
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Aligned vertical fractures, HTI reservoir symmetry, and Thomsen seismic anisotropy 
parameters

Permalink
https://escholarship.org/uc/item/3bb6m87j

Author
Berryman, James G.

Publication Date
2008-05-20

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3bb6m87j
https://escholarship.org
http://www.cdlib.org/


 
 
Aligned vertical fractures, HTI reservoir symmetry, and Thomsen seismic anisotropy parameters 
 
James G. Berryman 

E-mail: JGBerryman@LBL.GOV 

University of California,  

Lawrence Berkeley National Laboratory, 

1 Cyclotron Road, MS 90R1116,  

Berkeley, CA 94720, USA 

 

Abstract: 

 

The Sayers and Kachanov (1991) crack-influence parameters are shown to be directly related to Thomsen 

(1986) weak-anisotropy seismic parameters for fractured reservoirs when the crack density is small 

enough.  These results are then applied to seismic wave propagation in reservoirs having HTI symmetry 

due to aligned vertical fractures.  The approach suggests a method of inverting for fracture density from 

wave speed data. 

 

INTRODUCTION 

 

Aligned vertical fractures provide a commonly recognized source of azimuthal (surface angle dependent) 

seismic anisotropy in oil and gas reservoirs (Lynn et al., 1995).  For analysis, VTI earth media are much 

easier to understand and analyze than HTI media.  Nevertheless, when the source of the anisotropy is 

aligned vertical fractures, we can make very good use of the simpler case of horizontal fracture analysis 

by making a rather minor change of our point of view that easily gives all the needed results.  We can 

also understand very directly the sources of the anisotropy due to fractures by considering a method 

introduced by Sayers and Kachanov (1991).  Elastic constants, and therefore the Thomsen (1986) 

parameters, can be conveniently expressed in terms of the Sayers and Kachanov (1991) formalism.  

Furthermore, in the low crack density limit [which is also consistent with the weak anisotropy approach 

of Thomsen (1986)], we obtain direct links between the Thomsen parameters and the fracture properties.  

These links suggest a method of inverting for fracture density from wave speed data. 
 
THOMSEN'S SEISMIC WEAK ANISOTROPY METHOD 

 

Thomsen's weak anisotropy method (Thomsen, 1986), being an approximation designed specifically for 

use in velocity analysis for exploration geophysics, is clearly not exact.  Approximations incorporated 

into the formulas become most apparent for greater angles � from the vertical, especially for 

compressional and vertically polarized shear velocities ����� and ������, respectively.  Angle � is 

measured from the �-vector pointing into the earth. 

 

Exact velocity formulas for P, SV, and SH seismic waves at all angles in a VTI elastic medium are known 

and available in many places (Ruger, 2002; Musgrave, 2003), so will not be listed here.   Expressions for 

phase velocities in Thomsen's weak anisotropy limit can also be found in many places, including 

Thomsen (1986) and Ruger (2002).  The pertinent expressions for phase velocities in VTI media as a 

function of angle � are: 

 ����� 	 ���0��1 �  ���� � ���� � � � ���� ��,                       �1� 

                 ������ 	 ���0� �1 � �����0�����0�� �� � � ����� ������,             �2�               
and       ������ 	 ���0��1 � �������.                                                    �3� 

 

In our present context, ���0� " #$%%&' , and ���0� " #$((&' , where �)),  ���,  and *+ are two stiffnesses of the 

cracked medium and the mass density of the isotropic host elastic medium.  We assume that the cracks 

have insufficient volume to affect the mass density significantly. 



In each case, Thomsen's approximation has included a step that removes the square on the left-hand side 

of the exact equation, by then expanding a square root on the right hand side.  This step introduces a 

factor of   ,� multiplying the ����� terms on the right hand side, and --- for example --- immediately 

explains how equation (3) is obtained from the exact result.  The other two equations for ����� and ������, i.e., (1) and (2), involve additional approximations we will not attempt to explain here. 

 

The three Thomsen (1986) seismic parameters for weak anisotropy with VTI symmetry are � " $--.$%%�$%% , 

� " $//. $((�$(( , and , which is determined by 2�))��)) �  ���� " ���,) �  ����� �  ��)) � ������. All 

three of these parameters can play important roles in the velocities given by (1)-(3) when the crack 

densities are high enough.  If crack densities are very low, then the SV shear wave will actually have no 

dependence on angle of wave propagation.  Note that the so-called anellipticity parameter 0 " � � , 

vanishes when � 1  , which we will soon see does happen for low crack densities.  

 

HORIZONTAL FRACTURES, CRACK-INFLUENCE PARAMETERS, & VTI SYMMETRY 

 

To illustrate the Sayers and Kachanov (1991) crack-influence parameter method, consider the situation in 

which all the cracks in the system have the same vertical (or �-)axis of symmetry.  (We use 1,2,3 and 2, 3, �  notation interchangeably for the axes.)  Then, the cracked/fractured system is not isotropic, and we 

have the first-order compliance correction matrix for horizontal fractures, which is: 

 

∆456�,� " *$
7
88
9

0 0 :,0 0 :,:, :, 2�:, � :�� 2:� 2:� 0 ;
<<
= ,                                �4� 

 

where i,j = 1,2,3. The two lowest order crack-influence parameters from the Sayers and Kachanov (1991) 

approach are :, and :�.  The scalar crack density parameter is defined -- for penny-shaped cracks having 

number density � " ?@ and radius in the plane of the crack equal to A -- to be *$ " �A).   The aspect ratio 

of the cracks is 
BC .  Considering orientational averages of (4) provides a direct connection to the isotropic 

case, which is of great practical importance, because it permits us to estimate the parameters :, and :� by 

studying isotropic cracked/fractured systems, using well-understood effective medium theories 

(Zimmerman, 1991; Berryman and Grechka, 2006). 

