
Lawrence Berkeley National Laboratory
LBL Publications

Title
Sensemaking Practices in the Everyday Work of AI/ML Software Engineering

Permalink
https://escholarship.org/uc/item/3b8526kw

ISBN
978-1-4503-7963-2

Authors
Wolf, Christine T
Paine, Drew

Publication Date
2020-06-27

DOI
10.1145/3387940.3391496
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3b8526kw
https://escholarship.org
http://www.cdlib.org/


Sensemaking Practices in AI/ML Software Engineering ICSEW’20, May 23-29, 2020, Seoul, Republic of Korea 
 

 1 
 

Sensemaking	Practices	in	the	Everyday	Work	of	AI/ML	
Software	Engineering		

Christine	T.	Wolf	
	IBM	Research	–	Almaden	

	San	Jose,	CA,	USA	
	ctwolf@us.ibm.com	

Drew	Paine	
	Lawrence	Berkeley	National	Laboratory	

Berkeley,	CA,	USA	
	pained@lbl.gov

ABSTRACT	
This	 paper	 considers	 sensemaking	 as	 it	 relates	 to	 everyday	
software	 engineering	 (SE)	 work	 practices	 and	 draws	 on	 a	
multi-year	ethnographic	study	of	SE	projects	at	a	large,	global	
technology	 company	 building	 digital	 services	 infused	 with	
artificial	 intelligence	 (AI)	 and	 machine	 learning	 (ML)	
capabilities.	Our	findings	highlight	the	breadth	of	sensemaking	
practices	in	AI/ML	projects,	noting	developers’	efforts	to	make	
sense	 of	 AI/ML	 environments	 (e.g.,	 algorithms/methods	 and	
libraries),	 of	 AI/ML	 model	 ecosystems	 	 (e.g.,	 pre-trained	
models	and	“upstream”	models),	and	of	business-AI	relations	
(e.g.,	how	the	AI/ML	service	relates	to	the	domain	context	and	
business	 problem	 at	 hand).	 This	 paper	 builds	 on	 recent	
scholarship	 drawing	 attention	 to	 the	 integral	 role	 of	
sensemaking	 in	 everyday	 SE	 practices	 by	 empirically	
investigating	 how	 and	 in	what	ways	 AI/ML	 projects	 present	
software	teams	with	emergent	sensemaking	requirements	and	
opportunities.		

CCS	CONCEPTS	
•	Software	 and	 its	 engineering	 •	Computing	 methodologies	
~ArtiOicial	 intelligence	 •	Applied	 computing	 ~Enterprise	
computing	 •	Human-centered	 computing	 ~Collaborative	 and	
social	computing	~Empirical	studies	in	collaborative	and	social	
computing	

KEYWORDS	
Sensemaking,	AI/ML,	Software	Engineering,	Process	Theories,	
Enterprise	computing,	Ethnography	

ACM	Reference	format:	
Christine	T.	Wolf	and	Drew	Paine.	2020.	Sensemaking	Practices	in	the	
Everyday	 Work	 of	 AI/ML	 Software	 Engineering.	 In	 IEEE/ACM	 42nd	
International	 Conference	 on	 Software	 Engineering	 Workshops	
(ICSEW’20).	 ACM,	 New	 York,	 NY,	 USA,	 7	 pages.		
https://doi.org/10.1145/3387940.3391496		

1	 Introduction	
Process	 theories	 of	 software	 engineering	 (SE)	 aim	 to	
understand	 how	 SE	 work	 unfolds	 in	 practice	 and	 the	
implications	 of	 these	 dynamics	 on	 the	 nature,	 quality,	 and	
experience	 of	 software	 systems	 [19].	 Ralph	 [16]	 describes	
process	theories	as	“a	system	of	ideas	intended	to	explain	(and	
possibly	 to	describe,	 to	predict,	or	 to	analyze)	how	an	entity	
changes	 and	 develops.”	 Ralph’s	 [17]	 “sensemaking-
coevolution-implementation”	 process	 theory	 emphasizes	 the	
effort	software	teams	must	undertake	to	manage	ambiguity	in	
SE	work,	describing	 these	efforts	as	practices	 that	 iteratively	
move	 between	 creating	 coherence	 of	 an	 ambiguous	 context,	
refining	views	of	the	context	and	design	space,	and	producing	
technical	 artifacts	 as	 a	 result	 of	 their	 understanding	 of	 this	
design	 space.	 In	 this	 view,	 sensemaking	 is	 broader	 than	 the	
Requirements	 Engineering	 (RE)	 stage	 of	 many	 software	
process	models,	instead	comprising	a	core	and	enduring	facet	
of	SE	work	throughout	a	project’s	lifecycle.	Indeed,	others	have	
also	pointed	out	 the	central	 role	of	 sensemaking	 in	SE	work,	
describing	SE	broadly	as	a	form	of	“managed	sensemaking”	[7].		

What	is	sensemaking?	Organizational	scholar	Weick	describes	
sensemaking	processes	as	activities	where	people	make	sense	
of	a	situation;	this	is	an	iterative	process	where	humans	gather	
information	 and	 refine	 their	 understanding	 of	 a	 situation,	
adapting	their	mental	models	and	cognitive	framings	as	they	go	
[24].	 Sensemaking	 is	 often	 provoked	 when	 surprising	 or	
ambiguous	 situations	 occur;	 sensemaking	 involves	
“comprehending,	 redressing	 surprise,	 constructing	 meaning,	
interacting	in	pursuit	of	mutual	understanding,	and	patterning”	
(p.6).	 Sensemaking	 has	 been	 a	 topic	 of	 interest	 to	 SE	
researchers	for	a	number	of	years	and	has	been	explored	in	a	
variety	of	 contexts	–	 for	 example,	how	software	 teams	make	
sense	of	RE	activities	[11],	backlogs	that	represent	the	work	to	
be	 done	 on	 a	 product	 [20],	 or	 the	 products	 they	 ultimately	
deploy	 into	 production	 [3,	 8].	 End-users	 also	 engage	 in	
sensemaking	 as	 they	 interact	 with	 and	 debug	 software	
programs	 in	 production	 [9]	 or	 navigate	 dense	 and	 changing	
software	ecosystems	[26].	Sensemaking	 is	both	an	 individual	
and	 collective	 activity	 [24]	 and	 in	 the	 case	 of	 distributed	
software	 teams,	 it	 can	 be	 a	 collaborative	 activity	 that	 takes	
place	entirely	virtually	[22].	

