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Metal–organic framework with optimally selective
xenon adsorption and separation
Debasis Banerjee1, Cory M. Simon2, Anna M. Plonka3, Radha K. Motkuri4, Jian Liu4, Xianyin Chen5,

Berend Smit2,6, John B. Parise3,5,7, Maciej Haranczyk8,9 & Praveen K. Thallapally1

Nuclear energy is among the most viable alternatives to our current fossil fuel-based energy

economy. The mass deployment of nuclear energy as a low-emissions source requires the

reprocessing of used nuclear fuel to recover fissile materials and mitigate radioactive waste.

A major concern with reprocessing used nuclear fuel is the release of volatile radionuclides

such as xenon and krypton that evolve into reprocessing facility off-gas in parts per million

concentrations. The existing technology to remove these radioactive noble gases is a costly

cryogenic distillation; alternatively, porous materials such as metal–organic frameworks have

demonstrated the ability to selectively adsorb xenon and krypton at ambient conditions. Here

we carry out a high-throughput computational screening of large databases of metal–organic

frameworks and identify SBMOF-1 as the most selective for xenon. We affirm this prediction

and report that SBMOF-1 exhibits by far the highest reported xenon adsorption capacity and a

remarkable Xe/Kr selectivity under conditions pertinent to nuclear fuel reprocessing.
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O
ne of the grandest challenges of our generation is to meet
our rapidly growing energy demand without further
increasing the emission of greenhouse gases1,2. Nuclear

energy is one of the cheapest alternatives to carbon-based
fossil fuels that, because of its high energy density and minimal
land use requirements, can be scaled up to meet global energy
demands. Life cycle analyses indicate that greenhouse gas
emissions of a nuclear power plant are significantly lower than
fossil fuel technologies and comparable to other renewable
electricity generation technologies, such as solar photovoltaics3.
For the mass implementation of nuclear energy as a low-
emissions energy source, we must also safely sequester the
associated high-level radioactive waste2. In this, most attention is
given to recovering the heavy, long-lived nuclear elements in used
nuclear fuel (UNF), such as uranium and plutonium. Less
discussed are the volatile radionuclides (for example, Xe, Kr) that
evolve into the off-gas of UNF aqueous reprocessing facilities4.
In these off-gases, gaseous radioactive 85Kr has a long half-life
(t1/2¼ 10.8 years) and therefore must be captured and removed
from the off-gas to prevent its uncontrolled release into the
atmosphere4. In contrast, the radioactive Xe isotopes (t1/2E36.3
days for 127Xe) have decayed by the time the fuel is reprocessed.
As high purity Xe is used in many applications, including
commercial lighting, propulsion, imaging, anesthesia and
insulation, the recovered Xe could be sold into the chemical
market to offset operating costs. At present, cryogenic
distillation is the most mature technology to separate Xe and
Kr from air, but it is energy- and capital-intensive and therefore
expensive5,6. Furthermore, the radiolytic formation of ozone
poses an explosion hazard during cryogenic distillation4.
These factors incentivize the development of an alternative
technology for a less energy-intensive, more cost-effective
and safer process to capture Kr and Xe from UNF reprocessing
facility off-gas.

A promising alternative technology for Xe/Kr removal from
reprocessing off-gas is an adsorption-based process at room
temperature using a selective, solid-state adsorbent. These solid-
state adsorbents are found to be almost exclusively Xe-selective,
and thus a dual step process whereby, first, the Xe is selectively
removed from the off-gas, is a necessary requirement for a
practical application7. In the subsequent step, the radioactive
Kr can be removed from the Xe-free effluent using the same
material or a different material. Adsorbents such as silver-loaded
zeolites and activated carbon have been proposed4, but these fall
short compared with high surface area, crystalline metal–organic
frameworks (MOFs) and porous organic cage compounds8–22.
Among the many novel materials tested thus far, HKUST-1
(ref. 14), Co-formate15,20 and CC3 (ref. 12) are shown to be
promising for Xe/Kr separations, showing high capacity and good
selectivity for Xe over Kr.

