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Abstract 14 

This paper investigates the mechanical properties under laboratory and field conditions of a 15 

concrete-like blend made of fluorogypsum (FG), fly ash, and Portland cement for artificial reef 16 

construction, which is referred to as FG-based blend. The 28-day compressive strength and relative 17 

volumetric expansion of the FG-based blend were statistically characterized. After one year of 18 

immersion in brackish water under field conditions, the compressive strength of the FG-based 19 

blend experienced a moderate reduction when compared to material under laboratory conditions, 20 

but did not degrade below its 28-day value. Visual examination of the immersed specimens 21 

indicated that aquatic organisms are attracted to the proposed material. Field investigation of a 22 

small artificial reef structure made of a FG-based blend indicated that sea floor settlement due to 23 

the weight of the structure was small. A preliminary cost analysis comparing the cost of artificial 24 

reefs constructed with different materials suggests that the proposed FG-based blend is a promising 25 

environment-friendly economic material for artificial reef construction. 26 

Key words: industrial by-products, beneficial reuse, green concrete, fluorogypsum, fly ash, 27 

Portland cement, artificial reef.     28 
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Introduction  29 

The coastal areas of the United States are densely inhabited regions that are also strategically 30 

important for the US economy, e.g., through their contribution to tourism, fisheries, recreation, 31 

and oil and gas. Several diverse natural and anthropogenic disturbances can affect the quality of 32 

life and economic productivity of the US coastal regions, e.g., pollution, extreme weather events, 33 

and erosion (Lal and Stewart 2013). Coastal erosion is a particularly severe issue in the US Gulf 34 

Coast due to an unfavorable combination of rising sea levels and increasing cyclone intensity, 35 

which produce increasing storm surges and wave loads that contribute to accelerate the erosion 36 

process (LCWCR/WCRA 1999). The annual land loss from coastal erosion in the State of 37 

Louisiana alone ranges between 57-90 km2 (LCWCR/WCRA 1999). In the State of Florida, out 38 

of 2,170 km of coastline, 30% are critically and 7% are non-critically eroded; whereas, out of 39 

13,560 km of inlet shoreline, 14 km are critically and 5 km are non-critically eroded (Irwin 2016; 40 

US Census Bureau 2012). Coastal erosion and land loss contribute to exacerbate the damage to the 41 

natural and built environment produced by extreme weather events and, thus, negatively impact 42 

the environment and the economy (Phillips and Jones 2006; FitzGerald et al. 2008). Therefore, 43 

protecting these coastal areas from erosion is of paramount importance.  44 

Three main approaches are commonly used to mitigate the effects of coastline erosion:  45 

(1) hard-erosion control systems, such as seawalls and groins; (2) soft-erosion control systems, 46 

such as sandbags and beach nourishments; and (3) relocation, i.e., moving residential 47 

constructions, communities, commercial activities, and industrial facilities away from the coast 48 

(Knapp 2012). Hard-erosion control structures are the most commonly used coastline protection 49 

systems for critical erosion. Among these systems, artificial reefs provide a solution that, in 50 

addition to protecting the coastline from erosion, can be used to enhance marine life and sustain 51 
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the local fishery industry for high-value aquatic species, e.g., oysters and crabs. However, the high 52 

costs associated with the materials and construction of these protection devices pose severe 53 

limitations on their usage. Crushed recycled concrete, limestone, granite, and other stones used for 54 

construction of coastal erosion control systems built using loose materials (e.g., artificial reefs, 55 

revetments, groins, and detached breakwaters) are expensive materials and are usually not readily 56 

available in the US Gulf Coast. For instance, limestone represents the most commonly used 57 

material for dike construction in the State of Louisiana; however, the cost of this material can be 58 

significant because it is mined in Arkansas and transported to Louisiana before it can be used, with 59 

an average cost at delivery of $36-$52/ton in 2001 (Rusch et al. 2005). Similarly, in the state of 60 

Florida, granite is commonly used as riprap to protect shorelines; however, the production and 61 

transportation costs of this material amounted to an average of $35/ton in 2003 (Rusch et al. 2005) 62 

and of $31-60/ton in 2007 (Rusch et al. 2010). In addition to these cost issues, the usage of heavy 63 

materials is incompatible with the soft seabed of the US Gulf Coast. Close to two-thirds of 64 

limestone reefs are known to sink into the underlying soft sediment within few months after 65 

placement along the coast of Louisiana (Schexnayder M., Louisiana Department of Wildlife and 66 

