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ABSTRACT

Motivation: Similarity searching and clustering of chemical
compounds by structural similarities are important computational
approaches for identifying drug-like small molecules. Most
algorithms available for these tasks are limited by their speed and
scalability, and cannot handle today’s large compound databases
with several million entries.
Results: In this article, we introduce a new algorithm for accelerated
similarity searching and clustering of very large compound sets using
embedding and indexing (EI) techniques. First, we present EI-Search
as a general purpose similarity search method for finding objects with
similar features in large databases and apply it here to searching
and clustering of large compound sets. The method embeds the
compounds in a high-dimensional Euclidean space and searches
this space using an efficient index-aware nearest neighbor search
method based on locality sensitive hashing (LSH). Second, to cluster
large compound sets, we introduce the EI-Clustering algorithm that
combines the EI-Search method with Jarvis–Patrick clustering. Both
methods were tested on three large datasets with sizes ranging
from about 260 000 to over 19 million compounds. In comparison to
sequential search methods, the EI-Search method was 40–200 times
faster, while maintaining comparable recall rates. The EI-Clustering
method allowed us to significantly reduce the CPU time required to
cluster these large compound libraries from several months to only
a few days.
Availability: Software implementations and online services have
been developed based on the methods introduced in this study.
The online services provide access to the generated clustering
results and ultra-fast similarity searching of the PubChem Compound
database with subsecond response time.
Contact: thomas.girke@ucr.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Software tools for mining the available small molecule space
play an important role in many bioscience and biomedical areas.

∗To whom correspondence should be addressed.

They are ranging from drug discovery, chemical biology and
chemical genomics to medicinal chemistry (Haggarty, 2005; Oprea,
2002; Oprea et al., 2007; Savchuk et al., 2004; Strausberg and
Schreiber, 2003). Currently, the structures of over 20 million
distinct small molecules are available in open access databases,
like PubChem (Austin et al., 2004), ChemBank (Seiler et al., 2008),
NCI (Ihlenfeldt et al., 2002), ChemMine (Girke et al., 2005),
ChemDB (Chen et al., 2007) and ZINC (Irwin and Shoichet,
2005). To analyze these important data resources, efficient structure
similarity search tools are essential for retrieving chemical and
bioactivity information from databases (Chen and Reynolds, 2002;
Sheridan and Kearsley, 2002). In addition, they are often useful for
predicting bioactive small molecules (Cao et al., 2008; Cheng et al.,
2007).

A variety of structure similarity search methods are available
(reviewed by Willett et al., 1998). Unfortunately, they are often
not fast enough for systematic analyses of very large compound
collections with millions of compounds. This is because most of
these methods sequentially compare a query structure against all
entries in the database and then rank the results by a chosen scoring
system, and thus the cost to perform similarity searches grows
linearly with the size of the compound database. Therefore, more
efficient and sophisticated search methods need to be developed to
utilize the available chemical space efficiently.

Clustering of compound sets is essential on practically all stages
of the discovery process of bioactive compounds (reviewed by
Downs and Barnard, 2002). Commonly, structure similarity-based
clustering utilizes the pairwise similarity measures generated by
the above compound search methods to partition the data into
discrete groups of similar compounds. An example is Jarvis–Patrick
clustering, which is among the most widely used clustering methods
in cheminformatics (Willett, 1987). Alternatively, they can be used
to build hierarchical trees that represent the similarity relationships
among all items in a compound dataset. One of the main challenges
in this area is the difficulty to cluster the millions of compound
structures that are currently available in the public domain. This is
because many cluster analysis approaches multiply the complexity
of a chosen similarity search method by the number of compounds
in the dataset. They often require the calculation of all-against-
all similarities for the compounds under investigation and the
computational cost grows quadratically with the size of the dataset.
Therefore, novel clustering methods need to be developed for
exploring this vast chemical space efficiently.
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A few methods have been proposed to accelerate the nearest
neighbor searching in compound databases. Agrafiotis and Lobanov
(1999) reported an algorithm based on k-dimensional (or k-d)
trees for diversity analyses. This problem is relevant to clustering
(Bentley, 1975) and the method can possibly be adopted to
nearest neighbor searching. It works by representing each chemical
compound as a multidimensional vector and organizing the
compound dataset in a k-d tree structure to speedup diversity
analyses. However, the vector representation used is very limited
and the k-d tree cannot handle high-dimensional vector data. Later
the authors proposed a new data structure called µ-tree to perform
guided nearest neighbor search of compounds in general metric
space (Xu and Agrafiotis, 2003). A µ-tree organizes the database
in recursively partitioned Voronoi regions and represents these
partitions as a tree. The method greatly reduces the number of
similarity comparisons required for the nearest neighbor search by
applying an efficient branch and bound strategy. As a distance-
based indexing method, the µ-tree approach does not require the
compounds to be represented as multidimensional vectors. However,
it requires the similarity measure used to be a metric. Swamidass
and Baldi (2007) used upper bounds on similarity measures for
structural fingerprints to reduce the number of molecules that need
to be considered in the nearest neighbor searches. Later, Baldi et al.
(2008) employed tighter bounds to achieve further time savings.
These latter two methods have been designed to be used only with
fingerprint-based similarity measures.

