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Abstract

Muscle injury can be caused by strenuous exercise, repetitive tasks or external forces. Pop-

ulations that have experienced selection for high locomotor activity may have evolutionary

adaptations that resist exercise-induced injury and/or enhance the ability to cope with injury.

We tested this hypothesis with an experiment in which mice are bred for high voluntary

wheel running. Mice from four high runner lines run ~three times more daily distance than

those from four non-selected control lines. To test recovery from injury by external forces,

mice experienced contusion via weight drop on the calf. After injury, running distance and

speed were reduced in high runner but not control lines, suggesting that the ability of control

mice to run exceeds their motivation. To test effects of injury from exercise, mice were

housed with/without wheels for six days, then trunk blood was collected and muscles evalu-

ated for injury and regeneration. Both high runner and control mice with wheels had

increased histological indicators of injury in the soleus, and increased indicators of regener-

ation in the plantaris. High runner mice had relatively more central nuclei (regeneration indi-

cator) than control in the soleus, regardless of wheel access. The subset of high runner

mice with the mini-muscle phenotype (characterized by greatly reduced muscle mass and

type IIb fibers) had lower plasma creatine kinase (indicator of muscle injury), more markers

of injury in the deep gastrocnemius, and more markers of regeneration in the deep and

superficial gastrocnemius than normal-muscled individuals. Contrary to our expectations,

high runner mice were not more resistant to either type of injury.

Introduction

The ability to locomote is essential to mammalian survival. Locomotion enables such activities

as finding food or mates, defending territories, and migration. Often, these activities require

mammals to travel large distances or at high speeds over varied terrain, which has an inherent
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risk of injury, including muscle injury. Muscle injuries are caused by a variety of factors,

including (but not limited to) blunt trauma from external forces and overuse of the muscle

itself. The resulting negative effects on locomotor capacity from muscle injury can severely

compromise the ability of an animal to engage in various locomotor behaviors.

Although data on the frequency of muscle injuries in wild animals are not available, blunt

trauma is a common mechanism for muscle injury (contusion) in human athletics [1–4]. In

addition, muscle contusion is frequently studied in animal models [see 4 for review]. In male

lab rats (Rattus norvegicus), a moderate contusion injury to the calf reduces maximum tetanic

tension by 38% in an in situ preparation of the gastrocnemius complex on the day of injury

and by ~20% after one week [5]. Contusion injuries to muscle are associated with increased

pain (in humans), both at the site of injury and during movement [2,4], which could lead to

reductions in locomotor performance beyond the effects on muscle contractile performance.

In addition to contusions, contractile activity itself can injure muscles. Over-exercising,

such as running a marathon or sprinting both generally a mix of concentric and eccentric con-

tractions; [6,7], or running downhill [only eccentric contractions; i.e., 8], will result in some

degree of muscle injury, even in trained individuals. Eccentric (or lengthening) contractions

produce the most injury [9], while concentric (or shortening) contractions will produce some

injury, especially when performed over extended periods or to exhaustion [i.e. 10]. As with

contusion injuries, data for exercise-induced muscle injury (of either type) in the wild is lack-

ing, although the possibility that wild animals train via locomotor activity has recently been

considered [11,12].

Surprisingly, even a moderate/routine amount of voluntary exercise has been shown to

cause muscle injury, which is related to the amount of eccentric contractions performed [13].

In rats, downhill walking on a treadmill, which emphasized eccentric contraction of a knee

extensor (vastus intermedius), for 26 bouts, five minutes each, at 15 m/min caused injury to

the vastus intermedius [14].

Wheel running is a common model of exercise used in rodent studies of muscle function

and likely consists of both concentric and eccentric muscle contractions. Mice appear to run

both downhill and uphill during the same wheel running bout, especially in relatively large

wheels [see video that accompanies 15]. Voluntary wheel running for as little as five days has

been shown to induce muscle injury (measured histologically) in the soleus of two mouse

strains [16]. On longer time scales (12 days to three months), no further acute injury was

observed, but regeneration and satellite cells were common [16], suggesting some degree of

recovery and/or the resistance to further injury.

Although exercise-induced injury is common even in trained individuals, a number of fac-

tors may influence susceptibility to this type of injury. For instance, rodents and humans that

have previous training show less injury than those that are experiencing an exercise for the

first time [17, see 18 for review]. This protection from injury may involve the expression of

heat shock proteins, which may assist in providing protection from the mechanical stresses

and increases in ROS that occur during exhaustive exercise [19].

Given that individuals may have different susceptibilities to injury, and that training state

may have a protective effect against muscle injury, animals that have evolved to differ in the

frequency or intensity of exercise behavior might be expected to differ also in the extent to

which they resist exercise-induced injury and/or their ability to recover (rapidly) from such

injury. The purpose of this study was to test this proposition in replicate lines of mice that had

been selectively bred for more than 70 generations for high voluntary wheel running (High

Runner or HR lines) as compared with non-selected control (C) lines. A number of exercise

adaptations have been documented in HR mice, including increased maximal oxygen con-

sumption (VO2max) and endurance during forced treadmill exercise, larger heart ventricles,
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more symmetrical hindlimb bones, and higher plasticity in GLUT4 transporters in gastrocne-

mius muscle when given access to wheels [20–25]; however, adaptations that may prevent

injury or enhance the speed of recovery have not been studied.

One unexpected discovery in the selection experiment was the presence of a single nucleo-

tide polymorphism (SNP) that, in homozygous individuals, causes a 50% reduction in hin-

dlimb muscle mass, primarily due to greatly reduced MyHC-2b muscle fibers [both a

reduction in size and number of fibers; 26–28]. The mutation has been identified as a SNP in

an intron of the Myh4 gene [29]. The general reduction of MyHC-2b fibers in the mini-muscle

mouse are made up for by increases in MyHC-2x fibers and slight increases in MyHC-2a fibers

[28]. The mini-muscle phenotype is associated with faster running speeds on wheels, increased

cost of transport during voluntary wheel running, reduced maximal sprint speed, increased

VO2max in some studies, larger soleus muscles, and medial gastrocnemius muscles that con-

tract more slowly but are fatigue-resistant [28,30–33]. Additionally, mini-muscle mice have

increased heat shock protein 72 (HSP72) concentrations in the triceps surae [34], which pro-

tects against exhaustive exercise-induced muscle injury in mice [e.g., see 35].

In this study, we examined the two types of injury discussed above. These protocols have

their own sets of strengths and weaknesses. The contusion injury protocol ensures that each

mouse receives the same level of injury; however, the mechanism of injury is different than

that for exercise-induced injury. The voluntary wheel-running injury protocol does not cause

the same level of injury in all mice (not all mice run the same amount), but it is more physio-

logically relevant to animals that have been bred for voluntary exercise. Additionally, it is diffi-

cult to disentangle injury caused by eccentric versus concentric contractions during wheel

running as the mice in this study will have run both up- and downhill [see video that accompa-

nies 15]. Therefore, we do not attempt to differentiate whether injury was caused by overuse

or lengthening contractions during wheel running.

