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ABSTRACT OF THE DISSERTATION

Holistic Scene Understanding and Goal-directed Multi-agent Event Parsing

by

Yixin Chen

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2022

Professor Song-Chun Zhu, Chair

Humans, even young infants, are adept at perceiving and understanding complex indoor

scenes and events. Holistic scene understanding involves abundant aspects, including 3D

human pose, objects, physical relations, functionality, etc. Besides the physical and func-

tional configuration of the scene, interpreting human actions and goal-oriented tasks is a

higher-level goal, and requires reasoning about the complex structures in activities along the

temporal dimension. When multiple people are in the scene, collaborations and communica-

tions inevitably happen, in both verbal and non-verbal forms. Despite the recent remarkable

progress in artificial intelligence, building an intelligent machine with human-like perception

and reasoning capability for the aforementioned complex tasks remains a significant and

challenging problem.

In this dissertation, we study the holistic scene understanding and goal-directed multi-

agent event parsing by identifying the critical problems from various perspectives. We first

propose a framework for holistic 3D scene parsing and human pose estimation, with a par-

ticular focus on human-object interaction and physical commonsense reasoning. Contact

information is critical in modeling the fine-grained human-object relations from visual cues.
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We demonstrate how to extract meaningful contact information from 2D images and its

usefulness in 3D human pose estimation. Then we introduce our efforts in understanding

goal-directed actions, concurrent multi-tasks, and collaborations among multi-agents. Fi-

nally, we investigate the two typical types of human communications by proposing a spatial

and temporal model for shared attention and examining the power of both language and

gesture under the embodied reference setting.
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CHAPTER 1

Introduction

Humans, even young infants, are adept at perceiving and understanding complex indoor

scenes and events. Holistic scene understanding involves abundant aspects, including low-

level tasks such as scene, human poses reconstruction, action recognition and human-object

interaction, mid-level functionality, affordance and physics reasoning, and high-level event

parsing like human activity and human communications. However, facts that are obvious to

the average human adult—that describe how our physical and social worlds work, are still

far from being understood by the current computer vision systems. For such complex and

delicate intellectual skills, how can we build a machine or robot with similar capabilities, or

even more importantly, where shall we start?

One can achieve an impressive performance in a single low-level task by training with

an enormous amount of annotated data with the recent progress in Deep Neural Net-

works(DNN). Most existing work focuses only on 3D holistic scene understanding [HQZ18,

ZLH18], 3D human pose estimation [ZWM17, RKS12], atomic action recognition [SZS12,

KTS14, CEG15], visual grounding [KOM14, YPY16] or gaze direction prediction [RVK17].

But how to jointly infer such information from simple input with generalization ability is

largely missing from current computer vision research. Take Fig. 1.1 [ZGF20] as example.

A computer vision system should be able to jointly (i) reconstruct the 3D scene; (ii) es-

timate camera parameters, materials, and illumination; (iii) parse the scene hierarchically

with attributes, fluents, and relationships; (iv) reason about the intentions and beliefs of

agents (e.g., the human and dog in this example); (v) predict their actions in time; and (vi)
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Figure 1.1: In-depth understanding of a scene or event through joint parsing [ZGF20].

recover invisible elements such as water, latent object states, and so forth. To reach such a

comprehensive understanding requires efforts in several aspects.

First, the machine needs the core knowledge, e.g., functionality, physics, perceived intent

and causality, to perform joint reasoning. Physical commonsense affords humans the ability

to understand the physical world we live in and functionality is a further understanding of the

physical environment humans use when they interact with it, performing appropriate actions

to change the world in service of activities. These core knowledge can be learned separately

and further act as general prior in the reasoning process to ensure the generalization ability.

This is especially useful when end-to-end training fails (e.g., there is not enough data or the

task is of high complexity [CHY19]).

Second, it calls for focus shift from low-level vision tasks to high-level event parsing.

Current DNNs have shown advantages in single low-level tasks by feeding the model huge

2



amount of data. But human-like common sense can only be approximated or validated by

using limited data to achieve generalizations across a variety of tasks. Such tasks would in-

clude a mixture of both low-level tasks (i.e., classification, localization, and reconstruction),

and high-level problems, including but not limited to causal reasoning, learning functionality

and affordance, intent prediction, collaboration and communication. It’s important to intro-

duce new high-level problems that are representative in the goal-directed events and human

communications, so that these human-like capabilities can be evaluated and examined.

In this dissertation, we take steps further from the low-level and single task, towards

more holistic scene understanding and goal-directed event parsing, as can be seen from

Fig. 1.2. More specifically, we study this complex problem from three dimensions: physically

and functionally accurate 3D reconstruction, long-term human activity understanding and

human communications. We first propose a framework that jointly optimizes the 3D objects,

3D human poses, camera parameters from RGB images with HOI and physical stability

constraints. This goes beyond object detection and human pose estimation, and provides

generalization ability in various scenes for this complex task. We then propose to promote

the machines’ ability in understanding long-term, multi-tasked, collaborative activities rather

than the atomic action recognition. As previous efforts of understanding reference have been

primarily devoted in localizing a particular object in an image with only natural language

expressions and human gaze interaction has been limited in gaze direction prediction, we

further bring the human communication understanding into the computer vision community

by introducing embodied reference and shared attention.

The remainder of the dissertation is organized as follows:

In Chapter 2, we will talk about the framework we propose to solve the holistic++ scene

understanding problem, which jointly reconstruct the 3D scene and 3D human pose from a

single image. In this framework, one crucial factor to reconstruct the physically plausible

and stable 3D configuration is the human-object interaction and contact. We will show how

to effectively detect contact from 2D images and further utilize it in downstream tasks.

3



Figure 1.2: Focus shift from low-level tasks to high-level tasks.

In Chapter 3, we introduce our first step to understand and interpret human actions under

the context of goal-directed actions, concurrent multi-tasks, and collaborations among multi-

agents. We provide a multi-view dataset and benchmarks compositional action recognition

and action/task anticipation to simulate the machine’s capability to consider the features

mentioned above.

In Chapter 4, we present how to understand two typical forms of human communica-

tions: shared attention and embodied reference. A spatial-temporal model is proposed to

explicitly leverage human gaze direction, target region candidates, and temporal inter-frame

constraints for identifying shared attention. We also formulate a new multimodal framework

to tackle the embodied reference understanding tasks by incorporating both language and

gestural cues. Both require dealing with unique information sources, verbal and non-verbal,

and they convey vivid and complex messages.

Finally, we summarize our work and point out promising future directions in the last

chapter.

4



CHAPTER 2

Holistic++ Scene Understanding and Human-Object

Contact

In this chapter, we will first talk about the framework we propose to solve the holistic++

scene understanding problem, which jointly tackles two tasks from a single-view image: (i)

holistic scene parsing and reconstruction—3D estimations of object bounding boxes, camera

pose, and room layout, and (ii) 3D human pose estimation. In this framework, one important

factor to reconstruct the physically plausible and stable 3D configuration is to make sure the

human and the 3D scene are in correct contact. We then show how to detect contact from

2D images and its important role in the optimization process.

2.1 Holistic++ Scene Understanding

2.1.1 Introduction

Humans, even young infants, are adept at perceiving and understanding complex indoor

scenes. Such an incredible vision system not only relies on the data-driven pattern recognition

but also roots from the visual reasoning system, known as the core knowledge [SK07], that

facilitates the 3D holistic scene understanding tasks. Consider a typical indoor scene shown

in Figure 2.1 where a person sits in an office. We can effortlessly extract rich knowledge from

the static scene, including 3D room layout, 3D position of all the objects and agents, and

correct Human-Object Interaction (HOI) relations in a physically plausible manner. In fact,

psychology studies have established that even infants employ at least two constraints—HOI

5



Figure 2.1: Holistic++ scene understanding.

and physical commonsense—in perceiving occlusions [THK87, KS83], tracking small objects

even if contained by other objects [FC03], realizing object permanence [BSW85], recognizing

rational HOI [Woo99, SCS13], understanding intuitive physics [GBK02a, Nee97, Bai04], and

using exploratory play to understand the environment [SF15]. All the evidence calls for

a treatment to integrate HOI and physical commonsense with a modern computer vision

system for scene understanding.

In contrast, few attempts have been made to achieve this goal. This challenge is difficult

partially due to the fact that the algorithm has to jointly accomplish both 3D holistic

scene understanding task and the 3D human pose estimation task in a physically plausible

6



fashion. Since this task is beyond the scope of holistic scene understanding in the literature,

we define this comprehensive task as holistic++ scene understanding—to simultaneously

estimate human pose, objects, room layout, and camera pose, all in 3D.

Based on one single-view image, existing work either focuses only on 3D holistic scene

understanding [HQZ18, ZLH18, BRG16, SYZ17] or 3D human pose estimation [ZWM17,

RKS12, FXW18]. Although one can achieve an impressive performance in a single task

by training with an enormous amount of annotated data, we, however, argue that these

two tasks are intertwined tightly since the indoor scenes are invented and constructed by

human designs to support the daily activities, generating affordance for rich tasks and human

activities [Gib79].

To solve the proposed holistic++ scene understanding task, we attempt to address four

fundamental challenges:

1. How to utilize the coupled nature of human pose estimation and holistic scene under-

standing, and make them benefit each other? How to reconstruct the scene with complex

human activities and interactions?

2. How to constrain the solution space of the 3D estimations from a single 2D image?

3. How to make a physically plausible and stable estimation for complex scenes with human

agents and objects?

4. How to improve the generalization ability to achieve a more robust reconstruction across

different datasets?

To address the first two challenges, we take a novel step to incorporate HOI as constraints

for joint parsing of both 3D human pose and 3D scene. The integration of HOI is inspired

by crucial observations of human 3D scene perception, which are challenging for existing

systems. Take 2.1 as an example; humans are able to impose a constraint and infer the

relative position and orientation between the girl and chair by recognizing the girl is sitting in

the chair. Similarly, such a constraint can help to recover the small objects (e.g., recognizing

keyboard by detecting the girl is using a computer in 2.1). By learning HOI priors and using
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the inferred HOI as visual cues to adjust the fine-grained spatial relations between human and

scene (objects and room layout), the geometric ambiguity (3D estimation solution space) in

the single-view reconstruction would be largely eased, and the reconstruction performances

of both tasks would be improved.

To address the third challenge, we incorporate physical commonsense into the pro-

posed method. Specifically, the proposed method reasons about the physical relations (e.g.,

support relation) and penalizes the physical violations to predict a physically plausible and

stable 3D scene. The HOI and physical commonsense serve as general prior knowledge

across different datasets, thus help address the fourth issue.

To jointly parse 3D human pose and 3D scene, we represent the configuration of an indoor

scene by a parse graph shown in 2.1, which consists of a parse tree with hierarchical structure

and a Markov random field (MRF) over the terminal nodes, capturing the rich contextual

relations among human, objects, and room layout. The optimal parse graph to reconstruct

both the 3D scene and human poses is achieved by a maximum a posteriori (MAP) estima-

tion, where the prior characterizes the prior distribution of the contextual HOI and physical

relations among the nodes. The likelihood measures the similarity between (i) the detection

results directly from 2D object and pose detector, and (ii) the 2D results projected from the

3D parsing results. The parse graph can be iteratively optimized by sampling an Markov

chain Monte Carlo (MCMC) with simulated annealing based on posterior probability. The

joint optimization relies less on a specific training dataset since it benefits from the prior of

HOI and physical commonsense which are almost invariant across environments and datasets,

and other knowledge learned from well-defined vision task (e.g., 3D pose estimation, scene

reconstruction), improving the generalization ability significantly across different datasets

compared with purely data-driven methods.

Experimental results on PiGraphs [SCH16], Watch-n-Patch [WZS15], and SUN RGB-

D [SLX15] demonstrate that the proposed method outperforms state-of-the-art methods

for both 3D scene reconstruction and 3D pose estimation. Moreover, the ablative analysis
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shows that the HOI prior improves the reconstruction, and the physical common sense helps

to make physically plausible predictions.

This work makes four major contributions:

1. We propose a new holistic++ scene understanding task with a computational framework

to jointly infer human poses, objects, room layout, and camera pose, all in 3D.

2. We integrate HOI to bridge the human pose estimation and the scene reconstruction,

reducing geometric ambiguities (solution space) of the single-view reconstruction.

3. We incorporate physical commonsense, which helps to predict physically plausible scenes

and improve the 3D localization of both humans and objects.

4. We demonstrate the joint inference improves the performance of each sub-module and

achieves better generalization ability across various indoor scene datasets compared with

purely data-driven methods.

2.1.2 Related Work

Single-view 3D Human Pose Estimation. Previous methods on 3D pose estimation can

be divided into two streams: (i) directly learning 3D pose from a 2D image [SRA12, LC14],

and (ii) cascaded frameworks that first perform 2D pose estimation and then reconstruct

3D pose from the estimated 2D joints [ZWM17, MSS17, RKS12, WXL16, CLO16, TRA17].

Although these researches have produced impressive results in scenarios with relatively clean

background, the problem of estimating the 3D pose in a typical indoor scene with arbitrary

cluttered objects has rarely been discussed. Recently, Zanfir et al. [ZMS18] adopts constraints

of ground plane support and volume occupancy by multiple people, but the detailed relations

between human and scene (objects and layout) are still missing. In contrast, the proposed

model not only estimates the 3D poses of multiple people with an absolute scale but also

models the physical relations between humans and 3D scenes.

Single-view 3D Scene Reconstruction. Single-view 3D scene reconstruction has
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three main approaches: (i) Predict room layouts by extracting geometric features to rank

3D cuboids proposals [ZLH18, SYZ17, ISS17]. (ii) Align object proposals to RGB or depth

image by treating objects as geometric primitives or CAD models [BRG16, SX14, ZLX14].

(iii) Joint estimation of the room layout and 3D objects with contexts [SYZ17, ZZ13, CCP13,

ZSY17, ZLH18]. A more recent work by Huang et al. [HQZ18] models the hierarchical

structure, latent human context, physical constraints, and jointly optimizes in an analysis-

by-synthesis fashion. Although human context and functionality were taken into account,

indoor scene reconstruction with human poses and HOI remains untouched.

Human-Object Interaction. Reasoning fine-grained human interactions with objects

are essential for a more holistic indoor scene understanding as it provides important cues

for human activities and physical interactions. There have been a great deal of work in

robotics and computer vision that exploits human-object relations in event, object and scene

modeling, but most work focuses on human-object relation detection in image space [CLL18,

QWJ18, ML16, KRK11], probabilistic modeling from multiple data sources [WZZ13, SCH14,

GKD09], and snapshots generation or scene synthesis [SCH16, MLZ16, QZH18, JQZ18].

Different from all previous work, we use the learned 3D HOI priors to refine the relative

spatial relations between human and scene, enabling a top-down prediction of interacted

objects.

Physical Commonsense The ability to infer hidden physical properties is a well-

established human cognitive ability [KHL17]. By exploiting the underlying physical proper-

ties of scenes and objects, recent efforts have demonstrated the capability of estimating both

current and future dynamics of static scenes [WYL15] and objects [ZZC15], understand-

ing the support relationships and stability of objects [ZZY13], volumetric and occlusion

reasoning [SHK12, ZZY15], inferring the hidden force [ZJZ16], and reconstructing the 3D

scene [HQX18, DLB18] and 3D pose [ZMS18]. In addition to the physical properties and

support relations among objects adopted in previous methods, we further model the physical

relations (i) between human and objects, and (ii) between human and room layout, resulting
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in a physically plausible and stable scene.

2.1.3 Representation of the Scene

We represent the configuration of an indoor scene by a parse graph pg = (pt, E) as shown

in Fig. 2.1. It combines a parse tree pt and contextual relations E among the leaf nodes.

Here pt = (V,R) and we denote V = Vr ∪ Vm ∪ Vt the vertex set and R the decomposing

rules. The tree has three levels. The first level is the root node Vr that represents the scene,

and the second level Vm has three nodes (objects, human, and room layout). The third level

(terminal nodes Vt) contains child nodes of the second level nodes, representing the detected

instances of the parent node in this scene. E ⊂ Vt × Vt is the set of contextual relations

among the terminal nodes, represented by horizontal links.

Terminal Nodes Vt in pg can be further decomposed as Vt = Vlayout ∪ Vobject ∪ Vhuman:

• The room layout v ∈ Vlayout is represented by a 3D bounding box XL ∈ R3×8 in the world

coordinate. The 3D bounding box is parametrized by the node’s attributes, including its

3D size SL ∈ R3, center CL ∈ R3, and orientation Rot(θL) ∈ R3×3. See the supplementary

for the parametrization of the 3D bounding box.

• Each 3D object v ∈ Vobject is represented by a 3D bounding box with its semantic label.

We keep the same parameterization of the 3D bounding box as the one for room layout.

• Each human v ∈ Vhuman is represented by 17 3D joints XH ∈ R3×17 with their action

labels. These 3D joints are parametrized by the pose scale SH ∈ R, pose center (i.e.,

hip) CH ∈ R3, local joint position RelH ∈ R3×17, and pose orientation Rot(θH) ∈ R3×3.

Each person is also attributed by a concurrent action label a, which is a multi-hot vector

representing the current actions of this person: one can “sit” and “drink”, or “walk” and

“make phone call” at the same time.

Contextual Relations E contains three types of relations in the scene E = {Es, Ec, Ehoi}.

Specifically:
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• Es and Ec denote support relation and physical collision, respectively. These two relations

penalize the physical violations among objects, between objects and layout, and between

human and layout, resulting in a physically plausible and stable prediction.

• Ehoi models HOI and gives us more constraints to reconstruct 3D from 2D. For instance,

if a person is detected as sitting on the chair, we can constrain the relative 3D positions

between this person and chair using a pre-learned spatial relation of “sitting”.

2.1.4 Probabilistic Formulation

The parse graph pg is a comprehensive interpretation of the observed image I. The goal of

the holistic++ scene understanding is to infer the optimal parse graph pg∗ given I by a MAP

estimation:

pg∗ = argmax
pg

p(pg|I) = argmax
pg

p(pg) · p(I|pg)

= argmax
pg

1

Z
exp{−Ephy(pg)− Ehoi(pg)− E(I|pg)},

(2.1)

We model the joint distribution by a Gibbs distribution, where the prior probability of parse

graph can be decomposed into physical prior and HOI prior.

Physical Prior Ephy(pg) represents physical commonsense in a 3D scene. We consider

two types of physical relations among the terminal nodes: support relation Es and collision

relation Ec. Therefore, the energy of physical prior is defined as Ephy(pg) = λsEs(pg) +

λcEc(pg), where λs and λc are balancing factors. Specifically:

• Support Relation Es(pg) defines the energy between the supported object/human and the

supporting object/layout:

Es(pg) =
∑

(vi,vj)∈Es

Eo(vi, vj) + Eheight(vi, vj), (2.2)

where Eo(vi, vj) = 1 − area(vi ∩ vj)/area(vi) is the overlapping ratio in the xy-plane, and

Eheight(vi, vj) is the absolute height difference between the lower surface of the supported ob-

ject vi and the upper surface of the supporting object vj. We define Eo(vi, vj) = Eheight(vi, vj) =

0 if the supporting object is floor or wall.

12



• Physical Collision Ec(pg) denotes the physical violations. We penalize the intersection

among human, objects, and room layout except the objects in HOI and objects that could

be a container. The potential function is defined as:

Ec(pg) =
∑

C(v, Vlayout)
v∈(Vobject∪Vhuman)

+
∑

C(vi, vj)
vi∈Vobject

vj∈Vhuman

(vi,vj)/∈Ehoi

+
∑

C(vi, vj)
vi,vj∈Vobject

vi,vj /∈Vcontainer

, (2.3)

where C() denotes the volume of intersection between entities. Vcontainer denotes the objects

that can be a container, such as a cabinet, desk, and drawer.