Author	 pre-print	 copy.	 Final	 archival	 version	 available	 from	 the	 ACM	
proceedings	of		ICSEW’20,	May	23-29,	2020,	Seoul,	Republic	of	Korea	
©	 2020	 Copyright	 held	 by	 the	 owner/author(s).	 Publication	 rights	
licensed	to	ACM.	
https://doi.org/10.1145/3387940.3391496		



ICSEW’20, May 23-29, 2020, Seoul, Republic of Korea C.T. Wolf & D. Paine 
 

 
 
2 
 

Essential	for	any	SE	project	is	the	ability	of	the	software	team	
to	 appropriately	 identify	 and	 comprehend	 the	 complex,	
heterogenous	 contexts	 shaping	 their	 work	 [5].	 In	 many	
conceptualizations	of	software	engineering,	RE	 is	seen	as	the	
phase	in	the	SE	lifecycle	where	sensemaking	primarily	occurs	
[18].	Sensemaking	is	not	a	bounded	activity	though,	and	occurs	
continually	throughout	the	SE	lifecycle	as	software	teams	work	
to	reduce	emergent	ambiguity	and	make	progress	on	project	
goals	[17].		

In	 this	 paper,	 we	 engage	 with	 the	 topic	 of	 sensemaking	 in	
everyday	 SE	 work	 and	 focus	 on	 projects	 building	 artificial	
intelligence	 (AI)	 and	machine	 learning	 (ML)	 services.	 AI/ML	
projects	 present	 unique	 challenges	 to	 SE	 teams,	 provoking	
reflection	 and	 investigation.	What	 is	 it	 about	AI/ML	projects	
that	makes	them	particularly	challenging	for	SE	teams?	Chief	
among	the	challenges	in	AI/ML	projects	are	the	dynamism	and	
unpredictability	 inherent	 in	 AI/ML	 work	 (e.g.,	 accuracy	 and	
reproducibility	 of	 AI/ML	 model	 outputs	 cannot	 be	 known	
beforehand),	 comprehensibility	 of	 complex	 model	 functions	
and	 behavior	 (e.g.,	 AI	 explainability),	 and	 managing	
expectations	with	clients	(e.g.,	idealistic	or	hyped	expectations	
of	what	is	possible)	[2,	10,	12].		

The	 empirical	 study	 of	 SE	 practices	 in	 AI/ML	 projects	 is	 an	
emergent	topic,	with	nascent	work	in	this	area	investigating	the	
challenges	AI/ML	presents	for	software	teams	via	surveys	[1,	
10],	systematic	literature	reviews	[23],	and	case	studies	[14].	
We	contribute	to	these	discourses	by	drawing	on	a	multi-year	
ethnographic	study	of	SE	projects	at	a	large,	global	technology	
company	 building	 digital	 services	 infused	 with	 AI/ML	
capabilities.	Rather	than	a	focus	on	challenges	per	se,	our	focus	
is	 on	 the	 role	 of	 sensemaking	 in	AI/ML	SE	projects.	We	 ask:	
what	 sensemaking	 practices	 emerge	 in	 AI/ML	 software	
development	projects?	

Our	paper	is	laid	out	as	follows.	In	Section	2,	we	describe	our	
setting	and	methods.	In	Section	3,	we	outline	our	key	findings.	
We	 conclude	 the	 paper	 in	 Section	 4	 with	 a	 discussion	 and	
provocation	for	future	work.	

2	 Setting	and	Methods	
This	 paper	 draws	 from	 ongoing	 ethnographic	 fieldwork	 at	 a	
large,	global	technology	and	services	company	headquartered	
in	North	America	(referred	to	as	“TechCorp”	or	“the	company”).	
Ethnographic	 studies	 of	 software	 engineering	 capture	 in	 situ	
practices,	providing	insights	into	how	situated	action	unfolds,	
but	also	why;	such	insights	expand	our	scholarly	understanding	
of	the	nature	of	SE	work	in	practice	and	can	also	help	to	inform	
the	design	of	sustainable	and	humane	interventions	to	improve	
these	forms	of	work	[21].		The	overarching	focus	of	this	long-
term	 study	 is	 understanding	 the	 “work	 of	 AI”	 -	 that	 is,	 the	
various	 forms	 of	 everyday	 human	 work	 and	 labor	 practices	
involved	 in	applied,	enterprise	AI	projects	 [25].	This	 focus	 is	
exploratory	and	purposively	broad,	including	those	who	work	

on	building	applied	AI	systems	(i.e.,	SE	practices),	 those	who	
manage,	 productize,	 and	 otherwise	 “package”	 applied	 AI	
systems	(i.e.,	business/management	practices),	and	those	who	
interact	with	AI	 systems	as	part	of	 their	everyday	work	 (i.e.,	
practices	of	use	 and	 interaction	with	 enterprise	AI	 systems).	
This	ethnographic	endeavor	began	 in	Fall	2017	and	 includes	
several	sources	of	qualitative	data,	 including	semi-structured	
interviews	 (both	 formal	 and	 informal),	 participant	
observations,	and	artifact	analysis.		

This	paper	draws	on	analyses	of	four	projects	from	this	broader	
investigation:	 two	 long	 term	(>12	months)	projects;	and	two	
shorter	 term	 (<6	 months)	 projects.	 The	 long-term	 projects	
focused	on	building	a	software/system	service,	while	the	short-
term	projects	were	exploratory	in	nature.	Details	on	each	are	
provided	in	Table	1.	All	proper	names	(including	the	names	of	
informants	and	projects)	are	pseudonyms.		

Data	were	analyzed	inductively,	following	techniques	similar	to	
those	in	constructivist	grounded	theory	[4].	Our	analyses	here	
are	 focused	on	 identifying	sensemaking	practices.	Qualitative	
coding	revealed	emergent,	 intermediary	themes	of	ambiguity	
(what	is	that?),	surprise	(that	is	different	than	what	I	expected),	
and	uncertainty	(I’m	unsure).	While	this	work	is	preliminary,	it	
is	 aimed	 with	 the	 eventual	 goal	 of	 developing	 a	 processual	
understanding	of	sensemaking	in	AI/ML	SE	work	practices.		

	
Project	 Pseudonym	 and	
description	

Time	
period	

Sources	of	Data	

Alpha	 –	 software	
development	 project	
building	 an	 intelligent	
decision-support	 system	
to	 support	 the	 design	
work	of	IT	architects,	who	
design	IT	infrastructures	

Dec.	2017	
–	 Aug.	
2019	

Semi-structured	
interviews	 and	 usability	
testing	(with	members	of	
the	user	community	of	IT	
architects)	 and	
participant	 observation	
of	technical	development	
work	on	this	project;	also	
design	and	execution	of	a	
user	feedback	program	to	
facilitate	 exchange	
between	user	community	
and	 technical	 team	 (72	
informants)	

Beta	 –	 exploratory	
interview	 study	 of	 ML	
developers’	 experiences	
and	 work	 practices	 and	
design	 evaluation	 of	 an	
interface	

June	
2018	 –	
Aug.	
2018	

Semi-structured	
interviews	 and	
participatory	design	of	an	
interface	 for	 a	 novel,	
open-source	 AI/ML	
toolkit	(13	informants)	

Gamma	 –	 software	
development	 project	
building	 a	 system	 to	
support	 the	 model	
improvement	 practices	 of	
data	scientists		

Oct.	 2018	
–	 Sept.	
2019	

Semi-structured	
interviews	 and	
participant	 observations	
of	 model	 improvement	
practices;	 participatory	
design	 of	 a	 system	 to	
support	 those	 practices	
(8	informants)	



Sensemaking Practices in AI/ML Software Engineering ICSEW’20, May 23-29, 2020, Seoul, Republic of Korea 
 

 3 
 

Delta	 –	 exploratory	
interview	 study	 of	 those	
who	 work	 on	 natural	
language	 processing	
(NLP)	projects		

July	 2019	
–	 Sept.	
2019	

Semi-structured	
interviews	 (30	
informants)	

Table	 1.	 Describes	 the	 four	 projects	 from	 the	 larger	
ethnographic	study.		