We hypothesized that HR mice have an innate ability to resist injury and/or that their

recovery from injury happens faster than in C mice. We also expected that mini-muscle indi-

viduals would have increased muscle injury or subsequent regeneration in the superficial

region of the gastrocnemius, a muscle that is primarily MyHC-2b fibers in mice, due to the

muscle being smaller but having similar forces acting upon it as the normal-muscled individu-

als. Additionally, we expected that mini-muscle mice would show reduced injury in other

muscles due to the protective effect of increased HSP72 levels. To examine these hypotheses,

we conducted two experiments. First, we studied recovery from contusion injury, using volun-

tary wheel running as a proxy for recovery. Second, we studied exercise-induced muscle injury

that may occur during voluntary wheel running (indicated by circulating concentrations of

creatine kinase), as well as resistance to or recovery from injury (indicated by muscle histol-

ogy). We used the triceps surae muscle complex for histological analysis, examining individual

muscles and regions of known fiber type differences within the same muscle.

Methods

Animals

Male and female mice were sampled from the 72nd and 74th generation of an ongoing artificial

selection experiment in which mice have been bred for voluntary wheel running [36,37]. The

founding population was 224 outbred Hsd:ICR mice (Mus domesticus). Four selected high

runner (HR) lines are bred based on wheel revolutions/day on days five and six of a six-day

trial, while four control (C) lines are bred without regard to running. No sibling mating is

allowed. Mice were weaned at 21 days of age and housed with food (Harlan Teklad Laboratory

Rodent Diet (W)-8604, Los Angeles, CA, USA) and water provided ad libitum and a 12:12
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photoperiod. At ~six-eight weeks of age, mice are individually housed with wheels for six days

and given ad libitum food and water. The cages were attached to Wahman-type activity wheels

(1.12 m circumference, 10 cm wide, 35.7 cm diameter) interfaced to a computer that records

revolutions in one-minute intervals. Mice from selected lines were then bred based on the

mean number of revolutions from days five plus six. The anesthesia used was isoflurane, and

all animals were euthanized via decapitation. All experimental conditions and protocols and

were approved by the University of California, Riverside institutional animal care and use

committee (20170022).

Wheel running and home-cage activity

For generations 71 and 73 mice that were housed individually with access to wheels for the

testing period, running was measured as the number of revolutions in one-minute intervals

for 23 hours/day by an interfaced computer [37,38].

Home-cage activity [HCA; a measure of spontaneous physical activity; 39] was measured

for mice from generation 73 using a passive infrared sensor housed in wire mesh attached to

the inside of the cage. Infrared sensors record activity three times per second as binary vari-

ables (0 = no movement, 1 = movement) and these readings are averaged for every one-minute

interval over the course of 23 hours by software designed by Dr. Mark Chappell [33,40–42].

Sensor sensitivity was used as a covariate in all analyses [40].

Contusion injury

50 male mice from HR lines seven and eight (lab designations), which lack the mini-muscle

phenotype (see Introduction) and C lines one and two (lab designations) were either injured

by a weight drop on the right triceps surae, or left uninjured as a control. All mice were then

given access to wheels for six days. We did not apply the contusion-injury protocol to individ-

uals with the mini-muscle phenotype because of the greatly reduced size of their triceps surae

muscles and hence a concern that bone injury could occur.

On the day of injury, mice were anesthetized and immediately placed in position for the

weight drop, with methods modified from Ota et al. [43] and Crisco et al. [5]. We did not pro-

vide analgesics as that would have interfered with the amount of wheel running, which was

used as the metric of injury and recovery. Mice had their right legs and ankles extended and

positioned offset from the opening of the pipe, such that only the muscle would be impacted.

An 11.93 g steel ball bearing of 1.3 cm diameter was dropped through a 1.125 m polyvinyl

chloride pipe with inner diameter of 1.51 cm onto the right triceps surae of each mouse. Once

the weight had impacted the leg, the mice were weighed and returned to their home-cages

with attached wheels. Time of injury and time of first wheel access were recorded to determine

latency to run. Uninjured mice were anesthetized and had the weight placed on their triceps

surae but did not have it dropped onto the muscle. Six days after injury, mice were sacrificed

while under anesthesia to check for possible bone injury. For this experiment, wheel-running

behavior was used as a biomarker both for the effect of the contusion injury and for the rate

and degree of recovery from that injury; hence, these two aspects cannot be separated.

Exercise-induced muscle injury

For the study of exercise-induced injury, 108 male mice from generation 73 were used, repre-

senting all four HR lines and all four C lines. Prior to the study, mice had not had any access to

running wheels. Sixty-four mice were given access to wheels for six days (same as the selection

protocol), and the other 44 were housed in individual cages without wheels. We used more

mice in the group given wheel access in case wheel malfunctions made some of the data
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unusable. As described in the previous section, mice were sacrificed after six days and right tri-

ceps surae were dissected and weighed, then placed on cork and frozen in isopentane chilled

in liquid nitrogen. Left triceps surae were also dissected from one line that remains polymor-

phic for the mini-muscle phenotype (HR line six) to determine mini-muscle status based on

the relation between muscle mass and body mass [44; see Introduction]. We only obtained

useable solei (undamaged from dissection or freezing) from 54 of the mice in this study. Only

one of 14 line six mice showed the mini-muscle phenotype.

Plasma creatine kinase activity

Trunk blood was collected for mice in the exercise-induced injury group via decapitation and

centrifuged at ~7400 g (12000 rpm) at 4˚C for 10 minutes, then the plasma was collected and

stored at -80˚C until use. Creatine kinase activity of the plasma was measured using a colori-

metric assay kit (Cat#: KA3766; Abnova, Taipei City, Taiwan).

Histology

Muscles were stored at -80˚C until sectioning, when the belly of the muscle was removed and

placed on cork and refrozen in liquid nitrogen. Muscles were cross-sectioned at 10 μm using a

CM3050 S cryostat (Leica Microsystems, Buffalo Grove, IL, USA) at -20˚C and adhered to

charged slides (Thermo Fisher Scientific, Chino, CA, USA). Cross-sections from the belly of

the triceps surae complex were then stained using a Rapid-Chrome Frozen Section Staining

Kit for hematoxylin and eosin (H&E; Cat #: 9990001; Thermo Fisher Scientific, Chino, CA,

USA), using three cross-sections for each stain. Muscle cross-sections were viewed using an

Olympus BX51 microscope (Waltham, MA, USA) and photos were taken of the plantaris,

soleus, and the superficial and deep regions of the gastrocnemius (we did not attempt to differ-

entiate between the medial and lateral gastrocnemius) using a Retiga 2000RV camera (QIma-

ging, Surrey, BC, Canada) at 10X with QCapture software (QImaging, Surrey, BC, Canada).

Photos of the same region of each muscle group were taken at the same magnification for each

of the three cross-sections per individual.

