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ABSTRACT OF THE DISSERTATION

Pseudospectral Divide-and-Conquer for the Generalized Eigenvalue Problem

by

Ryan Schneider

Doctor of Philosophy in Mathematics

University of California San Diego, 2024

Professor Ioana Dumitriu, Chair

Over the last two decades, randomization has emerged as a leading tool for pursuing

efficiency in numerical linear algebra. Its benefits can be explained in part by smoothed

analysis, where an algorithm that fails spectacularly in certain cases may be unlikely to

do so on random – or randomly perturbed – inputs. This observation implies a simple

framework for developing accurate and efficient randomized algorithms: apply a random

perturbation and run an existing method, whose worst-case error (or run-time) can be

avoided with high probability.

Recent work of Banks, Garza-Vargas, Kulkarni, and Srivastava applied this frame-

work to the standard eigenvalue problem, developing a randomized algorithm that (with

xii



high probability) diagonalizes a matrix in nearly matrix multiplication time [Foundations

of Computational Math 2022]. Central to their work is the phenomenon of pseudospectral

shattering, in which a small Gaussian perturbation regularizes the pseudospectrum of a

matrix, with high probability breaking it into disjoint components and allowing classical,

divide-and-conquer eigensolvers to run successfully. Prior to their work, no way of accessing

the benefits of divide-and-conquer’s natural parallelization was known in general.

In this thesis, we extend the work of Banks et al. to the generalized eigenvalue

problem – e.g., Av = λBv for matrices A,B ∈ Cn×n. Our main contributions can be

summarized as follows.

1. First, we show that pseudospectral shattering generalizes directly: randomly per-

turbing A and B has a similar regularizing effect on the pseudospectra of the

corresponding matrix pencil (A,B) with high probability.

2. Building on pseudospectral shattering, we construct and analyze a fast, randomized,

divide-and-conquer algorithm for diagonalizing (A,B), which begins by randomly

perturbing the inputs.

3. Finally, we demonstrate that both pseudospectral shattering and the correspond-

ing diagonalization algorithm can be adapted to definite pencils, further pursuing

efficiency by preserving and exploiting symmetry.

The resulting algorithm, which we call pseudospectral divide-and-conquer, is the

first general, sub-O(n3) solver for the generalized eigenvalue problem. It is not only highly

parallel and capable of accommodating structure, but also promotes stability by avoiding

matrix inversion. In essence, this thesis is a handbook for understanding, adapting, and

implementing the method.
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Introduction and Background

1.1 The Generalized Eigenvalue Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
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1.5 Numerical Stability and Inverse-Free Eigensolvers . . . . . . . . . . . . . . . . . . . . . 37
1.6 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.6.1 Open Problems and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.7 Miscellanea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.7.1 Singular Value Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.7.2 Möbius Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

For more than a decade, randomization has revolutionized the building blocks of

numerical linear algebra. This effort, cumulatively referred to as Randomized Numerical

Linear Algebra or RandNLA, has a remarkably simple ethos: the benefits of randomiza-

tion – i.e., regularization, dimension reduction, etc. – can be leveraged to develop new

algorithms or revitalize existing ones, opening a pathway to fast methods with general

accuracy guarantees. The result is a growing collection of cutting-edge randomized al-

gorithms, which (probabilistically) achieve optimal or near-optimal performance on a

variety of problems in linear algebra, including trace estimation [52,80,99], matrix factor-

ing/approximation [12,16,46,112,135], least squares [45,110], linear systems [62,69,87,128],

1



and more.1 The broad applicability of this work has prompted efforts to develop the

first standardized libraries for randomized algorithms (e.g., RandBLAS and RandLA-

PACK [103]).

In this thesis, we apply the RandNLA framework to the generalized eigenvalue

problem, which seeks the (generalized) eigenvalues and eigenvectors of a matrix pen-

cil (A,B). Though somewhat less-well-known than its single-matrix counterpart, the

generalized eigenvalue problem is ubiquitous in scientific computing, arising in signal

processing [79,111], binary classification problems [67,97], linear differential equations [70],

quantum chemistry [55, 59,96], and more. In a world of big data, these applications place

increasing pressure on computational resources, necessitating efficient eigensolvers that

can handle large inputs.

Since its introduction more than 50 years ago, the QZ algorithm of Moler and Stew-

art [102] has remained the standard method for solving the generalized eigenvalue problem.

Though well-studied, QZ requires O(n3) arithmetic operations to find the eigenvalues and

eigenvectors of an n×n pencil. Since the theoretical bottleneck for solving the generalized

eigenvalue problem is matrix multiplication, which offers a variety of sub-O(n3) implemen-

tations, the door remains open: can an algorithm find the eigenvalues and eigenvectors of

an arbitrary pencil in fewer than O(n3) operations? If such an algorithm exists, can it be

implemented stably and in parallel?

Analogous questions for the standard eigenvalue problem were recently resolved

in work of Banks, Garza-Vargas, Kulkarni, and Srivastava [16], which demonstrated that

a randomized, divide-and-conquer algorithm could beat O(n3) complexity to find the

eigenvalues/eigenvectors of an individual matrix. The algorithm they exhibit runs in

nearly matrix multiplication time – i.e., complexity equal to that of matrix multiplication

up to logarithmic factors. The key insight of their work is the regularizing effect of random

perturbations on the spectrum and pseudospectrum of a matrix. With high probability,

1For an exhaustive summary of this work, see the survey of Martinsson and Tropp [98].
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regularization guarantees success for classical divide-and-conquer algorithms on perturbed

inputs. This opens a pathway to an approximate diagonalization of any matrix: simply

apply a random perturbation and run a standard formulation of divide-and-conquer, which

now succeeds with high probability and offers improved efficiency by way of natural paral-

lelization. In this approach, the accuracy of the resulting diagonalization is determined by

the size of the initial perturbation.

Here, we extend this work to the generalized eigenvalue problem. Applying the

same high-level strategy – i.e., randomly perturbing the input matrices and running divide-

and-conquer – we obtain a randomized algorithm that (1) with high probability produces

a backward diagonalization of any matrix pencil, (2) runs in nearly matrix multiplication

time, (3) avoids matrix inversion and (4) is highly parallel and communication-conscious.

The result is the first known algorithm that can solve the generalized eigenvalue problem

on arbitrary inputs in sub-O(n3) operations. With an eye toward high-performance im-

plementation, our work demonstrates that this near-optimal complexity can be achieved

without requiring inversion or sacrificing communication optimality.

In this chapter, we summarize our primary contributions, provide important context

for the main results, and trace the theory our work is built on. We also discuss the content

presented in the subsequent chapters at a high level.

Notation Considerations: We make the following notation choices here and in the

subsequent chapters:

1. Cn×n represents the vector space of n×n complex matrices, which are always denoted

with capital Roman or Greek letters – i.e., A,Λ ∈ Cn×n.

2. The superscript ∼ is used to denote (randomly) perturbed matrices until Chapter 6,

where it is used to denote floating-point quantities.

3. The identity matrix is denoted I, with size implied by context.

4. 1 represents a vector of ones (with arbitrary size) while 1S(z) denotes the indicator

3



function on C corresponding to the subset S ⊂ C.

5. AH and A−H denote the Hermitian transpose and inverse Hermitian transpose of A.

6. The singular values of A ∈ Cm×n are denoted σ1(A) ≥ σ2(A) ≥ · · · ≥ σk(A) for

k = min {m,n}. When convenient, σmin(A) may be used to refer to the smallest

singular value of A.

7. || · ||2 denotes the Euclidean norm on vectors and the spectral norm on matrices.

|| · ||F denotes the Frobenius norm.

8. κ2(A) is the spectral norm condition number of A.

9. Br(z) is the ball of radius r centered at z.

10. Re(z) and Im(z) denote the real and imaginary parts of z ∈ C, respectively.

11. poly(α, β) denotes an arbitrary polynomial in the quantities α and β. polylog(α) is

similarly used to represent a polynomial in log(α).

12. Standard big-O and big-Omega notation is used to denote asymptotic upper and

lower bounds. That is, f(n) = O(g(n)) and f(n) = Ω(h(n)) if there exist constants

C1, C2 > 0 such that C1h(n) ≤ f(n) ≤ C2g(n) for all n sufficiently large (here f, g,

and h are assumed to be positive functions of n ∈ Z+).

Guide to Chapter 1: Section 1.1 introduces the generalized eigenvalue problem alongside

the necessary background information from linear algebra. Perturbation theory for the

problem is subsequently presented in Section 1.2. Section 1.3 discusses divide-and-conquer

eigensolvers, identifying the primary algorithmic challenges and exploring randomization as

a means of addressing them. To place divide-and-conquer in the necessary context, relevant

notions of efficiency and numerical stability are defined in Sections 1.4 and 1.5. Section 1.6

then presents the main results of the thesis and discusses related open problems. Finally,

Section 1.7 collects a handful of results that don’t fit neatly anywhere else. Throughout,

we place key ideas/questions/results in boxes for easy reference.

4



1.1 The Generalized Eigenvalue Problem

We focus in this thesis on square matrix pencils, which we write throughout as

(A,B) ∈ Cn×n × Cn×n. With the exception of Chapter 5, the matrices A and B are

arbitrary, and in particular may be dense and non-symmetric. While non-square pencils

are of interest in certain applications, they will not be considered here.

In this section, we define the eigenvalues and eigenvectors of (A,B) and discuss the

primary computational problem of interest – matrix pencil diagonalization. Much of the

following presents standard background information from linear algebra; for more details,

see the references [77,126].

We begin by defining regularity for matrix pencils.

Definition 1.1.1. The matrix pencil (A,B) is regular if its characteristic polynomial

det(A− xB) ∈ C[x] is not identically zero. If (A,B) is not regular, it is singular.

When (A,B) is regular its eigenvalues and eigenvectors can be defined via a

straightforward generalization of the single-matrix eigenvalue problem.

Definition 1.1.2. λ ∈ C is a finite eigenvalue of the regular matrix pencil (A,B) if

Av = λBv for some nonzero v ∈ Cn, which is a corresponding right eigenvector. Similarly,

nonzero w ∈ Cn is a left eigenvector if wHA = λwHB. In either case, λ is a root of the

characteristic polynomial det(A− xB).

We note from this definition an important distinction between the generalized and

standard eigenvalue problems. The leading coefficient of det(A− xB) is det(B), meaning

the characteristic polynomial of (A,B) may have degree less than n even when the pencil

is regular. Hence, a regular pencil may not have a full set of finite eigenvalues. When this

occurs, we say that (A,B) has an eigenvalue at infinity, whose corresponding right/left

eigenvectors belong to the right/left null spaces of B. Including eigenvalues at infinity

guarantees that any regular pencil has a full set of n eigenvalues, counting multiplicity.
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Note that when B = I, the pencil (A,B) is clearly regular and Definition 1.1.2 reduces to

the standard eigenvalue problem.

In the singular case, both A and B are singular themselves2 and Definition 1.1.2

cannot be used to define eigenvalues and eigenvectors. The potential pitfalls of doing

so jump out immediately: if A and B have overlapping null spaces, for example, this

definition would imply that every complex number is an eigenvalue of (A,B), possibly all

corresponding to the same eigenvector. Intuitively, we need definitions that exclude such

spurious “eigenvalues” and “eigenvectors,” which appear to satisfy Definition 1.1.2 but

are actually expressing the singularity of the pencil. For eigenvalues, this results in the

following.

Definition 1.1.3. λ ∈ C is a finite eigenvalue of the singular pencil (A,B) if rank(A−

λB) < rank(A− xB), where the latter is computed over the field of fractions of C[x].

To define eigenvectors we follow Dopico and Noferini [44], who recently developed

a rigorous and abstract theory of singular matrix pencils (and even higher degree matrix

polynomials). We re-state their definition below for completeness; as we will see, the bulk

of our analysis rests on the regular case.

Definition 1.1.4. v ∈ Cn is a (right) eigenvector of the singular pencil (A,B) corre-

sponding to finite eigenvalue λ if Av = λBv and there exists no w(x) ∈ C[x]n such that

(A− xB)w(x) = 0 and w(λ) = v.

Note that these definitions are equivalent to Definition 1.1.2 when (A,B) is regular.

Once again, a singular pencil may have eigenvalues at infinity, which arise when rank(B) <

rank(A− xB). Corresponding right eigenvectors in this case belong to null(B) \ null(A).

Nevertheless, we no longer obtain a full set of n eigenvalues if we include those at infinity.

In fact, a singular pencil always has strictly fewer than n eigenvalues.

2Note that both det(A) and det(B) appear as coefficients in the characteristic polynomial det(A−xB).
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Throughout, we use Λ(A,B) to denote the spectrum of any matrix pencil (A,B)

(and similarly Λ(A) represents the spectrum of A). To give some insight into the way

generalized eigenvalue problems arise in applications – and to provide a backdrop for the

subsequent numerical discussion – we present a motivating example below.

Example 1.1.5 (Motivation from Machine Learning). Suppose we have data stored in the

rows of two matrices X ∈ Rm×n and Y ∈ Rk×n. If handed a new data point sampled from

one of the populations X and Y are drawn from, how do we decide which population it

corresponds to? One option is to use a linear support vector machine (SVM), which locates

an affine hyperplane separating X and Y that can be used to classify data, assuming such

a hyperplane exists [71].

Alternatively, we could construct the matrices

A =
(
X −1

)T (
X −1

)
, B =

(
Y −1

)T (
Y −1

)
(1.1)

and solve the generalized eigenvalue problem (A,B). Assuming
(
Y −1

)
is full rank,

the top and bottom eigenvectors of (A,B) – i.e., corresponding to its largest/smallest

eigenvalues in magnitude – define hyperplanes that are close to the data in Y and X,

respectively, but maximally far from each other. If the top eigenvector is v = (w γ)T for

γ ∈ R, the corresponding hyperplane
{
x ∈ Rn : wTx− γ = 0

}
approximates the points

in Y , and the same can be said for the bottom eigenvector and X. This is a simple

consequence of the observation

max
(w,γ)̸=0

(
||Xw − γ1||2
||Y w − γ1||2

)2

= max
v ̸=0

vTAv

vTBv
, (1.2)

where the latter defines the largest eigenvalue of (A,B) when B is positive definite3 via

an extension of Courant-Fischer.

This approach to classification was introduced by Mangasarian and Wild [97],

and its advantages over standard SVMs are clear: it can separate overlapping data sets

3In this case, (A,B) belongs to the special class of definite pencils, which have real eigenvalues.
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(a) Separable Data (b) Overlapping Data

Figure 1.1. Hyperplane approximations for synthetic data obtained via a generalized
eigenvalue problem as in Example 1.1.5 (labeled by the eigenvector they are derived from).
A standard linear SVM is included for comparison when it is capable of splitting the data.

while also providing (linear) approximations to them. An example in R2 is presented in

Figure 1.1. From a numerical perspective, this method trades an optimization problem for

an (n+ 1)× (n+ 1) generalized eigenvalue problem, which will be challenging to work

with if the original data is dense and high-dimensional. This is particularly noteworthy

since, as with SVMs, the approach outlined here can be combined with a kernel trick to

make nonlinear classifications.

1.1.1 Matrix Pencil Diagonalization

As in the single-matrix eigenvalue problem, the spectral information of a pencil

can be obtained from a number of factorizations. We summarize the most important of

these in this section. First up is a generalized Schur form introduced by Stewart [121].

Definition 1.1.6. (TA, TB) = (UHAV,UHBV ) is a generalized Schur form of (A,B) if

U, V are unitary and TA, TB are upper triangular.

Every pencil has a generalized Schur form.4 In the regular case, the diagonal

4The regular case was the original focus of Stewart [121, Theorem 3.1]. For a detailed discussion of
computing a generalized Schur form for singular pencils, see work of Demmel and K̊agström [40,41].
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entries TA(i, i)/TB(i, i) record the eigenvalues of (A,B) and the columns of U and V span

corresponding right/left deflating subspaces.

Definition 1.1.7. Subspaces X ,Y ⊂ Cn are respectively right and left deflating subspaces

of an n× n regular pencil (A,B) if dim(X ) = dim(Y) and span {Ax,Bx : x ∈ X} = Y .

It is not difficult to see that any collection of right eigenvectors of a regular pencil

spans a corresponding right deflating subspace. If the leading columns of V form a basis for

this space, the corresponding columns of U will span the associated left deflating subspace.

In this way, the right and left deflating subspaces of a regular pencil generalize the invariant

eigenspaces of an individual matrix. Moreover, the decompositions A = UTAV
H and

B = UTBV
H imply AHU = V TH

A and BHU = V TH
B – i.e., trailing columns of U and V

span deflating subspaces of (AH , BH).

Despite the similarity in naming, the left deflating subspace corresponding to a

set of right eigenvectors is not typically spanned by a set of left eigenvectors. In the

special case that B is invertible, however, a basis for a left deflating subspace can be

constructed from left eigenvectors of the matrix B−HAH (equivalently right eigenvectors

of AB−1). Finally, we note that deflating subspaces are only defined for regular pencils;

for a discussion of the singular pencil analog – reducing subspaces – see work of Van

Dooren [137].

Next we consider the Kronecker canonical form, which generalizes the Jordan

decomposition of an individual matrix. As its name suggests, this canonical form was first

introduced by Kronecker [85], though it can also be viewed as an extension of an earlier

decomposition for regular pencils derived by Weierstrass [143].

Definition 1.1.8. The Kronecker canonical form of the pencil (A,B) is the decomposition

S − xT = P−1(A− xB)Q,
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where P and Q are invertible and S − xT is block diagonal consisting of square blocks

Jk(λ) =


λ− x 1

λ− x
. . .
. . . 1

λ− x

 , Nk =


1 −x

1
. . .
. . . −x

1

 ∈ Ck×k

and non-square blocks

Lk =

−x 1
. . . . . .

−x 1

 ∈ Ck×(k+1) or LT
k =


−x
1

. . .

. . . −x
1

 ∈ C(k+1)×k.

The blocks Jk(λ) and Nk appearing in the Kronecker canonical form of (A,B)

represent the regular structure of the pencil; Jk(λ) is a standard Jordan block with finite

eigenvalue λ, while Nk corresponds to an infinite eigenvalue with multiplicity k. The

remaining blocks Lk and LT
k constitute the singular structure of (A,B). For any value of x,

the block Lk has a one-dimensional (right) null space spanned by the vector (1 x · · · xk)T .

Note that Definition 1.1.8 technically defines the Kronecker canonical form for both square

and non-square pencils. When (A,B) is square, the blocks Lk and LT
k must be padded by

a row or column of zeros, respectively, if S − xT is to be block diagonal.

Example 1.1.9. Consider the pencil (A,B) with

A =


2 −1 −5 −1
6 −2 −11 −2
5 0 −2 0
3 1 3 1

 B =


1 −1 −4 −2
2 −3 −12 −6
−1 −3 −11 −6
−2 −2 −7 −4

 . (1.3)

The Kronecker canonical form of (A,B) can be obtained by factoring A− λB as

A− λB =


−3 1 1 1
−8 3 2 0
−5 3 0 1
−2 2 −1 1



1− λ 0 0 0
0 −λ 1 0
0 0 −λ 1
0 0 0 0



−1 0 1 0
0 1 −4 −2
0 0 1 0
1 −1 0 1


−1

, (1.4)

which reveals that the pencil is singular with only one simple (i.e., multiplicity one)

eigenvalue at λ = 1. Note that the row of zeros in (1.4) indicates that A and B have
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overlapping left null spaces. We take this example from a paper of Lotz and Noferini [90]

and will return to it later in the thesis.

Again taking a cue from the single-matrix eigenvalue problem, we might ask when

the Kronecker canonical form simplifies, particularly to something diagonal. This gives

rise to the primary factorization we are interested in.

Definition 1.1.10. A pencil (A,B) is diagonalizable if there exist invertible S, T such

that (D1, D2) = (S−1AT, S−1BT ) is diagonal. In this case, the matrices S and T jointly

diagonalize A and B.

Here, our intuition from the standard eigenvalue problem carries over directly:

(A,B) is diagonalized by matrices S and T containing its left and right eigenvectors,

assuming a full set of independent eigenvectors (including those associated to infinite

eigenvalues) exists. If (A,B) is regular, the diagonal pencil (D1, D2) records the eigenvalues

of (A,B) as D1(i, i)/D2(i, i), with zeros on the diagonal of D2 corresponding to infinity.

Note that D1 and D2 can never have zero in the same diagonal entry if (A,B) is regular.

As we might expect, an arbitrary pencil (A,B) is not necessarily diagonalizable,

even when it is regular. We do, however, note that any regular pencil with a set of distinct

eigenvalues (including infinity) admits a diagonalization. This mirrors again the standard

eigenvalue problem, where any matrix with a full set of distinct eigenvalues is guaranteed

to be diagonalizable.

We are now ready to state the central problem addressed in this thesis.

Approximate Matrix Pencil Diagonalization

Given a pencil (A,B) with A,B ∈ Cn×n, construct an approximate diagonalization

(A,B) ≈
(
SD1T

−1, SD2T
−1
)

for invertible S, T ∈ Cn×n and diagonal (D1, D2).
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In solving this problem, we seek an exact diagonalization of a nearby pencil,

where “nearby” is measured by ||A − SD1T
−1||2 and ||B − SD2T

−1||2, whose eigenval-

ues/eigenvectors can stand in as approximations for those of (A,B). This as a backward-

error oriented approach to the generalized eigenvalue problem, which acknowledges the

reality that not all pencils admit a diagonalization and even those that do cannot be diag-

onalized exactly in finite-precision arithmetic. Importantly, as we will see, this approach is

naturally compatible with the decision to apply regularizing perturbations to A and B.

As mentioned in the preface to this chapter, the standard method for solving the

generalized eigenvalue problem – and therefore producing an approximate diagonalization

of any matrix pencil – is the QZ algorithm of Moler and Stewart [102], which was first

introduced in 1973. QZ finds the eigenvalues and eigenvectors of (A,B) by producing its

generalized Schur form, implicitly applying the QR algorithm for the standard eigenvalue

problem5 to AB−1 (or B−1A). To do this, QZ assumes blindly that B is invertible. While

this may seem problematic, it ultimately poses little harm: QZ is capable of identifying

infinite eigenvalues and can be used on singular pencils.

Due to the popularity of the QZ algorithm, much research has focused on its

performance, including on pencils that have infinite eigenvalues [140] or that are nearly

singular [144]. Additional work has sought to refine its numerical details [82, 84, 139]. The

bottom line is that modern implementations are regarded as generally reliable and back-

wards stable, which here means that QZ computes accurately the eigenvalues/eigenvectors

of a nearby pencil (see Section 1.5). Indeed, QZ is the default generalized eigensolver

called by Matlab’s intrinsic function eig.

Beyond its O(n3) complexity, the primary drawback to QZ is its resistance to

parallelization. Parallel implementations have been pursued, most notably by Adlerborn,

5The QR algorithm was derived independently by Francis [56,57] and Kublanovskaya [86] and computes
eigenvalues/eigenvectors of A by (1) reducing the matrix to Hessenberg from and (2) applying (possibly
shifted) QR factorizations to obtain a Schur decomposition. For a more recent summary of the method,
see [141].
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K̊agström, and Kressner [1], but are not widely used. As a result, QZ remains somewhat

poorly suited to settings where input matrices are prohibitively large – i.e., large enough

to exceed available fast memory. An alternative, divide-and-conquer approach to the

generalized eigenvalue problem, which we discuss at length in Section 1.3, naturally avoids

this issue. For now we note that divide-and-conquer algorithms have remained out-of-reach

because, in contrast to QZ, they typically cannot be implemented on arbitrary inputs (that

is, in certain situations divide-and-conquer may not only lose accuracy but fail entirely).

As we will see, randomization points a way around this problem.

Before moving on, we note that a different set of numerical tools are typically used

if only a certain subset of eigenvalues and eigenvectors are desired. For sparse problems in

particular, these include the trace minimization algorithm [115], projection methods [114],

and extensions of the Lanczos procedure [53].

1.2 Perturbation Theory

Focusing on backward-stable diagonalizations (and allowing random perturbations)

begs the question: how sensitive is the generalized eigenvalue problem to changes in the

input matrices? In what situations should we expect that the eigenvalues and eigenvectors

of an approximate diagonalization are close to those of (A,B)? With these questions in

mind, we discuss in this section perturbation theory for the generalized eigenvalue problem.

Along the way we define the pseudospectrum of a matrix pencil, a key theoretical tool

used throughout the thesis.

To set the stage, we begin by considering a few examples.

Example 1.2.1. Consider first the following 2× 2 matrices:

A = B =

(
1 0
0 10−10

)
, Ã =

(
1 0
0 1.5× 10−10

)
, B̃ =

(
1 0
0 5× 10−11

)
. (1.5)

By construction, ||A− Ã||2 = ||B − B̃||2 = 5× 10−11 while Λ(A,B) = {1} and Λ(Ã, B̃) =
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{1, 3} – i.e., a tiny perturbation in A and B results in macroscopic changes to the

eigenvalues, even though (A,B) and (Ã, B̃) are both regular and diagonalizable.

Example 1.2.2. Consider next an infamous singular example due to Wilkinson [144]:

A =

(
2 0
0 0

)
, B =

(
1 0
0 0

)
, Ã =

(
2 + ϵ1 ϵ2
ϵ3 0

)
, B̃ =

(
1 + η1 η2
η3 0

)
. (1.6)

Here, (A,B) has only one eigenvalue λ = 2 but (Ã, B̃) has eigenvalues ϵ2/η2 and ϵ3/η3,

which can take any two values regardless of perturbation size. In particular, we are not

guaranteed to get at least one eigenvalue near the original λ = 2.

Of course, these perturbations are highly structured and therefore unlikely to occur

either randomly or from round-off error in finite-precision arithmetic. Nevertheless, they

set our expectations: in certain settings eigenvalue recovery is not possible, so any useful

perturbation bound will require some set of assumptions on (A,B).

1.2.1 Pseudospectra and Bauer-Fike

In this thesis, the primary tool for measuring eigenvalue perturbations is the

pseudospectrum of the corresponding matrix or matrix pencil. For the single-matrix

eigenvalue problem, the definition is standard.

Definition 1.2.3. For any ϵ > 0, the ϵ-pseudospectrum of A is

Λϵ(A) = {z : there exists u ̸= 0 with (A+ E)u = zu for some ||E||2 ≤ ϵ} .

Each pseudospectrum Λϵ(A) consists of connected components in C containing at

least one eigenvalue of A. As ϵ → 0, these connected components collapse to the true

eigenvalues of the matrix. When A is diagonalizable, this is quantified explicitly via the

Bauer-Fike Theorem [18].

Theorem 1.2.4 (Bauer-Fike). If λ1, . . . , λn are the eigenvalues of A ∈ Cn×n and V is

any invertible matrix that diagonalizes A, then
n⋃

i=1

Bϵ(λi) ⊆ Λϵ(A) ⊆
n⋃

i=1

Bϵκ2(V )(λi).
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Intuitively, Λϵ(A) contains all eigenvalues that are obtainable from A via a pertur-

bation of size at most ϵ (in the spectral norm). Accordingly, Λϵ(A) can be used either to

measure the change in eigenvalues due to a deliberate perturbation or record accumulated

error in a numerical method – that is, if an algorithm computes exactly the spectral

information of A+ E with ||E||2 ≤ ϵ, bounds on Λϵ(A) imply a certain accuracy for the

resulting eigenvalue approximations. The ubiquity6 of Λϵ(A) in the analysis of eigenvalue

problems and their corresponding algorithms is due to this flexibility (see the standard

reference work of Trefethen and Embree [134] for a detailed discussion of applications).

For the generalized eigenvalue problem – i.e., for matrix pencils – there is no

standard way to define the pseudospectrum. While Trefethen and Embree suggest a

handful of options [134, Chapter 45], we work in this thesis with a definition originally

due to Frayssé et al. [58].

Definition 1.2.5. For any ϵ > 0, the ϵ-pseudospectrum of (A,B) is

Λϵ(A,B) = {z : (A+∆A)u = z(B +∆B)u, u ̸= 0, and ||∆A||2, ||∆B||2 ≤ ϵ} .

Our motivation for using Definition 1.2.5 is rooted in the realities of working with

a pencil (A,B) numerically. In particular, round-off errors will naturally perturb both A

and B, possibly independently, meaning any definition that hopes to capture the impact

of finite-precision arithmetic must allow for variation in both A and B, without necessarily

restricting to relative perturbation sizes. Once again, Λϵ(A,B) consists of connected

components in C that contain Λ(A,B).

Frayssé et al. provide a handful of equivalent characterizations of Definition 1.2.5,

which we use throughout when convenient.

Theorem 1.2.6 (Frayssé et al. 1996). The following are equivalent:

1. z ∈ Λϵ(A,B).

6While analogs of Definition 1.2.3 have existed in the literature for decades, the use of Λϵ(A) as stated
here was broadly popularized by Trefethen [133].
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2. There exists a unit vector u such that ||(A− zB)u||2 ≤ ϵ(1 + |z|).

3. ||(A− zB)−1||2 ≥ 1
ϵ(1+|z|) .

4. σn(A− zB) ≤ ϵ(1 + |z|).

We also note the impact of infinite eigenvalues on Λϵ(A,B). While Λϵ(A) can never

be unbounded, Λϵ(A,B) is always unbounded provided ϵ is sufficiently large.

Lemma 1.2.7. Λϵ(A,B) is bounded if and only if ϵ < σn(B).

Proof. Let ϵ < σn(B) and suppose Λϵ(A,B) is unbounded. By Theorem 1.2.6, any nonzero

z ∈ Λϵ(A,B) satisfies

1

ϵ(1 + |z|)
≤ ||(A− zB)−1||2 =

1

|z|

∣∣∣∣∣
∣∣∣∣∣
(
1

z
A−B

)−1
∣∣∣∣∣
∣∣∣∣∣
2

(1.7)

and therefore

|z|
ϵ(1 + |z|)

≤

∣∣∣∣∣
∣∣∣∣∣
(
1

z
A−B

)−1
∣∣∣∣∣
∣∣∣∣∣
2

. (1.8)

Since Λϵ(A,B) is unbounded, we can take a limit z → ∞ in this inequality to obtain

1

ϵ
≤ ||(−B)−1||2 =

1

σn(B)
, (1.9)

which implies ϵ ≥ σn(B), a contradiction.

To prove the converse, suppose now ϵ ≥ σn(B) and let UΣV H be the singular value

decomposition of B. If D ∈ Cn×n is a diagonal matrix with D(i, i) = 0 for 1 ≤ i ≤ n− 1

and D(n, n) = −σn(B), then ||UDV H ||2 = σn(B) ≤ ϵ and therefore eigenvalues of

(A,B + UDV H) belong to Λϵ(A,B). But by construction B + UDV H is singular, which

means (A,B + UDV H) is singular and/or has an eigenvalue at infinity. In both cases

Λϵ(A,B) must be unbounded.

Finally, we derive an upper bound on Λϵ(A,B) when it exists.

Lemma 1.2.8. If ϵ < σn(B) then any z ∈ Λϵ(A,B) satisfies

|z| ≤ ϵ||B−1||2 + ||B−1A||2
1− ϵ||B−1||2

.
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Proof. Suppose |z| > ||B−1A||2 and consider B−1A
z

− I. For any vector x,∣∣∣∣∣∣∣∣B−1A

z
x

∣∣∣∣∣∣∣∣
2

≤ ||B−1A||2
|z|

||x||2 (1.10)

by matrix/vector norm compatibility, so

||x||2 −
∣∣∣∣∣∣∣∣B−1A

z
x

∣∣∣∣∣∣∣∣
2

≥ ||x||2 −
||B−1A||2

|z|
||x||2 ≥ 0, (1.11)

where we know ||x||2−(||B−1A||2/|z|)||x||2 is positive since |z| > ||B−1A||2. Thus, applying

this result and the reverse triangle inequality,

σn

(
B−1A

z
− I

)
= min

||x||2=1

∣∣∣∣∣∣∣∣(B−1A

z
− I

)
x

∣∣∣∣∣∣∣∣
2

≥ min
||x||2=1

[
||x||2 −

||B−1A||2
|z|

||x||2
]

= 1− ||B−1A||2
|z|

(1.12)

and therefore ∣∣∣∣∣
∣∣∣∣∣
(
B−1A

z
− I

)−1
∣∣∣∣∣
∣∣∣∣∣
2

=
1

σn
(
B−1A

z
− I
) ≤ 1

1− ||B−1A||2
|z|

. (1.13)

If z ∈ Λϵ(A,B), we then have

1

ϵ(1 + |z|)
≤ ||B−1||2

|z|

∣∣∣∣∣
∣∣∣∣∣
(
B−1A

z
− I

)−1
∣∣∣∣∣
∣∣∣∣∣
2

≤ ||B−1||2
|z|

1

1− ||B−1A||2
|z|

=
||B−1||2

|z| − ||B−1A||
,

(1.14)

which, rearranging to solve for |z|, is equivalent to

|z| ≤ ϵ||B−1||2 + ||B−1A||2
1− ϵ||B−1||2

. (1.15)

Since we assumed |z| > ||B−1A||2, we have proved that z ∈ Λϵ(A,B) for ϵ < σn(B) implies

|z| ≤ max

{
||B−1A||2,

ϵ||B−1||2 + ||B−1A||2
1− ϵ||B−1||2

}
=
ϵ||B−1||2 + ||B−1A||2

1− ϵ||B−1||2
(1.16)

which finishes the proof.
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(a) Pseudospectra of (A,B) (b) Pseudospectra of B−1A

Figure 1.2. Pseudospectra of (A,B) and B−1A for Gaussian A,B ∈ C10×10 following
Definition 1.2.5 and Definition 1.2.3, respectively. Eigenvalues are plotted with open circles.
Pseudospectra are obtained by graphing the level curves of log10 [(1 + |z|)||(A− zB)−1||2]
and log10 [||(B−1A− zI)−1||2] in Matlab R2023a.

Figure 1.2 plots the pseudospectra of (A,B) and B−1A for one (randomly chosen)

pair A,B ∈ C10×10. Clearly, the pseudospectra of (A,B) and B−1A differ significantly.

Informally, we might say that the pseudospectra of (A,B) are less well-behaved than

those of B−1A – particularly around large eigenvalues – despite the fact that they coalesce

around the same points.

In an attempt to better understand this comparison, we now extend Theorem 1.2.4

to Λϵ(A,B), obtaining a first perturbation result for the generalized eigenvalue problem.

This follows directly from Definition 1.2.5 and Lemma 1.2.8 under the assumption that

(A,B) is regular and diagonalizable with no eigenvalues at infinity (i.e., for invertible B).

Theorem 1.2.9 (Bauer-Fike for Matrix Pencils). Suppose (A,B) is regular and diago-

nalizable with finite eigenvalues λ1, . . . , λn and invertible right eigenvector matrix V . For

ϵ < σn(B) let

rϵ = ϵκ2(V )||B−1||2
(
1 +

ϵ||B−1||2 + ||B−1A||2
1− ϵ||B−1||2

)
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and further set

ri =


1

||B||2 , if A = 0

max
{

1
||B||2 ,

|λi|
||A||2

}
, otherwise

for 1 ≤ i ≤ n. Then,
n⋃

i=1

Bϵri(λi) ⊆ Λϵ(A,B) ⊆
n⋃

i=1

Brϵ(λi).

Proof. To obtain the first inclusion we note that for any |∆λ| ≤ ϵ/||B||2 the pencil

(A + ∆λB,B) has eigenvalues λi + ∆λ while Λ(A + ∆λB,B) ⊆ Λϵ(A,B). Similarly, if

A ̸= 0 then (A + ∆λA,B) has eigenvalues λi(1 + ∆λ) and Λ(A + ∆λA,B) ⊆ Λϵ(A,B)

as long as |∆λ| ≤ ϵ/||A||2. For the remaining inclusion we appeal to Theorem 1.2.6: any

z ∈ Λϵ(A,B) satisfies

1

ϵ(1 + |z|)
≤ ||(A− zB)−1||2 ≤ ||B−1||2||(B−1A− zI)−1||2, (1.17)

where we note that B is invertible since (A,B) has only finite eigenvalues. Applying the

fact that V diagonalizes B−1A, meaning B−1A = V ΛV −1 for a diagonal matrix Λ, this

expression becomes

1

ϵ(1 + |z|)
≤ ||B−1||2||(V ΛV −1 − zI)−1||2 ≤ κ2(V )||B−1||2||(Λ− zI)−1||2. (1.18)

Inverting and rearranging, we then have

σn(Λ− zI) ≤ ϵκ2(V )||B−1||2(1 + |z|). (1.19)

We complete the proof by noting

σn(Λ− zI) = min
λi∈Λ(A,B)

|λi − z| (1.20)

and replacing |z| in (1.19) with the upper bound provided by Lemma 1.2.8.

Remark 1.2.10. Theorem 1.2.9 does not appear to depend on the left eigenvectors of

(A,B), which may seem surprising since Theorem 1.2.4 does depend on the left eigenvectors
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of A. Here, we note that if V contains right eigenvectors of (A,B) and B is invertible,

then V and S = BV jointly diagonalize A and B, meaning S−1 contains left eigenvectors

of (A,B) and

||V ||2||S−1||2 = ||V ||2||V −1B−1||2 ≤ κ2(V )||B−1||2. (1.21)

Hence, the bound provided by Theorem 1.2.9 is in fact loosely dependent on the left

eigenvectors of (A,B).

Though straightforward, this version of Bauer-Fike is somewhat nonstandard.

Classical perturbation results are typically obtained by re-casting each eigenvalue λ as

an ordered pair ⟨α, β⟩, where λ = α/β. In this notation, solutions to the generalized

eigenvalue problem satisfy βAv = αBv (assuming (A,B) is regular). The main benefit

of representing eigenvalues in this way is the natural inclusion of those at infinity, which

correspond to β = 0. Since there are infinitely many choices of α and β that yield the

same value of λ, we can think of each eigenvalue ⟨α, β⟩ as a projective line – i.e., the

subspace spanned by (α β)T .

Under this framework, distance between two eigenvalues ⟨α1, β1⟩ and ⟨α2, β2⟩ is

measured by the chordal metric:

χ (⟨α1, β1⟩, ⟨α2, β2⟩) =
|α1β2 − β1α2|√

|α1|2 + |β1|2
√
|α2|2 + |β2|2

. (1.22)

Dividing both the numerator and denominator of (1.22) by |β1β2|, we observe that if

λ1 = α1/β1 and λ2 = α2/β2 then

χ (⟨α1, β1⟩, ⟨α2, β2⟩) =
|λ1 − λ2|√

|λ1|2 + 1
√
|λ2|2 + 1

. (1.23)

In other words, the chordal distance between ⟨α1, β1⟩ and ⟨α2, β2⟩ is half the Euclidean

distance between the images of λ1 and λ2 under the stereographic projection. This ensures

that the distance between any two eigenvalues is at most one, including eigenvalues at

infinity.
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While perturbation results in terms of χ originate with Stewart [122], the standard

bound for pencils that are both regular and diagonalizable is due to Elsner and Sun [51].

Theorem 1.2.11 can be interpreted as a chordal metric analog of Bauer-Fike.

Theorem 1.2.11 (Elsner and Sun 1982). Let (A,B) be a regular, diagonalizable pencil

with eigenvalues ⟨αi, βi⟩. If V is any matrix of right eigenvectors of (A,B) and ⟨α̃i, β̃i⟩

are the eigenvalues of the regular pencil (Ã, B̃), then

max
i

min
j
χ
(
⟨αi, βi⟩, ⟨α̃j, β̃j⟩

)
≤ κ2(V )||(AAH +BBH)−1/2||2||(A− Ã, B − B̃)||2.

This bound offers an improvement over Theorem 1.2.9 in that it does not require

B to be invertible, as perturbations in infinite eigenvalues can be bounded in χ where they

cannot in absolute value. When B is invertible, the two are essentially equivalent. Since

the chordal metric is somewhat less intuitive to work with, as |λ− λ̃| may be large even

though χ(⟨α, β⟩, ⟨α̃, β̃⟩) is small, we prefer Theorem 1.2.9. Moreover, for the situation

in which we will need Bauer-Fike later on, the assumption that B is invertible will be

satisfied (with a bound on σn(B) known).

Note that the assumptions baked into these results – that (A,B) is regular and

diagonalizable – are not included for convenience. Only in this setting can we expect to

have perturbation bounds that cover the entire spectrum. Even when we do, these bounds

are large if the corresponding eigenvectors are poorly conditioned or the matrices are nearly

singular, allowing them to cover a problematic case like Example 1.2.1. As we will explore

later in this thesis, there is good empirical evidence to suggest that certain eigenvalues of

pencils that are not diagonalizable, or even regular, are stable under perturbation, though

the theory to explain these observations is still under development (see for example [90]).

Of course, Theorem 1.2.9 is not the only alternate formulation of Bauer-Fike

developed since the work of Elsner and Sun. Minor improvements to Theorem 1.2.11 can

be found in subsequent work of Elsner and Lancaster [50]. Chu, meanwhile, stated their

own version of Bauer-Fike, which comprises four separate bounds depending on whether
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the initial and perturbed eigenvalues are finite/infinite [30,31]. Finally, we note a recent

sharp version of Shi and Wei stated in terms of the sign-complex spectral radius [118].

1.2.2 Main Perturbation Bound

To this point, we have not considered how perturbations affect eigenvectors. Classi-

cal bounds for eigenspaces (or more precisely deflating subspaces) are discussed at length

in the standard work of Stewart and Sun [126, Chapter VI]. Once again, these bounds are

somewhat difficult to use numerically, stated in terms of opaque norms on pairs of spaces.

For this reason, we again derive our own perturbation result, which bounds the Euclidean

distance between specific eigenvectors before and after perturbation. To obtain such a

result, we must add the additional assumption that (A,B) has no repeated eigenvalues

(and therefore that each eigenvector is unique up to scaling). With this in mind, we

introduce a pair of quantities that capture the conditioning of the generalized eigenvalue

problem (A,B).

Definition 1.2.12. The (right) eigenvector condition number of a diagonalizable pencil

(A,B) is

κV (A,B) = inf
T
κ(T ),

where the infimum is taken over all invertible matrices T containing a full set of right

eigenvectors of (A,B).

Definition 1.2.13. Let λ1, . . . , λn be the eigenvalues of (A,B) repeated according to

multiplicity. The eigenvalue gap of (A,B) is

gap(A,B) = min
i ̸=j

|λi − λj|.

Each of these can be similarly defined for an individual matrix, in which case

κV (B
−1A) = κV (A,B) and gap(B−1A) = gap(A,B). Note that Theorem 1.2.9 can be

tightened slightly by replacing κ2(V ) with κV (A,B). With this in mind, we now prove
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a rigorous bound – for both eigenvalues and eigenvectors – in terms of κV (A,B) and

gap(A,B).

Theorem 1.2.14. Let A,B, Ã, B̃ ∈ Cn×n with ||A||2 ≤ 1. Assume that B is invertible

and that the pencil (A,B) has a full set of distinct, finite eigenpairs {(λi, vi)}ni=1. If

||A− Ã||2 ≤ εσn(B)gap(A,B) and ||B − B̃||2 ≤ εσ2
n(B)gap(A,B) for

ε ≤ 1

32κV (A,B)

then (Ã, B̃) has no repeated eigenvalues and any set of corresponding eigenpairs {(λ̃i, ṽi)}ni=1

satisfies for all i = 1, . . . , n

|λi − λ̃i| ≤ 4gap(A,B)κV (A,B)ε and ||vi − ṽi||2 ≤ 24nκV (A,B)ε

after multiplying the vi by phases and reordering, if necessary.

Proof. We first note that ε < 1
32κV (A,B)

implies

||B − B̃||2 ≤
σ2
n(B)gap(A,B)

32κV (A,B)
≤ σn(B)

16κV (A,B)
≤ σn(B)

2
, (1.24)

where the second inequality follows from gap(A,B) ≤ 2||B−1A||2 ≤ 2
σn(B)

(since ||A||2 ≤ 1).

Thus, σn(B̃) ≥ σn(B)− ||B − B̃||2 ≥ σn(B)
2

, so B̃ is invertible. With this in mind, consider

the matrices B−1A and B̃−1Ã, which are diagonalizable with the same eigenpairs as (A,B)

and (Ã, B̃), respectively. Using again the fact that ||A||2 ≤ 1, we have

||B−1A− B̃−1Ã||2 = ||B−1A− B̃−1A+ B̃−1A− B̃−1Ã||2

≤ ||B−1 − B̃−1||2||A||2 + ||B̃−1||2||A− Ã||2

≤ ||B̃−1||2||B̃ −B||2||B−1||2 + ||B̃−1||2||A− Ã||2

≤ 2

σn(B)
εσ2

n(B)gap(A,B)
1

σn(B)
+

2

σn(B)
εσn(B)gap(A,B)

≤ 4εgap(A,B).

(1.25)

This implies that the eigenvalues of B̃−1Ã belong to the 4εgap(A,B)-pseudospectrum of

B−1A, and moreover we can continuously deform the eigenvalues of B−1A to those of
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B̃−1Ã without leaving this pseudospectrum. Since ε < 1/4 and B−1A is diagonalizable,

single matrix Bauer-Fike (Theorem 1.2.4) implies that B̃−1Ã, and by extension (Ã, B̃),

has a full set of distinct eigenvalues λ1, . . . , λn. Bauer-Fike also guarantees that these

eigenvalues can be ordered so that each λ̃i satisfies

|λi − λ̃i| ≤ 4gap(A,B)κV (B
−1A)ε (1.26)

for a corresponding eigenvalue λi of B
−1A. Recalling that κV (B

−1A) = κV (A,B), we

obtain the first guarantee.

The second guarantee follows from the proof of [16, Proposition 1.1] since the

requirement ε < (32κV (A,B))−1 ensures by (1.25) that

||B−1A− B̃−1Ã||2 ≤
gap(B−1A)

8κV (B−1A)
. (1.27)

Note that while [16, Proposition 1.1] comes with norm assumptions on the matrices, these

are not used in the proof of the eigenvector guarantee.

