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Dopant levels in large nanocrystals using stochastic optimally tuned range-separated
hybrid density functional theory
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We apply a stochastic version of an optimally tuned range-separated hybrid (OT-RSH) functional
to provide insight on the electronic properties of P- and B- doped Si nanocrystals of experimentally
relevant sizes. We show that we can use the range-separation parameter for undoped systems
to calculate accurate results for dopant activation energies. We apply this strategy for tuning
functionals to study doped nanocrystals up to 2.5 nm in diameter at the hybrid functional level.
In this confinement regime, the P- and B- dopants have large activation energies and have strongly
localized states that lie deep within the energy gaps. Structural relaxation plays a greater role for
B-substituted dopants and contributes to the increase in activation energy when the B dopant is
near the nanocrystal surface.

I. INTRODUCTION

Understanding the properties of dopants in semicon-
ductor nanostructures is a crucial issue for technological
applications since it is often the dopants that function-
alize a device and control its desired properties.1–5,7,8
In particular, doped silicon quantum dots have shown
promise in photovoltaic and photonic applications due
to their size tunability and processability.6,9,10 A key
dopant property is its activation energy, which often be-
haves differently in the nanoscale. For example, when
P- (phosphorus) and B- (boron) dopants are introduced
to bulk Si, they create shallow impurity states that can
act as donors/acceptors of charge carriers. However, in
nanocrystals such dopant impurities become deep states
due to quantum confinement and dielectric mismatch.

Numerous tools are available to describe dopant prop-
erties for extended systems with periodic boundary con-
ditions in a supercell. The state-of-the-art approach
is based on a combination of density functional theory
(DFT) with many-body perturbation theory (MBPT),
typically within the so-called “GW” approximation.11,12
However, the application of the GW method to large
confined systems such as nanocrystals is limited by the
steep scaling and the slow convergence with respect to
empty states.13 Furthermore, the description of optical
excitations requires the use of the Bethe-Salpeter equa-
tion (BSE), which scales even steeper with system size,

limiting its application to small systems.
In recent years, we have developed a set of stochas-

tic orbital techniques14–26 which significantly reduce the
scaling and computational costs of both the GW and
BSE approaches by introducing a controlled statisti-
cal error in the calculated observables. This enables
the application of both methods to extremely large,
experimentally relevant system sizes containing thou-
sands of electrons.18,21,22 Some applications, like those
involving linear response time-dependent DFT for opti-
cal excitations,21,27,28 require the use of a quasiparticle
model Hamiltonian, which is not available through the
GW method.

Density functional theory has been a major tool for
quasiparticle electronic structure calculations, but its lo-
cal and semi-local approximations poorly predict elec-
tronic properties like the fundamental gaps, ioniza-
tion energies, and electron affinities. This is especially
a problem for dopant properties since local approxi-
mations can erroneously predict shallow dopant levels
when they are in fact deep.29–31 Optimally-tuned range-
separated hybrid (OT-RSH) functionals offer a solution
to this problem.32,33 Specifically, the optimally tuned
Baer-Neuhauser-Livshits (BNL) functional32,34 has been
shown to provide an accurate description of the fun-
damental band gaps for molecules, nanocrystals, and
bulk materials.35–37 One of the major strengths of this
approach38 is that it can be tuned to the system of in-
terest based on a physical constraint, avoiding the use of
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empirical fitting parameters that might not reproduce the
correct physics. In fact, it has been suggested that hy-
brid functionals tuned to physical constraints give some
of the most reliable electron densities within DFT.39

One of the questions in applying OT-RSH functionals
to study dopant properties is this: How do we tune the
functional to correctly calculate dopant energies and at
the same time maintain accuracy in describing the band
structure? Oftentimes, we want to study many different
dopant types and locations. Here, the system-specific
tunability that is one of OT-RSH’s strengths becomes a
liability. Having to repeat the tuning procedure for every
dopant structure would quickly become cumbersome and
resource intensive.

In this paper, we apply a stochastic formulation of
the optimally tuned BNL range-separated hybrid func-
tional20 to study dopant properties in silicon nanocrys-
tals of up to 1600 electrons. We show that the range-
separation parameter for undoped systems also gives ac-
curate results for dopant activation energies. We thus
provide a strategy for tuning functionals for doped sys-
tems. This strategy may be generalizable for many dif-
ferent dopant types and positions within the nanocrys-
tal. We demonstrate the usefulness of this strategy in
conjunction with stochastic techniques to provide insight
on dopant properties for nanocrystals of experimentally
relevant sizes.