Evaluation of exercise-induced muscle regeneration and injury

Images of hematoxylin and eosin (H&E) stained muscle cross-sections were analyzed using

Image J software (U.S. National Institutes of Health, Bethesda, MD, USA). The digital images

were evaluated for muscle fiber injury and regeneration using a modified criteria from Tsivitse

et al [45,46]. Specifically, areas considered as regenerating included the following: centrally

located nuclei (counted as any nuclei not touching the sarcolemma, i.e., directly adjacent to

the endomysium, and not containing any other metric of injury/regeneration), and areas of

regeneration that did not include central nuclei. Cells exhibiting pale cytoplasm, obvious signs

of necrosis (broken or degrading cells within a myofiber), and myofibers that were invaded by

mononuclear cells were considered injured (see Fig 1). An additional metric was also used as

an indicator of injury: regions of muscle that included infiltration by mononuclear cells into

the perimysium but not into the myofibers themselves (Fig 1F). This metric was ranked on a

0–3 scale (0 having no evidence of infiltration and 3 having extensive infiltration). Perimysial

infiltration was ranked blind on two separate occasions by the same individual. If those ranks

did not match, they were blind ranked a third time and the closest ranks were averaged

together and used for statistical analysis. The three cross-sections were counted for markers of

muscle injury/regeneration and those were then summed across the three cross-sections. Val-

ues are presented as the percent of the total number of myofibers that show one or more histo-

logical markers of injury.’
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Fig 1. H&E staining of (A) myofibers in the deep gastrocnemius with invading cells (green arrows), (B) myofibers in

the superficial gastrocnemius that exhibit centrally located nuclei (green arrows), (C) myofiber exhibiting pale staining

cytoplasm in the deep gastrocnemius (green arrow), (D) areas in the plantaris showing signs of regeneration and do

not contain central nuclei (green boxes), (E) soleus with necrotic fibers (green boxes), and (F) soleus with perimysial

PLOS ONE Lack of resistance to muscle injury in high runner mice
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Statistical analysis

We used the Mixed Procedure in SAS 9.4 (SAS Institute, Cary, NC, USA) to apply a nested

analysis of covariance (ANCOVA) models, with replicate lines nested within linetype (HR vs.

Control) as a random effect. In cases of zero-inflated data (i.e., many mice had values of zero),

the Procedure GLIMMIX was used, again nesting line within linetype. In both cases, main

effects were linetype and either injury status or wheel access. For experiment two, mini-muscle

status was an additional main effect, and we also tested for mini � wheel access interactions.

Age at dissection, standardized age at dissection squared (i.e., orthogonal polynomial), time of

dissection, and standardized time of dissection2 were used as covariates in all analyses of injury

or regeneration in experiment two. (Standardization refers to subtracting the mean and divid-

ing by the standard deviation of a variable.) For wheel running (in both experiments), wheel

freeness (an inverse measure of how difficult it is to turn the wheel) was used as an additional

covariate [40].

In the contusion experiment (using only 2 HR and 2 C lines), the degrees of freedom for

testing the effects of linetype and injury status were 1 and 2. In the exercise experiment (using

all 4 HR and 4 C lines), the degrees of freedom for testing the effects of linetype or wheel access

(training) were 1 and 6. Also in the exercise experiment, the mini factor and the mini � wheel

access interaction were tested relative to the residual d.f. However, in the exercise experiment,

if the wheel access � (line)linetype interaction covariance parameter estimate was zero, it was

removed from the model and the effect of wheel access and wheel access � linetype were tested

over the residual d.f. For both experiments, main effects were considered statistically signifi-

cant at p< 0.05; interactions were considered significant at p < 0.1 because ANOVA models

typically have reduced power to detect interactions as compared with main effects [34, e.g., see

47,48].

For total injury (combining all markers of injury), total regeneration (combining all mark-

ers of regeneration), and combined injury plus regeneration (combining all markers of injury

and regeneration), in order to weight each component trait equally, we first standardized each

component measure by subtracting the mean from the individual values and then dividing by

the standard deviation. These standardized values were then summed to obtain the composite

score. This procedure was followed because not all markers were presented as a percentage of

the total number of fibers, and also because variances differed among measures. Additional

transforms were done to the standardized variables to improve normality of the residuals. For

total regeneration in the plantaris, it was necessary to rank-transform the standardized values

to achieve normality of the residuals.

For individual injury markers that were zero-inflated, simplified 0/1 variables were made

indicating whether any cells in that muscle cross-section contained the marker in question or

not. Then a Z-test was used to look for differences in the proportions of injured and non-

injured individuals among different groups (e.g. C vs HR) and to compare different types of

injury markers between muscles (e.g. plantaris vs soleus).

Results

Effects of contusion injury on voluntary wheel-running behavior

Dissections indicated one individual with a fractured tibiafibula that was then excluded from

all analyses. Given the known large difference in daily wheel running between HR and C mice

infiltration (green boxes). All representative pictures come from normal-muscled mice (not mini-muscle individuals)

at 10x.

https://doi.org/10.1371/journal.pone.0278186.g001
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[e.g., see 34], we first analyzed the two linetypes separately, treating the two replicate lines

within each linetype as a fixed effect. All measures of wheel running generally increased across

the 6-day trial, regardless of injury status, for both HR and C mice, although minutes run per

day decreased from day 1 to 2 for all four groups (Table 1, Fig 2).

Mice from the two HR lines decreased revolutions run per day when injured (p = 0.0284;

Fig 2A), which was attributable to decreased average and maximal speed (p = 0.0032 and

p = 0.0087, respectively; Fig 2C and 2D), but not a decrease in running duration (p = 0.2473;

Fig 2B and Table 1). As seen in a previous study [49], HR Line 7 mice ran faster than HR Line

8 mice (Table 1). Mice from the two Control lines had no significant effect of injury on any

measure of wheel running (Table 1). In the C lines tested, maximum running speed shows a

significant line � injury interaction with injured Line 2 mice attaining higher maximum speeds

than injured Line 1 mice (p = 0.0464).

When analyzed together (Table 2), HR mice ran significantly more than C mice on all days,

regardless of injury (p = 0.0414; Fig 2A), and this result was mirrored in their running speed

and the maximum revolutions in any one-minute interval (square root transformed to

improve normality of the residuals; p = 0.0484 and p = 0.0346, respectively; Fig 2C and 2D).

Exercise-induced injury

Wheel running. Mice from the four replicate HR lines ran more total revolutions than

those from the four C lines on all days, and the differential became larger across the 6 days of

Table 1. Effects of contusion injury on voluntary wheel-running behavior, split by linetype (contusion experiment).