3	 Findings:	Sensemaking	Practices	
We	 organize	 our	 findings	 in	 three	 themes:	 making	 sense	 of	
AI/ML	 environments;	 making	 sense	 of	 AI/ML	 model	
ecosystems;	 and	 making	 sense	 of	 business	 contexts	 when	
building	AI/ML	systems.	

3.1	 Making	Sense	of	AI/ML	Environments		
Working	on	AI/ML	SE	projects	involves	getting	a	handle	on	the	
overall	development	environment.	This	means	understanding	
what	algorithms	and	methods	are	being	used	in	a	project	–	for	
example,	Neural	Network,	Support	Vector	Machine	(SVM),	or	
Decision	 Trees.	 In	 complex	 projects	 using	 experimental	
methods	(typical	in	R&D	teams),	this	can	mean	getting	a	handle	
on	combo	or	hybrid	approaches	that	weave	together	different	
algorithms.	 The	Beta	 project,	 for	 example,	 involved	 a	 hybrid	
approach	that	took	the	activations	from	the	last	hidden,	dense	
layer	of	a	Neural	Network	and	then	clustered	those	activations	
using	 a	 k-means	 clustering	 algorithm.	 The	 AI	method	 in	 the	
Beta	project	was	part	of	an	open-source	AI	toolkit	to	examine	
datasets	for	the	presence	of	“poison”	–	intentionally	tampered	
data.	Based	on	the	method’s	underlying	research	experiments,	
if	one	of	the	activation	clusters	was	substantially	smaller	than	
the	 other,	 it	 was	 an	 indicator	 the	 small	 cluster	 contained	
tampered	data.	Even	though	developers	understood	the	Beta	
method	 was	 a	 combination	 neural	 network/k-means	
algorithm,	many	questions	still	arose	on	the	particulars	of	the	
clustering	 analysis.	 We	 can	 see	 such	 a	 concern	 as	 Frank,	 a	
developer,	thinks	aloud	when	reviewing	the	toolkit’s	interface:		

So	I	see	cluster	size	is	the	indicator,	but	I’m	wondering	how	are	
you	guys	computing	these	cluster	sizes?	Is	it	just	like	looking	
at	 the	 overall	 distribution	 of	 the	 clusters	 that	 you	 produce	
from	 the	 clusters?	And	also,	what	 are	 the	heuristics	 you	are	
using	 to	 determine	 whether	 they're	 about	 the	 same	 size	 or	
whether	 they're	 big	 or	 small?	 (Frank,	 developer,	 Beta	
interview).	

Questions	like	Frank’s	(about	the	particulars	of	the	clustering	
approach	used	in	the	method)	were	raised	by	many	developers	
in	the	Beta	project.	What	this	tells	us	is	that	in	understanding	
an	 algorithm’s	 mechanics,	 developers	 make	 sense	 of	 “an	
algorithm”	at	differing	 levels	of	granularity	–	while	“k-means	
clustering	algorithm”	provides	a	general	understanding	of	the	
method’s	 algorithmic	 mechanics,	 in	 order	 to	 evaluate	 and	
derive	meaning	from	any	results	 it	might	display,	developers	
need	 details	 of	 operations	 (and	 their	 significance)	 at	 a	 finer	
grain.	

Another	concern	for	ML	developers	in	making	sense	of	Beta’s	
novel	 AI	 method	 was	 understanding	 the	 experiments	 and	
scenarios	 tested	 in	 a	 method’s	 development	 process.	 Angie	
wondered	aloud	“I	wonder	why	they	only	use	activations	from	
the	 last	 layer,	 instead	 of	 the	 whole?”	 (Angie,	 developer,	 Beta	
interview).	 Similarly,	 Laverne	 commented	 aloud	 as	 she	
interacted	with	the	interface	“Hmm,	interesting,	okay,	so	this	is	
empirical?	These	metrics	are	derived	from	experiments.”	Here	we	
see	how	understanding	different	decisions	made	in	the	process	
of	 developing	 the	 AI	 method	 helps	 developers	 assess	 its	
soundness,	 as	 Laverne	 continued,	 asking:	 “And	 what	 if	 the	
cluster	sizes	were	comparable?	Like	if	you	had	that	much	poison	
in	 your	 dataset?	 If	 you	 had	 as	 much	 poison	 as	 clean,	 then	 it	
wouldn’t	 even	 flag	 it,	 would	 it?”	 (Laverne,	 developer,	 Beta	
interview).	 Understanding	 what	 experiments	 the	 method’s	
inventors	 ran	 during	 its	 development	 was	 important	 to	
understanding	 its	 potential	 limitations,	 as	 Georgia,	 an	 ML	
developer,	 explained:	 “So	 just	 putting,	 you	 know,	 stating	 ‘We	
studied	 it	 in	 this	 context,	 using	 this	 classifier,	 and	 it’s	 not	 as	
robust	in	this	scenario	versus	that	scenario’	or	maybe	it	is	robust	
in	 both	 and	 that	would	 be	 even	more	 useful	 for	me	 to	 know.”	
(Georgia,	developer,	Beta	interview).		Through	these	examples	
from	the	Beta	project,	we	are	able	to	see	how	developers	must	
make	sense	of	the	algorithms	being	used	(what	algorithms	are	
being	used	here?)	but	also	how	best	to	appropriately	interpret	
the	 algorithmic	 method’s	 output	 and	 its	 significance	 for	 the	
task	at	hand.	