Fisheries, Personal Communication 2014). Since thousands of tons of construction materials are 67 

needed for a single coastal protection project ( Lukens and Selberg 2004; CPRA 2013), the 68 

identification of more cost-effective, lower unit mass materials would increase the likelihood of 69 

project implementation, reduce needed material volume, and extend the service life of artificial 70 

reefs in the US Gulf Coast.  71 

Concrete-like blends based on by-product gypsum (a low-cost, locally available material) have 72 

been the subject of significant research efforts (Yan and You 1998; Peiyu et al. 1999; Yan and 73 

Yang 2000; Rusch et al. 2001; Rusch et al. 2005; Sing and Garg 2009; Escalante-Garcia et al. 74 
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2009; Martinez-Aguilar et al 2010; Magallanes-Rivera and Escalante-Garcia 2014; Garg and 75 

Pundir 2014; Huang et al. 2016; Garg and Pundir 2017). Fluorogypsum (FG),  an acidic by-product 76 

(pH = 2.3) generated by the industrial manufacturing of hydrofluoric acid (Chesner et al. 1998), is 77 

commonly stockpiled after addition of alkali materials and referred to as blended calcium sulfate 78 

(Tao and Zhang 2005) or pH-adjusted FG (Bigdeli et al. 2018a). Earlier research on FG-based 79 

blends focused on their stabilization for use as sub-base course material for road construction (Tao 80 

and Zhang 2005). More recent research on the use of FG-based blends suggested that these 81 

materials could present several advantages over the use of crushed concrete and limestone in 82 

artificial reef construction, e.g., lower cost, lower carbon footprint, and vast availability in the 83 

Southeastern coastal regions (Bigdeli and Barbato 2017; Lofton et al. 2018; Bigdeli et al. 2018a; 84 

Bigdeli et al. 2018b). However, significant research is still needed to assure an appropriate 85 

performance of FG-based blends in large-scale artificial reef systems. Albeit fundamental to 86 

determining an optimal construction process, the literature on the relation between mechanical 87 

properties and curing time of this material is scarce, while data on long-term performance in 88 

submerged conditions is non-existent. In addition, the typical variability of these mechanical 89 

properties has not been characterized in the literature. Performance data related to changes in 90 

material mechanical properties and overall structural stability over time are required to inform the 91 

design of these coastal protection systems.   92 

This paper aims to reduce the knowledge gap that is inhibiting the use of FG-based blends in 93 

aquatic applications, with a particular focus on non-load-bearing artificial reefs made of loose 94 

materials and located in the US Gulf Coast region. The main objectives of this research were to: 95 

(1) characterize the compressive strength and relative volumetric expansion properties of FG-96 

based blends, as well as their variability, after a 28-day curing in laboratory conditions; (2) quantify 97 
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the effects of curing time on the compressive strength and relative volumetric expansion of FG-98 

based blends; (3) compare the compressive strength of FG-based blends in laboratory conditions 99 

with the corresponding compressive strength obtained in field conditions after prolonged 100 

immersion in brackish water; (4) assess the long-term performance and global stability of a small 101 

scale FG-based artificial reef; and (5) compare the cost of the proposed material to that of other 102 

materials commonly used for artificial reef construction through a simplified cost analysis. This 103 

study focused on compressive strength and relative volumetric expansion because they were 104 

identified as the most important properties to characterize the mechanical performance of FG-105 

based blends (Yan and You 1998; Bigdeli et al. 2018b). Previous investigations also showed that 106 

these two material properties can be used as proxies of both short-term and long-term performance 107 

of aquatic structures built using FG-based blends (Bigdeli and Barbato 2017; Lofton et al. 2018; 108 

Bigdeli et al. 2018a; Bigdeli et al. 2018b). In particular, a compressive strength 4.0 MPacf   109 

and a relative volumetric expansion 6.0%   have been recommended for the type of 110 

applications considered in this study (Bigdeli et al. 2018b). An FG-based blend made of 62% pH-111 

adjusted FG, 35% class C fly ash (FA), and 3% Portland type II cement (PC) was selected for this 112 

study based on previous research performed by the authors (Bigdeli et al. 2018b). This specific 113 

composition was identified as a promising material for artificial reef construction based on its 28-114 

day compressive strength (Bigdeli et al. 2018b) and 77-day dynamic leaching properties, which 115 

indicate that the considered composition does not completely dissolve under prolonged submersion 116 

in freshwater, brackish water, or saltwater (Lofton 2017; Bigdeli and Barbato 2017; Lofton et al. 117 

2018).  118 
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Experimental Investigation of FG-Based Blends: Materials and Methods 119 