High Runner RUN INT RPM MAX

N = 20 20 19 19

d.f. F P d.f. F P d.f. F P d.f. F P

PLine 1, 15 0.25 0.6245+ 1, 15 0.35 0.5647+ 1, 14 6.23 0.0257+ 1, 14 0.74 0.4041+

PInjury 1, 15 5.88 0.0284- 1, 15 1.45 0.2473- 1, 14 12.62 0.0032- 1, 14 9.28 0.0087-

PDay 1, 80 15.69 < .0001 1, 80 7.87 < .0001 1, 75 36.71 < .0001 1, 75 10.77 < .0001

PLine�Injury 1, 15 0.06 0.8150 1, 15 0.13 0.7250 1, 14 1.95 0.1840 1, 14 0.1 0.7576

PLine�Day 1, 80 0.67 0.6466 1, 80 0.18 0.9678 1, 75 2.91 0.0188 1, 75 0.53 0.7503

PInjury�Day 1, 80 1.03 0.4083 1, 80 0.32 0.9019 1, 75 1.24 0.3004 1, 75 1.18 0.3265

PLine�Injury�Day 1, 80 0.37 0.8663 1, 80 0.53 0.7524 1, 75 1.05 0.3957 1, 75 0.95 0.4523

PWheel Freeness 1, 15 1.69 0.2138+ 1, 15 0.99 0.3355+ 1, 14 1.14 0.3036+ 1, 14 3.24 0.0933+

Control RUN INT RPM MAX

N = 22 22 21 20

d.f. F P d.f. F P d.f. F P d.f. F P

PLine 1, 17 2.03 0.1719+ 1, 17 1.03 0.3240- 1, 16 1.15 0.2988+ 1, 15 1.41 0.2537+

PInjury 1, 17 0.08 0.7874- 1, 17 1.01 0.3292- 1, 16 0.21 0.6496- 1, 15 0.02 0.9016-

PDay 5, 90 8.98 < .0001 5, 90 14.05 < .0001 1, 85 17.25 < .0001 1, 80 3.1 0.0131

PLine�Injury 1, 17 2.37 0.1424 1, 17 1.68 0.2122 1, 16 0.56 0.4643 1, 15 4.71 0.0464

PLine�Day 5, 90 0.58 0.7187 5, 90 2.08 0.0749 1, 85 1.74 0.1331 1, 80 2.55 0.0341

PInjury�Day 5, 90 0.46 0.8031 5, 90 0.26 0.9353 1, 85 1.39 0.2370 1, 80 3.23 0.0104

PLine�Injury�Day 5, 90 0.54 0.7476 5, 90 0.98 0.4365 1, 85 0.35 0.8791 1, 80 0.23 0.9479

PWheel Freeness 1, 17 2.82 0.1115+ 1, 17 5.55 0.0308+ 1, 16 1.07 0.3156+ 1, 15 3.11 0.0984+

P values from repeated measures ANCOVA analyzing wheel running traits across six days. Bold indicates significant differences (p < 0.05 or p < 0.10 for interactions).

Positive (+) indicates direction Line 8 > Line 7, Line 2 > Line 1, and Injured > Uninjured. Wheel freeness was transformed to the 0.4 power to normalize residuals.

RUN = total number of revolutions. INT = number of intervals with� one revolution. RPM = revolutions per minute. MAX = maximum revolutions in any one-

minute interval.

https://doi.org/10.1371/journal.pone.0278186.t001
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Fig 2. Average wheel running metrics across six days for the both the Contusion Experiment (A-D) and the Exercise Experiment (E-H) shown

in Tables 3 and 4. (A) Total revolutions (n = 42). (B) Number of one-minute intervals with at least one revolution (running duration; n = 42).

(C) Revolutions per minute (average speed; n = 42). (D) Maximum number of revolutions in any one-minute interval (n = 41). (E) Total

revolutions (n = 61). (F) Revolutions per minute (average speed; n = 60). (G) Number of one-minute intervals with at least one revolution

(running duration; n = 61). (H) Maximum number of revolutions in any one-minute interval (n = 61). Values are LS means ± standard errors

from SAS Procedure Mixed repeated-measures ANCOVA.

https://doi.org/10.1371/journal.pone.0278186.g002
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wheel access (linetype � day interaction p = 0.0001; Fig 2E and Table 3). HR mice increased

their wheel running from ~5,400 revolutions on day 1 to ~12,200 revolutions on day 6, as com-

pared with C mice which increased from ~3,000 revolutions to ~5,200 revolutions during the

same span (Fig 2E). The higher daily running distances of HR mice were caused by greater

duration of running (Fig 2F), and greater average running speeds (Fig 2G [maximum speeds

were also higher in HR mice Fig 2H]). The increasing differential in daily running distances

was attributable to an increasing disparity in running speeds (significant linetype � day interac-

tions), not duration (interaction P = 0.3875; Table 3). As compared with normal-muscled indi-

viduals, mini-muscle mice ran significantly faster and had a higher maximum number of

revolutions in any one-minute interval (Table 3).

Home-cage activity. As seen in previous studies, all HCA measures decreased across the 6

day trial in all mice [41; Fig 3]. Mice with wheel access were less active in their cages than mice

without wheels (p = 0.0003), and this effect was greater in HR lines (linetype�wheel access

p = 0.0373; Fig 3A). Mice with wheel access were also active for less total time, had lower activ-

ity per minute, and lower maximum activity in any one-minute interval than mice housed

without wheels (p = 0.0346, p = 0.0002, and p = 0.0012, respectively; Fig 3B–3D, respectively).

Table 2. Effects of contusion injury on voluntary wheel-running behavior, not split by linetype (contusion experiment).

RUN INT RPM MAX

N = 42 42 42 41

d.f. F P d.f. F P d.f. F P d.f. F P

PLinetype 1, 2 22.67 0.0414+ 1, 2 1.47 0.3492+ 1, 2 19.17 0.0484+ 1, 2 27.41 0.0346+

PInjury 1, 2 4.83 0.1592- 1, 2 2.96 0.2277- 1, 2 4.14 0.1787- 1, 2 4.42 0.1704-

PDay 5, 10 24.62 < .0001 5, 10 14.74 0.0002 5, 10 39.59 < .0001 5, 10 6.34 0.0067

PLinetype�Injury 1, 2 3.24 0.2136 1, 2 0.09 0.7949 1, 2 4.22 0.1765 1, 2 2.17 0.2788

PLinetype�Day 5, 10 6.54 0.0060 5, 10 1.69 0.2247 5, 10 7.25 0.0041 5, 10 1.07 0.4327

PInjury�Day 5, 10 1.09 0.4234 5, 10 0.17 0.9698 5, 10 1.01 0.4595 5, 10 2.91 0.0707

PLinetype�Injury�Day 5, 10 0.98 0.4742 5, 10 0.35 0.8690 5, 10 0.97 0.4825 5, 10 0.48 0.7867

PWheel Freeness 1, 203 4.84 0.0289+ 1, 203 7.22 0.0078+ 1, 203 2.23 0.1372+ 1, 197 3.92 0.0490+

For explanation, see footnotes for Table 1.

https://doi.org/10.1371/journal.pone.0278186.t002

Table 3. Comparisons of voluntary wheel-running behavior between high runner and control lines of mice during the exercise-induced injury study (exercise

experiment).

