
UNIVERSITY OF CALIFORNIA

Santa Barbara

Participatory Design in Digital Language Documentation: A Web Platform Approach

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Linguistics

by

Patrick James Hall

Committee in charge:

Professor Eric Campbell, Chair

Professor Matthew Gordon

Professor Simon Todd

Professor Alexis Palmer, University of Colorado Boulder

March 2022

The dissertation of Patrick James Hall is approved.

Matthew Gordon

Simon Todd

Alexis Palmer, University of Colorado Boulder

Eric Campbell, Chair

March 2022

Acknowledgements

With some astonishment, I now look back on almost thirty years as a student of

linguistics. I was hooked from the first day of LING 5 at Berkeley in 1993, which I

somehow managed to find despite the fact that it was in Dwinnelle Hall. I still feel a

debt to the whole Berkeley faculty, including especially the late John Ohala, whose

classes introduced me to phonetic and phonological fieldwork.

Between my undergraduate years and re-entering academia at the LSA Institute in

2009, I worked in the technology world, which of course has its echoes in the present

work. Among many friends and colleagues from those days, my brother John was

and remains my most stalwart friend. I am deeply grateful to him for his kindness

and encouragement over many years.

In 2009 I packed my bags and moved back to California with vague dreams of

fieldwork and academia. Somehow I squeezed into the indefatigable Pam Munro’s

LSA 310 class (I was thirteenth student of twelve slots, whoever dropped the class,

wherever you are, I thank you). We had the privilege to study the Kashaya Pomo

language with the late Anita Silva. It was a lifechanging experience and one which I

think of often. I remember Anita’s kind heart and remain moved by her dedication to

her language and culture. (I also remember how hilarious she was — upon

discovering that I didn’t know what an oak gall was, she quipped “Don’t get out

much, do ya, city boy?”)

I also thank Andrew Garrett for providing me with a copy of the digital remnants of

Robert Oswalt’s research on Kashaya and the other Pomoan languages and to hang

iii

around the Survey scanning Oswalt’s Kashaya dictionary. The trajectory to the

current work began there.

Some of my fondest memories in linguistics are from summer programs at Breath of

Life, the LSA Institute, and CoLang. To all the people who organized, taught at, and

participated in those institutes — too many to name — I am deeply grateful. There is

no better way to spend a summer than nerding out with linguists. Highly

recommended.

And then there was UCSB. It’s hard to overstate how grateful I am for the

opportunity to have been a part of the Linguistics program there. Obviously the

location is a part of the charm of the university, but even had the campus been found

on a desolate plain strewn with tumbleweeds, a chance to learn from and work with

Marianne Mithun, Mary Bucholtz, Wallace Chafe, Pat Clancy, Bernard Comrie, Jack

Dubois, Carol Genetti, Matt Gordon, Bob Kennedy, and Sandy Thompson would

have been well worth it.

To my advisor Eric Campbell, it’s not possible to express enough thanks. Your open-

mindedness as to the worth of this non-traditional dissertation is what made it

possible. For your endless patience and advocacy, I thank you, my friend.

I would also like to thank my dissertation committee, including Eric, Matt, Simon

Todd, and Alexis Palmer of the University of Colorado Boulder, for their patience,

good humor, and insightful advice.

My sincere thanks to Allison Adelman for her guidance, patience, and good humor.

iv

To the true Santa Barbaran, and true scholar, Brendan B. Barnwell, I offer the

highest thanks in the form of his own motto: “Hmm, interesting.”

I thank especially Carmen Hernández, Jorge Toledano Ortiz, Arcenio J. López, and

the many other members of MICOP and the Mixteco community in California, not

only for allowing me to get to know the Mixteco community, but also for showing me

what community means.

I want to express my thanks to the memory of Joshua De Leon, Sr., who shared his

Hiligaynon language with the fieldmethods class at UCSB, and who was a

tremendous friend.

To the many wonderful friends on the Docling Forum, I thank you for an oasis of

linguistics and kindness during these dark times.

I am ever-grateful to my parents, who worked so hard to give me the chance to follow

my dream, and to my sister, who put up with me!

And last but not least, I wasn’t kidding when I said linguists are fun to hang out with:

I married one. Lynnette, you are still my north star. Thank you for everything.

And Sophie, guess what? Daddy finished his book!

v

VITA OF PATRICK JAMES HALL

March 2022

EDUCATION

Bachelor of Arts in Linguistics, University of California, Berkeley, May 1997

Master of Arts in Linguistics, University of California, Santa Barbara, June 2014

Doctor of Philosophy in Linguistics, University of California, Santa Barbara, March

2022 (expected)

PROFESSIONAL EMPLOYMENT

Teaching Assistant, Department of Linguistics, Winter 2013

Teaching Assistant, Department of Linguistics, Spring 2013

Teaching Assistant, Department of Linguistics, Fall 2014

Teaching Assistant, Department of Linguistics, Winter 2015

FIELDS OF STUDY

Major Field: Language Documentation

vi

ABSTRACT

Participatory Design in Digital Language Documentation:

A Web Platform Approach

by

Patrick James Hall

Software for language documentation has a long and successful history, but

challenges remain. In this work I describe my efforts to provide a path toward

reinvigoration of software design for language documentation, one which equips

linguists to participate more directly in designing software for their own workflows. I

begin with the description of a simple, extensible data model for all the major data

types used in language documentation. I then show how the standardized, well-

tested technology that powers modern web browsers can serve as the basis for novel

interfaces which are nonetheless closely linked to the terminology and descriptive

systems in which linguists are trained.