A variety of data structures and algorithms have been proposed
to accelerate the nearest neighbor search in multidimensional
Euclidean space (reviewed by Bohm et al., 2001). These methods,
often referred to as multidimensional access methods (MAMs),
have not been widely used in similarity searching and clustering of
chemical compounds. The reason for this may be the popularity of
non-Euclidean similarity coefficients in chemical structure similarity
searching, which are not immediately compatible with MAMs.
Moreover, Fu et al. (2000) reported that the embedding of the generic
metric space into multidimensional space can introduce considerable
inaccuracy in the nearest neighbor search applications.

In this article, we introduce the embedding and indexing (EI)-
Search and EI-Clustering methods for ultra-fast similarity searching
and clustering of very large datasets using an EI strategy. First,
we introduce an efficient embedding algorithm. Subsequently, we
describe the design of EI-Search and EI-Clustering, and test their
efficiency and accuracy. Finally, experimental test results for three
large compound datasets are presented and discussed.

2 METHOD

2.1 Embedding compounds in Euclidean space
The foundation of our algorithms is the usage of embedding techniques
to build multidimensional vector representations of compound structures,
which can be used to approximate compound dissimilarities by the inter-
vector distances. Embedding objects in Euclidean space offers many benefits,
such as the possibility of accelerating the nearest neighbor search. In addition,
they are useful for all-pair query approaches used in data visualization,
clustering and data mining (Faloutsos and Lin, 1995).

The problem of geometric embedding has previously been studied and
applied to the nearest neighbor search in metric space. Three of the most
widely used methods in this area are multidimensional scaling (MDS;
Kruskal and Wish, 1978), stochastic proximity embedding (SPE; Agrafiotis,

2003; Agrafiotis and Xu, 2002; Smellie et al., 2006) and FastMap (Faloutsos
and Lin, 1995). MDS is used to discover structures in datasets by representing
the relationships among its objects as spacial distances in a low-dimensional
display plane. It is computationally expensive because it depends on the
availability of all pairwise dissimilarities among the objects in a dataset. As
a result, it becomes quickly infeasible for compound databases with more
than a few thousand entries.

Many variances of MDS have been proposed to solve the problem for
large datasets. Chang and Lee (1973) selected from the whole dataset a
smaller number of representative objects, called pivots, and applied classic
MDS to this subset. The remaining objects were then embedded to the same
Euclidean space based on their distances to the pivots.

SPE is an alternative to MDS. As a self-organizing algorithm, SPE starts
with an initial assignment of data points to coordinates and carries out
iterative pairwise refinement steps by adjusting randomly selected pairs of
coordinates to better approximate the corresponding dissimilarity values.
SPE is very efficient and is reported to scale linearly with the size of the
dataset.

FastMap is another fast alternative of MDS with linear-time complexity. It
gains its computational efficiency by directly calculating the induced vectors
rather than iterative improvement steps used by most MDS implementations.
However, the proper choice of the set of pivot objects can be complicated
by the presence of large numbers of outlier compounds that are not similar
to any other compounds in a compound library.

