurons when 
they are engaged in specific types of 
information processing, requiring 
real-time analysis of neural signals.

Synthesis through simulations
Ultimately, the goal of neuroscience 
is to achieve a deeper, broader under-
standing of the brain that extends 
across spatial and temporal scales. 
However, simply acquiring data with-
out simultaneously developing guid-
ing (theoretical) principles will impede 
extracting understanding from the 
data, and runs the risk of misguided 
investment into costly experiments. 
As other fields have shown, common 
computational and theoretical frame-
works should permeate research direc-
tions while scaling up data acquisition 

and analysis to reduce the challenge of 
integrating information from very dif-
ferent levels of system granularity.

Many research domains focused on 
highly complex, multiscale problems 
(for example, climate, high-energy 
physics, and cosmology) have effec-
tively leveraged HPC capabilities to 
integrate data and analysis into evolv-
ing theoretical frameworks through 
the use of simulations. This has been 
useful in precisely those conditions 
where extensive experimentation is 
intractable due to either cost or feasibil-
ity of data acquisition. While a general 
“theory of brain” seems a distant goal, 
using HPC for large-scale simulation of 
neural circuits and networks has a long 
history. Continued scaling (both in 
number and accuracy) of neural circuit 
simulations, as well as tighter integra-
tion with experimental data, is critical 
to connect spatiotemporal scales.

DIVERSE COMPUTING 
PLATFORMS FOR A 
DIVERSE COMMUNITY
Modern computing solutions are as 
diverse as the needs of the neurosci-
ence community, and it is unlikely that 
there will be a one-size-fits-all solution 
to all needs. Indeed, there are several 
important tradeoffs in performance, 
cost, and accessibility associated with 
different computing platforms. Neu-
roscientists should be aware of these 
when deciding on current solutions 
and planning long-term investments.

While many neuroscientists are 
familiar with computing capabilities 
contained within a single laptop or by 
a shared cluster, there is less familiar-
ity with the resources available or what 
problems may be tackled by cloud com-
puting or supercomputing facilities. 
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FIGURE 2. Neuroscience datasets will scale exponentially across species. Neuroscientists 
study brains across several species of varying complexity. This figure depicts the expo-
nential grown in brain size (number of neurons and synapses) and lifespan across c.ele-
gans (worms), d. melanogaster (flies), mice, and humans. (Source: Christian Swinehart, 
Samizdat Drafting Co.)
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Cloud computing infrastructure fun-
damentally relies on commodity hard-
ware with somewhat better network 
interconnects (10 Gbytes) than typical 
university clusters. The cloud is pop-
ular because of the ease with which 
resources can be provisioned and soft-
ware services can be utilized, without 
exposing users to fault-prone hard-
ware. HPC provides well-balanced CPU 
and memory subsystems, tightly cou-
pled with high-performance intercon-
nects, and data is typically read over 
massively parallel file systems capable 
of terabyte-per-second read/write per-
formance. In aggregate, state-of-the-
art HPC centers are capable of hold-
ing hundreds of terabytes of data in 
memory, and can calculate at the rate 
of petaflops. In contrast to cloud com-
puting, where productivity is the norm, 
the software stack on HPC resources is 
tuned for performance, and it does take 
some degree of expertise and famil-
iarity to fully utilize such systems. As 
the rate of improvement in computing 
processors decreases from a slowing 
of Moore’s law, commodity computers 
(and clusters of them) will not be able to 
address the ever-increasing volumes of 
neuroscientific data. 

In neuroscience, there also exists 
a need for experimenters to rapidly 
interrogate their data to receive timely 
feedback on results of experiments 
(for example, to evaluate the position 
of a recording device). There are other 
experiments (such as closed-loop per-
turbations) that require real-time ana-
lysis (<5–10 ms). These latencies can 
be achieved with carefully designed 
PC-based systems or in a more cost- 
effective fashion through specialized 
hardware utilizing field programma-
ble gate arrays (FPGAs). In this context, 

the power of FPGAs comes from their 
flexible and high bandwidth (tera-
bytes per second) connections and 
their ability to manipulate data from 
multiple sources. However, program-
ming FPGAs can be challenging, and 
while familiar to many in the comput-
ing world, it is a skill rarely found in 
the neuroscience community. Finally, 

for on-sensor processing of massive 
datastreams from large-scale experi-
mental equipment for which the pro-
cessing algorithm has been established 
and agreed upon, application-specific 
integrated circuits (ASICs) can provide 
a critical filter, dramatically reducing 
the amount of data that needs to be 
moved and written to disk. 