 

Now consider horizontal fractures, as just illustrated by the correction matrix ∆456, .  The axis of fracture 

symmetry is uniformly vertical, and so such a reservoir would exhibit VTI symmetry.  The resulting 

expressions for the Thomsen parameters in terms of the Sayers and Kachanov (1991) parameters :, and :� are given by 

 

                                                �� " $--.$%%�$%% "  *$:�D+,                                                               �5� 

and 

�� " �,, �  �))2�)) "  *$F�1 � G+�:, �  :�H � I+1 � G+�� 	 J2*$:�D+1 � G+ K.                �6� 

 

Background shear modulus is D+, with corresponding Poisson ratio is G+.  Young's modulus is I+ "2�1 � G+�D+.  Also  " � to the lowest order in crack density parameters.  We chose to neglect the term :, in the final expression of (6), as this is on the order of a 1% correction to the term retained.  Values of :, and :� can be determined from simulations and/or effective medium theories (Zimmerman, 1991; 

Berryman and Grechka, 2006).  They depend on the elastic constants of the background medium, and on 

the shape of the cracks (assumed to be penny-shaped in these examples). 



HTI RESERVOIR SYMMETRY FROM ALIGNED VERTICAL FRACTURES 
 

The trick to get from horizontal fractures and VTI to aligned vertical fractures and HTI symmetry is 

relatively simple. We need not relabel the �56 's.  Instead we change the meaning of the labels.  As long as 

we stay mentally oriented in the reference frame of the fractures themselves, we can view the �-direction 

as the symmetry axis and the 23-plane, as the plane of the fractures.  The only change we need to make 

arises because we shoot our seismic survey on the earth surface at 90N from the fracture plane.  This 

observation implies that, wherever the angle � (measured in radians) appeared in our previous formulas, 

now we replace it by 
O� � � radians.  Thus,  ����� P  �����, and vice versa in the formulas.  This 

algorithm is exactly right only for those planes that are vertical and also  perpendicular to the fracture 

plane, i.e., at azimuthal angles Q "  RS/2.  For all angles, we actually need to replace ���� � by ����� ����Q.  Then, when Q " 0 or S, there is no angular dependence, as our point of view is within the 

plane of the fracture itself.  Backing up one step in the Thomsen derivation and restoring squares, thereby 

“unexpanding” the square root is also helpful.  Certain approximations are then undone, and final 

formulas are more accurate. 

 

If �, , and � are the Thomsen parameters for the VTI symmetry (horizontal fracture), then, for example, 

 

     ���� UO� � �V " ����0� W1 � 2����� UO� �  �VX " ����0��1 � 2�� W1 � U �Y�,Z�Y�V �����X.     �7� 

 

From this result, we deduce that, for HTI,  � P  � Y,Z�Y.  This statement is rigorous for the form of 

equation (7) considered.  Then, in the weak anisotropy limit we have � P  ��.  But this final step is 

neither necessary nor recommended for some of the higher crack densities considered here. 

 

Similar calculations for ��� and ����  lead to the results � P  � \,Z�\ 	 ��, and  P ].�\,Z�\ 	  � 2�.  
As a consistency check, note that � �  P \.],Z�\ 	 � � .   Similarly, the pertinent wave speeds are: 

���0� P #^$((�,Z�\�& _ " #^$//& _ & ���0� P `a����1 � 2��/*b "  #^$--& _   in (7), but the remaining 

velocity F���  ���H does  not change at all since Thomsen’s approximation (2) for ��� ��� is completely 

symmetric in � and, therefore, must remain so, also having the same end points, after the switch from � 

to 
O� � �.  These results were all previously known and can be found in Ruger (2002), p. 75. 

 

Examples of these results for small (*$ " 0.05) and higher (*$ " 0.1, 0.2) crack densities are presented 

in Figure 1.   See Berryman and Grechka (2006) for details of the methods used to obtain higher order 

Sayers and Kachanov (1991) parameters from simulation data, and Berryman (2007) for a full discussion 

of the reservoir applications. 

 

CONCLUSIONS 

 

The Sayers and Kachanov (1991) crack-influence parameters are ideally suited to analyzing mechanics in 

reservoirs having aligned fractures and exhibiting HTI symmetry.  Detailed discussion of results obtained 

for the higher crack density examples presented in Figure 1 will be provided in the oral presentation, but 

the main ideas are all contained in Berryman and Grechka (2006) and Berryman (2007).  Modeling 

presented here shows that Thomsen’s weak anisotropy method is valid for crack densities up to about *$ 	 0.05 , but should be replaced by more exact calculations if the crack density is  *$ 	 0.1 or higher. 
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FIG. 1:  For aligned vertical cracks, examples of anisotropic compressional wave speed, SH shear wave speed, and SV shear wave speed 

for two values of Poisson’s ratio G+ of the host medium: (a)-(c) G+ " 0.00,  (d)-(f) G+ " 0.4375.    Velocities in black are exact for the 

fracture model discussed.  Thomsen weak anisotropy velocity curves for the same model (i.e., the same �56 ‘s) were then overlain in blue. 
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