This study presents an alternative embedding method that is accurate and
robust enough to process very large compound datasets. The initial steps of
the embedding procedure are similar to the method from Chang and Lee
(1973), but it differs significantly in its final optimization steps. The method
starts by dividing all compounds into two sets: a small reference compound
set and a much larger target compound set. The reference compound set is
a user-definable parameter that can be generated by maximum diversity or
random selection methods of compounds in a given library. Traditional MDS
is applied to obtain the coordinates of the induced reference vectors for the
reference compounds. Subsequently, an induced target vector is obtained
for each target compound by computing the vector coordinates that can best
preserve its dissimilarity to all reference compounds. More specifically, for
the i-th target compound oi, the following stress function is minimized:

stress=

√√√√√
|R|∑
j=1

(
d(oi,rj)− d̂(xi,r̂j)

)2
. (1)

In this equation, d(oi,rj) is the dissimilarity value between target compound
oi and reference compound rj . The variable r̂j is the coordinate of the
j-th induced reference vector obtained by applying MDS to the reference
compounds. The unknown coordinate of the i-th target vector is xi, and
d̂(xi,r̂j) gives the Euclidean distance between xi and r̂j . By minimizing the
stress function with a global optimization algorithm, the coordinate xi can be
computed so that it best preserves the dissimilarities from target compound
oi to all reference compounds.

Two very important parameters in our modified version of the MDS
algorithm are the number of dimensions D and the reference compound set.
Large D values will not increase the minimum value of the stress function,
and thus will never negatively impact the embedding quality. To maximize
the embedding quality, our method can be used with conservatively large
D values of over 100, but at the expense of longer computation times for
both the embedding and the downstream similarity searches. Often D values
>100 may not be necessary for many types of molecular descriptors (e.g.
physicochemical), due to their frequently high redundancy and correlation
among each other (Agrafiotis and Xu, 2002). It might also be possible to
take advantage of low intrinsic dimensionality of some similarity measures,
using methods such as ISOMAP (Tenenbaum et al., 2000) and locally
linear embedding (LLE; Roweis and Saul, 2000). However, our tests using
ISOMAP with atom pair descriptor also showed that D values >100 may
still be necessary for some molecular descriptors to achieve satisfactory
accuracy.
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The reference compound set is the second important parameter for our
approach. The size of the set, R, directly controls the complexity of the
stress function. Therefore, the larger the reference compound set, the longer
the embedding time. Furthermore, both the size and the composition of the
reference set have an influence on the embedding quality. This is because
the induced reference vectors serve as similarity landmarks to position
each target compound in the embedding space according to its dissimilarity
profile to all reference compounds. To minimize ambiguous placements,
the reference set should ideally be chosen as diversely as possible and
cover the entire chemical space of the target compounds. However, our
benchmark tests for structure similarity searching and clustering, have shown
that randomly selecting reference compounds is sufficient to obtain robust
results (Section 3.5). This is partly because R is usually much larger than the
number of D. Due to this redundancy, choosing one or several suboptimal
reference compounds will not have a great impact on the embedding quality.

Moreover, it is important to identify the smallest values for R and D, which
can achieve satisfactory accuracy. Increasing either value will result in longer
processing time. This does not only apply to the embedding of the compound
database, but also to every query structure used in similarity searches,
because both components have to go through the embedding process. This
slightly offsets the time saving gained by the other parts of the algorithm.
Agrafiotis et al. (2001) presented a neural network-based method that could
reduce the embedding time of our method significantly. However, in our tests
we were not able to achieve embedding qualities with this method that were
sufficient for similarity search and clustering applications (Supplementary
Table S-1).

Compared to the quadratic time complexity of traditional MDS methods,
our algorithm offers large time savings. Given similar distributions of
pairwise dissimilarities and a fixed number of reference compounds, the
running time of the above embedding algorithm is roughly linear to
the number of compounds. Because each target compound is processed
independently, our method can be easily parallelized on computers with
multiple CPU cores or compute clusters. This is a very desirable feature when
processing very large compound databases. The related SPE method is in its
current form less effective for processing very large datasets because of the
challenges involved in implementing a parallelized version of this algorithm.
Our tests with a publicly available implementation of the SPE algorithm show
that its unparallelized compute times on very large datasets with millions
of compounds are too long to obtain embeddings of high enough qualities
to perform accurate nearest neighbor searches with acceptable recall rates
(Supplementary Table S-2). Nevertheless, SPE is a powerful algorithm that
can be easily utilized as an alternative embedding method by our EI-Search
and EI-Clustering tools.