An important advantage of MOFs is their chemical tunability;
by combining different linkers and metal centres that
self-assemble to form ordered, pre-determined crystal structures,
one can synthesize millions of possible materials23. MOFs can
thus be tailor-made to be optimal for applications related to gas
storage and separation, catalysis, chemical sensing and
optics9,11,23–34. Our goal here is to identify an optimal MOF for
selectively capturing Xe from the off-gas of UNF reprocessing
facilities. In practice, however, constraints in resources allow
us to synthesize and test only a small subset of chemical
space. Molecular models and simulations of adsorption can
rapidly and cost-effectively rank MOFs by their Xe/Kr selectivity
with reasonable accuracy (Supplementary Methods). High-
throughput computational screenings thus play a valuable
role of elucidating design rules, determining performance
limits, and predicting performance rankings of materials to

focus experimental efforts on the most promising MOFs for
Xe/Kr separations35–38.

In this work, we use molecular simulations to screen over
125,000 MOF structures39,40 for selectively adsorbing Xe over Kr
at dilute conditions pertinent to UNF reprocessing. Our
computational screening predicts that one of the most Xe-
selective MOFs is a calcium-based nanoporous MOF, SBMOF-1
[also known as CaSDB, SDB¼ 4,4 -sulfonyldibenzoate], that has
not yet been tested for Xe/Kr separations41. We affirm this
prediction by synthesizing SBMOF-1 and measuring its pure-
component Xe and Kr adsorption isotherms. SBMOF-1 exhibits
the highest Xe Henry coefficient and thermodynamic Xe/Kr
selectivity at dilute conditions among MOFs tested to date. In
addition to its high thermal and chemical stability, column
breakthrough experiments reveal that SBMOF-1 is a practical,
near-term material for capturing Xe from reprocessing facilities.

Results
High-throughput computational screening. For capturing Xe
from nuclear reprocessing, the Xe/Kr selectivity is the most
important thermodynamic property determining the perfor-
mance of a MOF. We used molecular simulations to predict the
Xe/Kr selectivity of 125,000 MOF structures at dilute conditions
relevant to UNF reprocessing (Supplementary Methods,
Fig. 1a,b). The distribution of simulated selectivities in the MOFs
is shown in Fig. 1a. We partitioned this distribution into a
database of existing MOFs (B5,000 structures)39 and
a database of predicted/hypothetical structures (B120,000)40.
These distributions span a large range of selectivities, illustrating
the unique tunability of MOF materials. Our simulations predict
that the most selective material in the database of existing MOFs
is SBMOF-1 (Fig. 1c), a three-dimensional, permanently porous
MOF (Cambridge Structural Database (CSD) code: KAXQIL)41.
Furthermore, the Xe/Kr selectivity of SBMOF-1 is ranked in the
top 0.01 percentile in the database of 120,000 hypothetical MOFs
(Fig. 1b). The red line in Fig. 1b illustrates the outlying Xe/Kr
selectivity of SBMOF-1 predicted by our screening. While
SBMOF-1 has been synthesized and considered for CO2/N2

separation41, it has not been tested for Xe/Kr separations.

Synthesis and equilibrium adsorption measurements.
Encouraged by the data from our high-throughput screening, we
synthesized SBMOF-1 and measured its pure-component Xe and
Kr adsorption isotherms at room temperature (see synthesis
section of Supplementary Methods, Supplementary Figs 17–21)41.
Our first measurement of low pressure Xe uptake in SBMOF-1
at 298 K, when activated by the reported activation procedure41,
was much lower than predicted by molecular simulation
(Supplementary Fig. 22). However, we found that activating
SBMOF-1 at a lower temperature yielded low pressure Xe uptake
closer to the simulation (Fig. 2a, Supplementary Fig. 23, see effect
of activation temperature section of the Supplementary Methods).
The Xe adsorption isotherm in SBMOF-1 saturates at a low
pressure, indicative of a high affinity for Xe compared with
other gases including Kr (Fig. 2a, Supplementary Figs 24 and 25).
The Kr adsorption isotherm exhibits a smaller slope and does not
saturate even at 1 bar, indicative of a much weaker affinity for Kr.
This hints that SBMOF-1 is highly discriminatory for Xe
over Kr. Indeed, identifying the Xe and Kr Henry coefficients
from the pure-component adsorption isotherms, we predict
SBMOF-1 to exhibit a thermodynamic Xe/Kr selectivity of 16 at
dilute conditions at 298 K.