vii

Contents

1. Introduction... 1

1.1. ‘Large, windless apartments’: History, technique, and technology............................ 8

1.2. Dataflows, Workflows, and Components ... 15

1.2.1. Some sample applications ... 16

1.2.2. ELAN and time-alignment.. 20

1.2.3. An alternative approach to time-aligned lexical data: an iterative recording

workflow.. 23

1.2.3.1. Iterative recording interface ...27

1.2.4. From documents to applications: A functional overview of HTML and the

web platform ... 28

1.3. Custom elements for language documentation: docling.js37

1.4. On motivations and voice .. 39

1.5. Outline in brief... 43

2. Data types and dataflows: Building a Boasian Database... 45

2.1. Toward a Boasian database ... 45

2.1.1. Designing a documentary database.. 45

2.1.2. A shift in viewpoint: from streams of text to databases of objects 49

2.1.3. Beyond hyperlinks .. 53

2.1.4. What is database design?...57

2.2. An object model of documentary data, and a JSON implementation 62

2.2.1. Precedents ... 62

2.2.2. Machine-readable data types with JSON: attributes, objects, and

arrays... 63

2.2.3. Documentary data types ... 69

2.3. Designing a Boasian Database..73

2.3.1. A catalog of data types in docling ... 74

2.3.1.1. Language Data Type... 74

2.3.1.2. Word Data Type ... 76

2.3.1.3. Sentence Data Type.. 79

2.3.1.4. Text Data Type ..81

2.3.1.5. Corpus Data Type... 82

2.3.1.6. Lexicon Data Type.. 83

2.3.1.7. Grammar Data Type..91

2.4. Modeling data change with dataflows... 92

2.4.1. Familiar documentary dataflows.. 93

2.4.1.1. Elicitation ... 93

viii

2.4.1.2. Glossing .. 94

2.4.1.3. Time-alignment.. 95

2.4.1.4. Word Exemplification .. 96

3. Viewing Documentary Data ... 100

3.1. Reviewing key concepts ... 106

3.2. A first look at web components ..107

3.2.1. A typology of web components for docling.js.. 113

3.2.1.1. Views ... 114

3.2.1.2. Lists ... 115

3.2.1.3. Editors ... 116

3.3. Displaying data with view and list components... 117

3.3.1. Granularity in digital documentation..120

3.3.2. <word-view> ... 122

3.3.3. <sentence-view>... 125

3.3.3.1. Granularity and responsiveness in the <sentence-view>
component...128

3.3.3.2. The structure of <sentence-view> markup........................... 131

3.3.3.3. Accessibility is a universal concern ..133

3.3.4. <word-list> ... 134

3.3.5. <metadata-view>... 137

3.3.6. <lexicon-view> .. 140

3.3.6.1. Sorting .. 140

3.3.6.2. Search ... 140

3.3.7. <sentence-list>...142

3.3.8. <text-view> ... 143

4. Components for documentation workflows.. 145

4.1. Designing user interfaces for documentation workflows ..145

4.1.1. Static documents vs. interactive interfaces ... 151

4.2. Transcription .. 154

4.2.1. Manuscript transcription...158

4.2.2. Finding characters and phones ...162

4.2.3. A user interface design for inputting phonetic transcriptions..................164

4.2.4. Inferring phonetic inventories from transcriptions.................................. 167

4.3. From workflow to interface ..168

4.3.1. Scheduled vocabulary ..168

4.3.1.1. An aside on representing grammatical categories 173

4.3.2. Image prompts: sharing an interface between both participants.............178

4.4. Harmonizing time-aligned data .. 180

4.5. Automatic data updates depend on User Interface Design186

ix

5. Avenues ahead ...189

5.1. The Web Platform and docling.js.. 190

5.2. Fostering a documentation interface design community ..195

5.2.1. Designers..196

5.2.2. Implementers...199

5.2.3. Users...201

5.2.4. Documentation histories: Certainty and revision 202

5.3. An open-access online course and next steps ... 204

5.4. Conclusion ... 206

6. References... 208

x

1. Introduction

“In the beginner’s mind there are many possibilities, but in the expert’s

there are few.” (Suzuki 2010)

The field of language documentation has relied for decades on a small number of

software applications. While these tools are excellent in many regards, their usage

has been traced out into trails which have since been paved into hardened

expectations about how linguists should interact with digital information. Here, we

will attempt to look at the task of managing digital documentation with fresh eyes, by

approaching the design of software for language documentation directly.

This work provides answers to questions such as these:

• What is documentary data? What is its shape? How can I store

complicated nested information in a useful way?

• How can I get documentation onto the web? How can I use the

internet to display data in a familiar way?

• I have an idea for a better user interface, what should I do next?.

My work would be much more efficient if could just work with my data in a

particular way. What can I do to get my idea implemented?

Answering such questions is not simple because, after all, software is

complicated. As we shall see below, the web platform we will be building in has many

moving parts. But gaining a systemic understanding of how the web platform works

as a whole is empowering. Furthermore, we don’t have to start from scratch. We will

1

be discussing the use of a software library (docling.js) which is designed with

many kinds of users in mind.

Chapter 5 introduces the notion of participatory design, but here are some

guidelines as to how three kinds of readers might make use of this work.

• Users If you are a working documentary linguist who makes use of software

in your work, but who doesn’t have time to take on a more in-depth plunge

into the technical details of software, this work can nevertheless serve as a

useful bird’s-eye view of how web technology can help make software more

useful for you in the future.