Human-object Interaction Prior Ehoi(pg) is defined on the interactions between hu-

man and objects:

Ehoi(pg) =
∑

(vi,vj)∈Ehoi

K(vi, vj , avj ), (2.4)

where vi ∈ Vobject, vj ∈ Vhuman, and K is an HOI function that evaluates the interaction

between an object and a human given the action label a:

K(vi, vj , avj ) = − log l(vi, vj |avj ), (2.5)

where l(vi, vj|avj) is the likelihood of the relative position between node vi and vj given an

action label a, and λa the balancing factor. We formulate the action detection as a multi-

label classification; see Section 2.1.6.3 for details. The likelihood l(·) models the distance

between key joints and the center of the object; e.g., for “sitting”, it models the relative

spatial relation between the hip and the center of a chair. The likelihood can be learned

from 3D HOI datasets with a multivariate Gaussian distribution (∆x,∆y,∆z) ∼ N3(µ,Σ),

where ∆x,∆y, and ∆z are the relative distances in the directions of three axes.

Likelihood E(I|pg) characterizes the consistency between the observed 2D image and

the inferred 3D result. The projected 2D object bounding boxes and human poses can be

computed by projecting the inferred 3D objects and human poses onto a 2D image plane.

The likelihood is obtained by comparing the directly detected 2D bounding boxes and human
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Figure 2.2: Typical HOIs from the SHADE dataset.

poses with projected ones from inferred 3D results:

E(I|pg) =
∑

λo

v∈Vobject

·Do(B(v), B′(v)) +
∑

λh

v∈Vhuman

·Dh(Po(v), Po′(v)), (2.6)

where B() and B′() are the bounding boxes of detected and projected 2D objects, Po() and

Po′() the poses of detected and projected 2D humans, Do(·) the Intersection over Union (IoU)

between the detected 2D bounding box and the convex hull of the projected 3D bounding

box, and Dh(·) the average pixel-wise Euclidean distance between two 2D poses.

2.1.5 SHADE Dataset

We collect SHADE (Synthetic Human Activities with Dynamic Environment), a self-annotated

dataset that consists of dynamic 3D human skeletons and objects, to learn the prior model

for each HOI. It is collected from a video game Grand Theft Auto V with various daily

activities and HOIs. Currently, there are over 29 million frames of 3D human poses, where
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772,229 frames are annotated. On average, each annotated frame is associated with 2.03

action labels and 0.89 HOIs. There are 19 different HOI relation categories in the dataset;

we choose 6 that usually occur in indoor scenes. Fig. 2.2 shows some typical examples and

relations in the dataset.

2.1.6 Joint Inference

Given a single RGB image as the input, the goal of joint inference is to find the optimal

parse graph that maximizes the posterior probability p(pg|I). The joint parsing is a four-step

process: (i) 3D scene initialization of the camera pose, room layout, and 3D object bounding

boxes, (ii) 3D human pose initialization that estimates rough 3D human poses in a 3D scene,

(iii) concurrent action detection, and (iv) joint inference to optimize the objects, layout, and

human poses in 3D scenes by maximizing the posterior probability.

2.1.6.1 3D Scene Initialization

Following [HQX18], we initialize the 3D objects, room layout, and camera pose cooperatively,

where the room layout and objects are parametrized by 3D bounding boxes. For each object

vi ∈ Vobject, we find its supporting object/layout by minimizing the supporting energy:

v∗j = arg min
vj

Eo(vi, vj) + Eheight(vi, vj) − λs log pspt(vi, vj), (2.7)

where vj ∈ (Vobject, Vlayout) and pspt(vi, vj) are the prior probabilities of the supporting relation

modeled by multinoulli distributions, and λs a balancing constant.

2.1.6.2 3D Human Pose Initialization

We take 2D poses as the input and predict 3D poses in a local 3D coordinate follow-

ing [TRA17], where the 2D poses are detected and estimated by [CSW17]. The local 3D

coordinate is centered at the human hip joint, and the z-axis is aligned with the up direction
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of the world coordinate. To transform this local 3D pose into the world coordinate, we find

the 3D world coordinate v3D ∈ R3 of one visible 2D joint v2D ∈ R2 (e.g., head) by solving

a linear equation with the camera intrinsic parameter K and estimated camera pose R. Per

the pinhole camera projection model, we have

α

v2D

1

 = K ·R · v3D, (2.8)

where α is a scaling factor in the homogeneous coordinate. To make the function solvable,

we assume a pre-defined height h0 for the joint position v3D in the world coordinate. Lastly,

the 3D pose initialization is obtained by aligning the local 3D pose and the corresponding

joint position with v3D.

2.1.6.3 Concurrent Action Detection

We formulate the concurrent action detection as a multi-label classification problem to ease

the ambiguity in describing the action. We define a portion of the action labels (e.g., “eating”,

“making phone call”) as the HOI labels, and the remaining action labels (e.g., “standing”,

“bending”) as general human poses without HOI. The mixture of HOI actions and non-HOI

actions covers most of the daily human actions in indoor scenes. We manually map each of

the HOI action labels to a 3D HOI relation learned from the SHADE dataset, and use the

HOI actions as cues to improve the accuracy of 3D reconstruction by integrating it as prior

knowledge in our model. The concurrent action detector takes 2D skeletons as the input and

predicts multiple action labels with a three-layer multi-layer perceptron (MLP).

The dataset for training the concurrent action detectors consists of both synthetic data

and real-world data. It is collected from: (i) The synthetic dataset described in Section 2.1.5.

We project the 3D human poses of different HOIs into 2D poses with random camera poses.

(ii) The dataset proposed and collected by [JSL17], which also contains 3D poses of multiple

persons in social interactions. We project 3D poses into 2D using the same method as

(i). (iii) The 2D poses in an action recognition dataset [YJK11]. Our results show that
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Algorithm 1 Joint Inference Algorithm

Given: Image I, initialized parse graph pginit

procedure Phase 1

for Different temperatures do

Inference with physical commonsense Ephy but without HOI Ehoi: randomly select

from room layout, objects, and human poses to optimize pg

procedure Phase 2

Match each agent with their interacting objects

procedure Phase 3

for Different temperatures do

Inference with total energy E , including physical commonsense and HOI: randomly

select from layout, objects, and human poses to optimize pg

procedure Phase 4

Top-down sampling by HOIs

the synthetic data can significantly expand the training set and help to avoid overfitting in

concurrent action detection.

2.1.6.4 Inference

Given an initialized parse graph, we use MCMC with simulated annealing to jointly optimize

the room layout, 3D objects, and 3D human poses through the non-differentiable energy

space; see Algorithm 1 as a summary. To improve the efficiency of the optimization process,

we adopt a scheduling strategy that divides the optimization process into following four

phases with different focuses: (i) Optimize objects, room layout, and human poses without

HOIs. (ii) Assign HOI labels to each human in the scene, and search the interacting objects

of each human. (iii) Optimize objects, room layout, and human poses jointly with HOIs.

(iv) Generate possible miss-detected objects by top-down sampling.
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Figure 2.3: The optimization process of the scene configuration.

Dynamics. In Phase (i) and (iii), we use distinct MCMC processes. To traverse non-

differentiable energy spaces, we design Markov chain dynamics qo1, q
o
2, q

o
3 for objects, ql1, q

l
2 for

room layout, and qh1 , q
h
2 , q

h
3 for human poses.

• Object Dynamics: Dynamics qo1 adjusts the position of an object, which translates the

object center in one of the three Cartesian coordinate axes or along the depth direction. The

depth direction starts from the camera position and points to the object center. Translation

along depth is effective with proper camera pose initialization. Dynamics qo2 proposes rotation

of the object with a specified angle. Dynamics qo3 changes the scale of the object by expanding

or shrinking corner positions of the cuboid with respect to object center. Each dynamic can

diffuse in two directions: each object can translate in the direction of ‘+x’ and ‘−x,’ or

rotate in the direction of clockwise and counterclockwise. To better traverse in energy space,

the dynamics may propose to move along the gradient descent direction with a probability

of 0.95 or the gradient ascent direction with a probability of 0.05.

• Human Dynamics: Dynamics qh1 proposes to translate 3D human joints along x, y, z,

or depth direction. Dynamics qh2 is designed to rotate the human pose with a certain angle.

Dynamics qh3 adjusts the scale of human poses by a scaling factor on the 3D joints with

respect to the pose center.

• Layout Dynamics: Dynamics ql1 translates the wall towards or away from the layout

center. Dynamics ql2 adjusts the floor height, equivalent to change the camera height.

In each sampling iteration, the algorithm proposes a new pg′ from current pg under the

18



proposal probability of q(pg → pg′|I) by applying one of the above dynamics. The generated

proposal is accepted with respect to an acceptance rate α(·) as in the Metropolis-Hastings

algorithm [Has70]:

α(pg → pg′) = min(1,
q(pg′ → pg) · p(pg′|I)

q(pg → pg′) · p(pg|I)
), (2.9)

A simulated annealing scheme is adopted to obtain pg with high probability.

Top-down sampling. By top-down sampling objects from HOIs, the proposed method

can recover the interacting 3D objects that are too small or novel to be detected by the state-

of-the-art 2D object detector. In Phase (iv), we propose to sample an interacting object from

the person if the confidence of HOI is higher than a threshold. Specifically, we minimize the

HOI energy in Eq. (2.4) to determine the category and location of the object; see examples

in Fig. 2.4.

Implementation Details. In Phase (ii), we search the interacting objects for each

agent involved in HOI by minimizing the energy in Eq. (2.4). In Phase (iii), after matching

each agent with their interacting objects, we can jointly optimize objects, room layout, and

human poses with the constraint imposed by HOI. Fig. 2.3 shows examples of the simulated

annealing optimization process.

Figure 2.4: Illustration of the top-down sampling process.
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2.1.7 Experiments

Since the proposed task is new and challenging, limited data and state-of-the-art methods

are available for the proposed problem. For fair evaluations and comparisons, we evaluate

the proposed algorithm on three types of datasets: (i) Real data with full annotation on

PiGraphs dataset [SCH16] with limited 3D scenes. (ii) Real data with partial annotation

on daily activity dataset Watch-n-Patch [WZS15], which only contains ground-truth depth

information and annotations of 3D human poses. (iii) Synthetic data with generated anno-

tations to serve as the ground truth: we sample 3D human poses of various activities in SUN

RGB-D dataset [SLX15] and project the sampled skeletons back onto the 2D image plane.

2.1.7.1 Comparative methods

To the best of our knowledge, no previous algorithm jointly optimizes the 3D scene and 3D

human pose from a single image. Therefore, we compare our model against state-of-the-art

methods for each task. Particularly, we compare with [HQX18] for single-image 3D scene

reconstruction and VNect [MSS17] for 3D pose estimation in the world coordinate.

Since VNect can only estimate a single person during the estimation, we also design an ad-

ditional baseline for multi-person 3D human pose estimation in the world coordinate. We first

extract a 2048-D image feature vector using the Global Geometry Network (GGN) [HQX18]

to capture the global geometry of the scene. The concatenated vector (GGN image feature,

2D pose, 3D pose in the local coordinate, and the camera intrinsic matrix) is then fed into

a 5-layer fully connected network to predict the 3D pose. The fully-connected layers are

trained using the mean squared error loss. We train the network on the training set of the

synthetic SUN RGB-D dataset. Please refer to supplementary materials for more details of

the baseline model.
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Figure 2.5: Augmenting SUN RGB-D with synthetic human poses.

2.1.7.2 Dataset

PiGraphs [SCH16] contains 30 scenes and 63 video recordings obtained by Kinect v2, de-

signed to associate human poses with object arrangements. There are 298 actions available in

approximately 2-hours of recordings. Each recording is about 2-minute long with an average

4.9 action annotation. We removed the frames without human appearance or annotations,

resulting in 36,551 test images.

Watch-n-Patch (WnP) [WZS15] is an activity video dataset recorded by Kinect v2. It

contains several human daily activities as compositions of multiple actions interacting with

various objects. The dataset comes with activity annotations, depth maps, and 3D human

poses by Kinect. We test our algorithm on 1,210 randomly selected frames.

SUN RGB-D [SLX15] contains rich indoor scenes that are densely annotated with 3D

bounding boxes, room layouts, and camera poses. The original dataset has 5,050 testing

images, but we discarded images with no detected 2D objects, invalid 3D room layout an-

notation, limited space, or small field of view, resulting in 3,476 testing images.

Synthetic SUN RGB-D is an augmented SUN RGB-D dataset by sampling human

poses in the scenes. Following methods of sampling imaginary human poses in [HQZ18],
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we extend the sampling to more generalized settings for various poses. The augmented

human is represented by a 6-tuple ⟨a, µ, t, r, s, µ̂⟩, where a is the action type, µ the pose

template, t translation, r rotation, s scale, and µ̂ = µ · r · s+ t the imagined human skeleton.

For each action label, we sample an imagined human pose inside a 3D scene: ⟨t∗, r∗, s∗⟩ =

arg min
t,r,s

Ephy +Ehoi. If a is involved with any HOI unit, we further augment the 3D bounding

box of the object. After sampling a human pose, we project the augmented 3D scenes

back onto the 2D image plane using the ground truth camera matrix and camera pose; see

examples in Fig. 2.5. For a fair comparison of 3D human pose estimation on synthetic SUN

RGB-D, all the algorithms are provided with the ground truth 2D skeletons as the input.

For 3D scene reconstruction, both [HQX18] and the proposed 3D scene initialization are

learned using SUN RGB-D training data and tested on the above three datasets. For 3D

pose estimation, both [MSS17] and the initialization of the proposed method are trained on

public datasets, while the baseline is trained on synthetic SUN RGB-D. Note that we only

use the SHADE dataset for learning a dictionary of HOIs.

2.1.7.3 Quantitative and Qualitative Results

We evaluate the proposed model on holistic++ scene understanding task by comparing the

performances on both 3D scene reconstruction and 3D pose estimation.

Scene Reconstruction: We compute the 3D IoU and 2D IoU of object bounding boxes

to evaluate the 3D scene reconstruction and the consistency between 3D world and 2D image.

Following the metrics [HQX18], we compute the 3D IoU between the estimated 3D bounding

boxes and the annotated 3D bounding boxes on PiGraphs and SUN RGB-D. For dataset

without ground-truth 3D bounding boxes (i.e., Watch-n-Patch), we evaluate the distance

between the camera center and the 3D object center. To evaluate the 2D-3D consistency,

the 2D IoU is computed between the projected 2D boxes of the 3D object bounding boxes

and the ground-truth 2D boxes or detected 2D boxes (i.e., Watch-n-Patch). As shown

in Table 2.1, the proposed method improves the state-of-the-art 3D scene reconstruction
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Table 2.1: Quantitative Results of 3D Scene Reconstruction

Methods Huang et al. [HQX18] Ours

Metric 2D IoU (%) 3D IoU (%) Depth (m) 2D IOU (%) 3D IoU (%) Depth (m)

PiGraphs 68.6 21.4 - 75.1 24.9 -

SUN RGB-D 63.9 17.7 - 72.9 18.2 -

WnP - - 0.375 - - 0.162

results on all three datasets without specific training on each of them. More importantly, it

significantly improves the results on PiGraphs and Watch-n-Patch compared with [HQX18].

The most likely reason is [HQX18] is trained on SUN RGB-D dataset in a purely data-

driven fashion, therefore difficult to generalize across to other datasets (i.e., PiGraphs, and

Watch-n-Patch). In contrast, the proposed model incorporates more general prior knowledge

of HOI and physical commonsense, and combined such knowledge with 2D-3D consistency

(likelihood) for joint inference, avoiding the over-fitting caused by the direct 3D estimation

from 2D. Fig. 2.6 shows the qualitative results on all three datasets.

Pose Estimation: We evaluate the pose estimation in both 3D and 2D. For 3D evalua-

tion, we compute the Euclidean distance between the estimated 3D joints and the 3D ground

truth and average it over all the joints. For 2D evaluation, we project the estimated 3D pose

back to 2D image plane and compute the pixel distance against ground truth. Quantitative

results are shown in Table 2.2. The proposed method outperforms two other methods in

both 2D and 3D. On the synthetic SUN RGB-D dataset, all algorithms are given the ground

truth 2D poses as the input for fair comparison. Although the baseline model achieves

better performances since the 3D human poses are synthesized with limited templates and

the baseline model fits it well, the 3D poses estimated by VNect and baseline model de-

viate a lot from the ground truth for datasets with real human poses (i.e., PiGraph, and

Watch-n-Patch). In contrast, the proposed algorithm still performs well, demonstrating an

outstanding generalization ability across various datasets.
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Table 2.2: Quantitative Results of Global 3D Pose Estimation

Methods VNect[MSS17] Baseline Ours

Metrics 2D (pix) 3D (m) 2D (pix) 3D (m) 2D (pix) 3D (m)

PiGraphs 63.9 0.732 284.5 2.67 15.9 0.472

SUNRGBD - - 45.81 0.435 14.03 0.517

WnP 50.51 0.646 325.2 2.14 20.5 0.330

Table 2.3: Ablative results of HOI.

Methods w/o hoi Full model

HOI Type Object ↑ Pose ↓ MR ↓ Object ↑ Pose ↓ MR ↓

Sit 26.9 0.590 15.2 27.8 0.521 13.1

Hold 17.4 0.517 78.9 17.6 0.490 54.6

Use Laptop 14.1 0.544 58.8 15.0 0.534 43.3

Read 14.5 0.466 65.3 14.3 0.453 41.9

Ablative Analysis to analyze the contributions of HOI and physical commonsense

by comparing two variants of the proposed full model: (i) model w/o HOI: without HOI

Ehoi(pg), and (ii) model w/o phy.: without physical commonsense Ephy(pg).

Human-Object Interaction. We compare our full model with model w/o hoi to evaluate

the effects of each category of HOI. Evaluation metrics include 3D pose estimation error,

3D bounding box IoU, and miss-detection rate (MR) of the objects interacted with agents.

The experiments are conducted on PiGraphs dataset and Synthetic SUN RGB-D dataset

with the annotated HOI labels. As shown in Table 2.3, the performances of both scene

reconstruction and human pose estimation are hindered without reasoning HOI, indicating
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Figure 2.6: Qualitative results of the proposed method on three datasets.

HOI helps to infer the relative spatial relationship between humans and interacted objects to

further improve the performance of both two tasks. Moreover, a marked performance gain

of miss-detection rate implies the effectiveness of the top-down sampling process during the

joint inference.

Physical Commonsense. Reasoning about physical commonsense drives the reconstructed

3D scene to be physically plausible and stable. We tested 3D estimation of object bounding

boxes on the PiGraphs dataset using w/o phy. and the full model. The full model out-

performs w/o phy. from two aspects: (i) 3D object detection IoU (from 23.5% to 24.9%),

and (ii) physical violation (from 0.223m to 0.150m). The physical violation is computed as

the distance between the lower surface of an object and the upper surface of its supporting

object. The qualitative comparisons are shown in Fig. 2.7. Objects detected by model w/o
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Figure 2.7: Qualitative comparison between model without physics and the full model.

phy. may float in the air or penetrate each other, while the full model yields physically

plausible results.