2.2 EI-Search
After the compounds are embedded into the D-dimensional Euclidean space,
structure similarity searches can be performed by a nearest neighbor search
in the embedding space. For this, the query compound is embedded into
the same D-dimensional Euclidean space. Subsequently, the corresponding
induced vector is used to perform a nearest neighbor search in the embedding
space. This search method offers great time savings and flexibility for
similarity searches because of two major reasons. First, compared to other
similarity measures used for comparing compound structures, Euclidean
distances can be calculated very efficiently. Second, many MAMs can be
employed in the nearest neighbor search to further improve its time efficiency.

Although many MAMs have been proposed to speedup the nearest
neighbor search problem, most of them are affected by the dimensionality
problem, often referred to as the curse of dimensionality. This is the
phenomenon that for various geometric search problems, including the
nearest neighbor search, the best algorithms known have performance trends
that degrade exponentially with an increase in dimensionality (Weber et al.,
1998). Our tests also confirmed that the SR-tree method (Katayama, 1997)
becomes slower than sequential scans of the dataset as soon as D is set
to values >100. However, our tests also indicated that the dissimilarities

between compound structures can only be preserved reliably with large
D values of at least 100. Thus, it is important for our method to combine high-
dimensional embedding and an indexing method that are both insensitive to
the dimensionality problem.

It has become increasingly popular to use the approximate nearest
neighbor search in high-dimensional space to avoid the dimensionality
problem. One of these approximation approaches utilizes a spatial index
using locality sensitivity hashing (LSH) to perform the fast nearest neighbor
search in Euclidean space. LSH uses a family of hashing functions to map
database objects into buckets. It is designed to join related items based on a
given similarity measure with high probability. Accordingly, many hashing
functions vary with respect to their similarity measures. For example, Gionis
et al. (1999) introduced in the original LSH paper a bit sampling-based
LSH approach that uses the Hamming distance measure. Datar et al. (2004)
proposed an LSH scheme for p-stable distributions along with Euclidean
distances. However, so far no hashing functions have been developed for
the similarity measures that are commonly used for comparing compound
structures. This limitation can be addressed by embedding compounds in
Euclidean space and building for them a spatial index using induced vectors
in embedding space.

Taking advantage of the above embedding and the LSH-based spatial
indexing approaches, we designed an efficient approximate compound
structure similarity search algorithm. This algorithm is named EI-Search
after its two key components: embedding and indexing. The algorithm
first preprocesses the compound dataset by embedding it into a high-
dimensional Euclidean space and generating a spatial index using LSH.
When searching for k compounds that are most similar to a given query
compound, a two-step approach is employed to reduce the error introduced
in the embedding process and the approximate nearest neighbor search. First,
the query compound is embedded in the same Euclidean space. The resulting
induced vector is then used in an index-assisted nearest neighbor search of
the embedding space to retrieve a candidate set consisting of γ ·k vectors that
are most similar to it. The relaxation ratio γ is a user-defined parameter that
controls the trade-off between processing time and search accuracy. Larger
values for γ result in larger candidate sets and possibly higher accuracy, but
at the cost of longer search times. Second, a refinement step applies exact
structure similarity searches to the candidate set obtained in the first step.
This allows the selection of the final k compounds that are most similar to
the query structure.

Compared to commonly used structure similarity search methods,
EI-Search has several advantages. The most important ones are its time
efficiency and compatibility with a wide range of similarity measurements.
This makes the method potentially useful for accelerating similarity searches
of a variety of data objects that are of relevance to many life science and
non-life science areas.

2.3 EI-Clustering
In addition to similarity searching, Euclidean space representations can
be used for clustering large datasets very efficiently. For example, spatial
join can be used to perform single linkage clustering by finding all vector
pairs, which are separated by a distance below a given threshold (Brinkhoff
et al., 1993). The nearest neighbor information required for Jarvis–Patrick
clustering can also be obtained very efficiently in Euclidean space by using
an efficient algorithm for the all-nearest-neighbors problem (Vaidya, 1989).

In this article, we introduce a new clustering method, EI-Clustering,
that takes advantage of the accelerated search speed provided by EI-Search
to cluster very large sets of chemical compounds under the Jarvis–Patrick
clustering framework. Jarvis–Patrick clustering requires a nearest neighbor
table, which consists of p nearest neighbors for each compound in the
dataset. This information is then used to join compounds into clusters
that share at least m nearest neighbors. The values for p and m are user-
defined parameters. In case of EI-Clustering, the EI-Search method generates
the nearest neighbor information for each compound in the dataset. The
resulting nearest neighbor table is then used as direct input for Jarvis–Patrick
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clustering. When clustering very large datasets, EI-Clustering is particularly
efficient due to its fast computation of the nearest neighbor table.