II. THEORY AND COMPUTATIONAL DETAILS

We summarize the main points in the theory of
optimally-tuned range-separated hybrid functionals and
its stochastic formulation. Consider a zero-temperature
ensemble for a system with an average number of elec-
trons equal to N − x , where N is an integer and
x ∈ (0, 1) . For this system, the energy curve E (N − x)
should be linear in x, so the slope is equal to the nega-
tive of the ionization energy, i.e. to E (N)− E (N − 1) .
A similar condition holds for E (N + x) which should be
linear in x with a slope equal to the negative of the elec-
tron affinity, E (N + 1)− E (N).

In exact Kohn-Sham (KS) DFT the ionization energy
corresponds to the negative of the HOMO energy. Thus,
the line E (N − x) should have a slope equal to the
HOMO energy of the N electron system, and the line
E (N + x) should have a slope of the HOMO for theN+1
system. That is, in KS-DFT the LUMO of theN electron
system is not equal to the HOMO of the N + 1 system.
The difference is due to the derivative discontinuity in the
exchange-correlation energy functional as the number of
electrons goes from slightly below N to slightly above
it.40–44 This behavior of the exact KS functional is not
reproduced correctly by local or semi-local KS function-
als, such as LDA and the various types of GGAs where
the functional exhibits no derivative discontinuity. To
compensate for the lack of derivative discontinuity, the
energy E(N ± x) becomes non-linear.45

One way to account for this lack and for the non-
linearity in E(N ± x) is to use optimally-tuned range-
separated hybrid functionals within generalized Kohn-
Sham DFT (GKS-DFT).32,33,37 Specifically, we em-
ploy the range-separated hybrid functional following
the proposal by Savin to use full-exchange at long
distances.34,46–48 The exchange term is divided into long-
and short-range components

1

r
=

erf (γr)
r

+
erfc (γr)

r
(1)

where γ is the range-separation parameter that controls
the distance upon which the potential is switched from
long to short range, erf (x) is the error function, and
erfc (x) is the complimentary error function. The long-
range term is calculated explicitly through a Fock-like
exchange operator while the short-range term is approx-
imated by a screened local exchange functional.

This hybrid construction is attractive because it main-
tains the correct long-range asymptotic behavior, decay-
ing as 1/r, whereas local exchange functionals are known
to decay too rapidly. This property allows a full frac-
tion of exact exchange to cancel out the long-range self-
interaction error in the Hartree energy part of the DFT
functional. A complication is that the range-separation
parameter γ is in principle a functional of the density that
we currently do not know how to construct. This is where
the approach of optimally tuning becomes useful.32,33

The tuning of γ imposes a physical constraint to the
system instead of relying on universal or empirical fit-
tings. The physical constraint ensures that it satisfies the
linearity of the ensemble energy E (N ± x) with a frac-
tional number of electrons x. Since by Janak’s theorem49

the energy slope is equal to the orbital energy, the con-
stant slope requirement is equivalent to

∂εH/L

∂fH/L
= 0 (2)

where εH/L refers to the HOMO or LUMO orbital energy
and fH/L is its occupancy. Hence, the approach explicitly
constructs a GKS functional such that the IP corresponds
to the HOMO and the EA to the LUMO as closely as pos-
sible, meaning the functional should be able to accurately
describe fundamental band gaps. In many cases, this
approach works well and can predict fundamental gaps
close to experiment and to MBPT methods for various
atomic and molecular systems,35,36 as well as Rydberg33
and charge-transfer excitations (within TDDFT).37,50

Dopant activation energies are calculated similar to
fundamental gaps. For electron donors, the activation
energy is defined as the energy difference to ionize the
dopant and place the electron back into the undoped
structure. For acceptors, it is the difference to remove
an electron from the undoped structure and place it back
into the acceptor level. To summarize,
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Eact = IPd − EAu [donor]
Eact = IPu − EAd [acceptor], (3)

where the subscripts d and u refer to the doped or un-
doped structures. We can ensure the dopant IPs and
EAs are calculated correctly by tuning the functionals to
the dopant levels explicitly. However, repeating the tun-
ing procedure becomes costly, especially since one often
wants to examine many different dopant types at different
dopant locations. One of the key findings of the paper is
that we can bypass this tuning step and simply use γ for
the undoped structure in the spirit of using one constant
γ for the fundamental gap. In this case, the dopant can
be viewed as a perturbation to the electronic structure of
the undoped system and does not significantly affect its
electronic environment.