Characterization of raw materials  120 

The raw materials used in this study were pH-adjusted FG, FA, and PC. The pH-adjusted FG 121 

was obtained from the stockpiles located in Geismar, LA. It is noted here that the stockpiled pH-122 

adjusted FG contained grains of size of a 2-cm maximum diameter and was utilized as provided 123 

by the producer. The fly ash was produced at the Big Cajun II power plant in New Roads, LA. The 124 

PC was obtained from a local supplier in Darrow, LA. The crystallographic compositions of the 125 

materials were identified based on X-ray diffraction analyses. The results of the Rietveld analyses 126 

(Young 1993) for the pH-adjusted FG, FA, and PC used in this work are summarized in Table 1 127 

and are described in detail elsewhere (Bigdeli et al. 2018a; Bigdeli et al. 2018b; Lofton et al. 2018). 128 

Specimen preparation and experimental tests for compressive strength and volumetric 129 

expansion 130 

 The pH-adjusted FG was dried at a temperature of 45 °C for a period of 14 h before preparation 131 

of the experimental specimens, according to ASTM D2216 (ASTM 2010). The dry components 132 

of pH-adjusted FG, FA, and PC were machine mixed together into a homogeneous blend, and then 133 

mixed with water (Bigdeli et al. 2018b). The dry portion of this is blend contained 62% of pH-134 

adjusted FG, 35% of FA, and 3% of PC by weight. The water amount was 20% of the total weight 135 

of dry material. The final material after hardening was a concrete-like blend as it contained binding 136 

material, water, air, fine aggregate, and coarse aggregate, which consisted of the larger grains of 137 

pH-adjusted FG. 138 

Eighty cylindrical specimens of the FG-based blend with a size of 10.2 cm x 20.4 cm (4 in x 8 139 

in) were prepared according to ASTM C192 (ASTM 2016a).  Sixty specimens (group 1) were 140 
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cured under laboratory conditions at 100% relative humidity (in a moisture room) and constant 141 

room temperature (21±2 ˚C). Of these 60 specimens in group 1, 20 were used to characterize the 142 

statistical variability of compressive strength and relative volumetric expansion after a 28-day 143 

curing cycle, which is generally considered the reference condition for concrete-like materials. 144 

Characterization of the statistical variability of mechanical and physical properties of FG-based 145 

blends (i.e., compressive strength and relative volumetric expansion, respectively) is crucial to 146 

determine the reliability of structures built using these materials, as well as to assess their 147 

performance in a probabilistic sense. The other 40 specimens of group 1 were used to identify the 148 

effects of curing time on the compressive strength and relative volumetric expansion over a one-149 

year period (five specimens each at 7, 14, 56, 121, 133, 208, 298, and 393 days after specimen 150 

preparation).  151 

The remaining 20 specimens (group 2) were cured in laboratory conditions (i.e., 100% 152 

humidity and 21±2 ˚C) for 28 days and then placed on the sediment floor in a brackish water bay 153 

(with an average salinity of 19.82±0.04 ppt and a range measured over a 15-month period of 5.5-154 

35.0 ppt) adjacent to the Louisiana Department of Wildlife and Fisheries Research Lab in Grand 155 

Isle, LA. These cylinders were exposed to the actual field conditions at the site, i.e., subject to 156 

uncontrolled environmental actions (e.g., sea waves, current loads, and temperature fluxes) and 157 

interactions with aquatic organisms (e.g., surface attachment, penetration, and boring). The 158 

purpose of the field test was to investigate the effects of prolonged brackish water immersion on 159 

the compressive strength of the FG-based materials over a one-year period. Groups of five 160 

specimens were tested for compressive strength after 105, 180, 270, and 365 days of submersion. 161 

Due to inclement weather, the first set of samples were collected from the bay on day 105 (with 162 

15 days delay) rather than at 90 days, as originally planned. Visual examination of the retrieved 163 
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immersed specimens before compressive strength testing was used to determine if the FG-based 164 

blend provides an attractive substrate for useful aquatic organisms.  165 

Compressive strength was measured according to ASTM C39 (ASTM 2016c). Relative 166 

volumetric expansion was estimated at the various curing ages considered in this study (i.e., 7, 14, 167 

28, 56, 121, 133, 208, 298, and 393 days after specimen preparation) by measuring volume changes 168 

through the standard tools described in ASTM C1005 (ASTM 2017) because the methods 169 

recommended in the ASTM standards for cement paste and concrete were not appropriate for the 170 