It is interesting to compare the equilibrium Xe and Kr uptake
of SBMOF-1 with the reported top-performing MOFs. We
collected from the literature experimentally measured Xe and Kr
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adsorption isotherms in Co-formate15,20, SBMOF-2 (ref. 13),
HKUST-1 (ref. 14), MOF-505 (ref. 10), PCN-14 (ref. 19),
Ni-MOF-74 (ref. 8), Zinc tetrazolate21, IRMOF-1 (ref. 22), and
FMOF-Cu9 and identified the Xe and Kr Henry coefficients
from the data in the low pressure regime (see Computational
Calculation section of Supplementary Methods, Fig. 2b,
Supplementary Figs 1–16). The saturation loading of Xe in
SBMOF-1 is lower than observed in the majority of these
materials due to the comparatively low (B145 m2 g� 1) surface
area of SBMOF-1 (Supplementary Figs 26 and 27)41. However,
the Henry coefficient of Xe in SBMOF-1 is a factor of two
higher than in CC3, the material in our survey with the second
highest Xe Henry coefficient; we thus expect SBMOF-1 to have an
outstanding Xe uptake under UNF reprocessing off-gas
conditions. Figure 2b shows that SBMOF-1 exhibits by far the
largest Xe Henry coefficient and the highest Xe/Kr selectivity at
dilute conditions among all reported Xe and Kr adsorption
isotherms in our literature survey.

Adsorption kinetics and column breakthrough experiments.
From a practical point of view, it is important that the kinetics of
Xe adsorption/desorption are sufficiently fast and the material can
undergo multiple ad-/de-sorption cycles without losing capacity.
We measured the kinetics of Xe adsorption into an SBMOF-1
sample by connecting a chamber of Xe at 1 bar and 298 K to an
evacuated chamber with the SBMOF-1 sample, then opening a
valve to allow flow. Figure 2c shows that the rate of Xe uptake is
sufficiently fast, reaching B80% of saturation uptake within
10 min. Next, we performed 10 ad-/de-sorption cycles to test if
SBMOF-1 retains its high Xe adsorption capacity after many

cycles. Figure 2d shows that SBMOF-1 retains its performance
after multiple cycles. In addition, SBMOF-1 shows high thermal
stability up to 500 K (Supplementary Fig. 20). To demonstrate the
practical applicability of SBMOF-1 for capturing Xe from UNF
reprocessing off-gas, we conducted single-column breakthrough
experiments with a representative gas mixture (400 p.p.m. Xe,
40 p.p.m. Kr, 78.1% N2, 20.9% O2, 0.03% CO2 and 0.9% Ar)
(see breakthrough measurement section of the Supplementary
Information, Supplementary Figs 28 and 29)17. We fed this gas
mixture through a column packed with SBMOF-1 and initially
purged with He. Figure 3 shows that all gases except Xe broke
through the column within minutes, whereas Xe was retained in
the column for more than an hour). This demonstrates that
SBMOF-1 can selectively remove Xe from air at UNF reprocessing
conditions. Under these conditions, SBMOF-1 adsorbed
13.2 mmol Xe per kg, higher than the reported breakthrough Xe
capacities of benchmark materials, Ni-MOF-74 (4.8 mmol Xe per
kg) and CC3 (11 mmol Xe per kg) (Supplementary Fig. 29)12,17.
The experimental breakthrough capacity is close to that predicted
from the Henry coefficient of the pure-component Xe isotherm
(15.4 mmol kg� 1), suggesting minimal diffusion limitations in the
SBMOF-1 pellets. Next, we conducted column breakthrough
experiments on SBMOF-1 in the presence of 42% relative
humidity (Fig. 3b). Remarkably, SBMOF-1 retains a high Xe
uptake (B11.5 mmol kg� 1) even in the presence of water vapor.
These results suggest the outstanding stability of SBMOF-1 makes
it a practical material for the removal of Xe from UNF reprocessing
off-gas. Such stability is a desirable property, as very few
metal–organic hybrid materials exhibit such properties42–44. We
postulate the absence of open metal sites to be responsible for the
stability of SBMOF-1 in the presence of water vapour45.
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Figure 1 | Computational screening of MOFs for Xe/Kr separations at dilute conditions relevant to UNF reprocessing off-gas. We computed the Henry