In	 addition	 to	 specific	 AI/ML	 algorithms	 and	 methods,	
developers	must	also	make	sense	of	the	software	libraries	used	
in	a	given	project.	Examples	of	AI/ML	software	libraries	include	
TensorFlow,	Keras,	PyTorch,	or	Apache	Spark.	Developers	gain	
fluency	 in	 particular	 libraries,	 even	 garnering	 a	 favorite	 or	
preferred	 library.	 But	 even	 if	 an	 SE	 team	 is	 using	 the	 same	
library	(e.g.,	Keras),	the	library	can	be	variable	across	releases,	
causing	 issues	 with	 compatibility.	 There	 can	 be	 continuity	
issues	with	code	written	 in	one	version	of	a	 library	and	then	
executed	 later	using	a	subsequent	version.	Xavier	 raised	 this	
issue	in	an	interview.	He	had	recently	joined	the	team	and	was	
trying	to	get	his	machine	configured	and	onboarded	to	pick	up	
his	teammate’s	existing	code.	Xavier	tried	to	execute	the	code	
on	his	machine	but	kept	getting	errors	returned	which	puzzled	
both	 him	 and	 his	 teammate.	 “We	 were	 both	 using	 Keras	 (a	
common,	open	source	AI	framework),	so	we	were	both	like	what	
is	going	on?,”	he	explained.	Perplexed,	Xavier	spent	some	time	
searching	online	forums	but	couldn’t	find	anything	particularly	
useful.	“Keras	is	known	for	not	having	the	best	documentation,”	
he	explained,	“but	usually	I	can	find	relevant	discussions	online.”	
Discouraged	 from	 the	 lack	of	 insight	online,	Xavier	 felt	 stuck	
and	 shared	 his	 frustration	 with	 others	 who	 shared	 his	
workspace.	“That’s	when	I	was	just	talking	about	it	in	our	room,	
asking	 if	 anybody	 else	 had	 this	 problem	 when	 they	 started,”	
Xavier	said.	He	continued:	

It	was	kinda	 funny	 (laughs)	 after	 all	 those	 issues	 and	 trying	
everything	 I	 could	 think	of,	 trying	 for	 several	 days,	 [Jesus,	 a	



ICSEW’20, May 23-29, 2020, Seoul, Republic of Korea C.T. Wolf & D. Paine 
 

 
 
4 
 

colleague]	was	 like	 ‘Oh	 yeah,	what	 version	of	Keras	 are	 you	
using?	 The	 most	 recent	 release	 caused	 a	 lot	 of	 portability	
issues.’	And	just	like	that,	we	figured	it	out.	(Xavier,	developer,	
Beta	interview).	

In	 these	 examples,	we	 are	 able	 to	 see	 how	 developers	must	
make	sense	of	a	project’s	broader	AI/ML	environment	–	simply	
knowing	the	project	is	dealing	with	Neural	Networks	or	using	
the	Keras	library	is	only	part	of	the	equation.	For	SE	work	to	
proceed,	developers	must	develop	a	deeper	understanding	of	
the	broader	AI/ML	environment	to	effectively	work	in	it.	

3.2	 Making	Sense	of	AI/ML	Model	Ecosystems	
The	 environments	 of	 applied	 AI	 systems	 are	 complex	 and	
dynamic	 –	 often,	 the	 overarching	 system/service	 can	 have	
many	components	and	sub-processes.	In	addition	to	the	AI/ML	
environment	 (e.g.,	 algorithms	 and	 libraries,	 as	 discussed	
above),	models	 are	 also	 a	 key	 site	 of	 sensemaking	 in	 AI/ML	
ecosystems.	This	can	include	pre-trained	models,	models	that	
are	trained	elsewhere	and	then	used	by	subsequent	SE	teams	
“off	the	shelf”	or	as	a	starting	place	to	bootstrap	off	and	build	a	
bespoke,	 hybrid	 model.	 In	 a	 pre-trained	 model	 scenario,	
software	 teams	must	 figure	 out	what	 the	 pre-trained	model	
entails,	its	scope	and	training	data/subsequent	limitations,	as	
Andrej,	a	technical	executive,	said	during	an	interview:	“When	
we	talk	about	AI	we	talk	about	a	lot	of	'-abilities,'	interpretability,	
explainability.	But	another	thing	is	the	data,	what	data	was	this	
model	trained	on?”	Andrej	went	on	to	elaborate:	“That	helps	you	
interpret	 what	 it	 is	 giving	 you.	 It	 can	 be	 hard	 for	 people	 to	
interpret	a	lot	of	this	if	 it's	not	clear	about	the	data	behind	it.”	
(Andrej,	technical	executive,	Delta	interview).	This	was	echoed	
in	 many	 developers’	 accounts	 as	 well,	 as	 they	 described	
working	 with	 pre-trained	 models.	 Vincent,	 a	 developer	
recounted:	“We	really	had	to	dig	around	to	understand	what	the	
pre-trained	model	could	do,	before	we	could	come	up	with	some	
novel	 research	 to	 build	 on	 top”	 (Vincent,	 developer,	 Delta	
interview).	 He	 then	 described	 the	 testing	 procedures	 the	 SE	
team	devised	to	create	benchmarks	to	measure	any	subsequent	
tweaks	 they	made	to	 the	off-the-shelf	model.	Any	changes	or	
improvements	to	the	model	or	overall	ML	architecture	had	to	
be	carefully	evaluated	for	impacts	to	speed/performance	of	the	
resulting	 user	 experience	 (UX)	 of	 the	 service:	 “Even	 adding	
seconds,	 you	 know,	 even	 half	 seconds	 to	 run	 time	 can	 cause	
problems,”	 Vincent’s	 teammate	 and	 fellow	 developer,	 Jiro,	
stated,	 “so	 we	 are	 always	 testing	 those	 impacts	 before	 we	
implement	 any	 changes.”	 (Jiro,	 developer,	 Delta	 interview).	
Thus,	SE	teams	must	make	sense	of	pre-trained	models	(what	
data	are	they	trained	on,	what	can	they	do	and	not	do),	as	well	
as	any	subsequent	changes	or	modifications	they	make	to	the	
model	and	 its	significance	 for	 the	overall	performance	of	 the	
service	the	AI	will	be	embedded	in.		

In	 addition	 to	 pre-trained	 models,	 some	 projects	 might	 use	
other	 off-the-shelf	 knowledge	 objects,	 such	 as	 word	
embeddings	or	knowledge	graphs.	These	types	of	objects	are	
different	from	pre-trained	models,	yet	also	require	developers	

to	 carefully	 understand	 their	 composition	 and	 limitations	 as	
Kurt	 shared:	 “Word	 embeddings	 are	 quite	 biased”	 (Kurt,	
developer,	Delta	interview).	He	went	on	to	list	some	common	
examples	 to	 illustrate	 his	 point,	 associating	 “attorney”	 with	
male,	 yet	 “paralegal”	with	 female.	 SE	 teams	 need	 to	 identify	
these	types	of	bias,	which	can	be	difficult	when	using	models	
and	 knowledge	 objects	 created	 elsewhere.	 “Created	
elsewhere,”	though,	can	also	mean	models	and	code	written	by	
other	SE	 teams	or	written	by	earlier	 iterations	of	 a	 software	
team,	who	“inherit”	ecosystems	and	must	make	sense	of	what	
has	 already	 been	 done.	 “We	 didn't	 start	 this	 project	 from	
scratch,”	 Xiao	 said,	 “there	 was	 a	 legacy	 from	 previous	 teams.	
Then	we	 have	 some	 discussions	 on	 how	we	wanted	 to	 change	
some	 things	 and	 keep	 some	 things.”	 (Xiao,	 developer,	 Delta	
interview).	 Software	 teams	 must	 iteratively	 make	 sense	 of	
ecosystems	which	are	dynamic	and	include	legacy	components	
with	 varying	 temporalities	 [6],	 involving	 artifacts	 from	 a	
variety	of	sources	both	external	and	internal	to	the	team	and	
organization.	