Theorem 1.2.14 parallels a similar bound for the standard eigenvalue problem

due to Banks et al. [16, Proposition 1.1], whose proof relies on some basic perturbation

results for individual matrices summarized in [64]. Developing corresponding results

for the generalized problem may allow for a similar forward error guarantee with looser

requirements on ||A− Ã||2 and ||B − B̃||2. Absent these improvements, Theorem 1.2.14

is fairly restrictive. Nevertheless, it provides important context for our work: if (A,B)

satisfies its requirements, Theorem 1.2.14 indicates how accurately a diagonalization must

be computed to yield eigenvalue and eigenvector approximations of a certain quality.

1.3 Divide-and-Conquer

We return now to the numerical question of approximately diagonalizing an arbitrary

pencil (A,B). In Section 1.1, we identified a lack of parallel implementations as the primary
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drawback to the QZ algorithm. In an effort to circumvent this weakness, we focus on

divide-and-conquer methods, which recursively split a pencil (A,B) into smaller ones

with disjoint spectra and therefore naturally parallelize. In this section, we outline the

divide-and-conquer approach to eigenvalue problems and discuss the primary obstacles to

implementation.

Suppose we start with a regular input pencil (A,B). Let UR and UL be matrices

whose orthonormal columns span the right and left deflating subspaces corresponding

to a subset S ⊂ Λ(A,B). In this case, it is easy to see that (λ,w) is an eigenpair of

(UH
L AUR, U

H
L BUR) if and only if (λ, URw) is an eigenpair of (A,B). Hence, we can obtain

eigenvalues/eigenvectors of (A,B) by diagonalizing the smaller pencil (UH
L AUR, U

H
L AUR),

whose spectra is contained in S and whose eigenvectors are in simple correspondence with

those of (A,B). While this will only yield eigenpairs associated to S, we can simply repeat

this process for Λ(A,B) \ S to recover the remaining pairs.

Of course to diagonalize (UH
L AUR, U

H
L AUR) we can apply divide-and-conquer again,

obtaining two smaller pencils that can be further split themselves. Continuing this

recursive division, a full set of eigenpairs for (A,B) can be reconstructed from those of

the smallest subproblems, which are either 1× 1 and therefore trivial, or small enough

to handle with existing techniques (for example QZ). At each step, a subproblem of the

form (UH
L AUR, U

H
L AUR) can be passed off to a separate processor and handled completely

independently. This is the natural parallelization of divide-and-conquer.

In this framework, the matrices UR and UL are constructed by first computing

projectors onto corresponding right/left deflating subspaces.

Definition 1.3.1. The linear transformation P : Cn → Cn is a projector onto the subspace

X ⊂ Cn if range(P ) = X and P 2 = P .

Assuming (A,B) has an invertible (right) eigenvector matrix V whose leading
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columns correspond to the eigenvalues in S, the matrix

PR = V

(
I 0
0 0

)
V −1 (1.28)

is a projector onto the right deflating subspace spanned by UR. Similarly, a projector onto

the left deflating subspace associated to UL is

PL = X

(
I 0
0 0

)
X−1 (1.29)

for X a matrix containing a basis for the column space of
[
AV BV

]
. In practice, we

obtain PL from the pencil (AH , BH), recalling that the left eigenvectors of B−HAH span

left deflating subspaces of (A,B). We refer to PR and PL as the spectral projectors of

(A,B) corresponding to the set of eigenvalues S ⊂ Λ(A,B).

Remark 1.3.2. The expressions (1.28) and (1.29) center the case where (A,B) is regular

with a full set of right eigenvectors. While we can define PR and PL for arbitrary pencils

in terms of the Kronecker canonical form of (A,B), this is unnecessary here, as we will

ultimately be able to assume our input pencil is both regular and diagonalizable.

Once these projectors are found, UR and UL can be obtained by computing rank-

revealing factorizations of PR and PL. The rank-revealing piece is critical here, as the rank

of either projector tells us how many eigenvalues lie in S and therefore how significant the

corresponding split is. In practice, a potential split may be rejected if this rank is either

too large or too small, in which case it will not significantly reduce the size of the problem.

While there are many ways to compute a rank-revealing factorization [29,66,125], we are

particularly interested in the URV factorization of Stewart [125].

Definition 1.3.3. A = URV is a URV factorization of the matrix A if R is upper

triangular and U, V are unitary.

When A has effective rank k, meaning there is a significant gap between σk(A) and

σk+1(A), the factorization A = URV with

R =

(
R11 R21

0 R22

)
, R11 ∈ Ck×k (1.30)
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is rank-revealing if σk(R11) is a “good” approximation to σk(A) and ||R22||2 is a “good”

approximation of σk+1(A). We will make the meaning of “good” precise in Chapter 4.

For now, we note that all of the versions of divide-and-conquer considered in this thesis

will make use of a randomized, rank-revealing URV factorization introduced by Demmel,

Dumitriu, and Holtz [38], which is simple to implement and especially compatible with

inverse-free computations [11].

Remark 1.3.4. Because we use a randomized rank-revealing factorization, there is a

chance that UR and UL are computed incorrectly, even if PR and PL are not. This is

our motivation for deriving PL from (AH , BH) instead of UR; while in principle we could

obtain UL from a rank-revealing factorization of
[
AUR BUR

]
– or even just BUR if we

know B is invertible – computing PL and PR independently allows us to scout potential

failures. A situation in which UR and UL have different dimensions, for example, would

suggest that either a rank-revealing factorization has failed or that PR and PL were not

computed accurately enough.

In the terminology established above, each step of divide-and-conquer consists of

the following:

1. Divide the spectrum into two disjoint pieces.

2. Obtain PR and PL for both sets of deflating subspaces.

3. Compute a (random) rank-revealing URV factorization of each projector.

4. Construct the next subproblems and recur.

Note that if we are able to consistently split the eigenvalues into sets of roughly equal

size, only O(log(n)) steps of divide-and-conquer are required to find a full set of eigenval-

ues/eigenvectors for (A,B). In the worst case, divide-and-conquer may require as many as

O(n) steps.

Before moving on, we note that the high-level strategy outlined above can also
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be applied to the standard eigenvalue problem, in which case the left/right projectors

are replaced by a single spectral projector onto a corresponding invariant subspace. In

fact, divide-and-conquer originates with the standard eigenvalue problem, beginning with

work of Beavers and Denman [19], which demonstrated that the matrix sign function of

Roberts [109] could be used to compute spectral projectors. Subsequent work for the

generalized eigenvalue problem has extended the use of the sign function and considered

a number of alternatives [7, 11,60,95]. While again this is not our primary focus, we do

note that divide-and-conquer has already found wide use in certain structured settings,

particularly for symmetric eigenvalue problems [107].

1.3.1 Two Challenges

Practically speaking, there are two main challenges to overcome when implementing

a divide-and-conquer eigensolver. In large part, this thesis is dedicated to rigorously

addressing both. Since answers will be problem-dependent, we note again that we are

primarily interested in the most general setting (though we will explore a specialization in

Chapter 5).

Divide-and-Conquer Challenge One

How do we reliably (and significantly) divide the spectrum Λ(A,B) at every step?

If we do so with a generalized circle Γ in C, can we obtain some guarantee that

Λϵ(A,B) ∩ Γ = ∅ for ϵ not too small?

This first challenge is in some sense existential; not only are there no known

deterministic answers, but simply identifying viable splits will not be good enough. If

we hope to outperform an O(n3) solver like QZ, we will need the splits to be significant,

meaning as close to 50/50 as possible, at every step. In short, if at least a fraction of

eigenvalues can be separated with each split, only logarithmically many steps of divide-and-

conquer will be necessary, and the algorithm will run in nearly matrix multiplication time
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provided each individual step can be done cheaply (that is, in nearly matrix multiplication

time itself).

Historically, this obstacle to divide-and-conquer has been largely ignored. Most

work either assumes access to a split as something of a black box or designates a problem

that cannot be split by a standard choice of Γ – say the imaginary axis or the unit circle –

as ill-posed. The latter is the case in work of Malyshev [95] and Bai, Demmel, and Gu [7],

for example. Intuitively, we might expect that a random choice of Γ will work with high

probability, an idea explored in a technical report of Ballard, Demmel, and Dumitriu [11],

though this is ultimately not rigorous enough to be useful in practice. Put simply, the

lack of general answers to this challenge of divide-and-conquer explains its limited use, for

both the standard and generalized eigenvalue problems.

Even if a splitting strategy is found, setting this first challenge aside momentarily,

we still need to decide how to compute spectral projectors.

Divide-and-Conquer Challenge Two

How do we efficiently and stably compute the spectral projectors PR and PL once a

subset S ⊂ Λ(A,B) has been identified? Can this be done without matrix inversion?

Unlike the first challenge, this one has many potential answers in the literature.

Hence, the task here is to find a method that balances efficiency and stability, where the

latter is promoted by avoiding inversion (as we discuss further in Section 1.5).

These two challenges are inherently linked insofar as a pseudospectral guarantee

like Λϵ(A,B) ∩ Γ = ∅ provides a benchmark for how accurately PR and PL must be

computed. That is, if the computed subproblems are within ϵ of their exact values, we

will be guaranteed that the divide-and-conquer process will not break down.7 This is a

consequence of the following lemma.

7Here, a breakdown corresponds to a situation in which one of the computed subproblems has
eigenvalues in the wrong region of C.
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Lemma 1.3.5. Let PR be a spectral projector for a regular matrix pencil (A,B) and let

PL be the projector onto the corresponding left deflating subspace. Let UL, UR ∈ Cn×k be

matrices whose orthonormal columns span the ranges of PL and PR respectively. Then

Λϵ(U
H
L AUR, U

H
L BUR) ⊆ Λϵ(A,B).

Proof. If z ∈ Λϵ(U
H
L AUR, U

H
L BUR) then there exists a unit vector u ∈ Ck such that

||UH
L (A− zB)URu||2 = ||(UH

L AUR − zUH
L BUR)u||2 ≤ ϵ(1 + |z|). (1.31)

Let y = URu ∈ Cn. Since UR has orthonormal columns ||y||2 = ||URu||2 = ||u||2 = 1.

Moreover, y is in the right deflating subspace range(PR), which means (A− zB)y belongs

to the corresponding left deflating subspace range(PL). Since the columns of UL are an

orthonormal basis for this subspace, we conclude

||(A− zB)y||2 = ||UH
L (A− zB)y||2 ≤ ϵ(1 + |z|) (1.32)

and therefore z ∈ Λϵ(A,B).

Note that the proof of Lemma 1.3.5 requires that UL and UR have orthonormal

columns, highlighting why it is insufficient to simply compute PR and PL.

To overcome the first challenge of divide-and-conquer we might ask: in what

situations should spectral bisection be easy? Intuitively, a pencil (A,B) satisfying the

assumptions of Theorem 1.2.14 should be amenable to divide-and-conquer, particularly if

κV (A,B) is not too large and gap(A,B) is not too small. In this setting – which we refer

to as well-behaved – Bauer-Fike implies that the pseudospectra of (A,B) cling tightly to

its eigenvalues, which are well-separated, and a randomized splitting strategy is likely to

perform well.

Unfortunately, we are not guaranteed to always encounter well-behaved inputs in

practice. To work around this, we take a cue from RandNLA, randomly perturbing the

initial pencil (A,B) to obtain (Ã, B̃) = (A+ γG1, B + γG2), where 0 < γ < 1
2
is a tuning

parameter and G1 and G2 are independent, complex Ginibre random matrices.
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Definition 1.3.6. A random matrix G ∈ Cn×n is complex Ginibre if its entries are

independent and identically distributed (i.i.d.) with distribution NC(0,
1
n
) – i.e., standard

complex Gaussian with mean zero and variance 1
n
.

Given the perturbation results discussed in Section 1.2, this may seem counterintu-

itive. While it is possible that certain perturbations will dramatically change the spectral

information of the input pencil (as in Example 1.2.2), these are ultimately unlikely to

occur randomly. Instead, the random perturbation has a regularizing effect on (A,B) with

high probability, which we characterize below. We argue that this regularization implies

a splitting strategy for divide-and-conquer that will succeed with high probability when

applied to (Ã, B̃).

Regularization via Randomization

With high probability, we have the following:

1. (Ã, B̃) is regular and diagonalizable.

2. Ã and B̃ are minimally well-conditioned.

3. κV (Ã, B̃) < poly(n, γ−1) and gap(Ã, B̃) > poly(n−1, γ).

The first two of these follow immediately8 from a recent probabilistic singular value

bound due to Banks et al. [17, Lemma 3.3], which we restate below. The third point is

rigorously proved in Chapter 2.

Lemma 1.3.7 (Banks et al. 2021). Let G be an n× n complex Ginibre matrix. Then for

any A ∈ Cn×n and any γ, t > 0, P [σn(A+ γG) < t] ≤ (nt/γ)2.

The idea to use a random perturbation to regularize a matrix or pencil can be

considered a linear algebra extension of the landmark smoothed analysis work of Spielman

and Teng [120]. Lemma 1.3.7 is characteristic of the results in this branch of Random

8For point one, we note that (Ã, B̃) almost surely has a full set of distinct eigenvalues.
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Matrix Theory, which probabilistically bound the norms, singular values, and condition

numbers of a matrix under a variety of random perturbations [3, 54, 116]. In general,

these bootstrap off of similar results for random matrices themselves, which have been

well-studied since their introduction a century ago [147]. Importantly, distributions

and probabilistic bounds for the eigenvalues/singular values of a variety random matrix

ensembles are known [8,47–49,113,132].

We are of course not the first to consider randomizing the inputs of divide-and-

conquer. Again, we take inspiration here from Banks et al. [16], who applied the same

high-level framework to the standard eigenvalue problem and, crucially, showed that it could

diagonalize any matrix in fewer than O(n3) operations. They established the regularizing

behavior described above for individual matrices and coined the term pseudospectral

shattering to describe it,9 a name derived from the fact that a random grid covering the

pseudospectrum of the perturbed matrix (or pencil, as we will see) separates its disjoint

components and the eigenvalues they contain into separate grid boxes with high probability.

While their eigenvector condition number guarantee – i.e., that the perturbed matrix has

minimally well-conditioned eigenvectors – is critical to bounding the pseudospectra, it can

also be interpreted as a solution to a conjecture of Davies [36].

An example of pseudospectral shattering for matrix pencils is given in Figure 1.3.

These plots capture the regularizing behavior described above and imply a straightforward

method for splitting the spectrum in divide-and-conquer: simply divide with the grid lines

covering Λϵ(Ã, B̃). Importantly, these grid lines are both well-separated from a certain

pseudospectrum and easy to search over in pursuit of significant splits.

Of course, these plots also remind us that regularization does not necessarily

preserve eigenvalues. In this case, (Ã, B̃) is diagonalizable while (A,B) is not; hence, the

perturbation has both changed the Kronecker canonical form of the pencil and significantly

9While Banks et al. initially considered Ginibre perturbations [16, 17], they have subsequently general-
ized this work to other random ensembles [15].
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(a) Pseudospectra of (A,B) (b) Pseudospectra of (Ã, B̃)

Figure 1.3. Pseudospectra of a pencil (A,B) before and after perturbation. Here, A
is a 10 × 10 Jordan block, B is the identity matrix, and the perturbed matrices are
Ã = A+ 10−7G1 and B̃ = B + 10−7G2 for G1 and G2 two independent, complex Gaussian
matrices. Once again eigenvalues are plotted with open circles. A grid that shatters the
10−8-pseudospectrum of (Ã, B̃) is superimposed over plot (b).

moved its eigenvalues. Nevertheless, a diagonalization of (Ã, B̃) will serve as a backward-

stable diagonalization of (A,B) here, since ||A− Ã||2 and ||B − B̃||2 are small.

In Chapter 2 we rigorously generalize pseudospectral shattering to matrix pencils,

thereby codifying theoretically the behavior discussed in this section and depicted in

Figure 1.3. The remaining challenge of divide-and-conquer is addressed in Chapter 3,

which presents a high-level framework for computing spectral projectors without relying

on matrix inversion. In the subsequent chapters, we combine these results to pose and

analyze two versions of divide-and-conquer for the generalized eigenvalue problem.

1.4 Efficiency and Fast Linear Algebra

In the remainder of this chapter, we make precise our notions of efficiency and

stability, thereby clarifying the advantages of divide-and-conquer suggested by the previous

sections. The bottom line (to keep in mind throughout) can be summarized as follows:

our algorithm is built primarily on QR and matrix multiplication, both of which have fast
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and communication-optimal implementations with strong stability guarantees, therefore

promoting efficiency and stability simultaneously. We begin here with efficiency and leave

numerical stability to Section 1.5.

Throughout this thesis, the efficiency of an algorithm is primarily measured by its

asymptotic complexity – i.e., the number of arithmetic operations it performs, expressed

as O(f(n)) for f(n) a function of the problem size n (here the size of the pencil (A,B)). In

this framework, one algorithm is faster than another if its asymptotic complexity is smaller,

meaning it requires fewer arithmetic operations in the limit n→ ∞. The computational

complexity of a basic linear algebra operation – in our case matrix pencil diagonalization –

is the asymptotic complexity of the fastest algorithm that performs it.

Despite decades of research in numerical linear algebra, the complexity of many

basic matrix operations is not known. Matrix multiplication is the prototypical example

here. While the standard multiplication algorithm requires O(n3) operations, a host

of sub-O(n3) methods have been developed over the years, beginning in 1969 with the

pioneering work of Strassen [127] and continuing to the present [5, 32, 117, 145]. At the

time of writing, the fastest known algorithm has complexity O(n2.371552) and is due to

Williams, Xu, Xu, and Zhou [146]. In the meantime, the best known lower bound for

matrix multiplication’s complexity has remained at Ω(n2), a simple consequence of the

fact that any matrix multiplication algorithm must read 2n2 entries. It remains a major

problem in the theory of computing to either show that this lower bound can be achieved

or replace it with something tighter.

Cumulatively, algorithms that multiply n× n matrices in sub-O(n3) operations are

referred to as fast matrix multiplication. Algorithms for other linear algebra computations

built on top of these routines comprise what is often called fast linear algebra. Importantly,

many such computations – including QR, LU, least squares, and more – can be imple-

mented to have the same complexity as the matrix multiplication subroutine used [38, 72].

In an abstract sense, these computations are said to have matrix multiplication time
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implementations – i.e., they can be done by an algorithm with complexity equal to that of

matrix multiplication, supposing this theoretical complexity was known and an algorithm

for achieving it were available.

In our case, we focus on the slightly slower class of algorithms that run in nearly

matrix multiplication time.

Definition 1.4.1. An algorithm that computes with n× n matrices runs in nearly matrix

multiplication time if its asymptotic complexity is O(polylog(n)TMM(n)), where TMM(n) is

the complexity of n× n matrix multiplication. A linear algebra computation is doable in

nearly matrix multiplication time if it can be executed by such an algorithm.

The allure of performing much of linear algebra in (nearly) matrix multiplication

time should be tempered with some caution. For one, we might ask whether fast matrix

multiplication exhibits the same stability as the traditional algorithm. While this is

essentially the case (as we discuss in the next section), it is still not necessarily clear that

reducing asymptotic complexity can offer real benefits in practice. The answer hinges on a

classic question in numerical analysis: how large are the constants hidden by the big-O

notation? For many of the most recent fast matrix multiplication routines, the constant

suppressed by big-O is enormous; as a result, they are much slower than standard matrix

multiplication on currently attainable problem sizes and therefore not widely used (if used

at all). In contrast, early entries to the fast matrix multiplication library – in particular

Strassen’s O(nlog2(7)) algorithm – provide actual gains on realistic problems.

Since we are primarily interested in complexity as a measure of efficiency, we present

“fast” versions of divide-and-conquer that are compatible with fast matrix multiplication.

As a theoretical exercise, this ultimately implies that matrix pencil diagonalization can be

done in nearly matrix multiplication time. In practice, however, any implementation of

these methods is likely to use, at most, the simpler fast matrix multiplication routines.

Arithmetic operations are of course only one way to measure the efficiency of an
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algorithm. Given that we intend to apply the highly parallel divide-and-conquer approach,

we might instead focus on communication costs, both between levels of memory hierarchy

and/or between multiple processors. The former applies when an algorithm is run on a

problem that exceeds available fast memory, in which case an input can only be accessed

in pieces. The latter arises when information must be passed between processors as part

of an explicitly parallel implementation. In either case, associated costs can be quantified

in terms of M , the size of the fast (or local) memory.

Efforts to bound communication costs in numerical linear algebra10 began with

dense matrix multiplication in work of Hong and Kung [76] and Irony, Toledo, and

Tiskin [81]. Ballard, Demmel, Holtz, and Schwartz [13] subsequently established the

general lower bound of Ω(# arithmetic operations/
√
M) for a variety of algorithms in

linear algebra, including general O(n3) eigensolvers. A variant11 of the divide-and-conquer

approach presented in this thesis was shown to achieve this lower bound in a technical

report of Ballard, Demmel, and Dumitriu [11], a consequence of the fact that its primary

building blocks are QR and matrix multiplication. We use the same building blocks here,

albeit fast linear algebra versions. Nevertheless, these fast alternatives have been shown to

exhibit communication optimal implementations themselves [14], meaning our version of

divide-and-conquer may achieve O(polylog(n)TMM(n)/
√
M) communication cost, though

this has not been explored rigorously.

The motivation for considering communication here is intuitive. Divide-and-conquer

is both highly parallel and primed for memory-constrained applications, where its splitting

power can be used to reduce a problem to fit in fast memory, if necessary. In fact,

this is a much more realistic stopping criteria for the divide-and-conquer process than

running the algorithm to 1 × 1 subproblems. Moreover, as arithmetic operations grow

10For a detailed discussions of results in this branch of NLA, which seeks communication-optimal or
communication-avoidant algorithms, see the thesis of Ballard [9] or the survey paper [10].

11Built on classic O(n3) matrix multiplication and using a different splitting strategy than we develop
in the next chapter.
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Table 1.1. Best-known efficiency bounds for the standard QZ algorithm and randomized
divide-and-conquer. The complexity for the latter is Theorem 1.6.1. Here, TMM(n) is the
complexity of n×n matrix multiplication and M is the size of available fast/local memory.

Algorithm Complexity Communication Cost

QZ O(n3) [102] Ω(n3/
√
M) [13]

Divide-and-Conquer O(polylog(n)TMM(n)) O(n3/
√
M) [11]

cheaper, communication costs increasingly dominate run times in practice. In spite of

this, communication optimality is not our primary focus, as the work discussed above has

already established divide-and-conquer as the best choice in this setting. Our contribution

instead is to show that divide-and-conquer is similarly optimal in terms of pure arithmetic

operations. In tandem, these results demonstrate the flexibility of the divide-and-conquer

strategy.

We summarize the efficiency bounds discussed in this section, for both QZ and

divide-and-conquer, in Table 1.1. Note that the complexity and communication bounds for

divide-and-conquer are not currently known to be achievable with the same implementation

(though this is likely the case).

1.5 Numerical Stability and Inverse-Free Eigen-

solvers

We turn now to numerical stability. Since QZ is well-known to be backward-stable

(as defined below), establishing stability for divide-and-conquer is critical; a fast version

of the algorithm is ultimately useless if it is unreliable in a floating-point setting. With

this in mind, we consider here classical definitions of numerical stability as applied to fast

linear algebra. Once again, stability stems from the decision to avoid matrix inversion.

Accordingly, we also dedicate part of this section to commenting on the efficacy of inverse-

free algorithms as an approach to eigenvalue problems.

We begin by outlining a model for finite-precision arithmetic, which we use to define
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our notions of stability and will return to in Chapter 6. For our purposes, we assume a

floating-point setting where

fl(x ◦ y) = (x ◦ y)(1 + ∆), |∆| ≤ u (1.33)

for basic operations ◦ ∈ {+,−,×,÷} and a machine precision u(ε, n), which is a function

of the desired accuracy ε and problem size n. As is traditional, we also assume that

a similar error bound applies to
√
·. This is a standard formulation for finite-precision

computations (see for example [74]). Given u, the number of bits of precision required to

achieve (1.33) is log2(1/u).

If alg(x) is a finite-precision implementation of an algorithm that computes f(x),

we distinguish between two measures of accuracy,12 which are also standard.

1. Forward Error: ||alg(x)− f(x)||.

2. Backward Error: ||x− x̃|| for x̃ satisfying alg(x) = f(x̃).

Normwise stability for alg can be defined by bounding these errors in terms of u and µ(n),

the latter a (small) polynomial in n.

Definition 1.5.1. alg is forward-stable if ||alg(x)− f(x)|| ≤ µ(n)u||f(x)||.

Definition 1.5.2. alg is backward-stable if alg(x) = f(x̃) and ||x− x̃|| ≤ µ(n)u||x||.

As defined here, forward stability is incredibly strict, implying that accuracy

is independent of conditioning. For this reason, backwards stability – which suggests

alternatively that alg computes f exactly on a nearby input – is typically considered the

gold standard in numerical linear algebra. Assuming access to an appropriate condition

number κf(x), classical perturbation theory implies that a backward-stable algorithm

satisfies a forward error bound

||alg(x)− f(x)||2 ≤ κf (x)µ(n)u||f(x)||. (1.34)

12Here, || · || stands for any relevant norm.
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Efforts to quantify the stability of fast linear algebra (in the framework outlined

above) began with fast matrix multiplication [26,27,42,73]. Work of Demmel, Dumitriu,

Holtz, and Kleinberg [39] eventually established that any13 fast matrix multiplication

routine has an implementation (of equal complexity) that is nearly forward-stable. If

C = AB and Ccomp is the computed product, this is characterized by the following:

||Ccomp − C||2 ≤ µ(n)u||A||2||B||2. (1.35)

In this sense, fast matrix multiplication is stable. Note that (1.35) is (possibly much)

weaker than Definition 1.5.1, as ||AB||2 ≤ ||A||2||B||2.

In subsequent work, Demmel, Dumitriu, and Holtz extended this stability analysis

to fast linear algebra more broadly [38]. Of particular note here, they demonstrated that

fast QR satisfies a mixed forward/backward stability bound (to be defined precisely in

Chapter 6). For other computations, they defined and proved logarithmic stability, which

can be interpreted as a relaxation of classical backward stability.

Definition 1.5.3. alg is logarithmically-stable if alg(x) = f(x̃) and

||x− x̃|| ≤ κf (x)
χ(n)µ(n)u||x||

for χ(n) a polynomial in log(n).

In place of Definition 1.5.3, Demmel, Dumitriu, and Holtz defined logarithmic

stability in terms of the forward error bound

||alg(x)− f(x)|| ≤ κf (x)
χ(n)+1µ(n)u||f(x)||. (1.36)

We justify borrowing terminology here by noting that any algorithm satisfying Defini-

tion 1.5.3 also satisfies (1.36). Comparing these forward-error bounds yields Table 1.2,

13Technically, their analysis only covers a certain class of recursive matrix multiplication algorithms,
though this includes all of the most popular fast matrix multiplication routines (as well as the current
fastest-known algorithm).
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Table 1.2. Precision required for an algorithm of a given (normwise) stability to compute
f(x) with forward error ε||f(x)||. As in Definition 1.5.3, µ(n) and χ(n) are polynomials in
n and log(n), respectively, and κf (x) is a condition number.

Stability Required u Required bits of precision log2(1/u)

Forward ε/µ(n) log2(1/ε) + log2(µ(n))

Backward ε/(κf (x)µ(n)) log2(1/ε) + log2(µ(n)) + log2(κf (x))

Logarithmic ε/(κf (x)
χ(n)+1µ(n)) log2(1/ε) + log2(µ(n)) + (χ(n) + 1) log2(κf (x))

which shows the correspondence between these classical notions of stability and precision.

We see here the origin of the name logarithmic stability: a logarithmically-stable algorithm

requires a polylogarithmic increase in precision to obtain the same forward error as a

backward-stable alternative.

Recalling that the QZ algorithm is backward-stable, we might hope to show that

divide-and-conquer (implemented with fast matrix multiplication) is logarithmically stable,

in essence trading an improvement in complexity for a slight, though manageable, loss of

stability. We leave a full floating-point analysis to future work, though we anticipate that

our approach can be implemented in a logarithmically stable way. Instead, we explore the

stability of divide-and-conquer by deriving precision bounds for its main building blocks

in Chapter 6 and presenting a handful of numerical examples in Chapter 4.

Our expectation that a logarithmically stable implementation exists is rooted pri-

marily in the design choice to avoid matrix inversion. While it is possible to invert a

matrix in O(TMM(n)) operations – meaning the use of inversion would not necessarily

increase complexity – such implementations are only logarithmically stable, meaning they

require the precision increase captured by Table 1.2 [38, Section 3] if used even once (and

divide-and-conquer would require calling an inversion routine O(polylog(n)) times).

To see the drawback of building divide-and-conquer on top of fast inversion, we

need only look to the work of Banks et al., whose divide-and-conquer approach to the

standard eigenvalue problem uses inversion to compute spectral projectors via the matrix
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sign function. Accordingly, since they also make use of the fast linear algebra frame-

work to obtain nearly-matrix-multiplication-time complexity, their algorithm is built on

a logarithmically-stable black-box inversion algorithm [16, Definition 2.7]. While Banks

et al. work hard to bound the error in their divide-and-conquer routine, the lack of

stability inherent to fast inversion cannot be overcome; the result of their analysis is

a weaker-than-logarithmic stability guarantee for the algorithm as a whole. Because

the eigenvalue problem corresponding to the matrix A can be solved via the equivalent

generalized eigenvalue problem (A, I), and because we anticipate that our approach admits

a logarithmically stable implementation, we position our work as a potentially more stable

(but no less efficient) alternative to the algorithm of Banks et al.

There is another dimension to avoiding inversion here that has to this point been

overlooked. If B is invertible, the pencil (A,B) and the matrix B−1A have the same set

of eigenvalues and (right) eigenvectors. This observation prompts a first, naive approach

to the generalized eigenvalue problem: form the product matrix B−1A and apply any

algorithm for the standard eigenvalue problem. While it would be convenient to simply

dismiss this on the basis that B may very well be singular, the RandNLA approach taken

here suggests that it could be viable. In particular, recall from Section 1.3 that randomly

perturbing the input matrices guarantees with high probability that both Ã and B̃ are

minimally well-conditioned and therefore that the product matrix B̃−1Ã could be formed.

In exact arithmetic, this provides an alternative – and arguably simpler – pathway to a

nearly matrix multiplication time algorithm for diagonalizing (A,B).

Nevertheless, we argue that this is inadvisable from a stability perspective. In our

approach, higher accuracy diagonalizations of (A,B) require increasingly small pertur-

bations to the matrices. In this limit, the “minimally well-conditioned” guarantee for B̃

will be poor if B is initially singular, implying that the decision to form B̃−1Ã will incur

significant errors. This is captured by the following example.
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Example 1.5.4. Construct a 1000× 1000 pencil (A,B) by drawing A and B randomly,

computing a singular value decomposition B = UΣV H , and setting B = B − σmin(B)uvH ,

where u and v are the last columns of U and V , respectively. Let Ã = A+ 10−10G1 and

B̃ = B + 10−10G2 for G1, G2 two independent, Gaussian matrices. Calling the intrinsic

function eig in Matlab, we can find the eigenvalues of (A,B), (Ã, B̃), and B̃−1Ã via the

QZ and QR algorithms. Ordering by modulus allows us to compute the absolute difference

between corresponding eigenvalues of (A,B) and either (Ã, B̃) or B̃−1Ã. Below, we record

these errors for the five largest eigenvalues (and one draw of A and B with i.i.d. entries

from NC(0, 2)). Note that, by construction, (A,B) has an eigenvalue at infinity.

Eigenvalue |Λ(Ã, B̃)− Λ(A,B)| |Λ(B̃−1Ã)− Λ(A,B)|
(largest) 1 Infinity Infinity

2 4.68× 10−9 1.32× 10−2

3 3.20× 10−10 1.93× 10−2

4 1.82× 10−10 2.23× 10−2

5 2.62× 10−10 8.69× 10−3

The impact of forming the matrix B̃−1Ã is clear: because the perturbation to A and B is

small, B̃ is nearly singular and computing B̃−1Ã, in double precision, meaningfully moves

the eigenvalues away from those of (A,B). The same cannot be said for (Ã, B̃). Hence, if

we hope to recover the original eigenvalues of (A,B), we must work with the latter. Note

that this example uses neither divide-and-conquer nor fast inversion, meaning the loss of

accuracy here is better than we might expect to see in practice.

In some sense, the decision to pursue an inverse-free approach to the generalized

eigenvalue problem is an expression of traditional numerical analysis lore. To quote Nick

Higham [74, Chapter 14]:

To most numerical analysts, matrix inversion is a sin.

Some may be skeptical: if high enough precision is available to us, is inverting a matrix

really so problematic? We aim to show here that inversion truly is a stability bottleneck for
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generalized eigenvalue problems, both experimentally and in terms of theoretical precision

bounds. To that end, we will return to versions of Example 1.5.4 throughout the thesis. In

Chapter 4, we demonstrate that a divide-and-conquer approach based on forming B̃−1Ã

cannot diagonalize (A,B) with high accuracy – or recover its eigenvalues – in standard

double precision. Formal bounds are subsequently considered in Chapter 6.

1.6 Main Contributions

We are finally ready to state our main result.

Theorem 1.6.1. There exists an exact arithmetic, inverse-free, and randomized

algorithm that for any pencil (A,B) with A,B ∈ Cn×n and any accuracy ε < 1

produces in nearly matrix multiplication time nonsingular matrices S, T and a

diagonal matrix D such that

||A− SDT−1||2 ≤ ε and ||B − ST−1||2 ≤ ε

with probability at least 1−O( 1
n
).

The remaining chapters can be summarized as follows. Taken together, the first

three provide a high-level outline of the proof of Theorem 1.6.1.

• Chapter 2 resolves challenge one of divide-and-conquer by generalizing pseudospectral

shattering to matrix pencils.

• Chapter 3 answers the remaining challenge, presenting a strategy for computing

spectral projectors that uses only QR and matrix multiplication.

• Chapter 4 combines the results of the previous two to state a provably successful,

divide-and-conquer diagonalization algorithm, which we call Randomized Pencil

Diagonalization or RPD.
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• Chapter 5 considers a specialization of pseudospectral shattering and RPD to

definite pencils (which we hold off on defining until then). Importantly, this chapter

establishes that our divide-and-conquer approach can be formulated to exploit

structure, if applicable.

• Finally, Chapter 6 provides the aforementioned precision bounds for a floating-point

implementation.

We hope that this thesis not only establishes the efficacy of randomized divide-and-conquer

for the generalized eigenvalue problem but also serves as a guidebook for developing (and

analyzing) new variants of our approach.

1.6.1 Open Problems and Future Work

For interested readers, we discuss here a handful of open problems related to the

results presented in this thesis.

Full Finite-Precision Analysis: The most immediate goal is to complete the floating-

point analysis begun in Chapter 6. While we present precision bounds for the main

building blocks of our approach there, a bound for the algorithm as a whole remains to be

found. As noted in Section 1.4, a communication-oriented analysis of divide-and-conquer

(with fast matrix multiplication) remains similarly open. Can it be shown rigorously, as we

anticipate, that our algorithm is both communication-optimal and logarithmically stable?

Universal/Deterministic Pseudospectral Shattering: With the exception of Chap-

ter 5, perturbations here are always complex Ginibre. Given work of Banks et al., which

proved the essential building blocks of single-matrix shattering for real perturbations

with absolutely continuous entries (under mild moment assumptions) [15], this begs the

question: can pseudospectral shattering be established for other random matrix ensembles

in the pencil case? Going a step further, can a similar deterministic result be found?

Recent work of Bhattacharjee et al. [25] suggests the adjacency matrix of a pseudorandom
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graph as a candidate for deterministic perturbations.

Improvements to Perturbation Theory: As mentioned in Section 1.2, standard

perturbation theory for the generalized eigenvalue problem is somewhat ill-equipped to

explain the behavior of algorithms that pursue backward-stable diagonalizations. While

interesting in its own right, producing sharper (and easier to use) bounds would provide

better user guides for an implementation.

High-Performance Implementation: With the latter point in mind, we note that the

experiments presented here were done with a model implementation – i.e., one that did

not use fast matrix multiplication and was not explicitly parallelized. Hence, they can

be interpreted as primarily a proof of concept. Together with the original pseudospectral

shattering paper of Banks et al. (and other subsequent extensions, including by Sobczyk,

Mladenović, and Luisier [119]), we believe this work represents a critical mass of sorts

for randomized divide-and-conquer, justifying further implementation efforts, particularly

from a high-performance computing perspective (see Appendix A). Note that eigensolvers

are not included in the current development of RandLAPACK [103].

1.7 Miscellanea

To wrap up this chapter, we state a few general results from linear algebra and

complex analysis, which we use throughout.

1.7.1 Singular Value Inequalities

We start with a handful of inequalities for singular values. The first concerns a

product of matrices and follows easily from Courant-Fischer.

Lemma 1.7.1. Let A,B ∈ Cn×n. Then for any 1 ≤ i ≤ n,

σn(A)σi(B) ≤ σi(AB) ≤ ||A||2σi(B).
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Next is the stability of singular values, a consequence of the stability of the Hermitian

eigenvalue problem – i.e., Weyl’s inequality [126, Corollary IV.4.9].

Lemma 1.7.2 (Stability of Singular Values). For any A,B ∈ Cn×n

|σi(A)− σi(B)| ≤ ||A−B||2, 1 ≤ i ≤ n.

Finally, we note that the spectral norm is often generalized to pencils by setting

||(A,B)||2 equal to the norm of the n× 2n matrix obtained by concatenating A and B.

Throughout we use the loose upper bound ||(A,B)||2 ≤ ||A||2 + ||B||2.

1.7.2 Möbius Transformations

As we will see, our divide-and-conquer procedure makes frequent use of Möbius

transformations.

Definition 1.7.3. A Möbius transformation is a map S : C → C of the form.

S(z) =
az + b

cz + d

for a, b, c, d,∈ C satisfying ad− bc ̸= 0.

Möbius transformations have a number of useful properties: they are conformal

and map generalized circles to generalized circles, preserving orientation in the process.

Moreover, any Möbius transformation is determined by its action on three points in C

(including possibly a point at ∞). For more background, see the standard reference [2].

Of particular use here, note that the Möbius transformation

S(z) =
z − (h− 1)

z − (h+ 1)
(1.37)

maps the line Re(z) = h to the unit circle, with {Re(z) < h} → {|z| < 1}. Applying the

Möbius transformation S(z) = az+b
cz+d

to (A,B) yields the pencil (aA+ bB, cA+ dB), whose

spectrum is exactly the image of Λ(A,B) under S. This provides a cheap way to map the
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eigenvalues of (A,B), which can be easily undone via S−1(z) = dz−b
−cz+a

if necessary.
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Chapter 2

Generalized Pseudospectral Shatter-
ing
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In this chapter, we extend the pseudospectral shattering work of Banks et al. [16]

to the generalized eigenvalue problem. In doing so, we establish rigorously the regularizing

effect of random (Ginibre) perturbations on the spectrum and pseudospectrum of a matrix

pencil. We begin by defining this phenomenon formally.

Definition 2.0.1. The shattering grid g = grid(z0, ω, s1, s2) is the boundary of the s1× s2

lattice in the complex plane that has lower left corner z0 ∈ C and consists of ω × ω boxes.

The grid lines of g are parallel to either the real or the complex axis.

Definition 2.0.2. Λϵ(A,B) is shattered with respect to the grid g if (1) Λϵ(A,B) ∩ g = ∅

and (2) each eigenvalue of (A,B) belongs to a unique grid box of g.

Swapping Λϵ(A,B) for Λϵ(A) in Definition 2.0.2 yields the original definition of

pseudospectral shattering for the standard eigenvalue problem. Note that the shattering

grid g is not simply a net of points but rather the union of the vertical/horizontal lines
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connecting them. The picture to keep in mind throughout is that of Figure 1.3.

In the terminology established here, the original pseudospectral shattering result of

Banks et al. can be stated as follows.

Theorem 2.0.3 (Banks et al. 2022). Let A ∈ Cn×n with ||A||2 ≤ 1 and set Ã = A+γG for

G an n× n Ginibre matrix and 0 < γ < 1
2
. Set ω = γ4

4n5 and sample the point z uniformly

at random from the ω× ω square in C with bottom left corner −4− 4i. Construct the grid

g = grid(z, ω, ⌈8/ω⌉, ⌈8/ω⌉). Then Λϵ(Ã) is shattered with respect to g for ϵ = γ5

16n9 with

probability at least 1−O( 1
n
).

The proof of Theorem 2.0.3 boils down to bounding the eigenvalue gap and eigen-

vector condition number of Ã, while the norm assumption ||A||2 ≤ 1 is imposed to provide

easy bounds on the spectral radius of Ã. These ingredients provide our road map: we will

seek analogous bounds to prove our counterpart to Theorem 2.0.3.

To do this, we consider throughout the perturbed pencil

(Ã, B̃) = (A+ γG1, B + γG2) (2.1)

for G1, G2 independent Ginibre matrices and a tuning parameter 0 < γ < 1
2
. We apply

similar norm assumptions ||A||2, ||B||2 ≤ 1 for simplicity. In this case, however, normalizing

a pencil does not change its eigenvalues; instead, we require an nα scaling (with α > 0) on

B̃ to obtain bounds on Λ(Ã, nαB̃). Of course, we will eventually have to pay the price for

this scaling – i.e., if we compute the eigenvalues of (Ã, nαB̃) we will have to multiply by

nα to recover the eigenvalues of (Ã, B̃) – though this is essentially equivalent to the cost

of normalizing in the single-matrix case.

As we will see, much of the subsequent analysis is done in terms of the product

matrix X = n−αB̃−1Ã, which has the same eigenvalues and right eigenvectors as (Ã, nαB̃).

This is a theoretical tool only; to again underscore the numerical stability concerns

discussed in Chapter 1, we do not recommend forming X in practice.
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Guide to Chapter 2: In Section 2.1, we derive a handful of probabilistic singular value

bounds and demonstrate how they can be used to control the spectrum and eigenvector

conditioning of a perturbed (and scaled) pencil. Section 2.2 subsequently presents our

main regularization result: a tail bound on the probability that gap(Ã, nαB̃) is not too

small and κV (Ã, n
αB̃) is not too large. We make use of this tail bound in Section 2.3 to

prove pseudospectral shattering.

2.1 Singular Value Bounds

As discussed in Section 1.3, pseudospectral shattering, and therefore randomized

divide-and-conquer, rests primarily on probabilistic singular value bounds from Random

Matrix Theory. In addition to Lemma 1.3.7, which we re-state below for convenience, the

single-matrix version makes use of the following. Lemma 2.1.1 is [17, Lemma 2.2] while

Lemma 2.1.2 is [16, Corollary 3.3].

Lemma 1.3.7. Let G be an n× n complex Ginibre matrix. Then for any A ∈ Cn×n and

any γ, t > 0, P [σn(A+ γG) < t] ≤ (nt/γ)2.

Lemma 2.1.1 (Banks et al. 2021). Let G be an n× n complex Ginibre matrix. Then for

any t > 0, P
[
||G||2 ≥ 2

√
2 + t

]
≤ 2e−nt2 .

Lemma 2.1.2 (Banks et al. 2022). Let G be an n× n complex Ginibre matrix. Then for

any M ∈ Cn×n and any γ, t > 0, P [σn−1(M + γG) < t] ≤ 4(tn/γ)8.

These results are equally useful here. Lemma 1.3.7, for example, implies that with

high probability (and an appropriate choice of γ) both Ã and B̃ are nonsingular, meaning

the pencil (Ã, B̃) – and therefore also (Ã, nαB̃) – can be assumed to be regular. Almost

surely these pencils have distinct eigenvalues and are therefore also diagonalizable, again

with high probability. At the same time, Lemma 2.1.1 guarantees that the norms of Ã and

B̃ are not too large, assuming initially ||A||2, ||B||2 ≤ 1. Together, and without needing to

adapt them in any way, these first two results imply a bound on Λϵ(Ã, n
αB̃).
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Lemma 2.1.3. The eigenvalues of (Ã, nαB̃) are contained in B3(0) – the ball of radius

three centered at the origin – with probability at least 1− n2−2α

γ2 − 2e−n.

Proof. Consider X = n−αB̃−1Ã. Since X and (Ã, nαB̃) have the same eigenvalues, it is

sufficient to bound the probability that Λ(X) is not contained in B3(0). To do this, we

note

ρ(X) ≤ ||X||2 = n−α||B̃−1Ã||2 ≤
1

nασn(B̃)
||Ã||2 ≤

1

nασn(B̃)
(||A||2 + γ||G1||2) . (2.2)

Now ||A||2 ≤ 1 so, conditioning on the event ||G1||2 ≤ 4, we have ||A+ γG1||2 ≤ 3. Thus,

if Λ(X) ⊈ B3(0) and therefore ρ(X) > 3, we obtain nασn(B̃) < 1. Consequently,

P [Λ(X) ⊈ B3(0) | ||G1||2 ≤ 4] ≤ P
[
nασn(B̃) < 1

]
≤ n2−2α

γ2
, (2.3)

where the last inequality comes from Lemma 1.3.7. By Bayes’ Theorem, we therefore have

P [Λ(X) ⊈ B3(0), ||G1||2 ≤ 4] ≤ n2−2α

γ2
. (2.4)

At the same time, applying Lemma 2.1.1, we have

P [Λ(X) ⊈ B3(0), ||G1||2 > 4] ≤ P [||G1||2 > 4] ≤ 2e−n(4−2
√
2)2 ≤ 2e−n. (2.5)

Putting these two results together, we conclude

P [Λ(X) ⊈ B3(0)] ≤
n2−2α

γ2
+ 2e−n (2.6)

which completes the proof.

With Lemma 2.1.3 in hand, we can now consider building a random grid g over

B3(0), which (with an appropriate choice of α and γ) will contain every eigenvalue of

(Ã, nαB̃) with high probability. Given a grid box size ω, we define the random grid

g = grid(z, ω, ⌈8/ω⌉, ⌈8/ω⌉) for z a point drawn uniformly at random from the box in C

with bottom left corner −4− 4i and side length ω. The construction here follows Banks et
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al. and is somewhat arbitrary; for convenience, we choose g so that it roughly covers the

smallest box with integer side length that contains B3(0) (with some buffer space allowed).

We have yet to use Lemma 2.1.2. Below, we show that it can be bootstrapped into

a bound on the (n− 1)st singular value of yI −X for any y ∈ C by way of Lemma 1.7.1.