3 EVALUATION

3.1 Implementation
We implemented the EI-Search and EI-Clustering algorithms as C++
programs. Internally, they use the L-BFGS-B library (Zhu et al.,
1997) for the global optimization step in the embedding procedure.
For the LSH-based spatial indexing, we utilized the lshkit library that
implements the MPLSH algorithm, a variant of LSH that requires
fewer hash tables and offers large space savings as well as shorter
query time (Lv et al., 2007). In addition, we wrote a reusable C++
library for calculating atom pair descriptors. We were particularly
interested in testing atom pair descriptors because of their superior
performance in structure similarity searching (Chen and Reynolds,
2002). To also include in our tests one of the most widely used
fingerprint methods, we employed the fingerprint descriptors used by
PubChem and utilized a fingerprint implementation provided by the
NIH Chemical Genomics Center (2009). Jarvis–Patrick clustering
was performed with a custom program implemented in C++.

3.2 Datasets and testing platform
To test the performance of the proposed methods, benchmark
comparisons for similarity searching and clustering were performed
using the publicly available compound structures from NCI and
PubChem. The NCI dataset consisted of 260 071 compounds.
After removing entries that did not generate any usable atom
pair descriptors, 260 027 compound structures were used from
this collection. From PubChem, we used the structures from the
PubChem Compound dataset. From this collection, we selected two
sets: one subset consisting of 2.3 million compounds with at least
five non-hydrogen bonds (PubChem Subset) as well as the entire
PubChem Compound library with over all 19 million compounds
(PubChem Compound).

The tests were performed on a Linux computer equipped with
Xeon CPUs clocked at 2.4 GHz and 16 GB of RAM. For parallelized
computations, a computer cluster was used with the exact same
hardware configuration per compute node. Compute times are given
as total CPU hours throughout the text.

3.3 Time efficiency of embedding
First, we evaluated the running time of our modified MDS algorithm
for different parameters. For this, the compounds from all three
datasets were embedded into a high-dimensional Euclidean space.

3.3.1 Time efficiency with respect to the size of the dataset Our
results show that the time required for embedding increases almost
linearly with the number of compounds in the library (Table S-3
in Supplementary Materials). The average time to embed one
compound varies only slightly across the three datasets and is
below 0.3 s using a practical parameter set. Because the embedding
algorithm processes each compound independently after applying
MDS to the reference compound set, it is trivial to further reduce its
computation time by using a compute cluster. In our experiments, it
took around 10 min to process the 260 027 compounds of the NCI
dataset using 87 CPUs. Similarly, the 19 million compounds of the

PubChem Compound library could be processed in less than a day
using 80 CPUs.

3.3.2 Time efficiency with respect to the embedding parameters
As discussed above, the number of dimensions D and the number of
reference compounds R are the two main factors that will affect the
embedding time. To estimate their impact, we randomly selected
from the NCI library seven reference compound sets with sizes
ranging from 240 to 800 compounds. These reference sets were
used in independent test runs of our embedding algorithm where
D was set to a fixed value to study the influence of R on the total
CPU time. Similarly, to model the impact of D, the value of R was
fixed to three times the value of D and the total CPU time was
collected using D values ranging from 120 to 260. These ranges
were chosen to ensure high-quality embedding, but also to keep
the computation within manageable time limits. Our test results
(Supplementary Fig. S-1) indicate that the total CPU time of our
method grows linearly with R, and exponentially with D. Based on
this time behavior, the values for R and D should be chosen as small
as possible, but large enough to maintain an embedding quality that
is sufficient for the downstream similarity search and clustering steps
(see below).

3.3.3 Time efficiency and global optimization parameters
Solving the global optimization problem accounts for most of the
embedding time. Therefore, the parameter choice of this step has
a great impact on the time efficiency of the embedding step of our
method. Using less stringent termination conditions for the L-BFGS-
B algorithm, will typically reduce the embedding time, but at a
cost of embedding quality. For example, the average time to embed
one compound could be easily cut into half with a small loss in
accuracy (Supplementary Table S-3). Although the preprocessing of
new datasets is time consuming, our method is relatively flexible
with respect to adding new entries to an already preprocessed
library. Because all entries are embedded independently, one can
easily add new ones without repeating this process for the entire
dataset. This meets the work flow requirements of many large
compound databases, where minor updates occur frequently, but
major revisions are rare.