2.1.8 Conclusion

This work tackles a challenging holistic++ scene understanding problem to jointly solve 3D

scene reconstruction and 3D human pose estimation from a single RGB image. By incorpo-

rating physical commonsense and reasoning about HOI, our approach leverages the coupled

nature of these two tasks and goes beyond merely reconstructing the 3D scene or human pose

by reasoning about the concurrent action of human in the scene. We design a joint inference

algorithm which traverses the non-differentiable solution space with MCMC and optimizes

the scene configuration. Experiments on PiGraphs, Watch-n-Patch, and Synthetic SUN

RGB-D demonstrate the efficacy of the proposed algorithm, and the general prior knowledge

of HOI and physical commonsense.
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2.2 Detecting Human-Object Contact in Images

2.2.1 Introduction

Contact is an important part of people’s everyday lives. We constantly contact objects

to move and perform tasks. We walk by contacting the ground with our feet, we sit by

contacting chairs with our buttocks, hips and back, we grasp and manipulate tools by

contacting them with our hands. Therefore, estimating contact between humans and ob-

jects is useful for human-centered AI, especially for applications such as AR/VR [ACV09,

GSJ21, KT15, LFR17], activity recognition [JCH20, RCJ21, SCH16], affordance detec-

tion [FDG12, KS14, NG20, ZJZ16], fine-grained human-object interaction detection [LXL20,

QWJ18, WAK19, XWL19], imitation learning [RWP20, TS10, ZMJ18], populating scenes

with interacting avatars [HGT21, ZZM20, ZHN20], and sanitization or contamination pre-

vention. Maybe surprisingly, there exists no detector for contact available online, similarly to

off-the-shelf detectors for segmenting humans in images, or estimating their 2D joints or 3D

shape and pose. Some work exists for detecting hand-object contact as bounding boxes, but

hands are only part of the story. Moreover, bounding boxes are only a rough representation

that can not capture the precise contact area. What we need, instead, is a new detector for

the entire body that estimates detailed, body-part-specific, contact maps in images. To train

this, we need data, but no suitable dataset exists at the moment. We account for this in this

work, with a novel dataset and model for detecting contact between whole-body humans and

objects in color images taken in the wild.

Annotating contact is challenging, as contact areas are ipso facto occluded. Think of a

person standing on the floor; the sole of the shoe, and the floor area it contacts, can not

be observed. A naive approach is to instrument a human with contact sensors, however,

this is intrusive, cumbersome to set up and does not scale. Instead, we use two alternative

data sources, with different but complementary properties. (1) We use the PROX [HCT19]

dataset, which has pseudo ground-truth 3D human meshes for real humans moving in 3D
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Figure 2.8: Contact estimations for images taken in the wild.

scanned scenes. By having 3D meshes for both humans and scenes, we can automatically

annotate contact areas, by computing the proximity between the 3D meshes. (2) We use the

V-COCO [GM15] and HAKE [LXL20] datasets, which contain images taken in the wild. We

then hire professional annotators, and train them to annotate contact areas as 2D polygons

in images. Although manual annotation is only approximate, 2D annotations are important

because they allow scaling to large, varied, and natural datasets. This improves generaliza-

tion. Note that in both cases we also annotate the body part that is involved in contact,

corresponding to the body parts of the SMPL(-X) [LMR15, PCG19] human model.

We thus present HOT (“Human-Object conTact”), a new dataset of images with human-

object contact. Examples from HOT are shown in Fig. 2.9. The first part of HOT, called

“HOT-Generated”, has automatic annotations, but lacks variety for human subjects and

scenes. The second part, called “HOT-Annotated”, has manual annotations, but has a huge

variety of people, scenes and interactions. HOT has 35, 750 images with 163, 534 contact

annotations.

We then train a new contact detector on our HOT dataset. Given a single color image as
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(a) “HOT-Generated” (b) “HOT-Annotated” (c) Body parts of SMPL-X

Figure 2.9: Images and contact annotations for our HOT dataset.

input, we want to know that, if contact takes place in the image, the area it occurs, as well

as the body part that is involved. Specifically, we detect 2D heatmaps in an image, encoding

the contact location and likelihood, and classify each pixel in contact to one of SMPL(-X)’s

body parts. However, training directly with HOT annotations leads to “bleeding” heatmaps

and false detections. We observe that humans reason about contact by looking at body parts

and their proximity to objects in their local vicinity. Therefore, we use a body-part-driven

attention module that significantly boosts performance.

We evaluate our detector on withheld parts of our HOT dataset. Quantitative evaluation

and ablation studies show that our model outperforms the baselines, and that all components

contribute to detection performance. Our body-part attention module is key for this, and

a visual analysis shows that it attends to meaningful image locations, i.e., on body parts

and their vicinity. Qualitative results show reasonable detections on in-the-wild images. By

applying our detector on datasets unseen during training, we show that our model generalizes

reasonably well; see Fig. 2.8. Note that there exists no other model for detecting contact

between whole bodies and the scene in an image. We further show that our general-purpose

full-body contact detector performs on par with existing part-specific contact detectors for

the foot [RGH20] or hand [NNH20], having the prospect to work as a drop-in replacement for

these. We also discuss that HOT has the potential to support several applications.Therefore,
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we think that the community will find good use for our data and models.

In summary, HOT takes a step towards automatic contact detection between humans and

objects in color images and our contribution is three-fold: (1) We introduce the new task

of full-body human-object contact detection in images. (2) To facilitate machine learning

for this, we introduce the HOT dataset with 2D contact area heatmaps and the associ-

ated human part labels as annotations, using both auto-generated and manual annotations.

(3) We develop a new contact detector that incorporates a body-part attention module.

Experiments and ablation studies demonstrate the benefits of the proposed model and its

components.

2.2.2 Related Work

2.2.2.1 Contact Modeling

Modeling contact information between humans and objects has been studied for different

aspects and scale, namely for body-object and hand-object contact.

Body-object contact: Several works model the contact between the human body and

object. Clever et al. [CEK20] propose a synthetic dataset with special focus on the lying

pose where contact takes place between a human body and a pressure-sensing mat. Li et

al. [LSC19] reconstruct the 3D motion of a person interacting with an object by estimating

the 3D pose of the person and object, the joint-level contact, and forces and torques actuated

by the human limbs. Rempe et al. [RBH21, RGH20] estimate joint-level foot-ground contact

from a video, and use it to constrain the human pose with trajectory optimization. Others use

HOI relationships to reconstruct [CHY19, WY21] or generate [ZZM20, ZHN20] 3D human

and object pose by enforcing contact and penalizing collision.

In prior work, contact information is often used as prior knowledge, but is often over-

simplified as either body-ground contact at the skeleton-joint level, or hand-object contact

at a rough bounding-box level, or manually-annotated point contacts of other human parts.
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In this work, we seek to automatically estimate contact heatmaps for the whole body in a

bottom-up manner directly from the 2D image. We also predict the associated human body

part label, which provides a more systematic understanding of human-object contact.

Hand-object contact: People interact with objects using their hands, so contact plays

an important role in hand-object interaction, grasping and hand pose estimation. Contact

information is often captured as a byproduct in grasp datasets [BTT20, LJX21, TGB20]

through hand-object proximity or thermal information. Hand-object grasp reconstruction

also employs contact to refine the hand and object pose estimation [CRK21, GTT21, HVT19].

In addition, some works [NNH20, SGS20] detect hands and classify their physical contact

state into self-contact, person-person contact, and person-object contact. Although they

consider the relationship between hands and other objects in the scene, they detect only a

rough bounding box for the hand, instead of a finer-grained contact area. In this work, we

take a step further to estimate general-purpose full-body contact from 2D images at a finer

scale.

2.2.2.2 Human-Object Interaction (HOI)

The task of HOI understanding [QWJ18, WAK19, XWL19] aims to infer the interaction

relationships between humans and objects. While both humans and objects are located in

the image, often in form of 2D bounding boxes, the literature seldomly focuses on how the

interaction takes place, whether the interaction requires contact, and what human part is

involved in the contact. These limitations make the current HOI detection less relevant for

downstream scene understanding tasks. Recently, Li et al. [LXL20] provide more detailed

body-part state annotations in the context of HOI, and offer contact information in the form

of action labels (e.g., hold, paddle) and the involved human body part (e.g., hand, foot).

However, they do not annotate 2D contact areas in images, and their predefined human

parts are not fine-grained enough to capture everyday HOI scenarios for which contact plays

an important role. On the contrary, our new dataset contains 2D contact areas that are
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also associated with the involved human body parts following the part segmentation of the

popular SMPL(-X) [LMR15, PCG19] statistical 3D body model.

2.2.2.3 Affordance Learning

Contact and HOI are closely related with object affordances, which reflect the functional

aspects of an object. Recent work explores object affordance learning from human ac-

tions and object manipulations [FDG12, KS14, NG20, ZJZ16]. More specifically, Fang et

al. [FWY18] and Nagarajan et al. [NFG19] learn to predict the interaction region with the

corresponding action label on a target object from human demonstration videos. Savva et

al. [SCH14, SCH16] capture physical contact and visual attention links between 3D geometry

and human body parts from RGB-D videos. Deng et al. [DXW21] collect a 3D visual affor-

dance dataset with potential interaction areas on 3D objects for various actions. Affordance

learning is object-centric; the final product does not capture much about the human actor.

On the contrary, detecting interaction areas (e.g. contact heatmaps) reflects how people

interact with objects, and considers both the human and the object.

2.2.3 Human-Object conTact (HOT) Dataset

To facilitate research in contact estimation, we introduce HOT, a new dataset with 2D

contact areas and the associated human part labels as annotations. Annotating and detecting

contact in images is challenging, as contact depends on the scene and its objects, the humans,

the camera view and the occlusions arising from all these factors. To create a well-varied

dataset, we collect images from two different sources and gather contact annotations for

these. Below we discuss the creation of HOT and provide a comprehensive analysis of it.
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2.2.3.1 Data Sources

First we collect data from the PROX dataset [HCT19], which contains people reconstructed

as 3D SMPL-X [PCG19] meshes interacting with static 3D scenes; this involves actions like

sitting, walking, lying down, etc. Recent work [RBH21, ZZB21] improves on the quality of

reconstructed meshes in PROX, facilitating the automatic generation of contact heatmaps by

simply using 3D proximity metrics between the 3D human mesh and the static 3D scene mesh.

We sub-sample frames from the qualitative set of PROX, and form the “HOT-Generated”

part of HOT.

Another source for images with human-object contact is HOI datasets like V-COCO [GM15]

and HAKE [LXL20]. As they are collected from Flickr, these datasets contain very diverse

HOI interactions in complex and cluttered scenes. Existing HOI datasets contain activity

labels and bounding boxes for humans and objects, but boxes are too coarse for understand-

ing contact. Therefore, we select a subset from the V-COCO [GM15] and HAKE [LXL20]

datasets and use these to gather new contact annotations. To keep the task tractable, we

first remove images with indirect human-object interaction, heavily cropped humans, mo-

tion blur, distortion or extreme lighting conditions. Other interesting datasets are indoor

action recognition datasets like Watch-n-Patch [WZS15], which contain several daily human

activities like “fetch-from-fridge”, “put book back”, etc. We sample image frames from video

clips where human subjects and objects are clearly visible. We eventually combine images

selected from V-COCO [GM15], HAKE [LXL20] and Watch-n-Patch [WZS15], and form the

“HOT-Annotated” part of HOT.

2.2.3.2 Contact Generation for “HOT-Generated”

The PROX dataset [HCT19] captures people interacting with static scenes. Using the recon-

structed 3D human and scene meshes, we can first compute the vertices that are in close 3D

proximity as contact vertices, and then render these onto the 2D image to get automatic con-
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tact area annotations, as well as the associated body labels. More specifically, we represent

the human pose and shape with the SMPL-X [PCG19] body model, which captures the body

surface including the hands and face. The SMPL-X model represents the human body with

pose parameters, θ, and shape parameters, β, and outputs a posed 3D mesh, Mb ∈ R10475×3.

Each vertex, v ∈ R3, has a surface normal, nv, and a human part label, c, associated with it.

We divide the parametric human body model SMPL-X into 17 parts ci, with i ∈ {1, 2, ..., 17}.

For this, we are based on the original part segmentation of SMPL-X, but for simplicity we

unite certain parts (e.g., parts of the back across the spine), that even human annotators

cannot easily differentiate. See Fig. 2.9c for the color-coded segmentation of SMPL-X and

the corresponding body-part labels. For each frame, given the reconstructed SMPL-X mesh,

Mb, and the scene mesh, Ms, we first calculate human-to-scene mesh distances. Then, all

human vertices with a distance to the scene below a threshold, and with compatible normals

to the scene ones, are annotated as contact vertices. Finally, for the contact vertices we find

the respective triangles on the 3D body mesh, and render these separately per body part to

get dense 2D contact areas. In this way, we automatically create pseudo ground truth for

contact. Examples are shown in Fig. 2.9a.

2.2.3.3 Contact Annotation for “HOT-Annotated”

In the following, we describe how we annotate contact for in-the-wild images. The annota-

tion process includes two steps: (1) we draw a polygon around the image area containing

human-object contacts, and (2) assign a human body-part label associated each contact. See

Fig. 2.9b for some annotation examples.

Determining the exact contact area between a human and an object is non-trivial, es-

pecially in the image space, because contact areas are always occluded. Thus, we hire

professional annotators and ask them to “detect” the image areas in which contact takes

place, and draw a polygon around each of these. We take a number of steps to ensure good

quality and consistency for the annotations. In particular, we have two rounds of quality
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Figure 2.10: HOT dataset statistics.

check after the initial annotation; for every 3 annotators there is 1 extra annotator that only

conducts quality checks.

Compared to the automatic annotations of “HOT-Generated”, the manual annotations

of “HOT-Annotated” are only approximate. However, capturing people in scenes and accu-

rately reconstructing them in 3D is hard and does not scale. Thus, manual 2D annotations

are important because they allow scaling to large, varied, and natural datasets with images

taken in the wild. For data-driven models, this helps towards improving generalization and

making them robust.

2.2.3.4 HOT Dataset Statistics

The HOT dataset has a total of 35, 750 images and 163, 534 contact area annotations, along

with a body-part label for each area. Specifically, for “HOT-Annotated” we collect 5, 459 im-

ages and 20, 898 contact areas for V-COCO [GM15], 9, 761 images and 46, 287 contact areas

for HAKE [LXL20], and 325 images and 1, 170 contact areas for the Watch-n-Patch [WZS15]

dataset. For “HOT-Generated”, we auto-generate 95, 179 contact areas in 20, 205 images us-

ing the PROX dataset. More statistics of “HOT-Annotated” and “HOT-Generated” are

35



Figure 2.11: Overview of the contact detection framework.

shown in Fig. 2.10.

Figure 2.10a shows the distribution of body-part labels for contact. We see that “HOT-

Annotated” has noticeably more contacts than “HOT-Generated” for both hands. The

reason is that PROX captures humans interacting with static scenes, i.e., without grasping

and moving objects with their hands, while “HOT-Annotated” contains a lot of images with

interactions between hands and objects.

Figure 2.10b shows the number of contact area annotations per image. We see that “HOT-

Annotated” has generally more contacts per image than “HOT-Generated”. This is possibly

because HOI datasets also contain images of multiple interacting persons, while PROX only

has a single person in every image.

Figure 2.10c shows the distribution of contact area size. We observe that the areas are

generally smaller for “HOT-Generated” than “HOT-Annotated”. This is potentially because

images in PROX are captured with the camera away from the body to include more scene

context, whereas images in “HOT-Annotated” are taken in the wild, including close-ups, as

well as more object grasps.
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2.2.4 Method

To estimate contact areas in images, humans use the global context of the image, but also

focus on regions around body parts to examine if there is contact and how the area around it

looks like. Based on these insights, we design our contact detector to extract global features

with attention to human body parts.

2.2.4.1 Model Architecture

Figure 2.11 shows the overall architecture of our proposed contact detector. Given an image,

we first use a CNN backbone to extract the image features. Then we use an image decoder

with two branches: an Attention Branch for predicting attention masks for each human

part and a Contact Branch to extract contact features. We denote the attention branch as

P ∈ RH×W×(J+1), where J is the number of human parts, with one extra channel for the

background. The symbols H and W are the height and width of the feature map. We denote

the contact prediction branch as F ∈ RH×W×C , with the same spatial dimensions H ×W as

the attention branch P , but with a different number of channels, C.

In the attention branch, the jth channel Pj ∈ RH×W represents the likelihood that each

pixel is associated with contact of the jth body part. This is used to guide the model to focus

around different human parts in the feature space F of the contact branch. By applying a

channel-wise softmax normalization σ(.) on P , we get the attention mask. P
′

= σ(P ), with

P
′ ∈ RH×W×(J+1).

We then use a Part Attention Operation to combine the attention and contact branches,

i.e., use P
′
j as an attention mask to extract part-related features:

F
′

j = Conv(F ⊙ P
′

j ), with F
′

j ∈ RH×W×C′
, (2.10)

where ⊙ is the element-wise product between all channels in F and the attention mask

P
′
j . We concatenate F

′
j for all j parts and the background along the channel dimension as
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F
′ ∈ RH×W×C∗

, where C∗ = C
′
(J + 1), and later feed it into a convolution layer to get the

final per-pixel prediction.

We supervise the attention branch with part-segmentation maps, and the contact branch

with contact area annotations; see “dataset splits” in Section 2.2.5.1 for details on the part-

segmentation supervision source. Both branches conduct pixel-wise classification to a certain

human part or the background. The “background” label for the contact branch indicates

“no contact”. Our joint loss is:

L = λaLa + λcLc, (2.11)

where La is a cross-entropy loss between the estimated attention maps and ground-truth

part-segmentation maps, Lc is a cross-entropy loss between the estimated and ground-truth

contact maps, and λa and λc are steering weights.

2.2.4.2 Implementation Details

During training, body-part supervision for the attention branch is applied only in the initial

stages, following Kocabas et al. [KHH21]; λa is set to 0 at later stages. As Fig. 2.12 shows,

the learned attention mask attends not only regions on each body part, but also on the

surrounding area to explore contextual features.

We use a pre-trained dilated ResNet-50 [YKF17] as image encoder backbone. For the

attention branch we use 3 × 3 convolutional layers with batch-norm and ReLU as image

decoder, followed by another convolutional layer with kernel size 1 to make pixel-wise human

part label classification. For the contact branch, we apply 3 × 3 convolutional layers with

batch-norm and ReLU on the part-specific features, which we further concatenate along the

channel axis. Note that the weights of convolution layers are different across human parts, so

that the contact branch learns part-specific features under the attention guidance. Another

convolutional layer with kernel size 1 is used to make pixel-wise contact label prediction.

Since the background dominates the label ground truth for both human part segmentation
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and contact estimation, we assign a smaller weight for the background label in the cross-

entropy loss.

During training, we re-scale all images to have their bigger side 400 pixels long, and then

pad, if necessary. Random flipping is applied for data augmentation. We use a batch size

of 24 and the SGD [RM51] optimizer, with an initial learning rate of 0.02 with polynomial

decay following [ZZP18].

2.2.5 Experiments

In this section, we first benchmark the contact estimation task on a withheld test set of

our HOT dataset. Then, we compare our full-body contact detector with existing part-

specific contact detectors. Finally we showcase examples of contact detection for several

tasks interesting for the broader community.