The purpose of the resulting Lemma 2.1.4 is not immediately clear; in the next section,

we show that this result implies bounds on the eigenvector condition number of (Ã, nαB̃).

Lemma 2.1.4. For any t > 0 and any y ∈ C,

P [σn−1(yI −X) < t | ||G2||2 ≤ 4] ≤ 4

(
t(1 + 4γ)nα+1

γ

)8

.

Proof. We begin by rewriting yI −X as

yI −X = n−αB̃−1
(
nαyB̃ − A− γG1

)
. (2.7)

Using standard singular value inequalities, we then have

σn−1(yI −X) ≥ σn

(
n−αB̃−1

)
σn−1

(
nαyB̃ − A− γG1

)
. (2.8)

Now conditioning on ||G2||2 ≤ 4, we have ||B̃||2 ≤ 1 + 4γ. Thus, σn(n
−αB̃−1) ≥ 1

nα(1+4γ)

and therefore

σn−1(yI −X) ≥ 1

nα(1 + 4γ)
σn−1

(
nαyB̃ − A− γG1

)
. (2.9)

Consequently, we observe

P [σn−1(yI −X) < t | ||G2||2 ≤ 4] ≤ P
[
σn−1

(
nαyB̃ − A− γG1

)
< tnα(1 + 4γ)

]
. (2.10)

Setting M = nαyB̃ − A and applying Lemma 2.1.2 (noting that M is independent of G1

and that G1 and −G1 have the same distribution) we have

P [σn−1(yI −X) < t | ||G2||2 ≤ 4] ≤ 4

(
t(1 + 4γ)nα+1

γ

)8

(2.11)

for any t > 0.
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2.2 Spectral Regularization

In this section, we use the bounds derived above to prove spectral regularization for

(Ã, nαB̃), which here means that with high probability both gap(Ã, nαB̃) > poly(n−1, γ)

and κV (Ã, n
αB̃) < poly(n, γ−1). Again, we work with X = n−αB̃−1Ã. Accordingly, since

we may assume that X is diagonalizable with a full set of distinct eigenvalues, we make

use of the following condition numbers.

Definition 2.2.1. If λi is an eigenvalue of a matrix A with distinct eigenvalues and vi

and wi are corresponding right/left eigenvectors normalized so that wH
i vi = 1, then the

condition number of λi is

κ(λi) = ||viwH
i ||2 = ||vi||2||wi||2.

Importantly, the condition numbers associated to the eigenvalues of X are related

to κV (Ã, n
αB̃) in the following way. If V is the eigenvector matrix of X (equivalently the

right eigenvector matrix of (Ã, nαB̃)) scaled so that each column is a unit vector, we have

κV (Ã, n
αB̃) ≤ κ2(V ) ≤ ||V ||F ||V −1||F ≤

√√√√n
n∑

i=1

κ(λi)2. (2.12)

Hence, bounding κ(λi) is equivalent to bounding κV (Ã, n
αB̃). Note that (2.12) would not

hold for a corresponding version of Definition 2.2.1 that uses the left and right eigenvectors

of (Ã, nαB̃), as V −1 contains the left eigenvectors of X which are not necessarily left

eigenvectors of (Ã, nαB̃).

Given Lemma 2.1.3, a bound on
∑n

i κ(λi)
2 can be obtained from the following

result (setting S = B3(0)).

Lemma 2.2.2. Let λ1, . . . λn be the eigenvalues of X. For any measurable set S ⊂ C,

E

[∑
λi∈S

κ(λi)
2 ||G2||2 ≤ 4

]
≤
(
(1 + 4γ)nα+1

γ

)2
vol(S)

π
.
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Proof. By Definition 1.2.3, we know for any z ∈ C

P [z ∈ Λϵ(X)] = P [σn(zI −X) < ϵ] . (2.13)

Following the same argument made in Lemma 2.1.4, swapping Lemma 2.1.2 for Lemma 1.3.7,

we therefore have

P [z ∈ Λϵ(X) | ||G2||2 ≤ 4] ≤
(
ϵ(1 + 4γ)nα+1

γ

)2

. (2.14)

Consider now the measurable set S ⊂ C. Using (2.14), we observe

E [vol (Λϵ(X) ∩ S) | ||G2||2 ≤ 4] = E
[∫

S

1{λ∈Λϵ(X) | ||G2||2≤4}(z)dz

]
=

∫
S

P [z ∈ Λϵ(X) | ||G2||2 ≤ 4] dz

≤
(
ϵ(1 + 4γ)nα+1

γ

)2

vol(S).

(2.15)

Applying this result alongside [17, Lemma 3.2] and Fatou’s Lemma for conditional expec-

tation, we conclude

E

[∑
λi∈S

κ(λi)
2 ||G2||2 ≤ 4

]
= E

[
lim inf

ϵ→0

vol(Λϵ(X) ∩ S)
πϵ2

||G2||2 ≤ 4

]
≤ lim inf

ϵ→0

E [vol(Λϵ(X) ∩ S | ||G2||2 ≤ 4]

πϵ2

≤
(
(1 + 4γ)nα+1

γ

)2
vol(S)

π
,

(2.16)

which completes the proof.

With this in mind, we now derive our main tail bound. Its proof generalizes a union

bound argument used to obtain an equivalent result of Banks et al. [16, Theorem 3.6].

Theorem 2.2.3. Define P (t, δ) = P
[
κV (Ã, n

αB̃) < t, gap(Ã, nαB̃) > δ
]
. For any t, δ > 0

we have

P (t, δ) ≥

[
1− 9(1 + 4γ)2n2α+3

t2γ2
− 1296δ6

(
t(1 + 4γ)nα+1

γ

)8
][

1− n2−2α

γ2
− 4e−n

]
.
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Proof. We condition on the events ||G2||2 ≤ 4 and Λϵ(X) ⊆ B3(0). Combining Lemma 2.1.1

and Lemma 2.1.3, we know these occur with probability at least 1− n2−2α

γ2 − 4e−n. Noting

gap(Ã, nαB̃) = gap(X) and κV (Ã, n
αB̃) = κV (X) for X = n−αB̃−1Ã, define the events

• Egap = {gap(X) < δ}

• Eκ = {κV (X) > t}.

We are interested in bounding the probability of Egap ∪ Eκ. To do this, we construct

a minimal δ
2
-net N covering B3(0), which exists with |N | ≤ 324

δ2
(see for example [138,

Corollary 4.2.11]). By construction

Egap ⊂ {|D(y, δ) ∩ Λ(X)| ≥ 2 for some y ∈ N} (2.17)

where D(y, δ) is the ball of radius δ centered at y. Now if D(y, δ) contains two eigenvalues

of X, [16, Lemma 3.5] implies σn−1(yI −X) < δκV (X), where we note again that X is

almost surely diagonalizable. Thus, if gap(X) < δ either σn−1(yI −X) < δt for at least

one y ∈ N or κV (X) > t. In other words, defining the event Ey = {σn−1(yI −X) < δt}

for y ∈ N ,

Egap ⊂ Eκ ∪
⋃
y∈N

Ey =⇒ Egap ∪ Eκ ⊂ Eκ ∪
⋃
y∈N

Ey. (2.18)

By a union bound, we then have

P[Egap ∪ Eκ] ≤ P[Eκ] + |N |max
y∈N

P[Ey]. (2.19)

To bound P[Eκ], we first use (2.12) to obtain

P[Eκ] ≤ P

t <
√√√√n

n∑
i=1

κ(λi)2

 = P

[
n∑

i=1

κ(λi)
2 >

t2

n

]
. (2.20)

Applying Markov’s inequality and Lemma 2.2.2 (recalling that we’ve conditioned on

Λ(X) ⊆ B3(0)) we then have

P[Eκ] ≤
n

t2
E

 ∑
λi∈B3(0)

κ(λi)
2

 ≤ 9(1 + 4γ)2n2α+3

t2γ2
. (2.21)
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Similarly, Lemma 2.1.4 implies

P[Ey] ≤ 4

(
δt(1 + 4γ)nα+1

γ

)8

(2.22)

for all y ∈ N . Putting everything together, we conclude

P[Egap ∪ Eκ] ≤
9(1 + 4γ)2n2α+3

t2γ2
+ 4

(
δt(1 + 4γ)nα+1

γ

)8
324

δ2
, (2.23)

which implies a lower bound for P [κV (X) < t, gap(X) > δ | Λ(X) ⊆ B3(0), ||G2||2 ≤ 4]

of

1− 9(1 + 4γ)2n2α+3

t2γ2
− 1296δ6

(
t(1 + 4γ)nα+1

γ

)8

. (2.24)

Noting that P [κV (X) < t, gap(X) > δ, Λ(X) ⊆ B3(0), ||G2||2 ≤ 4] bounds P[κV (X) <

t, gap(X) > δ] from below, we obtain the final result by Bayes’ Theorem.

Remark 2.2.4. Note that we could replace κV (Ã, n
αB̃) in Theorem 2.2.3 with κ2(V ) for

any right eigenvector matrix V satisfying (2.12). In particular, as was used to derive the

inequality, this applies to the scaling where each column of V has unit length.

2.3 Shattering

Combining the tail bound provided by Theorem 2.2.3 with Bauer-Fike (Theo-

rem 1.2.9) yields our generalized pseudospectral shattering result.

Theorem 2.3.1. Let A,B ∈ Cn×n with ||A||2 ≤ 1 and ||B||2 ≤ 1. Let

(Ã, B̃) = (A+ γG1, B + γG2)

for G1, G2 two independent Ginibre matrices and 0 < γ < 1
2
. Construct the grid g =

grid(z, ω, ⌈8/ω⌉, ⌈8/ω⌉) with ω = γ4/(4n
8α+13

3 ), where z is chosen uniformly at random

from the square with bottom left corner −4 − 4i and side length ω. Then ||Ã||2 ≤ 3,

||B̃||2 ≤ 3, and Λϵ(Ã, n
αB̃) is shattered with respect to g for

ϵ =
γ5

64n
11α+25

3 + γ5
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with probability at least
[
1− 82

n
− 531441

16n2

] [
1− n2−2α

γ2 − 4e−n
]
.

Proof. We condition on the following events: nασn(B̃) ≥ 1, ||G1||2 ≤ 4, and ||G2||2 ≤ 4.

As noted above, these events occur with probability at least 1− n2−2α

γ2 −4e−n and, following

the argument made in Lemma 2.1.3, guarantee that Λ(Ã, nαB̃) ⊆ B3(0). Consequently,

we know with probability one that each eigenvalue of (Ã, nαB̃) is contained in a box of g.

At the same time,

||Ã||2 = ||A+ γG1||2 ≤ ||A||2 + γ||G1||2 ≤ 3 (2.25)

and similarly ||B̃||2 ≤ 3.

Suppose now κV (Ã, n
αB̃) < nα+2

γ
, gap(Ã, nαB̃) > γ4n− 8α+13

3 , and

min
λi∈Λ(X)

distg(λi) >
ω

4n2
, (2.26)

where distg(λi) = miny∈g |λi − y|. By (2.24), we know the first two of these occur under

our assumptions with probability at least

1− 9(1 + 4γ)2n2α+3(
nα+2

γ

)2
γ2

− 1296

(
γ4

n
8α+13

3

)6

(

nα+2

γ

)
(1 + 4γ)nα+1

γ

8

, (2.27)

which, applying γ < 1
2
, simplifies to 1− 81

n
− 531441

16n2 . Similarly, a simple geometric argument

(using the fact that the eigenvalues of X are uniformly distributed in their grid boxes)

implies

P
[

min
λi∈Λ(X)

distg(λi) >
ω

4n2

]
≥ 1− 1

n
. (2.28)

Thus, these events occur under our assumptions with probability at least 1− 82
n
− 531441

16n2 ,

which means by Bayes’ Theorem that we have simultaneously nασn(B̃) ≥ 1, ||G1||2 ≤ 4,

||G2||2 ≤ 4, κV (Ã, n
αB̃) < nα+2/γ, gap(Ã, nαB̃) > γ4n− 8α+13

3 , and (2.26) with probability

at least
[
1− 82

n
− 531441

16n2

] [
1− n2−2α

γ2 − 4e−n
]
.

To complete the proof, we now show that these events guarantee shattering. To

do this, we first observe that if gap(Ã, nαB̃) > γ4n− 8α+13
3 then no two eigenvalues can
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share a grid box of g. At the same time, (2.26) implies that the ball of radius ω
4n2 around

each eigenvalue does not intersect g. Therefore, it is sufficient to show that Λϵ(Ã, n
αB̃)

is contained in these balls, which we can do by appealing to our version of Bauer-Fike

for matrix pencils. In particular, recalling that we can replace κ2(V ) with κV (Ã, n
αB̃) by

taking an infimum, Theorem 1.2.9 implies that (Ã, nαB̃) is contained in balls of radius

rϵ = ϵκV (Ã, n
αB̃)||n−αB̃−1||2

(
1 +

ϵ||n−αB̃−1||2 + ||n−αB̃−1Ã||2
1− ϵ||n−αB̃−1||2

)
. (2.29)

Applying the bounds ||n−αB̃−1||2 = (nασn(B̃))
−1 ≤ 1, ||n−αB̃−1Ã||2 ≤ 3, and finally

κV (Ã, n
αB̃) ≤ nα+2

γ
, we obtain shattering as long as

rϵ ≤ ϵ

(
nα+2

γ

)(
4

1− ϵ

)
≤ ω

4n2
=

γ4

16n
8α+19

3

(2.30)

or, equivalently, ϵ ≤ γ5

64n
11α+25

3 +γ5
.

Theorem 2.3.1 clarifies the impact of the nα scaling. On one hand, increasing α

drives the n2−2α

γ2 term in the probability bound to zero, assuming γ is fixed. Said another

way, a larger choice of α allows us to shrink γ without losing our guarantee of shattering,

where a baseline

γ > n1−α (2.31)

is needed to ensure that the probability in Theorem 2.3.1 is not vacuous. This is important,

as we’d like to perturb our matrices as little as possible. Nevertheless, we pay a penalty

for increasing α in ω and ϵ, both of which shrink as α increases. This trade-off reflects a

fundamental geometric reality: the more we scale by, the closer the eigenvalues of (Ã, nαB̃)

are driven to zero (and therefore to each other), meaning we’ll need a finer grid and a

tighter pseudospectrum to guarantee shattering.

As outlined in Chapter 1, Theorem 2.3.1 also resolves the first challenge of divide-

and-conquer by providing the following splitting strategy, which can be applied to any

pencil (A,B).
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Spectral Bisection via Pseudospectral Shattering

1. Perturb and scale (A,B) → (Ã, nαB̃).

2. Build a grid g that shatters Λϵ(Ã, n
αB̃) [Theorem 2.3.1].

3. Split Λ(Ã, nαB̃) with the grid lines of g, computing subproblems to accuracy

O(ϵ) in the spectral norm.

4. Once eigenvalues are found, multiply by nα.

The third point in this outline follows from perturbation results discussed below.

2.3.1 Stability under Inversion

Recall that the tail bound Theorem 2.2.3 was proved for (Ã, nαB̃) by proving

the same bound for the product matrix X = n−αB̃−1Ã. In some sense, then, our

proof of shattering only works with (Ã, nαB̃) as a pencil via the version of Bauer-Fike

used. Swapping Theorem 1.2.9 for Theorem 1.2.4, the same proof implies the following

pseudospectral shattering result for X.

Proposition 2.3.2. Let A,B ∈ Cn×n and let 0 < γ < 1
2
. Suppose

(Ã, B̃) = (A+ γG1, B + γG2)

for G1, G2 two independent Ginibre matrices and let X = n−αB̃−1Ã for α > 0. Then Λϵ(X)

is shattered with respect to the grid g (as defined in Theorem 2.3.1) for ϵ = γ5/(16n
11α+25

3 )

with probability at least
[
1− 82

n
− 531441

16n2

] [
1− n2−2α

γ2 − 4e−n
]
.

Proposition 2.3.2 implies an alternative strategy for diagonalizing (A,B): form the

product matrix X and apply single-matrix, randomized divide-and-conquer as defined by

Banks et al. [16, Algorithm EIG], using the grid g and the corresponding pseudospectral

guarantee. While this is fairly straightforward – and even implies the same asymptotic

complexity for the diagonalization as we derive in Chapter 4 – it is not viable in general
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(a) Λϵ(Ã, B̃) (b) Λϵ(B̃
−1Ã)

Figure 2.1. Pseudospectra of a 10 × 10 pencil (Ã, B̃) and its corresponding product

matrix B̃−1Ã. Here, Ã = A+ 10−7G1 and B̃ = B + 10−7G2 for A and B drawn randomly
and B modified to be singular (without changing its remaining singular values). In both

plots, B̃ is scaled so that the maximum eigenvalue has modulus one. In addition, we
provide a subplot focused around the origin to examine the pseudospectra around the
small eigenvalues of (Ã, B̃), which correspond to finite eigenvalues of (A,B). In plot (a),
we omit the pseudospectra for ϵ = 10−2 and ϵ = 10−3 since they are too close to the
eigenvalues to be visible.

due to potential numerical instability. If B is poorly conditioned and γ is small, inverting

B̃ to form X will incur significant error in finite-precision arithmetic.

This phenomenon is illustrated in Figure 2.1, which plots the pseudospectra of both

(Ã, B̃) and B̃−1Ã for a 10 × 10 example in which B is initially singular. The difference

between the two is striking; while Λϵ(Ã, B̃) easily separates the eigenvalues, Λϵ(B̃
−1Ã)

covers large regions of the complex plane, even for small ϵ. This indicates that the guarantee

provided by Proposition 2.3.2 is more vulnerable in finite precision than Theorem 2.3.1.
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Indeed, we prove in Chapter 6 that higher precision is needed to guarantee shattering

for the product matrix X. As mentioned in Section 1.5, this increase in precision is

our motivation for bypassing this approach to the problem and prioritizing inverse-free

computations.

2.3.2 Perturbation Results

In the remainder of this chapter, we develop two perturbation results: one for

pseudospectral shattering (Lemma 2.3.3) and one for individual eigenvalues and eigenvectors

(Lemma 2.3.4). These follow closely [16, Lemmas 5.8 and 5.9] and provide benchmarks for

how accurately a subproblem in divide-and-conquer must be computed (in the spectral

norm) to preserve shattering.

In their proofs, we make use of the following consequence of Cauchy’s integral

formula [2]: if v, w are right/left eigenvectors of a matrix A corresponding to eigenvalue λ

(and scaled so that vHw = 1) then the rank-1 spectral projector vwH can be expressed as

vwH =
1

2πi

∮
Γ

(z − A)−1dz (2.32)

for Γ any closed, rectifiable curve that separates λ from Λ(A). We also apply the ML

inequality, which says ∣∣∣∣∫
Γ

f(z)dz

∣∣∣∣ ≤ l(Γ) sup
z∈Γ

|f(z)| (2.33)

for any continuous function f and contour Γ of length l(Γ).

Lemma 2.3.3. Suppose (A,B) is regular and Λϵ(A,B) is shattered with respect to a finite

grid g. If ||A−A′||2, ||B −B′||2 ≤ η < ϵ then each eigenvalue of (A′, B′) shares a grid box

with exactly one eigenvalue of (A,B) and Λϵ−η(A
′, B′) is also shattered with respect to g.

Proof. If z ∈ Λϵ−η(A
′, B′) then z is an eigenvalue of a pencil (C,D) with ||A′−C||2, ||B′−

D||2 ≤ ϵ− η. In this case,

||A− C||2 ≤ ||A− A′ + A′ − C||2 ≤ ||A− A′||2 + ||A′ − C||2 ≤ η + ϵ− η = ϵ (2.34)
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and similarly ||B −D||2 ≤ ϵ, which implies z ∈ Λϵ(A,B). Thus, Λϵ−η(A
′, B′) ⊆ Λϵ(A,B),

which guarantees that Λϵ−η(A
′, B′) is also shattered with respect to g. To show that each

eigenvalue of (A′, B′) shares a grid box with exactly one eigenvalue of (A,B), consider

At = A + t(A′ − A) and Bt = B + t(B′ − B) for t ∈ [0, 1]. Since (A,B) is regular

(and moreover ϵ < σn(B) since Λϵ(A,B) is bounded), (At, Bt) continuously deforms the

eigenvalues of (A,B) to eigenvalues of (A′, B′) while staying within Λη(A,B) ⊆ Λϵ(A,B).

Since Λϵ(A,B) is shattered with respect to g and therefore no two eigenvalues of (A,B)

share a grid box, this ensures that each eigenvalue of (A′, B′) belongs to a grid box with a

unique eigenvalue of (A,B)

Lemma 2.3.4. Suppose (A,B) is regular and Λϵ(A,B) is shattered with respect to a finite

grid g with boxes of side length ω . If ||A− A′||2, ||B − B′||2 ≤ η < ϵ then for any right

unit eigenvector v′ of (A′, B′) there exists a right unit eigenvector v of (A,B) such that

1. The eigenvalue of (A′, B′) corresponding to v′ shares a grid box of g with the eigenvalue

of (A,B) that corresponds to v.

2. ||v′ − v|| ≤
√
8ω
π

η
ϵ(ϵ−η)

(1 + ||B−1A||2)||B||2.

Proof. Let λ′ be the eigenvalue of (A′, B′) corresponding to v′. By Lemma 2.3.3, λ′ shares a

grid box of g with a unique eigenvalue of λ of (A,B). Let v be the right unit eigenvector of

(A,B) corresponding to λ. In addition, let w′ and w be the left eigenvectors corresponding

to v′ and v respectively, normalized so that wHv = (w′)Hv′ = 1. If Γ is the contour of the

grid box containing both λ and λ′, then by (2.32)

v′(w′)H − vwH =
1

2πi

∮
Γ

(z − (B′)−1A′)−1dz − 1

2πi

∮
Γ

(z −B−1A)−1dz

=
1

2πi

∮
Γ

(z − (B′)−1A′)−1 − (z −B−1A)−1dz.

(2.35)
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By the resolvent identity

(z − (B′)−1A′)−1 − (z −B−1A)−1 = (z − (B′)−1A′)−1((B′)−1A′ −B−1A)(z −B−1A)−1

= (zB′ − A′)−1B′((B′)−1A′ −B−1A)(zB − A)−1B

= (zB′ − A)−1(A′ −B′B−1A)(zB − A)−1B,

(2.36)

so, applying this along with the ML inequality above, we have

||v′(w′)H − vwH ||2 ≤
2ω

π
sup
z∈Γ

||(zB′ − A′)−1(A′ −B′B−1A)(zB − A)−1B||2. (2.37)

Now Λϵ(A,B) is shattered with respect to g and therefore does not intersect Γ, so we know

||(zB−A)−1||2 ≤ 1
ϵ(1+|z|) ≤ ϵ−1 for all z ∈ Γ. Moreover, again by Lemma 2.3.3, Λϵ−η(A

′, B′)

is shattered with respect to g, so the same argument implies ||(zB′ − A′)−1||2 ≤ (ϵ− η)−1

for all z ∈ Γ. Applying this to the previous inequality, we conclude

||v′(w′)H − vwH ||2 ≤
2ω

π

1

ϵ(ϵ− η)
||A′ −B′B−1A||2||B||2. (2.38)

Writing B′ = B + E for some ||E||2 ≤ η since ||B −B′||2 ≤ η, we have

||A′ −B′B−1A||2 ≤ ||A′ − A||2 + ||EB−1A||2 ≤ η(1 + ||B−1A||2) (2.39)

which yields a final upper bound

||v′(w′)H − vwH ||2 ≤
2ω

π

η

ϵ(ϵ− η)
(1 + ||B−1A||2))||B||2. (2.40)

Since without loss of generality we can assume vHv′ ≥ 0 (if this is not true we can just

rotate v), and using the fact that ||v|| = ||v′|| = 1, we complete the proof by observing

||v′ − v||2 =
√

2− 2vHv′ ≤
√
2||v′(w′)H − vwH ||2. (2.41)

This inequality is nontrivial (see the proof of [16, Lemma 5.8] for the details). Combining

it with (2.40), we conclude that v is the desired eigenvector of (A,B) with ||v′ − v|| ≤
√
8ω
π

η
ϵ(ϵ−η)

(1 + ||B−1A||2)||B||2.
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Chapter 3

Inverse-Free Spectral Projectors
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We return in this chapter to the question of computing spectral projectors. Our

goal here is to address the second challenge of divide-and-conquer identified in Chapter 1:

given an arbitrary set S ⊂ C, what is the best method for computing the projectors PR

and PL onto the right/left deflating subspaces of (A,B) corresponding to eigenvalues in

S? Note that we assume in this chapter that (A,B) is both regular and diagonalizable.

Suppose we could transform (A,B) into a pencil (AS, BS) whose (right) eigenvectors

are the same as (A,B) but whose eigenvalues are zero or one, depending on whether

or not the corresponding eigenvalues of (A,B) belong to S. In this case, the task of

finding spectral projectors is easy. Recalling (1.28), we have PR = B−1
S AS. Similarly,

transforming (AH , BH) to obtain a new (AS, BS), the left projector can be obtained as

PL = (B−1
S AS)

H = AH
S B

−H
S , assuming S is symmetric with respect to the real axis.1

The latter follows from the observation that left eigenvectors of B−HAH associated to S,

which recall are not necessarily left eigenvectors of either (A,B) or (AH , BH), span the

corresponding left deflating subspace if B is invertible.

1Symmetry is necessary here since the eigenvalues of (AH , BH) are the complex conjugates of Λ(A,B).
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Given the discussion in Section 1.5, the matrix inversions here should raise a red

flag. If (AS, BS) has only eigenvalues at or near zero and one, BS will be invertible, though

we have no guarantee that it will be well-conditioned. For this reason, once again, we do

not advocate forming B−1
S AS (or AH

S B
−H
S ). Instead, we demonstrate in the next chapter

that a rank-revealing factorization of such a product can be computed implicitly via work

of Ballard, Demmel and Dumitriu [12]. We can therefore set this concern aside for now.

Taking a step back, our initial question has been subsumed by a new one: how

do we obtain the pencil (AS, BS) from (A,B)? We demonstrate here that this question

naturally reduces to the problem of approximating the indicator function

1S(z) =


1 z ∈ S

0 z ∈ C\S
undefined z ∈ ∂S

(3.1)

with a rational function. Importantly, work of Benner and Byers [21] guarantees that any

such approximation can be applied to (A,B) to obtain (AS, BS) using only QR and matrix

multiplication. This yields a general, inverse-free framework for developing methods that

approximate PR and PL. In this chapter, we present this framework rigorously and discuss

a few examples, which we make use of later on.

In considering these, we should keep in mind the results of Chapter 2. That is,

pseudospectral shattering indicates how accurately we need to compute PR and PL for

divide-and-conquer. If Λϵ(A,B) is shattered with respect to the grid g, Lemma 2.3.3

implies that the next subproblems must be computed to within spectral norm error O(ϵ)

to obtain a similar pseudospectral guarantee for the next step. Since ϵ = poly(n−1, γ) in

Theorem 2.3.1, we therefore anticipate that any method for computing PR and PL will

require high accuracy.

Guide to Chapter 3: In Section 3.1 we discuss our high-level strategy and the aforemen-

tioned work of Benner and Byers. Sections 3.2 and 3.3 then present a handful of example

methods, including implicit repeated squaring (IRS) and two approaches based on the
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matrix sign function. The former is the method for computing spectral projectors used in

Chapter 4, while the latter is relevant for Chapter 5.

3.1 High-Level Strategy

To derive an approach for computing (AS, BS) we might ask: what (inverse-free)

operations can transform (A,B) into a pencil with the same eigenvectors but different

eigenvalues? An answer to this question can be obtained from work of Benner and

Byers [20,21], which defines abstractly an inverse-free arithmetic on matrix pencils. In this

section, we present their work and outline the high-level strategy for computing (AS, BS)

it implies.

The central definition here is the matrix relation (B\A). While (B\A) can be defined

for matrices of arbitrary size, we will once again focus on the square case. Throughout, we

can think of (B\A) as a representation of B−1A that neither requires B to be invertible

nor incurs floating-point errors if B is invertible but ill-conditioned. To provide further

intuition, we can also draw a comparison to the formal definition of the rational numbers.

Definition 3.1.1. The matrix relation on Cn associated to the pencil (A,B) is

(B\A) = {(x, y) ∈ Cn × Cn : Ax = By} .

Like rational numbers, the representation (B\A) is not unique. In fact, we can

left multiply A and B by any matrix M whose null space only trivially overlaps with

range
([
A −B

])
without changing the relation. In particular, (MB\MA) = (B\A) for

any invertible matrix M . This indicates, as we might expect, that two pencils associated

to the same matrix relation have the same set of right eigenvectors, which correspond to

the elements (v, λv) ∈ (B\A).

The key insight of Benner and Byers is to define an arithmetic on matrix relations,

thereby providing a means of computing with B−1A implicitly. While their initial focus
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in [20] was products of the form
∏

k B
−1
k Ak, subsequent work [21] extended this framework

to include addition. We summarize both operations below.

Definition 3.1.2 (Operations on Matrix Relations). The sum and product of two matrix

relations (B1\A1) and (B2\A2) are subsets of Cn × Cn defined as follows:

(B2\A2) + (B1\A1) =

(x, z) : ∃ y1, y2 s.t.

A1 −B1 0 0
A2 0 −B2 0
0 I I −I



x
y1
y2
z

 = 0


(B2\A2)(B1\A1) =

(x, z) : ∃ y s.t.

(
A1 −B1 0
0 A2 −B2

)xy
z

 = 0

 .

Given the abstract nature of Definition 3.1.2, it is not necessarily clear how to

evaluate either addition or multiplication on a pair of matrix relations. Fortunately, Benner

and Byers provide an answer to this as well [21, Theorems 2.3 and 2.7].

Theorem 3.1.3 (Benner and Byers 2006). Let (B1\A1) and (B2\A2) be two matrix

relations with A1, A2, B1, B2 ∈ Cn×n. Suppose

null
([
Q1 Q2

])
= range

([
−B1

A2

])
and null

([
U1 U2

])
) = range

([
−B1

B2

])
.

Then

(B2\A2)(B1\A1) = ((Q2B2)\(Q1A1))

and

(B2\A2) + (B1\A1) = ((U2B2)\(U1A1 + U2A2)).

We can gain some intuition for Theorem 3.1.3 by considering what would happen

if the matrices involved were invertible. In that case, null
([
Q1 Q2

])
= range

([
−B1

A2

])
implies −Q1B1 +Q2A2 = 0, and therefore A2B

−1
1 = Q−1

2 Q1. Hence, it is easy to see

B−1
2 A2B

−1
1 A1 = B−1

2 Q−1
2 Q1A1 = (Q2B2)

−1Q1A1. (3.2)
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Similarly, null
([
U1 U2

])
= range

([
−B1

B2

])
implies B−1

1 = B−1
2 U−1

2 U1 and therefore

B−1
2 A2 +B−1

1 A1 = B−1
2 A2 +B−1

2 U−1
2 U1A1 = (U2B2)

−1(U2A2 + U2A1). (3.3)

In essence, the proof of Theorem 3.1.3 generalizes these operations to the setting where

invertibility is not guaranteed.

Note that in this arithmetic, the multiplicative and additive identity elements are

(I\I) and (I\0), respectively. The inverse of (B\A) can be defined as (B\A)−1 = (A\B),

though this is only a true multiplicative inverse satisfying

(B\A)−1(B\A) = (I\I) (3.4)

if B−1A exists and is invertible. We note a handful of other useful properties, which can

be obtained easily from either Definition 3.1.2 or Theorem 3.1.3:

• Standard matrix multiplication/addition can be expressed as (I\A)(I\B) = (I\(AB))

and (I\A) + (I\B) = (I\(A+B)).

• Scalar multiplication takes the form γ(B\A) = (βB\αA) for any γ = α/β.

Two questions remain: how do we compute the matrices
[
Q1 Q2

]
and

[
U1 U2

]
in Theorem 3.1.3 and, more importantly, what do we gain by applying these operations

to a pencil (A,B)? The latter can be answered with another observation of Benner and

Byers [21, Theorems 2.5 and 2.8], which implies that these operations satisfy exactly the

properties we outlined at the start of this section.

Theorem 3.1.4 (Benner and Byers 2006). Let (B1\A1) and (B2\A2) be matrix relations

associated to regular pencils (A1, B1) and (A2, B2). Suppose v is a shared right eigenvector

of (A1, B1) and (A2, B2) corresponding to finite eigenvalues λ and µ. Then (λµ, v) and

(λ+µ, v) are eigenpairs of the pencils associated to (B2\A2)(B1\A1) and (B2\A2)+(B1\A1),

respectively.
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Remark 3.1.5. Theorem 3.1.4 extends to infinite eigenvalues in a fairly straightforward

way. If either λ or µ is infinite, then (∞, v) is an eigenpair of the pencil associated to

(B2\A2)+ (B1\A1). The same can be said for the pencil corresponding to (B2\A2)(B1\A1)

provided we have neither (λ, µ) = (∞, 0) or (λ, µ) = (0,∞).

If p(z) is any polynomial and (A,B) is regular and diagonalizable, Theorem 3.1.4

implies that the pencil associated to p(B\A) – evaluated according to Theorem 3.1.3 – has

the same eigenvectors as (A,B) but transformed eigenvalues p(λ). Allowing inversion via

(B\A)−1 = (A\B), which similarly inverts eigenvalues without changing eigenvectors, the

polynomial p(z) can be replaced by any rational function r(z). In this way, the arithmetic

on (B\A) implies that any rational function can be applied, inverse-free, to the eigenvalues

of (A,B), all while preserving eigenvectors.

Since multiplication on matrix relations – like matrix multiplication itself – is not

commutative in general, we need to establish a convention for evaluating r(B\A). If

r(z) = p(z)/q(z) for two polynomials p and q, we choose the following:

r(B\A) = (q(B\A))−1p(B\A). (3.5)

This is somewhat arbitrary and ultimately done for convenience. When (A,B) is diag-

onalizable, p(B\A)(q(B\A))−1 is simply a different representation of the same matrix

relation.2

Example 3.1.6. Consider a Möbius transformation r(z) = az+b
cz+d

. In Section 1.7, we noted

that such a transformation could be applied to (A,B) as (aA+ bB, cA+ dB). Using the

arithmetic presented above, we can now derive this rigorously. First, we observe

a(B\A) + b(I\I) = (B\aA) + (I\bI) = (B\(aA+ bB)), (3.6)

which follows from Theorem 3.1.3 with U1 = B and U2 = I. Similarly, c(B\A) + d(I\I) =
2This is a consequence of the fact that diagonalizable pencils with the same eigenvalues and right

eigenvectors are equivalent up to left multiplication by an invertible matrix.

70



(B\(cA+ dB)). Combining these yields

r(B\A) = ((cA+ dB)\B)(B\(aA+ bB)) = ((cA+ dB)\(aA+ bB)), (3.7)

where this time we apply Theorem 3.1.3 with Q1 = Q2 = I.

Remark 3.1.7. Note that in general it is possible that by adding or multiplying matrix

relations corresponding to regular pencils we obtain one associated to a singular pencil.

Looking to Theorem 3.1.3, this is clearly possible under multiplication if (A1, B1) and

(A2, B2) share a right eigenvector v with corresponding eigenvalues zero and infinity, in

which case A1v = B2v = 0.3 Similarly, the pencil associated to (B2\A2) + (B1\A1) can

be singular if, for example, there exists a vector w ∈ null(B2) such that
(
A1

A2

)
w belongs

to the range of
(−B1

B2

)
. While this appears problematic, Theorem 3.1.4 implies that if

(A1, B1) and (A2, B2) satisfy its assumptions – which will be the case when evaluating

r(B\A) provided (A,B) is initially regular and diagonalizable – we are guaranteed that

both (B2\A2)(B1\A1) and (B2\A2) + (B2\A1) correspond to regular pencils.

To apply these observations, we still need to find the matrices
[
Q1 Q2

]
and[

U1 U2

]
in Theorem 3.1.3. Perhaps implied by our choice of notation, both can be

obtained via (full) QR. This follows from the observation that a factorization(
A
B

)
=

(
Q11 Q12

Q21 Q22

)(
R
0

)
(3.8)

implies null
([
QH

12 QH
22

])
= range

([
A
B

])
. Hence, QR is the computational backbone of

the arithmetic on (B\A), implying that it can be performed both efficiently and stably.

We are now ready to return to our original problem. The framework outlined above

suggests the following approach for computing (AS, BS).

1. Approximate the indicator function 1S(z) with a rational function r(z).

2. Evaluate r(B\A) using only QR and matrix multiplication [Theorem 3.1.3].

3This is the reason Remark 3.1.5 excludes the cases (λ, µ) = (∞, 0) and (λ, µ) = (0,∞)
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Table 3.1. Methods of approximating 1S(z) for different choices of S. The Newton and
Halley iterations are based on the scalar sign function (3.22), as 1S(z) =

1
2
(sign(z) + 1) if

S is the right half plane.

Method S Approximation r(z)

Implicit Repeated Squaring |z| < 1 (1 + z2
k
)−1

Newton Iteration Re(z) > 0 f ◦ · · · ◦ f(z) with f(z) = 1
2
(z + z−1)

Halley Iteration Re(z) > 0 f ◦ · · · ◦ f(z) with f(z) = z z2+3
3z2+1

3. Set (BS\AS) = r(B\A).

The resulting pencil (AS, BS) will have all of its eigenvalues near zero and one

provided r(z) is a good approximation to 1S(z) and Λ(A,B) ∩ ∂S = ∅. This raises an

important question: how do we choose the approximation r(z)? In weighing our options,

we should be mindful of the cost of computing with (B\A). As mentioned above, each

addition/multiplication requires a 2n×n full QR factorization. In this sense, the arithmetic

on (B\A) is expensive, and a better approximation to 1S may not result in a more efficient

method overall if too many operations are required. There is one exception here: Möbius

transformations. As demonstrated in Example 3.1.6, no QR factorizations are required to

apply a Möbius transformation to a pencil. Hence, it will be advantageous to write r(z) in

terms of Möbius transformations wherever possible.

In this thesis, we focus on a handful of choices for r(z), which are summarized in

Table 3.1 and covered rigorously in the remainder of this chapter. Note that while each of

these methods is defined for a specific choice of S, they can be used on any appropriate

region of C by first applying a corresponding Möbius transformation (which again can

be done cheaply). As we will see, they can also be implemented iteratively, either by

iterating the composition of a fixed rational function (in the case of Newton or Halley) or

by squaring (B\A) iteratively. In comparing these approaches, we will be interested in

quantifying the number of iterations required to obtain an accurate projector.

In some sense, the presentation in this section has flipped the historical narrative.
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That is, each of the methods presented in Table 3.1 date back several decades in the

literature, while the work of Benner and Byers is a more recent framework for understanding

them. The benefit of this framework is its compatibility with algorithmic optimization.

In particular, it suggests that the problem of choosing an optimal method for computing

spectral projectors reduces to the following.

The Indicator Approximation Problem

Given S ⊂ C, what is the best rational function approximation to 1S?

Solutions to this problem are only known in a handful of very specialized situations

(and under certain notions of “best approximation”). Regardless, any candidate solution

r(z) immediately implies a method for computing spectral projectors via the approach

outlined above. Moreover, the definition of “best” is flexible, allowing for a prioritization

of efficiency or stability. Given the increasing relevance of divide-and-conquer, we suggest

the Indicator Approximation Problem as a high-level strategy for deriving variants of the

method and refining numerical details.

3.1.1 Perturbation Theory for Full QR

Before moving on, we pause to consider perturbation theory for 2n × n full QR

factorizations. Given that these factorizations are the cornerstone of our framework for

computing projectors, tight perturbation bounds will be critical for analyzing performance.

With this in mind, we derive a spectral norm bound in this subsection.

While perturbation theory for QR originates with Stewart [123], a standard result

of Sun [130, Theorem 1.6] is our starting point.

Theorem 3.1.8 (Sun 1991). Let A ∈ Cm×n have rank n and let A = QR be a reduced

QR factorization, where Q ∈ Cm×n satisfies QHQ = In and R ∈ Cn×n has real, positive

diagonal entries. If E ∈ Cm×n satisfies ||E||2 < σn(A) then there exists a unique (reduced)
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QR factorization

(A+ E) = (Q+W )(R + F )

such that

||W ||F ≤ (1 +
√
2) · α

(
||E||2
σn(A)

)
· κ2(A) ·

||E||F
||A||2

,

where α(ϵ) = 1
ϵ
ln
(

1
1−ϵ

)
for 0 < ϵ < 1.

This result has two primary drawbacks. First, it uses the Frobenius norm and is

therefore less convenient than a spectral norm bound. We could convert between the two,

but doing so naively will incur a factor of
√
n, which – as we will see – is more pessimistic

than necessary. On top of this, Theorem 3.1.8 only covers reduced QR factorizations.

Luckily, the latter can be addressed with the following lemma.

Lemma 3.1.9. Let Q =
[
Q1 Q2

]
and U =

[
U1 U2

]
be two 2n × 2n unitary matrices

with Q1, U1 ∈ C2n×n. If ||Q1 − U1||2 ≤ δ then there exists a unitary W ∈ Cn×n such that

||Q2 − U2W ||2 ≤ 3δ.

Proof. Without loss of generality assume δ < 1
2
(the bound is trivial otherwise). We first

note that we can use ||Q1−U1||2 to control the distance between the orthogonal projectors

Q1Q
H
1 and U1U

H
1 :

||Q1Q
H
1 − U1U

H
1 ||2 = ||Q1Q

H
1 −Q1U

H
1 +Q1U

H
1 − U1U

H
1 ||2

≤ ||Q1(Q1 − U1)
H ||2 + ||(Q1 − U1)U

H
1 ||2

≤ 2||Q1 − U1||2

≤ 2δ.

(3.9)

Since Q2Q
H
2 = I−Q1Q

H
1 and U2U

H
2 = I−U1U

H
1 this similarly implies ||Q2Q

H
2 −U2U

H
2 ||2 ≤

2δ. With this in mind, let Q1Q
H
1 = U1U

H
1 + E for some E ∈ C2n×2n with ||E||2 ≤ 2δ.

Noting Q2Q
H
2 = U2U

H
2 − E we observe

Q2 − U2(U
H
2 Q2) = −EQ2. (3.10)
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Consider now UH
2 Q2:

(UH
2 Q2)

HUH
2 Q2 = QH

2 (I − U1U
H
1 )Q2 = I −QH

2 (Q1Q
H
1 − E)Q2 = I +QH

2 EQ2. (3.11)

(3.11) implies that each singular value of UH
2 Q2 takes the form

√
1 + λ for λ an eigenvalue

of QH
2 EQ2 satisfying |λ| ≤ ||QH

2 EQ2||2 ≤ 2δ. Consequently
√
1 + λ ≤

√
1 + 2δ ≤ 1 + δ

and the SVD of UH
2 Q2 can be written as

UH
2 Q2 = V1(I + Σ)V H

2 (3.12)

for V1, V2 ∈ Cn×n unitary and Σ diagonal with nonzero entries bounded in magnitude by

δ. Letting W = V1V
H
2 we have

Q2 − U2W = −EQ2 + U2V1ΣV
H
2 (3.13)

where, by construction, || − EQ2 + U2V1ΣV
H
2 ||2 ≤ ||E||2 + ||Σ||2 ≤ 3δ.

Informally, Lemma 3.1.9 says that the trailing columns of two full QR factorizations

corresponding to nearby reduced ones are close to rotations/reflections of one another.

Put another way, two nearby reduced factorizations can be built into similarly close full

factorizations, which allows us to extend any reduced bound to full QR.

With this in mind, we now pursue a (sharper) spectral norm version of Theorem 3.1.8.

Ostensibly, Sun’s result is written in terms of the Frobenius norm because it makes use of

the following inequality: given L ∈ Cn×n lower triangular with real diagonal entries,

||L||F ≤ 1√
2
||L+ LH ||F . (3.14)

While no inequality of the form ||L||2 ≤ C||L+ LH ||2 for C a positive constant can exist

(multiply the matrix in [22, Example 3.3] by i for a counterexample, as was pointed out to

us by Anne Greenbaum [63]), we can prove the following alternative.

Lemma 3.1.10. Let L ∈ Cn×n be lower triangular with real diagonal entries. Then,

||L||2 ≤
(
1

2
+ Ln+1

)
||L+ LH ||2

for Lk =
1
2π

∫ π

−π
|Dk(θ)|dθ the kth Lebesgue constant and Dk(θ) the Dirichlet kernel.
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Proof. This follows from Bhatia [22]. Writing

LH = ∆U(L+ LH)− 1

2
D0(L+ LH) (3.15)

where ∆U(A) and D0(A) are obtained from A be zeroing out the sub-diagonal and off-

diagonal entries respectively, we have

||L||2 = ||LH ||2 ≤ ||∆U(L+ LH)||2 +
1

2
||D0(L+ LH)||2 ≤

(
1

2
+ Ln+1

)
||L+ LH ||2 (3.16)

after applying [22, Equations 3 and 15].

Remark 3.1.11. It can be shown [23, Section 2.2] that

Lk ≤ ln(k) + ln(π) +
2

π

(
1 +

2

k

)
. (3.17)

In other words, Lk grows (at most) like ln(k) for large k and Lemma 3.1.10 could be

written generally as ||L||2 ≤ O(ln(n))||L+ LH ||2. In an effort to keep track of constants,

we will use the explicit, though slightly looser,

||L||2 ≤ (ln(n+ 1) + 3)||L+ LH ||2 (3.18)

going forward. Note that the counterexample mentioned above implies that the dependence

on ln(n) is tight.

Repeating the proof of [130, Theorem 1.6] with (3.18) in place of (3.14) yields our

main perturbation bound.

Theorem 3.1.12. Let A ∈ Cm×n have rank n and let A = QR be an reduced QR

factorization, where Q ∈ Cm×n satisfies QHQ = In and R ∈ Cn×n has real, positive

diagonal entries. If E ∈ Cm×n satisfies ||E||2 < σn(A) then there exists a unique (reduced)

QR factorization

(A+ E) = (Q+W )(R + F )
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such that

||W ||2 ≤ (2 ln(n+ 1) + 7) ln

(
σn(A)

σn(A)− ||E||2

)
= (2 ln(n+ 1) + 7) · α

(
||E||2
σn(A)

)
· κ2(A) ·

||E||2
||A||2

,

for α(ϵ) as in Theorem 3.1.8.