3.4 Quality of embedding
As pointed out by previous studies, embedding metric repre-
sentations of objects in Euclidean space may reduce the accuracy
of the nearest neighbor searches (Fu et al., 2000). However, when
the parameters for our embedding method are chosen properly,
the method is accurate enough to be used in the prescreening
step of EI-Search (as shown in Section 3.5). As a performance
test of the embedding step, we randomly selected 10 million
compound pairs from the NCI dataset, computed their atom pair-
based Tanimoto similarity coefficients and compared them with the
corresponding distance values obtained from the induced vectors.
The two datasets were highly correlated, as indicated by a Pearson’s
correlation coefficient of 0.79. Additionally, the agreement among
the datasets was evaluated by grouping the Tanimoto coefficients
into 10 similarity intervals from 0 to 1 using increments of
0.1. Subsequently, the distributions of the vector distances for
each interval were plotted in the form of box plots. In this
representation, a low degree of overlap among the boxes from
adjacent intervals indicates a strong agreement between the two
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methods. The box plots obtained from our tests show only a
moderate overlap among adjacent intervals, and only minor to no
overlap among more distant intervals (Supplementary Fig. S-2).
This indicates a strong agreement among the two methods for
the majority of the compounds with some inconsistencies at the
interval boundaries, but for a much smaller number of cases. For
example, for high Tanimoto similarities ranging from 0.8 to 1,
the similarities of the corresponding vectors pairs (1−distance)
fall all into a very narrow range 0.75–1.0. The two methods also
agree very well in the low similarity range. This is indicated
by the fact that 98.17% of all compound pairs with a Tanimoto
coefficient <0.4 are placed into a very similar range (<0.38) in
vector space. Based on these results, our embedding method appears
to preserve well-separated ranges of Tanimoto coefficients in a
robust manner.

3.5 Accuracy of EI-Search
To further examine the accuracy of the EI-Search method for
compound similarity searching, we implemented an EI-Search
program and tested it with different parameters. The accuracy of
EI-Search is measured by the recall rate. When retrieving the k most
similar compounds to a query structure, the recall rate is defined as
the percentage of compounds obtained with EI-Search that are also
returned by sequential search methods. To evaluate the impact of the
different parameters used by EI-Search, the program was run using
different values of D, R, k and γ . In each run, the recall rates for
1000 random queries from the NCI dataset were calculated.

First, we compared the recall rates when searching for the k most
similar compounds with different R and γ values while the values
of k and D were fixed. (Supplementary Fig. S-3a shows the results
for constant k and D values of 100 and 140, respectively.) The
results indicate that increasing γ from 1 to 50 results in a significant
improvement of the recall performance, while this effect starts to
plateau off at values of >20. With respect to the number of reference
compounds R, the recall rate increases from values 240 to 420. Based
on these results, a good empirical choice for R is between two and
three times the value of D. Another observation is the fact that the
effect of R diminishes for γ values >20. In other words, large enough
γ values can compensate a suboptimal choice of R. For example,
when γ was set to 20, and k to 100 and D to 140, the best and worst
recall rates were 97.87% and 97.35%, respectively. This corresponds
to a difference of only 0.52%.

Similarly, we investigated the correlation between the recall rates
and the values of D and γ . According to the results from the previous
tests, the R values were always set to three times the values of D.
When searching for the k most similar compounds the recall rates
were collected for different D and γ values while the value of k was
fixed. Supplementary Figure S-3b shows the results for a k value of
100. These results indicate that the recall rates consistently improve
with the number of dimensions. This effect is much stronger for
smaller γ values. For example, when k was set to 100 and γ to 1,
then the recall rate could be improved from 58.35% to 65.57% for
D values of 120 and 260, respectively. For large γ values above
20 this effect is again much less pronounced. While larger γ values
will result in an increase in processing time, their impact is less
severe than increasing the value of D. Accordingly, we chose in the
subsequent experiments the D values as small as possible and the

Table 1. Performance tests of EI-Search

Dataset NCI PubChem Subset PubChem Compound

Descriptor type Atom pair Atom pair Atom pair Fingerprint

Average search time (s)
Sequential search 0.800 11.570 93.121 19.658
EI-Search 0.067 0.170 0.427 0.499

Recall of EI-Search (%)
Mean 99.95 99.60 97.38 96.32
SD 0.44 1.82 5.61 11.54

Search times and recall rates are listed for searching three large compound sets with
EI-Search and the sequential search methods. The same descriptor type was used for
each comparison pair. The experiments were performed on the same hardware using
the same embedding and relaxation parameters (R = 300, D = 120 and γ = 30). The LSH
parameters were supplied by lshkit.