FG-based blend used in this study, as discussed in Bigdeli et al. (2018a). In particular, the relative 171 

volumetric expansion was calculated as the ratio between the change in volume and the initial 172 

volume measured through the water displacement in a graduated cylinder 5 ml graduation lines, 173 

as described in Bigdeli et al. (2018b). Statistical significance of the differences in experimental 174 

results was assessed using the one-way analysis of variance (ANOVA) test (Box et al. 1978) with 175 

a 5% confidence level, unless otherwise noted. 176 

Small-scale artificial reef description and settlement measurements 177 

A small-scale two-layer artificial reef structure (with the inner core made of FG-based blend 178 

and the outer layer made of limestone) was built and placed at a depth of approximately 1 m during 179 

low tides in the bay in Grand Isle, LA (29°14'20.8"N 90°00'14.3"W) on August 8, 2015 (in the 180 

same location and at the same time of submersion of the group 2 cylindrical specimens) to 181 

investigate overall reef stability and settlement under field conditions (Fig. 1a). The inner core had 182 

a volume of 0.810 m3 and was made of FG-based blend briquettes of dimensions 3.4 cm x 1.9 cm 183 

x 1.1 cm. The briquettes were fabricated by using a Komarek B050A laboratory roller machine 184 

with a compression pressure of 48 kN and cured for 28 days in laboratory conditions (i.e., 100% 185 

humidity and 21±2 ˚C). The FG-based blend used to fabricate the briquettes had an average unit 186 
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weight of 1750 kg/m3 and a standard deviation of 7 kg/m3. The briquettes’ average bulk weight 187 

was measured following ASTM C29 (2016b) as 963 kg/m3, with a standard deviation of 41 kg/m3. 188 

The briquettes were placed in geogrid mesh bags (each containing about 20 kg of briquettes) (Fig. 189 

1b). The outer layer was made of gravel-size (5-10 cm) crushed limestone with an average 190 

thickness of 0.1 m, volume of 0.613 m3, and an average unit weight of 2400 kg/m3. This limestone 191 

outer layer was placed to protect the core from wave attack by absorbing the wave energy. The 192 

structure had the shape of a pyramidal frustum with a length, width, and height of 2.8 m, 2.3 m, 193 

and 0.4 m, respectively. Figs. 1c and 1d show a 3-dimensional view and a sectional view, 194 

respectively, of the artificial reef.  195 

The elevation changes at 12 points on and around the reef (shown in Fig. 1c) were measured 196 

with respect to the elevations obtained on the day the structures was placed in the field. These 197 

elevation changes were recorded every three months for nine months using a standard surveying 198 

procedure (Nathanson et al. 2006). The measurements were taken in nine locations corresponding 199 

to the corners and midpoints at the base of the structure and in the middle point at the top of the 200 

artificial reef (locations #1 through #9 in Fig. 1c). Surface sediment measurements were also taken 201 

at three points (locations #10 through #12 in Fig. 1c) located at approximatively 1 m of distance 202 

from the reef structure to determine if sediment deposition or scour was taking place around the 203 

reef. The elevation changes were measured with respect to a reference point located on a concrete 204 

column on land, as shown in Fig. 1a. 205 
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Experimental Results and Discussion 206 

Statistical characterizations of compressive strength and relative volumetric expansion after 28-207 

day curing 208 

Sample means (), standard deviations (), and coefficients of variation (CoV) were calculated 209 

for both compressive strength and relative volumetric expansion of the material after the 28-day 210 

curing process (Table 2).  The compressive strength (
cf
= 8.9 MPa, 

cf
= 1.4 MPa, and CoV = 211 

15.7%) is significantly lower than the typical strength of ordinary concrete (i.e., 20-35 MPa), but 212 

it is more than double the strength needed (i.e., about 4.0 MPa) for breakwater construction 213 

(Bigdeli et al. 2018b). The CoV was greater than typically measured from specimens obtained 214 

from a single batch of concrete, but it is lower than the concrete variability typically assumed in 215 

design applications (Mirza et al. 1979). The relative volumetric expansion (  = 6.2%,   = 0.9%,  216 

CoV = 14.5%) is slightly higher than the value of 6% suggested in Bigdeli et al. (2018b) to avoid 217 

potential cracking of the material. However, the difference between this sample average (6.2%) 218 

and the threshold for potential cracking (6%) is statistically non-significant (i.e., p-value = 0.130 219 

for the null hypothesis that the sample average is higher than the potential cracking threshold).  220 

Three different probability distributions (i.e., normal, lognormal, and Weibull distributions) 221 

were fitted to the experimental data (Figs. 2 and 3) for the compressive strength and the relative 222 

volumetric expansion. The chi-square (2) and the modified Kolmogorov-Smirnov (mK-S) 223 

goodness-of-fit tests were used to identify the distribution providing the best fit (Box et al. 1978). 224 