While this result is new, it not the only QR bound developed since Theorem 3.1.8.

Shortly after its publication, for example, Sun derived improvements for real matrices [131].

More general bounds were subsequently found by Bhatia and Mukherjea [24] and Li and

Wei [88]. We also note a recent componentwise analysis done by Petkov [108], again for

real matrices. Despite their improvements over Theorem 3.1.8, these results are not easily

adaptable into a general, spectral norm bound.

3.2 Implicit Repeated Squaring (IRS)

In this section, we consider an approach for computing PR and PL based on Implicit

Repeated Squaring (IRS), a routine for repeatedly squaring a product A−1B without

forming it. IRS originates with general divide-and-conquer eigensolvers, first in work4

of Malyshev [91,92] and later Bai, Demmel, and Gu [7]. It was subsequently stated as it

appears in Algorithm 1 under the name IRS in a technical report of Ballard, Demmel,

and Dumitriu [11].

IRS can be used to compute PR and PL by applying the framework from

the previous section with r(z) = (1 + z2
p
)−1 and S = {z : |z| < 1}. In these terms, the

pseudocode of Algorithm 1 can be viewed as a straightforward application of Theorem 3.1.3

to (Ap\Bp) = (A\B)2p , where squaring naturally drives eigenvalues to zero and infinity

(assuming none are on the unit circle). Applying the Möbius transformation (1 + z)−1,

which sends zero to one and infinity to zero, the projector PR can be obtained from

4The paper [92] was translated from Russian in two parts [93,94]. Much of its content was subsequently
presented in [95].
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Algorithm 1. Implicit Repeated Squaring (IRS)
Input: A,B ∈ Cn×n and p a positive integer.
Output: Ap, Bp ∈ Cn×n satisfying A−1

p Bp = (A−1B)2
p
.

1: A0 = A
2: B0 = B
3: for j = 0 : p− 1 do
4: (

Bj

−Aj

)
=

(
Q11 Q12

Q21 Q22

)(
Rj

0

)
Aj+1 = QH

12Aj

Bj+1 = QH
22Bj

5: end for
6: return Ap, Bp

((Ap +Bp)\Ap) as

PR ≈ (Ap +Bp)
−1Ap. (3.19)

Repeating this process with (AH , BH) yields the left projector PL ≈ AH
p (Ap + Bp)

−H for

(Ap\Bp) = (AH\BH)2
p
.

Note here that IRS is applied to (A\B) rather than (B\A). This is done to

maintain consistency with the presentation of IRS in [7,11], though it also means that PR

and PL are spectral projectors of (A,B) corresponding to {z : |z| > 1} rather than S. To

avoid confusion, we label the projectors as PR,|z|>1 and PL,|z|>1 to make clear the subset of

Λ(A,B) they depend on.

We turn now to the question of accuracy. Intuitively, IRS will fail to compute

PR,|z|>1 and PL,|z|>1 if (A,B) has an eigenvalue on the unit circle, in which case squaring

cannot push Λ(A,B) to zero and infinity. This observation is at the heart of efforts to

derive a condition number for the procedure. Malyshev originally suggested5 ω(A,B) – the

“criterion of absence of eigenvalues of the pencil λB − A on the unit circle and within a

small neighborhood of it,” which can be defined as follows.

5Malyshev’s definition is actually a generalized and scale invariant version of a similar quantity of
Bulgakov and Godunov [28].
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Definition 3.2.1. For a regular pencil (A,B),

ω(A,B) =

∣∣∣∣∣∣∣∣12
∫ 2π

0

(B − eiϕA)−1(AAH +BBH)(B − eiϕA)−Hdϕ

∣∣∣∣∣∣∣∣
2

.

While ω(A,B) is only formally defined for regular pencils, Definition 3.2.1 can be

easily extended by setting ω(A,B) = ∞ if (A,B) is singular. Regardless, ω(A,B) is somewhat

cumbersome to work with, both computationally and conceptually. Aiming to replace it

with something simpler, Bai, Demmel, and Gu [7] subsequently analyzed IRS in terms

of a distance to the nearest ill-posed problem d(A,B), whose reciprocal is an alternative

candidate for a condition number.6

Definition 3.2.2. The distance from (A,B) to the nearest ill-posed problem is

d(A,B) = inf {||E||2 + ||F ||2 : (A+ E)− z(B + F ) is singular for some |z| = 1} .

As desired, both ω(A,B) and d−1
(A,B) are infinite if (A,B) is singular or has an

eigenvalue on the unit circle. While Malyshev derives rigorous error bounds for IRS in

terms of ω(A,B), including in finite-precision arithmetic (see [93]), we prefer d(A,B) here

due to its compatibility with bounds on the pseudospectrum of (A,B). In particular,

Λϵ(A,B) ∩ {z : |z| = 1} = ∅ implies d(A,B) ≥ 2ϵ. Accordingly, the main error bound we

make use of in the next chapter is due to Bai, Demmel, and Gu [7, Theorem 1], which

establishes quadratic convergence for exact-arithmetic IRS in terms of ||(A,B)||2/d(A,B).

Theorem 3.2.3 (Bai-Demmel-Gu 1994). Let Ap, Bp be the result of applying IRS to A,B.

If

p ≥ log2

[
||(A,B)||2 − d(A,B)

d(A,B)

]
then

||(Ap +Bp)
−1Ap − PR,|z|>1||2 ≤ ||PR,|z|>1||2

2p+3
(
1− d(A,B)

||(A,B)||2

)2p
max

{
0, 1− 2p+2

(
1− d(A,B)

||(A,B)||2

)2p} .
6Note, however, that d(A,B) is not invariant to scaling since d(αA,αB) = |α|d(A,B). For this reason,

results of Bai, Demmel, and Gu are stated in terms of ||(A,B)||2
d(A,B)

.
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Note that because d(AH ,BH) = d(A,B) and ||(A,B)||2 = ||(AH , BH)||2, Theorem 3.2.3

can be applied to the left projector by swapping A, B, (Ap + Bp)
−1Ap, and PR,|z|>1 for

AH , BH , AH
p (Ap +Bp)

−H , and PL,|z|>1, respectively.

Remark 3.2.4. As we might expect, the spectral projector application considered in this

chapter is not the only place IRS may be of use in numerical linear algebra. We note here

a specific example: the matrix exponential eA, which for polynomials q1, q2 is commonly

computed as

eA ≈
[
q1(A/2

p)−1q2(A/2
p)
]2p

(3.20)

via the scaling and squaring method [75]. While much effort has gone into evaluating

the performance of scaling and squaring, and in particular devising best practices for

choosing p and the polynomials q1, q2 [4, 6, 101], the stability of the final squaring step of

the algorithm – which is typically done explicitly – has been largely overlooked. Of course,

applying IRS here would necessitate an alternative framework for analyzing the routine;

in particular, the tools discussed above may no longer capture performance, as computing

eA is unaffected by the presence of eigenvalues of (q2(A/2
p), q1(A/2

p)) on the unit circle.

This is explored in more detail in Chapter 6.

3.3 Newton and Halley Iterations for the Matrix

Sign Function

We close this chapter by considering an alternative family of methods based around

the matrix sign function. In the framework of Section 3.1, these use the right half plane

for S, in which case

1S(z) =
1

2
(sign(z) + 1), (3.21)
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for sign(z) the scalar sign function

sign(z) =


+1 Re(z) > 0

−1 Re(z) < 0

undefined otherwise.

(3.22)

In this setting, approximations of 1S(z) can be derived from approximations of sign(z),

and moreover computing PR and PL reduces to approximating the matrix sign function

sign(B−1A), which can be defined as follows.

Definition 3.3.1. Let A have no eigenvalues on the imaginary axis. Suppose

A = P

(
J+

J−

)
P−1

is the Jordan canonical form of A, where blocks in J+ and J− correspond to eigenvalues in

the right and left half planes, respectively. Then the matrix sign function of A is

sign(A) = P

(
I

−I

)
P−1.

A generalization of the sign function to matrix pencils was first introduced in work

of Gardiner and Laub [60], where

sign(A,B) = B sign(B−1A), (3.23)

assuming B is invertible. In this case, it is not hard to see that 1
2
(sign(A,B) + B) is

a projector onto the right deflating subspace of (A,B) corresponding to the right half

plane.7 Though interesting in its own right, the high-level strategy of Section 3.1 does not

require working with this generalization. Instead, it is sufficient to simply approximate

sign(B−1A) – without assuming or using inversion – via sign(B\A).

With this in mind, we can now consider the problem of approximating sign(z). Since

methods based around the matrix sign function are the most popular choice for computing

7This generalizes the single-matrix case, where 1
2 (sign(A) + I) is a projector onto the eigenspace

corresponding to the right half plane.

81



Algorithm 2. Inverse-Free Newton Iteration (IF-Newton)
Input: A,B ∈ Cn×n, p a number of iterations.
Requires: (A,B) has no eigenvalues on Re(z) = 0.

1: A0 = A
2: B0 = B
3: for i = 0 : p− 1 do

4:

(
−Ai

Bi

)
=

(
Q11 Q12

Q21 Q22

)(
Ri

0

)
5: Ai+1 =

1√
2
(QH

12Bi +QH
22Ai)

6: Bi+1 =
√
2QH

22Bi

7: end for
8: return (Ap, Bp)

spectral projectors in the literature, particularly in the single-matrix case [16,19,78], we

have a few standard pathways forward. Typically, sign(A) is approximated via a simple

Newton iteration of Roberts [109]. From the viewpoint of function approximation, this

iteration approximates sign(z) by the (rational) function obtained by repeatedly composing

f(z) = 1
2
(z + z−1) with itself.

Definition 3.3.2. The Newton iteration for computing sign(A) is given by

Ak+1 =
1

2
(Ak + A−1

k ); A0 = A.

Recalling that the inverse of (B\A) is (A\B), the standard Newton iteration can

be applied to matrix relations as follows

(Bk+1\Ak+1) =
1

2
[(Bk\Ak) + (Ak\Bk)] ; (B0\A0) = (B\A). (3.24)

Algorithm 2 executes p steps of this iteration according to Theorem 3.1.3. Here, the factor

of 1
2
is applied by scaling Ak+1 by 1√

2
and Bk+1 by

√
2, which is necessary to guarantee

convergence of the individual matrices as k → ∞ in exact arithmetic (see [21, Theorem

3.6]). As in the approach based on IRS, some post-processing is necessary to obtain

PR,Re(z)>0, where again the subscript clarifies the corresponding subset of Λ(A,B). In this

case, B−1
p Ap approximates sign(B−1A) and therefore

PR,Re(z)>0 ≈
1

2
(B−1

p Ap + I) =
1

2
B−1

p (Ap +Bp). (3.25)
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Equivalently, PR,Re(z)>0 corresponds to the matrix relation (2Bp\(Ap +Bp)).

As its name suggests, the Newton iteration can be viewed as an extension of classical

Newton’s method, which finds roots of z2 − 1 according to zk+1 =
1
2
(zk + z−1

k ). Indeed, the

Newton iteration for sign(A) applies this version of Newton’s method to the eigenvalues of

A, and quadratic convergence of classical Newton’s method implies quadratic convergence

for (3.24).

At the same time, this observation suggests that other methods for approximating

sign(A) can be obtained from alternative root finding iterations. Halley’s method, for

example, approximates roots of z2 − 1 according to the third-order iteration

zk+1 = zk
z2k + 3

3z2k + 1
. (3.26)

Consequently, it implies the other main iteration for sign(A) we’ll consider here.

Definition 3.3.3. The Halley iteration for computing sign(A) is given by

Ak+1 = Ak(3A
2
k + 1)−1(A2

k + 3); A0 = A.

Recalling that any Möbius transformation can be applied to (B\A) for free, only

two QR factorizations are required to run the Halley iteration on matrix relations if

evaluated as

(Bk+1\Ak+1) = (Bk\Ak)h((Bk\Ak)
2); (B0\A0) = (B\A) (3.27)

for h(z) = 3z+1
z+3

. As in the Newton iteration, the approximation of sign(z) corresponding to

(3.27) can be obtained by repeated composition, this time with f(z) = zh(z2). Applying

Theorem 3.1.3 yields Algorithm 3, which executes p steps of this Halley iteration on

an arbitrary pencil (A,B). The outputs of this routine yield the projector PR,Re(z)>0

according to (3.25). Note that while this approach is somewhat less popular than the

Newton iteration, a variant of (3.27) has seen wide use in divide-and-conquer efforts for

the symmetric eigenvalue problem [107].
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Algorithm 3. Inverse-Free Halley Iteration (IF-Halley)
Input: A,B ∈ Cn×n, p a number of iterations.
Requires: (A,B) has no eigenvalues on Re(z) = 0.

1: A0 = A
2: B0 = B
3: for i = 0 : p− 1 do

4:

(
−Bi

Ai

)
=

(
Q11 Q12

Q21 Q22

)(
Ri

0

)
5: Ci = QH

12Ai + 3QH
22Bi

6: Di = 3QH
12Ai +QH

22Bi

7:

(
−Di

Ai

)
=

(
U11 U12

U21 U22

)(
R̂i

0

)
8: Ai+1 = UH

12Ci

9: Bi+1 = UH
22Bi

10: end for
11: return (Ap, Bp)

We could continue from here. The rational function that defines the Halley

iteration – i.e., (3.26) – belongs to the family of Padé approximants, so we might next

consider other options there, as in [83]. Alternatively, we could interpret (3.26) as the

simplest rational function of the form r(z) = zp(z2)/q(z2) for p and q polynomials of the

same degree, which have been studied as candidates for approximating sign(z) since work

of Zolotarev more than a century ago [106,148]. In either case, we obtain a new method

for approximating sign(A) from each choice of rational function, where faster convergence

can be pursued by increasing the degree of the approximation.

If higher-degree rational functions are too computationally intensive, we might

instead consider optimizing the Newton and Halley iterations as they appear in Algorithms 2

and 3. In the case of the Newton iteration, scaling is typically used to promote stability

and/or improve convergence (see for example Benner and Byer’s version of IF-Newton [21,

Algorithm 1]). Optimizing Halley’s iteration, meanwhile, has been explored by Nakatsukasa,

Bai, and Gygi [105] who suggested replacing (3.26) with

zk+1 = zk
akz

2
k + bk

ckz2k + dk
(3.28)
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for dynamically changing coefficients ak, bk, ck, and dk. This begs the question: what are

the optimal choices for these coefficients to guarantee fast convergence from the starting

points Λ(A,B)? Importantly, Nakatsukasa, Bai, and Gygi provide an answer in the case

that Λ(A,B) is contained in a union of intervals on the real axis.

With the exception of the latter – which we make use of in Chapter 5 – we will

not consider these extensions in detail here. We mention them to again emphasize the

flexibility of our high-level strategy, which can accommodate both more complex rational

function approximations to sign(z) and scaling/optimization tricks aimed at improving

performance. The remainder of this section is instead devoted to developing a framework

for analyzing the performance of methods built on the matrix sign function, including

IF-Newton and IF-Halley

We begin by noting that any method based on the sign function cannot be applied

to a pencil (A,B) with eigenvalues on the imaginary axis. As in the case of IRS and

the unit circle, we can consider such problems ill-posed for this approach to computing

spectral projectors. With this in mind, a key theoretical tool for measuring convergence

will be the circles of Apollonius, which – as the name suggests – date back to antiquity.

Definition 3.3.4. For α ∈ (0, 1) let

C+
α =

{
z :

∣∣∣∣1− z

1 + z

∣∣∣∣ ≤ α

}
, C−

α =

{
z :

∣∣∣∣1 + z

1− z

∣∣∣∣ ≤ α

}
be sets in the right and left half planes, respectively. The boundaries ∂C+

α and ∂C−
α of

these sets are the circles of Apollonius corresponding to α.

C+
α can be equivalently characterized as the disk with center 1+α2

1−α2 and radius 2α
1−α2 ,

with C−
α its image under a reflection across the imaginary axis. For varying α, ∂C+

α and

∂C−
α define families of non-concentric circles, which collapse to the points ±1 as α → 0.

Since this geometric picture will be important to have in mind, Figure 3.1 plots a handful

of Apollonian circles. Throughout, we use Cα to denote the region C+
α ∪ C−

α .
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Figure 3.1. The circles of Apollonius corresponding to α = 1
2
, 1
4
, 1
8
, and 1

16
.

Given their relationship to the points ±1, the circles of Apollonius are naturally

equipped to describe convergence to the sign function. Indeed, the Newton iteration can

be characterized by the following observation of Roberts [109].

Proposition 3.3.5. The function f(z) = 1
2
(z + z−1) defining the Newton iteration maps

C+
α to C+

α2 and C−
α to C−

α2.

Extending this to the Halley iteration is straightforward. Lemma 3.3.6 captures

the third-order convergence of Halley’s method for finding the roots of z2 − 1.

Lemma 3.3.6. The function f(z) = zh(z2) = z 3z2+1
z2+3

defining the Halley iteration maps

C+
α to C+

α3 and C−
α to C−

α3.

Proof. Applying the definition of C±
α , we have

1− f(z)

1 + f(z)
=

1− z3+3z
3z2+1

1 + z3+3z
3z2+1

=
3z2 + 1− z3 − 3z

3z2 + 1 + z3 + 3z
=

(1− z)3

(1 + z)3
. (3.29)

The result follows immediately.
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Remark 3.3.7. The proof of Lemma 3.3.6 implies yet another strategy for deriving

iterative methods for the sign function: work backwards from ± (1−z)m

(1+z)m
given a desired

order of convergence m. As an example, − (1−z)4

(1+z)4
can be written as

−(1− z)4

(1 + z)4
=

1− 1+6z2+z4

4z+4z3

1 + 1+6z2+z4

4z+4z3

, (3.30)

which implies an iterative rational function

f(z) =
1 + 6z2 + z4

4z + 4z3
=
z

4

(
1

z2
+
z2 + 5

1 + z2

)
, (3.31)

where the latter expression indicates that this iteration can be implemented according to

Theorem 3.1.3 with only three QR factorizations.

Going a step further, we next pursue an analog of Theorem 3.2.3 under the

assumption that Λϵ(A,B) ⊂ Cα. Like the decision to work with d(A,B) to bound error

in IRS, our goal here is to develop tools for measuring convergence that are compatible

with pseudospectral bounds, which we expect to have access to via Chapter 2. To do this,

we present a handful of results for an individual matrix X, which we then demonstrate

can be applied to our general setting. We begin by restating a key lemma of Banks et

al. [16, Lemma 4.3].

Lemma 3.3.8 (Banks et al. 2022). Suppose Λϵ(X) ⊂ Cα for some ϵ > 0. Then,

||X − sign(X)||2 ≤
8α2

ϵ(1 + α)(1− α)2
.

With this result in mind, we next seek insight into how a pseudospectral bound like

Λϵ(X) ⊂ Cα evolves under an iteration for computing sign(X). The resulting Lemma 3.3.9

is a straightforward generalization of [16, Lemma 4.4].

Lemma 3.3.9. Suppose the rational function f has all of its poles on the imaginary axis

and maps C±
α → C±

αm with ∂C±
α → ∂C±

αm for any α ∈ (0, 1). Let f define an iteration for

sign(X) according to

Xk+1 = f(Xk); X0 = X.
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If Λϵ(Xk) ⊂ Cα, then for any α′ ∈ (αm, α) we have Λϵ′(Xk+1) ⊂ Cα′ with

ϵ′ =
ϵ(1− α2)(α′ − αm)

8α
.

Proof. Let w be any point in the “annulus” between Cα and Cα′ . Since f maps Cα to Cα′

and w /∈ Cα′ , the rational function 1
w−f(z)

is holomoprhic on Cα. Moreover, Cα contains

Λ(Xk), meaning we can bound ||(wI −Xk+1)
−1||2 as

||(wI −Xk+1)
−1||2 =

∣∣∣∣∣∣∣∣ 1

2πi

∫
∂Cα

(w − f(z))−1

zI −Xk

dz

∣∣∣∣∣∣∣∣
2

≤ 1

2π

∫
∂C+

α

||(zI −Xk)
−1||2

|w − f(z)|
dz +

1

2π

∫
∂C−

α

||(zI −Xk)
−1||2

|w − f(z)|
dz.

(3.32)

Appealing to the ML-inequality (2.33), the first integral in this expression becomes∫
∂C+

α

||(zI −Xk)
−1||2

|w − f(z)|
dz ≤ l(∂C+

α ) sup
z∈∂C+

α

||(zI −Xk)
−1||2

|w − f(z)|

=
4πα

1− α2
sup

z∈∂C+
α

||(zI −Xk)
−1||2

|w − f(z)|
.

(3.33)

Now Λϵ(Xk) ∩ ∂C+
α = ∅, so ||(zI −Xk)

−1||2 ≤ ϵ−1 for all z ∈ ∂C+
α . Using the fact that

f(z) ∈ C+
αm if z ∈ C+

α , we therefore have∫
∂C+

α

||(zI −Xk)
−1||2

|w − f(z)|
dz ≤ 4πα

ϵ(1− α2)
sup

y∈∂C+
αm

1

|w − y|

≤ 8πα

ϵ(1− α2)(α′ − αm)
,

(3.34)

where the last inequality follows from [16, Lemma 4.5]. Since we obtain the same bound

on the remaining term of (3.32), we conclude

||(wI −Xk+1])
−1||2 ≤

8α

ϵ(1− α2)(α′ − αm)
, (3.35)

and therefore w /∈ Λϵ′(Xk+1) for ϵ
′ = ϵ(1−α2)(α′−αm)

8α
. Since (3.35) applies to any point w

between Cα and Cα′ and Λ(Xk+1) ⊂ Cα′ , this suffices to show Λϵ′(Xk+1) ⊂ Cα′ .

In tandem, Lemma 3.3.8 and Lemma 3.3.9 imply the following strategy for bounding

error in any method (for computing spectral projectors of (A,B)) based on the matrix

sign function.
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Table 3.2. Number of full 2n× n QR factorizations and n× n matrix multiplications
required for one iteration of each iterative method discused in Sections 3.2 and 3.3. *Benner
and Byers compute one additional n× n QR factorization to accommodate scaling.

IRS IF-Newton [21, Algorithm 1] IF-Halley

QR’s per iteration 1 1 1∗ 2

MM’s per iteration 2 3 4 4

1. Start with an initial pseudospectral guarantee Λϵ(A,B) ⊂ Cα (e.g., coming from

Chapter 2). Note that such a bound implies that B is invertible and moreover

Λϵ/||B||2(B
−1A) ⊂ Λϵ(A,B) ⊂ Cα.

2. Select a rational function f(z) satisfying the assumptions of Lemma 3.3.9 and define

the iteration (Bk+1\Ak+1) = f(Bk\Ak) with (B0\A0) = (B\A). In exact arithmetic,

this is equivalent to B−1
k+1Ak+1 = f(B−1

k Ak).

3. For a chosen number of steps p, repeatedly apply Lemma 3.3.9 with Xk = B−1
k Ak.

The base case here is Λϵ/||B||2(B
−1A) ⊂ Cα for ϵ as in step one.

4. Use Lemma 3.3.8 to bound ||B−1
p Ap − sign(B−1A)||2, as sign(B−1

p Ap) = sign(B−1A)

since (A,B) and (Ap, Bp) have the same eigenvectors.

5. Bootstrap this bound to one for the projector PR,Re(z)>0 by observing that∣∣∣∣∣∣∣∣12B−1
p (Ap +Bp)− PR,Re(z)>0

∣∣∣∣∣∣∣∣
2

=
1

2
||B−1

p Ap − sign(B−1A)||2. (3.36)

Importantly, this framework is general – i.e., it can be applied to both IF-Newton

and IF-Halley but is not specific to either. As in Chapter 2, working with the product

matrices B−1
k Ak here is a theoretical exercise only, allowing us to take advantage of results

like Lemma 3.3.9 to bound error in an inverse-free approach.

To close, Table 3.2 counts the number of matrix relation operations required for

each method of computing PR and PL considered in this chapter.
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We are now ready to present our randomized, divide-and-conquer algorithm for the

generalized eigenvalue problem, which we refer to as pseudospectral divide-and-conquer. In

essence, this algorithm is a consequence of the work presented in the previous two chapters;

Chapter 2 provides a high-level strategy for spectral bisection while Chapter 3, particularly

Section 3.2, clears a pathway for the remaining steps of divide-and-conquer. Accordingly,

the contents of this chapter are primarily technical, aimed at piecing together these results

to state a provably successful diagonalization routine. The high-level approach can be

summarized as follows:

1. Randomly perturb and scale the input pencil (A,B) to obtain (Ã, nαB̃), thereby

gaining access to our main pseudospectral guarantee (Theorem 2.3.1).

2. Diagonalize (Ã, nαB̃) via divide-and-conquer, where a random shattering grid is used
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to split Λ(Ã, nαB̃) and spectral projectors are computed with IRS (see Section 3.2).

3. Undoing the nα scaling, allow the resulting diagonalization of (Ã, B̃) to stand in for

a diagonalization of (A,B).

What results is the first-known algorithm that can diagonalize any pencil (A,B),

with high probability, in nearly matrix multiplication time.

Guide to Chapter 4: Section 4.1 defines the remaining algorithmic building blocks

necessary to state a diagonalization routine, including the randomized rank-revealing

factorization we make use of. In Section 4.2, we prove the main result of this thesis, stating

our diagonalization algorithm and proving that it both succeeds with high probability on

arbitrary inputs and runs in nearly matrix multiplication time. We close the chapter with

a handful of numerical examples in Section 4.3.

4.1 Numerical Building Blocks

In this section, we present the remaining numerical stepping stones we’ll need – in

addition to IRS from Section 3.2 – to state a randomized diagonalization algorithm in

Section 4.2.

4.1.1 RURV and GRURV

We begin with the building block of divide-and-conquer that has to this point been

overlooked: the rank-revealing factorization used to obtain the matrices UR and UL from

the corresponding sepctral projectors PR and PL. As mentioned in Chapters 1 and 3, we

make use of a randomized URV factorization RURV introduced by Demmel, Dumitriu,

and Holtz [38], which is stated below as Algorithm 4. This randomized algorithm is simple

to implement, backwards stable [12, Theorem 4.5], and capable of producing strongly

rank-revealing factorizations (in the sense of Gu and Eisenstat [66]).

In Chapter 1, we characterized a factorization A = URV with R =
(
R11 R12

R21 R22

)
as
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Algorithm 4. Randomized Rank-Revealing Factorization (RURV)
Input: A ∈ Cn×n.
Output: U unitary matrix, R upper triangular matrix, and V Haar such that A = URV
is a rank-revealing factorization of A.

1: Draw a random matrix B with i.i.d. NC(0, 1) entries

2: [V, R̂] = QR(B)

3: Â = A · V H

4: [U,R] = QR(Â)
5: return U,R, V

rank-revealing if σk(R11) and ||R22||2 were good approximations to σk(A) and σk+1(A),

respectively (assuming A has effective rank k and R11 ∈ Ck×k). The following result of

Ballard et al. [12] clarifies what “good” means in this context, demonstrating that RURV

matches the best-known guarantees for deterministic rank-revealing factorizations.

Theorem 4.1.1 (Ballard et al. 2019). Let R be the triangular matrix produced by applying

exact arithmetic RURV to A ∈ Cn×n, where

R =

(
R11 R12

R22

)
for R11 ∈ Ck×k. Assume that k, n − k > 30. Then with probability 1 − δ the following

occur:
δ

2.02

σk(A)√
k(n− k)

≤ σk(R11) ≤ σk(A)

σk+1(A) ≤ σ1(R22) ≤ 2.02

√
k(n− k)

δ
σk+1(A)

||R−1
11 R12||2 ≤

6.1
√
k(n− k)

δ
+
σk+1(A)

σk(A)

50
√
k3(n− k)3

δ3
.

The proof of Theorem 4.1.1 boils down to bounding the smallest singular value of a

k× k block of a Haar unitary matrix via [38, Theorem 5.2]. The requirement k, n− k > 30

comes from the bound used by Ballard et al. [12, Corollary 3.4]. Banks et al. subsequently

demonstrated that this can be relaxed [16, Proposition C.3], although the fundamental

guarantees are the same: with high probability RURV produces a factorization such that
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Algorithm 5. Generalized Randomized Rank-Revealing Factorization (GRURV)
Input: k a positive integer, A1, A2, . . . , Ak ∈ Cn×n, and m1,m2, . . . ,mk ∈ {1,−1} .
Output: U unitary, R1, R2, . . . , Rk upper triangular, and V Haar such that
URm1

1 Rm2
2 · · ·Rmk

k V is a rank-revealing factorization of Am1
1 Am2

2 · · ·Amk
k .

1: if mk = 1 then
2: [U,Rk, V ] = RURV(Ak)
3: else
4: [U,Lk, V ] = RULV(AH

k )
5: Rk = LH

k

6: end if
7: Ucurrent = U
8: for i = k − 1 : 1 do
9: if mi = 1 then
10: [U,Ri] = QR(Ai · Ucurrent)
11: Ucurrent = U
12: else
13: [U,Ri] = RQ(UH

current · Ai)
14: Ucurrent = UH

15: end if
16: end for
17: return Ucurrent, optionally R1, R2, . . . , Rk, V

σk(R11) and ||R22||2 are at worst a multiplicative factor of O(
√
k(n− k)) away from σk(A)

and σk+1(A), respectively.

Since we use IRS, the projectors we would like to apply RURV to in divide-and-

conquer are not simple matrices but rather products of the form A−1B or AB−1 (i.e.,

the approximate projectors (Ap + Bp)
−1Ap and AH

p (Ap + Bp)
−H). Given that we avoid

inversion, explicitly forming either of these products is not an option. Instead, a generalized

version of RURV – referred to as GRURV and presented here as Algorithm 5 – allows

us to apply RURV to an arbitrary product of matrices and their inverses. Note that in

this routine, RULV is a version of RURV that replaces the QR factorization in line 4 of

Algorithm 4 with QL.

GRURV was first introduced in a technical report of Ballard, Demmel, and

Dumitriu [11] specifically with the purpose of applying RURV to spectral projectors found

by IRS. Importantly, exact-arithmetic GRURV is essentially equivalent to applying
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exact arithmetic RURV to the corresponding product [12, Theorem 5.2], which allows

us to access guarantees like Theorem 4.1.1 for GRURV in exact arithmetic without any

additional effort.

While Theorem 4.1.1 implies that RURV is theoretically optimal, we note that

it often underperforms empirically. This has prompted efforts to develop randomized

alternatives (see for example the powerURV work of Gopal and Martinsson [61]). Of

course, a benefit of RURV is its simplicity, which implies that it is both stable and

efficient, including from a communication perspective. Nevertheless, using a different

rank-revealing factorization may allow for PR and PL to be computed to lower accuracy

while still correctly estimating their rank.

4.1.2 DEFLATE

We consider next an algorithm that combines IRS and GRURV to compute the

matrices UL and UR, whose orthonormal columns span right/left deflating subspaces of

(A,B). Such a routine was first stated as RGNEP by Ballard, Demmel, and Dumitriu [11,

Algorithm 4], albeit in a different form than we present here. In particular, RGNEP

assumed no knowledge of the number of eigenvalues of (A,B) inside/outside the unit circle

(equivalently, the rank of the corresponding spectral projectors), instead multiplying by the

full n×n unitary matrices produced by GRURV and deciding where to split the problem

to minimize certain matrix norms. Since we will have access to information about the rank

of the projectors being computed,1 we state an alternative DEFLATE (Algorithm 6),

which simply takes the first k columns of the matrices computed by GRURV.

For DEFLATE to succeed, we need to know that the first k columns of the

U-factor produced by GRURV span the range of the rank-k product it is applied to

(with high probability). We would also like a guarantee that the result for an approximate

1This is how dividing grid lines are selected, where the rank is first computed by a separate, independent
application of IRS and GRURV.
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Algorithm 6. Deflating Subspace Finder (DEFLATE)
Input: A,B ∈ Cn×n, positive integers p and k
Requires: k ≤ n; (A,B) has no eigenvalues on the unit circle and exactly k eigenvalues
outside it.
Output: U

(k)
R , U

(k)
L ∈ Ck×n with orthonormal columns that approximately span right and

left deflating subspaces of (A,B).

1: [Ap, Bp] = IRS(A,B, p)
2: UR = GRURV(2, Ap +Bp, Ap,−1, 1)
3: [Ap, Bp] = IRS(AH , BH , p)
4: UL = GRURV(2, AH

p , (Ap +Bp)
H , 1,−1)

5: U
(k)
R = UR(: , 1 : k)

6: U
(k)
L = UL(: , 1 : k)

7: return U
(k)
R , U

(k)
L

projector is close to that of a true spectral projector. Equivalent results for RURV are

already known. In that case, the intuition is fairly simple: multiplying by the Haar matrix

in line 3 of RURV “mixes” the columns of A, distributing information so that the first

k columns of A – and therefore the first k columns of U – are likely to span range(A).2

Additionally, we have the following perturbation result in exact arithmetic due to Banks

et al. [16, Poposition C.12].

Theorem 4.1.2 (Banks et al. 2022). Let A,A′ ∈ Cn×n with ||A−A′||2 ≤ δ and rank(A) =

rank(A2) = k. Let T and S contain the first k columns of the U-factors produced by

applying exact arithmetic RURV to A and A′ respectively. Then for any θ ∈ (0, 1) with

probability 1− θ2 there exists a unitary W ∈ Ck×k such that

||S − TWH ||2 ≤

√
8
√
k(n− k)

σk(THAT )
·
√
δ

θ

Letting A be a rank-k spectral projector (in which case σk(T
HAT ) = 1), Theo-

rem 4.1.2 says that the first k columns of the U-factor of an approximation A′ of A are

close to a rotation/reflection of the first k columns of the U-factor of A, provided ||A−A′||2

is sufficiently small.

2We can identify this as another benefit of randomization, which is independent of the regularizing
effect of initial perturbations.
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Recalling that exact arithmetic GRURV is equivalent to exact arithmetic RURV

on the corresponding product, these results generalize directly. Not only can we say that

almost surely the first k columns of the U-factor produced by GRURV span the range of

the product, but a perturbation result similar to Theorem 4.1.2 holds. Combining these

with our analysis of IRS yields the following exact arithmetic guarantee for DEFLATE.

Theorem 4.1.3. Suppose (A,B), p, and k satisfy the requirements of DEFLATE, where

p is large enough to ensure error in repeated squaring is at most δ in lines 1 and 3. Let

U
(k)
R and U

(k)
L be the outputs of running this algorithm in exact arithmetic. Then for any

ν ∈ (0, 1) there exist UR, UL ∈ Cn×k with orthonormal columns spanning right and left

deflating subspaces of (A,B) respectively such that

||U (k)
R − UR||2, ||U (k)

L − UL||2 ≤
√
8
√
k(n− k)

√
δ

ν

with probability at least 1− 2ν2.

Proof. Consider first U
(k)
R and let Ap and Bp be the outputs of applying p steps of exact

arithmetic repeated squaring to A and B. We know (Ap+Bp)
−1Ap approaches a projector

PR,|z|>1 onto the right deflating subspace spanned by eigenvectors of (A,B) with eigenvalues

outside the unit circle. Let URV = PR,|z|>1 be a rank-revealing factorization of PR,|z|>1

obtained via exact arithmetic RURV and let U (k) contain the first k columns of U . Since

k is the number of eigenvalues with modulus greater than one, we know k = rank(PR,|z|>1)

and moreover range(U (k)) = range(PR,|z|>1) almost surely. Thus, since p is large enough

to ensure ||(Ap + Bp)
−1Ap − PR,|z|>1||2 ≤ δ and exact arithmetic GRURV satisfies the

same guarantees as exact RURV, we have by Theorem 4.1.2 that with probability at least

1− ν2 there exists a unitary W ∈ Ck×k such that

||U (k)
R − U (k)WH ||2 ≤

√
8
√
k(n− k)

√
δ

ν
. (4.1)

Setting UR = U (k)WH , we have the bound on ||U (k)
R − UR||2 with probability at least

1 − ν2. Repeating the same argument for U
(k)
L , using this time the fact that [Ap, Bp] =
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IRS(AH , BH , p) implies

||AH
p (Ap +BP )

−H − PL,|z|>1||2 ≤ δ (4.2)

for PL,|z|>1 a projector onto the left deflating subspace corresponding to PR,|z|>1, we obtain

the remaining bound, also with probability at least 1−ν2. Taking a union bound completes

the proof.

4.1.3 EIG

Given IRS, GRURV, and DEFLATE, we can now state our main algorithmic

contribution: EIG (Algorithm 7), which applies inverse-free divide-and-conquer to a pencil

(A,B) under the assumption that Λϵ(A,B) is shattered with respect to a grid g (contained

in the square of side length five centered at the origin). In practice, this will be our

perturbed and scaled pencil (Ã, nαB̃) – hence the norm assumption on B in Algorithm 7

has a factor of nα attached – and the shattering grid guaranteed by Theorem 2.3.1.

Before proving exact arithmetic guarantees for EIG, we first provide a high-level

overview of the algorithm. Throughout, we rely on the analysis of each of the building

blocks from the previous subsections (and Section 3.2).

1. Since EIG calls itself recursively, the first three lines check for our stopping criteria.

We choose to continue divide-and-conquer until the pencil is 1 × 1, though as

mentioned in Chapter 1 we could choose instead to stop once the pencil is small

enough to be handled by another method.

2. The next four lines (4-7) set parameters for the algorithm. Most importantly, they

determine how many steps of repeated squaring need to be taken to achieve the

desired accuracy (i.e., the value of p in line 7).

3. Lines 8-15 execute a search over g for a grid line that sufficiently splits the spectrum,

which here means separating at least a fifth of the eigenvalues on each side. Since g

shatters Λϵ(A,B), a grid line that sufficiently splits the spectrum always exists.
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Algorithm 7. Divide-and-Conquer Eigensolver (EIG)
Input: n ∈ N+, A,B ∈ Cm×m, ϵ > 0, α > 1, g an s1 × s2 grid with box size ω, β > 0 a
desired eigenvector accuracy, and θ ∈ (0, 1) a failure probability.
Requires: m ≤ n, ||A||2 ≤ 3, ||B||2 ≤ 3nα, g ⊂ {z : |Re(z)|, |Im(z)| < 5}, and Λϵ(A,B)
shattered with respect to g.
Output: T an invertible matrix and (D1, D2) a diagonal pencil. The eigenvalues of
(D1, D2) each share a grid box of g with a unique eigenvalue of (A,B) and each column of
T is an approximate right unit eigenvector of (A,B).

1: if m = 1 then
2: T = 1; D1 = A; D2 = B
3: else
4: ζ = 2 (⌊log2(max {s1, s2}) + 1⌋)
5: η = min

{
4π

315
√
8

βϵ2

ωnα ,
1

2 log5/4(n)

}
6: δ = min

{√
θ
10

ϵ2

7200n2α+3 ,
θ

2(θ+10n6ζ)
,
√

θ
10

η2

288n2α+3

}
7: p =

⌈
max

{
7, −2 log2

(
−1

2
log2

(
1− ϵ

105nα

))
, 1 + log2

[
log2( δπϵ

12nαmω+δπϵ)
log2(1− ϵ

105nα )

]}⌉
8: Choose a grid line Re(z) = h of g
9: (A,B) = (A− (h− 1)B,A− (h+ 1)B)
10: [Ap, Bp] = IRS(A,B, p)
11: [U,R1, R2, V ] = GRURV(2, Ap +Bp, Ap,−1, 1)

12: k = #
{
i :
∣∣∣R2(i,i)
R1(i,i)

∣∣∣ ≥√ θ
10ζ

1−δ
n3

}
13: if k < 1

5
m or k > 4

5
m then

14: Return to step 8 and choose a new grid line, executing a binary search if
necessary. If this fails, search over horizontal grid lines Im(z) = h.

15: else
16: [U

(k)
R , U

(k)
L ] = DEFLATE(A,B, p, k)

17: (A,B) = (A− (h+ 1)B,A− (h− 1)B)

18: [U
(m−k)
R , U

(m−k)
L ] = DEFLATE(A,B, p,m− k)

19:

(A11, B11) =
(
(U

(k)
L )HAU

(k)
R , (U

(k)
L )HBU

(k)
R

)
(A22, B22) =

(
(U

(m−k)
L )HAU

(m−k)
R , (U

(m−k)
L )HBU

(m−k)
R

)
20: gR = {z ∈ g : Re(z) > h}; gL = {z ∈ g : Re(z) < h}
21: [T̂ , D̂1, D̂2] = EIG(n,A11, B11,

4
5
ϵ, α, gR,

1
3
β, θ)

22: [Ṫ , Ḋ1, Ḋ2] = EIG(n,A22, B22,
4
5
ϵ, α, gL,

1
3
β, θ)

23:

T =
(
U

(k)
R U

(m−k)
R

)(T̂ 0
0 Ṫ

)
D1 =

(
D̂1 0
0 Ḋ1

)
D2 =

(
D̂2 0
0 Ḋ2

)
24: end if
25: end if
26: return T,D1, D2

99



4. We check a line Re(z) = h of the grid by applying the Möbius transformation

S(z) = z−(h−1)
z−(h+1)

(line 9). S maps the grid line to the unit circle while sending the half

plane {z : Re(z) < h} inside the unit disk. Applying this transformation to (A,B)

sends eigenvalues to the left/right of the dividing line inside/outside the unit circle,

respectively, without changing eigenvectors.

5. Lines 10 and 11 apply IRS and GRURV to the transformed pencil (A,B). This

produces a rank-revealing factorization UR−1
1 R2V of the approximate projector onto

the right deflating subspace corresponding to eigenvectors of (A,B) with eigenvalues

outside the unit disk (equivalently eigenvectors of (A,B) with eigenvalues to the

right of the selected grid line).

6. In line 12, we leverage the rank-revealing guarantees of RURV, and by extension

GRURV, to read off the rank of the approximate projector. Note that we do this

without forming R−1
1 R2. The grid line is selected if this rank is between 1

5
m and 4

5
m,

where m is the size of the pencil (which shrinks as we recur).

7. In line 8 we assume that the grid line is vertical, however it is possible that only

a horizontal grid line sufficiently splits the spectrum. This is covered in line 14.

The remainder of the algorithm similarly assumes the split is vertical; the following

changes apply if a split is made with the horizontal grid line Im(z) = h.

• Line 9: (A,B) = (A− i(h− 1)B,A− i(h+ 1)B).

• Line 17: (A,B) = (A− i(h+ 1)B,A− i(h− 1)B),

• Line 20: gR = {z : Im(z) > h} and gL = {z : Im(z) < h}.

8. Once a dividing line has been identified, DEFLATE is called twice to compute

orthonormal bases for both sets of deflating subspaces. To recover eigenvectors

corresponding to eigenvalues to the left of the line, we apply the alternative Möbius

transformation S(z) = z−(h+1)
z−(h−1)

.
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9. In line 19 we compute the next pair of subproblems. We then pass these to EIG

along with pieces of the grid g and slightly adjusted parameters. In particular, note

that the ϵ for which Λϵ(A,B) is shattered shrinks by a factor of 4
5
at each step. As

we will see, this is necessary to guarantee shattering since U
(k)
R , U

(k)
L , U

(m−k)
R and

U
(m−k)
L are only approximations of the matrices used in Lemma 1.3.5.

10. Once the recursion finishes, EIG reconstructs a diagonal pencil (D1, D2) and a set

of approximate right eigenvectors T (line 23).

With this outline in mind, we are now ready to state and prove our main guarantee

for EIG (in exact arithmetic).

Theorem 4.1.4. Let (A,B) and g be a pencil and grid satisfying the requirements of EIG.

Then for any choice of θ ∈ (0, 1) and β > 0, exact-arithmetic EIG applied to (A,B) and

g satisfies the following with probability at least 1− θ.

1. The recursive procedure converges and each eigenvalue of the diagonal pencil (D1, D2)

shares a grid box with a unique eigenvalue of (A,B).

2. If σn(B) ≥ 1, each column ti of T satisfies ||ti − vi||2 ≤ β for some true unit right

eigenvector vi of (A,B).

Proof. We start by bounding the probability that the first guarantee does not hold. Since

EIG calls itself recursively, we do this by bounding the probability of failure for one step

of divide and conquer. In this context, success requires two events: first, a dividing line

that sufficiently splits the spectrum must be found; second, the subsequent calls to EIG

must be valid, meaning the inputs satisfy the listed properties.

Computing the probabilities that these occur is fairly lengthy, so to improve read-

ability we number the steps in the proof and provide in bold a description of what each

step accomplishes. Throughout, we use the assumptions on the inputs – i.e. A,B ∈ Cm×m

with m ≤ n, ||A||2 ≤ 3, ||B||2 ≤ 3nα, and Λϵ(A,B) is shattered with respect to the grid g,
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which is s1 × s2 consisting of boxes of size ω.

Step One: Any transformed pencil (A,B) in EIG satisfies d(A,B) ≥ 2
5
ϵ.

Consider first a vertical grid line Re(z) = h and (A,B) = (A− (h− 1)B,A− (h+ 1)B)

as in line 9. Suppose z ∈ Λϵ′(A,B) for some ϵ′ > 0. In this case, there exist matrices E

and F with ||E||2, ||F ||2 ≤ ϵ′ such that z is an eigenvalue of (A+ E, B + F ). If we apply

the Möbius transformation S(z) = (h+1)z−(h−1)
z−1

to this pencil, we observe that S(z) is an

eigenvalue of

((h+ 1)(A+ E)− (h− 1)(B + F ), (A+ E)− (B + F )), (4.3)

or, equivalently,

(2A+ (h+ 1)E − (h− 1)F, 2B + E − F ). (4.4)

Dividing by two, we conclude that S(z) is an eigenvalue of (A+ h+1
2
E− h−1

2
F, B+ 1

2
E− 1

2
F ),

where∣∣∣∣∣∣∣∣h+ 1

2
E − h− 1

2
F

∣∣∣∣∣∣∣∣
2

≤ |h+ 1|
2

||E||2 +
|h− 1|

2
||F ||2 ≤

ϵ′

2
(|h+ 1|+ |h− 1|) (4.5)

and ∣∣∣∣∣∣∣∣12E − 1

2
F

∣∣∣∣∣∣∣∣
2

≤ 1

2
(||E||2 + ||F ||2) ≤ ϵ′. (4.6)

Thus, S(z) belongs to Λϵ′′(A,B) for

ϵ′′ = max

{
ϵ′,

ϵ′

2
(|h+ 1|+ |h− 1|)

}
≤ 5ϵ′, (4.7)

which means the pre-image of Λϵ/5(A,B) under S−1 is contained in Λϵ(A,B).