A roadblock to using hybrid functionals is that they
are much more expensive to use than local multiplicative
functionals like the local density approximation (LDA)
since they involve the explicit calculation of the orbital-
dependent exchange energy. In a “deterministic” (non-
stochastic) calculation, the long-range exchange operator
is given by the expression:

K̂lr
x [ψi(r)] = −

Nocc∑
j=1

ψj(r)

∫
dr′ψ∗j (r′)ψi(r

′)V γc (|r − r′|)

(4)
where V γc (|r|) is the long-range screened Coulomb poten-
tial governed by the range parameter γ. The computa-
tion of this exchange term roughly scales quadratically as
NoccNgrid, where Nocc is the number of occupied states
and Ngrid is the size of the basis set (the number of real-
space grid points), both of which increase with system
size. In a typical hybrid functional application, this ex-
change term takes up the overwhelming majority of the
total computation time.

Stochastic techniques have been developed to overcome
the deterministic scaling limit to make hybrid functional
calculations tractable for large systems.20 Using a tech-
nique called stochastic resolution of the identity, we can
decouple the r and r′ indices in Eq. (4). We introduce a
stochastic orbital ξ(r) that assigns a random sign to each
real-space grid point (dV is the volume per grid point):

ξ(r) = 〈r|ξ〉 = ± 1√
dV

. (5)

We define

η(r) =

Nocc∑
j=1

ψi(r)〈ψi|ξ〉, (6)

which is the stochastic orbital projected on to the occu-
pied space spanned by ψi∈occ(r). Similarly, we can write

the Coulomb potential in a stochastic representation as

ζ(r) =
1

(2π)3

∫
dG

√
Ṽ γc (G)eiϕ(G)eiG·r,

where Ṽ γc (G) is the Fourier transform of V γc (|r|) and
ϕ(G) is a random phase between [0, 2π]. Now we
can rewrite the exchange term in Eq. 4 as an average
(〈· · · 〉ξ,ϕ) over the stochastic orbitals:

K̂lr
x [ψi(r)] = −

〈
η(r)ζ(r)

∫
dr′ζ∗(r′)η∗(r′)ψi(r

′)

〉
ξ,ϕ

.

Defining the product of stochastic orbitals χ(r) =
ζ(r)η(r), we simplify the above expression to

K̂lr
x [ψi(r)] = − 1

Nsto

Nsto∑
χ=1

χ(r)〈χ|ψi〉. (7)

The scaling for the exchange becomes NstoNgrid, where
Nsto is the number of stochastic orbitals. If Nsto goes
to infinity, we recover the deterministic result in Eq. (4)
exactly. In this sense, Nsto becomes another convergence
parameter that we control at the cost of introducing sta-
tistical error. Remarkably, we find that Nsto is often
independent of system size or can even decrease with sys-
tem size (see Sec. Results and Ref. 20 for details), so the
scaling for stochastic exchange becomes quasilinear.

We implemented the stochastic BNL functional into a
plane wave DFT code to calculate quasiparticle spectra
and fundamental gaps for H-passivated Si nanocrystals
ranging from 1 to 2.5 nm in diameter, containing up to
Ne ≈ 1600 electrons. We tune the range separation pa-
rameter γ for each nanocrystal size based on the physical
constraint described above. We used a kinetic energy
cutoff of 40 Ry for the density, which converges band
gaps to within 0.1 eV. We treat the divergent G = 0
term in the exchange energy using the Gygi-Baldereschi
method.51 Structural relaxations were performed with
Quantum ESPRESSO with the LDA functional.52,53
For more computational details, see the Supplementary
Material.

III. RESULTS

Using optimized γs obtained from the tuning proce-
dure, in Fig. 1 we compare quasiparticle (QP) gaps for
Si NCs of different sizes obtained by different theoret-
ical methods. The agreement between stochastic BNL
(sBNL) and stochastic GW (sGW)18,22–24 is remarkable
whereas LDA significantly underestimates the gap. We
note that γ decreases nearly linearly with system size
(see inset in Fig. 1),20,35 illustrating the favorable scaling
properties of sBNL: Since γ becomes smaller as system
size increases, the fraction of stochastic exact exchange
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Figure 1. QP gap comparisons for Si NCs ranging from 1 to
2.5 nm. The sGW results are from Ref. 20. Inset: The trend
in the optimized γs for different NC sizes is nearly linear with
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Figure 2. Tuning γ for the undoped and doped structures
in the D = 1 nm NC. The optimal γ values are given by the
intersect with the y-axis (dotted line). Upper panel: A partial
charge is removed from the HOMO, which is the dopant level
for a P donor. Lower panel: A partial charge is added to the
LUMO, which is the dopant level for a B acceptor.

mixed into the functional also becomes smaller. There-
fore, we can use fewer stochastic orbitals to converge the
exchange energy to within an acceptable error, which de-
creases the computation time.