Because higher p-values generally indicate better fitting between the empirical distribution 225 

function of the sample and the cumulative distribution function of the reference distribution, both 226 

goodness-of-fit tests suggest that the lognormal and normal distributions provide the best fit to the 227 

measured compressive strength and relative volumetric expansion data, respectively (Table 2).  228 
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Effects of curing time on FG-based blend strength and relative volumetric expansion 229 

The effect of curing time on compressive strength and relative volumetric expansion is crucial 230 

to determine optimal curing times of FG-based blends for different types of applications. The FG-231 

based blend continued to gain strength up to 121 days, after which no significant gain was observed 232 

(Table 3).  As expected, the strength gain was faster at the beginning of hydration and slowed 233 

down with time, most likely due to the rapid formation of ettringite in early ages followed by 234 

slower formation of calcium silicate hydrate at later times (Yan and Yang 2000), in a similar 235 

fashion to the strength development that is typical of concrete (Metha 1973). At 28 days, the FG-236 

based blend reached an average strength of 7.6 MPa, or 50% of its full strength (≥ 121 days).  In 237 

contrast, ordinary concrete with Portland cement only as binder reaches 85% to 90% of its final 238 

strength after 28-day curing (Metha 1973). After 121 days of curing, the average compressive 239 

strength showed only minimal gains, indicating that the remaining hydration rate of the FG-based 240 

blend after 121 days was close to zero. It is noteworthy that the average compressive strengths for 241 

the FG-based blend after 133, 208, 298, and 393 days (identified in Table 3 with italic characters) 242 

were not statistically different with respect to the average compressive strength achieved at 121 243 

days, which supports the hypothesis that the hydration rate of the FG-based blend becomes 244 

minimal after 121 days of wet curing under laboratory conditions. 245 

The relative volumetric expansion of the FG-based blend approximately doubled from day 7 246 

( 3.5%)   to day 28 ( 6.2% ), with no statistically significant change thereafter. This result 247 

indicates that the FG-based blend becomes volumetrically stable while still gaining compressive 248 

strength, which is consistent with the hypothesis that different chemical reactions produce the 249 

strength increase observed at different curing times for the FG-based blend. The long-term 250 

volumetric stability of the FG-based blend when subjected to wet curing under laboratory 251 



12 
 

conditions is a desirable property, because it is a necessary prerequisite for long-term stability of 252 

the material under field conditions. The volumetric expansion of FG-based blends is mainly due 253 

to the formation of ettringite and that volumetric expansions greater than 6.3% generally 254 

correspond to the formation of visible cracks in the specimens and a reduction in the compressive 255 

strength of this material (Bigdeli et al. 2018b), which were not observed in the specimens prepared 256 

for this study.  257 

Effects of prolonged submersion on the compressive strength of FG-based blends  258 

Fig. 4 illustrates the mean compressive strengths and 95% confidence intervals as a function 259 

of the curing (laboratory conditions) and submersion time (field conditions). The mean 260 

compressive strength increased from 7.6 MPa before submersion (i.e., after 28 days of wet curing 261 

in laboratory) to 11.5 MPa after 105 days of submersion (i.e., by approximatively 51%) and then 262 

remained practically constant (i.e., no statistically significant change). This result suggests that the 263 

hydration process continued in the material even after submersion in brackish water. The 264 

prolonged submersion in brackish water under field conditions resulted in a mean compressive 265 

strength reduction of 3 to 4 MPa for the FG-based blend when compared to the samples that were 266 

cured for the same period of time under laboratory conditions without submersion in brackish 267 

water. Based on visual inspections of the retrieved samples, it was hypothesized that this 268 

phenomenon could be due to the leaching of the FG-based blend into the water and the resulting 269 

increased porosity of the material over time, as noted in Lofton (2017) through scanning electron 270 

microscope-energy dispersive X-ray spectroscopy analysis. The compressive strength standard 271 

deviations are significantly higher for the specimens in field conditions than for those cured in 272 

laboratory conditions. This result is due to the additional uncontrolled variability introduced by 273 

the field conditions (e.g., temperature, salinity, currents, interaction with aquatic organisms), 274 
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which can all affect the compressive strength of the submerged specimens. It is noted here that 275 

lower average compressive strength and higher compressive strength standard deviation are 276 

generally considered negative effects on the performance of a concrete-like material. However, in 277 

this specific case, the strength requirements are satisfied by such a large margin that the observed 278 

degradation of the material’s compressive strength has a negligible effect on its performance for 279 

aquatic applications such as artificial reef construction. 280 

Visual examination of the submerged specimens showed the presence of oysters, crabs, and 281 

barnacles covering the surfaces suggesting that the FG-based blend is an attractive material for 282 

aquatic organisms (Fig. 5). Fig. 6 shows the cylindrical specimens retrieved at different periods of 283 

submersion and after the removal of surface organisms and light cleaning of the surface. The 284 

recovered specimens maintained their shape but showed a change of the surface texture, which 285 

could indicate an increasing surface porosity for increasing submersion time. This result could also 286 

be explained based on the hypothesis of leaching of the material, in combination with the observed 287 

holes bored by some of the organisms (e.g., see Fig. 5b and Lofton 2017). It is noteworthy that the 288 