Since Λϵ(A,B) is shattered with respect to g and therefore does not intersect the

dividing line Re(z) = h, we conclude that Λϵ/5(A,B) does not intersect the unit circle. By

Definition 3.2.2, we obtain d(A,B) ≥ 2
5
ϵ. Making a similar argument for the transformed

pencil in line 17 – or in the case of a horizontal dividing line Im(z) = h – yields d(A,B) ≥ 2
5
ϵ

for any (A,B) appearing in EIG. In the next step, we will use this lower bound to control

the error in repeated squaring.
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Step Two: The choice of p guarantees that the error in IRS is at most δ.

Consider the first call to IRS, which applies repeated squaring to the transformed pencil

(A,B). By Theorem 3.2.3, we know that as long as p ≥ log2

[
||(A,B)||2−d(A,B)

d(A,B)

]
then

||(Ap +Bp)
−1Ap − PR,|z|>1||2 ≤ ||PR,|z|>1||2

2p+3
(
1− d(A,B)

||(A,B)||2

)2p
max

{
0, 1− 2p+2

(
1− d(A,B)

||(A,B)||2

)2p} . (4.8)

We just showed d(A,B) ≥ 2
5
ϵ and

||(A,B)||2 ≤ ||A||2 + ||B||2 ≤ 2||A||2 + (|h− 1|+ |h+ 1|)||B||2 ≤ 42nα, (4.9)

so to satisfy p ≥ log2

[
||(A,B)||2−d(A,B)

d(A,B)

]
it is sufficient to take p ≥ log2

(
105nα

ϵ
− 1
)
. Similarly,

to eliminate the maximum from the denominator of (4.8) it is sufficient to take p ≥

−2 log2
(
log2

(
105nα

105nα−ϵ

))
, provided p > 6 (which allows us to simplify the bounds by

assuming log2(p+ 2) < 1
2
p).

With this in mind, we can now turn to bounding the right hand side of (4.8). First,

we upper bound ||PR,|z|>1||2. Recall,

PR,|z|>1 = V

(
0 0
0 Ir

)
V −1 =

m∑
j=m−r+1

vjw
H
j (4.10)

for r = rank(PR,|z|>1) and V a matrix that diagonalizes B−1A. vi and w
H
i are the columns of

V and rows of V −1 respectively, scaled so that wH
i vi = 1 with vm−r+1, . . . , vm corresponding

to eigenvalues of (A,B) to the right of Re(z) = h. Since Λϵ(A,B) is shattered with respect

to g, each of these eigenvalues λm−r+1, . . . , λm is contained in a separate grid box of g. If

Γi is the contour of the grid box containing λi, this means

vjw
H
j =

1

2πi

∮
Γj

(z −B−1A)−1dz (4.11)

and therefore

PR,|z|>1 =
1

2πi

m∑
j=m−r+1

∮
Γj

(z −B−1A)−1dz =
1

2πi

m∑
j=m−r+1

∮
Γj

(zB − A)−1Bdz. (4.12)
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Thus, by the triangle inequality,

||PR,|z|>1||2 ≤
1

2π

m∑
j=m−r+1

∣∣∣∣∣
∣∣∣∣∣
∮
Γj

(zB − A)−1Bdz

∣∣∣∣∣
∣∣∣∣∣
2

. (4.13)

Moreover, applying the ML-inequality (2.33) to each term in this sum, we have

||PR,|z|>1||2 ≤
1

2π

m∑
j=m−r+1

4ω sup
z∈Γj

||(zB − A)−1B||2

≤ 2ω||B||2
π

m∑
j=m−r+1

sup
z∈Γj

||(A− zB)−1||2.
(4.14)

Since shattering guarantees Λϵ(A,B)∩Γj = ∅ and therefore ||(A−zB)−1||2 ≤ 1
ϵ(1+|z|) ≤ ϵ−1

for all z ∈ Γj, we conclude ||PR,|z|>1||2 ≤ 2ωr||B||2
πϵ

. Finally using the fact that ||B||2 ≤ 3nα

and r ≤ m, we have a final upper bound ||PR,|z|>1||2 ≤ 6nαmω
πϵ

.

Combining this bound with d(A,B) ≥ 2
5
ϵ and ||(A,B)||2 ≤ 42nα, (4.8) becomes

||(Ap +Bp)
−1Ap − PR,|z|>1||2 ≤

6nαmω

πϵ
·

2p+3
(
1− ϵ

105nα

)2p
1− 2p+2

(
1− ϵ

105nα

)2p (4.15)

for p sufficiently large (i.e., following the bounds derived above). Thus, we obtain ||(Ap +

Bp)
−1Ap − PR,|z|>1||2 ≤ δ by taking

6nαmω

πϵ
·

2p+3
(
1− ϵ

105nα

)2p
1− 2p+2

(
1− ϵ

105nα

)2p ≤ δ (4.16)

which is equivalent to

2p
[
p+ 2

2p
+ log2

(
1− ϵ

105nα

)]
≤ log2

(
δπϵ

12nαmω + δπϵ

)
. (4.17)

Using again the assumption that p > 6 and further taking p ≥ −2 log2
(
−1

2
log2

(
1− ϵ

105nα

))
to ensure p+2

2p
≤ −1

2
log2

(
1− ϵ

105nα

)
, we get the desired accuracy as long as

2p−1 log2

(
1− ϵ

105nα

)
≤ log2

(
δπϵ

12nαmω + δπϵ

)
(4.18)

which yields a final bound p ≥ 1 + log2
[
log2

(
δπϵ

12nαmω+δπϵ

)
/ log2

(
1− ϵ

105nα

)]
.

In the preceding analysis, we derived the following four bounds on p:
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• p ≥ log2
(
105nα

ϵ
− 1
)
(to allow us to apply Theorem 3.2.3).

• p ≥ −2 log2
(
log2

(
105nα

105nα−ϵ

))
(to eliminate the maximum from the error bound).

• p ≥ −2 log2
(
−1

2
log2

(
1− ϵ

105nα

))
(to simplify the upper bound in (4.8)).

• p ≥ 1 + log2
[
log2

(
δπϵ

12nαmω+δπϵ

)
/ log2

(
1− ϵ

105nα

)]
(to ensure an error of at most δ

given the other three bounds).

Since the third bound is always at least as large as the first two – and since we also

assumed p > 6 – we conclude that ||(Ap + Bp)
−1Ap − PR,|z|>1||2 ≤ δ for the p chosen in

line 7 of EIG. Note that since ||AH ||2 = ||A||2, ||BH ||2 = ||B||2, d(AH ,BH) = d(A,B), and

Λϵ(A
H , BH) is shattered with respect to the grid gH = {z : z ∈ g}, the same argument

guarantees that running repeated squaring on AH , and BH has error at most δ. Similarly,

the same results hold for the other transformed pencils in lines 14 and 17 since in all cases

||(A,B)||2 ≤ 42nα and d(A,B) ≥ 2
5
ϵ.

Step Three: A dividing line that sufficiently splits the spectrum exists.

A dividing line sufficiently splits the spectrum if it separates at least 1
5
m of them eigenvalues

of (A,B). Suppose that no vertical line of g does this. In this case, there exists adjacent

vertical lines between which more than 3
5
m eigenvalues lie. Since no eigenvalues share the

same grid box, this implies that a horizontal grid line must sufficiently split the spectrum.

Step Four: With probability at least 1 − θ
10n4 , EIG finds a dividing line that

separates exactly k eigenvalues to the right such that 1
5
m ≤ k ≤ 4

5
m.

To obtain a lower bound on this probability, we first compute the probability that for any

grid line Re(z) = h the value of k at line 12 is equal to the number of eigenvalues of (A,B)

to the right of the line.

Suppose (A,B) has r eigenvalues to the right of Re(z) = h. In this case, we know

in line 10 that (Ap+Bp)
−1Ap approaches a rank-r projector PR,|z|>1. Now k is obtained by
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computing a rank-revealing factorization URR
−1
1 R2V = (Ap +Bp)

−1Ap via GRURV and

then counting the diagonal entries of R−1
1 R2 that have modulus above a certain threshold.

With this in mind, write

R−1
1 R2 =

[
R11 R12

R22

]
(4.19)

for R11 an r × r matrix. Since we are working in exact arithmetic, GRURV satisfies all

of the guarantees of exact arithmetic RURV. In particular, extending [38, Theorem 5.2]

to complex matrices,

σr(R11) ≥ σr((Ap +Bp)
−1Ap)σr(X11) (4.20)

where X11 is the upper left r×r block of X = QHV H for the SVD (Ap+Bp)
−1Ap = PΣQH .

Similarly, by [12, Lemma 4.1],

||R22||2 ≤
σr+1((Ap +Bp)

−1Ap)

σr(X11)
. (4.21)

Now ||(Ap + Bp)
−1Ap − PR,|z|>1||2 ≤ δ as shown in step two above, so since the rank-r

projector PR,|z|>1 satisfies σr(PR,|z|>1) = 1 and σr+1(PR,|z|>1) = 0, we have by Lemma 1.7.2

σr((Ap + Bp)
−1Ap) ≥ 1 − δ and σr+1((Ap + Bp)

−1Ap) ≤ δ. Moreover, since X is Haar

unitary, we have by [16, Proposition C.3]

P

[
1

σr(X11)
≤
√
r(m− r)

ν

]
≥ 1− ν2 (4.22)

for any ν ∈ (0, 1]. Applying these to (4.20) and (4.21) with ν =
√

θ
10ζ

1
n2 for ζ =

2(⌊log2(s) + 1⌋) and s = max {s1, s2}, we have

σr(R11) ≥ (1− δ)

√
θ

10ζ

1

n2
√
r(m− r)

≥

√
θ

10ζ

1− δ

n3
(4.23)

and

||R22||2 ≤ δ
√
r(m− r)n2

√
10ζ

θ
≤ δn3

√
10ζ

θ
(4.24)

with probability at least 1 − θ
10ζn4 . Since the eigenvalues of any matrix are bounded in

modulus above and below by its singular values – and the eigenvalues of R11 and R22
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are their diagonal entries – we conclude |R11(i, i)| ≥
√

θ
10ζ

1−δ
n3 for all 1 ≤ i ≤ r while

|R22(j, j)| ≤ δn3
√

10ζ
θ

for all 1 ≤ j ≤ m− r with probability at least 1− θ
10ζn4 . Since the

requirement in line 6 that δ ≤ θ
2(θ+10n6ζ)

guarantees
√

θ
10ζ

1−δ
n3 > δn3

√
10ζ
θ
, this implies that

k = r with probability at least 1− θ
10ζn4

We have shown so far that with high probability the value of k at line 12 is equal

to the number of eigenvalues to the right of the vertical dividing line selected four lines

earlier. Since repeating this argument yields the same probability of success when checking

a horizontal grid line and we know a dividing line that separates at least 1
5
m eigenvalues

must exist, we can therefore lower bound the probability that EIG finds a suitable line by

requiring that the value of k is accurate for all lines that are checked. Since we do at most

two binary searches to find a good enough grid line, we check at most ζ lines. By a union

bound, we conclude that a suitable line is found, and k is computed accurately for that

line, with probability at least 1− θ
10n4 .

Step Five: Assuming k is computed correctly in line 12, there exists matri-

ces Û
(k)
R , Û

(k)
L ∈ Ck×m and Û

(m−k)
R , Û

(m−k)
L ∈ Cm−k×m with orthonormal columns

spanning corresponding right and left deflating subspaces of (A,B) such that

(a) ||U (k)
R − Û

(k)
R ||2 ≤

√√
10
θ
8n3δ

(b) ||U (k)
L − Û

(k)
L ||2 ≤

√√
10
θ
8n3δ

(c) ||U (m−k)
R − Û

(m−k)
R ||2 ≤

√√
10
θ
8n3δ

(d) ||U (m−k)
L − Û

(m−k)
L ||2 ≤

√√
10
θ
8n3δ

With probability at least 1− 2θ
5n4 .

This result comes from applying Theorem 4.1.3 twice with ν =
√

θ
10n4 and taking a union

bound. In both cases, we use the fact that p is large enough to guarantee error in repeated
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squaring is a most δ and consequently

√
8
√
k(m− k)

√
δ

ν
≤

√
8n

√
10n4

θ
δ =

√√
10

θ
8n3δ. (4.25)

Step Six: Union bound on events that guarantee success.

Let Ea, Eb, Ec, and Ed be events that correspond to the results (a), (b), (c), and (d) from

step 5 and let Ek be the event that a sufficient dividing line is found and k computed

accurately. We have just shown

P(Ea ∩ Eb ∩ Ec ∩ Ed | Ek) ≥ 1− 2θ

5n4
. (4.26)

Since we also know P(Ek) ≥ 1− θ
10n4 , we conclude

P(Ea ∩ Eb ∩ Ec ∩ Ed ∩ Ek) = P(Ea ∩ Eb ∩ Ec ∩ Ed | Ek)P(Ek)

≥
(
1− 2θ

5n4

)(
1− θ

10n4

)
≥ 1− θ

2n4
.

(4.27)

In the remainder of the proof, we will show that conditioning on these events guarantees

success for one step of EIG.

Step Seven: If Ea, Eb, Ec, and Ed hold, then Λ4ϵ/5(A11, B11) and Λ4ϵ/5(A22, B22) are

shattered with respect to g.

Let Û
(k)
R , Û

(k)
L , Û

(m−k)
R , and Û

(m−k)
L be the matrices such that ||U (k)

R −Û (k)
R ||2, ||U (k)

L −Û (k)
L ||2,

||U (m−k)
R − Û

(m−k)
R ||2, and ||U (m−k)

L − Û
(m−k)
L ||2 are all bounded above by

√√
10
θ
8n3δ as in

step five. Since δ ≤
√

θ
10

ϵ2

7200n2α+3 , we can replace this upper bound with ϵ
30nα . With this

in mind, let

(Â11, B̂11) =
(
(Û

(k)
L )HAÛ

(k)
R , (Û

(k)
L )HBÛ

(k)
R

)
(Â22, B̂22) =

(
(Û

(m−k)
L )HAÛ

(m−k)
R , (Û

(m−k)
L )HBÛ

(m−k)
R

)
.

(4.28)

Note that by Lemma 1.3.5, Λϵ(Â11, B̂11) and Λϵ(Â22, B̂22) are both contained in Λϵ(A,B)
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and therefore shattered with respect to g. At the same time,

||A11 − Â11||2 = ||(U (k)
L )HAU

(k)
R − (Û

(k)
L )HAÛ

(k)
R ||2

= ||(U (k)
L )HAU

(k)
R − (Ûk

L)
HAU

(k)
R + (Û

(k)
L )HAU

(k)
R − (Û

(k)
L )HAÛ

(k)
R ||2

≤ ||(U (k)
L − Û

(k)
L )HAU

(k)
R ||2 + ||(Û (k)

L )HA(U
(k)
R − Û

(k)
R ||2

≤ ||U (k)
L − Û

(k)
L ||2||A||2 + ||A||2||U (k)

R − Û
(k)
R ||2

≤ 6nα ϵ

30nα

=
ϵ

5

(4.29)

and similarly ||B11 − B̂11||1 ≤ ϵ
5
. Thus, by Lemma 2.3.3, Λ4ϵ/5(A11, B11) is shattered

with respect to g. Repeating this argument for (A22, B22) and (Â22, B̂22), we conclude

Λ4ϵ/5(A22, B22) is also shattered with respect to g.

In the preceding analysis, we showed that for one step of recursion in EIG, a suffi-

cient dividing line is found, k is computed correctly, and Λ4ϵ/5(A11, B11) and Λ4ϵ/5(A22, B22)

are both shattered with respect to g, and therefore also with respect to the half grids gR

and gL, with probability at least 1− θ
2n4 . Since multiplying by matrices with orthonormal

columns will preserve the norm requirements, we conclude that the subsequent calls to

EIG in lines 21 and 22 are valid when these events occur. Hence, each recursive step

succeeds with probability at least 1 − θ
2n4 . Since the recursive tree of EIG has depth

at most log5/4(n) and each step calls EIG twice, a union bound implies that the first

guarantee of EIG fails with probability at most

2 · 2log5/4(n) θ

2n4
≤ 2n4 θ

2n4
= θ. (4.30)

We turn now to the second guarantee when σn(B) ≥ 1. In this case, we will show

that conditioning on the same events that ensure the first guarantee also imply the second.

Since EIG builds the approximate eigenvectors recursively, we do this inductively.

The base case here corresponds to m = 1, in which case EIG gets the one right unit
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eigenvector (v = 1) exactly correct. Suppose now we are reconstructing the eigenvectors of

(A′, B′) from the two sub-problems (A11, B11) and (A22, B22) it is split into. (A
′, B′) here

is any pencil obtained in the divide and conquer process.

Let T̂ and Ṫ be the invertible matrices obtained from applying EIG to (A11, B11)

and (A22, B22) as in lines 21 and 22 of the algorithm. Since these calls to EIG pass the

parameter β
3
, we can assume each column of T̂ or Ṫ is at most β

3
away from a true unit

right eigenvector of (A11, B11) or (A22, B22). In addition, let

T =
(
U

(k)
R U

(m−k)
R

)(
T̂ 0

0 Ṫ

)
(4.31)

be the matrix of approximate eigenvectors of (A′, B′) computed in line 23. Finally let Û
(k)
R

and Û
(m−k)
R be the true matrices approximated by U

(k)
R and U

(m−k)
R , as in step 5 above.

Consider now a column ti of T . It suffices to handle the case where ti = U
(k)
R t̂i for

a column t̂i of T̂ , as the same argument applies exactly if ti = U
(m−k)
R ṫi for ṫi a column of

Ṫ . By our induction hypothesis, we know there exists a true right unit eigenvector v̂i of

(A11, B11) such that

||t̂i − v̂i||2 ≤
β

3
. (4.32)

Now let (Â11, B̂11) be the true problem approximated by (A11, B11). Conditioning on the

same events used above, we know (following the same arguments as in steps 5 and 7)

||A11 − Â11||2, ||B11 − B̂11||2 ≤ 6nα||U (k)
R − Û

(k)
R ||2 ≤ 6nα

√√
10

θ
8n3δ, (4.33)

which, applying the bound δ ≤
√

θ
10

η2

288n2α+3 , becomes

||A11 − Â11||2, ||B11 − B̂11||2 ≤ 6nα

√√
10

θ
8n3

√
θ

10

η2

288n2α+3
= η. (4.34)

Thus, by Lemma 2.3.4, there exists a right unit eigenvector v̄i of (Â11, B̂11) such that

||v̂i − v̄i||2 ≤
√
8ω

π

η

ϵ(ϵ− η)
(1 + ||B̂−1

11 Â11||2)||B̂11||2. (4.35)
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To simplify this bound, we first observe that (again by the argument made in step

7 above) we can assume ϵ− η ≥ 4
5
ϵ. In addition, ||Â11||2 ≤ 3 and ||B̂11||2 ≤ 3nα. Finally,

since σn(B) ≥ 1 and any split of divide and conquer can decrease the smallest singular

value by at most η (by Lemma 1.7.2), and since the decision tree of EIG has depth at

most log5/4(n), the bound η ≤ 1
2 log5/4(n)

ensures

σn(B̂11) ≥ 1− log5/4(n)η ≥ 1

2
. (4.36)

Putting everything together, we have

||v̂i − v̄i||2 ≤
√
8ω

π

η
4
5
ϵ2

(
1 +

||Â11||2
σn(B̂11)

)
||B̂11||2 ≤

105
√
8

4π

ωnα

ϵ2
η ≤ β

3
. (4.37)

since η ≤ 4π
315

√
8

βϵ2

ωnα . Now let vi = Û
(k)
R v̄i, which is a true right unit eigenvector of (A′, B′).

By construction, we have

||ti − vi||2 = ||U (k)
R t̂i − Û

(k)
R v̄i||2

= ||U (k)
R t̂i − U

(k)
R v̂i + U

(k)
R v̂i − Û

(k)
R v̂i + Û

(k)
R v̂i − Û

(k)
R v̄i||2

≤ ||U (k)
R (t̂i − v̂i)||2 + ||(U (k)

R − Û
(k)
R )v̂i||2 + ||Û (k)

R (v̂i − v̄i)||2.

≤ ||t̂i − v̂i||2 + ||U (k)
R − Û

(k)
R ||2 + ||v̂i − v̄i||2.

(4.38)

Applying (4.32) and (4.37) to this and using the fact that ||U (k)
R − Û

(k)
R ||2 ≤ β

3
, we conclude

||ti − vi||2 ≤
β

3
+
β

3
+
β

3
= β. (4.39)

By induction, we obtain the same bound for approximate/true eigenvectors of (A,B).

The condition on the eigenvector guarantee in Theorem 4.1.4 (i.e., that σn(B) ≥ 1)

may seem restrictive, but it reflects the use-case in the following section. That is, while

it is possible to adjust the parameters of EIG to allow for less strict lower bounds on

σn(B), we plan to apply EIG to the perturbed and scaled (Ã, nαB̃), where by construction

σn(n
αB̃) ≥ 1 with high probability.
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4.2 Diagonalization in Nearly Matrix Multiplication

Time

In this section, we state our diagonalization routine, which is built on EIG and

the pseudospectral shattering results of Chapter 2. Here, we make use of the following

important observation: if B is invertible and T contains right eigenvectors of (A,B), then

S = BT and T jointly diagonalize A and B. Since B̃ is invertible almost surely, we can

obtain a diagonalization of our perturbed pencil (Ã, nαB̃) by taking T – the output of

EIG applied to (Ã, nαB̃) – and setting S = B̃T . Assuming ||A− Ã||2 and ||B − B̃||2 are

small, and undoing the nα scaling, this produces an approximate diagonalization of (A,B).

We state RPD, a routine that wraps around EIG to produce this diagonalization, as

Algorithm 8 below.

Note that the assumption ||A||2, ||B||2 ≤ 1 is essentially made for convenience;

Algorithm 8. Randomized Pencil Diagonalization (RPD)
Input: A,B ∈ Cn×n and ε < 1 a desired accuracy.
Requires: ||A||2, ||B||2 ≤ 1.
Output: Nonsingular S, T and diagonal D such that ||A− SDT−1||2, ||B − ST−1||2 ≤ ε
with high probability.

1: γ = ε
16

2: α = ⌈2 logn(1/γ)+3⌉
2

3: ϵ = γ5/(64n
11α+25

3 + γ5)

4: β = εγ2

24(1+4γ)
n−3α−5

5: ω = γ4

4
n− 8α+13

3

6: Draw two independent Ginibre matrices G1, G2 ∈ Cn×n

7: (Ã, B̃) = (A+ γG1, B + γG2)
8: Draw z uniformly from the box of side length ω cornered at −4− 4i
9: g = grid(z, ω, ⌈8/ω⌉, ⌈8/ω⌉)
10: [T,D1, D2] = EIG(n, Ã, nαB̃, ϵ, α, g, β, 1/n)
11: for i = 1 : n do
12: D(i, i) = nαD1(i,i)

D2(i,i)

13: end for
14: S = B̃T
15: return S, T,D
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we can obtain a diagonalization of any pencil (A,B) via RPD by first normalizing the

matrices accordingly. In Theorem 4.2.1, we show that RPD produces an approximate

diagonalization with the given accuracy in exact arithmetic, thereby proving the bulk of

our main result, Theorem 1.6.1. For reference, Figure 4.1 provides a high level overview of

RPD, including the details of its call to EIG.

Theorem 4.2.1. For any A,B ∈ Cn×n with ||A||2, ||B||2 ≤ 1, the outputs of exact

arithmetic RPD satisfy

||A− SDT−1||2, ||B − ST−1||2 ≤ ε

with probability at least[
1− 82

n
− 531441

16n2

] [
1− 1

n
− 4e−n

] [
1− 1

n

]
.

Proof. Consider the perturbed and scaled pencil (Ã, nαB̃). By Theorem 2.3.1 and its proof,

with probability at least
(
1− 82

n
− 531441

16n2

) (
1− n2−2α

γ2 − 4e−n
)
we have the following:

1. ||G1||2, ||G2||2 ≤ 4,

2. ||Ã||2 ≤ 3,

3. ||nαB̃||2 ≤ 3nα,

4. σn(n
αB̃) ≥ 1,

5. Λ(Ã, nαB̃) ⊆ B3(0),

6. κV (n
−αB̃−1Ã) ≤ nα+2

γ
,

7. Λϵ(Ã, n
αB̃) is shattered with respect to the grid g (for ϵ as in line 3).

Conditioning on these events, we observe that 2, 3, and 7 ensure that the call to EIG

in line 10 is valid, meaning with probability at least 1− 1
n
we can add the guarantees of

Theorem 4.1.4 to our list:
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Start: A,B ∈ Cn×n

with ||A||2, ||B||2 ≤ 1.

Build the random grid g and perturb:
(Ã, B̃) = (A + γG1, B + γG2).

Inputs: m = n;
(Ã, nαB̃); g.

EIG

m = 1?

Pick a grid line Re(z) = h and apply a Möbius
transformation that sends the line to the unit circle.

End EIG: Recursively
build T , D1, and D2.

Apply IRS and GRURV to the trans-
formed pencil and read off the rank k.

Good
split?

Apply DEFLATE to find right and left spaces
corresponding to eigenvalues with Re(z) > h.

Apply a second Möbius transformation and call
DEFLATE again to find right and left spaces
corresponding to eigenvalues with Re(z) < h.

Split the problem into two smaller
ones: (A11, B11) and (A22, B22)

Inputs: k; (A11, B11); gR.
m − k; (A22, B22); gL.

Stop: Output T , S =
B̃T , and D = nαD−1

2 D1.

yes

yesno

no

Figure 4.1. A diagram of RPD (Algorithm 8). We assume for simplicity that each split
in EIG is made by a vertical grid line.
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8. Each eigenvalue of (D1, D2) shares a grid box of g with a true eigenvalue of (Ã, nαB̃).

9. Since σn(n
αB̃) ≥ 1 (item 4) each column ti of T satisfies ||ti − vi||2 ≤ β for vi a true

unit right eigenvector of (Ã, nαB̃).

By the definition of conditional probability, all nine of these events occur simultaneously

with probability at least[
1− 82

n
− 531441

16n2

] [
1− n2−2α

γ2
− 4e−n

] [
1− 1

n

]
. (4.40)

Since the choice of α in line 2 guarantees

n2−2α

γ2
≤ 1

n
(4.41)

(4.40) can be bounded from below by[
1− 82

n
− 531441

16n2

] [
1− 1

n
− 4e−n

] [
1− 1

n

]
. (4.42)

To complete the proof we show that the nine items listed above guarantee both

||A − SDT−1||2 ≤ ε and ||B − ST−1||2 ≤ ε. The second of these is trivial: since γ = ε
16

and ST−1 = B̃ we have

||B − ST−1||2 = ||B − B̃||2 = ||γG2||2 ≤ 4γ =
ε

4
< ε. (4.43)

To show the same for A and SDT−1, we use the following key fact. Let V be the matrix

whose columns contain, in order, the true right unit eigenvectors of (Ã, nαB̃) guaranteed

by item 9. Since B̃ is invertible with probability one and (Ã, B̃) and (Ã, nαB̃) have the

same set of eigenvectors, V diagonalizes B̃−1Ã. Thus, there exists a diagonal matrix Λ

such that B̃−1Ã = V ΛV −1. Moreover, since the eigenvalue of (Ã, nαB̃) corresponding to

vi shares a grid box of g with the eigenvalue of (D1, D2) corresponding to ti (this was how

vi was found in the proof of Theorem 4.1.4), each diagonal entry of Λ is at most
√
2nαω

away from the corresponding diagonal entry of D = nαD−1
2 D1. Note that the eigenvalues
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of (D1, D2) are all contained in g, which guarantees that D2 is invertible. With all of this

in mind, expand ||A− SDT−1||2 as follows:

||A− SDT−1||2 = ||A− Ã+ Ã− SDT−1||2

≤ ||A− Ã||2 + ||Ã− SDT−1||2

≤ ||A− Ã||2 + ||B̃||2||B̃−1Ã− TDT−1||2

≤ 4γ + (1 + 4γ)||V ΛV −1 − TDT−1||2

≤ 4γ + (1 + 4γ)
[
||(V − T )ΛV −1||2 + ||T (Λ−D)V −1||2 + ||TD(V −1 − T−1)||2

]
.

(4.44)

To simplify this bound in terms of our parameters, we observe the following.

• Since the columns of V and T are unit vectors, 1 ≤ ||V ||2, ||T ||2 ≤
√
n.

• Since V diagonalizes B̃−1Ã – and therefore also n−αB̃−1Ã – and κV (n
−αB̃−1Ã) ≤

nα+2

γ
, Remark 2.2.4 allows us to assume

||V ||2||V −1||2 ≤
nα+2

γ
(4.45)

without changing probabilities. Combined with the previous point, this implies

||V −1||2 ≤ nα+2

γ
.

• The columns of T and V satisfy ||ti − vi||2 ≤ β so ||T − V ||2 ≤
√
nβ

• By the Lemma 1.7.2, ||T − V ||2 ≤
√
nβ implies σn(T ) ≥ σn(V )−

√
nβ. Combining

this with our upper bound on ||V −1||2 yields

||T−1||2 ≤
nα+2

γ − n
2α+5

2 β
. (4.46)

• Because each diagonal entry of Λ is at most
√
2nαω from the corresponding diagonal

entry of D, ||Λ−D||2 ≤
√
2nαω.

• Since both (Ã, nαB̃) and (D1, D2) have eigenvalues in B3(0), ||Λ||2, ||D||2 ≤ 3nα.

• Finally, ||V −1 − T−1||2 = ||T−1(T − V )V −1||2 ≤ ||T−1||2||T − V ||2||V −1||2.
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Together, these imply the following bounds:

||(V − T )ΛV −1||2 ≤ ||V − T ||2||Λ||2||V −1||2 ≤
√
nβ · 3nα · n

α+2

γ
=

3β

γ
n

4α+5
2 (4.47a)

||T (Λ−D)V −1||2 ≤ ||T ||2||Λ−D||2||V −1||2 ≤
√
n ·

√
2nαω · n

α+2

γ
=

√
2ω

γ
n

4α+5
2 (4.47b)

||TD(V −1 − T−1)||2 ≤
√
n · 3nα · nα+2

γ − n
2α+5

2 β
·
√
nβ · n

α+2

γ
=

3βn3α+5

γ(γ − n
2α+5

2 β)
. (4.47c)

Now the choice of β in line 4 ensures β ≤ εγ
12(1+4γ)

n− 4α+5
2 , so (4.47a) simplifies to

||(V − T )ΛV −1||2 ≤ 3 · εγ

12(1 + 4γ)n
4α+5

2

· n
4α+5

2

γ
=

ε

4(1 + 4γ)
. (4.48)

Similarly, using this time the fact that β < γ
2
n− 2α+5

2 and therefore γ − n
2α+5

2 β > γ
2
, (4.47c)

becomes

||TD(V −1 − T−1)||2 ≤
6

γ2
n3α+5 · εγ2

24(1 + 4γ)
n−3α−5 =

ε

4(1 + 4γ)
. (4.49)

Finally, ω = γ4

4
n− 8α+13

3 implies ω ≤ εγ

4
√
2(1+4γ)

n− 4α+5
2 , which allows us to upper bound

(4.47b) as

||T (Λ−D)V −1||2 ≤
√
2 · εγ

4
√
2(1 + 4γ)n

4α+5
2

· n
4α+5

2

γ
=

ε

4(1 + 4γ)
. (4.50)

Applying these to (4.44), we obtain

||A− SDT−1||2 ≤ 4γ + (1+ 4γ)

[
ε

4(1 + 4γ)
+

ε

4(1 + 4γ)
+

ε

4(1 + 4γ)

]
= 4γ +

3

4
ε. (4.51)

Since γ = ε
16

we conclude ||A− SDT−1||2 ≤ ε.

4.2.1 Asymptotic Complexity

It remains to show that RPD runs in nearly matrix multiplication time. We

therefore wrap up this section by computing its asymptotic complexity in terms of n,

the size of the pencil (A,B), and ε, the accuracy of the approximate diagonalization.

Throughout, we assume that we have access to black-box algorithms for multiplying two
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n × n matrices and computing the QR factorization of an n × n matrix, which require

TMM(n) and TQR(n) arithmetic operations, respectively. For simplicity, we also assume

access to QL/RQ algorithms (used in GRURV) that require TQR(n) operations.

Proposition 4.2.2 shows that RPD runs in nearly matrix multiplication time, as

desired. Its proof is somewhat more subtle than implied in Chapter 1; rather than simply

arguing that each step of divide-and-conquer runs in nearly matrix multiplication time

and that only logarithmically many steps are needed, we apply a sharper geometric sum

that leverages the shrinking problem size guaranteed by significant eigenvalue splits.

Proposition 4.2.2. Exact arithmetic RPD requires at most O
(
log2

(
n
ε

)
TMM(n)

)
arith-

metic operations.

Proof. We track only matrix multiplication and QR, as all other building blocks of

RPD have smaller complexity. We begin by noting that line 2 of Algorithm 8 implies

α = O
(
logn

(
1
γ

))
and γ = Θ(ε), so

nα = O
(
nlogn(1/γ)

)
= O

(
1

γ

)
= O

(
1

ε

)
. (4.52)

Meanwhile in line 3 we set

ϵ >
γ5

65n
11α+25

3

= Ω

(
ε26/3

n25/3

)
. (4.53)

Together, these imply that the number of steps of repeated squaring required at any point

in the recursion can be bounded asymptotically as

p = O

(
log

(
nα

ϵ

))
= O

(
log

(
n25/3

ε29/3

))
= O

(
log
(n
ε

))
. (4.54)

Consider now working through one step of divide-and-conquer. Lines 8-15 of EIG

make up the bulk of the work, executing a search over the grid lines for one that sufficiently

splits the spectrum. For each line that is checked, we make one call to IRS and one call

to GRURV; each step of repeated squaring consists of one 2m ×m QR factorization
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and two m × m matrix multiplications, while applying GRURV to a product of two

m×m matrices requires 3TQR(m) + 2TMM(m) operations. Combining these with (4.54),

we conclude that each grid line checked results in

O
(
log
(n
ε

)
[TQR(2m) + 2TMM(m)] + 2TQR(m) + 2TMM(m)

)
= O

(
log
(n
ε

)
[TQR(m) + TMM(m)]

) (4.55)

operations. Since we check at most O
(
log
(
1
ω

))
grid lines each time and

ω =
γ4

4n
8α+13

3

= Ω

(
ε20/3

n13/3

)
, (4.56)

lines 8-15 of EIG take at most

O
(
log2

(n
ε

)
[TQR(m) + TMM(m)]

)
= O

(
log2

(n
ε

)
TMM(m)

)
(4.57)

operations, where we simplify by noting TQR(m) = O(TMM(n)) [38, §4.1]. Since the

remainder of one step of EIG – i.e., the subsequent calls to DEFLATE – has complexity

equal to that of checking one grid line, we conclude that (4.57) is the asymptotic complexity

of one step of divide-and-conquer.

To complete the proof, we sum this expression recursively. Since the log2
(
n
ϵ

)
term

of (4.57) is independent of m, this reduces to summing TMM(m) over all subproblems

produced by EIG. With this in mind, set TMM(n) = O(nξ) for ξ ∈ [2, 3] and suppose we

divide an m×m pencil into subproblems of size m1 and m2. Since we enforce a significant

split, we are guaranteed 1
5
m ≤ m1,m2 ≤ 4

5
m and therefore

mξ
1 +mξ

2 = mξ
1 + (m−m1)

ξ ≤
(
4

5
m

)ξ

+

(
1

5
m

)ξ

≤ 17

25
mξ, (4.58)

where the last inequality is obtained by applying ξ ≥ 2. Consequently, a sum of mξ over

all subproblems can be bounded by

∞∑
k=0

nξ

(
17

25

)k

= nξ

∞∑
k=0

(
17

25

)k

=
25

8
nξ (4.59)

and therefore
∑

m TMM(m) = O(TMM(n)). Applying this to (4.57) yields the final com-

plexity.
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4.3 Numerical Examples

In this section, we consider several examples to investigate how pseudospectral

divide-and-conquer performs in practice. Our first task is to adjust the parameters of

RPD and EIG, as the values listed in the pseudocode of Algorithms 7 and 8 – though

necessary in the proof of Theorem 4.2.1 – are prohibitively restrictive for implementation.

Here, we make the following relaxations.

• First, we eliminate the nα scaling, testing examples with eigenvalues exclusively (or

predominantly) in B3(0).

• Extracting the main dependence on γ and n, we set ϵ = β = ω = γ/n and we limit

the number of steps of repeated squaring to p = ⌈log2(n/ϵ)⌉.

• Finally, we drop the factor of 1/n3 from the criteria used to compute k in EIG.

In light of these simplifications, we present the following experiments as simply a

proof of concept. Accordingly, we do not consider run times nor do we use an explicitly

parallel implementation of the algorithm. Throughout, all results were obtained in Matlab

version R2023a.3

4.3.1 Model Problems

We start by using RPD as stated (i.e., running to subproblems of size 1× 1) on

the following 50× 50 model problems.

1. Planted Spectrum: First, we consider a pencil with equally spaced, real eigenvalues

in the interval [−2, 2]. To obtain (A,B), we fill a diagonal matrix Λ as

Λ(j, j) = −2 +
4

49
(j − 1) (4.60)

3Check out our implementation: https://github.com/ry-schneider/Randomized Pencil Diagonalization.
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and set A = XΛY −1 and B = XY −1 for X and Y two independent, complex

Gaussian matrices. In accordance with RPD, we then normalize the pencil so that

||A||2, ||B||2 ≤ 1. We can think of this example as the best-case scenario, where

gap(A,B) is large and B is far from singular.

2. Jordan Block: Next, we consider a pencil (A,B) with B = I and A = J50(0) for

J50(0) a Jordan block with eigenvalue zero. In contrast to the planted spectrum

example, this tests a generalized eigenvalue problem with gap(A,B) = 0.

We track the performance of divide-and-conquer on these examples in several ways.

First and foremost, we want to verify a finite-preicision counterpart to Theorem 4.2.1:

does RPD reliably produce accurate diagonalizations of each pencil? With this in mind,

we compute diagonalization error as

log10
(
max

{
||A− SDT−1||2, ||B − ST−1||2

})
, (4.61)

for S,D, and T the outputs of RPD, and we consider a run to be successful if this error is

at most log10(ε). Tracking the number of failed runs yields an empirical failure probability

for RPD (with the simplifications made above). Note that (4.61) is only meaningful if

||A||2 and ||B||2 are roughly equal and close to one, as is the case in our examples.

Next, we want to measure the efficiency of the divide-and-conquer process. One

way to do this is to catalog the relative split size at each step (i.e., k/m in EIG). While

we know that EIG guarantees that the relative split is at least 0.2 and at most 0.8,

divide-and-conquer is most efficient if relative splits are close to 0.5 at each step.

Of course, the split size tells only part of the story. Recalling the proof of Propo-

sition 4.2.2, EIG spends most of its time finding a dividing line; thus, even if splits are

reliably near 50/50, the algorithm may be slow if too many lines are checked. Assuming

access to O(n3) algorithms for matrix multiplication and QR, one step of our implementa-

tion requires O(log(n
ε
)m3l) operations, where l is the number of grid lines checked and m
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is the size of the current subproblem. Ignoring the log(n
ε
) factor (as it will cancel in our

eventual measure of efficiency) we can do a pseudo-flop count by summing m3l over all

steps with m > 1, and we can easily compute an optimal value for this count by requiring

at each step that l = 1 and that the split is as close to 50/50 as possible. Dividing the

actual count by the optimal one produces what we call a relative efficiency factor for each

run, which tells us roughly how many times more work RPD is doing than the best-case

scenario.

Histograms of each of these measures of performance are presented for both exam-

ples in Figures 4.2 and 4.3. In each test, we run RPD 500 times and present results for

decreasing values of ε. With only a handful of failed runs on each problem, the results are

compelling: RPD reliably diagonalizes both pencils, and divide-and-conquer appears to

favor near-optimal eigenvalue splits. This carries through to the relative efficiency. Our

rough flop count shows that RPD executes only slightly more than the optimal amount

of work to produce these diagonalizations. Note that the number of failed runs appears to

decrease with ε. While this may seem counterintuitive, it is a byproduct of our relaxed

parameters, which become more restrictive (or equivalently more sensitive) as ε shrinks.

While these results are promising, we might be more interested in probing the

boundaries of Theorem 1.2.14. That is, when RPD succeeds, how accurate are the

corresponding sets of approximate eigenvalues? With this in mind Figure 4.4 provides

eigenvalue approximation data for both model problems, where in each case we consider

only approximations produced by successful runs. The results in these plots trace out

nicely the challenge of extracting accurate eigenvalues from an accurate diagonalization.

In the best case – the planted spectrum example – increasingly accurate diagonalizations

provide correspondingly better eigenvalue approximations, as promised by Theorem 1.2.14.

The Jordan block example, on the other hand, demonstrates that when gap(A,B) = 0 we

cannot hope to recover repeated eigenvalues with any confidence, though this is also the

case for classical backwards-stable algorithms like QZ.
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(a) Frequency of diagonalization error (4.61). We mark the log10(ε) threshold for success in red
and count the number of failed runs. For this example ||A||2 = 1 and ||B||2 = 0.9104.

(b) Frequency of relative eigenvalue split sizes (i.e., k/m in EIG). We do not include subproblems
with m ≤ 3, as these can only be split in one way. Since the total number of splits is variable
(and dependent on the splits themselves) we record it at the top of each plot. Dividing this total
by 500 gives a rough average number of splits per run.

(c) Frequency of relative efficiency factor (the pseudo-flop count divided by its optimal value).

Figure 4.2. Performance data for RPD on the 50× 50 planted-spectrum example with
decreasing values of ε. Each plot corresponds to 500 runs of RPD.
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(a) Same as (a) of Figure 4.2. For this example ||A||2 = ||B||2 = 1.

(b) Same as (b) of Figure 4.2.

(c) Same as (c) of Figure 4.2

Figure 4.3. A repeat of Figure 4.2 for the 50× 50 Jordan block example.
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(a) Eigenvalue approximations for the planted spectrum example obtained from RPD with
different values of ε. Each approximate eigenvalue is colored according to its accuracy, which is
computed as log10 |λ̃i − λi| for λi and λ̃i the true and approximate eigenvalues ordered by their
real parts.

(b) Eigenvalue approximations for the Jordan block example obtained from RPD with different
values of ε. The only true eigenvalue for this problem is zero.

Figure 4.4. Eigenvalue approximation data for RPD applied to the planted spectrum
and Jordan block examples. We present here only results for successful runs – i.e., each
set of approximate eigenvalues corresponds to a diagonalization with ||A− SDT−1||2 ≤ ε
and ||B − ST−1||2 ≤ ε.

4.3.2 Large n and Infinite Eigenvalues

Running RPD down to subproblems of size 1 × 1 is useful from a theoretical

perspective but unlikely to be done in practice. We turn next to a more realistic use case,

where n is large and only a few splits are made before passing off to QZ. In this setting,

we test the algorithm on pencils with an eigenvalue at infinity (i.e., where B is singular).

To do this, we construct a 1000× 1000 pencil by drawing A and B randomly, computing a
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singular value decomposition B = UΣV H , and setting

B = B − σmin(B)uvH (4.62)

for u and v the last columns of U and V , respectively. By construction, this forces B to be

singular without changing its remaining singular values (and critically ensuring its norm

remains comparable to A). As in the previous examples, we normalize A and B before

calling RPD. Note that (A,B) here is the pencil considered in Example 1.5.4.

Remark 4.3.1. Because we omit the nα scaling on this example, the perturbed pencil

(Ã, B̃) is very likely to have an eigenvalue outside of the shattering grid. While this

appears problematic it is ultimately harmless. When only a handful of splits are needed,

(Ã, B̃) can have many – even a large fraction – of eigenvalues outside of the grid, and

divide-and-conquer will only falter if these fall predominantly in a specific region (for

example between two vertical grid lines but above all of the horizontal ones). In part, this

justifies our choice to omit the nα scaling; while it is necessary to state an algorithm that

provably runs to scalar subproblems, it is overly restrictive in practice – driving eigenvalues

that are initially small closer together and necessitating a finer grid.

In addition to testing larger values of n, we also use this example to further justify

our decision to avoid matrix inversion. To that end – and in light of Proposition 2.3.2 –

we compare RPD to an alternative algorithm that proceeds as follows:

1. Perturb to obtain (Ã, B̃).

2. Form the product X = B̃−1Ã.

3. Apply the divide-and-conquer routine of Banks et al. [16, Algorithm EIG].

To ensure a fair comparison, we run both algorithms with the same perturbations (meaning

the same Ã, B̃) and the same grid. We also restrict the number of steps of the Newton iter-

ation for the sign function – the counterpart to IRS used by Banks et al. – to ⌈log2(n/ϵ)⌉.
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In both cases, we run divide-and-conquer to subproblems with m ≤ 250, at which point

we default to QZ and QR, respectively, by calling Matlab’s eig. In the tests presented

below, both algorithms averaged five splits before defaulting to eig.

Once again, we track diagonalization error via (4.61). Importantly, we are interested

in producing a diagonalization of (A,B) even if the single-matrix algorithm of Banks et al.

is used. In that case, a matrix T containing right eigenvectors (the output of single-matrix

divide-and-conquer) gives rise to a corresponding matrix of left eigenvectors S = B̃T , which

together approximately diagonalize (A,B). This mirrors exactly how the diagonalization

is obtained in RPD.

In addition, we record the eigenvalue error associated with each diagonalization.

This is done by ordering the approximate and true eigenvalues by magnitude and com-

puting the average, absolute error over the spectrum, excluding the eigenvalue at infinity.

Figure 4.5 records eigenvalue and diagonalization errors for both algorithms and for two

choices of ε. Each plot corresponds to 200 trials, derived from twenty random draws of A

and B run through each algorithm ten times.