RUN INT RPM MAX

N 61 60 61 61

d.f. F P d.f. F P d.f. F P d.f. F P

PLinetype 1, 6 20.27 0.0041+ 1, 6 6.79 0.0404+ 1, 6 26.30 0.0022+ 1, 6 58.17 0.0003+

PDay 5, 30 27.32 < .0001 5, 30 8.55 < .0001 5, 30 49.92 < .0001 5, 30 19.41 < .0001

PLinetype�Day 5, 30 7.46 0.0001 5, 30 1.09 0.3875 5, 30 8.21 < .0001 5, 30 3.09 0.0228

PMini 1, 313 1.41 0.2356+ 1, 307 0.40 0.5269- 1, 313 4.66 0.0317+ 1, 313 8.28 0.0043+

PTWheel

Freeness

1, 313 1.80 0.1803+ 1, 307 4.39 0.0369+ 1, 313 0.01 0.9158+ 1, 313 0.17 0.6770+

Significance levels (p values) from repeated-measures ANCOVA analyzing wheel running parameters across six days. Bold values indicate significant differences

(p < 0.05 or p < 0.10 for interactions). Positive (+) indicates direction HR > C and Mini > Normal. Wheel freeness was transformed 0.5 power to normalize the

distribution of residuals. RUN = total number of revolutions. INT = number of intervals with at least one revolution. RPM = revolutions per minute. MAX = maximum

number of revolutions in any one-minute interval.

https://doi.org/10.1371/journal.pone.0278186.t003
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In general, HR mice were more active (p = 0.0259 for total activity) and tended to be active for

more minutes per day and at a higher average intensity of activity (p = 0.0735 and p = 0.0901,

respectively). Mini-muscle status had no significant effects on any measure of HCA.

Plasma creatine kinase activity. Mini-muscle mice had lower plasma creatine kinase

activity (an indicator of muscle injury) than normal-muscled mice (LSmeans = 0.012 ± 0.0017

and 0.018 ± 0.0006 for mini-muscle and normal-muscle respectively; p = 0.0033; Table 4), with

no overall effects of linetype (p = 0.2249) or wheel access (p = 0.5134), and no significant inter-

actions. Adding the indicators of home-cage activity (averaged over days 5 and 6 or all 6 days)

as covariates (one at a time) indicated that they were not significant predictors of creatine

kinase activity and had little effect on the significance levels for the main effects (results not

shown). In a separate analysis of only mice that had wheel access, mini-muscle individuals

again had significantly lower plasma creatine kinase activity than normal-muscled mice

(p = 0.0144). Adding the wheel-running metrics or the home-cage metrics (averaged over days

5 and 6 or all 6 days) to this analysis indicated that none of them was a significant predictor of

plasma creatine kinase, and the mini-muscle effect always remained significant.

Fig 3. Average home-cage activity metrics across six days for male HR and C mice without and with access to wheels (exercise

experiment). (A) Total HCA (n = 86). (B) Time spent active (square root transformed; n = 86). (C) Mean activity per minute (n = 86). (D)

Mean maximum activity in any one-minute interval (transformed to the 4.0 power; n = 86). Values are LS means ± standard errors from

SAS Procedure Mixed repeated-measures ANCOVA.

https://doi.org/10.1371/journal.pone.0278186.g003
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When analyzing only mice that did not have access to wheels, mini-muscle individuals

tended to have lower plasma creatine kinase compared to normal-muscled mice (p = 0.0619).

Adding the home-cage metrics to this analysis indicated that none of them was a significant

predictor of plasma creatine kinase, and the mini-muscle effect remained similar.

Total muscle injury. For the index of total muscle injury, the superficial gastrocnemius

showed very few signs of injury and was heavily zero inflated (many individuals showed none

of the indicators of muscle injury used in this study); hence, this muscle could not be analyzed

statistically (models did not converge). The soleus showed a statistically significant increase in

the index of total muscle injury with wheel access (p = 0.0144; Table 4), with no effect of line-

type and no interactions. Effects of wheel access, linetype, and their interaction were non-sig-

nificant for the deep gastrocnemius and plantaris. In the deep gastrocnemius, mini-muscle

mice had more total injury than other mice, regardless of wheel access (p = 0.0127; Table 4).

Adding the indicators of home-cage activity as covariates, one at a time, indicated that none of

them were significant predictors of total injury for any muscle, and they had little effect on sig-

nificance levels of the other factors (results not shown).

In a separate analysis using only mice that had wheel access, mini-muscle individuals had

significantly more injury than normal-muscled mice in the deep gastrocnemius (p = 0.0149).

Adding the various measures of wheel running (averaged across all 6 days or only the first 3

days) individually as covariates never had significant effects on the total amount of injury for

any muscle, and they caused little change in the significance levels for linetype or mini-muscle

status. When mice without wheel access were analyzed separately, we found no significant

effects of linetype or mini-muscle status on total injury for any muscle (results not shown),

Table 4. Comparisons of plasma and histological indicators of exercise-induced muscle injury in the triceps surae of HR and C mice (exercise experiment).

Trait N Transform PLinetype PWheel Access PLinetype�Wheel Access PMini PMini�Wheel Access

Creatine Kinase Activity 106 - 0.2249+ 0.5134- 0.3572 0.0033- 0.6502

Total Injury

Deep Gastrocnemius 92 (5 + ZINJDG)��0.01 0.3917- 0.3223+ 0.8505 0.0127+ 0.8822

Superficial Gastrocnemius# 89 - - - - - -

Plantaris 93 (5 + ZINJPL)��0.02 0.6543+ 0.8879+ 0.1478 0.2817+ 0.4726

Soleus 51 (5 + ZINJSL)��0.2 0.8524+ 0.0114+ 0.6181 0.8769+ 0.1353

% Central Nuclei

Deep Gastrocnemius 91 1+LOG10 0.1718+ 0.6329- 0.1108 0.0296+ 0.7508

Superficial Gastrocnemius 86 1+LOG10 0.8240+ 0.5859+ 0.8841 < .0001+ 0.0331

Plantaris 93 1+LOG10 0.1831+ 0.0525+ 0.3246 0.0454+ 0.3532

Soleus 52 1+LOG10 0.0193+ 0.2453- 0.6029 0.9217+ 0.0975

Total Regeneration

Deep Gastrocnemius 91 (5 + ZREGDG)��0.2 0.4949+ 0.5618- 0.0764 0.0072+ 0.9247

Superficial Gastrocnemius‡ 89 10 + ZREGSG 0.9888+ 0.9631+ 0.9126 0.0271+ 0.8891

Plantaris 94 STANDARDIZED AND RANK 0.6055+ 0.0449+ 0.5965 0.8545+ 0.0850

Soleus 51 STANDARDIZED 0.6146- 0.2443- 0.8190 0.7666+ 0.0972

#The number of individuals without any marker of injury was too high to allow for a normal distribution and was therefore not analyzed. ‡The GLIMMIX procedure

(SAS) was used here to give a normal distribution of the data.