Note that if we extrapolate γ to the bulk limit
(N−1/3Si → 0), we would find γbulk to be nearly 0, mean-
ing the exchange is entirely handled by the short-range
local functional, which gives incorrect results for the gap.
This problem can be addressed by introducing a dielectric
coefficient to modulate long-range charge transfer.54,55
Without the dielectric term, we would expect γ to sat-
urate at the value of γ = 0.02 (empirically determined)
due to exchange-driven orbital localization. This phe-
nomenon has been observed with the BNL functional for
1D chains but has yet to be seen for 3D systems.56 Based
on our model, this localization should occur at around
NSi = 8200, or a system with over Ne = 32, 800 elec-
trons.

Next, we show that γs tuned for the undoped struc-
tures give reasonable results for doped system properties.
We test a P substituted dopant for an electron donor, and
a B substituted dopant for an electron acceptor in two
dopant locations: one at the center of the nanocrystal,
and another near the nanocrystal surface. For the sur-
face dopant, we substitute a four-coordinated Si atom
as far from the center as possible. We relax the doped
structures in all cases.

In Table I we show tuning comparisons for the smallest
(D = 1 nm) nanocrystal. For this system, we repeat the
tuning procedure to optimize γs for each of the doped
structures (Fig. 2). This ensures that the physical con-
straint for the tuning applies directly to the dopant level
itself. When tuning the P-doped structures (donors), we
remove a small partial charge (+0.05e) from the HOMO;
when tuning the B-doped structures (acceptors), we add
a partial charge (−0.05e) to the LUMO. We plot how
much the dopant energies change when using γs tuned
specifically for the doped structures compared to un-
doped system γ. We find the change to be negligible,
the largest difference being 32 meV. This difference is
smaller than the change in the undoped structure en-
ergy gap (38 meV) when using one γ for the HOMO and
LUMO. We conclude that we can also use one γ (the un-
doped value) to calculate accurate dopant energies. This
strategy likely holds for any four-coordinated dopant lo-
cation, from the center of the crystal to the surface.

In Fig. 3 we plot the dopant activation energies, ion-
ization energies, and electron affinities for all nanocrystal
sizes. For electron donors like P, we calculate the activa-
tion energy as Eact = IPd−EAu; for acceptors like B, we
calculate the energy as Eact = IPu−EAd, where the sub-
scripts d and u refer to the doped or undoped structures.
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panels) and surface (right panels). Component IPs and EAs
are also shown. The plotted ∆SCF results were performed
with the LDA functional.



5

system optimized γ energy level energy level difference
at γ at γ = 0.125 ∆E

undoped (HOMO) 0.125 N/A N/A N/A
undoped (LUMO) 0.120 -1.351 -1.313 0.038

P (center) 0.117 -4.355 -4.387 -0.032
P (surface) 0.119 -4.336 -4.360 -0.024
B (center) 0.120 -4.478 -4.462 0.016
B (surface) 0.123 -4.182 -4.173 0.009

Table I. Tuning comparisons for D = 1 nm nanocrystal. γs are in units of a−1
0 and energies in eV. The difference shown is

∆E = E(γ = 0.125) − E(γ).

In ∆SCF, we obtained the IP and EA from total energy
differences of charged (+1e or −1e) and neutral calcula-
tions. In the sBNL and sGW calculations, we obtained
the IP and EA from the negative of the corresponding
HOMO and LUMO eigenvalue energies (for sBNL) and
associated quasiparticle energies (for sGW, see below).

For the sGW calculations, we obtained good agree-
ment with sBNL on the smallest cluster (D = 1 nm)
with the GW0 energies based on an LDA starting point
and with the G0 energies self-consistently iterated.57 For
the larger doped clusters, the LDA results become es-
sentially metallic, so the GW0 energies are not reliable.
Using starting points from other local or semilocal func-
tionals (PBE or even the SCAN metaGGA functional58)
did not improve results. Future studies should examine
sGW for dopant energies based on a better starting point,
perhaps from the BNL itself.

As a representative data set, Table II compares dopant
activation energies calculated using different theoretical
methods for the D = 1 nm nanocrystal. As expected,
LDA performs poorly, erroneously predicting the dopant
level to be nearly shallow. We find that sGW tends to
predict deeper energy states than sBNL (seen by the
larger IPs and EAs), but the activation energies cal-
culated from the difference of these states agree well
with sBNL. Similar energy shifts have been observed in
other comparative studies,20,35,36 where in some cases the
BNL functional agrees with IPs from experiment better
than GW.36 Interestingly, we find that ∆SCF (over LDA
and BNL) gives almost identical results to sBNL. ∆SCF
seems to work particularly well when the added (or re-
moved) charge is in a strongly localized state (the IPd in
the P-doped system and the EAd in the B-doped system
agree remarkably well with sBNL).