• Designers If you are one of the many documentary linguists who the degree

to which the current generation of documentary software allows you to

flexibly handle your data and workflows, then this work is for you. My goal is

to equip readers like you with the information you need to start participating

in the process of designing software to meet your own needs, in collaboration

with your colleagues.

• Programmers (or “implementers”, see §5.2.2) If you are already a

programmer, docling.js offers a working prototype of one approach to

implementing user interfaces for documentary data and workflows. You can

examine the source code at our Github Organization: https://github.com/

orgs/docling-js.

It is also designed to have more than “level” of learnability. Learning how some

simple “custom HTML tags” such as <text-view> can be inserted into an HTML file

in order to display an interlinear text is a much easier task than learning how that

2

5.html#implementers
https://github.com/orgs/docling-js
https://github.com/orgs/docling-js

custom element actually works behind the scenes. One might not need to know how

a transmission works in order to drive a car, but knowing the difference between

“drive” and “reverse” is useful!

I have striven to make the technical topics described here — and there is no

denying that software design is a complex topic — as understandable and relatable as

possible. By reading this work, the reader will not become a programmer. They will,

however, take what amounts to the first step in becoming a programmer: learning to

describe exactly what software should do. It is hoped that the kind of work we will

engage in here will strike the reader as “the good stuff” as far as linguists are

concerned — all examples here (apart from a brief foray into vintage cars in Chapter

3!) are linguistic in nature, and all are ultimately concerned with building interfaces

that will seem both familiar and useful to working documentary linguists. Like

language documentation, software design is a a craft best learned in the company of

others. More than anything, I hope that this work provides an entry point for those

who might feel overwhelmed by the current technical landscape in documentation,

but who also feel that “soldiering on” with existing tools is the only way forward.

So what is the nature of the problem which this work seeks to address?

Ultimately, I see the gradual, ongoing process of digitization of language

documentation as one which should strive to incorporate the long history of

expertise which has been developed by the discipline. Language documentation

already has a well-developed “mental model” of the nature of its data, and a broad

array of methodological tools for collecting, managing, and re-using such data.

However, our current generation of tools were not designed to work together — this

3

makes unifying and handling data created with distinct tools a chore. We must meet

this need by creating a coherent, complete, and extensible data model which covers

all of the types of data we work with in documentation, but this is only the aspect of

the work described here. We must also take into account the ways in which language

documentation is fundamentally a collaborative activity: we learn to do

docuemntation by working with other linguists. Software designed to expedite

language documentation, therefore, must be designed with those collaborative

working methods in mind, as articulated by experienced language workers.

There is a sizeable didactic literature on the methodology of language

documentation: just taking a few references from the domain of fieldwork manuals,

notable works include Samarin (1967), Hale (2001), Crowley (2007), Chelliah and De

Reuse (2010), Sakel and Everett (2012), and Bowern (2015). However, there is an

important contrast between the kinds of information that such works contain and

the current discussion within the discipline about how digital materials should be

managed. Most of our field’s institutional focus on digital materials is now on how to

handle completed language documentation through archiving. Despite significant

current interest and work on archiving language documentation, there is less robust

discussion of integrating the design of software for doing language documentation.

Put simply, as far as discussions of software go, the field of language documentation

has been more concerned with documentation than documenting.

Documentary data is in fact less ephermal than the software used to create and

manipulate it. While we will be relying here on the web platform as a basis for

designing, using and distributing software and digital documentation, it is

4

nonetheless true that the web platform itself is subject to (and indeed, expected to)

change over time. We should think of the true currency of documentary work as data

files themselves, not software, and not user interfaces — what is canonical is the

data, not the user interface. Learning to use software is actually a very commonplace

activity — the best software is less noticeable precisely because it is designed in a

form that is familiar to the user, and is therefore more intuitive to use. Thus, if we

are careful to keep standard linguistic notations and practices in mind as we design

and implement software, we can expect that the learning curve for users will be

shallow, and thus maintainable. Rather than a single kitchen-sink application that

does everything, we can build in flexibility and learnability by using a modular

approach where new features are learned independently as they are added to the

system.

This is not to critique the focus on archival processes: it is at the point of deposit,

after all, that many of the most vexing and challenging issues in language

documentation are inevitably foregrounded. How should documentation be

distributed? Who determines what the permissions regime for viewing, using, and

modifying that documentation will be? What institutions will maintain and fund the

archive? These ethical aspects of the creation of language documentation archives

are so nuanced and fraught that they have engendered their own ongoing subfield,

and rightfully so. Woodbury (2014) gives guidance on producing “documentations

that people can read, use, understand and admire.”1 Again, this advice primarily

1. See (Henke and Berez-Kroeker 2016) for this and other sources in an annotated

bibliography of archiving in language documentation.

5

addresses the use of language documentation more than its creation — bearing in

mind that use and creation of documentary data will always be an iterative process in

which one shapes the other. But while such criteria are useful for evaluating

completed fieldwork data at the time of deposit, evaluating the practical utility of

user interfaces for creating, modifying, and using documentary data in the first

instance requires quite different criteria.

It is the linguist’s relationship to technology during the ongoing process of

collecting and analyzing initial fieldwork data that is the primary focus of the current

work. How do linguists actually interact with software as they create and modify

their linguistic databases of textual, lexical, and grammatical material? How do those

technologically-mediated interactions with language compare to the practical advice

for how to collect linguistic evidence contained in the large literature on fieldwork

methodologies? In other words, how does a documentary linguist’s training in field

methods intersect with the digital data that they produce and manage as they are

working with speakers and analyzing the resulting data?