SE	 teams	 must	 also	 make	 sense	 of	 multi-model	 AI/ML	
ecosystems.	Many	applied	AI	systems	will	 include	more	 than	
one	model	in	the	overarching	digital	service,	for	example	a	text	
classification	task	also	requires	processing	text	inputs	through	
parsing,	 which	 can	 be	 done	 via	 an	 “upstream”	
extraction/parsing	 model	 that	 feeds	 into	 the	 classification	
model.	Alternate	configurations	might	architect	these	two	tasks	
to	 be	 housed	 within	 a	 single	 model,	 yet	 there	 will	 likely	 be	
different	 developers	 working	 on	 each	 task.	 This	 requires	
establishing	 internal	 team	 infrastructure	 to	 smoothly	
coordinate	 and	 collaborate	 on	 future	 model	 refinements	 –	
developers	 must	 understand	 the	 dependencies	 between	 the	
different	 tasks	 and/or	 different	models.	 The	 Gamma	 project	
was	focused	on	building	a	system	to	support	error	analysis	–	
the	 process	 of	 analyzing	 individual	 model	 errors	 to	 identify	
error	 root	 causes	 and	 plan	 subsequent	 model	 improvement	
work.	Typical	model	errors	include	precision	and	recall	errors,	
but	there	may	also	be	other	errors,	such	as	mislabeled	ground	
truth	or	a	preceding	model’s	error	(e.g.,	a	parser	error,	rather	
than	a	classification	error).	In	enterprise	settings,	where	AI/ML	
software	services	enhance	complex	domain	activities	like	legal	
contract	 analysis,	 feedback	 from	 users	 (typically	 subject-
matter	 experts	 or	 “SMEs”)	 is	 integral	 in	 identifying	 model	
errors.	Early	in	the	life	of	a	model,	SE	teams	will	work	closely	
with	a	handful	of	SMEs	in	building	and	refining	the	service.	Yet	
later,	after	the	service	is	launched,	feedback	can	come	in	from	a	
growing	and	heterogeneous	group	of	end-users.	Effectively	and	
efficiently	 processing	 user	 feedback	 is	 essential	 in	 the	
maintenance	and	refreshment	of	the	service,	yet	the	dynamic	
and	complex	nature	of	the	AI/ML	ecosystem	requires	ongoing	
sensemaking	and	infrastructuring	work	by	SE	teams.	

3.3	 Making	Sense	of	Business	Contexts	When	
Building	AI/ML	Systems	



Sensemaking Practices in AI/ML Software Engineering ICSEW’20, May 23-29, 2020, Seoul, Republic of Korea 
 

 5 
 

Sensemaking	and	infrastructuring	work	in	AI/ML	ecosystems	
extends	 beyond	 technical	 issues	 and	 also	 includes	 concerns	
that	 emerge	 between	 the	 business	 context	 and	 the	 AI/ML	
service	as	SE	work	unfolds.	These	concerns	are	consequential	
both	for	the	ongoing	technical	work	of	coding	and	building,	as	
well	as	broader	project/stakeholder	management.	“The	key	to	
being	successful	[in	building	ML]	is	all	about	thinking	through	the	
problems	or	questions	you	want	to	work	on,”	Kai	explained,	“one	
that	fits	appropriately	with	your	data.	Once	you	have	that	clear	
in	your	mind,	then	you	have	an	easier	time	making	choices	about	
different	ML	techniques.”	He	reflected	on	the	recent	explosion	of	
interest	in	ML:	“there’s	a	lot	interest	in	ML	today,	but	I	always	
stress	that	yes,	it’s	a	hot	topic,	but	it’s	like	any	other	technical	sub-
field,”	 he	 explained,	 “it’s	 got	 to	 make	 sense	 for	 what	 you	 are	
trying	 to	do.”	 (Kai,	 developer,	Beta	 interview).	Having	 clarity	
within	the	SE	team	on	the	appropriateness	of	a	problem/task	
match	is	important	because	the	team	will	need	to	help	clients	
think	 through	 the	 service’s	 match	 with	 their	 organizational	
objectives.	 “You	 want	 to	 tell	 clients	 there	 is	 no	 magic	 in	 the	
model,”	Svetlana	recounted.	 “We	want	 to	ask	 them:	 ‘What	are	
you	looking	to	do	in	your	organization?	What	are	you	trying	to	
do?	What's	 your	 data	 and	what's	 your	 task?’”	 She	 continued,	
reflecting:	 “We	 don't	want	 to	 try	 a	 pre-trained	model	 off-the-
shelf	if	it’s	not	a	good	fit,	because	then	they	will	be	disappointed.	
It's	 got	 to	 be	 aligned	 with	 the	 business	 problem."	 (Svetlana,	
developer,	Delta	interview).	

Having	 these	 types	 of	 conversations	 with	 clients	 requires	
making	sense	of	“how	technical”	various	stakeholders	are	on	a	
project	 and	 adjusting	 the	 software	 team’s	 communication	
approach	accordingly	(e.g.,	use	of	technical	jargon,	etc).	“From	
my	experience,”	Emil	shared,	“99%	of	the	time,	even	just	saying	
we	used	a	‘deep	learning	neural	network’	is	too	much	detail	for	
conversations	with	product.”	(Emil,	developer,	Delta	interview).	
Natasha,	 an	 offering	manager	 on	 an	AI/ML	 service,	 shared	 a	
similar	perspective:	“Real	life	clients	are	not	data	scientists,	they	
are	 business	 people	 and	 technology	 leaders	 who	 need	 to	
implement	some	AI	inside	of	some	traditional	software	platform.	
And	 they	 want	 an	 AI	 service	 to	 bolster	 their	 product	 without	
having	to	invest	in	AI.”	She	elaborated:	“If	a	data	scientist	was	
brought	into	the	room,	…	if	a	data	scientist	was	involved	in	the	
purchase	decision,	more	technical	kinds	of	questions	would	come	
up.	But	the	questions	we	tend	to	see	are	more	business-oriented,	
how	do	we	integrate	this	with	more	deterministic	software	code,	
how	 do	 we	 integrate	 it	 into	 our	 business."	 (Natasha,	 service	
offering	manager,	Delta	interview).		