2.2.5.1 Contact Detection

Dataset splits: For the “HOT-Annotated” part of HOT, we randomly split the collected

images into a training and test set with a ratio of 8:2, resulting in 12, 436 images for training

and 3, 109 images for testing. For the “HOT-Generated” part, we split the training and

testing set based on the scene, to make sure that scenes in the test set are unseen during

training. This results in 14, 143 images for training and 6, 052 images for testing. We evaluate

each baseline (ours and competitors) on the test set for several checkpoints, and report the

best performer for each case. For supervising the attention branch, we obtain pseudo ground

truth for human part segmentation by rendering part-segmented SMPL(-X) meshes; we

use LEMO’s [ZZB21] SMPL-X fits for the PROX dataset and use FrankMocap [RSJ21] to

estimate SMPL-X for the images of “HOT-Annotated”.

Evaluation protocol: We adopt the evaluation protocol of Zhou et al. [ZZP18]; this is

originally for semantic segmentation. We add one metric for contact area prediction to eval-
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Figure 2.12: Attention visualization for all human parts.

uate whether the model distinguishes between contact and non-contact, i.e., “background”.

We use the following metrics:

– Semantic contact accuracy (SC-Acc.): The proportion of pixels that are correctly classified

as in contact and associated with the correct body-part label.

– Contact accuracy (C-Acc.): The proportion of correctly classified pixels for binary contact

labels; this ignores the body-part label compared to “SC-Acc.”.

– Mean IoU (mIoU): The IoU between the predicted and the ground-truth contact pixels,

averaged over all the body-part labels.

– Weighted IoU (wIoU): mIoU weighted by the pixel ratio of each contact label.

Background labels are not considered for computing “SC-Acc.” and “IoU”.

To study the influence of the “HOT-Annotated” and “HOT-Generated” sets of the HOT

dataset, we report performance by training and testing models separately on these, as well as

on their combination that we denote as “Full Set”. For the “Full Set”, we randomly choose

images from the “HOT-Generated” so that the number of training and testing images from

both sets are the same.

Baselines: We evaluate contact estimation for two baselines, ResNet+PPM [ZSQ17] and ResNet+UperNet [XLZ18],

originally developed for semantic segmentation. Note that there exists no other model that does

full-body contact detection in images.

Ablations: We evaluate two variants of our proposed model to ablate the contribution of the
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Figure 2.13: Qualitative results on HOT dataset.

attention branch: (i) Ourswo/ att: without the attention branch and (ii) Ourspure att: without

supervision for the attention branch, which functions as an unsupervised pure soft-attention module.

Results & discussion: Quantitative results for contact detection are shown in Table 2.4, and

qualitative results are shown in Fig. 2.13. Below we discuss key findings:

1. Our model outperforms state-of-the-art (SOTA) methods [XLZ18, ZSQ17] developed for seman-

tic segmentation. This is due to the different nature of semantic scene understanding and contact

estimation. The former relies on dense pixel annotations of the entire scene and global contex-

Table 2.4: Evaluation of contact detection accuracy on the HOT dataset.

Model
“HOT-Annotated” “HOT-Generated” “Full Set”

SC-Acc.↑ C-Acc↑ mIoU ↑ wIoU ↑ SC-Acc.↑ C-Acc↑ mIoU ↑ wIoU ↑ SC-Acc.↑ C-Acc↑ mIoU ↑ wIoU ↑

ResNet+UperNet [XLZ18] 36.2 62.9 0.199 0.229 21.6 43.5 0.085 0.117 35.3 65.4 0.200 0.227

ResNet+PPM [ZSQ17] 35.8 61.0 0.205 0.243 21.3 40.9 0.078 0.121 33.5 57.6 0.191 0.232

Ourswo/ att 25.2 43.5 0.148 0.195 12.2 25.4 0.053 0.101 18.3 30.3 0.128 0.152

Ourspure att 35.3 59.3 0.194 0.242 20.8 41.6 0.081 0.116 33.0 57.0 0.178 0.226

OursFull 42.9 70.1 0.235 0.263 31.9 56.1 0.143 0.177 39.2 68.4 0.231 0.270
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tual features. The latter relies on sparser annotations and needs an attention mechanism to focus

around humans.

2. Our attention mechanism guides our model to learn better features that improve contact estima-

tion. Ourspure att, which uses unsupervised pure soft-attention, outperforms Ourswo/ att which has

no attention branch. By adding supervision on human-part segmentation in early training stages,

the attention focuses on areas around each human part; intuitively, this helps reasoning about con-

tact by using both human-body and surrounding-object information. Figure 2.12 provides evidence

for this by visualizing the learned attention maps.

3. Learning on “HOT-Generated” is more difficult than on “HOT-Annotated”. This is partially

because, even though we generate contact annotations from relatively “clean” SMPL-X fits by the

involved LEMO [ZZB21] method, which reasons about temporal continuity and occlusion, these are

still a bit noisy. Some reasons are the strong occlusions during interactions, motion blur, the low

resolution for people observed by indoor-monitoring cameras, and the imperfect “hallucination”

of SOTA methods [RBH21, ZZB21] against these ambiguities. Fine-grained contact detection is

sensitive to such errors. This shows the value of “HOT-Annotated”, i.e. the collection of a well-

defined and high-quality dataset of in-the-wild images with rich manual contact annotations, and

points to important future work.

4. Figure 2.14 shows some examples of failure cases. We see that our model might struggle

with occlusions, multiple persons or fine-grained contact areas. We also observe that the model

sometimes fails in distinguishing left and right for the body parts. These point out that contact

detection may benefit from future work on adding human pose information, reasoning from multi-

resolution and differentiating human-object contact with self-contact and person-contact, but these

are currently out of our scope.

2.2.5.2 Comparison with Part-specific Contact Detectors

To evaluate the robustness of our general-purpose full-body contact detector, we compare against

two existing part-specific contact detectors, as shown in Fig. 2.15:

(i) Foot contact: “ContactDynamics” [RGH20] estimates joint-level foot-ground contact from a
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Figure 2.14: Representative failure examples.

Figure 2.15: Comparison of full-body contact detector against part-specific detectors.
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video, while we detect 2D contact areas in single images. We evaluate our model and “Contact-

Dynamics” against the ground-truth foot contact from PROX’s “quantitative set”. Our detector

achieves similar performance (ours 59.2% vs “ContactDynamics” 58.6%), thus, it could be a drop-

in replacement contact detector for the 3D pose estimation application of Rempe et al. [RGH20].

Note that, as Fig. 2.15 shows, “ContactDynamics” simply classifies foot joints as in contact or not,

while we generalize to the full body and detect richer heatmaps.

(ii) Hand contact: “ContactHands” [NNH20] detects hands and classifies their contact state into

“self-contact, “person-person”, and “person-object” (hand-object) contact. We evaluate our model

and “ContactHands” on hand-object contact on a subset of the “HOT-Annotated” test set. We

report contact recognition accuracy under an IoU threshold of 0.4; our detector achieves similar

performance (ours 63.5% vs [NNH20] 62.2%). Note that, as Fig. 2.15 shows, “ContactHands”

detects hands as bounding boxes, while we generalize to the full body with heatmaps.

The fact that our full-body contact detector performs on par with existing part-expert ones

shows good prospects towards developing a general purpose contact detector for diverse human-

object and human-scene interactions.

2.2.5.3 Comparison with Heuristic Contact

The PROX dataset of Hassan et al. [HCT19] enjoys popularity for developing and evaluating HOI

methods. This dataset contains 3D SMPL-X meshes of real humans moving and interacting with

static 3D scenes. The human meshes look physically plausible, and have been reconstructed with an

optimization method that fits SMPL-X to images, with an a-priori known 3D scene. The method

encourages the contact vertices on the human body to be close to the scene while not penetrating

it, where potential contact vertices are manually annotated.

Table 2.5: Contact-driven human pose estimation on PROX’s Quantitative set.

Method No Cont. PROX [HCT19] All Cont. Pred. Cont. GT Cont.

V2V ↓ 183.3 174.0 176.3 172.3 163.0
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Figure 2.16: Example applications of contact detection.

We replace PROX’s manually annotated contact vertices with vertices of the SMPL-X human

parts our detector suggests that are in contact, given the input image. We call this setup “Predicted

Contact” and evaluate this on PROX’s “quantitative set” via the Vertex-to-Vertex (V2V ) error. We

also compare with a baseline with “No Contact” constraints. We use the same optimization process

in PROX [HCT19] for fair comparison. Results in Table 2.5 show that our “Predicted Contact”

is on par with “PROX”, indicating that detecting contact in images is promising for replacing

PROX’s handcrafted heuristics. We also simulate a perfect contact detector using PROX’s ground

truth (“GT Contact”). This shows that there is room and merit for improving image-based contact

detection as future work.

2.2.5.4 Contact Detection Applications

Contact detection is important for applications in many domains such as AR/VR, activity recog-

nition, affordance detection, fine-grained human-object interaction detection (beyond bounding

boxes), 3D human pose estimation and populating scenes with interacting avatars. Here we show-

case several examples in Fig. 2.16. For instance, one possible future direction is to extend the

triplet definition of HOI <human/action/object> by adding contact as <human-part/contact-

area/object>, which supports finer-grained HOI reasoning. Another application is detecting in

videos the areas that people contact, and guiding human cleaners (AR) or robots with heatmaps

for sanitization or contamination prevention.
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2.2.6 Conclusion

Here we focus on human-object contact detection for images. To this end, we introduce the HOT

dataset and propose a new contact estimation method with human-part guided attention. Our

model outperforms the baseline models and shows reasonable generalizability for in-the-wild images.

Experiments provide empirical evidence that human-part attention is critical for contact estimation.

Importantly, our data and model go significantly beyond existing work towards a general-purpose

contact detector for the full body. We believe that this new task and dataset fill a gap in the

literature, and will help the community for several applications.
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CHAPTER 3

Goal-directed, Multi-agent and Multi-task Event

Parsing

In the Chapter, we will introduce how to understand and interpret human actions under the con-

text of goal-directed actions, concurrent multi-tasks, and collaborations among multi-agents. We

introduce the LEMMA dataset to provide a single home to address these missing dimensions in

prior literature with meticulously designed settings, wherein the number of tasks and agents varies

to highlight different learning objectives. We densely annotate the atomic-actions with human-

object interactions to provide ground-truths of the compositionality, scheduling, and assignment

of daily activities. We further devise challenging compositional action recognition and action/task

anticipation benchmarks with baseline models to measure the capability of compositional action

understanding and temporal reasoning.

3.1 Introduction

Activity understanding is one of the most fundamental problems in artificial intelligence and com-

puter vision. As the most readily available learning source, videos of daily human activities could

be used to train intelligent agents and, in turn, to assist humans. However, compared to recent

progress in learning from static images [AAL15, HZR16, HGD17, RHG15], current machine vision’s

ability to understand activities from videos still falls short. Admittedly, activity understanding is

inherently more challenging, which requires reason about the complex structures in activities along

the additional temporal dimension; but we argue there are more profound reasons that we must

look back to the origin of activity understanding.
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Figure 3.1: Illustrations of the LEMMA dataset with annotations.

The study and analysis of human motion perception are rooted in the field of neuroscience [TCS08].

Using a dot-representation of human motions, Johansson [Joh73] adopted a method to produce

proximal patterns (i.e., the moving light display experiment), which demonstrated that human

perception of activities does not tightly couple with pixel-based features; human subjects can still

perceive the semantics of activities from sparse representations of motions. Evidence from develop-

mental psychology, the classic Heider-Simmel experiment, further suggests that we perceive human

activities from as goal-directed behaviors [Woo98, BBS01, GBK02b, CG07]; it is the underlying

intent, rather than the surface pixels or behavior, that matters when we observe motions [BB01].

Such a goal-directed [LMR99] perspective of activity understanding has been largely left un-

touched in computer vision.

Daily human activities are intrinsically multi-tasked [Mon03, RME01]; understanding activity

naturally demands a learning system to interpret concurrent interactions. As agents’ decision-

making processes are deeply affected by their unique social values, task scheduling is significantly af-

fected by interactions (e.g., cooperation, competition, subordination) among multi-agents [KHA16].

These observations implicate that the machine vision system must objectively understand how a

given task should be decomposed into atomic-actions, how multi-tasks should be executed and coor-
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dinated in parallel among multi-agents, and take the perspective from human agents to understand

why the observed human activities are optimal solutions. Such a decompositional, multi-task,

multi-agent, diagnostic-driven, social perspective of activity understanding is critical for an

intelligent agent to understand human behavior and team with humans collaboratively; yet it is

broadly missing in activity understanding literature.

The semantics of human actions are intrinsically ambiguous when described in natural language.

For instance, although both “opening the fridge” and “opening a book” use the action verb “open,”

their semantics of the actions are utterly different. In this work, we take the stance of Grice’s

influential work on language act [Gri75]—technical tools for reasoning about rational action should

elucidate linguistic phenomena [GF16]. Specifically, the compositional relations between the verbs

and nouns could reveal the functionality of the object and the patterns of human-object interactions,

which subsequently facilitate the understanding of the observed human activities and the language

that describes them. Though the previous work [GKM17] attempted to address this issue, more

general and flexible compositional relations for describing human actions interacting with

objects are requisite for a goal-directed activity understanding.

Motivated by these deficiencies in prior work, we introduce the LEMMA dataset to explore

the essence of complex human activities in a goal-directed, multi-agent, multi-task setting with

ground-truth labels of compositional atomic-actions and their associated tasks. By quantifying the

scenarios to up to two multi-step tasks with two agents, we strive to address human multi-task and

multi-agent interactions in four scenarios: single-agent single-task (1 × 1), single-agent multi-task

(1 × 2), multi-agent single-task (2 × 1), and multi-agent multi-task (2 × 2). Task instructions are

only given to one agent in the 2× 1 setting to resemble the robot-helping scenario, hoping that the

learned perception models could be applied in robotic tasks (especially in HRI) in the near future.

Both the third-person views (TPVs) and the first-person views (FPVs) were recorded to account

for different perspectives of the same activities; see Fig. 3.1. We densely annotate atomic-actions

(in the form of compositional verb-noun pairs) and tasks of each atomic-action, to facilitate the

learning of multi-agent multi-task task scheduling and assignment; see more details in Section 3.3.
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3.2 Related Work

In this section, we review and compare prior indoor activity datasets on the basis of tasks and

captured video contents; see a detailed summary in Table 3.1.

Crowd-sourced from online videos and movie sharing platforms, typical large-scale video datasets [SZS12,

KTS14, CEG15, CZ17, FKE18] focus on video-level summarization and classification. Al-

though activity classes exhibit a large inter-class variability, spanning from outdoor sports activities

to indoor household activities, they generally lack sequential, goal-directed activities. Notably, they

suffer from a major drawback [GR20]; activities are highly correlated to the general scene and object

context, possessing a strong dataset bias for activity understanding.

Some datasets tackle the human atomic-actions using short clips or limited tasks, with a focus

on the semantics of action verbs and objects [GKM17], 3D action analysis [LZL10, IPO13, SCH16],

and action grounding with multi-modality inputs [MAZ19]. Although such datasets are suitable for

atomic-actions, they are intrinsically impaired at studying the long-term reasoning of goal-directed

human activities.

Recently, concurrent actions have been taken into consideration. For instance, Charades [SVW16]

is a large-scale benchmark for household activities, and Charades-Ego [SGS18] steps further with

Table 3.1: Comparisons between LEMMA and relevant indoor activity datasets.

Dataset
Task

Annotation
Multi-
agent

Multi-
task

Multi-
view Samples Frames

Action
Classes

Action
Segments

Actions per
Video Modality Year

MPII Cooking [RAA12] ✓ ✗ ✗ ✗ 273 2.9M 88 14,105 51.7 RGB 2012

ADL [PR12] ✗ ✗ ✓ ✗ 20 1.0M 32 436 13.6 RGB 2012

50Salads [SM13] ✓ ✗ ✗ ✗ 50 0.5M 17 966 19.3 RGB-D 2013

CAD-120 [KGS13] ✗ ✗ ✗ ✗ 120 0.1M 10 1,175 9.8 RGB-D 2013

Breakfast [KAS14] ✓ ✗ ✗ ✓ 433 3.0M 50 3,078 7.1 RGB 2014

Watch-n-Patch [WZS15] ✓ ✗ ✗ ✗ 458 0.1M 21 2978 6.5 RGB-D 2015

Charades [SVW16] ✗ ✗ ✓ ✗ 9,848 7.4M 157 67,000 6.8 RGB 2016

Something-Something [GKM17] ✗ ✗ ✗ ✗ 108,499 - 174 108,499 1.0 RGB 2017

EGTEA GAZE+ [LLR18] ✓ ✗ ✗ ✗ 86 2.4M 106 10,325 120.1 RGB 2018

EPIC-KITCHENS [DDM18] ✗ ✗ ✓ ✗ 432 11.5M 149 39,596 91.7 RGB 2018

LEMMA (proposed) ✓ ✓ ✓ ✓ 324 4.6M 641 11,781 36.4 RGB-D 2020
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both FPVs and TPVs. However, the activities involved are mostly unrelated to specific goals due

to the crowdsourced script generation process. Similarly, although Multi-THUMOS [YRJ18] and

AVA [GSR18] focus on highly paralleled activities, and some datasets look at the temporal order

of activities [BLB14, TZS16], the unnaturally scripted activities result in the lack of meaningful

goal-directed tasks exhibited in our daily life.

Conversely, instructional video datasets [ABA16, SM13, KAS14, KGS13, RRR16] tackle goal-

directed multi-step tasks, mostly in cooking, repairing, and assembling activities. In spite of their

relevance, they fail to account for multi-agent or multi-task problems. EPIC-KITCHENS [DDM18]

is perhaps the only exception; it records naturally paralleled task execution of agents in kitchen

environments, but with no task specification or multi-agent interactions. Additionally, prior instruc-

tional video datasets have either drastic view perspective changes [ZXC18, ABA16, TDR19, TCH17]

or limited egocentric view with severe occlusions [PR12, LLR18], hindering the activity understand-

ing.

Another related stream of work is the learning of group-level activities in a multi-agent set-

ting [IMD16], such as detecting key actors [RHA16], predicting future trajectories [PES09, LCL07],

and recognizing collective activities [CSS09, OHP11, SXR15]. However, such coarse-grained multi-

agent interactions leave the latent subtlety of collaboration and task assignment untouched. Al-

though simulation-based multi-agent environments [BKM20, VBC19, BBC19] can partially address

such an issue, learning from noisy and real visual input in physical work is still essential for under-

standing collaborative planning behaviors of agents in the context of complex daily tasks.

The collected LEMMA dataset strives to address the shortcomings of the aforementioned works,

capturing goal-directed, decompositional, multi-task activities with multi-agent collaborations. As

shown in Table 3.1, the size, annotation, and actions per video of LEMMA are at a comparable

scale to state-of-the-art benchmarks. We hope such a design will boost the study of human activity

understanding and potentially motivate new cross-disciplinary research insights.

Contributions This work’s contribution is three-fold. (i) We design and collect a multi-view

video dataset, capturing multi-agent, multi-task activities with goal-directed daily tasks. (ii) We

annotate the dataset, focusing on the compositionality of actions and the governing task for each
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atomic-action. (iii) We provide compositional action recognition and action/task anticipation

benchmarks by considering the aforementioned features; we also compare and analyze multiple

baseline models to promote future research on human activity understanding.

3.3 The LEMMA Dataset

This section describes the design, data collection, and data annotation process of the LEMMA

dataset. The dataset is profiled by various statistics from diversified perspectives to highlight its

potentials in activity understanding.

Activities and Scenarios

We first build a task pool of 15 common tasks in the kitchen (e.g., “make juice,” “make cereal”)

and living room (e.g. “watch TV,” “water plant”). On top of these tasks, we design four types of

scenarios (with a different focus) to study goal-directed multi-step multi-task indoor activities in

multi-agent settings.