As mentioned above, it is certainly not the case that there is no discussion of

software in the current documentation literature; to the contrary, there is no

shortage of software reviews, software troubleshooting advice, workarounds for

interoperability between distinct software tools, and detailed accountings of how a

particular documentary project was carried out via particular methodologies of

processing and re-processing data. What is less commonly discussed are the more

general questions of just what functionalities a software ecosystem for language

documentation should support in the first place: we seem to have come to a juncture

6

where a strong association between particular software tools and particular

documentary tasks is accepted as default best practice. For instance, the notions that

“the tool for time aligned data is ELAN” or that “morphological analysis can be done

with either FLeX or Toolbox” are so ingrained in our working culture as to seem

practically inviolate. But this quasi-standardization as come to impose a tremendous

inertia when it comes to creativity in designing software for doing language

documentation.

In this work, I propose a particular approach which I hope will enable more

innovation in this space. I intend to demonstrate that user interfaces built with the

web platform can support the whole process of gathering, analyzing, and reusing all

the kinds of data commonly collected in language documentation. The web platform

has evolved into something much more powerful than simply a means of interlinking

static documents: it is now a widely supported, flexible, powerful platform for not

only sharing documents, but also for implementing user interfaces for using all of the

information contained in such documents, or as (Munro 2001, 142) puts it,

“manipulat[ing] and arrang[ing]” documentary data. By building directly on the

capabilities of the web platform, we can design and implement software tools for

language documentation in a modular fashion, breaking down complex

documentation tasks into smaller steps.

From there, we can design simple, focused user interfaces which are scoped to

specific, familiar steps in documentary workflows as they are carried out by linguists

in practice. These smaller, modular user interfaces may then be composed into larger

applications that are built up gradually to complete the complex tasks. Our goals will

7

include addressing related questions: How can we use the web platform to design

user interfaces which are custom-designed for particular tasks in language

documentation work as it is practiced? How can we marshall the expertise of

working linguist to achieve that goal in a cooperative manner? We shall see some

preliminary examples of how to address these problems below, but in general terms,

we will strive to create an approach to designing interfaces which is participatory by

prioritizing how documentary linguists collect and use their data, but also how they

think about that data and those workflows.

But first, let us consider the “work history” within which the recognition of

“language documentation”, and especially digital language documentation, has come

to be seen as a distinct field in its own right. How did earlier practitioners of

language documentation relate to their data, and how do modern attitudes toward

data within the field compare?

1.1 ‘Large, windless apartments’: History, technique, and technology

Swimming as we all are in a sea of information, it is difficult for modern linguists to

extract themselves from the present and imagine a time when their language work

was not mediated in some way by computers. But a pair of quotes from early

practitioners of language documentation bring the sea change from the age of paper

to the digital era crashing home. J.P. Harrington’s vast and ramshackle documentary

work on the languages of the Americas needs no introduction, but he seems to have

published little in the way of direct didactic guidance with regard to his own

8

methodologies for carrying out linguistic fieldwork and analysis. However, Klar

(2002) recovered an outline by Harrington for a 1914 lecture on fieldwork

methodology, perhaps the only explicit record of Harrington’s working methods in

his own words. In the following quote, he describes how would-be field linguists

should sort their file slips:

The sorting of slips should be done in a large, windless appartments [sic]

where the work will be undisturbed. Many Large [sic] tables are most

convenient, although it often becomes necessary to resort also to placing

slips on the floor. The sorting of many thousands of slips is a most tedious

and laborious task. To many it is mere drudgery. It cannot well be done by

anyone other than the collector. It is easy and interesting to record words on

these slips by the thousand. The sorting however takes many times as long

as the recording.

It is evocative to imagine Harrington in a bleak rented room somewhere in

California, surrounded by his innumerable slips of paper, deathly afraid of a breeze

blowing away a year’s worth of careful organization of precious notes on Chumash or

Ohlone. And he is not the only figure in the history of language documentation to

have suffered from this curse of sorting: it also plagued Leonard Bloomfield, whose

complaints of the ailment were recounted by Hockett in the introduction to

Bloomfield (1967) (emphasis added):

Bloomfield was speaking of the tremendous difficulty of obtaining a really

adequate account of any language, and suggested, half humorously, that

linguists dedicated to this task should not get married, nor teach: instead

9

they should take a vow of celibacy, spend as long a summer as feasible

each year in the field, and spend the winter collating and filing

the material. With this degree of intensiveness, Bloomfield suggested, a

linguist could perhaps produce good accounts of three languages in his

lifetime.

Even Bloomfield himself did not fulfill his suggested agenda: he did not live to see

the publication of his one full-scale grammar, The Menomini Language — it was

Hockett who would edit and see through the posthumous publication of that work

(Bloomfield 1969). While there is a tongue-in-cheek quality to Bloomfield’s advice,

Harrington’s true evaluation of his own claim can of course be measured in (mostly

unpublished) tons. But however we interpret the detail of these admonitions, their

import is clear enough: two experienced documentarians agreed in that aspiring

linguists should expect to spend a significant portion of their careers — perhaps one

half of their careers — engaged in sorting data.