DEFINITIONS OF TERMS
Brain signals: There are many diverse signals that can be used as 
measures of brain function, including intracellular and extracellular 
electrical recordings, optical imaging of neuronal voltage/calcium, 
electrocorticography (ECoG), magnetoencephalography (MEG), 
and functional magnetic resonance imaging (fMRI). The spatial and 
temporal resolution of different signals is generally proportional to 
the invasiveness of the methods used to sense the signal.

Closed loop: Used here to describe an experiment that uses the 
signals generated by a system (such as the brain) to trigger a pertur-
bation of that system.

Electrophysiological recordings: The recording of electrical 
activity generated by the biophysical processes involved in neu-
ronal signaling. Electrophysiology provides the highest temporal 
resolution measurements of brain signals, capable of resolving 
the precise timing of individual action potentials (“the speed of 
thought”). 

Neuronal skeletons: The external structure of single neurons, 
including the cell body, dendrite, axon, and associated synapses.

Performance: A metric typically correlated with obtaining a quick 
turnaround time to solution. A well-balanced computational 
system will optimize for storage, network, memory, and compute 
performance. 

Productivity: A metric typically associated with effort spent by 
developers and programmers in developing code and utilizing 
computational infrastructure. 

Spike sorting: The problem of assigning recordings of action 
potentials (“spikes”) to individual neurons from extracellular elec-
trophysiological data, which are typically composed of a superpo-
sition of electrical signals from multiple neurons.
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DATA MANAGEMENT 
CHALLENGES FOR 
NEUROSCIENCE
Advanced data management and shar-
ing is required to accommodate the 
increasing complexity, data rates and 
acquisition times, and multimodality 
of neuroscience data. Similar prob-
lems occur with neuronal circuit sim-
ulations, where standardization of for-
mats and data is an ongoing endeavor. 
The data-management requirements 
correspond to specific needs of exper-
imentalists and analysts. Experi-
mentalist requirements include fast 
write and efficient storage of large 
data volumes, resilience to corrup-
tion to minimize loss, extensible data 
standards, and collection of metadata 
with the raw data for reproducibility. 
Analyst requirements include: com-
mon standards to enhance portability 
and usability for storage, sharing and 
access; fast read for efficient analysis; 
integration of distributed, multimodal 
data sources; and provenance for inter-
pretation and reuse. Standardization of 
data formats and data sharing are crit-
ical to maximize the return on invest-
ment into acquisition of experimental 
data, and will require close interactions 
among neuroscientists, data model 
designers, and data analysts.

Data standardization requires con-
vergence of file storage formats and 
organization, as well as metadata stan-
dards and ontologies, and is an unre-
solved challenge in the field. File format 
and metadata standards have to be fully 
supported and well-integrated with 
acquisition, ideally through automa-
tion. To enable efficient analysis, stan-
dards also need to be well-integrated 
with the analysis pipelines, requiring 
advanced APIs. The need to interpret 

data in place, combined with effi-
cient discoverability across hardware 
resources, means metadata should be 
centrally accessible and machine read-
able. Integration of multiple modalities 
requires effective modeling of complex 
semantic and structural relationships 
among data. Together, these capabili-
ties will enable the neuroscience com-
munity to effectively store, analyze, 
and share data, accelerating discovery 
and enhancing reproducibility.

Sharing and reuse of data is essen-
tial to enable validation of neuro-
science results, which will enhance 
reliable and unbiased scientific inter-
pretation. The close integration of 
computing resources with data will 
enable effective data-driven discov-
ery. This includes co-location of hard-
ware resources to enable efficient pro-
cessing while reducing costs for large 
transfers, as well as integrated man-
agement and analysis software stacks 
for analysis at scale. To enable the uti-
lization of shared resources, central-
ized science gateways/portals that col-
lect data and make it searchable and 
accessible are needed. Ultimately, data 
analyses result in commodities that 
become shared and reused. Similar to 
the role of metadata for raw measure-
ments, data provenance (including 
the denotation of methods, parame-
ters, and so on) is required for reliable 
interpretation of analyses. Meeting 
all these needs requires advanced, 
high-performance infrastructure that 
computer science and HPC centers are 
ideally positioned to provide.