1. Single-agent Single-task (1× 1): Each participant was first asked to perform all tasks from

the task pool independently; this ensures participants are clear with the goal of each task and could

schedule and assign tasks efficiently in later multi-task or multi-agent scenarios. Participants were

asked to read the instructions and walk around to get familiarized with the new environments.

2. Single-agent Multi-task (1× 2): Each participant was then asked to simultaneously perform

two tasks, randomly sampled from the task pool. The participants determined the order of task

executions without any restrictions.

3. Multi-agent Single-task (2 × 1): Two participants were asked to perform a single task co-

operatively; the task is randomly selected from the task pool. To emulate human-robot teaming

accurately, only one participant (leader) was provided with task instructions; the other participant

(helper), with no knowledge of the task, was asked to collaborate with the leader agent to finish

the task efficiently. Only nonverbal communications (e.g., gestures) were allowed between two par-

ticipants; this design would open up new venues on nonverbal communications and the emergence
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Figure 3.2: An exemplar task instruction of making juice for two agents.

of language in real-world environments.

4. Multi-agent Multi-task (2 × 2): Both participants were provided with task instructions.

Since both participants were asked to accomplish two complex multi-step tasks collaboratively,

this scenario has the most natural activity/task patterns and richest mechanisms for learning task

scheduling and assignment.

In total, the LEMMA dataset includes 37 unique task combinations in the multi-task scenarios.

Participants were explicitly instructed to perform tasks efficiently and provided with a brief task

instruction with basic environment information. Except for the specification of the goal states for

each task, we add no additional constraint to the order of task execution; participants perform

tasks naturally and freely. Fig. 3.2 shows a sample instruction for the 2× 1 scenario.
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Data Collection

We recorded the data in 7 different Airbnb houses, performed by 8 individuals in 14 unique

kitchens/living rooms. To provide different views of performing the daily activities and avoid

occlusion in narrow spaces, we set up two Kinect Azure cameras to capture the RGB-D videos

of the global scene and human bodies. In addition, each participant was instructed to wear a

head-mounted GoPro camera to capture detailed agent-specific actions in an egocentric view. In

post-processing, we synchronize the camera recordings of all views at a frame rate of 24 FPS.

Fig. 3.2 shows an example of a scene with a point cloud merged from two Kinects and four RGB

views from both Kinects and GoPros. Combining TPVs and FPVs captures most of the details of

performing daily activities, provides sufficient data for understanding human activities, and bene-

fits future research in embodied vision. The additional depth information and 3D human skeletons

captured by Kinects can also be adopted for future 3D understanding tasks.

Ground-truth Annotation

We used the Amazon Mechanical Turk (AMT) to annotate both human bounding boxes and action

information in the synchronized recordings. Specifically, action information includes the temporal

localization of segments, semantic labels, and the governing task of each atomic-action. The seman-

tic labels of atomic-actions are composed of verbs and nouns, representing flexible compositional

relations to describe human actions. Additional details are provided below.

Bounding Boxes and Segments: Bounding boxes of humans are annotated on the primary

view of TPVs. Skeletons captured by Kinects are used to provide initial estimations of bounding

boxes. Next, we use Vatic [VPR13b] to adjust bounding boxes and annotate the segments of

atomic-actions. The segments of atomic-actions are defined by verbs without corresponding nouns,

for example, “put to using ,” “pour into from .” Each video was first annotated by two

AMT workers; task-irrelevant actions (e.g., “walking,” “holding”) are ignored. We then compute

the Intersection over Union (IoU) of both bounding boxes and temporal segments. A third AMT

worker is asked to fine-tune the annotations if the IoU of bounding boxes or segments annotated is
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Figure 3.3: Statistics of the LEMMA dataset.

lower than 0.5.

Atomic-actions and Activities: Given the verbs of the atomic-action segments, two AMT

workers were asked to fill in the blanks of the verb patterns and annotate the governing tasks in

multi-task scenarios with a self-developed interactive annotation tool (see supplementary material).

We allow concurrent actions for each agent with multiple nouns for the same verb; for example,

“get spoon, cup from table using hand.” As there might exist ambiguities in describing the atomic-

actions with natural languages, such as the possible annotations of “wash cup using water” vs.

“wash cup using sink,” we manually go through all the annotations and resolve the ambiguous

action annotations following a uniform criterion. Examples of annotation results are shown in
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Figure 3.4: The co-occurrence statistics for verbs, nouns, and tasks in LEMMA.

supplementary.
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Dataset Statistics

In total, we recorded 324 activities, generating 324 × 2 TPV videos (from both Kinects) and 445

FPV videos. Among them, 136 activities were performed in kitchens and the remaining 188 in the

living rooms. The collected LEMMA dataset consists of 127 1× 1 activities, 76 1× 2 activities, 66

2× 1 activities, and 55 2× 2 activities. The frequency of the recorded tasks is shown in Fig. 3.3b.

The total duration of all the activities is 10.1 hours, with an average duration of 2 minutes per

video and the longest activity of 7 minutes.

We retrieved a total of 4.6 million images during post-processing, including 2.9 million RGB

images captured by both GoPros and Kinects and 1.7 million depth images captured by Kinects.

We annotated 0.9 million RGB frames captured by the primary view Kinect and gathered 0.8

million annotated frames with one or more actions performed by each of the agents (if multiple).

After resolving annotation ambiguities, we collected 24 verb classes and 64 noun classes, result-

ing in 862 compositional atomic-action labels, of which 641 appear more than 50 times. We show

the frequencies of annotated verbs and nouns in Figs. 3.3a and 3.3c; both distributions roughly

follow the Zipf’s law.

Co-occurrence relations among annotated verbs, nouns, and tasks are shown in Fig. 3.4. As

we can see from Figs. 3.4a and 3.4c, verbs like “get” and “put” co-occur with various nouns in

almost all of the tasks, which aligns with our intuition that moving objects around consists a large

portion of our daily activities. Interactive actions between participants are captured by verbs (e.g.,

“point-to”) and nouns (e.g., “P1,” short for “participant 1”) in the form of annotations like “get

knife from P1 using hand” or “point-to sink.”

3.4 Benchmarks

Aligned with our motivations, two general goals are constructed to evaluate indoor human activity

understanding on the collected LEMMA dataset: (i) recognize atomic-actions and their semantics;

and (ii) understand the goal-directed activities and monitor multiple concurrent tasks, especially

in multi-agent scenarios. Specifically, we define two challenging benchmarks to test the capability
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of understanding complex goal-directed activities for computer vision algorithms.

Compositional Action Recognition

Human indoor activities are composed of fine-grained action segments with rich semantics. As

mentioned by Goyal et al. [GKM17], interactions with objects are highly purposive. From the

simplest verb of “put,” we can generate a plethora of combinations of objects and target places,

such as “put cup onto table,” “put fork into drawer.” Situations could become even more challenging

when objects were used as tools; for example, “put meat into pan using fork.”

Motivated by the above observation, we propose the compositional action recognition bench-

mark on the collected LEMMA dataset with each object attributed to a specific semantic position

in the action label. Specifically, we build 24 compositional action templates; see Fig. 3.5a for some

examples. In these action templates, each noun could denote an interacting object, a target or a

source location, or a tool used by a human agent to perform certain actions.

The proposed compositional action recognition benchmark is challenging; it requires computa-

tional models to correctly detect the ongoing concurrent action verbs as well as the nouns at their

correct semantic positions. We evaluate model performances by metrics on compositional action

recognition in both FPVs and TPVs. Specifically, the model is asked to predict (i) multiple labels in

verb recognition for concurrent actions (e.g., “watch tv” and “drink with cup” at the same time),

and (ii) multiple labels in noun recognition for each semantic position given verbs, representing

the interactions with multiple objects using the same action (e.g., “wash spoon, cup using sink”).

Fig. 3.5b shows the schematics of the evaluation process. For training and testing on TPVs, we

provide ground-truth bounding boxes of humans as additional information on spatial localization.

Action and Task Anticipation

As emphasized throughout the work, the most significant factor of human activities is the goal-

directed, teleological stand. An in-depth understanding of goal-directed tasks demands a predictive

ability of latent goals, action preferences, and potential outcomes. To tackle these challenges, we

propose the action and task anticipation benchmark on the collected LEMMA dataset. Specifically,
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Put bread to plate with hand, knife
Get cup, spoon from table with hand
Pour milk into bowl with hand
Blend coffee with spoon
Drink milk with spoon, cup
Fill cup with kettle
Play games with controller

Turn off juicer with hand
Cut watermelon with knife

Turn on microwave with hand
Throw wrapping into trashcan
Point to cereal
Sit on sofa

Switch with remote
Watch TV
Open fridge

Targets Location ToolAction

(a) Compositional action templates

GT: Put watermelon to juicer with knife
Cut watermelon with knife

PR: Get knife, watermelon from table with hand
Cut watermelon with knife

Put Get Cut

... 1 0 … 1 …GT

... 0fn 1fp … 1tp …PR

... 0 … 1 … …GT

... 1fp … 1tp … …PR

Watermelon

... 0 … 1 … …

... 0 … 1tp … …

WatermelonKnife Knife

0 … 1 … … …GT
1fp … 0fn … … …PR

Juicer

0 … 0 … … …
0 … 0 … … …

JuicerTable Table

… 1 … … … 0GT
… 0fn … … … 1fpPR

Hand

… 1 … … … 0
… 1tp … … … 0

Knife Hand Knife

Action

Target

Location

Tool

(b) Prediction of verbs and nouns

Figure 3.5: Compositional action recognition benchmark on LEMMA.

we evaluate model performances for the anticipation (i.e., predictions for the next action segment)

of action and task with both FPV and TPV videos.

This benchmark provides both the training and testing data in all four scenarios of activities

to study the goal-directed multi-task multi-agent problem. As there is an innate discrepancy

of prediction difficulties among these four scenarios, we gradually increase the overall prediction

difficulty, akin to a curriculum learning process, by setting the percentage of training videos to

be 3/4, 1/4, 1/4, and 1/4 for 1 × 1, 1 × 2, 2 × 1 and 2 × 2 scenarios, respectively. Intuitively,

with sufficient clean demonstrations of tasks in 1× 1 scenario, interpreting tasks in more complex

settings (i.e., 1 × 2, 2 × 1, and 2 × 2) should be easier, thus requiring less learning samples; such

a design encourages the model to generalize. The model performance is evaluated individually for

each scenario.

3.5 Experiments

In this section, we conduct experiments on the two proposed benchmarks with details on evaluation

metrics, experimental settings, and baseline results. We further discuss the results to highlight the
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underlying challenges of each task.

Compositional Action Recognition

Experimental Setup: We randomly split all the video samples into training and test sets with

a ratio of 3:1, resulting in 243 recorded activities for training and the remaining 81 for testing.

Due to the multi-agent setup, each activity may have multiple FPVs; 333 (out of 445) FPV videos

are split into training. In TPVs, the recordings of the primary view with the ground-truth human

bounding box annotations are given for both training and testing videos. Results are evaluated on

two separate sources of inputs: FPVs and TPVs.

Evaluation Metrics: Model performances are evaluated separately for verbs, nouns, and com-

positional action recognition. Verb and compositional action recognition are treated as multi-label

classifications with 25 verb classes and 863 compositional action classes (including a “null” action).

After generating multi-hot labels for each semantic position in the presented verb, noun recognition

is evaluated as multi-label classification (64 object classes). Average precision, recall, and F1-score

for all predictions are reported on testing sets. During the evaluation, we sample image frames at

5 FPS and evaluate on these frames.

Methods: We adopt two recent 3D-CNN networks, I3D [CZ17] and SlowFast Network [FFM19],

as the baseline models. The baseline models predict the compositional action directly. Considering

compositionality of verbs and nouns, we propose two variants of the baseline models: (i) a multi-

branch network (branching model) that builds on the bottleneck layer of the backbone models to

leverage both verb and noun supervision, and (ii) a multi-step inference model (sequential model),

wherein verbs are first inferred with a beam search and then fed into object inference with their

verb embeddings for joint learning.

Implementation Details: The training procedure utilizes all annotated segments in the train-

ing set. Additionally, we re-scale all the images with the short side to 256 pixels. To feed data

into 3D-CNN models, 4 frames are first sampled for each action segment as center frames, and
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an additional 8 frames are then uniformly sampled around center frames with a window length of

32. We train each model on 8 Titan RTX GPUs on a single computing node for 50 epochs (20k

iterations) with a batch size of 96. We use warm-up strategy and perform large mini-batch batch

normalization, as suggested in [GDG17]. The learning rate is initially set to 0.0125 for each parallel

branch and decays with a cosine annealing. Other settings of the backbone models are the same

as in [FFM19]. For the proposed sequential model, we use the beam search with a size of 5 for

action inference. We extract bounding box features of humans with ROIAlign [HGD17] for frames

in TPVs. More implementation details are provided in supplementary material.

Results and Discussion: Table 3.2 shows quantitative results of predicting verbs, nouns,

and compositional actions for the compositional action recognition task. For FPVs, rather than

directly predicting the compositional actions (baseline models), predicting the verbs and nouns

with their semantic positions boosts the performance on all metrics, indicating that understanding

the compositional structures of human actions indeed supports the prediction. We also observe

that the results of compositional action recognition in the sequential models are slightly lower than

the branching model due to the aggregated error brought in by a relatively low precision (∼25%)

of the verb recognition.

In comparison, the results of compositional action recognition in TPVs are significantly lower

than those in the FPVs due to severe occlusion. It also shows that predicting the composition of

verbs and nouns makes no significant improvement compared with predicting compositional action

directly. Such a result implies that current models could not capture the details of compositions

between verbs and nouns from TPVs. Taken together, the results indicate that fusion among the

representations of visual embodiment between TPVs and FPVs might be a crucial ingredient to

tackle this problem in the future.

Fig. 3.6 shows qualitative results for the composed action recognition task.
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Table 3.2: Comparisons of compositional action recognition on LEMMA.

View
Type Method

Verb Noun Compositional Action

Avg.Prec Avg.Rec Avg.F1 Avg.Prec Avg.Rec Avg.F1 Avg.Prec Avg.Rec Avg.F1

F
P

V

I3D 17.09 43.89 24.60 3.42 16.15 5.72 11.07 39.49 17.30

Slowfast 22.27 56.42 31.94 4.31 20.60 7.13 18.68 50.65 27.3

I3D sequential 25.04 57.00 34.80 19.36 75.29 30.80 18.00 50.04 26.47

Slowfast sequential 24.30 49.71 32.64 17.95 59.11 27.54 26.80 38.41 31.57

I3D branching 25.73 55.62 35.8 18.63 69.76 29.41 22.29 48.46 30.53

Slowfast branching 26.16 56.33 35.73 18.18 73.46 29.15 27.97 48.87 35.58

T
P

V

I3D 14.18 36.34 20.40 2.29 11.05 3.79 6.85 23.82 10.64

Slowfast 14.28 37.38 20.66 2.32 11.14 3.83 7.76 23.25 16.31

I3D sequential 16.17 30.17 21.05 7.79 25.41 11.93 2.23 12.67 3.79

Slowfast sequential 15.31 28.84 20.00 6.37 22.39 9.92 3.27 9.16 4.82

I3D branching 12.92 32.09 18.43 12.75 17.70 14.82 4.67 20.76 7.6

Slowfast branching 16.64 33.40 22.21 17.29 18.36 17.81 6.52 21.55 10.01

Figure 3.6: Qualitative results of compositional action recognition on LEMMA.

Action and Task Anticipations

Experimental Setup: We split the training and test sets with ratios 3 : 1, 1 : 3, 1 : 3, 1 : 3 for

the four scenarios 1 × 1, 1 × 2, 2 × 1, 2 × 2, respectively. Such a spit results in training set with
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(96, 19, 16, 13) activities and a test set with (31, 57, 50, 42) activities in four scenarios. During

training and testing, the computational models have access to both FPVs and TPVs, together with

the ground-truth human bounding boxes annotations of the TPV primary view.

Evaluation Metrics: Model performances are evaluated individually (per agent) for the action

and task anticipations task. Specifically, both action and task anticipations are evaluated as multi-

label classifications with 863 compositional action classes (including a “null” action) and 15 task

classes. Average precision, recall, and F1-score are reported individually for each of the four

scenarios on the testing sets. Similar to the protocol used in the above compositional action

recognition task, we re-sample image frames at 5 FPS and evaluate these sub-sampled frames

during the testing phase.

Methods: We leverage the visual features extracted by the pre-trained SlowFast model in com-

positional action recognition for baseline models. Specifically, we compare two backbone models:

(i) using segment-level recognition feature (SF) directly by adding an MLP on top of the features,

and (ii) using long-term feature bank (LFB) with max pooling [WFF19]. For activities with multi-

agent interactions, we use the other agent’s FPV features together with their own’s to capture the

joint task execution progress for learning and inference; these variants are denoted as M-SF (FPV)

and M-LFB (FPV) For comparison, we also use the concatenation of the FPV feature and primary

TPV feature as the input; the corresponding models are denoted as M-SF (TPV) and M-LFB

(TPV).

Implementation Details: For the LFB model, we use a history window size of 10 and aggre-

gate the features using max-pooling, as described in [WFF19]. For the multi-agent variants, we

use max-pooling to fuse features of two views and process them with a different branch as another

temporal inference module. We train models on a single Titan Xp GPU for 50 epochs with a

learning rate of 0.001. See supplementary material for more details on network architectures.

Results and Discussion: Table 3.3 shows quantitative results of action and task anticipation.

The proposed multi-agent variants (M-) of baseline models perform the best among all models.
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Table 3.3: Comparisons of the action and task anticipations on LEMMA.

Scenario Method
1 × 1 1 × 2 2 × 1 2 × 2

Avg.Prec Avg.Rec Avg.F1 Avg.Prec Avg.Rec Avg.F1 Avg.Prec Avg.Rec Avg.F1 Avg.Prec Avg.Rec Avg.F1

C
om

p
os

it
io

n
al

ac
ti

on

SF 23.42 22.25 22.82 20.13 20.06 20.10 18.89 19.22 19.05 18.31 16.67 17.45

LFB 23.03 28.67 25.54 20.48 25.4 22.67 18.31 22.30 20.11 18.53 20.97 19.68

M-SF (TPV) 24.22 28.05 25.99 20.10 24.48 22.08 19.15 16.71 17.85 19.64 15.18 17.12

M-LFB (TPV) 23.54 37.81 29.01 21.10 31.86 25.39 19.67 21.03 20.33 20.11 20.30 20.15

M-SF (FPV) 23.30 25.41 24.31 21.34 23.18 22.22 19.70 17.46 18.51 19.82 15.8 17.58

M-LFB (FPV) 23.26 31.07 26.60 20.78 27.40 23.63 19.42 21.73 20.51 19.49 20.12 19.8

T
as

k

SF 50.53 79.08 61.66 48.07 67.78 56.25 39.05 57.43 46.49 44.88 62.09 52.1

LFB 57.57 84.31 68.42 52.12 68.94 59.36 38.40 53.08 44.56 48.17 64.61 55.19

M-SF (TPV) 58.61 79.96 67.05 55.45 67.24 60.78 45.73 58.98 51.51 49.66 64.47 56.10

M-LFB (TPV) 60.27 82.19 69.54 56.2 72.46 63.30 43.94 61.41 51.23 48.85 67.48 56.67

M-SF (FPV) 51.12 79.18 62.13 48.42 69.04 56.92 41.00 58.11 48.08 46.04 65.97 54.24

M-LFB (FPV) 55.56 82.83 66.51 52.22 70.01 59.82 41.33 64.49 50.38 46.65 69.59 55.86

For single-agent activities (1× 1, 1× 2), we have the following crucial observations. First, models

that consider temporal relations between frames generally perform better than the models using

segment features. Second, adding additional TPV features to single-agent activities slightly helps

interpret the task being executed and therefore promotes anticipation. This result matches the

intuition that computational models having access to both FPVs and TPVs would perceive more

holistic scene information. We also find that the performances of task anticipation in the 1 × 1

single-task scenario are better than the one in the 1 × 2 multi-task scenario, matching what we

would expect from more complicated task execution patterns.