Significance levels (p values) from ANCOVA. Bold values indicate significant differences (p < 0.05 or p < 0.10 for interactions). Positive (+) indicates direction Wheel

Access > No Wheel Access, HR > C and Mini > Normal. Total Injury = number of cells exhibiting standardized necrotic fibers, standardized perimysial infiltration,

standardized invaded fibers, and/or standardized pale staining cytoplasm. Total Regeneration = number of cells exhibiting either standardized central nuclei and/or

standardized areas of regeneration. Additional analyses included the metrics of wheel running or of home-cage activity as covariates (see text).

https://doi.org/10.1371/journal.pone.0278186.t004
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and adding the home-cage metrics to this analysis indicated that none of them were significant

predictors of total injury.

Central nuclei. Central nuclei are used as a biomarker of regeneration. In this study, the

major observed differences in the percentage of central nuclei involved mini-muscle individu-

als. In the deep gastrocnemius, mini-muscle individuals had a higher percentage of fibers with

central nuclei than normal-muscled individuals (p = 0.0296; Fig 4B). In the superficial gastroc-

nemius, mini-muscle individuals also had a higher percentage of fibers with central nuclei

(p< 0.0001; Figs 4B and 5; Table 4), and wheel access increased this percentage, whereas it

decreased the percentage in normal-muscled individuals (mini-muscle�wheel access interac-

tion p = 0.0331; Table 4). In the plantaris, mini-muscle mice again had a significantly higher

percentage of fibers with central nuclei (p = 0.0454; Fig 4B), and mice with wheel access tended

to have a higher percentage of fibers with central nuclei than those without wheels (p = 0.0525;

Table 4). In the soleus, HR mice had a higher percentage of fibers with central nuclei than C

mice (p = 0.0193; Fig 4A). Wheel access reduced the percentage of fibers with central nuclei in

mini-muscle mice, but tended to increase it in normal-muscled individuals (mini-

muscle�wheel access interaction p = 0.0975; Fig 4B). Adding the indicators of home-cage activ-

ity as covariates, one at a time, indicated that none of them were significant predictors of per-

cent central nuclei for any muscle, and they had little effect on significance levels of the other

factors (results not shown).

Considering only mice with wheels, mini-muscle individuals had a higher percentage of

fibers with central nuclei in the superficial gastrocnemius and the plantaris than normal-mus-

cled mice (p< 0.0001 and p = 0.0218, respectively; results not shown in a table), with a trend

for the soleus of HR mice to have an increased percentage of fibers with central nuclei than C

mice (p = 0.0749). In models with the average amount of wheel running on days 1–6 as a

covariate, this metric negatively predicted the percentage of central nuclei in the plantaris

(p = 0.0490; results not shown in a table) and HR and mini-muscle mice had a higher percent-

age of fibers with central nuclei (linetype p = 0.0243 and mini p = 0.0099). Similar results were

found when adding the average speed at which mice ran on days 1 through 6 (covariate

Fig 4. Percentage of fibers that contained centrally located nuclei in different muscles (exercise experiment). (A) C vs HR mice with and without wheel

access. (B) Normal vs mini-muscle individuals with or without wheel access. Values are 1 + log10 transformed LS means ± standard errors from SAS Procedure

Mixed ANCOVA. DG = deep gastrocnemius, SG = superficial gastrocnemius, PL = plantaris, SL = soleus.

https://doi.org/10.1371/journal.pone.0278186.g004
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p = 0.0149; results not shown in a table). Using the average amount of wheel running, average

speed or average time spent running on days 1–3 as covariates had similar effects as days 1–6

(results not shown).

When mice without wheels were analyzed separately, mini-muscle individuals had a higher

percentage of fibers containing central nuclei in the deep and superficial gastrocnemius

(p = 0.0108 and p<0.0001, respectively; results not shown in a table), as compared with nor-

mal-muscled mice.

Total muscle regeneration. The total amount of regeneration (the number of central

nuclei and areas of regeneration combined) was higher in the deep and superficial gastrocne-

mius of mini-muscle mice as compared with normal-muscled mice (p = 0.0072 and

p = 0.0271, respectively; Table 4). Also in the deep gastrocnemius, a linetype � wheel access

interaction showed that mice from HR lines had less regeneration after wheel access, whereas

mice from C lines had more regeneration after wheel access (interaction p = 0.0764; Table 4).

Regeneration was also higher in the plantaris of mice that had wheel access as compared with

those not allowed access to running wheels (p = 0.0449; Table 4). In the plantaris, mini-muscle

mice had a greater increase in regeneration after wheel access than did normal-muscled mice

(mini � wheel access interaction p = 0.0850; Table 4). In the soleus, mini-muscle individuals

had less regeneration after wheel access, whereas normal-muscled mice had more (mini �

Fig 5. H&E staining of a normal-muscled superficial gastrocnemius and a mini-muscle superficial gastrocnemius

taken at 10x. Green arrows indicate centrally located nuclei. These individuals had no wheel access.

https://doi.org/10.1371/journal.pone.0278186.g005
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wheel access interaction p = 0.0972; Table 4). Adding the indicators of home-cage activity as

covariates, one at a time, indicated that none of them were significant predictors of total regen-

eration for any muscle, and they had little effect on significance levels of the other factors

(results not shown).

In a separate analysis of only mice that had wheel access, the deep gastrocnemius of mini-

muscle mice had significantly more regeneration than normal-muscled mice (p = 0.0218),

with a trend for the superficial gastrocnemius and the plantaris of mini-muscle individuals to

have more regeneration (p = 0.0627 and p = 0.0834, respectively). The average amount of time

spent running on nights 1–6 tended to negatively predict the amount of regeneration in the

plantaris (p = 0.0594). The average amount of time spent running during days 1–3 negatively

predicted regeneration in the plantaris (p = 0.0200) and tended to negatively predict regenera-

tion in the soleus (p = 0.0633). No other wheel-running measure had a significant effect on the

total amount of regeneration (results not shown). When mice without wheel access were ana-

lyzed separately, the deep gastrocnemius of HR mice tended to have more regeneration than C

mice (p = 0.0638), with no effect of the mini-muscle phenotype (p = 0.2011).

Comparisons of different muscle groups. Overall, the superficial gastrocnemius had rel-

atively fewer areas of regeneration than did the other muscles, whereas the soleus had relatively

more perimysial infiltration and more necrotic fibers that the other muscles (Fig 6A–6E). Sim-

ilar patterns were seen for areas of regeneration and necrotic fibers when comparing mini-

and normal-muscled individuals (Fig 6F–6J).

Discussion

Effects of contusion injury on voluntary wheel-running behavior

Our protocol for contusion injury was similar to those used in previous studies that have

shown negative effects on muscle function [5,43], so we presumed a priori that running ability

would be reduced in the present study. Interestingly, contusion injury decreased wheel run-

ning only in mice from HR lines (Fig 2). This result suggests that, under normal conditions,

the ability of C mice to run on wheels exceeds their motivation and that the amount of injury

experienced did not decrease this ability to a level that would reduce their daily wheel running

below the amount dictated by their inherent motivation to run voluntarily on wheels. For

uninjured HR mice, the amount they are able to run is probably similar to the amount they are

motivated to run, given that they have been under continued selection for tens of generations

since they reached selection limits [37], such that any reduction in either ability or motivation

will cause a reduction in daily running distance.