It is humbling to imagine what such productive and prolific linguists could have

achieved had they not been constrained in this way. One is reminded of the 18th-

century lexicographer Samuel Johnson’s self definition as ‘a harmless drudge’. Surely

our easy modern access to relatively cheap and powerful computers obligate us to

view hand-sorting in the era of computers to be drudgery of a “harmful” sort? And

yet, some modern linguists seem to exhibit either reluctance to let go of the old

paper-based ways of documentation or a lingering unhappiness with the idea that

those methods should ever be considered obsolete:

The first dictionary I did (a preliminary version of my Mojave dictionary)

10

was compiled in three-inch by five-inch slips (some linguists, I know, prefer

four-inch by six-inch slips!) - not cards (too thick!), but slips of ordinary

paper, which were arranged alphabetically in a file box (one hundred slips

take up only a little more than half an inch). Reluctantly, I have stopped

introducing field methods classes to the joys of using file slips, which I still

feel are unparalleled for their ability to be freely manipulated and arranged

in different ways. But I don’t use paper slips much myself any more, so it

doesn’t seem right to require students to make a slip file, as I once did.

(Munro 2001)

While Munro’s observations should not taken to imply a lack of enthusiasm for

digital approaches to documentation, there seems to be a touch of frustration with

the capabilities of digital approaches, precisely because they fail to provide the same

kinds of spontaneous sortability that the physical fileslips did. It is worth bearing in

mind that the physical artifacts of traditional documentation are themselves a form

of information technology, which evolved through experimentation and sharing of

expertise. Insofar as our current software interfaces fail to emulate what were once

readily available means of “manipulat[ing] and arrang[ing]” information, we should

see that as a shortcoming of our software which is too simple. In addition to

developing innovative kinds of digital representations, we should also seek

continuity with the kinds of expertise that developed before computers were readily

available.

But even so, would not Harrington or Bloomfield have given a king’s ransom for

one of today’s mid-range, off-the-shelf laptops? Those seeking support for carrying

11

out fieldwork today, of course, must not vacillate as to whether to work digitally.

Funding sources stipulate that corpora be deposited in digital form — fileslips and

notebooks alone do not constitute sufficient archival deposits today. As the field of

documentary linguistics has quickly expanded, the seven principles for portable

documentation as set forth in Bird and Simons’ seminal (2003) paper (which argues

that documentation should be evaluated in terms of content, format, discovery,

access, citation, preservation, and rights) have grown ever more relevant. But

despite this intense activity in ensuring the longevity and usability of the outcomes of

language documentation, the feelings of “impotence” and “frustration” seem to

persist with regard to doing documentation. Many questions arise when we view the

theorization of digital approaches to documentation in light of this distinction. Why

do documentary linguists so often find that using computers to improve their

research is more vexing than helpful? Why is so much of our effort dedicated to

troubleshooting software for documentation, as opposed to simply doing

documentation? If we are attempting to do “computer-aided fieldwork”, then where

is the “aid”? What is it about the software interfaces we are using in documentary

linguistics that results in work that is “joyless”?

I suggest that answers to these questions lie in a kind of skewing between the way

linguists think about their data, and the design of the software applications that

linguists carry out in order to acquire that data during and after fieldwork. To be

helpful to the process of doing fieldwork, software interfaces must be designed not

only with specific kinds of data as input and output, but also with a clear definition of

exactly what steps will be taken to transform the input into the output. Paraphrasing

Munro, how can we create software interfaces for language documentation which

12

give the same freedom to manipulate and arrange data as the old paper-based

methods (while still, of course, benefitting from the speed of computers to which

Harrington’s and Bloomfield’s generations did not have access)? As we shall see in

the next chapter, the number of kinds of information required to digitize

documentary data are less extensive than one might at first expect. They are also

reasonably simple, and more or less conventionalized, if not standardized. Linguists

understand the structure of their data already. The problem at hand is not to

reconceptualize linguists’ mental models of their data; it is to reconceptualize the

way that those models are encoded into software, and to reconceptualize the

approach to creating software for manipulating those models interactively.

Raskin (1994) makes a relevant observation about what makes a user interface

“intuitive”:

…a user interface feature is “intuitive” insofar as it resembles or is identical

to something the user has already learned. In short, “intuitive” in this

context is an almost exact synonym of “familiar.”

In the context of language documentation, it is problematic that the available

software tools for doing language documentation are not intuitive enough: working

with most modern software tools for language documentation means bouncing back

and forth between multiple applications (many of which are well-designed in their

own right) in order to address different aspects of the data model, and different steps

in a documentary linguist’s workflow. For instance, ELAN focuses almost entirely on

the task of timed transcription alignment, and has very limited capabilities as far as a

built-in notion of “words” is concerned. Conversely, Fieldworks (also known as Flex)

13

is in a sense the inverse of ELAN: it has elaborate capabilities for managing the

morphological analysis of a corpus, but no ability to sync media recordings with that

corpus. This division of labor between software tools (and there are usually other

applications involved as well) is “unnatural” to linguists in the sense that they do not

think of their time-aligned data as being cloven in two in this way. Time-aligned,

interlinearized texts are the basic data type for many kinds of linguistic research —

not a combination of morphologically analyzed data and time-aligned data. Similar

mismatches could be enumerated with regard to many of the other software

applications which serve particular niches in documentation: Praat has robust

capabilities for phonetic analysis, but its use is not integrated into the workflows for

FLEx or ELAN.

And it is perhaps this kind of mismatch between software and mental models that

underlies the frustrations of linguist-computer interactions mentioned above: they

are “unfamiliar” in the sense Raskin describes: there are fissures between the the

way programs display and model documentary data in software interfaces, and the

way that linguists are accustomed to thinking about and working with data in non-

software-based contexts. If we are to create tools which are helpful for working

documentary linguists, then both the nature and structure of the data which linguists

record and the ways in which linguists go about collecting and recording such data —

that is to say, their workflows — must be taken into account.