FG material does not present hazardous characteristics to human health and the environment and, 289 

thus, is not regulated by United States Environmental Protection Agency (USEPA 1990). In 290 

addition, leaching studies performed by the authors indicate that the leaching of no constituents of 291 

potential concern is above the regulatory limits as measured by a toxicity characteristic leaching 292 

procedure (Lofton 2017; Lofton et al. 2018). Thus, it is concluded that the limited leaching of FG-293 

based blend observed in this study does not represent an issue in terms of environmental impacts 294 

(Lofton 2017). 295 



14 
 

Field investigation of artificial reef stability and settlement 296 

The field investigation presented in this study focused on the durability and stability of non-297 

load-bearing artificial reefs (e.g., oyster reefs) built using loose materials on soft sediments that 298 

are typical in the US Gulf Coast region. For this type of structures, compressive strength is not a 299 

concern and long-term durability is limited to a period ranging between one and a few years. The 300 

two major practical issues that control the performance of these structures are (M. Schexnayder, 301 

Louisiana Department of Wildlife and Fisheries, Personal Communication 2014): (1) the sinking 302 

rate in the soft sediment, which needs to be minimized and reduces with decreasing bulk weight 303 

of the material used; and (2) the stability to displacement of the loose material due to currents and 304 

waves, which generally increases for increasing bulk weight and grain size of the construction 305 

materials. These two issues impose competing constraints on the unit weight and grain size of the 306 

construction material, so that optimal combinations of these two properties need to be sought for 307 

each specific location. 308 

Table 4 reports the elevation changes at different times of submersion for all measurement 309 

points shown in Fig. 1c. Positive values correspond to heave due to soil deformation, structure 310 

deformation, and/or sediment deposition; whereas negative values correspond to settlement. At 311 

three and six months, it is observed that the elevation changes at the base of the reef were generally 312 

small and often positive, most likely due to a combination of soil and structure deformation and 313 

very small settlement. The elevation change measurements after nine months show that the top of 314 

the artificial reef (measurement point #9) settled by 4.27 cm. This total settlement was a 315 

combination of the actual settlement of the structure into the soft soil bed and the changes in the 316 

configuration of the structure over time due to environmental actions on the structure, including 317 

wave loads, hydrostatic pressure, and structure’s self-weight. These results indicate that the sinking 318 
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rate of the structure with a core layer made of FG-based blend was significantly lower than that 319 

for a similar structure made of recycled concrete or limestone, which could have reached between 320 

1/3 and 2/3 of the height of the structure (i.e., 13-26 cm) within the same settlement time (M. 321 

Schexnayder, Louisiana Department of Wildlife and Fisheries, Personal Communication 2014). 322 

At the same time, the small configuration changes in the artificial reef indicate that the structure is 323 

not prone to displacement induced by currents, wave loads, and hydrostatic pressures. 324 

Simplified cost analysis of FG-based blends for artificial reef construction 325 

A simplified cost analysis was performed to compare the cost per unit weight and per unit 326 

volume of the proposed FG-based blend with other materials commonly used for artificial reef 327 

construction (Table 5).  The price ranges of the components used to produce the FG-based blend 328 

material were determined as $3-10/ton for the FG (G. Mitchell, Personal communication, Brown 329 

Industries 2016), $102/ton for PC (USGS 2017), and $50/ton for class C FA (Rupnow 2012). The 330 

price range for crushed limestone and recycled concrete were estimated as $26-39/ton and $14-331 

21/ton, respectively, by contacting seven local suppliers for limestone (of which four provided the 332 

requested cost information) and ten local suppliers for recycled concrete (of which five provided 333 

the requested cost information). The transportation cost was estimated by considering the distance 334 

between the sources of material located in Southern Louisiana (one for FG-based blend, seven for 335 

limestone, and 10 for recycled concrete) and the site at Grand Isle, LA, and the current range of 336 

trucking cost in the State of Louisiana, which was identified as $0.12-0.18/ton/km (Torrey and 337 