For multi-agent activities (2 × 1, 2 × 2), we observe that the aggregation of FPV and TPV

features generally performs better. It supports our hypothesis that observing the other agents’

actions helps the computational models to “understand” task scheduling and assignment. We also

observe that, models’ performances in 2 × 1 activities are slightly worse than in 2 × 2 activities.

We hypothesize that task plans in the 2 × 2 scenarios change less frequently, with a clear task

assignment coordinates the individual tasks. In comparison, in the 2× 1 scenarios, the sequential

ordering of the task requires more frequent communications between agents to coordinate. Such a

performance gap calls for better modeling of multi-agent task assignments. Due to the page limit,

we show qualitative results of action and task anticipation in the supplementary material.
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3.6 Conclusions

In this work, we introduce the LEMMA dataset with a focus on natural multi-agent multi-task

daily activities. Dense annotations are provided on both compositional action and task for learning

and inference on four different activity scenarios with increasing difficulty. Additionally, we propose

two challenging tasks on LEMMA to measure existing models’ competence in action understanding

and temporal reasoning: (i) compositional action recognition, and (ii) action/task anticipations.

We hope this effort would attract the computer vision community to look into natural and realistic

goal-directed human activities and further study the task scheduling and assignment in real-world

scenarios.

65



CHAPTER 4

Human Communication in Shared Attention and

Embodied Reference

In this chapter, we will talk another important aspect in scene and activity understanding: human

communications comprehension, in which shared attention and referential behavior are two typical

form involving both verbal and non-verbal signals. Both conveys vivid and complex messages

and play critical role towards social interaction and Theory of Mind (TOM). We first study the

machine’s understanding of embodied reference where one agent uses both language and gesture to

refer to an object to another agent in a shared physical environment. Then we address the problem

of inferring shared attention in third-person social scene videos.

4.1 YouRefIt: Embodied Reference Understanding with Language

and Gesture

4.1.1 Introduction

Human communication [Tom10] relies heavily on establishing common ground [TSZ20, SZZ20]

by referring to objects in a shared environment. This process usually takes place in two forms:

language (abstract symbolic code) and gesture (unconventionalized and uncoded). In the computer

vision community, efforts of understanding reference have been primarily devoted in the first form

through an artificial task, Referring Expression Comprehension (REF) [YPY16, HRA17, YLS18,

LWS19, YRL19, YLY19, YLY20], which localizes a particular object in an image with a natural

language expression generated by the annotator. Evidently, the second form, gesture, has been
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Figure 4.1: Embodied reference in daily deictic-interaction scenario.

left almost untouched. Yet, this nonverbal (gesture) form is more profound in the communication

literature compared to the pure verbal (language) form with ample evolutionary evidence [ALP08,

McN12, HRT13]; it is deeply rooted in human cognition development [LCH04, LCS06] and learning

process [CMG08], and tightly coupled with the language development [Kit03, CSK10, IG05].

Fundamentally, most modern literature deviates from the natural setting of reference under-

standing in daily scenes, which is embodied: An agent refers to an object to another in a shared

physical space [QLZ20, WWZ21, FQZ21], as exemplified by Fig. 4.1. Embodied reference pos-

sesses two distinctive characteristics compared to REF. First, it is multimodal. People often

use both natural language and gestures when referring to an object. The gestural component and

language component are semantically coherent and temporally synchronous to coordinate with one

another, creating a concise and vivid message [Ken04] while elucidating the overloaded meaning if
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only one modality is presented [JSW21]. Second, recognizing embodied reference requires visual

perspective-taking [KF91, BES97, QLZ20], the awareness that others see things from different

viewpoints and the ability to imagine what others see from their perspectives. It requires both

the message sender and receiver to comprehend the immediate environments [FQZ21], including

the relationship between the interlocutors and the relationships between objects, in the shared

perceptual fields for effective communication.

To address the deficiencies in prior work and study reference understanding at a full spectrum,

we introduce a new dataset, YouRefIt, for embodied reference understanding. The reference

instances in YouRefIt are crowd-sourced with diverse physical scenes from Amazon Mechanic Turk

(AMT). Participants are instructed to film videos in which they reference objects in a scene to an

imagined person (i.e., a mounted camera) using both language and gestures. Minimum requirements

of the scenes, objects, and words are imposed to ensure the naturalness and the variety of collected

videos. Videos are segmented into short clips, with each clip containing an exact one reference

instance. For each clip, we annotate the reference target (object) with a bounding box. We also

identify canonical frames in a clip: They are the “keyframes” of the clip and contain sufficient

information of the scene, human gestures, and referenced objects that can truthfully represent the

reference instance. Fine-grained semantic parsing of the transcribed sentences is further annotated

to support a detailed understanding of the sentences. In total, the YouRefIt dataset includes 4,195

embodied reference instances from 432 indoor scenes.

To measure the machine’s ability in Embodied Reference Understanding (ERU), we devise two

benchmarks on top of the proposed YouRefIt dataset. (i) Image ERU takes a canonical frame and

the transcribed sentence of the reference instance as the inputs and predicts the bounding box of the

referenced object. Image ERU adopts the settings from the well-studied REF but is inherently more

challenging and holistic due to its requirement on a joint and coherent understanding of human

gestures, natural language, and objects in the context of human communication. (ii) Video ERU

takes the video clip and the sentence as the input, identifies the canonical frames, and locates the

reference target within the clip. Compared to Image ERU, Video ERU takes one step further and

manifests the most natural human-robot communication process that requires distinguishing the

initiation, the canonical frames, and the ending of a reference act while estimating the reference
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target in a temporal order.

Incorporating both language and gestural cues, we formulate a new multimodal framework to

tackle the ERU tasks. In experiments, we provide multiple baselines and ablations. Our results

reveal that models with explicit gestural cues yield better performance, validating our hypothesis

that gestural cues are as critical as language cues in resolving ambiguities and overloaded semantics

with cooperation (perspective-taking) in mind [JSW21, JCH20, QLZ20, YLF20, ZGF20], echoing a

recent finding in the embodied navigation task [WWZ21]. We further verify that temporal cues are

essential in canonical frame detection, necessitating understanding embodied reference in dynamic

and natural sequences.

This work makes three major contributions. (i) We collect the first video dataset in physical

scenes, YouRefIt, to study the reference understanding in an embodied fashion. We argue this is a

more natural setting than prior work and, therefore, further understanding human communications

and multimodal behavior. (ii) We devise two benchmarks, Image ERU and Video ERU, as the pro-

tocols to study and evaluate the embodied reference understanding. (iii) We propose a multimodal

framework for ERU tasks with multiple baselines and model variants. The experimental results

confirm the significance of the joint understanding of language and gestures in embodied reference.

4.1.2 Related Work

Our work is related to two topics in modern literature: (i) Referring Expression Comprehension

(REF) studied in the context of Vision and Language, and (ii) reference recognition in the field of

Human-Robot Interaction. Below, we compare our work with prior arts on these two topics.

4.1.2.1 Referring Expression Comprehension (REF)

REF is a visual grounding task. Given a natural language expression, it requires an algorithm

to locate a particular object in a scene. Several datasets, including both images of physical

scenes [KOM14, YPY16, MHT16, PWC15, DSC17, CWM20, CBM20, AAX20] and synthetic im-

ages [LLB19], have been constructed by asking annotators or algorithms to provide utterances de-

scribing regions of images. To solve REF, researchers have attempted various approaches [YRL19,
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Table 4.1: Comparisons between YouRefIt and other reference datasets. happens.

Datasets Lang. Gest. Embo. Type Source
No. of

images

No. of

instances

No. of object

categories

Ave. sent.

length

PointAt [SRF10] ✗ ✓ ✓ image lab 220 220 28 -

ReferAt [SF10] ✓ ✓ ✓ video lab - 242 28 -

IPO [SEP15] ✗ ✓ ✓ image lab 278 278 10 -

IMHF [SEP16] ✗ ✓ ✓ image lab 1716 1,716 - -

RefIt [KOM14] ✓ ✗ ✗ image image CLEF 19,894 130,525 238 3.61

RefCOCO [YPY16] ✓ ✗ ✗ image MSCOCO 19,994 142,209 80 3.61

RefCOCO+ [YPY16] ✓ ✗ ✗ image MSCOCO 19,992 141,564 80 3.53

RefCOCOg [MHT16] ✓ ✗ ✗ image MSCOCO 26,711 104,560 80 8.43

Flickr30k entities [PWC15] ✓ ✗ ✗ image Flickr30K 31,783 158,915 44,518 -

GuessWhat? [DSC17] ✓ ✗ ✗ image MSCOCO 66,537 155,280 - -

Cops-Ref [CWM20] ✓ ✗ ✗ image COCO/Flickr 75,299 148,712 508 14.40

CLEVR-Ref+ [LLB19] ✓ ✗ ✗ image CLEVR 99,992 998,743 3 22.40

YouRefIt ✓ ✓ ✓ video crowd-sourced 497,348 4,195 395 3.73

LWS19, YLY19, YLY20]. Representative methods include (i) localizing a region by reconstruct-

ing the sentence using an attention mechanism [RRH16], (ii) incorporating contextual information

to ground referring expressions [ZNC18, YPY16], (iii) using neural modular networks to better

capture the structured semantics in sentences [HRA17, YLS18], and (iv) devising a one-stage ap-

proach [YGW19, YCW20]. In comparison, our work fundamentally differs from REF at two levels.

Task-level REF primarily focuses on building correspondence between visual cues and verbal

cues (natural language). In comparison, the proposed ERU task mimics the minimal human com-

munication process in an embodied manner, which requires a mutual understanding of both verbal

and nonverbal messages signaled by the sender. Recognizing references in an embodied setting also

introduces new challenges, such as visual perspective-taking [GMG08]: The referrers need to con-

sider the perception from the counterpart’s perspective for effective verbal and nonverbal commu-

nication, requiring a more holistic visual scene understanding both geometrically and semantically.

In this work, to study the reference understanding that echoes the above characteristics, we collect

a new dataset containing natural reference scenarios with both language and gestures.
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Model-level Since previous REF approaches are only capable of comprehending communicative

messages in the form of natural language and mostly ignore the gestural cues, it is insufficient in

the ERU setting or to be applied in our newly collected dataset. To tackle this deficiency, we design

a principled framework to combine verbal (natural language) and nonverbal (gestures) cues. The

proposed framework outperforms prior single-modality methods, validating the significant role of

the gestural cue in addition to the language cue in embodied reference understanding.

4.1.2.2 Reference in Human-Robot Interaction

The combination of verbal and nonverbal communication for reference is one of the central topics in

Human-Robot Interaction. Compared with REF, this line of work focuses on more natural settings

but with specialized scenarios. One stream of work emphasizes pointing direction and thus are not

object-centric while missing language reference: The Innsbruck Pointing at Objects dataset [SEP15]

investigates two types of pointing gestures with index finger and tool, and the Innsbruck Multi-View

Hand Gesture Dataset [SEP16] records hand gestures in the context of human-robot interaction

in close proximity. The most relevant prior arts are ReferAt [SF10] and PointAt [SRF10], wherein

participants are tasked to point at various objects with or without linguistic utterance. Some other

notable literature includes (i) a robotics system that allows users to combine natural language and

pointing gestures to refer to objects on a display [KAR86], (ii) experiments that investigate the

semantics and pragmatics of co-verbal pointing through computer simulation [LPR15], (iii) deictic

interaction with a robot when referring to a region using pointing and spatial deixis [HSK10], and

(iv) effects of various referential strategies, including talk-gesture-coordination and handshape, for

robots interacting with humans when guiding attentions in museums [PW14].

Although related, the above literature is constrained in lab settings with limited sizes, scenar-

ios, and expressions, thus insufficient for solving the reference understanding in natural, physical

scenarios with both vision and language. In comparison, crowd-sourced by AMT, our dataset is

much more diverse in environment setting, scene appearance, and types of utterance. Our dataset

also collects videos instead of static images commonly used in prior datasets, opening new venues

to study dynamic and evolutionary patterns that occurred during natural human communications.
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4.1.3 The YouRefIt Dataset

To study the embodied reference understanding, we introduce a new dataset named YouRefIt, a

video collection of people referring to objects with both natural language and gesture in indoor

scenes. Table 4.1 tabulates a detailed comparison between YouRefIt against twelve existing ref-

erence understanding datasets. Compared to existing datasets collected either in laboratories or

from the Internet (MSCOCO/Flickr) or simulators (CLEVR), YouRefIt has a clear distinction: It

contains videos crowd-sourced by AMT, and thus the reference happens in a more natural setting

with richer diversity. Compared with the datasets on referring expression comprehension, the re-

ferrers (human) and the receivers (camera) in our dataset share the same physical environment,

with both language and gesture allowed for referring to objects; the algorithm ought to understand

from an embodiment perspective to tackle this problem. Next, we discuss the data collection and

annotation process details, followed by a comprehensive analysis.

4.1.3.1 Data Collection

Our dataset was collected via AMT; see the data collection process in Fig. 4.2. Workers were asked

to record a video containing actions of referring to objects in the scene to an imagined person (i.e.,

the camera) using both natural languages (sentences) and pointing gestures. Most videos were

collected in indoor scenes, such as offices, kitchens, and living rooms. Unlike existing datasets in

which objects are usually put on a table with a clean background, all the objects in our collected

videos were placed at their natural positions. Each video also included more than ten objects in

the scene to avoid trivial scenarios and increase the reference difficulty. The camera was set up

such that the referrer and all referred objects are within the field of view.

When referring to a specific object, participants were instructed to use arbitrary natural lan-

guages and gestures freely. However, they were also required to avoid potential ambiguities, such

that the observer would be able to uniquely identify the referred object by merely observing the

reference behaviors. After reference actions were finished, participants were instructed to tap the

referred object; this extra step helps annotate the referred target. In addition to the voices recorded

in the video, participants were also asked to write down the sentences after the recording.
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Figure 4.2: Illustration of the YouRefIt dataset collection procedure.

4.1.3.2 Data Annotation

The annotation process takes two stages: (i) annotation of temporal segments, canonical frames,

and referent bounding boxes, and (ii) annotation of sentence parsing. Please refer to the supple-

mentary material for more details of the data post-processing and annotation process.
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Segments Since each collected video consists of multiple reference actions, we first segment the

video into clips; each contains an exact one reference action. A segment is defined from the start

of gesture movement or utterance to the end of the reference, which typically includes the raise of

hand and arm, pointing action, and reset process, synchronized with its corresponding language

description.

Canonical Frames In each segment, the annotators were asked to annotate further the canon-

ical moments, which contain the “keyframes” that the referrer holds the steady pose to indicate

what is being referred clearly. Combined with natural language, it is sufficient to use any canonical

frame to localize the referred target.

Bounding Boxes Recall that participants were instructed to tap the referred objects after each

reference action. Using this information, bounding boxes of the referred objects were annotated

using Vatic [VPR13b], and the tapping actions were discarded. The object color and material were

also annotated if identifiable. The taxonomy of object color and material is adopted from Visual

Genome dataset [KZG17].

Sentence Parsing Given the sentence provided by the participants who performed reference

actions, AMT annotators were asked to refine the sentence further and ensure it matches the raw

audio collected from the video. We further provided more fine-grained parsing results of the sentence

for natural language understanding. AMT annotators annotated target, target-attribute, spatial-

relation, and comparative-relation. Take “The largest red bottle on the table” as an example: “the

bottle” will be annotated as the target, “red” as target-attribute, “on the table” as spatial-relation,

and “largest” as comparative-relation. For each relation, we further divided them into “relation”

(e.g., “on”) and “relation-target” (e.g., “the table”).

4.1.3.3 Dataset Statistics

In total, YouRefIt includes 432 recorded videos and 4,195 localized reference clips with 395 object

categories. We retrieved 8.83 hours of video during the post-processing and annotated 497,348
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Figure 4.3: Statistics of the YouRefIt dataset.

frames. The total duration of all the reference actions is 3.35 hours, with an average duration of

2.81 seconds per reference. Each reference process was annotated with segments, canonical frames,

bounding boxes of the referred objects, and sentences with semantic parsing. All videos were

collected with synchronized audio. We also included the body poses and hand keypoints of the

participants extracted by the OpenPose [CMS19].

Object Categories Fig. 4.3a shows the frequencies of the top-20 referred object categories,

which roughly follow the Zipf’s law [Zip49]. Since most videos were shot in indoor scenes, the most

frequently referred are daily objects, such as “chair,” “bottle,” and “cup.”

Reference Sentence Fig. 4.3c shows the word cloud of sentences after removing the stop words.

Interestingly, the most frequent word is “table,” which is not even in the top-5 referred objects.

A further inspection implies that the “table” is the most frequently used relational object while

referring to objects by natural languages. Fig. 4.3b shows the distribution of sentence lengths with

an average of 3.73. We observe that the sentences in YouRefIt are much shorter than those of

language-only reference datasets (e.g., 8.43 for RefCOCOg and 14.4 for Cops-Ref). This discrep-

ancy implies that while naturally referring to objects, humans prefer a multimodal communication

pattern that combines gestures with fewer words (compared to using a single modality) to minimize

the cognitive load [SVP98].
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4.1.4 Embodied Reference Understanding (ERU)

In this section, we benchmark two tasks of embodied reference understanding on the YouRefIt

dataset, namely, Image ERU and Video ERU. The first benchmark evaluates the performance of

understanding embodied reference based on the canonical frame, whereas the second benchmark

emphasizes how to effectively recognize the canonical moments and reference targets simultaneously

in a video sequence. Below, we describe the detailed settings, baselines, analyses, and ablative

studies in the experiments.

Dataset Splits We randomly split the dataset into the training and test sets with a ratio of

7:3, resulting in 2,950 instances for training and 1,245 instances for testing.

4.1.4.1 Image ERU

Given the canonical frame and the sentence from an embodied reference instance, Image ERU aims

at locating the referred object in the image through both the human language and gestural cues.

Experimental Setup and Evaluation Protocol For each reference instance, we randomly

pick one frame from the annotated canonical frames. We adopt the evaluation protocol similar to

the one presented in Mao et al. [MHT16]: (i) predict the region referred by the given image and

sentence, (ii) compute the IoU ratio between the ground-truth and the predicted bounding box,

and (iii) count it as correct if the IoU is larger; otherwise wrong. We use accuracy as the evaluation

metric. Following object detection benchmark [GLU12], we report the results under three different

IoUs: 0.25, 0.5, and 0.75.

We also evaluate on subsets with various object sizes, i.e., small, medium and large. Object

size is estimated using the ratio between the area of the ground-truth object bounding box and the

area of the image. The size thresholds are 0.48% and 1.76% based on the size distribution in the

dataset; see the size distribution in supplementary material.
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Figure 4.4: The proposed multimodal framework for the ERU task.

Methods We devise a novel multimodal framework for Image ERU that leverages both the

language and gestural cues; see Fig. 4.4. At a high level, our framework includes both the visual

and language encoder, similar to prior REF models [YGW19, YCW20, LZS20], as well as explicitly

extracted gesture features. We utilize the features from three modalities to effectively predict the

target bounding box.