COMPUTING CHALLENGES 
FOR NEUROSCIENCE
Repositories hosting data in stan-
dardized formats co-located with HPC 

resources will present the opportu-
nity for creation of automated analy-
sis pipelines at scale. The extraction of 
information from most modern neuro-
science experiments and simulations 
requires application of sophisticated 
data-analysis methods. Indeed, each 
grand challenge problem has data pro-
cessing (such as segmentation and 
spike sorting) and analytics challenges 
associated with it. As there is a cost asso-
ciated with all computing resources, 
optimized analysis codes developed 
by experts in an open source commu-
nity are required for efficient resource 
utilization. Building workflows and 
frameworks for distributed computing, 
and embedding them in a collaborative 
setting, requires expertise that is well 
outside that of typical neuroscientists. 
Here, although we describe specific 
analysis issues in the context of a sin-
gle grand challenge problem, many of 
the issues apply to all of the problems. 
Figure 3 schematizes the computing 
resource requirements, using different 
species as anchor points, and empha-
sizes the need for advanced computing 
solutions at scale.

Neuroanatomy and 
structural connectomics 
The current fastest approach for 
acquiring structural connectomics 
data involves scanning multiple elec-
tron beams over a brain sample in par-
allel and is already producing approx-
imately 50 terabytes per day. The 
major time-limiting step in the ana-
lysis pipeline is the stitching, align-
ment, segmentation, and annotation 
required to obtain an accurate recon-
struction of the brain.1 The segmenta-
tion challenge is compounded by two 
facts: the task requires tracing most 
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objects in the field of view, and accura-
cies must be good because even small 
mistakes tracing an axon could result 
in thousands of synapses being incor-
rectly assigned. 

The best algorithms for segmenta-
tion use recurrent 3D convolutional 
neural networks to automatically seg-
ment raw data.3 This method performs 
60 Mflops per voxel, which for a 100 μm3 
cube of cortex requires 200,000 GPU 
hours. This is relatively slow when one 
considers the total amount of compu-
tation required to render any reason-
ably sized circuit. However, once the 
necessary precision has been achieved, 
it is reasonable to assume that code 
optimization will allow processing of 
cubic millimeter scale samples.

While a cubic millimeter generates 
about a petabyte (PB) of data, an entire 
mouse brain will require close to an 
exabyte (EB) of data. This implies the 
need to avoid storing raw data long 
term, and instead processing data as it 
is generated by co-locating the imag-
ing and computing hardware. This 
will require special-purpose hardware 
(such as ASICs and FPGAs) optimized 
for structural connectomic pipelines. 
Much of the computational challenge 
of structural connectomics is image 
processing, for which HPC systems 
have long been used. In addition to the 
3D reconstruction of all neuropil in 
the sample, morphological analysis of 
neuronal skeletons is another import-
ant and computationally demanding 
task. Finally, once raw data has been 
processed and the resultant connec-
tivity matrix has been extracted, anal-
yses will need to be performed. Rigor-
ous analytics on graphs consisting of 
100 billion nodes (number of neurons 
in the human brain) and 10 billion 

edges (10 percent average connectiv-
ity) requires numerical linear alge-
bra methods that can both exploit the 
structure of the graph (for example, 
sparse vs. dense and local vs. global 
connectivity) and are tailored to the 
available computing resources.

Neural population dynamics 
and functional connectomics
In 5 to 10 years, technologies will allow 
electrophysiological recordings in indi-
vidual animals from (approximately) 
106 neurons from brain networks of 
intermediate size, continuously (tem-
poral resolution of 1 kHz) for many days 
(for example, 10 days: 8.64 x 108 ms), 
corresponding to approximately 3.5 
PB of time-series data for a single ani-
mal (multiply by 25 for the high sam-
pling rate raw data). Much of the anal-
ysis for large-scale neural population 

recording is focused on data-driven 
discovery, where our knowledge of the 
ground truth is vague at best. The accu-
racy of many machine learning/sta-
tistical data-analysis methods will be 
greatly enhanced by increased record-
ing durations (and hence increased 
numbers of samples) afforded by next- 
generation recording technologies. 
Application of state-of-the-art analy-
sis methods to large-scale functional 
datasets will benefit from efficient 
implementations in HPC systems.  