Hypothetically, changes in mean (or maximum) running speed—which mostly account for

the higher daily running distances by HR mice—are closely aligned with changes in running

ability, whereas changes in duration of running may be more reflective of motivation. In our

study, contusion injury reduced running speeds of HR mice, but not their daily running dura-

tion (Fig 2), which suggests negative effects on ability but not motivation. If this interpretation

is correct, then it is somewhat surprising because contusion injury typically leads to pain dur-

ing movement [e.g., see 4], which could negatively affect motivation [e.g., see discussion in

50].

In principle, HR mice might have evolved reduced pain sensitivity or increased pain toler-

ance. A study of opioid-mediated pain sensitivity did not find statistically significant differ-

ences between female HR and C mice [51]. However, endocannabinoids also modulate pain

both peripherally and centrally in rats and humans [52,53], and pharmacological studies show

differences in endocannabinoid function between HR and C mice of both sexes [54] and that 6

days of wheel access differentially affects circulating concentrations of anandamide in both
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sexes [42]. Another study showed that HR female mice tended to have relatively larger peria-

queductal grey (PAG; an area of the midbrain associated with pain perception) volumes than

C females when housed without wheels, but this difference was reversed when mice were

housed with wheels for 10 weeks beginning at weaning [55]. Initial differences or changes in

Fig 6. Proportion of the population of C and HR (A-E) and normal- and mini-muscled (F-J mice from the Exercise Experiment (with or without

wheels) that has at least one myofiber containing (A and F) areas of regeneration, (B and G) perimysial infiltration, (C and H) pale staining cytoplasm,

(D and I) cellular invasion, and (E and J) necrotic fibers. Values are percentage of the population. DG = deep gastrocnemius, SG = superficial

gastrocnemius, PL = plantaris, SL = soleus.

https://doi.org/10.1371/journal.pone.0278186.g006
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PAG volume or plasma anandamide levels during 6 days of wheel running could lead to

reduced pain sensitivity or increased pain tolerance in HR mice, helping them to recover moti-

vation for running after an injury.

On day 1 following injury, injured HR mice ran ~38% fewer revolutions/day (Fig 2A). Both

injured and uninjured HR mice increased daily revolutions run across the following five days,

but on day 6 the injured animals still ran ~21% fewer revolutions than uninjured HR mice.

Thus, recovery from injury was not complete by day 6. Exercise is one of several factors than

can affect muscle healing from contusion injury [see 4 for review]. Rats have shown an

increase in muscle repair after contusion injury to the gastrocnemius when given access to

wheels (one hour/day) for three days, and have shown a more complete response to repair

after 21 days with wheel access than immobilized controls [3]. In mice, treadmill running (one

hour/day, five days/week for five weeks) reduces the amount of collagen observed as a result of

a contusion injury to the tibialis anterior [56]. Mice also show increased satellite cell activity if

allowed to voluntarily run on wheels during recovery from hindlimb suspension unloading

[57]. To our knowledge, no other published study has given animals access to wheels ad libi-
tum following contusion injury.

Exercise-induced injury

Plasma creatine kinase activity. Contrary to our hypothesis, voluntary wheel running for

6 days had no statistically significant effect on plasma CK levels, nor did linetype. To our

knowledge, no previous study has examined effects of voluntary wheel running on plasma cre-

atine kinase levels in such a short time scale. However, a study that used 3 weeks of wheel

access and sampled blood one day after the end of the wheel access found no effect on serum

creatine kinase [58]. Strenuous exercise has been shown to increase circulating CK levels in

rodents [8,treadmills: 13,58] and in humans [59–63]. Also, human athletes (both strength and

endurance) have higher resting plasma CK levels when compared to sedentary/non-athletic

controls [64–66], which is probably caused by increased training. For example, Chevion et al.

[67] showed that individuals that routinely experience high-volume intense exercise have

higher baseline levels of serum CK than untrained or more moderately trained individuals.

Moderate exercise may not induce changes in membrane permeability and, therefore, no

increase in serum CK levels should be expected unless training/exercise exceeds this threshold

[68–71]. The amount of wheel exercise performed by C and even HR mice may not be suffi-

cient to elicit changes in membrane permeability that would cause a significant increase in

plasma CK levels: even HR mice rarely reach their maximal aerobic speed during voluntary

wheel running [15,72]. Another possible explanation for the similarity in plasma CK levels

between HR and C mice after wheel access is that the former have altered stride characteristics

[25], which might decrease sarcolemmal disruption, decreasing the leakage of CK from the

muscle.

Although we did not find differences in plasma CK activity between HR and C mice or

between exercised and non-exercised individuals, mini-muscle mice had lower plasma CK

activity. Yamashita and Yoshioka [73] showed that total CK is more prevalent in fast-twitch

glycolytic fibers (MyHC-2b), lower in MyHC-2a, and lowest in MyHC-1. Therefore, the lower

plasma CK levels of mini-muscle mice probably reflect their reduced numbers of MyHC-2b

fibers [28,32]. On the other hand, mini-muscle mice have ~1/3 of the compartment PCSA, so a

given cross-sectional area of muscle should experience significantly greater stresses than com-

parable muscles in non-mini-muscle mice. Therefore, one would expect greater stretch-

induced damage in mini-muscles. Plasma CK levels will reflect a balance between these two

factors.
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The utility of plasma CK activity as a marker for gauging muscle injury has been debated

[e.g., see 74,75]. We therefore tested for correlations between plasma CK activity and the histo-

logical measures of muscle injury in each of the four muscle areas across all of our samples (all

of the histological measures were log-transformed). Only one of the 20 possible correlations

reached statistical significance, and it was in the opposing direction (CK versus % of central

nuclei in the superficial gastrocnemius: N = 91, r = -0.214, P = 0.041). Results from the present

study suggest that plasma CK is limited in its usefulness as a marker of muscle injury.

Central nuclei. Central nuclei occur during the regenerative processes that follows muscle

injury. During this process, new myogenic cells fuse to form myofibers with centrally located

nuclei, which can be quantified as an indicator of regeneration. The nuclei then migrate to the

periphery as the regenerative process is completed [see 76 for review]. In the soleus, HR mice

had a higher percentage of fibers with central nuclei than C mice, with no statistical interac-

tions, indicating that HR mice are not more resistant to exercise-induced injury than C mice.