Specifically, we use Darknet-53 [RF18] pre-trained on COCO object detection [LMB14] as the

visual encoder. The textual encoder is the uncased base version of BERT [DCL18] followed by

two fully connected layers. We incorporate two types of gestural features: (i) the Part Affinity

Field (PAF) [CMS19] heatmap, and (ii) the pointing saliency heatmap. Inspired by the visual

saliency prediction, we train MSI-Net [KSD20] on the YouRefIt dataset to predict the salient

regions by considering both the latent scene structure and the gestural cues, generating more

accurate guidance compared to the commonly used Region of Interests (RoIs); see some examples

of predicted salient regions in Fig. 4.5. We aggregate the visual feature and PAF heatmaps by max-

pooling and concatenation, fusing them with textual features by updating text-conditional visual

features attended to different words through a sub-query module [YCW20]. Following convolution

blocks, the saliency map feature is concatenated with the text-conditional visual feature as the

high-level guidance to predict anchor boxes and confidence scores; we use the same classification

and regression loss as in Yang et al. [YGW19] for anchor-based bounding box prediction.

Baselines and Ablations We first evaluate the Image ERU performance on FAOA [YGW19]

and ReSC [YCW20], originally designed for the REF task. We also design baselines to test the
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gestural cues in a two-stage architecture, similar to MAttNet [YLS18]. We generate the RoIss by

Region Proposal Network from Faster R-CNN [RHG16] pre-trained on the MSCOCO dataset. To

score the object proposal, we test two categories of heatmaps that reflect the gestural cues. (i)

By pointing heatmap from the primary pointing direction characterized by arm, hand, and index

finger. Following Fan et al. [FCW18], we generate the pointing heatmap by a Gaussian distribution

to model the variation of a pointing ray w.r.t the primary pointing direction. We choose 15◦ and

30◦ as the standard deviations (i.e., RPNpointing15 and RPNpointing30). (ii) By pointing saliency

map (i.e., RPNsaliency). The scores are computed according to the heatmap of average density.

We design ablation studies from two aspects: data and architecture. For the data-wise ab-

lation, we first evaluate the MattNet, FAOA, and ReSC models pre-trained on the REF datasets

RefCOCO, RefCOCO+, and RefCOCOg, where the references are not embodied. Therefore, these

three pre-trained models neglect the human gestural cues. Next, for a fair comparison without the

gestural cues, we further generate an inpainted version of YouRefIt, where humans are segmented

and masked by a pre-trained Mask R-CNN [HGD17], and the masked images are inpainted by

DeepFill [YLY18b, YLY18a] pre-trained on the Places2 [ZLK17] dataset; see examples in Fig. 4.5.

After the human gestural cues are masked out, we train FAOA and ReSC on the inpainted dataset,

denoted as FAOAinpaint and ReSCinpaint. For the architecture-wise ablation, we compare two vari-

ants of our proposed full model to evaluate the contribution of different components: (i) Oursno lang:

without the language embedding module, and (ii) OursPAF only: with the PAF heatmap as the only

gestural cue; see the supplementary material for more details.

Results and Discussion Table 4.2 tabulates the quantitative results of the Image ERU, and

Fig. 4.5 shows some qualitative results. We categorize the models based on their information

sources: Language-only, Gesture-only, and Language + Gesture. Below, we summarize some key

findings.

1. Gestural cues are essential for embodied reference understanding. As shown in Table 4.2, FAOA

and ReSC models show significant performance improvement when trained on the original YouR-

efIt dataset compared to that on the inpainted version. Of note, in embodied reference, the

referrer will adjust their own position to ensure the referred targets are not blocked by its body,
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Figure 4.5: Qualitative results in Image ERU.

one of the main advantages introduced by perspective-taking. As such, the inpainted images

always contain the reference targets with only gestural cues masked.

2. Language cues elucidate ambiguities where the gestural cues alone cannot resolve. As shown

by the Gesture-only models, RPN+heatmap models possess ambiguities when presented with

gestural cues alone; pointing gestures suppress the descriptions of target location and attend to

spatial regions but are not object-centric. Without the referring expressions, the performance

of Oursno lang also deteriorates compared to OursFull.

3. Explicit gestural features are beneficial for understanding embodied reference. OursPAF only,

which incorporates PAF features that encode unstructured pairwise relationships between body

parts, outperforms the original FAOA and ReSC models. By further adding the saliency

heatmap, our full model OursFull achieves the best performance in all baselines and ablations.

Taken together, these results strongly indicate that the fusion of the language and gestural cues

could be the crucial ingredient to achieving high model performance.

Human Performance We also conducted a human study of the embodied reference under-

standing task. We ask three Amazon Turkers to annotate the referred object bounding box in 1,000
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Table 4.2: Comparisons of Image ERU performances on the YouRefIt dataset.

Model
IoU=0.25 IoU=0.5 IoU=0.75

all small medium large all small medium large all small medium large

Language-only

MAttNetpretrain 14.2 2.3 4.1 34.7 12.2 2.4 3.8 29.2 9.1 1.0 2.2 23.1

FAOApretrain 15.9 2.1 9.5 34.4 11.7 1.0 5.4 27.3 5.1 0.0 0.0 14.1

FAOAinpaint 23.4 14.2 23.6 32.1 16.4 9.0 17.9 22.5 4.1 1.4 4.7 6.2

ReSCpretrain 20.8 3.5 17.5 40.0 16.3 0.5 14.8 36.7 7.6 0.0 4.3 17.5

ReSCinpaint 34.3 20.3 38.9 44.0 25.7 8.1 32.4 36.5 9.1 1.1 10.1 16.0

Gesture-only

RPN+Pointing15 15.3 10.5 16.9 18.3 10.2 7.2 12.4 11.0 6.5 3.8 9.1 6.6

RPN+Pointing30 14.7 10.8 17.0 16.4 9.8 7.4 12.4 9.8 6.5 3.8 8.9 6.8

RPN+Saliency[KSD20] 27.9 29.4 34.7 20.3 20.1 21.1 26.8 13.2 12.2 10.3 17.9 8.6

Oursno lang 41.4 29.9 48.3 46.3 30.6 17.4 37.0 37.4 10.8 1.7 13.9 16.6

Language + Gesture

FAOA[YGW19] 44.5 30.6 48.6 54.1 30.4 15.8 36.2 39.3 8.5 1.4 9.6 14.4

ReSC[YCW20] 49.2 32.3 54.7 60.1 34.9 14.1 42.5 47.7 10.5 0.2 10.6 20.1

OursPAF only 52.6 35.9 60.5 61.4 37.6 14.6 49.1 49.1 12.7 1.0 16.5 20.5

OursFull 54.7 38.5 64.1 61.6 40.5 16.3 54.4 51.1 14.0 1.2 17.2 23.3

Human 94.2±0.2 93.7±0.0 92.3±1.3 96.3±1.7 85.8±1.4 81.0±2.2 86.7±1.9 89.4±1.7 53.3±4.9 33.9±7.1 55.9±6.4 68.1±3.0

images randomly sampled from the test set. We report the average accuracy under different IoUs in

Table 4.2. Humans achieve significantly higher accuracy than all current machine learning models,

demonstrating the human’s outstanding capability to understand embodied references combined

with language and gestural cues. The performance drops when the IoU threshold increases, espe-

cially for small and medium objects, indicating the difficulties in resolving the ambiguity in small

objects.

4.1.4.2 Video ERU

Compared with Image ERU discussed above, Video ERU is a more natural and practical setting

in human-robot interaction. Given a referring expression and a video clip that captures the whole

dynamics of a reference action with consecutive body movement, Video ERU aims at recognizing

the canonical frames and estimate the referred target at the same time.
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Experimental Setup and Evaluation Protocol For each reference instance, we sample

image frames with 5 FPS from the original video clip. Average precision, recall, and F1-score are

reported for the canonical frame detection. For referred bounding box prediction, we report the

averaged accuracy in all canonical frames.

Baselines To further exploit the temporal constraints in videos, we integrate a temporal op-

timization module to aggregate and optimize the multimodal feature extracted from the Image

ERU. We test two designs of temporal optimization module: (i) ConvLSTM: a two-layer con-

volutional Long Short-Term Memory [SCW15], and (ii) Transformer: a three-layer Transformer

encoder [VSP17] with four attention heads in each layer. After the temporal optimization mod-

ule, we use the features of each frame to predict canonical frames and anchor bounding boxes

simultaneously.

We further design a third Frame-based baseline that learns from the individual frame by adding

two fully connected regression layers on top of our model in Image ERU. This Frame-based model

takes all sampled frames from the video clip during training and testing.

During training, we add a binary cross-entropy loss for canonical frame detection on top of

the loss function for bounding box prediction in the Image ERU framework. Please refer to the

supplementary material for more details.

Table 4.3: Video ERU performance comparisons on the YouRefIt dataset.

Model
IoU=0.25 IoU=0.5 IoU=0.75

all small medium large all small medium large all small medium large

Frame-based 55.2 42.3 58.9 64.8 41.7 22.7 53.4 48.8 16.9 1.6 21.8 27.0

Transformer 52.3 40.2 55.6 58.3 38.8 21.2 54.1 47.1 13.9 1.5 20.8 22.7

ConvLSTM 54.8 43.1 57.5 60.0 39.3 22.5 54.8 46.7 17.3 1.8 24.3 25.5

OursFull 54.7 38.5 64.1 61.6 40.5 16.3 54.4 51.1 14.0 1.2 17.2 23.3

Results and Discussion Table 4.3 shows quantitative results of predicting reference targets

with the ground-truth canonical frames given a video. We observe that the frame-based method
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Figure 4.6: Qualitative results in Video ERU

and the temporal optimization methods reach similar performance, comparable to the model that

only trained on selected canonical frames (i.e., OursFull). This result indicates that the canonical

frames can indeed provide sufficient language and gestural cues for clear reference purposes, and the

temporal models may be distracted from non-canonical frames. This observation aligns with the

settings of previous REF tasks. Meanwhile, as shown in Table 4.4 and Fig. 4.7, temporal information

can significantly improve the performance of canonical frame detection; both the ConvLSTM and

the Transformer model outperform the Frame-based method by a large margin. These results

indicate the significance of distinguishing various stages of reference behaviors, e.g., initiation,

canonical moment, and ending, for better efficacy in embodied reference understanding. Fig. 4.6

shows some qualitative results.

Table 4.4: Canonical frame detection performance.

Method Avg. Prec Avg. Rec Avg. F1

Frame-based 31.9 37.7 34.5

Transformer 35.1 44.2 39.1

ConvLSTM 57.0 37.9 45.4
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Figure 4.7: ROC Curve for canonical frame detection.

4.1.5 Conclusion and Future Work

We present the novel problem of embodied reference understanding. Such a setting with both

language and gestural cues is more natural for understanding human communication in our daily

activities. To tackle this problem, we crowd-source the YouRefIt dataset and devise two benchmarks

on images and videos. We further propose a multimodal framework and conduct extensive exper-

iments with ablations. The experimental results provide strong empirical evidence that language

and gestural coordination is critical for understanding human communication.

Our work initiates the research on embodied reference understanding and can be extended to

many aspects. For example, the difficulty in resolving reference ambiguity within a single-round

communication, even for humans, calls for studying embodied reference using multi-round dialogues.
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Human-robot interaction may benefit from referential behavior generation by considering scene

contexts. We hope our work can inspire more future work on these promising directions, focusing

on understanding human communication from multimodal (verbal/nonverbal) inputs.

4.2 Inferring Shared Attention in Social Scene Videos

4.2.1 Introduction

Shared attention is defined as the attention focus shared by two or more individuals on one object or

human [Eme00]. Shared attention differs from joint attention in a subtle way and in the literature

the two terms are used interchangeably [Eme00]. Shared attention is everywhere in our daily life

and we can observe it every now and then in almost all social interactions. Imagine in a party,

usually humans can easily recognize a group of people with shared attention and what exactly is

their shared attention in the group at present. They can join the group and form shared attention

with them naturally and instantly. However, patients with autism may feel it difficult to interact

with people around them since they lack the ability to build shared attention with others [Bar95].

Fig. 4.8 shows some examples of shared attention in social scenes and how shared attention shifts

temporally as well as who are currently involved in the shared attention.

Research in developmental psychology clearly states that the development of skills to under-

stand, manipulate and coordinate attentional behavior plays a pivotal role for imitation, social

cognition and the development of language [Hob02, MD95, TCC05]. And among the complicated

cognitive functions of human minds, the ability to form, recognize and understand shared attention

is pretty crucial in human social interactions [MC94, MD95, Nag04]. All human communication,

even including linguistic communication, is only possible when the people involved in such commu-

nications have built a common conceptual ground consisting of shared attention, shared experience,

common cultural knowledge, etc [Tom08]. Overall, shared attention is a crucial first step towards

social interaction, as well as the primary basis of social intelligence and a precursor of theory of

mind [MC94, MD95, Nag04], language learning [MD95, MMR98, MG98], the ability of imitation

[KIU03] and so on. The study of shared attention is important because it helps a computer vision
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Figure 4.8: Examples of shared attention in daily life.

system to better understand and interpret human activities in images or videos. Robotics equipped

with the ability to detect and understand human shared attention can also be more intelligent when

interacting with humans.

Despite the importance of this topic, works on shared attention are quite limited in the computer

vision community. Some previous works address the problem by using special input data, such as

first-person videos taken by multiple head-mounted cameras [APS14, PJS12, PS15, SHS16]. Some

limited shared attention to the field of Human Robot Interaction [SPR09, KJD08, Nag05, NHM03,

SGB05, SHY07]. Few works studied shared attention in human social interaction based on third-

person social scene videos.

In order to be clarified in our work with the concept of shared attention, we formulate our

problem as follows: shared attention is the gaze focus shared by two or more individuals on one
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object or human; given a video clip, the task is to detect which frames contain shared attention

and where is the shared attention in those frames. To tackle this problem, we collect a new dataset

VideoCoAtt and build a deep spatial-temporal neural network with four modules: gaze estimation

module, region proposal module, spatial detection module and temporal optimization module. The

intuitions for building such a deep neural network architecture are as follows: 1) Firstly, gaze

direction, which can be utilized to learn external environment state and internal mental state, is a

key feature for shared attention detection. The strongest and most direct indication of human gaze

direction is the closeup image patch of human head. We need to detect human heads in videos and

predict gaze directions for each detected head. 2) Secondly, gaze direction is of course important,

but still not the whole story. Shared attention is more than gaze intersection. According to our

definition, there must be an object or human body part as the carrier of shared attention, which

means the shared attention detection task is object-driven. Thus, bounding box proposals of object

or human body parts, such as laptop, human face, etc, is another key feature for our task. We

didn’t use saliency models (like [PSG16, WS18]) because shared attention is more influenced by

social group interaction instead of visual importance, and people engaged in shared attention are

not free-viewing and may not look at the most salient object in the environment. We use a generic

object proposal generation method to generate all potential bounding boxes independent of their

categories. 3) Shared attention may last for a while before termination. Temporal information is a

good constraint to make the detection results more accurate and robust. The input to our model

is just a video clip without any other additional annotation, and the output is a shared attention

heatmap for each video frame and the final shared attention prediction results can also be inferred

based on the shared attention heatmap.

This work makes three major contributions: (i) It addresses a new problem - inferring

shared attention in third-person social scene videos. To the best of our knowledge, this is the

first work to deal with such problem in computer vision community. (ii) It proposes a spatial-

temporal network to address the problem of inferring shared attention in videos. The proposed

model explicitly leverages human gaze direction, target region candidates, and temporal inter-frame

constraints for identifying shared attention. (iii) It presents a large-scale dataset covering diverse

social scenes with full annotations, VideoCoAtt, and benchmark results on the dataset for shared
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Figure 4.9: Example frames from VideoCoAtt dataset.

attention study.

4.2.2 Related Work

The problem of inferring shared attention from third-person videos is closely related to the following

works:

Gaze Prediction: Recasens et al. proposed a deep learning based model for gaze prediction in

images [RKV15] and contributed a dataset called GazeFollow. Given head location, their method

extracts head pose and gaze orientation, follows the gaze of the person and identifies the object

being looked at in the image. Then they further extended their work to gaze prediction in videos

[RVK17] and contributed another new dataset VideoGaze. Given a video clip and the annotations

of head and eye location, their model combines gaze pathway, saliency pathway and transformation

pathway to predict where a person is looking even when the object being looked at is in a different

frame. These works only focus on predicting single-person gaze, while do not consider the task of

inferring attention shared by multiple persons in social activities.

Shared attention in Social Interaction: There are some inspiring studies of shared at-

tention in human social interaction. Park et al. presented a method to construct a 3D social
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Dataset Year Format Size Annotation Goal Shared Attention Data Source

HMDB [KJG11] 2011 Video 7,000 clips, 51 action categories Human action Action recognition - Digitized movies, YouTube

TVHI [PMR12] 2012 Video 300 video clips, 30 to 600 frames per clip Body bbx, head orientation, interaction label Human interaction learning - different TV shows

MPII-MD [RRT15] 2015 Video 94 videos, 68,337 clips Video description Automatic video description - British Amazon, Hollywood2

GazeFollow [RKV15] 2015 Image 122,143 images, 130,339 people Eye loc. and gaze loc. Gaze following in images - Actions 40, MS COCO, SUN, PASCAL

VideoGaze [RVK17] 2017 Video 140 movies, 6 frames per movie Eye loc., head bbx, gaze loc. Gaze following in videos - MovieQA

Sitcom Affordance [WGG17] 2017 Image 11,449 indoor scenes, 28,882 human poses Human pose Affordance prediction - 7 sitcoms

VideoCoAtt (Ours) 2018 Video 380 videos, 492,100 frames Shared attention bbx, involved head bbx. Shared attention detection in videos ✓ 20 different TV shows

Table 4.5: Comparison of VideoCoAtt related datasets.

saliency field and locate multiple gaze concurrences that occur in a social scene from videos taken

by head-mounted cameras [PJS12]. After that, they proposed a method to predict social saliency

from images or videos captured by multiple first-person view cameras [PS15]. These works directly

study social saliency, which by their definition represents the likelihood of shared attention in a

social group. Besides, they also use shared attention as a constraint to predict social behavior in

first-person videos, such as individuals’ future movements and future gaze directions in a social

group. The predicted behaviors reflect an individual physical space that affords to take the next

actions while conforming to social behaviors by engaging to shared attention [SHS16]. Generally,

these work well explored and illustrated shared attention detection and application in social activi-

ties. However, they only focus on first-person videos without generalizing to ordinary third-person

videos.

Shared attention in HRI: The field of Human-Robot Interaction (HRI) strives to enable easy,

intuitive interactions between people and robots, which requires natural communication [AS17].

Many of the difficulties encountered in human-robot interaction and the communication between

autonomous robots could be traced back to unsolved issues related to shared attention [KH06].

There are many works that try to realize gaze-following and shared attention between robot and hu-

man in HRI with or without external evaluation [SPR09, KJD08, Nag05, NHM03, SGB05, SHY07].

The key points of these work are inferring human gaze direction and then forming shared attention

between robot and human by making the robot head turn to that direction. Our work is benefi-

cial to improve the implementation of shared attention in HRI because robots can further detect,

understand and learn to join in the on-going shared attention in the environment.
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4.2.3 VideoCoAtt Dataset

In this section we describe our proposed VideoCoAtt dataset, which is specifically designed for

studying shared attention in social scenes. Some example frames with annotations are presented

in Fig. 4.9.