Murray 2016). The bulk unit weights of FG-based blend briquettes, crushed limestone, and crushed 338 

recycled concrete were taken as 920-1000 kg/m3, 1265-1380 kg/m3 (Hansen 2004), and 1200-1450 339 

kg/m3 (Hansen 2004). The total material cost was estimated as $40-55/ton ($42-58/m3) for the FG-340 

based blend, $38-69/ton ($53-104/m3) for the limestone, and $27-52/ton ($36-83/m3) for the 341 
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recycled concrete (see Table 5). The proposed FG-based blend has a cost per unit weight similar 342 

to that of limestone (with a smaller range of variability) but slightly higher than that of recycled 343 

concrete. However, when comparing costs per unit volume, the cost of the proposed FG-based 344 

blend is lower than that of limestone and on the lower end of the cost of recycled concrete. 345 

For the specific application of artificial oyster reefs, the most significant comparison is the cost 346 

per unit surface of reef. This comparison was made here by assuming a minimum thickness above 347 

the seabed of 40 cm (Stokes et al. 2012) after settlement of the reef and calculating the reef 348 

thickness at time of construction that would be needed to achieve the minimum thickness after 349 

settlement. The average settlements were assumed equal to 3-6 cm for reefs made of FG-based 350 

blend (based on the experimental results reported in Table 4) and 13-26 cm for reefs made of 351 

limestone or recycled concrete (M. Schexnayder, Louisiana Department of Wildlife and Fisheries, 352 

Personal Communication 2014). The costs per unit surface of reef are reported in Table 5. It is 353 

observed that the range of cost per unit reef surface for the proposed FG-based blend material is 354 

lower than the range of cost for limestone and is close to the lower boundary of the cost range for 355 

recycled concrete. Thus, it is concluded that the proposed material could produce significant 356 

savings in construction projects of artificial oyster reefs. 357 

Conclusions  358 

In the present paper, the statistical characterization and the time-dependence of compressive 359 

strength and relative volumetric expansion for a concrete-like blend based on fluorogypsum (FG) 360 

were studied in laboratory and field conditions. Experimentally obtained results show that the 361 

compressive strength and relative volumetric expansion after 28 days of curing of an FG-based 362 

blend made of 62% pH-adjusted FG, 35% class C fly ash (FA), and 3% Portland type II cement 363 

(PC) can be described by the lognormal and normal distributions, respectively. The FG-based 364 
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blend reached an average 28-day compressive strength of 8.7 MPa. This strength continued to 365 

develop until 121 days of curing up to a value of 14.4 MPa, reaching a final value of 15.4 MPa 366 

after 393 days of curing in laboratory conditions. The compressive strength of the FG-based blend 367 

was also investigated under field conditions. It was found that the material continued developing 368 

its compressive strength also after prolonged immersion in brackish water (with an average salinity 369 

of 19.82±0.04 ppt), achieving a strength of 11.2 MPa after one year of immersion in field 370 

conditions. This compressive strength was in average 4.3 MPa lower than the corresponding 371 

compressive strength for the specimens cured in laboratory conditions. The visual examination of 372 

the FG-based blend samples recovered after brackish water immersion showed that numerous 373 

aquatic organisms were attached to the surface of the samples, which suggests that the proposed 374 

FG-based blend is an attractive material for aquatic organisms. Additionally, monitoring a small-375 

scale artificial reef structure placed in the field for nine months showed that the structure settlement 376 

rate was significantly lower than that for similar structures made of recycled concrete or limestone. 377 

A preliminary cost evaluation of the FG-based blend indicates that this material has a cost per unit 378 

weight similar to that of limestone but higher than that of recycled concrete. However, when 379 

considering the cost per unit reef surface, which for artificial oyster reef construction represents 380 

the most significant parameter, the proposed FG-based blend appears to be economically 381 

advantageous when compared to both limestone and recycled concrete. It is also noted here that 382 

the FG-based blend used for this study was not optimized for cost and that no allowance was 383 

considered for stockpiling cost reduction of by-product material or for other environmental 384 

advantages related to the use of this material, e.g., reduction of greenhouse gas emission. 385 

Additional studies are needed to optimize the cost of the FG-based blend for the specific aquatic 386 
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application considered in this work, as well as to quantify the other benefits associated with the 387 

usage of the proposed FG-based blend. 388 
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Tables 523 

Table 1. X-ray diffraction analysis results for FG, FA, and PC (% by dry weight) 524 
(Data from Bigdeli et al. 2018b) 525 