When ε = 10−5 we see little difference between the algorithms; though RPD is

slightly more accurate, both approaches produce successful diagonalizations and comparably

good eigenvalue approximations. Recalling that the size of the perturbation is determined

by ε, this appears to be a consequence of the relatively large perturbation applied to B,

which ensures that B̃ is well-conditioned and that the error incurred by forming B̃−1Ã is

small. In this case – or more generally in situations where B is known to be well-conditioned

– both algorithms are viable and essentially equivalent.

In contrast, when ε is much smallerRPD shows clear advantages. While neither can

produce an accurate enough diagonalization – an indication that our relaxed parameters

are too loose for this regime – RPD is consistently an order of magnitude better than its

single-matrix alternative, and its corresponding eigenvalue approximations are remarkably

accurate. Again this seems attributable to the conditioning of B̃; here, forming B̃−1Ã
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Figure 4.5. Performance data for RPD versus the single matrix, divide-and-conquer
algorithm of Banks et al. [16]. Here, 1000× 1000 pencils are constructed by drawing A
and B randomly and subtracting a rank one matrix from B to force it to be singular
(without changing its remaining singular values). For twenty random draws of A and
B, we present ten runs through both algorithms, with first ε = 10−5 and subsequently
ε = 10−10. Diagonalization error is computed according to (4.61) while eigenvalue accuracy
is measured by ordering the true and approximate eigenvalues by magnitude and computing
the average absolute error, excluding the eigenvalue at infinity. For the latter, we mark
the error achieved by QZ/QR (computed in the same way) when applied to (Ã, B̃) and

B̃−1Ã, respectively.

not only forces divide-and-conquer to work with a poorly-conditioned matrix but also

introduces error that meaningfully shifts the eigenvalues away from those of (A,B).

Indeed, the difference in eigenvalue error present when ε = 10−10 traces a similar

gap between QZ and QR, as marked on the histograms. This indicates that the poor

eigenvalue recovery of Banks et al. is due primarily to the gap between the eigenvalues

of B̃−1Ã and (A,B), which is essentially what the error in QR represents. Consequently,

we cannot hope that by improving the diagonalization produced by Banks et al. – which

should be possible by adjusting the parameters – we will see a similar improvement in the

eigenvalues. On this example, then, we expect that this approach will break down as ε

becomes small; while initially decreasing ε may improve diagonalization and eigenvalue
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accuracy, B̃ will eventually become poorly-conditioned enough to guarantee that the

eigenvalues of B̃−1Ã are far from those of (A,B). Contrast this with RPD, which does

not suffer from the same drawback and can reproduce the finite eigenvalues of (A,B) to

high accuracy.

Note that the example considered here is a larger version of the one covered by

Figure 2.1. Together, they capture the danger of operating with inversion: when B̃ is

poorly conditioned, not only are the pseudospectra of B̃−1Ã unwieldy, but the eigenvalues

they collapse to may significantly stray from those of the input pencil.

4.3.3 Singular Pencils

To this point we have exclusively tested divide-and-conquer on regular pencils. Since

singular pencils are a reality in many applications, we consider as a final test the singular

pencil of Lotz and Noferini [90] presented in Example 1.1.9, which recall corresponds to

the matrices

A =


2 −1 −5 −1
6 −2 −11 −2
5 0 −2 0
3 1 3 1

 , B =


1 −1 −4 −2
2 −3 −12 −6
−1 −3 −11 −6
−2 −2 −7 −4

 , (4.63)

and has only one simple eigenvalue λ = 1. Practically speaking, recovering this eigenvalue

via divide-and-conquer should be difficult due to the initial perturbation made by RPD.

In fact, Lotz and Noferini show that an arbitrarily small (nonrandom) perturbation to

(A,B) can send its eigenvalues to any four points in the complex plane. In spite of this,

divide-and-conquer finds the true eigenvalue to roughly five digits of precision when run

with ε = 10−6, as shown in Table 4.1.

Of course, QZ also finds λ = 1 to a remarkable 14 digits of precision. Motivated by

this observation, Lotz and Noferini develop a theory of weak condition numbers to help

explain the apparent stability of this eigenvalue. The results in Table 4.1 reflect the spirit

of these condition numbers; though perturbations exist that produce arbitrary eigenvalues,
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Table 4.1. Eigenvalues of the singular pencil (4.63) as computed by QZ and pseudospectral
divide-and-conquer. We present three successful runs of RPD, each with ε = 10−6.

Divide-and-Conquer (Algorithm 8)

QZ [102] Run 1 Run 2 Run 3

−2.089013 0.999997− 0.000007i 1.000001− 0.000008i 0.999994− 0.000032i

1.000000 0.463026− 0.216072i −0.064526 + 0.383530i 0.816203− 0.082329i

0.445724 −0.036567− 0.391359i −0.236744− 0.298458i 0.178283− 0.299444i

−0.014976 −1.987468− 0.361121i −1.152406 + 0.981613i −2.368016 + 0.144692i

Figure 4.6. Statistics for 500 runs of RPD applied to a normalized version of the
singular pencil (1.3) with ||A||2 = 0.6940, ||B||2 = 1, and ε = 10−6. For the first plot,
{λi}1≤i≤4 are the approximate eigenvalues obtained via divide-and-conquer. Once again,
no runs defaulted to calling eig. As in the previous examples, we consider only splits on
subproblems with m > 3 for the third histogram; as a result, it records only the first split
of each run, and the total number of splits is 500 (the number of runs).

a typical random one is likely to yield an eigenvalue near one.4 Randomization has

another advantage here: while QZ always produces the same three spurious “eigenvalues,”

divide-and-conquer does not – meaning multiple runs can help distinguish true eigenvalues

from fake. Finally, we provide in Figure 4.6 a few empirical statistics for 500 runs of RPD

on a normalized version of (A,B).

4Earlier work of Demmel and K̊agström [43] took a different approach to establishing the stability of
QZ on singular pencils, demonstrating that QZ will preserve Kronecker canonical form, and therefore
successfully recover true eigenvalues, provided round-off errors are small enough. This nevertheless cannot
explain the strong performance of RPD, as Gaussian perturbations will change the Kronecker structure
of the pencil with high probability.
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In this chapter, we consider a specialization of the generalized eigenvalue problem to

definite matrix pencils. While we have mentioned definite pencils a few times throughout

the thesis, we finally define them precisely here.

Definition 5.0.1. The pencil (A,B) is definite if A and B are Hermitian and

γ(A,B) = min
||x||2=1

|xH(A+ iB)x| = min
||x||2=1

√
(xHAx)2 + (xHBx)2 > 0.

γ(A,B) is the Crawford number of (A,B).

In some sense, the definite eigenvalue problem can be considered a generalization

of the single-matrix Hermitian eigenvalue problem. A few important properties carry over

directly: the eigenvalues of a definite pencil are real (though this is not so easy to see from

Definition 5.0.1) and left/right eigenspaces are the same. As we’ll explore in this chapter,

we also expect better stability for eigenvalues/eigenvectors under perturbation (compared

to the generic case of Section 1.2).
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From a numerical perspective, any eigensolver hoping to perform optimally on

definite pencils should exploit their available structure (and their relatively constrained

spectra). With this in mind, we aim to refine the building blocks of divide-and-conquer,

specifically those covered in Chapters 2 and 3, to take advantage of the observations

discussed above. In particular, we consider the following.

1. Can we obtain pseudospectral shattering without destroying the structure of (A,B)?

That is, can we ensure that the perturbed matrices Ã and B̃ are both Hermitian

with (Ã, B̃) definite? Note that this cannot be accomplished with the Ginibre

perturbations considered so far since these are non-symmetric in general.

2. If (Ã, B̃) is definite – and therefore Λ(Ã, B̃) is contained in a union of intervals

on the real axis – can an alternative approach compute spectral projectors more

efficiently than IRS? As hinted at in Chapter 3, we might hope that the Indicator

Approximation Problem has better answers for S ⊂ R.

As we demonstrate in Sections 5.2 and 5.3, the answer to both questions is yes.

Throughout, our goal is not only to produce a specialized version RPD but also to

demonstrate the flexibility of divide-and-conquer as a high-level strategy.

Guide to Chapter Five: In Section 5.1 we present background information on definite

pencils and provide motivation for devising a specialized algorithm. Section 5.2 proves a

version of pseudospectral shattering for definite pencils under diagonal or GUE perturba-

tions (see Definition 5.2.3). In Section 5.3 we then build a definite version of pseudospectral

divide-and-conquer using a weighted Halley iteration of Nakatsukasa, Bai, and Gygi [105].

5.1 Motivation and Background

We begin in this section by reviewing the theory of definite pencils.1 Our goal here

is to unpack Definition 5.0.1. That is, when should we expect that the Crawford number

1See [126, Section VI.3] for more.
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of an arbitrary pair of Hermitian matrices is nonzero? Perhaps more importantly, what do

we gain – besides real eigenvalues – if we can guarantee that the pencil (A,B) is definite?

Answers to these questions will inform the modifications of divide-and-conquer discussed

in the following sections.

To build intuition, we first note that (A,B) is guaranteed to be definite if either A

or B is positive definite. In this case, γ(A,B) can be bounded from below by the smallest

singular value of A or B (whichever is positive definite) and moreover it is easy to see that

(A,B) must have real eigenvalues. If B is positive definite with Cholesky factorization

B = RHR, for example, then (A,B) and the Hermitian matrix R−HAR−1 have the same

spectrum.

While this is arguably the most common way definite pencils appear in application,

positive-definiteness is not required for (A,B) to be definite. In general, the Crawford

number γ(A,B) suggests that (A,B) will be definite provided xHAx and xHBx are not

simultaneously zero for x ∈ Cn. Given an arbitrary definite pencil (A,B), it is possible

to find a Möbius transformation – with real coefficients – that transforms (A,B) into a

pencil with at least one positive-definite matrix (see [126, Theorem VI.1.18]). Hence, every

definite pencil has real eigenvalues, and we also have the following.

Proposition 5.1.1. If the pencil (A,B) is definite then it is regular and diagonalizable. In

particular, there exists a nonsingular matrix X such that XHAX and XHBX are diagonal.

Again, this is easy to see if one of A and B is positive definite. Continuing

the above example – where B = RHR is positive definite – the unitary diagonalization

R−HAR−1 = UΛUH implies that (A,B) can be diagonalized by X = R−1U . As we see

here, the matrix X in Proposition 5.1.1, which contains right eigenvectors of (A,B) as in

a standard diagonalization, is not unitary in general. This marks a first downgrade from

the Hermitian eigenvalue problem: the eigenvectors of a definite pencil are not guaranteed

to be mutually orthogonal. Instead, the best we can say is that left and right deflating
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subspaces of (A,B) corresponding to different sets of eigenvectors are orthogonal. To see

this, let X =
(
X1 X2

)
in Proposition 5.1.1. Since XHAX and XHBX are both diagonal,

we have

XH
2 AX1 = XH

2 BX1 = 0. (5.1)

In other words, the columns of X2 – which form a basis for a right deflating subspace of

(A,B) – are orthogonal to AX1 and BX1, whose columns span the left deflating subspace

corresponding to the remaining eigenvectors in X1. While left/right eigenspaces of (A,B)

are the same, note that left/right deflating subspaces are generally not the same.

Throughout this chapter, it will be convenient to work with a particular choice of

diagonalizing matrix X satisfying

(XHAX,XHBX) = (ΛA,ΛB) = (diag(α1, . . . , αn), diag(β1, . . . , βn)) (5.2)

for αi, βi ∈ R with α2
i + β2

i = 1. Note that X can be obtained from any matrix satisfying

Proposition 5.1.1 by scaling its columns accordingly. Importantly, the norms of X and

X−1 are linked to γ(A,B), as demonstrated by the following observation of Elsner and

Sun [51, Proof of Theorem 2.3].

Lemma 5.1.2 (Elsner and Sun 1982). Let (A,B) be a definite pencil and let X be a

nonsingular eigenvector matrix satisfying (5.2). Then

||X||22 ≤ γ(A,B)−1 and ||X−1||22 ≤ γ(A,B)−1||(A,B)||22

and therefore

κ2(X) ≤ ||(A,B)||2
γ(A,B)

.

While this result leads to clean perturbation bounds, it is possibly quite loose; there

may well be diagonalizing matrices with much better conditioning than X. Nevertheless,

Lemma 5.1.2 implies that the eigenvector matrix of a definite pencil is guaranteed to be

well-conditioned provided its Crawford number is sufficiently far from zero.
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Definite pencils were first explored rigorously by Crawford [33,34]. In the numerical

linear algebra literature, definite pencils are of interest not just because they appear in

applications but because they exhibit stronger stability properties than general pencils [89,

104,124]. As we will see, perturbation bounds typically depend on γ(A,B). Hence, it is not

enough to simply know that the Crawford number of (A,B) is nonzero; useful perturbation

results will depend on tight lower bounds for γ(A,B). Unfortunately, bounding γ(A,B) is

not straightforward in general – e.g., it is not sufficient to have information on σn(A) and

σn(B), as we might hope (unless, again, one of A and B is positive definite).

Example 5.1.3. Consider the following 2× 2 pencils:

1. A =

(
1 0
0 −1

)
, B =

(
0 1
1 0

)
2. A =

(
1 0
0 0

)
, B =

(
0 0
0 1

)
.

In the first example, taken from Stewart and Sun [126, Example VI.1.14], A and B are

nonsingular but (A,B) is not definite (it’s eigenvalues are ±i). In the second, A and B

are both singular but γ(A,B) = 1. Together these examples imply that γ(A,B) cannot

be easily bounded from below (or above!) in terms of σn(A) or σn(B) in general.

We will not consider the task of estimating the Crawford number of an arbitrary

Hermitian pencil in this thesis, instead assuming access to γ(A,B), or a lower bound for

it, as something of a black box. For a sample of some of the numerical tools available to

obtain such a lower bound, see [35,68,136]. While in principle computing γ(A,B) requires

solving an optimization problem over a field of values, many of these estimations can be

done relatively cheaply (i.e., in matrix multiplication time).

With this in mind, we now state a few perturbation bounds for definite pencils.

Recalling Lemma 5.1.2, we expect γ(A,B) to appear here, implicitly containing information

on eigenvector conditioning. Indeed, we have the following standard eigenvalue perturbation
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bound2 of Stewart [124, Theorem 3.2].

Theorem 5.1.4 (Stewart 1979). Let (A,B) be an n× n definite pencil and suppose that

the Hermitian matrices E,F ∈ Cn×n satisfy√
||E||22 + ||F ||22
γ(A,B)

< 1.

Then the pencil (Ã, B̃) = (A + E,B + F ) is definite. Moreover, if λ1 ≤ · · · ≤ λn and

λ̃1 ≤ · · · ≤ λ̃n are the eigenvalues of (A,B) and (Ã, B̃), respectively, then for all 1 ≤ i ≤ n,

|λi − λ̃i|√
(|λi|2 + 1)(|λ̃i|2 + 1)

≤
√

||E||22 + ||F ||22
γ(A,B)

.

Representing the eigenvalues in Theorem 5.1.4 as λi = αi/βi, λ̃i = α̃i/β̃i and

recalling (1.23), we can compare this result to our general perturbation bound from

Section 1.2 (Theorem 1.2.11). Stewart’s specialization offers a significant improvement,

replacing the minmax bound in Theorem 1.2.11 with an explicit eigenvalue pairing. In

particular, Theorem 1.2.11 can only guarantee that each perturbed eigenvalue is close to

an eigenvalue of (A,B), not necessarily a unique one.

Note that Theorem 5.1.4 also provides a criterion for ensuring that a perturbed

pencil is definite. In fact, its proof gives a usable lower bound

γ(Ã, B̃) ≥ min
||x||2=1

{√
(xHAx)2 + (xHBx)2 −

√
(xHEx)2 + (xHFx)2

}
≥

[
1−

√
||E||22 + ||F ||22
γ(A,B)

]
γ(A,B).

(5.3)

This will be important in the next section, where we hope to apply Hermitian perturbations

to (A,B) without sacrificing definiteness.

We turn next to eigenvectors. As in Section 1.2, we forgo results for general

eigenspaces/deflating subspaces in favor of bounds on individual eigenvectors. Here, we

make use of another result of Stewart [124, Theorem 4.3].

2A slight improvement on this bound was subsequently provided by Sun [129], though the difference is
unimportant for our purposes.
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Theorem 5.1.5 (Stewart 1979). Let (A,B) be an n × n definite pencil and suppose

(Ã, B̃) = (A + E,B + F ) is also definite, where E,F ∈ Cn×n are Hermitian. Let v be

a right eigenvector (A,B) corresponding to the eigenvalue λ1. Suppose that (Ã, B̃) has

eigenvalues λ̃1, . . . λ̃n and let

δ = min
i>1

 |λ1 − λ̃i|√
(|λ1|2 + 1)(|λ̃i|2 + 1)

 .

If

√
||E||22+||F ||22

δ
< γ(Ã, B̃), then there exists a right eigenvector ṽ of (Ã, B̃) corresponding

to λ̃1 such that

||ṽ − v||2
||v||2

≤
√

||E||22 + ||F ||22
δγ(Ã, B̃)

.

Again, this is much cleaner than our general eigenvector bound Theorem 1.2.14.

Importantly, it does not require that either (A,B) or (Ã, B̃) has distinct eigenvalues,

though the bound will be poor if (Ã, B̃) has multiple eigenvalues close to λ1, which we

expect to occur if (A,B) has repeated eigenvalues thanks to Theorem 5.1.4. This result also

does not require that B or B̃ is invertible; as in Theorem 5.1.4 and even Theorem 1.2.11,

this is a consequence of using the chordal metric (1.22), in this case to define δ.

In total, these perturbation bounds indicate that the near-ideal stability of the

Hermitian eigenvalue problem – captured by the classical pair of Weyl’s inequality and

the Davis-Kahan theorem [37] – does not carry over to the eigenvalues and eigenvectors of

definite pencils. Nevertheless, the bounds presented above are much stronger than those

available for general pencils, particularly when γ(A,B) is far from zero, and they will

simplify the analysis for both pseudospectral shattering and divide-and-conquer.

We complete this section with a motivating example,3 which provides further

intuition for the way definite pencils arise in practice.

Example 5.1.6 (Quantum Chemistry). The pioneering 1926 work of Schrödinger demon-

strated that stationary states of any quantum system4 can be described by the time-

3Note that Example 1.1.5 also presented a definite pencil.
4For background on the quantum mechanics used in this example, see the standard reference [65].
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independent Schrödinger equation (TISE)

H(r)ψ(r) = Eψ(r). (5.4)

Here, H is a time-independent Hamiltonian operator and ψ(r) is a stationary wave function

corresponding to energy E. For simplicity, we assume that both H and ψ are radial – i.e.,

functions of a single spatial variable r taking values in R≥0.

Given an arbitrary Hamiltonian H(r), how do we obtain solutions to the TISE?

One option is to choose a set of radial basis functions ϕ1(r), . . . , ϕn(r) and expand ψ(r) as

ψ(r) =
n∑

j=1

cjϕj(r) (5.5)

for some (unknown) coefficients c1, . . . , cn. Inserting this expansion into (5.4) yields

n∑
j=1

cjH(r)ϕj(r) = E
n∑

j=1

cjϕj(r) (5.6)

and therefore (taking an inner product)

n∑
j=1

cj

∫
ϕi(r)

HH(r)ϕj(r)dr = E
n∑

j=1

cj

∫
ϕH
i (r)ϕj(r)dr 1 ≤ i ≤ n. (5.7)

Define now the n× n matrices H,S as follows:

Hij =

∫
ϕH
i (r)H(r)ϕj(r)dr and Sij =

∫
ϕH
i (r)ϕj(r)dr. (5.8)

It is easy to see from (5.7) that c = [c1 c2 · · · cn]T is an eigenvector of the definite pencil

(H,S) corresponding to eigenvalue E. Hence, we obtain solutions to the TISE via the

generalized eigenvalue problem (H,S). This is a standard approach to the problem in

quantum chemistry (see for example [55,119]).

While the pencil (H,S) is always definite – a consequence of the fact that the

overlap matrix S is positive definite – the structure of the individual matrices H and S

is highly dependent on the choice of basis ϕ1(r), . . . , ϕn(r). If this basis is orthonormal

with respect to the standard inner product on continuous functions, for example, S is the
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identity and (H,S) reduces to a standard eigenvalue problem. More importantly, a clever

choice of basis may be able to guarantee that the matrices H and S are banded, offering

additional structure that can be exploited for efficiency.

5.2 Pseudospectral Shattering under GUE and

Diagonal Perturbations

We turn now to a specialized version of pseudospectral shattering, which considers

only symmetric or diagonal perturbations. The regularizing effect of such perturbations on

the (pseudo)spectra of Hermitian matrices has already been explored (see for example [119]).

Our goal is to generalize this work. Given an arbitrary definite pencil (A,B), we aim to

prove shattering for a symmetrized version of Λϵ(A,B).

Definition 5.2.1. The symmetric ϵ-pseudospectrum of (A,B) is

Λsym
ϵ (A,B) =

{
z :

(A+ E)u = z(B + F )u for u ̸= 0 and

E,F Hermitian with
√

||E||22 + ||F ||22 ≤ ϵ

}
.

We define Λsym
ϵ (A,B) here in terms of

√
||E||22 + ||F ||22 in an effort to simplify

bounds. In particular, Theorem 5.1.4 implies Λsym
ϵ (A,B) ⊆ R provided ϵ < γ(A,B).

Hence, for ϵ sufficiently small shattering can be defined relative to a set of equally spaced

points on the real axis (as opposed to the two-dimensional grid necessary in the general

case). Here, we say that Λsym
ϵ (A,B) ⊂ R is shattered with respect to a set of points

g = {gi} ⊆ R if each eigenvalue of (A,B) lies in a unique interval (gi, gi+1) and moreover

Λsym
ϵ (A,B) ∩ g = ∅. This simplification already suggests efficiency gains for divide-and-

conquer: not only will we have fewer potential splits to search over, but we can also

guarantee that an optimal one exists.5

As in the general case, we’ll need a version of Bauer-Fike to prove pseudospectral

shattering. While we could simply use Λsym
ϵ (A,B) ⊂ Λϵ(A,B) and therefore Theorem 1.2.9,

5Here, an optimal split separates the spectrum into sets of size ⌊n
2 ⌋ and ⌈n

2 ⌉. Recall that in the general
case, the best we could say was that a split separating at least a fifth of the eigenvalues existed.
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we prefer the following specialized version, which again restricts to the real axis. Note

that Rϵ here can be bounded via Lemma 1.2.8 (though this is likely sub-optimal).

Theorem 5.2.2. Let (A,B) be a definite pencil with eigenvalues λ1, . . . , λn ∈ R. For

ϵ < min {σn(B), γ(A,B)} let Rϵ > 0 such that Λsym
ϵ (A,B) ⊆ (−Rϵ, Rϵ). Further, set

rϵ =
ϵ(1 +R2

ϵ )

γ(A,B)

and

ri =


1

||B||2 , if A = 0

max
{

1
||B||2 ,

|λi|
||A||2

}
, otherwise

for 1 ≤ i ≤ n. Then

n⋃
i=1

(λi − ϵri, λi + ϵri) ⊆ Λsym
ϵ (A,B) ⊆

n⋃
i=1

(λi − rϵ, λi + rϵ).

Proof. The lower inclusion follows directly from the proof of the corresponding portion of

Theorem 1.2.9. The upper inclusion, meanwhile, is a consequence of Theorem 5.1.4.

With this as a backdrop, we now ask: what Hermitian perturbations should we use

to obtain shattering for Λsym
ϵ (A,B)? The most natural extension of the general case is to

consider perturbations sampled from the Gaussian Unitary Ensemble (GUE).

Definition 5.2.3. The n× n Gaussian Unitary Ensemble GUE(n) consists of matrices of

the form

Z =
G+GH

√
2n

for G an n× n complex Gaussian random matrix with i.i.d. entries sampled from NC(0, 1).

Each Z ∈ GUE(n) can be interpreted as a symmetrized Ginibre random matrix.

Accordingly, analogs of Lemma 2.1.1 and Lemma 1.3.7 – which recall were important

building blocks of the proof of shattering – generalize easily, as we demonstrate below.

Here, a singular value bound counterpart to Lemma 1.3.7 is obtained as a corollary of a

recent result of Aizenman, Peled, Schenker, Shamis, and Sodin [3].

141



Lemma 5.2.4. If Z ∈ GUE(n) then

P
[
||Z||2 ≥ 4 +

√
2
]
≤ 2e−n.

Proof. Write Z = G+GH
√
2

for G an n× n Ginibre random matrix. Since ||Z||2 ≤
√
2||G||2,

we have

P
[
||Z||2 ≥ 4 +

√
2
]
≤ P

[
||G||2 ≥ 2

√
2 + 1

]
. (5.9)

Applying Lemma 2.1.1 completes the proof.

Lemma 5.2.5 (Aizenman et al. 2017). Let M ∈ Cn×n be Hermitian and let Z ∈ GUE(n).

For any t ≥ 1 and an absolute constant C <∞,

P
[
||(M + Z)−1||2 ≥ tn

]
≤ C

t
.

Corollary 5.2.6. Let M ∈ Cn×n be Hermitian and let Z ∈ GUE(n). For any γ > 0,

t ≤ γ
n
, and an absolute constant C <∞,

P [σn(M + γZ) ≤ t] ≤ Cnt

γ
.

Proof. We have

P [σn(M + γZ) ≤ t] = P

[∣∣∣∣∣
∣∣∣∣∣
(
1

γ
M + Z

)−1
∣∣∣∣∣
∣∣∣∣∣
2

≥ γ

t

]
≤ Cnt

γ
, (5.10)

where the last inequality follows from Lemma 5.2.5.

Recalling Example 5.1.6, we could alternatively consider perturbing with random

diagonal matrices, thereby preserving banded structure if applicable.

Definition 5.2.7. The essential supremum of a probability density ρ on R is

||ρ||∞ = inf {a : the set Sa = {x : ρ(x) > a} has measure zero} .

We say that ρ is bounded if ||ρ||∞ <∞.
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Definition 5.2.8. Let ρ be a bounded probability density on R. The corresponding

diagonal random matrix Dρ has nonzero entries sampled according to ρ.

Importantly, both perturbation options satisfy the following key result, which – as

we will see – is the backbone of pseudospectral shattering in this specialized setting.

Theorem 5.2.9 (Key Result). Let A ∈ Cn×n be a Hermitian matrix and let I ⊂ R be any

interval. Suppose the random matrix V satisfies one of the following:

1. V ∈ GUE(n).

2. V = Dρ for a bounded probability density ρ on R.

In either case, there exists a constant C <∞ (uniform in A and n) such that

P [A+ V has at least two eigenvalues in I] ≤ C|I|2n2.

Proof. The diagonal case was proved by Minami [100] and subsequently generalized to

GUE(n) by Aizenman, Peled, Schenker, Shamis, and Sodin [3]. When V = Dρ, the

constant C depends on ||ρ||∞.

Theorem 5.2.9 pairs naturally with the following technical lemma, which is the

final building block we need to prove shattering.

Lemma 5.2.10. Let (A,B) be a definite pencil. If (A,B) has at least j eigenvalues in the

interval (z0 − r, z0 + r) for z0 ∈ R and r > 0 then

σn−j+1(A− z0B) ≤ r||(A,B)||22
γ(A,B)

.

Proof. Let X be a nonsingular eigenvector matrix of (A,B) satisfying (5.2). Standard

singular value inequalities imply

σn−j+1(A− z0B) = σn−j+1(X
−H(ΛA − z0ΛB)X

−1)

≤ ||X−H ||2σn−j+1(ΛA − z0ΛB)||X−1||2

= ||X−1||22σn−j+1(ΛA − z0ΛB).

(5.11)
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Since (A,B) has j eigenvalues in (z0 − r, z0 + r), at least j diagonal entries αi − z0βi of

ΛA − z0ΛB satisfy

|αi − z0βi| = |βi|
∣∣∣∣αi

βi
− z0

∣∣∣∣ ≤ |βi|r ≤ r, (5.12)

meaning σn−j+1(ΛA − z0ΛB) ≤ r. Applying this to (5.11) alongside Lemma 5.1.2 yields

the final bound.

Putting everything together, Theorem 5.2.11 presents pseudospectral shattering for

(A,B) under GUE perturbations. A direct replication of its proof also implies shattering

for diagonal perturbations, though the final form will depend on the distribution ρ. In

that case, a counterpart to Corollary 5.2.6 follows6 from work of Wegner [142].

Theorem 5.2.11. Let (A,B) be an n × n definite pencil with ||A||2, ||B||2 ≤ 1 and let

(Ã, B̃) = (A + γZ1, B + γZ2) for independent Z1, Z2 ∈ GUE(n) and γ < γ(A,B)

12
√
2
. Taking

α ≥ logn(γ
−1) + 2, choose z0 ∈ (−4− ω,−4) uniformly at random and construct the grid

of points

g = {z0 + jω : 0 ≤ j ≤ ⌈8/ω⌉+ 1} for ω =
γ4

n4α+3
.

Then Λsym
ϵ (Ã, nαB̃) is shattered with respect to g for ϵ = γ5

10n4α+5 ≤ γ9

10n13 with probability at

least 1−O( 1
n
).

Proof. We condition on the events ||Z1||2, ||Z2||2 < 6 and σn(B̃) > n−α, which imply the

following:

1. The perturbed and scaled pencil (Ã, nαB̃) is definite with γ(Ã, nαB̃) ≥ γ(A,B)
2

.

If ||Z1||2, ||Z2||2 < 6 then ||A− Ã||2, ||B − B̃||2 < 6γ, meaning√
||Ã− A||22 + ||B̃ −B||22

γ(A,B)
<

6
√
2γ

γ(A,B)
<

1

2
. (5.13)

Recalling (5.3), this implies that (Ã, B̃) is definite with γ(Ã, B̃) ≥ γ(A,B)
2

. We finish by

noting γ(Ã, nαB̃) ≥ γ(Ã, B̃).

6Combine [3, Equation 1.2] with Markov’s inequality, noting that σn(M+Dρ) < t implies that M+Dρ

has at least one eigenvalue in (−t, t).
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2. The spectrum of (Ã, nαB̃) is contained in (−4, 4).

Since B̃ is almost surely invertible, we have

ρ(n−αB̃−1Ã) ≤ ||n−αB̃−1Ã||2 ≤
||Ã||2

nασn(B̃)
. (5.14)

Now σn(B̃) > n−α and ||Ã||2 ≤ ||A||2 + γ||Z1||2 < 4 since ||Z1||2 < 6, ||A||2 ≤ 1,

and γ < 1
2
(the latter following from the fact that γ(A,B) ≤

√
2 if both A and B

have spectral norm at most one), so (5.14) becomes ρ(n−αB̃−1Ã) < 4. Recalling that

(Ã, nαB̃) and n−αB̃−1Ã have the same eigenvalues and moreover that the eigenvalues

of (Ã, nαB̃) are real since the pencil is definite, we conclude Λ(Ã, nαB̃) ⊆ (−4, 4).

3. For δ > 0, the event gap(Ã, nαB̃) ≤ δ occurs with probability at most C nα+2δ
γ4 .

Let N ⊆ R be a minimal δ
2
-net covering (−4, 4), where |N | ≤ ⌈16

δ
⌉. Since Λ(Ã, nαB̃) is

contained in (−4, 4) it is easy to see

P
[
gap(Ã, nαB̃) ≤ δ

]
= P

[
|Λ(Ã, nαB̃) ∩ (y − δ, y + δ)| ≥ 2 for some y ∈ N

]
≤ |N |max

y∈N
P
[
|Λ(Ã, nαB̃) ∩ (y − δ, y + δ)| ≥ 2

]
.

(5.15)

Now for any y ∈ N , |Λ(Ã, nαB̃) ∩ (y − δ, y + δ)| ≥ 2 implies

σn−1(Ã− ynαB̃) ≤ δ||(Ã, nαB̃)||22
γ(Ã, nαB̃)

(5.16)

by Lemma 5.2.10. Applying γ(Ã, nαB̃) ≥ γ(A,B)
2

≥ 8γ and ||(Ã, nαB̃)||2 ≤ ||Ã||2 +

nα||B̃||2 ≤ 8nα, this becomes

8n2αδ

γ
≥ σn−1(Ã− ynαB̃) = γσn−1

(
1

γ
[A− ynαB̃] + Z1

)
. (5.17)

Thus, |Λ(Ã, nαB̃)∩(y−δ, y+δ)| ≥ 2 implies σn−1(M+Z1) ≤ 8n2αδ
γ2 forM = 1

γ
(A−ynαB̃).

But M +Z1 is Hermitian and the singular values of a Hermitian matrix are the absolute

values of its eigenvalues, so this is equivalent to M +Z1 having at least two eigenvalues

in the interval [−8n2αδ
γ2 , 8n

2αδ
γ2 ]. By Theorem 5.2.9, this occurs with probability at most
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C n4α+2δ2

γ4 for some absolute constant C. Plugging this into the union bound (5.15) and

allowing C to absorb constants, we obtain

P
[
gap(Ã, nαB̃) ≤ δ

]
≤
⌈
16

δ

⌉(
C
n4α+2δ2

γ4

)
= C

n4α+2δ

γ4
. (5.18)

So far, letting Econd be the event that ||Z1||2, ||Z2||2 < 6 and σn(B̃) > n−α – i.e.,

what we conditioned on at the start of the proof – we have shown

P
[
gap(Ã, nαB̃) > δ, Λ(Ã, nαB̃) ⊆ (−4, 4) | Econd

]
≥ 1− C

n4α+2δ

γ4
. (5.19)

Choosing δ = γ4

n4α+3 , this implies gap(Ã, nαB̃) > ω and Λ(Ã, nαB̃) ⊆ (−4, 4) with proba-

bility at least 1− C
n
. In this case, by construction, each eigenvalue of (Ã, nαB̃) belongs to

a unique interval (gi, gi+1) for gi ∈ g. Moreover, the eigenvalues are well separated from

the grid points with high probability: applying the same geometric argument made in the

proof of (2.3.1), we have

P

[
min

λ∈Λ(Ã,nαB̃)
distg(λ) ≤

ω

2n2

]
≤ 1

n
. (5.20)

Thus, a simple union bound implies that each eigenvalue of (Ã, nαB̃) is contained in a

unique grid interval, and is at least ω
2n2 -away from the nearest grid point, with probability

at least 1− C+1
n

. When this occurs, shattering is guaranteed as long as Λsym
ϵ (Ã, nαB̃) is

contained in a union of intervals of radius ω
2n2 centered at the eigenvalues of (Ã, nαB̃).

Appealing to our version of Bauer-Fike for definite pencils (Theorem 5.2.2), we know that if

ϵ < min
{
γ(Ã, nαB̃), σn(n

αB̃)
}
, which can be enforced by taking ϵ < γ(A,B)

2
, Λsym

ϵ (Ã, nαB̃)

is contained in a union of intervals of radius

rϵ =
ϵ(1 +R2

ϵ )

γ(Ã, nαB̃)
≤ 2ϵ(1 +R2

ϵ )

γ(A,B)
≤ 2ϵ

γ(A,B)

[
1 +

(
ϵ+ 4

1− ϵ

)2
]
, (5.21)

where the last inequality follows from the upper bound on Rϵ provided by Lemma 1.2.8.

Further assuming ϵ < 1
2
so that ϵ+4

1−ϵ
< 9 and recalling 12

√
2γ < γ(A,B), we conclude

rϵ ≤
164ϵ

12
√
2γ

≤ 10ϵ

γ
. (5.22)
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Thus, we achieve shattering by taking 10ϵ
γ

≤ ω
n2 = γ4

n4α+5 or equivalently ϵ ≤ γ5

10n4α+5 , which

we note does not violate any of our assumptions on ϵ.

In total, we have shown that for ϵ = γ5

10n4α+5

P
[
Λsym

ϵ (Ã, nαB̃) is shattered w.r.t g | Econd

]
≥ 1− C + 1

n
. (5.23)

Since Lemma 5.2.4 and Corollary 5.2.6 imply

P
[
||Z1||2, ||Z2||2 < 6, σn(B̃) > n−α

]
≥ 1− C ′n

1−α

γ
− 4e−n (5.24)

for some absolute constant C ′, which can be further simplified to 1 − C′

n
− 4e−n since

α ≥ logn(γ
−1) + 2, we conclude by Bayes’ theorem

P
[
Λsym

ϵ (Ã, nαB̃) is shattered w.r.t. g
]
≥ 1− C ′′

n
(5.25)

for some final absolute constant C ′′.

We close this section by stating perturbation results for Λsym
ϵ (A,B). The latter two

mirror Lemma 2.3.3 and Lemma 2.3.4 from Chapter 2.

Lemma 5.2.12. Let (A,B) be an n× n pencil. If A′, B′ ∈ Cn×n satisfy ||A−A′||2, ||B −

B′||2 ≤ η < ϵ√
2
for A− A′ and B −B′ Hermitian, then

Λsym

ϵ−
√
2η
(A′, B′) ⊆ Λsym

ϵ (A,B).

Proof. Suppose z ∈ Λsym

ϵ−
√
2η
(A′, B′). In this case, there exist Hermitian E,F ∈ Cn×n

with ||E||22 + ||F ||22 ≤ (ϵ −
√
2η)2 such that z ∈ Λ(A′ + E,B′ + F ). Hence, we have

z ∈ Λ(A+ (A′ − A+ E), B + (B′ −B + F )) with

||A′ − A+ E||22 + ||B′ −B + F ||22 ≤ (η + ||E||2)2 + (η + ||F ||2)2

= 2η2 + 2η(||E||2 + ||F ||2) + ||E||22 + ||F ||22

≤ 2η2 + 2
√
2η(ϵ−

√
2η) + (ϵ−

√
2η)2

= ϵ2.

(5.26)

147



Here, the second inequality follows from the fact that ||E||2 + ||F ||2 takes maximum value
√
2(ϵ−

√
2η) subject to the constraint ||E||22 + ||F ||22 ≤ (ϵ−

√
2η)2. Since A′ −A+E and

B′ −B + F are Hermitian, we conclude z ∈ Λsym
ϵ (A,B).

Lemma 5.2.13. Let (A,B) be an n×n definite pencil and suppose Λsym
ϵ (A,B) is shattered

with respect to a set of points {gi} ⊂ R for some 0 < ϵ < γ(A,B). If A′, B′ ∈ Cn×n

satisfy ||A − A′||2, ||B − B′||2 ≤ η < ϵ√
2
for A − A′ and B − B′ Hermitian, then each

eigenvalue of (A′, B′) shares a grid interval (gi, gi+1) with exactly one eigenvalue of (A,B)

and Λsym

ϵ−
√
2η
(A′, B′) is also shattered with respect to g.

Proof. This follows from a straightforward recreation of the proof of Lemma 2.3.3, noting

here that γ(A′, B′) ≥ 1 −
√
2η

γ(A,B)
, so (A′, B′) is definite, and moreover Λsym

ϵ−
√
2η
(A′, B′) ⊆

Λsym
ϵ (A,B) by Lemma 5.2.12.

Lemma 5.2.14. Let (A,B) be an n×n definite pencil and suppose Λsym
ϵ (A,B) is shattered

with respect to a grid of points {gi} ⊂ (−r, r) for some 0 < ϵ < γ(A,B). Let A′, B′ ∈ Cn×n

satisfy ||A− A′||2, ||B −B′||2 ≤ η < ϵ√
2
for A− A′ and B −B′ Hermitian. If (λ, v) is an

eigenpair of (A,B) and

η <
ϵγ(A′, B′)√

2||B||2
||B′||2 + ||B||2

||B′||2(1 + r2) + γ(A′, B′)

then there exists an eigenpair (λ′, v′) of (A′, B′) such that λ and λ′ share a grid interval

(gi, gi+1) and

||v − v′||2
||v||2

≤
√
2η

γ(A′, B′)

||B||2||B′||2(1 + r2)

ϵ||B′||2 + (ϵ−
√
2η)||B||2

< 1.

Proof. By Lemma 5.2.13, we know that (A′, B′) is definite, Λsym

ϵ−
√
2η
(A′, B′) is shattered with

respect to g, and each eigenvalue of (A,B) shares a unique grid interval with an eigenvalue

of (A′, B′). Let λ′ be the eigenvalue of (A′, B′) corresponding to λ. By construction, any

other eigenvalue µ ∈ Λ(A′, B′) belongs to a different grid interval; since Λsym
ϵ (A,B) and
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Λsym

ϵ−
√
2η
(A′, B′) are shattered with respect to g and contain intervals of radius ϵ

||B||2 and

ϵ−
√
2η

||B′||2 around the eigenvalues of (A,B) and (A′, B′), respectively, this guarantees

|λ− µ| ≥ ϵ

||B||2
+
ϵ−

√
2η

||B′||2
=
ϵ||B′||2 + (ϵ−

√
2η)||B||2

||B||2||B′||2
. (5.27)

Consequently, we have

χ(λ, µ) =
|λ− µ|√

1 + |λ|2
√

1 + |µ|2
≥ ϵ||B′||2 + (ϵ−

√
2η)||B||2

||B||2||B′||2(1 + r2)
, (5.28)

where we note that |λ|, |µ| ≤ r. Since the criteria on η implies√
||A− A′||22 + ||B −B′||22
minλ′ ̸=µ∈Λ(A′,B′) χ(λ, µ)

≤
√
2η||B||2||B′||2(1 + r2)

ϵ||B′||2 + (ϵ−
√
2η)||B||2

< γ(A′, B′), (5.29)

the result follows from Theorem 5.1.5.

5.3 Structure-Preserving Divide-and-Conquer

Given structured pseudospectral shattering, we consider next structured divide-

and-conquer. Here, “structure-preserving” refers to definiteness; we seek a version of

divide-and-conquer (specifically a version of EIG) that splits one definite pencil into two

smaller ones that are also definite. While we saw above that pseudospectral shattering

could accommodate banded structure, the same cannot be said for divide-and-conquer;

accordingly, we set that aside for the remainder of the chapter.

Algorithmically, we can guarantee that each subproblem in divide-and-conquer is

definite by replacing the right and left matrices UR and UL with a single matrix U ∈ Cn×k.

If U contains an orthonormal basis for a right deflating subspace of (A,B) – i.e., is UR

from the general setting – the k × k pencil (UHAU,UHBU) is definite. Indeed, we have

γ(UHAU,UHBU) = min
||x||2=1

|xH(UHAU + iUHBU)x|

= min
||x||2=1

|(Ux)H(A+ iB)Ux|

= min
||y||2=1

y∈range(U)

|yH(A+ iB)y|

≥ γ(A,B).

(5.30)
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Moreover, the eigenpairs of (UHAU,UHBU) are exactly (λ, v) for (λ, Uv) a corresponding

eigenpair of (A,B). Note that (5.30) holds for any matrix with orthonormal columns, and

in particular does not depend on U containing a basis for a deflating subspace.

While modifying divide-and-conquer in this way appears straightforward, there

is one additional roadblock to consider: in this case, we cannot guarantee a clean pseu-

dospectral bound like Λϵ(U
H
L AUR, U

H
L BUR) ⊆ Λϵ(A,B) for Λsym

ϵ (A,B). The proof of that

result (see Lemma 1.3.5) relied critically on the fact that the columns of UL spanned a

left deflating subspace of (A,B). Since again the right and left deflating subspaces of a

definite pencil are not the same in general, the argument made there will not carry over.

Instead, we have the following.

Lemma 5.3.1. Let (A,B) be an n× n definite pencil and suppose U ∈ Cn×k contains an

orthonormal basis for a right deflating subspace of (A,B). For any ϵ > 0 and

ϵ′ = ϵ

(
γ(A,B)

||(A,B)||2

)2

we have Λsym
ϵ′ (UHAU,UHBU) ⊆ Λsym

ϵ (A,B).

Proof. Suppose z ∈ Λsym
ϵ′ (UHAU,UHBU). In this case, there exist Hermitian matrices

E,F ∈ Ck×k with
√

||E||22 + ||F ||22 ≤ ϵ′ such that z ∈ Λ(UHAU + E,UHBU + F ). If

v ∈ Ck is a corresponding right eigenvector, then by definition

(UHAU + E)v = z(UHBU + F )v. (5.31)

Consider now X – the right eigenvector matrix of (A,B) satisfying (5.2). Without

loss of generality, we may assume that the columns of U span the right deflating subspace

corresponding to the first k columns of X. Writing X =
(
X1 X2

)
for X1 ∈ Cn×k and

X2 ∈ Cn×n−k, this implies X1 = UR1 for invertible R1 ∈ Ck×k. Storing an orthonormal

basis for the range of X2 in W ∈ Cn×n−k, we obtain a block factorization

X =
(
UR1 WR2

)
=
(
U W

)(R1 0
0 R2

)
(5.32)
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for another invertible R2 ∈ Cn−k×n−k.

With this in mind, let Q =
(
U W

)
. Since the orthogonal complement of the

right deflating subspace corresponding to one of U and W is the left deflating subspace

associated to the other, we have

QHAQ =

(
UHAU 0

0 WHAW

)
and QHBQ =

(
UHBU 0

0 WHBW

)
. (5.33)

Hence, it is easy to see(
QHAQ+

(
E 0
0 0

)
− z

[
QHBQ+

(
F 0
0 0

)])(
v
0

)
= 0 (5.34)

or equivalently, noting that Q is invertible but not necessarily unitary,

QH

(
A+Q−H

(
E 0
0 0

)
Q−1 − z

[
B +Q−H

(
F 0
0 0

)
Q−1

])
Q

(
v
0

)
= 0. (5.35)

In other words, z is an eigenvalue of

(
A+Q−H

(
E 0
0 0

)
Q−1, B +Q−H

(
F 0
0 0

)
Q−1

)
corresponding to eigenvector Q

(
v
0

)
.