14

1.2 Dataflows, Workflows, and Components

I propose to characterize the “lifecycles” of data during documentation projects in

terms of dataflows: abstract conceptualizations of data transformations from an

input state to some modified output state (see Chapter 2). As for the nature of the

actual work taken to “carry out” a data flow, we will speak of workflows in a general

sense — the series of steps linguists take to either collect or record data. Note that

these steps may be described in both “real-world” and “digital” terms: for example,

sorting a fileslip dictionary “physically” is no less a “workflow” in this sense than

using an algorithm to sort a digital dictionary (although of course, here we will

mostly focus on the digital variety of workflows). Chapters 3 and 4 will address the

details of designing and implementing such tools.

As for actual implementation of user interfaces for carrying out dataflows via

workflows, I describe a prototype software library built on the notion of components.

I have design this library with the goal that it might serve as a flexible basis for

implementing a variety of new software tools for language documentation, as

opposed to a single “kitchen-sink” application which attempts to meet all needs. The

library, called docling.js, is based on an approach to software design which is

compositional: individual “pieces” of a user interface may be composed into more

complex interfaces called components or web components. Each such component

will be defined in terms of (1) the data it takes as input, (2) the data it helps the

linguist to produce as output, and (3) the concrete steps the user takes to convert the

input into the output. We will refer to the specific definition of transformation of

input data to output data as a dataflow (see Chapter 2), and the series of steps for

15

completing a dataflow as a workflow.

As we will see in Chapter 4, the example user interfaces support various kinds of

workflows, both “traditional” fieldwork methodologies as described in the

documentation literature, and more novel, context-specific working contexts. In

order to demonstrate briefly what this kind of implementation looks like, we will

now look at a small sample component which is designed to help complete a

fundamental task in documentary linguistics: eliciting a word list. As we shall see in

Chapter 4 on interfaces for carrying out workflows, there are many possible paths to

completing the task of eliciting a wordlist (indeed, the notion of “workflow” is

intended to assist in articulating the nature of a particular workflow in a detailed

manner).

1.3.1 Some sample applications

In the following example, we will begin with a list of prompts, in the fashion of a

Swadesh list. As a minimal example, we will imagine that the linguists’ goal is to

carry out the elicitation of the numbers ‘one’, ‘two’, and ‘three’. The three stages here

are intended as an introuctory overview — step 1 will be further detailed in Chapter

2, and steps 2 and 3 in Chapters 3 and 4.

1. Analyze dataflow - Specify in detail what changes are to be carried out on

specific data types in order to transform input data into output data (this can

be visualized with object diagrams).

2. Analyze workflow - Specify a series of concrete steps which, if taken, will

carry out the dataflow. Note that there are many possible workflows which

16

can result in a particular dataflow.

3. Implement a user interface - Just as there are many workflows which

can implement a dataflow, there are many user interface designs, or even

combinations of multiple user interfaces, which can be used to carry out a

particular workflow. We shall see more examples of this rather general idea

below, and in Chapter 4.

This three-way analysis of dataflow, workflow, and implementation is useful for

describing the “lifecycle” of data as it progresses through documentation work. In the

diagram below, the dataflow and workflow definitions are followed by a simple,

implemented application which is functional. The user should try filling in the words

for one through three in a language of their choice. The data tabulation will update

when the user presses the Enter key in any of the three form fields after filling in the

forms.

17

Figure 1.1 - Wordlist elicitation: Dataflow, Workflow, User interface

As a brief preview of the implementation details of this docling.js application,

consider that one way that this application may be added to an HTML page is

through the use of one of the “custom HTML elements” which constitute the

docling.js library:

<translate-prompts prompts="one two three"></translate-

prompts>

18

We will see later in detail what custom elements are and how they may be used,

but it is worth noting that by simply changing the value of the text associated with

the prompts attribute of this tag, an instance of this application may be created with

a different set of prompts (here, a few animal terms):

In this way, docling.js creates an HTML- or “markup-based” approach to

using applications for language documentation. This is useful because it means that

the details of how the interactive elements are actually programmed (which are

written in the Javascript programming language) can be made independent from the

way in which those interactive elements are used in a web application. Specifications

and implementations of examples from many domains of language documentation

will be detailed in a similar way in Part II: these include but are not limited to

custom elements for various familiar documentary structures such as interlinear

texts, phoneme charts, glossaries, grammatical category listings, and so forth.

We should also pause here to point out that the use of every user interface brings

with it ethical concerns, just as every archival deposit does. The elicitation of a

wordlist may seem mundane, but any application for language documentation must

be evaluated as to appropriateness within the context of a particular documentation

19

context. For example, although the elicitation of small numerals may seem fairly

uncontroversial, it is by no means certain that numerals are in extensive use in every

language, and the discussion of that fact could be a matter of ethical complexity.

Members of a team must decide collaboratively whether a particular workflow and

interface is appropriate for a given project, and they must also be ready to stop using

one if it should prove to be problematic. Importantly, it must be recalled at every

step of application design and use that “appropriateness” cannot be programmed or

automated.

1.4.1 ELAN and time-alignment

One of the most successful software applications used in language documentation is

the EUDICO Linguistic Annotator, more commonly known as ELAN (Brugman and

Russel 2004). ELAN is described as “an annotation tool that allows you to create,

edit, visualize and search annotations for video and audio data”. The tool has lived

up to this description, and has been used in the production of a tremendous range of

time-aligned transcription projects in many human languages. It has, after all, been

the key tool in the production of massive amounts of time-aligned transcriptions in

many languages and genres.1 In its most basic usage2, the ELAN time-alignment

workflow consists of (1) loading an audio (or video) file, (2) viewing a waveform

rendering of the audio signal, (3) selecting a subset of the waveform and listening to

it, and (4) transcribing the selection. This process is then repeated for the remainder

of the recorded material.