Neural population activity and 
dynamics have been examined with 
dimensionality reduction methods for 
more than 15 years, and this approach 
has recently experienced a resurgence. 
Owing primarily to its computational 
ease, the most prevalent method in 
neuroscience is principal components 
analysis (PCA), the core calculation of 
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FIGURE 3. Grand challenge problems in neuroscience will push the boundaries of 
computing. Schematic of the computational demands (computing power [flops] and 
memory footprint [bytes]) of the grand challenge problems associated with four species. 
We project that these problems will scale approximately within the boundaries outlined by 
the dashed line. GB: gigabytes, TB: terabytes, PB: petabytes, EB: exabytes, ZB: zettabytes, 
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Swinehart, Samizdat Drafting Co.)
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which is the singular-value decom-
position (SVD). Performing very- 
large-scale SVDs is nontrivial, but 
has recently been performed on tera-
byte-sized matrices using HPC sys-
tems with techniques from random-
ized linear algebra.4 Moving forward, 
convolutional-based methods (for 
example, convolutional non-negative 
matrix factorizations [NMF], which can 
result in interpretable “parts-based” 
decomposition) allow for the simul-
taneous extraction of spatiotempo-
ral basis. Convolution-based methods 
can require significant computational 
resources and so implementations on 
GPUs and HPC architectures could 
greatly reduce compute time.

A complementary approach to 
dimensionality reduction for under-
standing spatiotemporal structure of 
neural populations is to use temporally 
directed analysis methods to infer 
causal influences among neurons. Such 
“functional connectomes” explicitly 
represent the influences between indi-
vidual physical recordings and are thus 
potentially more interpretable than 
PCA. Open challenges in the applica-
tion of such methods (such as general-
ized vector autoregressive models) to 
large-scale neurophysiology datasets 
include improving scalability of imple-
mentations, increasing the sparsity of 
estimated connectivity while retaining 
temporal contiguity, scaling of sparse 
identification of nonlinear dynamical 
systems to large dimensions (neurons), 
and accounting for the nonstationarity 
of data obtained in complex behavioral 
experiments. Other scalable methods 
to identify recurring spatiotempo-
ral activity patterns in neuronal data 
(such as recurrent neural networks) 
should also be investigated. 

Analysis of time-series data, while 
ubiquitous across the physical sci-
ences and central to neural recordings, 
has not been performed in many bio-
logical fields. For example, as the cost 
of genetic sequencing and proteomics 
continues to fall, it is likely that biol-
ogists (and clinicians) will not only 
collect more samples from larger pop-
ulations, but also more samples from 
the same individual over time. Thus, 
continued investigation in data ana-
lytics for time-series data, coupled 
with implementations in HPC systems 
(for example, to distribute the optimi-
zation calculation underlying many of 
these methods) are likely to become 
important for interpreting biomedical 
data in the near future.

Linking sensations, 
brains, and behaviors
In natural environments, animals pro-
cess many high-dimensional sensory 
signals that are co-modulated over 
diverse time scales to produce complex 
sequences of behaviors toward achiev-
ing goals. Neuroscientists tradition-
ally use hand-engineered features to 
characterize sensory and behavioral 
events, but the inherent arbitrariness 
of this selection impedes insight into 
neural coding principles. Sparse cod-
ing methods extract features from nat-
uralistic sensory datasets (primarily 
visual and auditory) that can provide a 
principled account of response proper-
ties in primary sensory areas.5 Charac-
terizing the joint high-order statistics 
of natural sensory signals is challeng-
ing, as it requires the analysis of large 
amounts of multimodal data collected 
over long periods.