In the size regime tested (D = 1− 2.5 nm), the defect
states from the P- and B- dopants are strongly local-
ized, which can be observed in their charge density plots
(Fig. 4). As a result, the defect states lie deep in the gap
compared to bulk, reflecting their large (≥ 1 eV) activa-
tion energies. This also leads to an IP that is roughly
independent of NC size for the P-doped system and to
an EA that is roughly independent of NC size for the B-
doped system, consistent with previous theoretical and
experimental studies.59–63

For the P dopant, when P is in the center of the crys-

tal, the IP hardly changes with nanocrystal size (the red
line that tracks the IPd trend is nearly flat). This can
be attributed to the strong electron-impurity interaction
in the confined system that gives rise to the localized
defect state.59 The size dependence of the activation en-
ergy is therefore almost entirely due to the confinement
of the LUMO in the undoped system. We note a ten-
dency for the activation energy to decrease slightly when
the dopant moves to the surface. A possible explanation
for this is when the dopant is placed near the surface, its
wave function becomes more distorted and less symmet-
rical, reducing its Coulomb binding energy and therefore
its IPd. Calculated and experimentally measured values
of the hyperfine splitting parameter in P-doped struc-
tures support this interpretation.60,64

The B dopants can be interpreted with a similar anal-
ysis. Because the dopant level is also localized and does
not vary much with crystal size, the trend in the activa-
tion energy is mostly governed by the confinement of the
IPu in the undoped system. However, structural relax-
ation plays a greater role due to the smaller size of the B
atom (see Ref. 2 and Supplementary Material). Activa-
tion energies for the B dopants tend to be higher when the
dopant is near the surface. This likely comes about due
to structural relaxation effects and spin splitting. Spin
splitting occurs because the bond lengths to the neigh-
boring Si atoms are not evenly distributed around the
dopant atom. When B is in the center, its bonds to the
neighboring silicons are almost equivalent. When B is
near the surface, the bonds to the outer Si atoms con-
tract more than the bonds to the inner Si atoms. This
uneven distribution contributes to increased spin split-
ting which raises the energy level for the dopant. For

Figure 4. Charge densities for dopant level in D = 1.4 nm
nanocrystal for (left to right) P center, P surface, B center,
and B surface configurations. The isosurface is plotted at
20 − 25% of the maximum value.
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P (center) B (center)
method IPd EAu Eact diff. IPu EAd Eact diff.
sBNL 4.292 1.296 2.996 0.000 7.711 4.323 3.387 0.000
sGW 4.498 1.785 2.713 -0.283 8.565 5.540 3.025 -0.362
LDA 3.173 2.739 0.434 -2.562 6.123 5.591 0.531 -2.856

∆SCF(BNL) 4.333 1.343 2.990 -0.006 7.795 4.501 3.294 -0.093
∆SCF(LDA) 4.449 1.546 2.903 -0.093 7.348 4.247 3.101 -0.286

Table II. Method comparisons for dopant activation energies (eV) in D = 1 nm crystal. Differences are taken with respect to
sBNL.

example, in the D = 1 nm NC, the spin splitting value
is 2.842 eV when B is at the center and 3.026 eV when
B is near the surface. This interpretation follows that in
another DFT study on B-doped Si NCs.65

IV. CONCLUSIONS

We applied the stochastic BNL approach to study
dopant activation energies for P- and B- doped Si
nanocrystals with up to 1600 electrons. The stochastic
approach reduces the scaling of the exact exchange from
quadratic to linear, enabling its application to experi-
mentally relevant system sizes. We find excellent agree-
ment with ∆SCF and good agreement with stochastic
GW for dopant activation energies using a single range-
parameter (γ) for the stochastic BNL functional. The
difference for stochastic GW could be influenced by the
underlying LDA starting point, which erroneously pre-
dicts shallow dopant levels. One of the key findings is
that shallow dopants in the bulk become deep dopants
under confinement. This has been observed in previous
studies using ∆SCF at the LDA level, but we can finally
use stochastic BNL to validate these results at the hybrid
functional level.

This study is further significant in that it provides a
way to calculate a self-consistent solution with a quasi-
particle model Hamiltonian at a low computational cost.

This quasiparticle Hamiltonian, which is not obtainable
through traditional GW methods, can be further pro-
cessed and used with methods like time-dependent DFT
and stochastic BSE21 to describe optical excitations for
system sizes and complexities beyond current limitations.
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