Dataset Collection. The following principles drive the collection of our dataset:

• Natural social interaction. Shared attention usually occur in daily life naturally. If we deliberately

shoot videos for the purpose of shared attention study, then the social interactions performed by

the volunteers may seem unnatural and not convincing. Instead, TV show is a good choice because

social interactions in TV shows appear to be relatively more natural. As summarized in Table 4.5,

there are some TV show datasets available in the computer vision community, e.g., HMDB [KJG11],

TVHI [PMR12], etc. However, they are designed for different purposes, like action recognition,

human interaction understanding, etc, and none of them offer annotations of shared attention.

Differently, the proposed VideoCoAtt dataset is carefully collected for studying shared attention in

human social activities. The videos are sourced from 20 different TV shows on Youtube.

• Large scale and high quality. Both scale and quality are essential to build a long-lifespan bench-

mark. We carefully collect 380 RGB video sequences from 20 different TV shows or movies. Each

video sequence lasts for various time, from around 20s to more than 1 minute with a frame rate of

25 fps. In total, there are 492,100 frames at the spatial resolution of 320× 480.

• Diversity and generality. The videos in the VideoCoAtt dataset cover different countries and

cultures, such as American, Chinese, Indian, European, etc. The appearances of actors/actresses,

the costume and props vary a lot. There are also diverse scenario settings in VideoCoAtt, including

living room, kitchen, restaurant, Cafe, office, outdoor, etc. See Table 4.6 for detailed statistics and

Fig. 4.9 for example frames. Moreover, the number of shared attentions per frame and the number

of involved people per shared attention can vary in different frames and videos, as can be seen

from the sample frames in Fig. 4.9 and the statistics in Table 4.7. This generality in VideoCoAtt

dataset is beneficial for the trained model to deal with multiple cases as in real life. Fig. 4.10 shows

the shared attention location distribution averaged over the whole dataset. It appears that shared

attention in our dataset tends to lie near the top part of the image frame, as is consistent with
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Culture Distribution Scenario Setting Distribution

American 44.1 % Living Room 29.4 % Dining Room 4.7 %

Chinese 40.7 % Kitchen 14.3 % Office 4.7 %

Indian 9.1 % Restaurant 7.0 % Bathroom 2.3 %

European 4.1 % Bedroom 6.8 % Outdoor 16.4 %

(Others) 2.0 % Cafe 5.8 % (Others) 8.6 %

Table 4.6: Distributions of culture and scenario settings in VideoCoAtt dataset.

previously analyzed eye tracking datasets [ZTM08, Tat07, JED09].

Dataset Annotation. We manually annotate all the video frames using the online tool Vatic

[VPR13a]. For each frame, we mark whether there is shared attention in the scene. If there is

on-going shared attention in the scene, we mark all the shared attentions with bounding boxes.

Only those shared attentions within the view of the scene will be annotated; those out of view

or occluded will not be counted as shared attention. Furthermore, for each shared attention, we

annotated all the heads that are currently engaged in the certain shared attention using bounding

boxes and attributes related to the shared attention numbering.

Dataset Splitting. We split our VideoCoAtt dataset into three parts for training, validation

and testing respectively. There are 181 videos (250,030 frames) in the training set, 90 videos

(128,260 frames) in the validation set and 109 videos (113,810 frames) in the testing set. To avoid

overfitting caused by similarities in human appearances and scenario settings, we split our videos by

different sources. Videos for training, validation and testing come from different TV shows, which

we believe is necessary and will require a strong generalization ability of our shared attention model.
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Figure 4.10: Illustration of shared attention

location.

VideoCoAtt
#shared attentions per frame

0 1 ≥2

#frames 349,468 139,348 3,284

VideoCoAtt
#people involved per S.A.

2 3 4 5 ≥6

#S.A. 86,988 34,105 16,396 4,955 3,661

Table 4.7: Statistics of the shared attentions

and people involved in VideoCoAtt dataset.

Figure 4.11: Illustration of VideoCoAtt model architecture.

4.2.4 Model

Shared attention usually locates at the objects or human body parts gazed by two or more people

simultaneously. Obviously, human gaze and target objects in the context environment are essential

for inferring shared attention in social scene videos. Thus our shared attention detection model

comprises of four modules: 1) the gaze estimation module (§ 4.2.4.1) that extracts individual

gaze directions to generate a gaze heatmap for the whole scene; 2) the region proposal module

(§ 4.2.4.1) that extracts region proposals from the context environment; 3) the spatial detection

module (§ 4.2.4.2) that combines the gaze heatmap and the region proposal map to detect shared

attention in spatial space; and 4) the temporal optimization module (§ 4.2.4.2) that utilizes inter-
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Figure 4.12: Illustration of gaze heatmap generation procedure.

frame correlation to optimize the predicted shared attention heatmap in temporal space. An

illustration of our whole model architecture is presented in Fig. 4.11.

4.2.4.1 Gaze and Region Proposal Modules

Gaze Estimation Module. Suppose for an input frame It in a video sequence {It}t=1,...,T , our head

detector outputs a set of head locations qt,i = (xmin
t,i , ymin

t,i , xmax
t,i , ymax

t,i ), i = 1, 2, . . . , n, where n

could be zero when no head is detected in frame It (see the red rectangles in Fig. 4.12 (a) and (c)).

The corresponding closeup image patch for head location qt,i is cropped out from It and denoted as

wh
t,i, i = 1, 2, . . . , n. We then use a batch of neural network layers Ψ(·) to regress a gaze direction

dt,i ∈ [−1, 1]2 (yellow arrows in Fig. 4.12 (a) and (c)) for the input image patch wh
t,i:

dt,i ≜ (dxt,i, d
y
t,i) = Ψ(wh

t,i). (4.1)

We use a Gaussian distribution to model the variation of a gaze ray with respect to the predicted

primary gaze direction dt,i, and the probability distribution is

P (θt,i|dt,i) ∝
1

σ
exp{−

θ2t,i
2σ2

}, (4.2)

where θt,i is the angle between a gaze ray and the predicted primary gaze direction dt,i. With

detected head position qt,i and corresponding predicted gaze direction dt,i, we compute θt,i for each

grid in the image and then use Eq. 4.2 to get the probability for this grid to be gazed at by head

qt,i. After a gaze heatmap Hg
t,i (see Fig. 4.12 (b) and (d)) for each head position qt,i is prepared,

we generate the final gaze heatmap Hg
t (Fig. 4.12 (e)) of size M ×N via Sum-Pooling {Hg

t,i}i:

Hg
t =

∑n

i=1
Hg

t,i =
∑n

i=1
ϕ(Ψ(wh

t,i), qt,i), (4.3)
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where ϕ(·) indicates the gaze heatmap generator based on Eq. 4.2. More illustrations about the

gaze heatmap generation procedure are shown in Fig. 4.12.

Region Proposal Module. To exploit context information, we use a region proposal module

Z(·) to generate a binary region proposal map Hr
t of size M ×N for input image It:

Hr
t = Z(It). (4.4)

This module is implemented by Structured Edge Detector (SED) [ZD14] to get region bounding

boxes {bt,i, i = 1, 2, . . . ,m} for each frame It and then setting all the pixel values within the bbx

proposals to 1 and all other pixel values outside to 0.

4.2.4.2 Spatio-temporal Shared Attention Network

The output feature maps of the gaze estimation module and the region proposal module are then fed

to the subsequent spatial detection module and temporal optimization module for shared attention

detection.

Spatial Detection Module. Shared attention detection is firstly conducted in a frame-by-

frame style. We apply a spatial detection module F (·) that consists of several convolutional layers

to combine the gaze heatmap Hg
t and region proposal map Hr

t for intra-frame shared attention

detection:

H̃t = F (Hg
t , H

r
t ), (4.5)

where H̃t indicates the intermediate shared attention heatmap output from the spatial detection

module.

Temporal Optimization Module. To further exploit the temporal inter-frame constraints in

videos, we add a temporal optimization module LSTM(·) that consists of several convolutional

Long Short-Term Memory (convLSTM) network [SCW15] layers to optimize the output shared

attention heatmap H̃t:

{Ĥt}t = LSTM({H̃t}t), (4.6)

where Ĥt denotes the eventual shared attention heatmap.
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Figure 4.13: Illustration of shared attention inference process.

4.2.4.3 Learning and Inference

For the loss function, we apply the Mean Squared Error (MSE) between the predicted shared

attention heatmap Ĥt and the ground truth shared attention binary map Ht:

L(Ĥt, Ht) =
1

M ·N
∥ Ĥt −Ht ∥2, (4.7)

where both Ĥt and Ht are of size M ×N .

The inference is possible given the predicted shared attention heatmap Ĥt, based on which we

can compute the cumulative score for each region proposal bounding box bt,i. We only keep those

proposal bounding boxes with a score higher than a threshold. Then we conduct a Non-Maximum

Suppression (NMS) [FGM10] and treat the remaining bounding boxes as our final shared attention

prediction for frame It. See Fig. 4.13 for more detailed illustration.

94



Since there may be no shared attention or more than one shared attention in a scene, our

model is designed to support multimodal predictions instead of regressing a single shared attention

location.

4.2.4.4 Implementation Details

We implement our model using Keras with Tensorflow as backend. For the gaze estimation module,

we first fine-tuned YOLO V2 darknet [RF17] on our own training set. The re-trained YOLO V2

is applied as a head detector to generate human head image patches {ωh
t,i} for the following gaze

direction estimation. We apply the VGG16 network to regress gaze direction, and replace the last

fully connected (fc) layer (1000) with a new fc layer of size 2. Then the tanh activation is used for

generating a unit gaze direction vector and the gaze direction regression network is fine-tuned on

our training set with mean-squared-error loss. To generate the gaze heatmap, we assume that the

gaze cone projected from each head is subject to a gaussian distribution with standard deviation

σ = 0.5. For the region proposal module, we use the Structured Edge Detection Toolbox [ZD14] to

generate the bounding box proposals for each frame.

The outputs of the gaze estimation module and the region proposal module are of size 28× 28.

We concatenate the gaze heatmap Hg
t and the region proposal map Hr

t as the input to the spatial

detection module, which first contains three convolutional layers with kernel size 3× 3 and output

channel size 16, 16, 8 respectively, followed by the last convolutional layer with kernel size 1 × 1,

output channel size 1 and sigmoid activation. The output of spatial detection module is a 28× 28

shared attention heatmap H̃tfor each frame. The subsequent temporal optimization module consists

of five convLSTM layers with filter sizes 40, 40, 40, 40 and 1 respectively. The kernel size is 3× 3

for the first four convLSTM layers and 1 × 1 for the last convLSTM layer. The final convLSTM

layer uses sigmoid as activation function.
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4.2.5 Experiments

4.2.5.1 Experimental Setup

We train and evaluate our model on disjoint training, validation and testing sets from VideoCoAtt

in our experiments, as described in §4.2.3. The ground truth annotations of shared attention

bounding boxes and relevant human faces’ bounding boxes are only used in training. For testing,

the input to our model only includes the raw videos without any additional annotation.

Evaluation Metrics. We use several metrics to compare our model predicted shared attentions

with the ground truth shared attention annotations across the testing videos. For the shared

attention interval detection task, the percentage of frames with right shared attention existence

prediction over all the video frames is applied as a metric Prediction Accuracy . For the shared

attention location prediction task, we use the region proposal bounding boxes and shared attention

heatmap to generate a ROC Curve, reflecting the precision and recall when predicting shared

attention bounding boxes under different score thresholds. AUC refers to the area under the ROC

curve (higher is better). Then given a certain score threshold, the L2 Distance (measured in pixel)

is the Euclidean distance between the predicted shared attention bbx and the annotated ground

truth.

Baseline Methods. We compare our approach against several baselines ranging from simple ones

(Random, Fixed Bias) to more complex ones (Gaze Follow, Gaze+Saliency, Gaze+Saliency+LSTM)

as described below.

Random: A weak baseline that draws a Gaussian heatmap with random mean and variance. Fixed

Bias: As visible in Fig. 4.10, there exists shared attention location bias in the TV shows. We use

a fixed-biased heatmap subject to a 2D Gaussian Distribution with mean and variance learned

from our dataset as a baseline to model such bias. Gaze Follow : We apply the gaze following

model in [RKV15] to detect all the people’s gaze fixations and gaze concurrences in a frame as a

baseline. Gaze+Saliency and Gaze+Saliency +LSTM : We replace our region proposal module

with a top-performance saliency model [PSG16], and consider two baselines with and without the

temporal optimization module respectively.
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Figure 4.14: Quantitative evaluation results with ROC Curve.

Ablation Study. To better understand the importance of each module in our proposed model

architecture, we also studied the model performance after removing some modules. Raw Img.:

We first only use raw image as input to train an end-to-end model, which means we only keep the

spatial detection module. Only Gaze: Then we try to augment the model by adding gaze estimation

module to spatial detection module. Only RP : We also tested the architecture with only region

proposal module and spatial detection module. Gaze+RP : We add both gaze estimation and

region proposal modules before spatial detection module. Gaze+RP+Img.: This is a variation

of our model that uses gaze, region proposal and raw image feature as input to spatial detection

module without using temporal optimization module.
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Model Prediction Acc. L2 Dist.

Raw Img. 52.3 % 188

Only Gaze 64.0 % 108

Only RP 58.0 % 110

Gaze+RP 68.5 % 74

Gaze+RP+Img. 54.0 % 72

Fixed Bias 52.4 % 122

Random 50.8 % 286

Gaze Follow [RKV15] 58.7 % 102

Gaze+Saliency[PSG16] 59.4 % 83

Gaze+Saliency[PSG16]+LSTM 66.2 % 71

Ours (Gaze+RP+LSTM) 71.4 % 62

Table 4.8: Quantitative evaluation results with Prediction Accuracy and L2 Distance.

4.2.5.2 Results and Analysis

Quantitative results. Table 4.8 shows the comparison of our model with baseline methods and

several ablation models by two evaluation metrics Prediction Accuracy and L2 Distance. Our model

achieves the best performance in both the shared attention interval detection task (Prediction Acc.:

71.4%) and the shared attention location prediction task (L2 Dist.: 62).

Among all the baseline models, the second best model is Gaze+Saliency+LSTM with a Pre-

diction Acc. of 66.2% and a L2 Dist. of 71. The replacement of region proposal module with a

saliency model impairs our model performance because the shared attention of people in a social
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Figure 4.15: Shared attention detection results on example frames.

interaction may not be the most visually salient object in the scene, but more influenced by the

on-going interaction. The performance of the Gaze Follow baseline in detecting shared attention

is mediocre, which is mainly because that shared attention of a social group is goal-driven and

object-related, not just the concurrence of human gazes.

Among all the ablation models, Gaze+RP shows a overall best performance (Prediction Acc.:

68.5% and L2 Dist.: 74), but is still inferior to our full model with all the four modules. And

overall Only Gaze performs better than Only RP, indicating the gaze estimation module plays

a more important role than the region proposal module in shared attention detection, which is

consistent with our intuitions. The simplest model without any module design Raw Img. performs

worst. The ablation study shows that each of the four modules proposed by our model (§ 4.2.4) is

important and necessary for shared attention detection in videos.

Fig. 4.14 shows the ROC Curve and AUC comparison results among our full model, baseline
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models and ablation models. Our model has the best precision and recall performance and the

largest AUC value than all the other models. Gaze+RP and Gaze also perform significantly better

than the remaining models. The result further confirms the significance and effectiveness of our

model architecture design. The gaze direction feature and the region proposal feature as well as

the temporal constraints indispensably help our model to gain great performance improvements in

the task of inferring shared attention in social scene videos.

Qualitative results. Fig. 4.15 exhibits an internal visualization of shared attention detection

results by our full model on some example frames. TheGaze Heatmap roughly features the attention

of each individual in the social scene and is not enough to accurately feature shared attention. The

Region Proposal Map gives some potential shared attention proposals and provides the important

spatial constraints. Single-frame Detection combines the Gaze Heatmap and the Region Proposal

Map to generate a preliminary shared attention heatmap, which still has too much noises. After

the Temporal Optimization by convLSTM, the shared attention heatmap is much clearer and can

provide more accurate shared attention distribution information. The final column in Fig. 4.15

compares our eventual shared attention prediction results (depicted in red rectangles) with the

ground truth shared attention annotations (depicted in green rectangles). As shown, there are good

predictions that can exactly locate the shared attention in the social scenes, like the prediction in

the first example. However, there are also some false alarms existing. For example, The scene in

the last row actually has only one shared attention, but our model gives two predictions located

near the two human faces. This is an interesting failure example since whether the third person

on the right side is looking at the person on the left side or the person in the middle is somehow

ambiguous for our model to distinguish. That’s why the shared attention heatmap gets two peaks

for this example. But similar situation in the fifth scene is successfully solved by our model.

4.2.6 Conclusion

This work addresses a new problem of inferring shared attention in third-person social scene videos.

Although shared attention is common in daily life and important for social interactions, relevant

studies are quite limited in the computer vision community. We propose a dataset VideoCoAtt
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and a model to detect shared attention in videos. Our model combines individual gaze features

and context region proposal features from the raw video inputs. Based on the two bottom features,

our model learns to spatially detect and temporally optimize shared attention in videos. Although

we get some reasonable results in the experiments, we are still far from completely solving this

problem. We hope our dataset and model will serve as important resources to facilitate future

studies related to this topic.
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CHAPTER 5

Conclusion

This dissertation introduces our efforts towards building human-like machine learning models in

holistic scene understanding and goal-directed event parsing. More specifically, we focus on three

aspects: 3D reconstruction of humans and scenes, long-term goal-directed activity, and human

communications. These general tasks not only rely on the data-driven pattern recognition but also

root from the visual reasoning system, known as the core knowledge of human intelligence. We

identify and pinpoint several representative tasks and provide the following insights.

• The 3D scene reconstruction and 3D human pose estimation are two deeply coupled tasks.

We propose to exploit physical commonsense and human-object interaction in the MCMC

optimization, which traverses the non-differentiable solution space to reach the physically

stable and action-aware scene configurations. These two critical information sources can act

as general priors that significantly boost the generalization ability of the inference framework.

• Human-object contact is a key component in modeling the human-object interaction, and

it’s often neglected or simplified in prior work. The contact information from the 2D visual

cues can act as effective proposals to reasoning about the actual contact in 3D space, which

provides the physical stability required in both reconstruction and task planning.

• Daily human activities are intrinsically goal-oriented and multi-tasked; as agents’ decision-

making processes are deeply affected by their unique social values, understanding activity

naturally demands a learning system to understand how a given task should be decomposed

into atomic actions, how multi-tasks should be executed and coordinated in parallel among

multi-agents, and take the perspective from human agents to understand why the observed

human activities are optimal solutions. Current machine learning models still fall short on
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these critical aspects.

• We benchmark machines’ capability to understand human communications under both shared

attention and reference settings. Shared attention goes beyond the gaze and relates human,

object through a triadic dynamic interactions. Embodied reference, on the other hand,

is inherently multi-modal, which requires reasoning jointly with both gestural and verbal

information. Understanding human communication is currently under-explored and our work

initiates more research in this area.

In conclusion, a joint framework that combines low-level vision tasks, mid-level scene under-

standing and high-level event parsing is essential for accomplishing various tasks in real-life sce-

narios, rather than specific models tailed for small tasks. The joint inference and learning can

be incorporated in a closed loop of passive perception and active interaction to mimic human’s

excellence in learning and generalizing new concepts and knowledge. It requires interdisciplinary

expertise in computer vision, natural language understanding, computer graphics, machine learn-

ing, robotics, and cognitive science to build up a machine system to reach human-like intelligence.

We hope future efforts will be devoted to stimulating higher cognitive capabilities towards the more

holistic scene and event understanding.
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