coefficients of Xe and Kr in B125,000 MOF structures; the selectivity at dilute conditions is the ratio of Henry coefficients. (a) Distribution of simulated

selectivities for experimentally synthesized (green) and hypothetical (yellow) MOF structures; vertical, dashed line is SBMOF-1 (KAXQIL in the Cambridge

Structural Database (CSD)). (b) Histogram showing relationship between selectivity and pore size, with the largest included sphere diameter as a

metric; colour shows average energy of Xe adsorption in that bin. SBMOF-1 (KAXQIL in CSD), with simulated selectivity 70.6 and largest included sphere

diameter of 5.1 Å, is indicated. Vertical, dashed line is the distance that yields the minimum energy in a Xe–Xe Lennard–Jones potential. (c) SBMOF-1 is

composed of corner sharing, octahedrally coordinated calcium chains along the crystallographic b direction, which are connected by organic linkers,

forming a one-dimensional nanoporous channel. (d) Side view. Shown are the calculated potential energy contours of a Xe atom adsorbed in the pore (blue

surface, � 32 kJ mol� 1; white surface, 15 kJ mol� 1).
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Revealing the Xe adsorption sites in SBMOF-1. To identify the
location of adsorbed Xe and Kr, we performed single-crystal
X-ray diffraction experiments on activated SBMOF-1
(Supplementary Data 1 and 2). Single-crystal analysis of

Xe-loaded SBMOF-1 reveals that Xe adsorbs at a single site,
near the midpoint of the channel, interacting with the channel
wall composed of aromatic rings by mainly van der Waals
interactions. Due to symmetry considerations (space group
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P21/c), each Xe atom is positioned at two possible sites (Fig. 4,
Supplementary Table 1). The distance between each Xe atom
along the b axis is 5.56 Å, closely matching the b axis length of the
unit cell. There are 1.72 atoms of Xe per unit cell based on
crystallographic analysis (B1.25 mmol g� 1), close to the
loading obtained from gas-adsorption data (1.38 mmol g� 1). The
saturation loading of Xe in Fig. 2a approaches two atoms per unit
cell (see horizontal line), indicating commensurate Xe adsorption,
which occurs when the adsorbed amount, location and
orientation of an adsorbate are commensurate with the crystal-
lographic symmetry of the adsorbent46. Such commensurate
adsorption in SBMOF-1 was previously observed for small
hydrocarbon molecules (C2–C3)47,48. The observed position of
Xe in the pore is consistent with calculated potential energy
contours and molecular simulations of Xe adsorption (Figs 1d
and 4b, Supplementary Fig. 30, Supplementary Table 2).