γ values as large as necessary to maintain both high accuracy and
time efficiency of the method.

3.6 Time efficiency of EI-Search
While maintaining high recall rates, EI-Search was able to greatly
reduce the time for performing structure similarity searches in
large compound databases. To examine the time efficiency of
EI-Search, 1000 random queries were performed on each of the
three datasets using first the EI-Search program and then exhaustive
sequential searches with the atom pair and fingerprint similarity
search programs. For each comparison we used for EI-Search the
same descriptor type as for the sequential search methods. The query
compounds were randomly selected from the dataset. To obtain
realistic search results, the 100 most similar compounds with a
minimum similarity of 0.5 were retrieved for each query. Atom
pair descriptors combined with Tanimoto coefficients were used
as similarity measure. For the PubChem Compound library, we
also included in the tests the Tanimoto similarities of PubChem’s
fingerprints. According to the above parameter optimization results,
we used in all tests the following settings: R = 300, D = 120 and
γ = 30. The obtained search times and recall rates are listed in
Table 1.

Several conclusions can be drawn from Table 1. First, in
comparison to the highly accurate atom pair method, EI-Search
achieves in the atom pair descriptor tests very high recall rates
ranging from 97.38% to 99.95%. In comparison to the fingerprint
method, the recall rate of the corresponding EI-Search is slightly
lower with 96.32%. The reason for this reduction may be the
fact that fingerprints provide less accurate similarity measures
than atom pairs (Chen and Reynolds, 2002). This could result in
less robust rankings of the nearest neighbor search results, and
therefore a slightly lower recall rate is reasonable. Second, EI-Search
provides significant time savings for the nearest neighbor searches.
For example, the average time required to search >19 million
compounds of the PubChem Compound dataset is reduced for the
atom pair approach from >93 to <0.5 s, and for the fingerprint
method from >19 to <0.5 s. This corresponds to accelerations by
our EI-Search method of over 200 and 40 folds, respectively. Third,
while the search time for the exhaustive sequential search methods
increases linearly with the size of the databases, this increase is
less than linear for the EI-Search method. For instance, searching
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Table 2. Performance tests for EI-Clustering

Dataset NCI PubChem Subset PubChem Compound

Similarity measure Atom pair Atom pair Atom pair Fingerprint

Total clustering time (h)
Jarvis–Patrick 72.9 7355.6 N/A N/A
EI-Clustering 3.5 92.2 1517.2 2869.71

Jaccard coefficient 0.9913 0.9887 N/A N/A

The table compares the time and accuracy performance of EI-Clustering with Jarvis–
Patrick clustering when using exhaustive search methods for generating the required
nearest neighbor information. The compute time is given in hours of total CPU time.
The agreement among the clustering results is given in the last row in form of Jaccard
partition coefficients. Clustering of the PubChem Compound dataset was not possible
with the exhaustive search methods due to their insufficient performance on this large
dataset.

the PubChem Subset dataset with EI-Search takes on average only
2.5 times longer than searching the NCI dataset, that has one-
ninth of the size of PubChem Subset. Finally, another outstanding
feature of EI-Search is the fact that its search speed is much less
impacted by the complexity of the similarity measure used for
database searching than this is the case for the exhaustive methods.
For instance, the switch from the fingerprint similarity measure to
the more computationally expensive atom pair similarity measure
results only in a minor increase of EI-Search’s query time, while it
is a >4-fold increase for the exhaustive sequential search methods.

3.7 Accuracy and time efficiency of EI-Clustering
To test the performance of our EI-Clustering method for partitioning
large compound sets, we clustered all three compound sets with
the Jarvis–Patrick algorithm. The required nearest neighbor tables
were generated with EI-Search and the exhaustive sequential search
methods. EI-Search was run with the same embedding and searching
parameters (R = 300, D = 120 and γ = 30) as in the previous section.
The LSH parameters were slightly changed to achieve higher
accuracy. The process of generating the nearest neighbor tables was
parallelized on a computer cluster. For each clustering result, the
total search time was calculated for all utilized CPUs. To measure the
agreement among the clustering results, we computed the Jaccard
partition coefficient for each pair of clustering results (Table 2).
Jaccard coefficients close to zero indicate low similarities and
values close to one indicate high similarities among the evaluated
cluster sets.