20

We may visualize this process in the following flowchart:

Let us consider an actual example of the inputs and outputs of the ELAN

workflow diagrammed above. The input is an audio recording, in this case an excerpt

from a 1966 recording of a word list in Coatzospan Mixtec.

Having carried out the steps described in the workflow diagram above, the

21

linguist might produce an output which consists of a time-aligned transcription

which contains (at least) data of the following kind:

Note that this dataflow treats audio as an input: it is assumed that a recording

has been created via some other workflow. (Indeed, the example audio above is

excerpted from a recording available from the UCLA Phonology Archive.)

In time-alignment tasks of this kind, where the linguist begins with a complete

recording and proceeds to incrementally transcribe it via the waveform selection

workflow, ELAN has proven to be a very useful application. But it is problematic,

however, to equate ELAN with every type of workflow that results in time-aligned

transcriptions of a media source simply because ELAN provides one effective means

of doing so.3

This workflow may be used for transcribing any kind of speech genre. In the

Coatzospan Mixtec example above, the recording consisted of a pre-defined word list

(also known as a protocol or scheduled elicitation, (see Samarin 1967, 108). Wordlist

elicitation often has a fairly repetitive structure, with each “prompt” being recited in

the contact language, and then the word in the language of study being recited one or

more times. (It is because of this repetitive structure that linguists recording word

lists often go to great lengths to try to avoid the side-effect of recitation known as

“list intonation” (Ladefoged 2003).) In such a rigidly-structured types of speech

event, it seems reasonable that a distinct application, with a distinct user interface

for aligning transcriptions and recordings, might be useful. In the next section we

consider an example of such an application.

22

1.5.1 An alternative approach to time-aligned lexical data: an iterative recording

workflow

Despite the success of the ELAN workflow as described above, it is worth considering

alternative ways to interact with time-aligned data. In particular, we may consider a

scenario where the audio recording itself is itself part of the time-aligned

transcription workflow, not the preliminary step.

As we shall see in more detail in later chapters, the web platform’s capabilities

include recording from the computer’s audio input. In some circumstances,

recording directly onto a laptop is a feasible workflow. Such is the case for the

common task of recording and transcribing a “scheduled” word list. It is interesting

to imagine what an application which took advantage of this “live recording” ability

might look like. In one simple design, we might imagine an application which

contains the following ingredients:

Input data

1. A list of prompts.

Output data

1. A time-aligned transcript.

2. A single audio recording of the whole word list.

Workflow

1. An “Enable microphone” button — (Accessing the user’s microphone or

23

webcam, of course, requires explicit permission from the user)

2. For each “prompt” in the list of prompts:

1. The prompt itself

2. A “press-to-record” button, which marks the moment it is pressed

down (the moment a segment begins) and when it is released (the

moment a segment ends). Recitations may be re-recorded if the

recording is not suitable.

3. A “play” button to review the recorded form

4. An input to transcribe the recorded form

3. A button to download the combined audio recordings.

4. A button to download the completed time-aligned transcription.

Summarizing as a flowchart:

24

Note in particular that this workflow consists of two smaller workflows. The

particular components which have been implemented for these workflows (created

from buttons, text boxes, and so forth) could be reused in other contexts, as

individual components or as subcomponents of other compound applications. It is

also useful that this approach makes the user’s hard-drive the sole location for

managing recorded files, as opposed to navigating baroque user interfaces on

recording devices themselves.

Note that only one of the two outputs created here — the time-aligned transcript

25

— could be created through the ELAN workflow: the wordlist would simply be

recorded and annotated in the same manner that any narrative might be. Because of

the incremental style of recording, and because ELAN does not support recording,

the production of a “data-only” recording is a new type of output. Interposing a

recording step into the workflow obviates the time-consuming sequence of waveform

navigation, selection, and annotation.

Here is a working implementation of this application. Help text is available under

the help drop-down. The reader is encouraged to try recording translations of the

numbers from one to three in a language of their choice, and transcribe their own

recitations, and then export the combined audio and time-aligned transcript. (The

data tabulation on the right is added for convenience, to demonstrate how the

application is keeping track of the user’s work.)

26

Iterative recording interface

This interface will not win any design awards, but its simplicity does not negate

its utility: unlike the ELAN workflow described above, there is no interruption in the

workflow between recording and transcribing.4 It is not difficult to imagine other

extensions of this basic interface: an import mechanism for existing prompt lists,

supporting multiple recitations of a single word, and so forth. It is precisely these

kinds of relationships between workflows and user interfaces that this work will

explore in depth, for a range of documentary workflows that run the gamut of

27

analytical levels, from phonemes to corpora.

1.6.1 From documents to applications: A functional overview of HTML and the web

platform

Recalling that the actual user interface of the sample component above was

ultimately constructed out of controls such as buttons, text inputs, and audio player

interfaces which are familiar from users’ experience using the web, it is worth

familiarizing ourselves a bit more with exactly what kinds of default controls are

built into standard HTML. There is no need to reinvent the wheel when it comes to

such fundamental user interface controls. Indeed, few if any software platforms have

been as thoroughly vetted in terms of cross-platform support and accessibility to

users of all kinds as the web platform itself.