Neuronal activity is modulated 
on rapid time scales by many factors, 

including attention, reward, variation 
in arousal, and so on. Disentangling 
the contributions of different factors 
requires causal perturbations of neu-
ral activity during task engagement. 
Methods for rapid, cell-type-specific 
manipulations of neural activity in 
awake, behaving animals provide the 
capability to perform high-resolution 
closed-loop experiments. To be effec-
tive, this requires incoming brain sig-
nals to be processed in real time and 
analyzed to identify specific patterns, 
and then to trigger the manipula-
tion in milliseconds (<10 ms), neces-
sitating sufficient computational 
power and fast interconnects. Mod-
ern approaches to distributed compu-
tation in local computer clusters can 
likely solve current problems, but scal-
ing to future data volumes might be 
challenging. Alternatively, FPGAs are 
ideally suited for real-time processing 
of massive datastreams, but program-
ming such hardware is outside the 
purview of most neuroscientists.

Synthesis through simulations
While simulations have long been a 
tool of neuroscience, until recently 
most have been downscaled in size. 
Downscaled networks can preserve 
first-order statistics of neuronal activ-
ity (means) but higher-order statis-
tics (cross-correlations) are generally 
not preserved. Mesoscale measures of 
activity, which are key tools for under-
standing the human brain, are driven 
by the fluctuations of neuronal popula-
tions, which are dominated by correla-
tions. Thus, if a simulation is inaccu-
rate in the second-order statistics of the 
microscopic activity, predictions of the 
mesoscopic activity obtained by for-
ward modeling might be misleading.
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HPC systems have recently enabled 
researchers to construct anatomically 
detailed models of local cortical cir-
cuits and perform full-scale simulations 
of neurons with all their synapses.6 
While work on cortical microcircuits 
is progressing, current implementa-
tions have fundamental shortcom-
ings. First, many brain functions are 
distributed over several areas, and 
thus cannot be understood by study-
ing an isolated microcircuit. Sec-
ond, each neuron receives about half 
of its excitatory inputs from distant 
sources; thus, isolated models of cor-
tical microcircuits are severely under-
constrained. These challenges might 
be addressed by increasing the scale 
of neural circuit simulations—a task 
well-suited to HPC.

While detailed biophysical simula-
tions are important, other approaches 
have targeted more abstract simu-
lations with less biological fidelity.7 
These modeling approaches have differ-
ent goals: “bottom-up” models aim to 
emulate high-level phenomena by con-
straining low-level parameters, while 
“top-down” models aim to replicate 
specific computations in a region. Link-
ing the biophysical reality of bottom-up 
models with the well-defined com-
putations of top-down models could 
reveal the biophysical mechanisms of 
neural computations. More effort in 
this direction is required.

A central challenge facing very- 
large-scale neural circuit simulations is 
understanding how best to evaluate the 
quality of results of models undercon-
strained by relatively limited amounts 
of experimental data. Conversely, it 
should be possible to examine the 
accuracy of a data-analysis algorithm 
(such as spike sorting and functional 

connectivity estimation) on data from 
simulations for which the ground truth 
is known. Techniques for understand-
ing the uncertainty of model outputs 
(uncertainty quantification) and over-
all sensitivity of models relative to 
input parameterization are areas that 
need to be further explored.

Now that major obstacles in mem-
ory usage have been removed, reduc-
tion of the simulation time becomes 
the relevant target. Next-generation 
supercomputers (the so-called exas-
cale systems) will be able to represent 

major parts of the human brain at 
microscopic resolution, and could be 
used to make predictions of the effects 
of pharmaceuticals testable in humans 
with mesoscale measurements.

FROM BIOLOGICAL 
BRAINS TO DIGITAL 
BRAINS AND BACK
Exponential increases in computa-
tional capabilities have fueled the 
establishment of simulation as the 
third leg of modern science (comple-
menting classic theory and experi-
ments). Importantly, because Moore’s 
law is slowing down, HPC has found 
itself at a crossroads, as illustrated by 
the National Strategic Computing Ini-
tiative (NSCI). The challenge of making 

HPC systems bigger and faster is joined 
by a change in their desired use.

Specifically, simulations have been 
the driving application behind HPC’s 
growth, and development of these 
systems has been focused on their 
requirements. However, there is a 
growing requirement for HPC archi-
tectures to be less simulation focused 
(higher flops) and more data inten-
sive (higher-performance I/O band-
width to memory and between nodes).8 
We expect that neuroscience, with 
its special demands on the balance 

between memory access and compute 
power, will further drive this shift in 
supercomputing.