We can rationalize the high Xe adsorption capacity and
selectivity exhibited by SBMOF-1 by its optimal Xe adsorption
site. First, the pore size of SBMOF-1 is tailored for Xe35,38. As a
metric for pore size, we calculate the diameter of the largest
included hard-sphere that can fit inside the pore of SBMOF-1 as
4.2 Å, slightly larger than a Xe atom, B4.1 Å. Simulations of
Xe/Kr adsorption in the database of experimental MOFs show
that all of the most selective MOFs have pore sizes slightly larger
than a Xe atom (Fig. 1b). Such a pore diameter is a prerequisite
for a highly Xe-selective material, as the pore size controls the
proximity and degree of overlap from multiple framework atoms
contributing van der Waals interactions from multiple directions

to achieve a highly favourable host–Xe interaction. A pore of
optimal size for Xe is suboptimal for Kr because of the size
difference, so this forms a pore that is highly discriminatory for
Xe over Kr38. As shown in Fig. 1c, the pore size of SBMOF-1 falls
in the optimal pore size window for Xe/Kr separations37,
distinguishing it from other MOFs. Porous organic cage CC3,
another outstanding Xe-selective material, also exhibits a pore
size tailored for Xe (pore window 4.4 Å), but SBMOF-1 constructs
a denser wall of chemical moieties than CC3 to achieve a
higher Xe binding energy, enhancing its preference for Xe
(Supplementary Table 3). This is the second reason why
SBMOF-1 is outstanding in Xe adsorption; the colour in Fig. 1b
shows that the dense wall of SBMOF-1 surrounds a Xe atom to
achieve a high energy of Xe adsorption and thus a high Xe
selectivity, following the trend in other MOFs.

Discussion
We demonstrated that a nanoporous MOF, SBMOF-1, identified
as an outstanding Xe/Kr selective material from molecular
simulations, shows exceptional Xe uptake at low pressure,
selectivity for Xe, thermal and water stability, and adsorption
kinetics. These attributes make SBMOF-1 potentially useful as a
practical, near-term material for removal of Xe and Kr from
nuclear reprocessing facilities with a far less energy requirement
than cryogenic distillation. The selective adsorption of Xe from
relevant gas mixtures even with B42% relative humidity
demonstrate practicality and offer improvements over current
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Figure 4 | Xe and Kr adsorption sites in SBMOF-1. (a) Xe and Kr positions determined by single-crystal X-ray diffraction. (b) Spatial probability densities

from recording adsorbate positions during pure-component grand-canonical Monte Carlo simulations at 1 bar and 298 K (Xe, red; Kr, blue).
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technologies. Our recent economic analysis showed the cost
benefits of using Ni-MOF-74 for an adsorption-based separation
process at room temperature in comparison with cryogenic
distillation7,11. The discovery of the high Xe uptake and selectivity
of SBMOF-1 at UNF reprocessing conditions—also in the
presence of humidity—will enable an even more cost-effective
process. The exceptional selectivity of SBMOF-1 is attributed to
its pore size tailored to Xe and its dense wall of atoms
that constructs a binding site with a high affinity for Xe, as
evident by single-crystal X-ray diffraction and molecular models.
As molecular simulations predicted SBMOF-1 to be among the
most selective of B5,000 experimentally reported MOFs and
B120,000 hypothetical MOF structures a priori, this work is a
rare case of a computationally inspired materials discovery.

Methods
Synthesis and scale up. SBMOF-1 was originally synthesized using a previously
published literature procedure41. In a typical synthesis, a mixture of 0.6 mmol of
CaCl2 (0.074 g) and 0.6 mmol of 4, 40-SDB (0.198 g) were added in 10 ml of ethanol
and stirred for B2 h to achieve homogeneity (molar ratio of metal chloride:
ligand:solvent¼ 1:1:380). The resultant solution was heated at 180 �C for 3 days.
Colourless, needle-shaped crystals were recovered as product and washed with
ethanol (yield: 45% based on CaCl2, 0.1 g). For scale up, 1.44 g of CaCl2 (13 mmol)
and 3.98 g of 4,40-SDB (13 mmol) were added to 120 ml of ethanol and stirred for
B2 h to achieve homogeneity (molar ratio: 1:1:156). The well-mixed solution was
then transferred to three 100 ml Teflon-lined stainless steel Parr autoclaves and
heated for 3 days at 180 �C. The product was obtained as white powder and washed
by ethanol (3 times, 50 ml), followed by drying under vacuum (yield: 2.2 g, 50%
based on CaCl2). The as-synthesized material was then exchanged with methanol
(3� , 50 ml) for a total period of 3 days. The product purity was confirmed by
powder XRD.