Similar results were not seen in other muscles of the triceps surae complex (Table 4). The plan-

taris tended to have a higher percentage of central nuclei in mice that had 6 days of wheel

access (P = 0.0525; Table 4). The fibers in the plantaris of HR mice had a significantly increased

percentage of central nuclei when the total number of revolutions or speed of running was

added to the model, and both of these were negatively predictive of central nuclei. One possible

explanation for this observation is that as little as a single bout of (forced treadmill) exercise

has been shown to have a protective effect against muscle injury [8]. Also, wheel running itself

may speed muscle recovery [3], and the regenerative processes can start as early as 96 hours

post-injury in rodents [13,77,78]. Thus, fibers in the plantaris could have been injured during

the early period of wheel access (e.g., during day 1 or 2), but somewhat protected from further

injury, and also the subsequent wheel running could have facilitated muscle recovery. This sce-

nario could explain the abundance of central nuclei in HR mice (with wheel running as a

covariate) in the plantaris, as well as the negative relationship with total revolutions or speed.

In addition to the effects of linetype and wheel access, mini-muscle individuals had more

central nuclei in the deep and superficial gastrocnemius and the plantaris, and wheel access

increased this in superficial gastrocnemius while decreasing the effect in soleus (mini�wheel

interaction: Table 4, Fig 4B). We do not believe that the increased number of central nuclei in

the superficial gastrocnemius of mini-muscle mice is related to injury, but to their muscle fiber

phenotype in general. Talmadge et al. [28] noted the increased number of MyHC-2b fibers

containing central nuclei in the superficial region of the gastrocnemius of untrained adult

mini-muscle mice compared to other untrained HR or C57Bl6NHsd mice. Because some stud-

ies have shown that oxidative fibers are more likely to be injured due to (forced treadmill)

exercise [8,13,79,80], the increase in the percentage of central nuclei in the deep gastrocnemius

and the plantaris may be explained by the higher percentage of type MyHC-1 and MyHC-2a

fibers that exist in these areas in mini-muscle mice compared to normal-muscled mice.

Total muscle injury and regeneration. Most mice and most muscle fibers did not show

signs of injury; however, mice with wheel access showed significantly higher levels of injury in

the soleus and higher levels of regeneration in the plantaris, for both HR and C mice (Fig 6).

Komulainen and Vihko [81], subjected male rats to exhaustive exercise on an inclined tread-

mill and fiber swelling and interstitial edema was observed in the soleus 4–12 hours post-

exhaustion, with histological markers indicative of muscle injury (e.g., inflammation, necrosis)

seen 12–96 hours post-exhaustion, depending on the muscle in question. In rats, muscle injury

occurs earlier in the plantaris than the soleus [82]. Thus, in the present study, the plantaris

may have been injured by wheel running earlier than the soleus, and then began regenerating

while the soleus was still in the injury phase.

PLOS ONE Lack of resistance to muscle injury in high runner mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0278186 November 30, 2022 18 / 24

https://doi.org/10.1371/journal.pone.0278186


Mini-muscle mice had higher levels of injury and regeneration in the deep and superficial

regions of the gastrocnemius (Table 4, Fig 6). Total regeneration is a function of the percentage

of central nuclei and number of areas of regeneration seen in a single muscle. The superficial

gastrocnemius of mini-muscle mice have inherently more central nuclei, which accounts for

their higher total regeneration and may not be indicative of injury [28; see Fig 4B]. However,

the increased regeneration in the deep gastrocnemius is a relatively equal combination of areas

of regeneration and central nuclei. The injury in the deep and superficial gastrocnemius is a

combination of perimysial infiltration, invaded cells, pale cytoplasm, and increased necrotic

fibers in mice with wheel access (Fig 6). The superficial gastrocnemius is comprised almost

entirely of MyHC-2b muscle fibers (with a smaller amount present in the deep gastrocnemius)

in normal-muscled individuals which are able to handle higher forces than other fiber types.

Mini-muscle mice have far fewer MyHC-2b fibers, which may explain the increase in injury/

recovery seen in the superficial (and deep) gastrocnemius.

Within mini-muscle mice, the soleus and plantaris showed a mini�wheel access interaction

for regeneration: with wheels, regenerating fibers increased for the plantaris, but decreased for

the soleus (Fig 6). This is possibly due to the different time courses for injury and regeneration

in the two muscles [82]. Another explanation are findings that show the plantaris is less resis-

tant to injury than the soleus [10,83]. The authors claim that this is due to the plantaris having

a higher proportion of MyHC-2 fibers, but this is contradictory to findings of other authors

who state that MyHC-2 fibers are more resistant to injury [8,e.g., 13,79,80].

Comparisons of different muscle groups

In the superficial gastrocnemius, fewer individuals had areas of regeneration than for any

other muscle (Fig 6A). The soleus had an increased proportion of necrotic fibers and increased

perimysial infiltration compared with other muscles. In general, we observed fewer signs of

injury and areas of regeneration (but not central nuclei) in the superficial gastrocnemius,

which may reflect the increased force potential of its many MyHC-2b fibers and their lower

propensity to experience exercise-induced injury (see references in Section 4.3 Exercise-
Induced Injury: Central Nuclei, although these studies used treadmill running for the induction

of injury). Additionally, exhaustive uphill running (concentric exercise) may preferentially

injure type I fibers, which are lacking in the superficial gastrocnemius [84].

Conclusions, limitations, and future directions

Contrary to our initial hypotheses, our results suggest that HR mice have not evolved a height-

ened ability to resist muscle injury (exercise experiment), nor do they recover from injury

faster than mice from non-selected C lines (contusion experiment). Within the HR lines of

mice, individuals with the mini-muscle phenotype have more indicators of both injury and

regeneration than normal-muscled mice, even when they do not have access to wheels, which

is likely related to their reduced numbers of MyHC-2b muscle fibers. This finding does not

support our initial hypothesis that only the superficial gastrocnemius of mini-muscle mice

would show increased muscle injury/regeneration compared to normal-muscled individuals,

or that the other muscles of the triceps surae complex of mini-muscle mice would show fewer

signs of injury or regeneration. Finally, the number of injured or regenerating fibers was very

small, even for HR mice given six days of wheel access; thus, increased amounts or intensities

of running, possibly by use of forced treadmill exercise, may be required to show a substantial

increase in injured or regenerating fibers in these mice. Greater amounts of injury caused by

longer durations of wheel running or more extensive contusions might also reveal differences

between HR and C mice.
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This study is somewhat limited by the absence of video recording. We are unable to deter-

mine the quantity of up- versus downhill running performed by each mouse. A relatively

greater amount of downhill running would increase the number of lengthening contractions,

and thus the amount of injury in a given mouse. However, the purpose of this study was to see

if wheel running, in general, caused more or less injury in mice specifically bred for wheel run-

ning, regardless of the intensity or time spent running up- or downhill. Additionally, this

study is limited by its use of only H&E staining without the use of fiber-type or other antibody

staining to mark injured muscle fibers. Some directions for future studies would be to examine

fiber type, physiological cross-sectional area, fiber swelling, collagen infiltration (via Masson’s

trichrome staining), immunostaining for dystrophin, time courses of injury and recovery, the

use of previously trained individuals, and, as mentioned above, longer durations of wheel run-

ning. Other future studies could use an in-situ muscle preparation to determine if contusion

or wheel running causes decreased muscle performance per se in HR vs. C mice.
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