SE	 teams	must	 develop	 a	 fluency	with	 the	 client’s	 industrial	
domain	 and	 business	 processes	 to	 appropriately	 navigate	 it.	
This	is	an	ongoing	process	of	sensemaking	and	improvisational	
learning,	adjusting	day-to-day	practice	as	lessons	are	learned.	
For	example,	Jane	talked	of	her	journey	to	working	with	SMEs	
and	 leveraging	 their	 industrial	 knowledge	 to	 guide	 model	
development:	“At	first,	I'd	just	dump	all	my	features	into	a	model,	
but	then	you	don't	get	anything	good,”	she	stated.	“So	now	I	work	

with	an	SME	on	what	are	the	top	3	or	4	features	you'd	look	for	
first,	then	use	that	to	guide	the	feature	engineering	to	make	sure	
we	are	looking	at	the	right	things.”	She	reflected	on	the	benefits	
of	 this	 close,	 collaborative	 approach:	 “Then	 that	 becomes	
naturally	more	interpretable	to	the	SME	because	it's	things	they	
would	 look	 for,	 and	know”	 (Jane,	 developer,	Delta	 interview).	
Making	sense	of	business/AI	coupling	can	also	involve	thinking	
through	 if	and	how	the	AI/ML	service	will	alter	 the	business	
process	 it	 will	 become	 embedded	 in.	 For	 example,	
Chandrasekhar	was	working	 on	 a	 project	 building	 an	AI/ML	
service	in	the	pharmaceutical	domain.	The	service	worked	to	
identify	“key	opinion	leaders,”	a	typical	activity	in	marketing.	
Chandrasekhar	 talked	 of	 the	 software	 team’s	 work	 in	
explaining	how	the	AI/ML	approach	to	identifying	key	opinion	
leaders	differed	from	the	business-as-usual	process	(a	manual,	
hand-curated	process).	“We	have	to	really	work	with	clients	to	
understand	 the	 differences,”	 he	 said,	 “the	 AI	 service	 is	 much	
faster	than	the	manual	process,	which	is	a	key	benefit,	but	it	also	
has	limitations	in	that	there	isn’t	a	human	verifying	everything	
along	the	way.”	(Chandrasekhar,	developer,	Delta	interview).	In	
other	 cases,	 clients	 may	 present	 the	 software	 team	 with	
constraints	 that	 the	 overarching	 business	 process	 remain	
unchanged,	 which	 can	 create	 unique	 SE	 considerations.	 For	
example,	Sandeep	was	working	on	a	project	building	an	AI/ML	
service	in	facilities	management.	“They	were	very	clear,	they	did	
not	want	to	have	to	create	new	policies	or	processes	to	integrate	
the	service	into	their	business,”	he	recounted.	“It	really	made	us	
have	to	think,	we	had	to	understand	their	current	process	really	
well	 to	 ensure	 whatever	 we	 built	 would	 be	 amenable	 to	 it."	
(Sandeep,	developer,	Delta	interview).	Many	services,	though,	
are	intentionally	aimed	to	catalyze	organizational	change	–	yet	
despite	 this	 intentionality,	 exactly	what	will	 be	 changed	 and	
how	can	remain	ambiguous	(or	morph)	during	a	project.		

Even	 more	 challenging	 is	 understanding	 the	 broader	
repercussions	of	such	changes	–	and	defining	what	elements	of	
a	process	must	remain	the	same	to	ensure	overall	system	(as	
well	as	organizational)	stability.	For	example,	the	Alpha	project	
was	 building	 an	 AI/ML	 decision-support	 system	 to	 augment	
the	 design	 work	 of	 IT	 architects	 who	 design	 IT	 system	
architectures.	 Their	 design	 work	 involves	 culling	 IT	
requirements	from	Request	for	Proposal	(RFP)	documentation	
and	then	matching	 those	requirements	 to	sets	of	offerings	 in	
the	 TechCorp	 catalogue.	 When	 implemented	 into	 an	 AI/ML	
system,	 these	 activities	 were	 accomplished	 through	 an	 NLP	
model	(handling	text	extraction	and	classification)	and	then	a	
downstream	optimization	model	 (matching	 the	 classification	
results	 to	 offerings	 and	 recommending	 an	 optimal	 solution).	
Explaining	this	complexity	to	users	was	a	difficult	task,	made	
even	 more	 challenging	 as	 the	 system’s	 architecture	 and	
underlying	 AI/ML	 functionality	 evolved	 over	 time	 in	 the	
project’s	Agile	trajectory.	As	new	requirements	emerged	from	
the	user	community,	changes	were	made	–	yet	this	evolution	
raised	new	questions	on	reliability.	For	example,	as	the	project	
progressed,	the	decision	was	made	to	integrate	the	system	with	



ICSEW’20, May 23-29, 2020, Seoul, Republic of Korea C.T. Wolf & D. Paine 
 

 
 
6 
 

other	TechCorp	databases	that	IT	architects	used	regularly	in	
their	design	work	–	 if	 the	Alpha	system	was	meant	 to	be	the	
“one	 stop	 shop”	 for	 their	 design	 work,	 it	 needed	 to	 also	
integrate	 a	 TechCorp	 database	 called	 OrgFrame.	 The	
connection	between	OrgFrame	and	the	Alpha	system’s	internal	
AI/ML	 models	 was	 accomplished	 via	 an	 API.	 Yet	 when	 this	
functionality	was	launched	in	the	Alpha	system,	users	raised	a	
number	 of	 questions	 and	 concerns	 over	 the	 frequency	 and	
verifiability	 of	 the	 API’s	 data	 stream.	 How	 do	 I	 know	 it	 is	
drawing	on	the	most	current	version	of	OrgFrame?	Investigating	
this	 question,	 the	 SE	 team	 uncovered	 a	 mire	 around	 the	
database,	 including	 its	 ad	 hoc	 refreshment	 approach	 which	
made	 it	 difficult	 to	 anticipate	 and	 appropriately	 architect	 to	
provide	data	inputs	into	the	Alpha	project’s	AI/ML	models.	In	
this	example,	we	see	how	software	teams	must	not	only	make	
sense	of	a	project’s	broader	industrial	and	business	domain	as	
a	project	starts,	but	that	these	are	evolving	and	dynamic	sites	
of	sensemaking,	which	are	consequential	in	shaping	if	and	how	
the	team’s	work	proceeds.	

4	 Discussion	and	Conclusions	
In	this	paper,	we	have	investigated	the	topic	of	sensemaking	in	
applied	AI/ML	software	engineering	projects.	As	our	empirical	
findings	 illustrate,	AI/ML	 software	projects	 are	dynamic	 and	
complex	settings	which	necessitate	software	teams’	active	and	
engaged	 sensemaking	 as	 they	 strive	 to	 create	 coherence	 of:	
AI/ML	environments	(e.g.,	algorithms/methods	and	libraries),	
AI/ML	 model	 ecosystems	 	 (e.g.,	 pre-trained	 models	 and	
“upstream”	 models),	 and	 the	 business	 contexts	 that	 emerge	
while	 building	 AI/ML	 systems	 (e.g.,	 how	 the	 AI/ML	 service	
relates	to	the	business	problem	at	hand).	Our	paper	builds	on	
recent	scholarship	noting	the	integral	role	of	sensemaking	in	SE	
work	[7,	16-18].	Our	focus	on	AI/ML	projects	also	contributes	
empirical	insights	to	the	nascent	body	of	research	investigating	
the	challenges	of	software	work	 involving	AI/ML	capabilities	
[2,	 10,	 12].	 Ehlers	 [7]	 characterizes	 the	 work	 of	 software	
development	 as	 “managed	 sensemaking,”	 noting	 a	 dynamic	
interplay	that	unfolds	in	everyday	SE	work	practices	that	is	at	
once	tactical,	yet	also	improvisational.	It	is	tactical	in	that	it	is	
expected	and	often	planned	for	–	onboarding	new	members	to	
the	software	team	(What	libraries	are	we	using?	What	legacies	
are	we	inheriting?),	starting	new	projects	with	clients	(What	are	
they	looking	to	do	with	AI?	What	is	the	business	context?),	and	so	
on.	But	it	is	also	improvisational	and	situated	–	as	we	have	seen,	
the	need	to	make	sense	of	ambiguous,	uncertain,	and	surprising	
events	 is	ongoingly	emergent	as	 software	projects	proceed	–	
What	 version	 of	 the	 library	 are	 you	 using?	 What	 are	 the	
limitations	 of	 using	 open	 source	 objects	 in	 our	 system?	 How	
might	new	requirements	challenge	our	existing	architecture?	