Components FG FA PC 

Akermanite: Ca2Mg(Si2O7) - 32.6 - 

Alite: 3CaO·SiO2 - - 70.4 

Anhydrite: CaSO4 5.7 6.8 - 

Brownmillerite: Ca2(Al,Fe)2O5 - 29.4 23.3 

Fluorite: CaF2 0.8 - - 

Gypsum: CaSO4·2H2O 93.4 - 1.4 

Periclase: MgO - 5.9 - 

Perovskite: CaTiO3 - 3.9 - 

Quartz: SiO2 0.1 20.3 - 

Calcite: CaCO3 - - 4.9 

526 

527 

Table 2. Sample mean and standard deviation of the experimental data (n = 20) for the FG-based blend 528 
after 28-day curing and corresponding p-values according to two goodness-of-fit tests for three fitted 529 

distributions.   530 

  CoV 

(%) 

Distribution 2 

(p-value) 

mK-S 

(p-value) 

cf

(MPa) 
8.9 1.4 

Normal 0.095 0.366 

15.7 Lognormal 0.276 0.745 

Weibull 0.027 0.001 



(%) 
6.2 0.9 

Normal 0.120 0.057 

14.5 Lognormal 0.061 0.016 

Weibull 0.046 0.001 

531 
532 
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     Table 3.  Experimental results for compressive strength, cf , and relative volumetric expansion,  , of 533 

FG-based blend in both laboratory and field conditions 534 
Wet curing in laboratory conditions Immersion under field conditions 

# of 

specimens 

Time 

(day) 


cf

(MPa) 


cf

(MPa) (%) 



(%) 

# of 

specimens 

 Time 

(day) 


cf

(MPa) 


cf

(MPa) 

5 7 5.0 0.3 3.5 0.9 - - - - 

5 14 6.3 0.6 5.1 0.8 - - - - 

20 28 7.6 0.6 6.2 0.9 - 0 - - 

5 56 10.6 1.2 6.2 0.9 - 28 - - 

5 121 14.4 0.6 6.2 0.9 - 93 - - 

5 133 14.5 1.9 6.2 0.9 5 105 11.5 1.6 

5 208 14.6 1.1 6.2 0.9 5 180 9.1 1.8 

5 298 14.7 1.6 6.2 0.9 5 270 11.7 3.2 

5 393 15.4 1.0 6.2 0.9 5 365 11.2 2.5 

Note: Italics characters identify average values for which changes are not statistically significant 535 
536 

537 

Table 4. Recorded elevation changes at the artificial reef’s location (negative values: settlement, positive 538 
values: heave). 539 

Measurement 

points (Fig. 1c) 

3 months 

(cm) 

6 months 

(cm) 

9 months 

 (cm) 

1 1.22 -0.30 -1.22

2 -1.22 -5.18 N/A

3 0.61 -1.83 -1.52

4 N/A N/A -2.74

5 2.74 0.91 -0.91

6 1.83 1.52 -1.52

7 0.03 1.52 -4.27

8 -1.22 -0.08 -1.22

9 N/A -0.61 -4.27

10 -6.40 0.61 -13.41

11 -7.01 -8.84 -9.14

12 13.41 8.84 8.53
N/A: Not available 540 

541 

542 


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Table 5. Cost estimation of FG-based blend, limestone, and recycled concrete. 543 

Cost components 
Cost per unit weight 

($/ton*)  

Cost per unit volume 

($/m3) 

Cost per unit reef surface 

($/m2) 

FG-based blend: 40-55 40-61 17-28

Base material 22-27

Production 2-5 

Transportation 16-23 

Limestone: 38-69 53-104 28-69

Base material 26-39

Transportation 12-30

Recycled concrete: 27-52 36-83 19-55

Base material 14-21

Transportation 13-31

* ton = 907 kg

544 

545 



26 

Figure captions list 546 

Fig. 1.  Artificial reef used for field investigation: (a) location (map data © Google Maps), (b) geogrid mesh 547 

bags filled with briquettes of FG-based blend, (c) 3-dimensional view of the reef, and (d) cross sectional 548 

view along the long direction of the reef. 549 

Fig. 2. Compressive strength variability of FG-based blend after 28-day curing: comparison between 550 

empirical and analytical cumulative distribution functions for three different fitted distributions. 551 

Fig. 3. Relative volumetric expansion variability of FG-based blend after 28-day curing: comparison 552 

between empirical and analytical cumulative distribution functions for three different fitted distributions. 553 

Fig. 4. Compressive strength of the FG-based blend as a function of curing time under laboratory 554 
conditions and immersion time in field conditions. 555 

Fig. 5. Attachment of diverse sea organisms to the FG-based blend specimens after immersion in brackish 556 

water at Grand Isle, LA: (a) attachment of barnacles and presence of crabs, and (b) attachment of oysters 557 

and other molluscs. 558 

Fig. 6. Conditions of FG-based blend specimens for field investigation after different immersion time: 559 

(a) 0 days (i.e., before immersion), (b) 105 days, (c) 180 days, (d) 270 days, and (e) 365 days.560 
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