Gas-adsorption and breakthrough experiments. The methanol-exchanged
SBMOF-1 was activated at 100 �C for 12 h under dynamic vacuum. Single-
component gas-adsorption isotherms were collected in a Quantachrome Autosorb-
1 and dynamic sorption analyzer (ARBC, Hiden Analytical Ltd., Warrington, UK).
The later instrument was also used to collect breakthrough measurement data.
Breakthrough measurements were conducted on 20–35 mesh (500–850 mm) pellets
of SBMOF-1 (1.48 g) using a gas mixture composition simulating UNF conditions
(400 p.p.m. Xe, 40 p.p.m. Kr, 78.1% N2, 20.9% O2, 0.03% CO2 and 0.9% Ar).

Computational methodologies. At dilute conditions relevant to UNF
reprocessing off-gas, we modelled Xe and Kr adsorption in the MOFs with Henry’s
law. Let P be the pressure (units: bar) and s(P) be the gas uptake (units: mmol g� 1)
as a function of pressure (the adsorption isotherm). Henry’s law, only valid at low
surface coverage, is then:

s Pð Þ ¼ KHP; ð1Þ

where KH is the Henry coefficient (units: mmol g� 1 bar� 1) of the gas in the
adsorbent. The Xe/Kr selectivity is then the ratio of the Henry coefficients. We
calculated the Henry coefficient in each MOF using Widom particle insertions, a
Monte Carlo integration49. We model the energetic interactions between Xe and Kr
with the atoms of the MOFs using Lennard Jones potentials. We took parameters for
Xe and Kr from Boato et al. and for the MOF atoms from the Universal Force Field,
applying Lorentz–Berthelot mixing rules to obtain cross-interactions50,51. We
hold the MOF structures rigid throughout the simulation and apply periodic
boundary conditions to mimic an infinite crystal. For potential energy contours
and spatial probability density plots for SBMOF-1, we utilized a hybrid Dreiding-
TraPPE force field, as this force field produces a better match to the Xe and
Kr isotherms in SBMOF-1 than the UFF52,53. The largest included hard sphere
diameter is calculated using Zeoþ þ (refs 54,55). See Supplementary Methods
for more details.

Literature survey for pure-component Xe and Kr adsorption isotherms. To
generate Fig. 2b, we collected from the literature experimentally measured single-
component Xe and Kr adsorption isotherms in MOFs and porous organic cage
materials. Focusing on the low-pressure regime of the adsorption isotherm that
exhibits linear behaviour—the Henry regime where Henry’s law in equation (1) is
valid—we fit a line with zero intercept to this data to identify KH of Xe and Kr in the
material. See Supplementary Section for the data and visualizations of the resulting
fits to equation (1). Our data and code to reproduce Fig. 2b are openly available on
GitHub at https://github.com/CorySimon/XeKrMOFAdsorptionSurvey.

Single-crystal X-ray diffraction. The single-crystal data on the Xe- and Kr-loaded
activated SBMOF-1 were collected using a four circle kappa Oxford Gemini

diffractometre equipped with an Atlas detector (l¼ 0.71073) at 100 K.
The raw intensity data were collected, integrated and corrected for absorption
effects using CrysAlis PRO software. Data sets were corrected for absorption
using a multi-scan method, and structures were solved by direct methods using
SHELXS-97 and refined by full-matrix least squares on F2 with SHELXL-97
(ref. 56).

Data availability. The X-ray crystallographic coordinates for structures reported
in this study have been deposited at the Cambridge Crystallographic Data Centre
(CCDC), under deposition numbers 1475229-1475230. These data can be obtained
free of charge from the Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif. Our data and code to reproduce Fig. 2b are
openly available on GitHub at https://github.com/CorySimon/XeKrMO-
FAdsorptionSurvey. All other data, if not included in the Article or the
Supplementary Information, are available from the authors on request.
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