As	 we	 wrap	 up,	 we	 note	 two	 implications	 of	 our	 work	 that	
prompt	 further	 inquiry	 –	 one	 is	 emergence	 and	 another	 is	
resonance.	 By	 emergence	 [13],	 we	 mean	 the	 fluid	 nature	 of	
sensemaking	 practices	 and	 by	 resonance,	 we	 mean	 the	

relationship	between	our	 findings	 in	AI/ML	projects	 and	 the	
sensemaking	 practices	 of	 software	 teams	 in	 traditional	
projects.	We	have	organized	our	empirical	findings	into	three	
themes;	 these	 divisions	 are	 analytical	 and	 in	 practice,	 their	
boundaries	 may	 overlap,	 blur,	 merge,	 or	 cleave	 in	 different	
configurations	of	entities	[15].	This	presents	both	a	challenge	
and	 an	 opportunity	 for	 those	 interested	 in	 developing	 SE	
process	models	 of	 sensemaking	 –	 how	 and	 in	what	ways	 do	
software	 teams	 themselves	 understand	 their	 sensemaking	
practices?	Do	the	analytical	contours	of	“AI/ML	environment,”	
“AI/ML	model	ecosystem,”	and	“business	context”	feel	true-to-
life	and	useful	for	them?	Who	else	must	make	sense	of	AI/ML	
ecosystems?	How	and	when	do	they	contribute	to	the	work	of	
software	teams?	How	might	we	capture	these	fluid	and	organic	
dynamics	in	process	models	of	sensemaking?	Further,	we	note	
that	many	sites	of	sensemaking	we	have	explored	here	are	not	
wholly	“new”	and	instead	echo	existing	insights	from	research	
into	the	collaborative,	human	aspects	of	SE.	This	presents	an	
opportunity	 for	 synthesis	 and	 coalition	–	What	 is	new	about	
AI/ML	 software	 engineering?	 What	 is	 familiar	 and	 what	
persists	from	existing	SE	scholarship?	Such	questions	are	ripe	
for	future	scrutiny.	

ACKNOWLEDGMENTS	
Thank	you	 to	 informants	 for	 sharing	 your	 time,	 experiences,	
and	insights.	All	opinions	expressed	herein	are	our	own	and	do	
not	reflect	any	 institutional	endorsement.	Dr.	Paine’s	work	 is	
supported	by	the	U.S.	Department	of	Energy,	Office	of	Science	
and	Office	of	Advanced	Scientific	Computing	Research	(ASCR)	
under	Contract	No.	DE-AC02-05CH11231.	

REFERENCES	
[1]	 S.	 Amershi,	 A.	 Begel,	 C.	 Bird,	 R.	 DeLine,	 H.	 Gall,	 E.	 Kamar,	 N.	

Nagappan,	 B.	 Nushi	 and	 T.	 Zimmermann.	 	 2019.	 Software	
Engineering	 for	 Machine	 Learning:	 A	 Case	 Study.	 in	 2019	
IEEE/ACM	 41st	 International	 Conference	 on	 Software	
Engineering:	 Software	 Engineering	 in	 Practice	 (ICSE-SEIP),	
291-300.	10.1109/ICSE-SEIP.2019.00042	

[2]	 A.	 Begel.	 	 2019.	 Best	 Practices	 for	 Engineering	 AI-Infused	
Applications:	 Lessons	 Learned	 from	 Microsoft	 Teams.	 in	
2019	 IEEE/ACM	 Joint	 7th	 International	 Workshop	 on	
Conducting	 Empirical	 Studies	 in	 Industry	 (CESI)	 and	 6th	
International	 Workshop	 on	 Software	 Engineering	 Research	
and	 Industrial	 Practice	 (SER&IP),	 1-1.	 10.1109/CESSER-
IP.2019.00008	

[3]	Matthias	Book	and	André	van	der	Hoek.	 	 2018.	 Sketching	with	 a	
purpose:	moving	 from	 supporting	modeling	 to	 supporting	
software	 engineering	 activities.	 in	Proceedings	 of	 the	 11th	
International	Workshop	on	Cooperative	and	Human	Aspects	
of	 Software	 Engineering,	 Gothenburg,	 Sweden,	 Association	
for	 Computing	 Machinery,	 93–96.	
10.1145/3195836.3195854	

[4]	Kathy	Charmaz.	 	2014.	Constructing	Grounded	Theory:	A	Practical	
Guide	Through	Qualitative	Analysis.	Sage.	

[5]	 Souti	 Chattopadhyay,	 Nicholas	 Nelson,	 Thien	 Nam,	 McKenzie	
Calvert	and	Anita	Sarma.		2018.	Context	in	programming:	an	
investigation	 of	 how	 programmers	 create	 context.	 in	
Proceedings	 of	 the	 11th	 International	 Workshop	 on	
Cooperative	 and	 Human	 Aspects	 of	 Software	 Engineering,	



Sensemaking Practices in AI/ML Software Engineering ICSEW’20, May 23-29, 2020, Seoul, Republic of Korea 
 

 7 
 

Gothenburg,	Sweden,	Association	for	Computing	Machinery,	
33–36.	10.1145/3195836.3195861	

[6]	Marisa	Leavitt	Cohn.		2016.	Convivial	Decay:	Entangled	Lifetimes	in	
a	 Geriatric	 Infrastructure.	 in	 Proceedings	 of	 the	 19th	 ACM	
Conference	 on	 Computer-Supported	 Cooperative	 Work	 &	
Social	Computing,	San	Francisco,	California,	USA,	ACM,	1511-
1523.	10.1145/2818048.2820077	

[7]	 Kobus	 Ehlers.	 	 2011.	 Agile	 software	 development	 as	 managed	
sensemaking,	Stellenbosch:	University	of	Stellenbosch.	