We complete the proof by bounding the norms of the matrices Q−H

(
E 0
0 0

)
Q−1

and Q−H

(
F 0
0 0

)
Q−1. To do this, note that Q−1 =

(
R1 0
0 R2

)
X−1 and therefore

||Q−1||2 ≤ ||X−1||2max {||R1||2, ||R2||2} ≤ κ2(X). (5.36)

The latter inequality follows from the observation ||R1||2 = ||X1||2 and ||R2||2 = ||X2||2,

which implies that both ||R1||2 and ||R2||2 are at most ||X||2. Thus, we have∣∣∣∣∣∣∣∣Q−H

(
E 0
0 0

)
Q−1

∣∣∣∣∣∣∣∣
2

≤ κ2(X)2||E||2∣∣∣∣∣∣∣∣Q−H

(
F 0
0 0

)
Q−1

∣∣∣∣∣∣∣∣
2

≤ κ2(X)2||F ||2.
(5.37)

Recalling Lemma 5.1.2 and our definition of the symmetric pseudospectrum, we conclude

z ∈ Λsym
ϵ (A,B) provided ϵ′ = ϵ

κ2(X)2
≤ ϵ

(
γ(A,B)

||(A,B)||2

)2
.
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As we will see, Lemma 5.3.1 suggests that a structured version of divide-and-conquer

may not be more efficient than the original if γ(A,B)
||(A,B)||2 is small (say, inverse-polynomial in

n). For the purposes of constructing an analog of EIG, we will assume access to a lower

bound on this quantity – and therefore a bound on ϵ′ in Lemma 5.3.1 – as a black box.

5.3.1 Dynamically Weighted Halley Iteration

If each subproblem in divide-and-conquer is definite, we are guaranteed that the

spectrum remains constrained to the real axis as we recur (in exact arithmetic). With this

in mind, we can revisit the Indicator Approximation Problem. In particular, we consider

the dynamically weighted Halley iteration mentioned in Chapter 3, which approximates

the sign function via fk ◦ fk−1 ◦ · · · ◦ f0 for

fi(x) = x
aix

2 + bi
cix2 + di

. (5.38)

Recall that we can apply this iteration to (A,B) via the inverse-free arithmetic of Chapter 3

as follows:

(Bi+1\Ai+1) = fi(Bi\Ai); (B0\A0) = (B\A). (5.39)

At each step, the eigenvalues of (Ai, Bi) are mapped according to fi.

Suppose that at the i-th step of this process we have Λ(Ai, Bi) ⊂ [−1,−li] ∪ [li, 1]

for some li > 0.7 Since any iteration hoping to approximate the sign function must drive

eigenvalues to ±1, our goal will be to choose ai, bi, ci, di so that

fi : [−1,−li] ∪ [li, 1] 7→ [−1,−li+1] ∪ [li+1, 1] (5.40)

for li ≤ li+1 ≤ 1, with li+1 as close to one as possible. While this is a nontrivial optimization

problem in general, a few key observations make things more manageable. First, we can

assume without loss of generality that di = 1. To ensure that fi fixes ±1, we can next

choose ci = ai+bi−1. With these in place, we have fi(x) = x aix
2+bi

(ai+bi−1)x2+1
with only ai and

7We assume here that zero is not an eigenvalue of (Ai, Bi), as in that case the sign function is not
defined.
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bi left to optimize. Noting that fi will be odd if ai, bi, ci > 0, which guarantees that [−1,−li]

is mapped to [−1,−li+1] provided [li, 1] 7→ [li+1, 1], and setting li+1 = minli≤x≤1 fi(x), we

obtain a final optimization problem

maximize
ai,bi

li+1 subject to ai, bi > 0 and ai + bi > 1. (5.41)

Note that forcing fi to fix ±1 guarantees li+1 ≤ 1 for all i.

A solution to (5.41) was rigorously derived in work of Nakatsukasa, Bai and

Gygi [105, Appendix A], wherein

bi =
√

1 + γi +
1

2

√
8− 4γi +

8(2− l2i )

l2i
√
1 + γi

for γi =
3

√
4(1− l2i )

l4i
,

ai =
1

4
(bi − 1)2,

li+1 = fi(li) = li
ail

2
i + bi

(ai + bi − 1)l2i + 1
.

(5.42)

For this choice of ai and bi we have (ai, bi) → (1, 3) as li → 1, meaning the corresponding

weighted Halley iteration gradually approaches the standard version.

Applying (5.42) to Algorithm 3 produces an inverse-free dynamically weighted

Halley iteration (IF-DWH), which we present here as Algorithm 9. Note that this routine

requires not only that Λ(A,B) is contained in a symmetric union of intervals in [−1, 1]

but that a lower bound l0 on the minimum eigenvalue (in magnitude) is known.

Nakatsukasa, Bai, and Gygi originally stated this version of the Halley iteration

as part of an algorithm for computing the polar decomposition of a matrix, which was

subsequently deployed by Nakatsukasa and Higham in a divide-and-conquer algorithm for

the symmetric eigenvalue problem [107]. While the optimized weights presented above

were derived in [105] via a direct and exhaustive search, a connection to the work of

Zolotarev was later made by Nakatsukasa and Freund [106], who demonstrated that the

rational function corresponding to (5.42) can be interpreted as an optimal approximation8

8Optimal meaning the best (in the infinity norm) rational function approximation p(x)/q(x) for p(x)
and q(x) real polynomials of degree three and two, respectively.
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Algorithm 9. Inverse-Free Dynamically Weighted Halley Iteration (IF-DWH)
Input: A,B ∈ Cn×n, k a number of iterations, l0 > 0.
Requires: Eigenvalues λ of (A,B) are real with l0 < |λ| ≤ 1.

1: A0 = A
2: B0 = B
3: for i = 0 : k − 1 do
4: γi = (4(1− l2i )/l

4
i )

1/3

5: bi =
√
1 + γi +

1
2

√
8− 4γi + 8(2− l2i )/(l

2
i

√
1 + γi)

6: ai =
1
4
(bi − 1)2

7: ci = ai + bi − 1

8:

(−Bi
Ai

)
=
(
Q11 Q12
Q21 Q22

)(
Ri
0

)
▷ Apply Halley iteration

9: Ci = aiQ
H
12Ai + biQ

H
22Bi

10: Di = ciQ
H
12Ai +QH

22Bi

11:

(−Di
Ai

)
=
(
U11 U12
U21 U22

)(
R̂i
0

)
12: Ai+1 = UH

12Ci

13: Bi+1 = UH
22Bi

14: li+1 = li(ail
2
i + bi)/(cil

2
i + 1) ▷ Compute next value of l

15: end for
16: return (Ak, Bk), optionally lk

to the sign function on [−1,−li] ∪ [li, 1].

A key question remains: how fast does the weighted Halley iteration converge? We

consider first a motivating example.

Example 5.3.2. Construct the 500 × 500 pencil (A,B) as follows: let B be a random

complex Gaussian matrix and set A = BVDV H for

D =

(
D+ 0
0 D−

)
V =

(
V1 V2

)
, (5.43)

where V is Haar unitary (with V1, V2 ∈ C500×250) and D+, D− ∈ C250×250 are diagonal,

with nonzero entries sampled from R>0 and R<0, respectively. Note that (A,B) is not

necessarily definite. Suppose we are interested in computing the projector P onto the right

deflating subspace of (A,B) corresponding to the right half plane, which by construction

is given by P = V1V
H
1 . To obtain this projector, we can use any of the iterative methods

considered in this thesis – i.e., IRS, IF-Newton, IF-Halley, and now IF-DWH.
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(a) Well-separated (b) Poorly-separated

Figure 5.1. Approximation error for different iterative methods of computing spectral
projectors. In both figures we approximate a projector of a 500 × 500 pencil (A,B)
constructed according to (5.43). We consider two cases, where the eigenvalues of (A,B)
are either well-separated or poorly-separated from the imaginary axis. In each case, we
plot the eigenvalues of (A,B) and mark the error produced by QZ – which approximates
the projector by computing first a full eigendecomposition and then a QR factorization of
corresponding eigenvectors – as a benchmark.

At a given iteration, each of these methods produces a pencil (Ak, Bk) with eigenval-

ues close to zero or one. An approximate projector can therefore be obtained as P̃ = UUH

for U a matrix containing the first 250 columns of the U-factor produced by GRURV

when applied to 1
2
B−1

k (Ak + Bk) or – in the case of IRS – (Ak + Bk)
−1Ak. Error in

this approximate projector can then be measured as log10(||P − P̃ ||2). Note that in this

approach, IRS must apply an initial Möbius transformation mapping the imaginary axis

to the unit circle.

Figure 5.1 plots projector error for each method in two cases: one in which the

eigenvalues of (A,B) are well-separated from the imaginary axis and one in which they

are not. As we might expect, all of the methods require more iterations to converge when

eigenvalues are close to the imaginary axis. Regardless, IF-DWH is consistently the

fastest method. Notably, it requires fewer than half the iterations of IRS or IF-Newton

in both cases, meaning it will be more efficient than either despite requiring (up to)
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twice as many 2n× n QR factorizations and n× n matrix multiplications (see Table 3.2).

Comparing to IF-Halley, which only cuts the number of iterations by roughly log2(3), it

is clear that dynamic weighting is necessary to outperform these second-order methods.

To run IF-DWH here we scale A by 1
||B−1A||2 , which both drives eigenvalues inside

[−1, 1] and implies l0 ≥ κ2(B
−1A). This is the only potential drawback to IF-DWH, as

it may result in eigenvalues significantly closer to the imaginary axis if ||B−1A||2 is large.

As mentioned above (A,B) is almost certainly not definite in this example; this was done

deliberately, aimed at demonstrating that IF-DWH is relevant for any pencil with real

spectrum. Echoing Chapter 3, it also suggests that pursuing weighting schemes for other

specialized spectra may be worthwhile in general.

With this example as a backdrop, we consider now theoretical convergence results

for IF-DWH. Given the complex nature of the weighting scheme, obtaining tight bounds

on the number of iterations required to achieve a certain accuracy is difficult. Instead, we

recommend keeping track of the parameter lk, which implies the following straightforward

error bound. Note here that the assumption that Λ(A,B) is bounded guarantees that B

(and later Bk) is invertible.

Lemma 5.3.3. Suppose (A,B) is a definite pencil with eigenvalues in (−1,−l0) ∪ (l0, 1)

and let [Ak, Bk, lk] = IF-DWH(A,B, k, l0). Then

||B−1
k Ak − sign(B−1A)||2 ≤

||(A,B)||2
γ(A,B)

(1− lk).

Proof. Let X be the invertible eigenvector matrix of (A,B) satisfying (5.2). Since (Ak, Bk)

has the same right eigenvectors as (A,B), X diagonalizes B−1
k Ak. Writing B−1

k Ak =

XΛkX
−1 for Λk diagonal and noting B−1A = XΛ−1

B XHX−HΛAX
−1 = XΛ−1

B ΛAX
−1, we

have

||B−1
k Ak − sign(B−1A)||2 = ||XΛkX

−1 −Xsign(Λ−1
B ΛA)X

−1||2

≤ κ2(X)||Λk − sign(Λ−1
B ΛA)||2

≤ κ2(X)(1− lk),

(5.44)
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Table 5.1. Evolution of lk in IF-DWH for six initial bounds Λ(A,B) ⊆ (−1,−l0)∪ (l0, 1).
The entry -Inf indicates that lk is indistinguishable from one in double precision.

Initial lower bound (l0)

10−1 10−3 10−5 10−7 10−9 10−11

log10(1− l1) -0.872 -0.124 -0.024 -0.005 -0.001 -0.0002

log10(1− l2) -4.329 -1.431 -0.646 -0.326 -0.176 -0.099

log10(1− l3) -14.841 -6.074 -3.583 -2.404 -1.718 -1.275

log10(1− l4) -15.654 -15.654 -12.555 -9.014 -6.949 -5.595

log10(1− l5) -Inf -Inf -Inf -15.955 -15.955 -15.654

where the last inequality follows from Λ(Ak, Bk) ⊆ (−1,−lk) ∪ (lk, 1). We complete the

proof by bounding κ2(X) via Lemma 5.1.2.

To build intuition, Table 5.1 records lk over five iterations of IF-DWH for a

handful of starting values l0. We see here the power of the weighting scheme, which

consistently drives lk to one in only a handful of steps.

While this is promising, we would still like to have at least a rough upper bound

on the number of iterations required by IF-DWH. Fortunately, this can be done by using

IF-Halley as a baseline. That is, since the standard Halley iteration coefficients are

included in the search space of (5.41), we can expect IF-DWH to converge at least as

fast as IF-Halley. With this in mind, we state a similar error bound for the latter. In

this case, we drop the requirement that (A,B) has eigenvalues in [−1, 1] since it is not

necessary to run the standard Halley iteration.

Lemma 5.3.4. Suppose (A,B) is a definite pencil with eigenvalues in (−R,−r) ∪ (r, R)

for some 0 < r < R with r < 1
R
. If [Ak, Bk] = IF-Halley(A,B, k) then

||B−1
k Ak − sign(B−1A)||2 ≤

||(A,B)||2
γ(A,B)

(
2α3k

1− α3k

)

for α = 1−r
1+r

.
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Proof. This result can be obtained by repeating the proof Lemma 5.3.3. In this case, we

have Λ(A,B) ⊆ Cα for α = 1−r
1+r

and therefore, recalling Lemma 3.3.6, Λ(Ak, Bk) ⊂ C
α3k .

The bound then follows by noting that the maximum distance between +1 and any point

in C+
α ∩ R (equivalently −1 and C−

α ∩ R) is 2α
1−α

.

Remark 5.3.5. The decision to use IF-DWH here represents yet another way of ap-

proaching the Indicator Approximation Problem, which may be solved by choosing a

method that performs optimally on specific subsets of S and C− S (in this case intervals

on the real axis).

5.3.2 Diagonalization in Exact Arithmetic

We are now ready to state our specialized version of divide-and-conquer. The

resulting EIG-DWH (presented below as Algorithm 10) can be interpreted as a variant

of EIG that both enforces definiteness and leverages the efficiency gains of IF-DWH.

Like the original, it assumes access to a guarantee of pseudospectral shattering for a

corresponding set of grid points g = {gi} ⊂ R. Unlike EIG, however, it is somewhat

divorced from the specific pseudospectral shattering result presented in the previous section.

In particular, we do not bake in the norm assumptions or grid specifications made in

Theorem 5.2.11. Instead, we take as inputs lower and upper bounds γ(A,B) > γ and

||(A,B)||2 ≤ c and assume g ⊂ (−r, r) for some r > 0. Our motivation for doing this is

rooted primarily in the fact that general bounds available for γ(Ã, nαB̃) are unsatisfactory,

potentially forcing ϵ to become prohibitively small as we recur via Lemma 5.3.1, which we

discuss in more detail below.

Before that, we consider an analog of Theorem 4.1.4 – i.e., a guarantee that EIG-

DWH performs as expected for the listed parameters. Note here that, unlike EIG,

EIG-DWH does not require a bound on σn(B) to produce an eigenvector guarantee

(though the assumption that Λsym
ϵ (A,B) is bounded implies that B must be invertible).
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Algorithm 10. Definite Divide-and-Conquer Eigensolver (EIG-DWH)
Input: n ∈ N+, A,B ∈ Cm×m, ϵ, γ, c, r > 0, g = {gi} ⊂ R a grid of points with equal
spacing ω, β ∈ (0, 1) a desired eigenvector accuracy, and θ ∈ (0, 1) a failure probability.
Requires: m ≤ n, (A,B) definite with γ(A,B) ≥ γ and ||(A,B)||2 ≤ c, g ⊂ (−r, r), and
Λsym

ϵ (A,B) shattered with respect to g.
Output: X an invertible matrix and (ΛA,ΛB) a diagonal pencil. The eigenvalues of
(ΛA,ΛB) each share an interval of g with a unique eigenvalue of (A,B) and each column
of X is an approximate right unit eigenvector of (A,B).

1: if m = 1 then
2: X = 1; ΛA = A; ΛB = B
3: else
4: ζ = ⌊log2⌈2r/ω⌉+ 1⌋

5: δ = min

{
4θ

4θ+3ζn2(n−1)
,
√

θ
3(n−1)

ϵ2γ4

800nc6
, 1
16nc2

√
θ

3(n−1)

( √
2βϵγ3

c2[c(1+r2)+βγ]

)2}
.

6: Choose a grid point gi ∈ g
7: (A,B) = (A− giB, 2rB); l = ϵ

2rc

8: while l < 1− 2δγ
c

do
9: [A,B, l] = IF-DWH(A,B, 1, l)

10: end while
11: [U,R1, R2, V ] = GRURV(2, 2B,A+ B,−1, 1)

12: r = #
{
i :
∣∣∣R2(i,i)
R1(i,i)

∣∣∣ ≥ 2
√

θ
3ζ(n−1)

1−δ
n

}
13: if r < ⌊m

2
⌋ or r > ⌈m

2
⌉ then

14: Return to line 6, executing a binary search over the grid points if necessary.
15: else
16: U = GRURV(2, 2B,A+ B,−1, 1)
17: Ur = U( : , 1 : r)
18: U = GRURV(2, 2B,A− B,−1, 1)
19: Um−r = U( : , 1 : m− r)
20:

(A11, B11) = (UH
r AUr, U

H
r BUr)

(A22, B22) = (UH
m−rAUm−r, U

H
m−rBUm−r)

21: gR = {z ∈ g : z > gi}; gL = {z ∈ g : z < gi}
22: [X̂, Λ̂A, Λ̂B] = EIG-DWH(n,A11, B11,

4ϵγ2

5c2
, γ, c, r, gR,

1
3
β, θ)

23: [X̃, Λ̃A, Λ̃B] = EIG-DWH(n,A22, B22,
4ϵγ2

5c2
, γ, c, r, gL,

1
3
β, θ)

24:

X =

(
UrX̂ 0
0 Um−rX̃

)
, ΛA =

(
Λ̂A 0
0 Λ̃A

)
, ΛB =

(
Λ̂B 0
0 Λ̃B

)
25: end if
26: end if
27: return X,ΛA,ΛB
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Proposition 5.3.6. Let (A,B) and g = {gi} ⊂ R be a definite pencil and set of grid points

satisfying the requirements of EIG-DWH. For any choice of θ, β ∈ (0, 1), exact-arithmetic

EIG-DWH applied to (A,B) and g satisfies the following with probability at least 1− θ.

1. The recursive procedure converges and each eigenvalue of the diagonal pencil (ΛA,ΛB)

shares a grid interval (gi, gi+1) with a unique eigenvalue of (A,B).

2. Each column xi of X satisfies ||xi−vi||2 ≤ β for a right unit eigenvector vi of (A,B).

Proposition 5.3.6 can be obtained by modifying the proof of Theorem 4.1.4 accord-

ingly. Rather than repeating this proof in detail, we provide a sketch, noting below the

adjustments that need to be made:

1. Once again, success for EIG-DWH is predicated on the validity of its recursive calls.

In this case, there is one additional requirement to check – i.e., that (A11, B11) and

(A22, B22) are definite with γ(A11, B11), γ(A22, B22) ≥ γ. This follows from (5.30).

2. Since Λsym
ϵ (A,B) contains the interval of radius ϵ

||B||2 ≥ ϵ
c
around each eigenvalue (see

Theorem 5.2.2), the shattering guarantee Λsym
ϵ (A,B)∩g = ∅ implies that the eigenvalues

of (A − giB,B) are contained in (−2r,− ϵ
c
) ∪ ( ϵ

c
, 2r) for any grid point gi ∈ g. Each

pencil (A,B) input to IF-DWH therefore satisfies Λ(A,B) ⊆ (−1,− ϵ
2rc

) ∪ ( ϵ
2rc
, 1).

Hence the initial choice of l in line 8.

3. In line 9, IF-DWH is employed to compute the projector

P>gi =
1

2
(sign(B−1A− giI) + I). (5.45)

To guarantee ||1
2
B−1(A + B) − P>gi ||2 ≤ δ upon exit in line 10, we need ||B−1A −

sign(B−1A− giI)||2 ≤ 2δ. Noting

sign

(
1

2r
B−1(A− giB)

)
= sign(B−1(A− giB)) = sign(B−1A− giI), (5.46)

Lemma 5.3.3 implies that we should run IF-DWH until l ≥ 1 − 2δγ
c
. Note that the

number of iterations this requires can be loosely upper bounded via Lemma 5.3.4.
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4. Because the spectrum is constrained to the real axis, an optimal split that divides it

into disjoint sets of size ⌊m
2
⌋ and ⌈m

2
⌉ always exists. Ensuring optimality at each split

guarantees that EIG-DWH is called exactly n− 1 times on problems of size m > 1.

5. For any ν1 ∈ (0, 1) suppose δ < 4ν1
4ν21+n2 and

r = #

{
i :
R2(i, i)

R1(i, i)
≥ 2ν1(1− δ)

n

}
. (5.47)

in line 12. In this case, requiring r = rank(P>gi) for every grid point checked, a given

step of EIG-DWH finds an optimal split with probability at least 1− ζν21 (see step

four in the proof of Theorem 4.1.4).

6. Once a split is found, lines 16-19 compute orthonormal bases for the corresponding

right deflating subspaces, replacing the calls to DEFLATE in EIG. Accordingly, a

straightforward replication of Theorem 4.1.3 implies that for ν2 ∈ (0, 1) the matrices

Ur and Um−r are computed (independently) to within spectral norm error 2
√

nδ
ν2

with

probability at least 1− ν22 .

7. For an appropriate choice of δ, avoiding failure in items 4 and 5 above will guarantee

success for one step of divide-and-conquer. Hence, we set ζν21 = ν22 = θ
3(n−1)

, thereby

guaranteeing that a simple union bound will imply a total failure probability for

EIG-DWH of at most θ.

8. It remains to find the aforementioned choice of δ. Suppose U ∈ Cm×r is the true

matrix approximated by Ur – i.e., satisfying ||Ur − U ||2 ≤ 2
√

nδ
ν2
. By Lemma 5.3.1,

Λ ϵγ2

c2

(UHAU,UHBU) is shattered with respect to g. Hence, recalling Lemma 5.2.13, we

maintain shattering for the subsequent calls to EIG-DWH by requiring

||A11 − UHAU ||2, ||B11 − UHBU ||2 ≤
ϵγ2

5
√
2c2

. (5.48)

Noting

||A11 − UHAU ||2 ≤ 2||Ur − U ||2||A||2 ≤ 4c

√
nδ

ν2
, (5.49)
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it is sufficient to take 4c
√

nδ
ν2

≤ ϵγ2

5
√
2c2

or equivalently δ ≤
√

θ
3(n−1)

ϵ2γ4

800nc6
, applying our

choice of ν2.

9. The final requirement on δ follows from Lemma 5.2.14, where we enforce that ||A11 −

UHAU ||2, ||B11 − UHBU ||2 is small enough to guarantee eigenvector error is at most β.

Note that, unlike in EIG, this does not require a bound on σn(B).

As in the general case, EIG-DWH implies a straightforward diagonalization

algorithm. Given input matrices A,B ∈ Cn×n with ||A||2, ||B||2 ≤ 1 and γ(A,B) known,

a variant of RPD proceeds as follows:

1. Construct (Ã, nαB̃) and g = {gi} ⊂ R in accordance with Theorem 5.2.11.

2. Call [X,ΛA,ΛB] = EIG-DWH(n, Ã, nαB̃, γ5

10n4α+5 ,
1
2
γ(A,B), 8nα, 4 + ω, g, β, θ) for

an appropriate choice of β, θ ∈ (0, 1).

3. Undo the nα scaling to construct a diagonalization.

Note that in this approach ϵ shrinks by a factor of γ(A,B)2

320nα at each step of EIG-DWH.

Assuming γ(A,B) = O(1) and recalling that the recursive depth of divide-and-conquer is

O(log(n)), this eventually implies ϵ = O( 1
poly(n)log(n) ). This has the primary consequence of

driving up the number of iterations required to compute the projectors P>gi , or at least

driving up the upper bound available from Lemma 5.3.4. In the worst case, this may incur

an additional log factor in complexity compared to the general case.

There are two loose points in the preceding analysis that could be tightened:

Lemma 5.3.1 and the bound γ(Ã, nαB̃) ≥ γ(Ã, B̃). In many cases, both are extremely

relaxed; the latter, for example, is tight only when γ(A,B) achieves its minimum at a unit

vector x satisfying xHBx = 0. Absent improvements, theoretical bounds for EIG-DWH,

and any corresponding diagonalization algorithm, are not any better than the general

results presented in Chapter 4. Nevertheless, this approach is likely to be much faster
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in practice, where theoretical requirements (like the nα scaling or the decision to run

divide-and-conquer to 1× 1 subproblems) are likely unnecessary.
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Chapter 6

Precision Bounds in Floating-Point
Arithmetic

6.1 Black-Box Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
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6.4 Two-Matrix GRURV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

The preceding chapters presented pseudospectral divide-and-conquer in exact

arithmetic. With this in mind, we close this thesis by considering an alternative floating-

point setting, deriving precision bounds for the main building blocks of divide-and-conquer

as stated in Chapter 4. Similar bounds for the specialization considered in Chapter 5 are

left to future work. Throughout, we aim to both codify the stability of divide-and-conquer

observed experimentally in Section 4.3 and further demonstrate the efficacy of working

inverse-free.

Recall our model of floating-point arithmetic:

fl(x ◦ y) = (x ◦ y)(1 + ∆), |∆| ≤ u. (6.1)

Here, ◦ is any operation from the set {+,−,×,÷} and u is the corresponding machine

precision. In this case, log2(1/u) bits of precision are required to achieve (6.1). Our goal

is to produce lower bounds on u – and therefore upper bounds on the number of bits
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Table 6.1. Precision requirements for key steps of pseudospectral divide-and-conquer
as performed by RPD and the corresponding algorithm of Banks et al. In each case, an
n × n matrix/pencil is diagonalized with backward error ε. Note that both algorithms
eventually set δ = poly(ε, n−1).

Bits of precision required to... Banks et al. [16] RPD (Algorithm 8)

Guarantee shattering O(log(n
ε
)) O(log(n

ε
))

Compute input(s) of (G)RURV
to spectral norm accuracy δ

O(log(n) log3(n
ε
) log( n

δε
)) O(log( n

δε
))

of precision – required by a given building block of divide-and-conquer, which will be a

function of the problem size n and the desired backward diagonalization accuracy ε.

We can a draw a comparison here to similar precision bounds in the single-matrix

case of Banks et al. [16]. These are summarized in Table 6.1, where the corresponding

results for RPD are derived in this chapter. The precision required by Banks et al.

to compute the input of RURV – which in their case is an approximate projector

obtained via the Newton iteration of the sign function – proves to be a bottleneck for

their diagonalization algorithm overall, which they show requires O(log(n) log4(n
ε
)) bits of

precision to diagonalize an n× n matrix with backward error ε. The corresponding step

of RPD is IRS, which we demonstrate below requires much lower precision.

Of course, computing the inputs of RURV and GRURV is not equivalent, as

in divide-and-conquer they correspond to approximating a spectral projector explicitly

versus implicitly. While we have no reason to anticipate that accounting for this difference

will incur an additional log factor in the number of bits, the gap between the bounds listed

in Table 6.1 suggests that RPD is likely to be more stable in finite-precision arithmetic,

even if such an increase turns out to be necessary. If it is not, then the precision required

to compute spectral projectors is asymptotically the same as to guarantee shattering.

Recalling that a diagonalization of the pencil (A, I) corresponds to a diagonalization of

A, this ultimately implies that RPD may require lower precision to solve the standard

eigenvalue problem without increasing asymptotic complexity.
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Guide to Chapter Six: Section 6.1 presents the black-box, finite-precision arithmetic

algorithms we assume access to, in particular (fast) matrix multiplication, QR, and

Gaussian sampling. Sections 6.2 to 6.4 then derive bounds for pseudospectral shattering,

IRS, and GRURV under these assumptions.

A note on notation: In this chapter, we use bold and capital letters to distinguish

finite-arithmetic outputs. That is, we differentiate MM(A,B), the floating-point product

of A and B, from its exact counterpart AB.

6.1 Black-Box Assumptions

We begin by stating the floating-point, black-box algorithms we make use of in

the subsequent bounds. First up is an algorithm for Gaussian sampling, which will be

used to generate the perturbation matrices G1 and G2 as well as the random matrices in

RURV/GRURV. In Assumption 6.1.1 below, cN is a constant.

Assumption 6.1.1 (Gaussian Sampling). There exists a cN-stable Gaussian sampler

N(σ) that takes σ ∈ R≥0 and outputs N(σ) satisfying |N(σ) − N| ≤ cNσu for some

N ∼ NC(0, σ
2).

Next are floating-point algorithms for matrix multiplication and full QR. Like our

floating-point model (6.1), these are standard [74, Section 3.5 and Chapter 19]. Here,

µMM(n) and µQR(m,n) are (small degree) polynomials in n and m,n, respectively.

Assumption 6.1.2 (Matrix Multiplication). There exists a µMM(n)-stable n× n multipli-

cation algorithm MM(·, ·) satisfying

||MM(A,B)− AB||2 ≤ µMM(n)u||A||2||B||2

in TMM(n) arithmetic operations.

Assumption 6.1.3 (QR Factorization). There exists a µQR(m,n)-stable full QR algorithm

QR(·) satisfying
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1. [Q,R] = QR(A) for A,R ∈ Cm×n and Q ∈ Cm×m.

2. R is exactly upper triangular

3. There exist A′ ∈ Cm×n and unitary Q′ ∈ Cm×m such that A′ = Q′R with

||Q′ −Q||2 ≤ µQR(m,n)u and ||A′ − A||2 ≤ µQR(m,n)u||A||2,

in TQR(m,n) arithmetic operations.

Assumption 6.1.3 is written generally to accommodate the two different applications

of QR in pseudospectral divide-and-conquer – i.e., the 2n× n full factorizations computed

by IRS and the square n × n version used by RURV and GRURV. For the latter,

note that it also extends to floating-point QL/RQ algorithms QL(·) and RQ(·) (with

the same parameters). In an effort to simplify bounds, we state results in terms of

µQR(n) = µQR(2n, n) and TQR(n) = TQR(2n, n).
1 Throughout, we can always guarantee a

truly triangular result from QR/QL in finite precision by forcing entries below/above the

diagonal to be zero.

While we won’t be too particular about the polynomials µMM(n) and µQR(n),

we note that they are compatible with the fast linear algebra framework discussed in

Section 1.4. That is, QR can be implemented stably (in a mixed sense) using fast matrix

multiplication [38], which itself can be formulated to satisfy the forward error bound

given by Assumption 6.1.2 [39]. Hence, the bounds presented in this chapter apply to

floating-point implementations of fast pseudospectral divide-and-conquer, including a

version built on the fastest known matrix multiplication algorithm of Williams et al. [146].

We may additionally assume TQR(n) = O(TMM(n)).

Finally, we state the logarithmically stable (fast) inversion algorithm assumed by

Banks et al. [16, Definition 2.7], which they import from [38]. Since we do not use inversion

in RPD, we include Assumption 6.1.4 here for comparison purposes. Once again, µINV(n)

is a polynomial in n while cINV is a constant.

1While this implies that results for GRURV can be tightened, the difference is ultimately insignificant.
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Assumption 6.1.4 (Matrix Inversion). There exists a (µINV(n), cINV)-stable n×n inversion

algorithm INV(·) satisfying

||INV(A)− A−1||2 ≤ µINV(n)uκ2(A)
cINV log(n)||A−1||2

in TINV(n) arithmetic operations.

Before moving to our analysis, we give a pair of technical lemmas, which are

consequences of the black-box assumptions defined above (and more generally our model

(6.1) of floating-point computations).

Lemma 6.1.5. Let A,B ∈ Cn×n. If C is the floating-point sum of A and B then

||C − (A+B)||2 ≤
√
nu||A+B||2.

Proof. By (6.1) each entry Cij of C satisfies Cij = (A+B)ij(1 + ∆ij) for some |∆ij| ≤ u.

Consequently,

[C − (A+B)]ij = (A+B)ij∆ij (6.2)

and therefore

||C − (A+B)||2F ≤
∑
ij

|(A+B)ij∆ij|2 ≤ u2
∑
ij

|(A+B)ij|2 = u2||A+B||2F . (6.3)

We complete the proof by noting ||C − (A+B)||2 ≤ ||C − (A+B)||F and ||A+B||F ≤
√
n||A+B||2.

Lemma 6.1.6. Let [Q,R] = QR(A) for

A =

(
A1

A2

)
, Q =

(
Q11 Q12

Q21 Q22

)
, and R =

(
R′

0

)
,

where all blocks are n× n. Define the following matrices:

1. R̃ – the floating-point sum of MM(QH
11, A1) and MM(QH

21, A2).

2. E – the floating-point sum of MM(QH
12, A1) and MM(QH

22, A2).
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If µQR(n)u, µMM(n)u ≤ 1, then

||R̃−R||2, ||E||2 ≤ 4
(
µQR(n) + µMM(n) + 2

√
n
)
u||A||2.

Proof. By Assumption 6.1.3, there exist matrices Â ∈ C2n×n and Q̂ ∈ C2n×2n such that Q̂

is truly unitary, Â = Q̂R, ||Q− Q̂||2 ≤ µQR(n)u, and ||A− Â||2 ≤ µQR(n)u||A||2. Let

Â =

(
Â1

Â2

)
and Q̂ =

(
Q̂11 Q̂12

Q̂21 Q̂22

)
, (6.4)

where again all blocks are n×n. Consider first MM(QH
11, A1). Applying Assumption 6.1.2

we observe

||MM(QH
11, A1)− Q̂H

11Â1||2 ≤ ||MM(QH
11, A1)−QH

11A1||2 + ||QH
11A1 − Q̂H

11Â1||2

≤ µMM(n)u||Q11||2||A1||2 + ||QH
11A1 − Q̂H

11A1||2 + ||Q̂H
11A1 − Q̂H

11Â1||2

≤ µMM(n)u||Q||2||A||2 + ||Q− Q̂||2||A||2 + ||Q̂||2||A− Â||2.

(6.5)

Since ||Q̂||2 = 1 and therefore ||Q||2 ≤ ||Q̂||2 + µQR(n)u = 1 + µQR(n)u, (6.5) implies

||MM(QH
11, A1)− Q̂H

11Â1||2 ≤ [2µQR(n) + µMM(n)(1 + µQR(n)u)]u||A||2

≤ 2(µQR(n) + µMM(n))u||A||2.
(6.6)

Repeating this argument, swapping blocks accordingly, we obtain the same result for

||MM(QH
21, A2) − Q̂H

21Â2||2, ||MM(QH
12, A1) − Q̂H

12Â1||2, and ||MM(QH
22, A2) − Q̂H

22Â2||2.

To now bound ||R̃−R′||2, note that

R′ = Q̂H
11Â1 + Q̂H

21Â2 (6.7)

since Â = Q̂R. Consequently,

||R̃−R′||2 ≤ ||R̃−(MM(QH
11, A1) +MM(QH

21, A2))||2

+ ||MM(QH
11, A1)− Q̂H

11Â1||2

+ ||MM(QH
21, A2)− Q̂H

21Â2||2.

(6.8)
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By Lemma 6.1.5, we can bound the first term by
√
nu||MM(QH

11, A1) +MM(QH
21, A2)||2,

where

||MM(QH
11, A1) +MM(QH

21, A2)||2 ≤ ||MM(QH
11, A1)||2 + ||MM(QH

21, A2)||2

≤ ||QH
11A1||2 + µMM(n)u||Q11||2||A1||2

+ ||QH
21A2||2 + µMM(n)u||Q21||2||A2||2

≤ 2(1 + µMM(n)u)(1 + µQR(n)u)||A||2

≤ 8||A||2.

(6.9)

Applying this to (6.8) alongside (6.6) yields

||R̃−R′||2 ≤ 4
(
µQR(n) + µMM(n) + 2

√
n
)
u||A||2. (6.10)

We obtain the same bound for ||E||2 by repeating this argument with MM(QH
12, A1) and

MM(QH
22, A2) and noting that Q̂H

12Â1 + Q̂H
22Â2 = 0.

In the subsequent sections, as in the previous two lemmas, we tacitly assume that

input matrices can be represented exactly on our floating-point machine. This is done

to simplify the analysis, discarding what amounts to negligible additive errors due to

floating-point representation.

6.2 Finite-Precision Shattering

In this section, we consider how floating-point computations impact pseudospectral

shattering. We begin with Λϵ(Ã, n
αB̃). A straightforward extension of [16, Theorem 3.13]

implies the following finite-precision counterpart to Theorem 2.3.1.

Theorem 6.2.1. Let A,B ∈ Cn×n with ||A||2, ||B||2 ≤ 1 and let 0 < γ < 1
2
. Further, let

ω = γ4

4
n

−8α+13
3 and construct the grid g = grid(z, ω, ⌈8/ω⌉, ⌈8/ω⌉) for α > 0 and z chosen

uniformly at random from the square with bottom left corner −4−4i and side length ω. On

a floating-point machine with precision u, suppose G1, G2 ∈ Cn×n satisfy Gk(i, j) = N( 1√
n
)
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for 1 ≤ i, j ≤ n and k = 1, 2. If Ã = A+ γG1 and B̃ = B+ γG2 (again in finite precision)

then Λϵ(Ã, n
αB̃) is shattered with respect to g for

ϵ =
1

2
· γ5

64n
11α+25

3 + γ5

with probability at least
[
1− 82

n
− 531441

16n2

] [
1− n2−2α

γ2 − 4e−n
]
provided

u ≤ 1

2(3 + cN)n
α+ 1

2

· γ5

64n
11α+25

3 + γ5
.

Proof. Combining Assumption 6.1.1 and Lemma 6.1.5, Ã and B̃ are at most (3 + cN)
√
nu

away (in the spectral norm) from their exact-arithmetic counterparts. Accommodating

the nα scaling on B̃ and recalling that shattering is achieved in exact arithmetic for ϵ =

γ5

64n
11α+25

3 +γ5
with probability at least

[
1− 82

n
− 531441

16n2

] [
1− n2−2α

γ2 − 4e−n
]
, Lemma 2.3.3

implies that it is sufficient to take

(3 + cN)n
α+ 1

2u ≤ 1

2
· γ5

64n
11α+25

3 + γ5
, (6.11)

which is equivalent to the listed requirement on u.

To put this result in context, note that in producing a diagonalization of (A,B)

with (spectral norm) accuracy ε, RPD sets γ = O(ε). Hence, Theorem 6.2.1 implies

that O(log(n
ε
)) bits of precision are required to obtain pseudospectral shattering as part

of a floating-point diagonalization algorithm. Importantly, this is the same asymptotic

precision derived by Banks et al. for single-matrix shattering (see Table 6.1).

Recall that in Chapter 2 we also proved shattering for Λϵ(n
−αB̃−1Ã). With this in

mind, we pursue a similar precision bound that will guarantee shattering for the product

matrix n−αB̃−1Ã. Given Figure 2.1, we expect that higher precision will be necessary

here, as we must account for error incurred by inverting B̃ and multiplying by Ã in

addition to the error already baked into Ã and B̃. This is in part captured by the following

intermediate result.
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Lemma 6.2.2. Suppose A1, A2, B1, B2 ∈ Cn×n with ||A1 − A2||2, ||B1 − B2||2 ≤ δ for

δ < σn(B1). Then

||B−1
1 A1 −B−1

2 A2||2 ≤ δ||B−1
1 ||2

(
1 +

||A1||2 + δ

σn(B1)− δ

)
.

Proof. We have

||B−1
1 A1 −B−1

2 A2||2 = ||B−1
1 A1 −B−1

1 A2 +B−1
1 A2 −B−1

2 A2||2

≤ ||B−1
1 ||2||A1 − A2||2 + ||B−1

1 −B−1
2 ||2||A2||2

≤ δ||B−1
1 ||2 + ||B−1

1 ||2||B2 −B1||2||B−1
2 ||2||A2||2

≤ δ||B−1
1 ||2

(
1 +

||A2||2
σn(B2)

)
≤ δ||B−1

1 ||2
(
1 +

||A1||2 + δ

σn(B1)− δ

)
,

(6.12)

where the last inequality follows from Lemma 1.7.2.

Combining Lemma 6.2.2 with Assumption 6.1.2 and Assumption 6.1.4 yields the

following floating-point counterpart to Proposition 2.3.2. Note that we use fast inversion

here under the assumption that shattering of Λϵ(n
−αB̃−1Ã) would be similarly used as

part of a fast diagonalization algorithm for (A,B).

Theorem 6.2.3. Let A,B ∈ Cn×n with ||A||2, ||B||2 ≤ 1 and let 0 < γ < 1
2
. Further let

ω = γ4

4
n− 8α+13

3 and construct the grid g = grid(z, ω, ⌈8/ω⌉, ⌈8/ω⌉) for α > 0 and z chosen

uniformly at random from the square with bottom left corner −4−4i and side length ω. On

a floating-point machine with precision u, suppose G1, G2 ∈ Cn×n satisfy Gk(i, j) = N( 1√
n
)

for 1 ≤ i, j ≤ n and k = 1, 2. If Ã = A+ γG1, B̃ = B + γG2 (again in finite precision)

and further

M = MM(INV(B̃), Ã),

then Λϵ(n
−αM) is shattered with respect to g for

ϵ =
γ5

32
n− 11α+25

3
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with probability at least
[
1− 82

n
− 531441

16n2

] [
1− n2−2α

γ2 − 4e−n
]
provided

u ≤ 1

21µINV(n)
· 1

(6nα + 1)cINV log(n)
· γ

5

64
n− 11α+25

3 .

Proof. Set (A2, B2) = (Ã, B̃) and let (A1, B1) be the corresponding exact-arithmetic pencil

(perturbed with true Ginibre matrices). Further let X = n−αB−1
1 A1 and X ′ = n−αB−1

2 A2.

Here, X is the exact-arithmetic product covered by Proposition 2.3.2 while X ′ is the exact

product corresponding to (A2, B2), equivalently a floating-point version of X that assumes

exact inversion and matrix multiplication. Throughout, we assume access to the events that

guarantee shattering in Proposition 2.3.2, in particular σn(B1) ≥ n−α, and ||A1||2, ||B1||2 ≤

3, which occur with probability at least
[
1− 82

n
− 531441

16n2

] [
1− n2−2α

γ2 − 4e−n
]
.

As in the proof of Theorem 6.2.1, we start by noting ||A1 − A2||2, ||B1 − B2||2 ≤

(3 + cN)
√
nu. Since u ≤ 1

2(3+cN)nα+1/2 and therefore (3 + cN)
√
nu ≤ 1

2nα < σn(B1),

Lemma 6.2.2 implies

||X −X ′||2 ≤ 2(3 + cN)
√
nu(1 + 3nα). (6.13)

With this in mind, we next seek a bound on ||n−αM −X ′||2. To do this, let C = INV(B2).

Applying Assumption 6.1.4, we have

||C −B−1
2 ||2 ≤ µINV(n)uκ2(B2)

cINV log(n)||B−1
2 ||2. (6.14)

By Lemma 1.7.2, ||B2||2 ≤ 3 + (3 + cN)
√
nu and σn(B2) ≥ n−α − (3 + cN)

√
nu, so this

can be simplified to

||C −B−1
2 ||2 ≤ µINV(n)u

(
(3 + (3 + cN)

√
nu)nα

1− [(3 + cN)
√
nu]nα

)cINV log(n)
nα

1− [(3 + cN)
√
nu]nα

≤ µINV(n)u(6n
α + 1)cINV log(n)(2nα),

(6.15)

where we again use the fact that (3 + cN)
√
nu ≤ 1

2nα . Now M = MM(C,A2), so by

Assumption 6.1.2

||M − CA2||2 ≤ µMM(n)u||C||2||A2||2. (6.16)
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Bounding ||C||2 via (6.15) as

||C||2 ≤ ||B−1
2 ||2 + µINV(n)u(6n

α + 1)cINV log(n)(2nα)

≤ 2nα
[
1 + µINV(n)u(6n

α + 1)cINV log(n)
] (6.17)

and further noting ||A2||2 ≤ ||A||2 + (3 + cN)
√
nu ≤ 3 + (3 + cN)

√
nu, we conclude

||M − CA2||2 ≤ µMM(n)u(6n
α + 1)

[
1 + µINV(n)u(6n

α + 1)cINV log(n)
]

= µMM(n)u(6n
α + 1) + µMM(n)µINV(n)u

2(6nα + 1)cINV log(n)+1.

(6.18)

Putting everything together, we have

||n−αM−X ′||2 = ||n−αM − n−αCA2 + n−αCA2 − n−αB−1
2 A2||2

≤ n−α||M − CA2||2 + n−α||C −B−1
2 ||2||A2||2

≤ 7
[
µMM(n)u+ µMM(n)µINV(n)u

2(6nα + 1)cINV log(n)

+ µINV(n)u(6n
α + 1)cINV log(n)

]
(6.19)

after applying n−α(6nα + 1) ≤ 7 and ||A2||2 ≤ 3 + (3 + cN)
√
nu ≤ 7

2
to simplify constants.

The last term in this expression clearly dominates; assuming each piece of (6.19) is bounded

by the last one, we obtain

||n−αM −X ′||2 ≤ 21µINV(n)u(6n
α + 1)cINV log(n). (6.20)

Combining this with (6.13) yields our final error bound:

||n−αM −X||2 ≤ 21µINV(n)u(6n
α + 1)cINV log(n) + 2(3 + cN)

√
nu(1 + 3nα). (6.21)

Since Proposition 2.3.2 implies that Λϵ(X) is shattered for ϵ = γ5

16
n− 11α+25

3 , we

ensure shattering for Λϵ(n
−αM) with ϵ = γ5

32
n− 11α+25

3 by requiring that each piece of (6.21)

is bounded by γ5

64
n− 11α+25

3 , which is guaranteed as long as

u ≤ 1

21µINV(n)
· 1

(6nα + 1)cINV log(n)
· γ

5

64
n− 11α+25

3 . (6.22)

Note that this requirement on u satisfies the assumptions used throughout the proof.
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Comparing Theorem 6.2.3 with Theorem 6.2.1 makes clear the practical cost of

forming B̃−1Ã. In particular, finite-precision shattering for the pencil requires O(log(n
ε
))

bits of precision versus O(log(n
ε
) + log2(n)) for the product matrix, where the polyloga-

rithmic increase in the latter is rooted in the logarithmic stability of INV. This captures

rigorously the phenomenon displayed in Figure 2.1 and underscores again the necessity of

avoiding matrix inversion.