Many neuroscientists are envi-
sioning interactive supercomputing—
using a supercomputer like a super- 
workstation for exploring large data-
sets. This requires a supercomputer 
to be managed more like a telescope: 
individual research groups would be 
assigned time, as opposed to a scheme 
that executes a job when it optimally 
fits on the system. The price HPC cen-
ters will pay for this is a decline in the 
overall system utilization metric, but 
the benefit will be a much broader sci-
entific user base.

As Moore’s law draws to end, alter-
natives to von Neumann’s model of 

THERE IS A GROWING REQUIREMENT  
FOR HPC ARCHITECTURES TO BE  

LESS SIMULATION FOCUSED AND MORE 
DATA INTENSIVE.
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computing are being explored. Neuro-
morphic hardware is being developed, 
which might enable large-scale brain 
models and potentially advance more 
brain-like computing systems. Hard-
ware implementations must make 
engineering tradeoffs to achieve spe-
cific computational advantages.

For instance, IBM’s TrueNorth is a 
specialized chip achieving large-scale 
computation at low power, but with 
relatively restricted connectivity, low- 
precision synapses, and no on-chip 
learning. In contrast, the Spinnaker 
system modifies commercially avail-
able ARM cores that are directly pro-
grammable, and thus permits flexible 
implementations of neural circuits, 
albeit without energy savings. Finally, 
the BrainScales system uses analog 
approaches for accelerating simula-
tions of neural circuits to study long-
time scale processes like learning and 
development, but these approaches are 
nontrivial to implement and challeng-
ing to program.

Innovations in neuromorphic hard-
ware might inspire new technology 
for classical systems. Perhaps design 
concepts that enable low-power com-
putation in the brain might be used in 
next-generation supercomputing facil-
ities to satiate their voracious power 
consumption. Additionally, computer 
scientists might find continued inspi-
ration for stable, adaptive computing 
systems from the brain’s synaptic and 
cellular learning processes.

Collaboration between brain 
scientists and computer scien-
tists has a long history. Shortly 

before his death, von Neumann 
started writing about the similarities 

and differences between computers 
and brains.9 Today, many burgeoning 
collaborations benefit both fields. The 
droves of data produced by the world’s 
neuroscience initiatives could be an 
application area that ushers in a new 
age for HPC focused on experimen-
tal and observational data. Drawing 
inspiration from brain circuitry has 
enabled the development of low-power 
computing chips. Modern computer 
systems and algorithms are able to 
leverage massive datasets to train deep 
neural networks to effectively solve 
many problems for which progress had 
essentially plateaued. Together, these 
collaborative ventures have revived 
interest in artificial intelligence—the 
true nexus of the two fields.

There are many opportunities for 
neuroscience to benefit from HPC and 
computer science. Co-location of open 
neuroscience data repositories with 
HPC hardware will greatly support 
neuroscience efforts to reveal universal 
design features of species’ brains and 
to understand what makes each indi-
vidual unique—a central concept of 
precision medicine. Relating the struc-
tural and functional connectomes is 
necessary to deepen biophysical under-
standing of neural computations by 
mapping anatomical wiring diagrams 
to functional properties. Quantitative 
methods for understanding structure–
function relationships is a ubiquitous 
problem in many fields (structural biol-
ogy and material science, for example). 
In this context, developing a theoretical 
framework for understanding learn-
ing in deep neural networks (where we 
have precise knowledge of the struc-
tural connectivity, the activation of 
every unit, the objective function, input 
statistics, and learning dynamics) is a 

prerequisite to a normative “theory of 
brain” that links structure and func-
tion (this observation has been made 
by Stanford University physicist Surya 
Ganguli, among others). However, 
we speculate that a “theory of brain” 
would require much more than deep 
learning and would likely build on con-
cepts from nonequilibrium statistical 
mechanics, information theory, opti-
mal control and decision theory, (deep) 
learning theory, sparse coding, Bayes-
ian inference, and sensor fusion. 

We believe that addressing the 
challenges described here would cre-
ate infrastructure to enable the neu-
roscience community to utilize HPC 
systems, and would provide a proto-
type for long-term strategic engage-
ments between HPC centers and other 
scientific communities in the age of 
data-driven discovery. This would 
impact scientific return from major 
federal investments across multiple 
initiatives—immediate and sustained 
investment is required. 
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