[8]	 Rob	 Fuller.	 	 2019.	 Functional	 organization	 of	 software	 groups	
considered	 harmful.	 in	 Proceedings	 of	 the	 International	
Conference	 on	 Software	 and	 System	 Processes,	 Montreal,	
Quebec,	 Canada,	 IEEE	 Press,	 120–124.	
10.1109/icssp.2019.00024	

[9]	 Valentina	 Grigoreanu,	 Margaret	 Burnett,	 Susan	 Wiedenbeck,	 Jill	
Cao,	Kyle	Rector	and	Irwin	Kwan.		2012.	End-user	debugging	
strategies:	 A	 sensemaking	 perspective.	 19	 (1).	 Article	 5.	
10.1145/2147783.2147788	

[10]	F.	 Ishikawa	and	N.	Yoshioka.	 	2019.	How	Do	Engineers	Perceive	
Difficulties	 in	Engineering	of	Machine-Learning	Systems?	 -	
Questionnaire	 Survey.	 in	 2019	 IEEE/ACM	 Joint	 7th	
International	Workshop	on	Conducting	Empirical	 Studies	 in	
Industry	(CESI)	and	6th	International	Workshop	on	Software	
Engineering	Research	and	Industrial	Practice	(SER&IP),	2-9.	
10.1109/CESSER-IP.2019.00009	

[11]	Sami	Jantunen,	Rex	Dumdum	and	Donald	C.	Gause.		2019.	Towards	
new	 requirements	 engineering	 competencies.	 in	
Proceedings	 of	 the	 12th	 International	 Workshop	 on	
Cooperative	 and	 Human	 Aspects	 of	 Software	 Engineering,	
Montreal,	 Quebec,	 Canada,	 IEEE	 Press,	 131–134.	
10.1109/chase.2019.00038	

[12]	F.	Khomh,	B.	Adams,	J.	Cheng,	M.	Fokaefs	and	G.	Antoniol.	 	2018.	
Software	 Engineering	 for	 Machine-Learning	 Applications:	
The	 Road	 Ahead.	 IEEE	 Software,	 35	 (5).	 81-84.	
10.1109/MS.2018.3571224	

[13]	 Charlotte	 P.	 Lee	 and	 Drew	 Paine.	 	 2015.	 From	 The	Matrix	 to	 a	
Model	 of	 Coordinated	 Action	 (MoCA):	 A	 Conceptual	
Framework	of	and	for	CSCW.	in	Proceedings	of	the	18th	ACM	
Conference	 on	 Computer	 Supported	 Cooperative	 Work	 &	
Social	 Computing,	 Vancouver,	 BC,	 Canada,	 ACM,	 179-194.	
10.1145/2675133.2675161	

[14]	Lucy	Ellen	Lwakatare,	Aiswarya	Raj,	Jan	Bosch,	Helena	Holmström	
Olsson	and	Ivica	Crnkovic.	 	2019.	A	Taxonomy	of	Software	
Engineering	Challenges	 for	Machine	Learning	 Systems:	An	
Empirical	 Investigation.	 in,	 Cham,	 Springer	 International	
Publishing,	227-243.		

[15]	 Drew	 Paine	 and	 Charlotte	 P.	 Lee.	 	 2020.	 Coordinative	 Entities:	
Forms	 of	 Organizing	 in	 Data	 Intensive	 Science.	 Computer	
Supported	Cooperative	Work	(CSCW).	10.1007/s10606-020-
09372-2	

[16]	 Paul	 Ralph.	 	 2015.	 Developing	 and	 evaluating	 software	
engineering	 process	 theories.	 in	 Proceedings	 of	 the	 37th	
International	Conference	on	Software	Engineering	-	Volume	1,	
Florence,	Italy,	IEEE	Press,	20–31.		

[17]	Paul	Ralph.		2015.	The	Sensemaking-Coevolution-Implementation	
Theory	 of	 software	 design.	 Science	 of	 Computer	
Programming,	 101.	 21-41.	
https://doi.org/10.1016/j.scico.2014.11.007	

[18]	 Paul	 Ralph	 and	 Rahul	 Mohanani.	 	 2015.	 Is	 requirements	
engineering	inherently	counterproductive?	in	Proceedings	of	
the	 Fifth	 International	 Workshop	 on	 Twin	 Peaks	 of	
Requirements	 and	Architecture,	 Florence,	 Italy,	 IEEE	Press,	
20–23.		

[19]	Walt	Scacchi.	 	2002.	Process	Models	 in	Software	Engineering.	 in	
Marciniak,	J.J.	ed.	Encyclopedia	of	Software	Engineering.	

[20]	Todd	Sedano,	Paul	Ralph	and	Cécile	Péraire.	 	2019.	The	product	
backlog.	in	Proceedings	of	the	41st	International	Conference	
on	 Software	 Engineering,	 Montreal,	 Quebec,	 Canada,	 IEEE	
Press,	200–211.	10.1109/icse.2019.00036	

[21]	 H.	 Sharp,	 Y.	 Dittrich	 and	 C.	 R.	 B.	 de	 Souza.	 	 2016.	 The	 Role	 of	
Ethnographic	 Studies	 in	 Empirical	 Software	 Engineering.	
IEEE	Transactions	on	Software	Engineering,	42	(8).	786-804.	
10.1109/TSE.2016.2519887	

[22]	Ben	Shreeve,	Paul	Ralph,	Pete	Sawyer	and	Patrick	Stacey.	 	2015.	
Geographically	 distributed	 sensemaking:	 developing	
understanding	 in	 forum-based	 software	 development	
teams.	in	Proceedings	of	the	Eighth	International	Workshop	
on	Cooperative	and	Human	Aspects	of	Software	Engineering,	
Florence,	Italy,	IEEE	Press,	36–42.		

[23]	 H.	 Washizaki,	 H.	 Uchida,	 F.	 Khomh	 and	 Y.	 Guéhéneuc.	 	 2019.	
Studying	 Software	 Engineering	 Patterns	 for	 Designing	
Machine	 Learning	 Systems.	 in	 2019	 10th	 International	
Workshop	 on	 Empirical	 Software	 Engineering	 in	 Practice	
(IWESEP),	49-495.	10.1109/IWESEP49350.2019.00017	

[24]	 Karl	 E.	 Weick.	 	 2009.	 Sensemaking	 in	 organizations.	 Sage,	
Thousand	Oaks,	CA.	

[25]	Christine	T.	Wolf.		2020.	AI	Models	and	Their	Worlds:	Investigating	
Data-Driven,	AI/ML	Ecosystems	Through	a	Work	Practices	
Lens.	in,	Cham,	Springer	International	Publishing,	651-664.		

[26]	Christine	T.	Wolf	and	Jeanette	L.	Blomberg.		2020.	Making	Sense	of	
Enterprise	 Apps	 in	 Everyday	 Work	 Practices.	 Computer	
Supported	 Cooperative	 Work	 (CSCW),	 29	 (1-2).	 1-27.	
10.1007/s10606-019-09363-y

	
	