6.3 General IRS Bounds

We turn next to IRS. Motivated by Remark 3.2.4, our goal is to obtain general

precision bounds for the routine, capable of capturing its performance in a variety of

settings, including (but not limited to) divide-and-conquer. If [Ãp, B̃p] = IRS(A,B, p) on

our floating-point machine, we seek the precision u that guarantees

||Ãp − Ap||2, ||B̃p −Bp||2 ≤ δ

∣∣∣∣∣∣∣∣(AB
)∣∣∣∣∣∣∣∣

2

(6.23)

for arbitrary δ > 0 and Ap, Bp a corresponding set of exact-arithmetic outputs, which

satisfy A−1
p Bp = (A−1B)2

p
exactly. Intuitively, such a precision u will depend on the

accuracy parameter δ, the size of the pencil (A,B), p the number steps of squaring, and an

appropriately chosen condition number. Noting that exact-arithmetic repeated squaring

can at most decrease the norms of the input matrices, we can think of (6.23) as a weak

forward error bound.

Analyzing IRS in this way marks a departure from the literature. While error in

the routine has been bounded rigorously in finite-precision arithmetic before, most notably

by Malyshev [93,94] and Bai, Demmel, and Gu [7], results typically center the spectral

projector application and make use of standard O(n3) matrix multiplication/QR routines.

We aim to address both of these shortcomings here, presenting general bounds that are

explicitly compatible with fast matrix multiplication (via the black-box assumptions from

Section 6.1).
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6.3.1 Condition Number and Technical Lemmas

We start by defining a condition number κIRS. We justify our choice in the following

subsection, where we show that κIRS naturally bounds error in repeated squaring.

Definition 6.3.1. Given A,B ∈ Cn×n and p ≥ 1, define the block matrix

Dp
(A,B) =


B
−A B

−A . . .
. . . B

−A

 ∈ C2pn×(2p−1)n.

The condition number of IRS corresponding to the inputs A,B, and p is

κIRS(A,B, p) = σmin(D
p
(A,B))

−1

∣∣∣∣∣∣∣∣(AB
)∣∣∣∣∣∣∣∣

2

.

Note that κIRS satisfies a number of properties we should expect from a suitable

condition number; it is invariant to both swapping A and B and scaling the pencil (A,B),

and it also satisfies κIRS(A,B, p) ≥ 1 for any A,B and p.2 Recalling the discussion

from Section 3.2, we might ask how κIRS compares to the quantities ω(A,B) and d(A,B) of

Malyshev [95] and Bai, Demmel, and Gu [7]. The following lemma provides an answer.

Lemma 6.3.2. Let (A,B) be an n× n regular pencil. Then for any p ≥ 1 we have

σmin(D
p
(A,B)) ≥ d(A,B) ≥

√
σn(AAH +BBH)

14ω(A,B)

Proof. Let m = 2p and define the mn×mn block matrix

Mp(A,B) =


−A −B
B −A

. . . . . .

B −A

 . (6.24)

To first show σmin(D
p
(A,B)) ≥ σmin(Mp(A,B)), let x = [x1 x2 · · · xm−1]

T ∈ C(m−1)n be the

unit vector satisfying σmin(D
p
(A,B)) = ||Dp

(A,B)x||2, where xi ∈ Cn for each i. Padding x

2This follows form the observation σmin(D
p
(A,B)) ≤ σmin

(
A
B

)
.
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with zeros to obtain another unit vector

y = [xm−1 xm−2 · · · x1 0] ∈ Cmn (6.25)

it is easy to see ||Mp(A,B)y||2 = ||Dp
(A,B)x||2 and therefore

σmin(Mp(A,B)) ≤ ||Mp(A,B)y||2 = ||Dp
(A,B)x||2 = σmin(D

p
(A,B)). (6.26)

The first inequality now follows from an observation of Bai, Demmel, and Gu, who show

thatMp(A,B) is unitarily equivalent to the block matrix diag(−A+eiθ1B, . . . ,−A+eiθmB)

for eiθ1 , . . . , eiθm the mth roots of −1. Hence, we have

σmin(Mp(A,B)) = min
1≤j≤m

σn(−A+ eiθjB) ≥ min
θ
σn(−A+ eiθB) = d(A,B). (6.27)

The remaining inequality can be derived from [95, Theorem 3]. Letting LLH = AAH+BBH

be a Cholesky factorization (which exists since (A,B) is regular) and setting A0 = L−1A

and B0 = L−1B, we have

1

14ω(A,B)

<
1

maxϕ ||(B0 − eiϕA0)−1||2
≤ ||L−1||2min

ϕ
(B − eiϕA) =

d(A,B)

σn(L)
. (6.28)

We complete the proof by rearranging and recalling σi(L)
2 = σi(AA

H +BBH) for all i.

Unlike d−1
(A,B) and ω(A,B), κIRS(A,B, p) is not necessarily infinite if (A,B) has an

eigenvalue on the unit circle. In fact, κIRS(A,B, p) is always finite if A or B is nonsingular.

This underscores the general utility of κIRS, which can be used to bound error in repeated

squaring even when (A,B) is ill-posed for the spectral projector application. Instead, as

we will see, κIRS is infinite when the block QR factorization computed by IRS cannot be

controlled by perturbation bounds, which are necessary to obtain a result like (6.23).

There is another important property unique to κIRS: it includes an explicit de-

pendence on p, the number of steps of squaring. While κIRS(A,B, p) increases with p,

Lemma 6.3.2 implies the p-independent upper bound

κIRS(A,B, p) ≤ d−1
(A,B)

∣∣∣∣∣∣∣∣(AB
)∣∣∣∣∣∣∣∣

2

. (6.29)
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Thinking of p as an input to the procedure not only provides a sharper condition number

but also allows us to quantify the stability of IRS in terms of the number of steps taken

(and in particular its dependence on n). Again, this is aimed at producing general bounds.

While it is common to consider the setting p→ ∞ when using IRS to compute spectral

projectors, other applications may come with a fixed value of p, in which case the upper

bound (6.29) could be loose.

To complete this section, we state a pair of technical lemmas due to Malyshev [93,

Lemmas 4.1 and 4.2], which we’ll need later on.

Lemma 6.3.3 (Malyshev 1992). Suppose R ∈ Cm×m is nonsingular and E ∈ Cn×m for

m ≥ n. There exists a matrix S ∈ C(m+n)×(m+n) such that

1. (I + S)
(
R
E

)
=
(
R′

0

)
.

2. (I + S)H(I + S) = I

3. ||S||2 ≤ ||ER−1||2 ≤ ||E||2||R−1||2.

Proof. We take the opportunity to correct a small error in Malyshev’s proof. Define

S̃ =

(
0 (ER−1)H

−ER−1 0

)
. (6.30)

Then the matrix

S =

(
[I + (ER−1)HER−1]−1/2 0

0 [I + ER−1(ER−1)H ]−1/2

)
(I + S̃)− I (6.31)

satisfies the listed requirements.

Lemma 6.3.4 (Malyshev 1992). Let A ∈ Cm×n be full rank and suppose

A = Q1

(
K1 L1

0 M1

)
= Q2

(
K2 L2

0 M2

)
for Q1, Q2 ∈ Cm×m unitary, K1, K2 ∈ Ck×k nonsingular, and M1,M2 ∈ C(m−k)×(n−k)

full rank. Then there exist unitary matrices P ∈ Ck×k and Q ∈ C(n−k)×(n−k) such that

K2 = PK1, L2 = PL1, and M2 = QM1.
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Remark 6.3.5. Why is it important for R to be nonsingular in Lemma 6.3.3? While

Malyshev’s proof uses R−1 explicitly to construct S, we can always find a unitary matrix

that zeros out E, even when R is singular. Indeed, we could obtain I + S by simply

computing a full QR factorization of
(
R
E

)
. The key here is the norm bound on S. We want

to guarantee that if E is sufficiently close to zero, then I + S is essentially the identity.

In this way, Lemma 6.3.3 can be interpreted as a perturbation result similar to our full

QR bounds from Chapter 3. Eventually we will apply this lemma to a matrix R whose

smallest singular value can be bounded from below by σmin(D
p
(A,B)), and this is in fact our

main motivation for the definition of κIRS.

6.3.2 Error Analysis

We are now ready to bound error in repeated squaring. To simplify the analysis,

we will not track the individual polynomials µMM(n) and µQR(n), instead working with a

“general polynomial”

µ(n) = max
{
µMM(n), µQR(n),

√
n
}

(6.32)

and the associated quantity τ = µ(n)u. Throughout, we can think of τ as small, corre-

sponding to a choice u < µ(n)−1.

First up is a lemma that bounds norm growth in IRS. Because finite-precision

IRS repeatedly multiplies the inputs by pieces of nearly unitary matrices, we expect that

norms should grow by (at most) small constants. Here, Ãj and B̃j are the outputs of j

steps of finite-precision IRS, beginning with the input matrices Ã0 = A and B̃0 = B. In

this notation – and in terms of the black-box algorithms defined in Section 6.1 – each

iteration of floating-point IRS consists of the following.

1. [Q̃, R] = QR

([
B̃j

−Ãj

])
with Q̃ =

(
Q̃11 Q̃12

Q̃21 Q̃22

)

2. Ãj+1 = MM(Q̃H
12, Ãj)
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3. B̃j+1 = MM(Q̃H
22, B̃j)

Lemma 6.3.6. At any step j, ||
(Ãj+1

B̃j+1

)
||2 ≤ (1 + 2τ)2||

(Ãj

B̃j

)
||2.

Proof. As noted above, Ãj+1 = MM(Q̃H
12, Ãj) and B̃j+1 = MM(Q̃H

22, B̃j) for Q̃12 and Q̃22

blocks of a nearly unitary Q̃ obtained by computing a finite-precision, full QR factorization

of
( B̃j

−Ãj

)
. With this in mind, write∣∣∣∣∣

∣∣∣∣∣
(
Ãj+1

B̃j+1

)∣∣∣∣∣
∣∣∣∣∣
2

≤

∣∣∣∣∣
∣∣∣∣∣
(
Ãj+1 − Q̃H

12Ãj

B̃j+1 − Q̃H
22B̃j

)∣∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣
∣∣∣∣∣
(
Q̃H

12Ãj

Q̃H
22B̃j

)∣∣∣∣∣
∣∣∣∣∣
2

. (6.33)

By Assumption 6.1.2, ||Ãj+1 − Q̃H
12Ãj||2 ≤ τ ||Q̃12||2||Ãj||2 and ||B̃j+1 − Q̃H

22B̃j||2 ≤

τ ||Q̃22||2||B̃j||2, so ∣∣∣∣∣
∣∣∣∣∣
(
Ãj+1 − Q̃H

12Ãj

B̃j+1 − Q̃H
22B̃j

)∣∣∣∣∣
∣∣∣∣∣
2

≤
√
2τ(1 + τ)

∣∣∣∣∣
∣∣∣∣∣
(
Ãj

B̃j

)∣∣∣∣∣
∣∣∣∣∣
2

(6.34)

since Q̃12 and Q̃22 satisfy ||Q̃12||2, ||Q̃22||2 ≤ ||Q̃||2 ≤ 1 + τ and ||Ãj||2, ||B̃j||2 ≤ ||
(Ãj

B̃j

)
||2.

Similarly, ∣∣∣∣∣
∣∣∣∣∣
(
Q̃H

12Ãj

Q̃H
22B̃j

)∣∣∣∣∣
∣∣∣∣∣
2

≤

∣∣∣∣∣
∣∣∣∣∣
(
Q̃H

12 0

0 Q̃H
22

)∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣
∣∣∣∣∣
(
Ãj

B̃j

)∣∣∣∣∣
∣∣∣∣∣
2

≤ (1 + τ)

∣∣∣∣∣
∣∣∣∣∣
(
Ãj

B̃j

)∣∣∣∣∣
∣∣∣∣∣
2

. (6.35)

We obtain the final inequality by combining (6.34) and (6.35) and using the loose3 upper

bound (
√
2τ + 1)(1 + τ) ≤ (1 + 2τ)2.

The main result of this section can now be stated as follows.

Theorem 6.3.7. Given A,B ∈ Cn×n and p ≥ 1, let [Ãp, B̃p] = IRS(A,B, p) on a

floating-point machine with precision u. For δ ∈ (0, 1) and µ(n) as in (6.32) suppose

u ≤ δ

324µ(n)κIRS(A,B, p)max {p2 + 4p− 5, 1}
.

Then there exist matrices Åp, B̊p ∈ Cn×n such that Å−1
p B̊p = (A−1B)2

p
and

||Ãp − Åp||2, ||B̃p − B̊p||2 ≤ δ

∣∣∣∣∣∣∣∣(AB
)∣∣∣∣∣∣∣∣

2

.

3We use this bound for convenience to simplify constants. As we will see, it does not significantly
impact the final result.
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Proof. Deriving this bound is fairly lengthy, so we once again break the proof into pieces.

The high-level strategy (to keep in mind throughout) can be summarized as follows.

Consider the 2pn× (2p + 1)n block matrix

M =


−A B

−A B
. . . . . .

−A B

 . (6.36)

As we demonstrate below, the floating-point matrices used to obtain Ãp and B̃p via IRS

can be built into an approximate block QR factorization of M (containing Ãp and B̃p).

Our goal will be to derive a nearby, exact block QR factorization of M , which will contain

exact outputs Åp and B̊p with bounds on ||Ãp − Åp||2 and ||B̃p − B̊p||2 available. Since it

will be relevant later on, note that the middle 2pn× (2p − 1)n block of M is the matrix

Dp
(A,B) from Definition 6.3.1.

This strategy for analyzing IRS is due to Malyshev [93]. In essence, we demonstrate

here that his approach can accommodate fast matrix multiplication; in particular, it does

not require doing QR via standard Householder reflectors, as is assumed in [93].

Step One: What happens if we apply the output of IRS to M in blocks?

Consider the first iteration of IRS, which computes[
Q̃1,

(
R1

0

)]
= QR

([
B
−A

])
(6.37)

for nearly unitary Q̃1 ∈ C2n×2n and upper triangular R1 ∈ Cn×n. Let P̃1 be the matrix

P̃1 =

Q̃1

. . .

Q̃1

 ∈ C2pn×2pn (6.38)

containing 2p−1 copies of Q̃1 on its diagonal. Further, let M̃1 be a floating-point approxi-

mation of P̃H
1 M obtained by applying MM (and finite-precision matrix addition) in n×n
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blocks. It is easy to see that M̃1 has block structure

M̃1 =



∗ R̃1 ∗
−Ã1 Ẽ1 B̃1

∗ R̃1 ∗
−Ã1 Ẽ1 B̃1

. . . . . .

∗ R̃1 ∗
−Ã1 Ẽ1 B̃1


, (6.39)

where ∗ blocks are arbitrary. We use finite-arithmetic block matrix multiplication here –

as opposed to a separate black-box algorithm for large, non-square matrices – to guarantee

that Ã1 and B̃1 appear in (6.39). Note that the zero blocks of M̃1 are computed exactly

by MM. Moreover, R̃1 and Ẽ1 are covered by Lemma 6.1.6 – i.e.,

||R̃1 −R1||2, ||Ẽ1||2 ≤ 16τ

∣∣∣∣∣∣∣∣(AB
)∣∣∣∣∣∣∣∣

2

. (6.40)

Step Two: Repeat this argument for the next iteration.

The second step of IRS computes[
Ũ ,

(
R2

0

)]
= QR

([
B̃1

−Ã1

])
, (6.41)

for Ũ ∈ C2n×2n and R2 ∈ Cn×n. Breaking Ũ into n × n blocks Ũ =

(
Ũ11 Ũ12

Ũ21 Ũ22

)
and

constructing

Q̃2 =


In

Ũ11 Ũ12

In
Ũ21 Ũ22

 ∈ C4n×4n, (6.42)

let P̃2 be the matrix containing 2p−2 copies of Q̃2 on its diagonal – that is,

P̃2 =

Q̃2

. . .

Q̃2

 ∈ C2pn×2pn. (6.43)

Again applying MM in n × n blocks to left-multiply M̃1 by P̃2, we obtain M̃2 – a
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finite-precision version of P̃H
2 M̃1 consisting of 2p−2 blocks of the form

∗ R̃1 ∗
∗ ∗ R̃2 ∗ ∗

∗ R̃1 ∗
−Ã2 MM(ŨH

12, Ẽ1) Ẽ2 MM(ŨH
22, Ẽ1) B̃2

 . (6.44)

Step Three: Generalize to an arbitrary step of IRS.

The process outlined above yields a sequence of 2pn× (2p+1)n matrices M̃1, . . . , M̃p. Each

M̃i is an approximation of the exact product M̂i = P̃H
i P̃

H
i−1 · · · P̃H

1 M for a corresponding

set of nearly unitary matrices P̃1, . . . , P̃p, each of which is constructed from the blocks of

a 2n× 2n nearly unitary matrix as in (6.42). Moreover, M̃i consists of 2
p−i blocks with

structure (
∗ ∗ ∗

−Ãi ∆̃i B̃i

)
(6.45)

for ∆̃i a small n× (2i − 1)n matrix. Indeed, the center n× n block Ẽi of ∆̃i satisfies

||Ẽi||2 ≤ 16τ

∣∣∣∣∣
∣∣∣∣∣
(
B̃i−1

−Ãi−1

)∣∣∣∣∣
∣∣∣∣∣
2

≤ 16τ(1 + 2τ)2i−2

∣∣∣∣∣∣∣∣(AB
)∣∣∣∣∣∣∣∣ . (6.46)

Step Four: Construct a corresponding set of exact-arithmetic block matrices.

Suppose that P̃i is constructed from the blocks of the nearly unitary matrix Q̃ ∈ C2n×2n.

Since we use QR to obtain Q̃, as described above, we know by Assumption 6.1.3 that

there exists a truly unitary matrix Q ∈ C2n×2n such that ||Q̃−Q||2 ≤ µQR(n)u ≤ τ . With

this in mind, let Pi be the truly unitary matrix that has the same block structure as P̃i

but swaps the blocks of Q̃ for the corresponding blocks of Q and define the 2pn× (2p +1)n

matrices Mi = PH
i · · ·PH

1 M .

We now have two sets of exact-arithmetic matrices to work with: Mi and M̂i.

The former can be thought of as an exact-arithmetic counterpart of M̃i while M̂i is an

intermediate matrix, obtained via exact multiplication with the nearly unitary P̃i. Since
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||Pi − P̃i||2 ≤ τ by construction, we can easily bound ||M̂i −Mi||2 recursively:

||M̂i −Mi||2 = ||M̂i − PH
i M̂i−1 + PH

i M̂i−1 −Mi||2

≤ ||M̂i − PH
i M̂i−1||2 + ||PH

i M̂i−1 −Mi||2

≤ ||P̃i − Pi||2||M̂i−1||2 + ||Pi||2||M̂i−1 −Mi−1||2

≤ τ(1 + τ)i−1||M ||2 + ||M̂i−1 −Mi−1||2

(6.47)

The base case here is ||M̂1 −M1||2 ≤ ||P̃1 − P1||2||M ||2 ≤ τ ||M ||2, so by induction we

obtain

||M̂i −Mi||2 ≤

(
i−1∑
j=0

(1 + τ)j

)
τ ||M ||2 =

[
(1 + τ)i − 1

]
||M ||2. (6.48)

Note that M̂i and Mi have the same block structure as M̃i, a consequence of the

fact that each Pi has the same block structure as P̃i. Following (6.45), label the blocks of

M̂i and Mi as (
∗ ∗ ∗

−Âi ∆̂i B̂i

)
and

(
∗ ∗ ∗

−Ai ∆i Bi

)
, (6.49)

respectively, where again ∗ blocks are arbitrary and ∆̂i,∆i ∈ Cn×(2i−1)n.

Step Five: Bound ||Ãi − Ai||2 and ||B̃i −Bi||2.

The matrices Ai and Bi in (6.49) are not necessarily the result of applying i steps of

exact-arithmetic repeated squaring to A and B. This follows from the fact that the unitary

matrices Pi used to obtain Ai and Bi from M do not correspond to true QR factorizations

of exact outputs. Rather, Assumption 6.1.3 implies that each Pi is constructed from

the Q-factor of a matrix nearby
( B̃j

−Ãj

)
. Nevertheless, we are still interested in bounding

||Ãi − Ai||2 and ||B̃i −Bi||2 as an intermediate step. The heuristic to keep in mind is the

following: while Ai and Bi are not the exact outputs we’re in search of, they should be

close to a pair that will satisfy the guarantees of the theorem.

Consider first ||Ãi − Ai||2. Since

||Ãi − Ai||2 ≤ ||Ãi − Âi||2 + ||Âi − Ai||2 ≤ ||Ãi − Âi||2 + ||M̂i −Mi||2, (6.50)
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and given (6.48), we can bound ||Ãi − Ai||2 via (6.50) by bounding ||Ãi − Âi||2, which

records the error due to finite-precision, block matrix multiplication. With this in mind,

suppose Ãi = MM(Q̃H
12, Ãi−1) for Q̃12 an n× n block of a nearly unitary 2n× 2n matrix.

In this case, Âi = Q̃H
12Âi−1 and we have

||Ãi − Âi||2 = ||MM(Q̃H
12, Ãi−1)− Q̃H

12Âi−1||2

= ||MM(Q̃H
12, Ãi−1)− Q̃H

12Ãi−1 + Q̃H
12Ãi−1 − Q̃H

12Âi−1||2

≤ ||MM(Q̃H
12, Ãi−1)− Q̃H

12Ãi−1||2 + ||Q̃H
12Ãi−1 − Q̃H

12Âi−1||2.

(6.51)

Applying our black-box assumptions and Lemma 6.3.6, we have

||Ãi − Âi||2 ≤ τ ||Q̃12||2||Ãi−1||2 + ||Q̃12||2||Ãi−1 − Âi−1||2

≤ τ(1 + τ)

∣∣∣∣∣
∣∣∣∣∣
(
Ãi−1

B̃i−1

)∣∣∣∣∣
∣∣∣∣∣
2

+ (1 + τ)||Ãi−1 − Âi−1||2

≤ τ(1 + τ)(1 + 2τ)2i−2

∣∣∣∣∣∣∣∣(AB
)∣∣∣∣∣∣∣∣

2

+ (1 + τ)||Ãi−1 − Âi−1||2.

(6.52)

Once again we obtain a recursive bound. In this notation Ã0 = Â0 = A, so the base case

here is simply the error in one finite-precision n× n matrix multiplication – i.e.,

||Ã1 − Â1||2 ≤ τ(1 + τ)||A||2 ≤ τ(1 + τ)

∣∣∣∣∣∣∣∣(AB
)∣∣∣∣∣∣∣∣

2

. (6.53)

Thus, we conclude inductively

||Ãi − Âi||2 ≤ τ

(
i∑

j=1

(1 + τ)i−j+1(1 + 2τ)2j−2

)∣∣∣∣∣∣∣∣(AB
)∣∣∣∣∣∣∣∣

2

= τ(1 + 2τ)2i

(
i∑

j=1

[
1 + τ

(1 + 2τ)2

]i−j+1
)∣∣∣∣∣∣∣∣(AB

)∣∣∣∣∣∣∣∣
2

= τ(1 + 2τ)2i · 1 + τ

(1 + 2τ)2
·
1−

(
1+τ

(1+2τ)2

)i
1− 1+τ

(1+2τ)2

·
∣∣∣∣∣∣∣∣(AB

)∣∣∣∣∣∣∣∣
2

= τ(1 + τ)
(1 + 2τ)2i − (1 + τ)i

(1 + 2τ)2 − (1 + τ)

∣∣∣∣∣∣∣∣(AB
)∣∣∣∣∣∣∣∣

=
1 + τ

3 + 4τ

[
(1 + 2τ)2i − (1 + τ)i

] ∣∣∣∣∣∣∣∣(AB
)∣∣∣∣∣∣∣∣

2

.

(6.54)
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Combining this with (6.48) and 1+τ
3+4τ

< 1, and noting ||M ||2 ≤ ||A||2 + ||B||2 ≤ 2||
(
A
B

)
||2,

we have

||Ãi − Ai||2 ≤
[
(1 + 2τ)2i − (1 + τ)i

] ∣∣∣∣∣∣∣∣(AB
)∣∣∣∣∣∣∣∣

2

+ 2
[
(1 + τ)i − 1

] ∣∣∣∣∣∣∣∣(AB
)∣∣∣∣∣∣∣∣

2

=
[
(1 + 2τ)2i + (1 + τ)i − 2

] ∣∣∣∣∣∣∣∣(AB
)∣∣∣∣∣∣∣∣

2

.

(6.55)

Repeating this argument implies the same bound for ||B̃i −Bi||2.

Step Six: Show that ||∆i||2 is small.

If Mi was obtained from M via exact-arithmetic repeated squaring, we would have ∆i = 0.

Hence, the norm of ∆i is an indication of how far Ai and Bi are from exact outputs. With

this in mind, we next derive a bound on ||∆i||2.

We start by bounding ||∆̂i||2, beginning with its middle n × n block Êi, which

corresponds to Ẽi in M̃i. If we again assume that P̃i is built from the 2n×2n nearly unitary

matrix Q̃ =

(
Q̃11 Q̃12

Q̃21 Q̃22

)
, we know that Ẽi is the finite-arithmetic sum of MM(Q̃H

12, B̃i−1)

and MM(Q̃H
22,−Ãi−1) while Êi = Q̃H

12B̂i−1 − Q̃H
22Âi−1. Hence, we have

||Ẽi − Êi||2 ≤ ||Ẽi − (MM(Q̃H
12, B̃i−1) +MM(Q̃H

22,−Ãi−1))||2

+ ||MM(Q̃H
12, B̃i−1)− Q̃H

12B̂i−1||2 + ||MM(Q̃H
22, Ãi−1)− Q̃H

22Âi−1||2.
(6.56)

By Lemma 6.1.5, the first term in this expression can be bounded by

τ ||MM(Q̃H
12, B̃i−1) +MM(Q̃H

22,−Ãi−1)||2

≤ τ
[
||MM(Q̃H

12, B̃i−1)||2 + ||MM(Q̃H
22,−Ãi−1)||2

]
≤ τ

[
||Q̃H

12B̃i−1||2 + τ ||Q̃12||2||B̃i−1||2 + ||Q̃H
22Ãi−1||2 + τ ||Q̃22||2||Ãi−1||2

]
≤ τ(1 + τ)2

[
||B̃i−1||2 + ||Ãi−1||2

]
≤ 2τ(1 + τ)2

∣∣∣∣∣
∣∣∣∣∣
(
Ãi−1

B̃i−1

)∣∣∣∣∣
∣∣∣∣∣
2

≤ 2τ(1 + τ)2(1 + 2τ)2i−2

∣∣∣∣∣∣∣∣(AB
)∣∣∣∣∣∣∣∣

2

,

(6.57)
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where the last inequality follows from Lemma 6.3.6. Using (6.54), the remaining terms of

(6.56) satisfy the following:

||MM(Q̃H
22, Ãi−1)− Q̃H

22Âi−1||2

≤ ||MM(Q̃H
22, Ãi−1)− Q̃H

22Ãi−1||2 + ||Q̃H
22Ãi−1 − Q̃H

22Âi−1||2

≤ τ ||Q̃22||2||Ãi−1||2 + ||Q̃22||2||Ãi−1 − Âi−1||2

≤ τ(1 + τ)||Ãi−1||2 + (1 + τ)||Ãi−1 − Âi−1||2

≤
[
(1 + τ)2(1 + 2τ)2i−2 − (1 + τ)i

] ∣∣∣∣∣∣∣∣(AB
)∣∣∣∣∣∣∣∣

2

.

(6.58)

Putting everything together, we obtain

||Ẽi − Êi||2 ≤ 2
[
(1 + τ)3(1 + 2τ)2i−2 − (1 + τ)i

] ∣∣∣∣∣∣∣∣(AB
)∣∣∣∣∣∣∣∣

2

. (6.59)

To extend this bound to all of ∆̂i, note that

∆̂i =
(
Q̃H

12∆̂i−1 Êi Q̃H
22∆̂i−1

)
(6.60)

for the same Q̃12 and Q̃22 used above. Hence, applying both (6.46) and (6.59), we have

||∆̂i||2 ≤
∣∣∣∣∣∣[Q̃H

12∆̂i−1 Q̃H
22∆̂i−1

]∣∣∣∣∣∣
2
+ ||Êi||2

≤
∣∣∣∣∣∣[Q̃H

12 Q̃H
22

]∣∣∣∣∣∣
2
||∆̂i−1||2 + ||Ẽi||2 + ||Ẽi − Êi||2

≤ (1 + τ)||∆̂i−1||2 + 2
[
(8τ + (1 + τ)3)(1 + 2τ)2i−2 − (1 + τ)i

] ∣∣∣∣∣∣∣∣(AB
)∣∣∣∣∣∣∣∣

2

≤ (1 + τ)||∆̂i−1||2 + 2
[
(1 + 15τ)(1 + 2τ)2i−2 − (1 + τ)i

] ∣∣∣∣∣∣∣∣(AB
)∣∣∣∣∣∣∣∣

2

,

(6.61)

where we obtain the final inequality via 8τ + (1 + τ)3 ≤ 1 + 15τ . Observing ||∆̂1||2 =

||Ê1||2 ≤ 28τ ||
(
A
B

)
||2, (6.61) implies inductively

||∆̂i||2 ≤ 2(1 + τ)i

[
14τ

1 + τ
+ (1 + 15τ)

i−1∑
j=1

(1 + 2τ)2j

(1 + τ)j+1
− (i− 1)

] ∣∣∣∣∣∣∣∣(AB
)∣∣∣∣∣∣∣∣

2

. (6.62)

We therefore conclude,

||∆̂i||2 ≤ 2
(
14τ(1 + τ)i−1 + (i− 1)

[
(1 + 15τ)(1 + 2τ)2i − (1 + τ)i

]) ∣∣∣∣∣∣∣∣(AB
)∣∣∣∣∣∣∣∣

2

, (6.63)
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which we obtain by bounding the sum in (6.62) as

(1 + τ)i
i−1∑
j=1

(1 + 2τ)2j

(1 + τ)j+1
=

(1 + 2τ)2i

1 + τ

i−1∑
j=1

[
1 + τ

(1 + 2τ)2

]i−j

≤ (i− 1)(1 + 2τ)2i, (6.64)

noting 1+τ
(1+2τ)2

< 1. Combining (6.63) with (6.48) we have a final bound

||∆i||2 ≤ ||∆̂i||2 + ||∆̂i −∆i||2

≤ ||∆̂i||2 + ||M̂i −Mi||2

≤ 2
(
14τ(1 + τ)i−1 + (i− 1)

[
(1 + 15τ)(1 + 2τ)2i − (1 + τ)i

]
+ (1 + τ)i − 1

) ∣∣∣∣∣∣∣∣(AB
)∣∣∣∣∣∣∣∣

2

.

(6.65)

Step Seven: Obtain Åp, B̊p by transforming Mp to block upper triangular.

When i = p, the matrix Mi consists of only one block of the form (6.49). Hence, we have

shown so far

P̂H
p P̂

H
p−1 · · · P̂H

1 M =

(
∗ ∗ ∗

−Ap ∆p Bp

)
, (6.66)

where each P̂i is unitary, ∆p ∈ Cn×(2p−1)n is small, and Ap and Bp are close to our finite-

precision outputs Ãp and B̃p. Letting Π ∈ C(2p+1)n×(2p+1)n be the permutation matrix

that swaps the blocks of (6.66) containing −Ap and ∆p, we have constructed an exact,

almost-block-QR factorization

P̂H
p P̂p−1 · · · P̂H

1 MΠ =

(
∗ ∗ ∗
∆p −Ap Bp

)
. (6.67)

Equivalently, recalling that the middle 2pn× (2p− 1)n block of M is Dp
(A,B), we have found

an exact factorization P̂H
p · · · P̂H

1 D
p
(A,B) =

( ∗
∆p

)
.

Label the ∗ block of this matrix as F ∈ C(2p−1)n×(2p−1)n. By Lemma 6.3.3, there

exists S ∈ C2pn×2pn such that I + S is unitary, (I + S)
(
F
∆p

)
=
(
F ′

0

)
, and

||S||2 ≤ ||∆p||2||F−1||2 ≤
||∆p||2

σmin(D
p
(A,B))− ||∆p||2

, (6.68)
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assuming σmin(D
p
(A,B)) > ||∆p||2. Supposing this is the case, let

(I + S)P̂pP̂p−1 · · · P̂H
1 MΠ =

(
∗ ∗ ∗
0 −Åp B̊p

)
(6.69)

and note

||Åp − Ap||2, ||B̊p −Bp||2 ≤ ||S||2||M ||2 ≤
2||∆p||2

σmin(D
p
(A,B))− ||∆p||2

∣∣∣∣∣∣∣∣(AB
)∣∣∣∣∣∣∣∣

2

. (6.70)

Combining (6.70) with (6.55), we obtain a final bound

||Ãp − Åp||2 ≤ ||Ãp − Ap||2 + ||Ap − Åp||2

≤

[
(1 + 2τ)2p + (1 + τ)p − 2 +

2||∆p||2
σmin(D

p
(A,B))− ||∆p||2

] ∣∣∣∣∣∣∣∣(AB
)∣∣∣∣∣∣∣∣

2

,
(6.71)

which also applies to ||B̃p − B̊p||2.

Step Eight: Bound τ by enforcing ||Ãp − Åp||2, ||B̃p − B̊p||2 ≤ δ||
(
A
B

)
||2.

Given (6.71), we obtain the desired bound on ||Ãp − Åp||2 and ||B̃ − B̊p||2 provided each

of (1 + 2τ)2p − 1, (1 + τ)p − 1, and 2||∆p||2
σmin(D

p
(A,B)

)−||∆p||2 is at most δ
3
. We focus on the latter,

since it is the largest. Here, we note that taking ||∆p||2 ≤ δ
9
σmin(D

p
(A,B)) guarantees not

only that the bound (6.68) holds but also

2||∆p||2
σmin(D

p
(A,B))− ||∆p||2

≤ 2δ

9− δ
<
δ

3
, (6.72)

as desired. Appealing to (6.65) and Definition 6.3.1, we obtain ||∆p||2 ≤ δ
9
σmin(D

p
(A,B)) by

requiring that each of 14τ(1+τ)p−1, (p−1) [(1 + 15τ)(1 + 2τ)2p − (1 + τ)p], and (1+τ)p−1

is bounded by δ
54κIRS(A,B,p)

. Once again, we focus on the largest of these terms, which in

this case is X = (p− 1) [(1 + 15τ)(1 + 2τ)2p − (1 + τ)p], assuming p > 1.

We begin by rewriting X as follows:

X = (p− 1)(1 + 2τ)2p
[
1 + 15τ −

(
1 + τ

(1 + 2τ)2

)p]
= (p− 1)(1 + 2τ)2p

[
1 + 15τ −

[
1− τ

(
3 + 4τ

(1 + 2τ)2

)]p]
.

(6.73)
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Since τ
(

3+4τ
(1+2τ)2

)
≤ 1, we can bound X from above via Bernoulli’s inequality

X ≤ (p− 1)(1 + 2τ)2p
[
1 + 15τ −

[
1− pτ

(
3 + 4τ

(1 + 2τ)2

)]]
= (p− 1)(1 + 2τ)2pτ

[
15 + p

(
3 + 4τ

(1 + 2τ)2

)]
≤ 3τ(p− 1)(p+ 5)(1 + 2τ)2p,

(6.74)

where the last inequality follows by loosely bounding 3+4τ
(1+2τ)2

≤ 3. Finally assuming

(1 + 2τ)2p ≤ 2, we obtain a final bound

X ≤ 6τ(p− 1)(p+ 5) = 6τ(p2 + 4p− 5), (6.75)

which implies a criterion on τ :

τ ≤ δ

324κIRS(A,B, p)(p2 + 4p− 5)
. (6.76)

Note that if p = 1, and therefore X = 0, we require instead 15τ ≤ δ
18κIRS(A,B,p)

above, which

is clearly satisfied by (6.76). It is similarly not hard to show that this requirement on τ

guarantees the remaining bounds and therefore yields ||Ãp − Åp||2, ||B̃p − B̊p||2 ≤ δ||
(
A
B

)
||2.

It remains to show that Åp and B̊p can be obtained via exact-arithmetic repeated

squaring. This follows from Lemma 6.3.4; exact-arithmetic repeated squaring implies

an alternative block-QR factorization of MΠ, which is equivalent to (6.69) up to a

rotation/reflection. Since such a rotation/reflection can be baked into the final QR

factorization computed by exact-arithmetic repeated squaring (which is agnostic to the

specific QR factorizations used), Åp and B̊p are indeed exact outputs of repeated squaring

satisfying Å−1
p B̊p = (A−1B)2

p
.

Theorem 6.3.7 implies that the number of bits of precision required for IRS to

compute Ãp and B̃p to within δ||
(
A
B

)
||2 of a corresponding set of exact outputs is at most

log2(1/u) = O (log2(1/δ) + log2(µ(n)) + log2(κIRS(A,B, p)) + log2(p)) . (6.77)
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Its proof provides further intuition for κIRS; when this condition number is infinite,

an approximate block QR factorization of Dp
(A,B) cannot be transformed into a true

factorization via Lemma 6.3.3, blocking the pathway to Åp and B̊p.

Taking a step back, we ask: how does this apply to RPD? To diagonalize an n× n

pencil to spectral norm accuracy ε, RPD applies IRS to transformed pencils (A,B), which

satisfy ||A||2, ||B||2 = O(nα) and d(A,B) = Ω(poly(ε, n−1)). Hence, (6.29) implies that κIRS

is at most O(poly(n, ε−1)) at any point in divide-and-conquer. Recalling from the proof of

Proposition 4.2.2 that RPD also takes p = O(log(n
ε
)), (6.77) implies that RPD requires

O(log( n
δε
) + log(log(n

ε
))) bits of precision to compute the inputs of GRURV to within

spectral norm error δ > 0. Referring back to Table 6.1, this is a significant improvement

over the corresponding step of Banks et al. [16, Theorem 4.9].

Remark 6.3.8. An alternative to Theorem 6.3.7 can be obtained via repeated application

of the QR perturbation bounds from Chapter 3, though the resulting precision requirement

is much worse than derived above.

6.4 Two-Matrix GRURV

We close this chapter with a GRURV bound. Since RPD only applies GRURV

to products of the form A−1
1 A2 and A1A

−1
2 , it is sufficient4 to consider the following

cases: GRURV(2, A1, A2,−1, 1) and GRURV(2, A1, A2, 1,−1). In terms of our black-

box algorithms, the first of these proceeds as follows:

1. [Ũ2, R2, Ṽ ] = RURV(A2)

2. X̃ = MM(AH
1 , Ũ2)

3. [Ũ , RH
1 ] = QL(X̃)

As in the previous section, we do not use the superscript ∼ on R1 and R2 since we can

guarantee that these are exactly upper triangular.

4Bounds for arbitrary products follow naturally from those presented here.
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There are three sources of error here: RURV in step one, matrix multiplication

in step two, and QL in step three. Each of these is fairly straightforward to bound; the

latter two are controlled by Assumption 6.1.2 and Assumption 6.1.3, respectively, while

finite-precision RURV is covered by a lemma of Banks et al. [16, Lemma C.17] (which is

itself built on Assumption 6.1.1). Combining these results yields a mixed stability bound

for floating-point GRURV, which we present below as Theorem 6.4.1. Informally, this

implies that (with high probability) the R1 and R2 factors computed in floating-point

arithmetic belong to an exact rank-revealing factorization of a nearby5 product Â−1
1 Â2,

provided u is sufficiently small.

For simplicity, we once again state this bound in terms of τ = µ(n)u for µ(n) as in

(6.32). We also assume

4cNτ ||A2||2 ≤
1

4
≤ ||A2||2 and 1 ≤ min {µMM(n), µQR(n), cN} (6.78)

to gain access to the RURV bound of Banks et al. [16, Lemma C.17].

Theorem 6.4.1. Given A1, A2 ∈ Cn×n, let

[Ũ , R1, R2, Ṽ ] = GRURV(2, A1, A2,−1, 1)

on a floating-point machine with precision u. If τ = µ(n)u for µ(n) the polynomial

(6.32) and further (6.78) holds, then there exist matrices Â1, Â2 ∈ Cn×n and unitary U ,

V ∈ Cn×n, such that Â−1
1 Â2 = UR−1

1 R2V and

1. V is Haar distributed.

2. ||Ũ − U ||2 ≤ τ .

3. ||Â1 − A1||2 ≤ τ(τ 2 + 3τ 2 + 3)||A1||2.

4. For every θ ∈ (0, 1) and t > 2
√
2 + 1, the event that both

5Here, “nearby” is measured by ||Â1 −A1||2 and ||Â2 −A2||2 not ||Â−1
1 Â2 −A−1

1 A2||2.
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• ||Ṽ − V ||2 ≤ 2τ n3/2

θ
(4tcN + 5)

• ||Â2 − A2||2 ≤ τ
(

n3/2

θ
cN [9t+ 10] + 2

)
||A2||2

occurs with probability at least 1− 2eθ2 − 2e−t2n.

Proof. We make use of the three-step outline for GRURV given above, beginning with

[Ũ2, R2, Ṽ ] = RURV(A2). By [16, Lemma C.17], we know there exist U2, V and Â2 such

that U2 is unitary, V is Haar distributed, and Â2 = U2R2V , where ||Ũ2 −U2||2, ||Ṽ − V ||2,

and ||Ã2 − A2||2 can all be bounded. In particular, ||Ũ2 − U2||2 ≤ τ. Consequently,

Assumption 6.1.2 guarantees that if X̃ = MM(AH
1 , Ũ2) then

||X̃ − AH
1 Ũ2||2 ≤ τ ||Ũ2||2||A1||2 ≤ τ(1 + τ)||A1||2. (6.79)

The final step of GRURV computes [Ũ , RH
1 ] = QL(X̃). Here, Assumption 6.1.3 implies

that there exist matrices U and X̂ such that U is unitary and X̂ = URH
1 , with ||Ũ−U ||2 ≤ τ

and ||X̃ − X̂||2 ≤ τ ||X̃||2. With all of this in mind, let Â1 = U2X̂
H . By construction, we

have

Â−1
1 Â2 = (U2X̂

H)−1U2R2V = (R1U
H)−1R2V = UR−1

1 R2V, (6.80)

which means UR−1
1 R2V is an exact (generalized) rank-revealing factorization of Â−1

1 Â2.

We can now collect the listed properties/bounds. Items (1) and (4) follow directly

from [16, Lemma C.17], while item (2) was derived from Assumption 6.1.3 above. To

complete the proof, we observe

||Â1 − A1||2 = ||A1 − U2X̂
H ||2

= ||AH
1 U2 − X̂||2

= ||AH
1 U2 − AH

1 Ũ2 + AH
1 Ũ2 − X̃ + X̃ − X̂||2

≤ ||AH
1 (U2 − Ũ2)||2 + ||AH

1 Ũ2 − X̃||2 + ||X̃ − X̃||2

≤ [τ + τ(1 + τ)] ||A2||2 + τ ||X̃||2,

(6.81)

where ||X̃||2 ≤ (1 + τ)2||A1||2 by (6.79).
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Since Theorem 6.4.1 is a bit cumbersome, we present a simplified (i.e., loose) version

as Corollary 6.4.2, which can be obtained by taking θ = 1√
n
and t = 4.

Corollary 6.4.2. Given A1, A2 ∈ Cn×n, let

[Ũ , R1, R2, Ṽ ] = GRURV(2, A1, A2,−1, 1)

on a floating-point machine with precision u. Let µ(n) as in (6.32) and suppose (6.78)

holds for τ = µ(n)u. If for δ ∈ (0, 1) we have

u = O

(
δ

n2µ(n)cN

)
then with probability at least 1 − O( 1

n
) there exist Â1, Â2, U, V ∈ Cn×n such that U is

unitary, V is Haar distributed, Â−1
1 Â2 = UR−1

1 R2V and the following bounds hold:

1. ||Ũ − U ||2, ||Ṽ − V ||2 ≤ O(δ)

2. ||Â1 − A1||2 ≤ O(δ)||A1||2

3. ||Â2 − A2||2 ≤ O(δ)||A2||2.

While these results apply explicitly to GRURV(2, A1, A2,−1, 1), they also cover

GRURV(2, A1, A2, 1,−1). The latter only swaps RURV and QL for RULV and QR,

which satisfy the same guarantees.
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Appendix A

Toward a High-Performance Imple-
mentation

The formulations of pseudospectral divide-and-conquer presented in this thesis, like

the single-matrix version of Banks et al. [16], are primarily theoretical. In an effort to

rigorously prove optimal complexity, EIG, RPD, and even EIG-DWH set parameters

to extremal values, which are necessary to cover edge cases of the theory but unlikely

to be required in practice. With this in mind, we dedicate this appendix to discussing

practical modifications to pseudospectral divide-and-conquer, which are aimed at making

the algorithm more amenable to high-performance implementation.

We start by restating the observations from Section 4.3: both the nα scaling and

the choice to run divide-and-conquer to subproblems of size 1 × 1 can realistically be

dropped in a practical implementation. In some sense, these are linked; if only a few splits

are made, we no longer need our grid g to cover all of Λϵ(A,B) or even Λ(A,B), and the

scaling was primarily aimed at obtaining bounds for both.

We can next revisit our definition of a successful split. Both EIG and EIG-DWH

require at each step that the chosen split is optimal – i.e., it is at least as close to 50/50

as can be guaranteed to exist. Since the complexity of computing the next subproblems

after a split is found is asymptotically the same as checking one grid line/point, divide-

and-conquer spends most of its time searching for a split. As a result, requiring optimality
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is likely more expensive than is worthwhile. Of course, any implementation should still

impose some requirements on potential splits to avoid sectioning off only a handful of

eigenvalues at each step.

As alluded to in Section 1.3, computing UL and UR completely independently is

also more expensive than necessary. For our purposes, doing so simplified the analysis

of EIG, allowing us to control the probability that one of these matrices was computed

incorrectly with a straightforward union bound. If the decision is made to compute UL

and UR independently regardless, we recommended including a check on the approximate

rank of each (as computed by GRURV) in DEFLATE. This can be done essentially for

free and provides an easy indication that either GRURV failed or IRS was not run to

high enough accuracy.

Finally, we note a few additional ways randomness may be incorporated in an

implementation, which have not yet been explored rigorously. First, a random Möbius

transformation can be applied to the input pencil as an alternative to scaling, which

can easily be undone and will almost surely wipe out infinite eigenvalues if B is initially

singular. Second, the phenomenon displayed in Table 4.1 can be exploited. That is,

running the algorithm multiple times with different initial perturbations and averaging

eigenvalues may produce better approximations (and identify true eigenvalues for singular

pencils, as in the last example of Section 4.3).
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