The results in Table 2 show that the EI-Clustering method
can dramatically reduce the processing time of the Jarvis–
Patrick clustering approach while maintaining a high level of
agreement with the results obtained by Jarvis–Patrick clustering with
exhaustive nearest neighbor search methods (Jaccard coefficients
>0.98). The total CPU time to process over 2.3 million compounds
from the PubChem Subset could be reduced from over 306 days
to just 4 days. This is a major improvement, because it makes
it feasible to cluster millions of compounds in a few days on a
regular workstation or in a few hours when a small computer cluster
is available. By running EI-Search on 80 CPUs on a computer
cluster, we were able to cluster the entire PubChem Compound
library in only a day. Because EI-Clustering spends most of the
time running EI-Search, which runs in time sublinear in the size

of the dataset, the compute time of EI-Clustering is subquadratic
to the size of the dataset. Therefore, EI-Clustering scales much
more efficiently to larger datasets than traditional methods. The
superior speed of EI-Clustering comes at the cost of a larger memory
footprint compared to the other methods. Most of the memory is
consumed by its LSH index. For example, when clustering the 19
million PubChem Compound library, the LSH index requires around
13 GB of memory. Considering the performance of today’s research
workstations, this memory requirement appears to be manageable.

3.8 Availability of the programs and data
The EI-Search and EI-Clustering programs can be downloaded
from http://chemmine.ucr.edu/ei/. The same web site features an
online service using EI-Search for ultra-fast similarity searching of
the PubChem Compound library with subsecond response time. In
addition, the site provides access to the EI-Clustering results of the
entire PubChem Compound library that are based on atom pair and
PubChem fingerprint descriptors.

4 CONCLUSIONS AND FUTURE WORK
In this study, we have presented EI-Search and EI-Clustering
as efficient methods for accelerating structure similarity searches
and clustering of very large compound datasets. The acceleration
is achieved by applying embedding and indexing techniques to
represent chemical compounds in a high-dimensional Euclidean
space and to employ ultra-fast prescreening of the compound dataset
using the LSH-assisted nearest neighbor search in the embedding
space. Our tests show that the method can dramatically reduce the
search time of large databases, by a factor of 40–200 folds when
searching the 100 closest compounds to a query. Recently published
acceleration methods achieved only a 5.5-fold reduction in search
time when using a Tanimoto threshold of 0.8 and up to 20-fold with a
relatively restrictive threshold of 0.9 (Baldi et al., 2008; Swamidass
and Baldi, 2007). Another limitation of these methods is their
narrow utility spectrum that is currently restricted to fingerprint-
based searches. In contrast to this, the EI-Search framework is
designed to be useful for a wide spectrum of similarity measures.
After embedding, EI-Search will run in most cases with comparable
time efficiencies independent of the complexity of the similarity
measure. This can be particularly useful for accelerating searches
that use much more accurate, but computationally very expensive
similarity measures, such as maximum common substructures or 3D
approaches (Cao et al., 2008; Raymond et al., 2003; Willett, 2005).

By taking advantage of the fast similarity search speed of
EI-Search, we developed EI-Clustering into an effective clustering
method for very large datasets. The method accelerated the
clustering of the three test datasets used in this study by 20–80
folds. Most importantly, the EI-Clustering made it feasible to cluster
datasets of almost 20 million entries within acceptable time limits.
Due to its subquadratic running time, the EI-Clustering method
should scale well enough to cluster even larger datasets with tens or
even hundreds of millions of objects.

In the future, we will expand the performance and utility spectrum
of the EI-Search and EI-Clustering methods on several levels. First,
several statistical methods will be employed to further improve the
embedding algorithm by dynamically optimizing its parameters and
the selection of the most effective reference compounds. Second,
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the EI-Search method will be tested and optimized for the usage
of a variety of more complex similarity measures that are available
for compound structures. Finally, additional clustering algorithms,
besides Jarvis–Patrick clustering, will be incorporated into the
EI-Clustering method.
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