In this section, then, we will take a whirlwind tour through HTML. That we

should plunge immediately into this topic might seem several steps removed from

the field of language documentation, but we ask the reader’s patience as we lay out

the fundamental examples of HTML elements and how they work. It isn’t necessary

to internalize every detail here at first. What is more important is to understand a

general trend which has emerged over the long history of HTML: originally, it was

primarily a tool for encoding (“marking up”) structured documents in the same way

one might compose a document in a word-processing application. However, the

inclusion of the hyperlink (or “anchor tag”) was the first element that responded to

user activity. This notion of an interactive element proved to be the first of many, as

the various form elements such as the select element or the checkbox

28

presaged more interactivity in the web platform. We will examine this trajectory

from static documents to interactive applications more deeply in Chapter 3. In the

current section we will simply introduce some default HTML elements as a kind of

core catalog of “building blocks” in later descriptions for the custom components

which will form the core of our approach, as implemented in the docling.js
library.

More examples of this growing interactivity are displayed below, and it is in light

of this trajectory that the emergence of the newest stage in the development of HTML
becomes meaningful: the “custom” element, whose design and behavior is defined

entirely by a programmer. Thus we will briefly introduce the topic which will be the

main subject of Part II and the docling library: a series of custom elements which

fit into the web platform in the same way as standard elements, but which are

specific to our area of interest, language documentation. Thus, where standard HTML
elements include very generic tags such as <p> for “paragraph” or <table> for a

table of data, the custom elements which make up docling, such as <ipa-chart>,

<text-view> (for viewing interlinear texts), <word-view> (for viewing indvidual

words), and so forth. (Note that non-standard HTML “custom” elements are easily

distinguished from standard elements by the presence of a hyphens in their tag

names)

HTML stands for Hypertext Markup Language. It was originally designed (by

Tim Berners-Lee) in 1990, as a tool for exchanging technical documents between

particle physicists. That HTML was intended to encode documents is quite apparent

if one inspects a few of its elements. For example, the <p> tag stands for paragraph,

29

and sets its content into a wrapped paragraph with some marginal whitespace above

and below the content. The diagram below demonstrates what an HTML tag looks

like.

HTML is just a text format; inside an HTML file (which essentially is just a plain

text file with the html suffix instead of .txt), one will find elements with opening

and closing “tags” such as the following:

The term “element” refers to an opening “tag” (such as <p>), content, and a

closing tag (</p>). (As we shall see below, opening tags may also contain attributes

with names and values.) Our exploration of HTML will not go far beyond these basic

facts: the current work is not a complete tutorial on writing HTML — here we are

merely providing some examples of the kinds of elements that the HTML language

includes by default.5

30

It is a crucial capability of HTML that such tags can be nested within each other.

One simple way to see this is to observe how one may produce not only bold or italic

text, but also text which is both bold and italic:

This feature turns out to be one of the most powerful in HTML, because it

enables documents to be built up in a structured way. The <table> element, for

instance, is defined in terms of a set of “sub-elements” (which only occur within

<table>s) indicating rows and cells. For instance, a simple consonant inventory can

31

be rendered with a table as follows:

The most consequential feature of early HTML, of course, was hyperlinking. Note

that the <a> (for “anchor”) element contains an attribute with the name href. This

stands for “hypertext reference”, and its value is the link to which the browser should

go if the user clicks the link. (Note that the content of the link, “Click here to check

out WALS” is distinct from the value of the href attribute.)

32

Hyperlinks were mentioned above. It is the <a> tag which implements that

notion, and it is worth investigating its structure and functionality briefly. Firstly, it

contains an attribute with the name href. That rather obscure acronym stands for

“hypertext reference” — this is the substance of the “link”, as it is the destination to

which the user’s browser will be redirected upon clicking the text. The value of the

href attribute is usually a URL. In this case, the link points to

https://wals.info. Again, note that this element is inherently interactive: the

link is only “followed” by the browser when the user chooses to click it. This kind of

behavior is at the heart of the interactivity of the web platform.

In the first version of HTML, only the anchor tag was interactive in this way. The

user could only read and follow links. But as the HTML standard has evolved, new

elements have been added, adding support for new kinds of interactivity. One

particularly important development was support for text input. In the illustration

below, a dropdown menu allows the user to select one of three options (in this case,

simple word class labels). This control is appropriate where the user should be able

to select one of a closed set of options. Each alternative is nested inside the

<select> element in its own <option> element.

Note that the HTML standard sometimes offers more than one way to accomplish

33

the same “data operation”. For instance, the interface below — referred to as “radio

buttons” after their analogy to the preset buttons on old car radios — accomplishes

precisely the same goal as the previous control. (Which user interface do you prefer?)

Below are two final elements for text entry, which are of course of great

importance for language documentation, where entering text is a ubiquitous (and

unavoidable!) task. <input> and <textarea> tags differ in that the former does

not allow the user to insert a line break into the text, whereas the latter does. In fact,

there are reasons for both kinds of inputs.

As the HTML standard has evolved, elements which can handle more

complicated kinds of interactivity have been added. Most notably for documentary

34

linguists, media elements have been incorporated into the standard. The simplest of

these is support for images via the tag. The src attribute of an tag

below specifies an image file, which is then imported into the browser and rendered

in place.

Other kinds of file may also be embedded, for instance, PDFs:

Most exciting of these kinds of embedded content for linguists and others

involved in language documentation are embedded media. The addition of <video>

and <audio> tags in version 5 of the HTML standard have brought new levels of

interactivity to the web.

35

As we shall see later, the default presentation of <audio> and <video> tags may

be modified via various tag attributes. It is also possible to programmatically adjust

other details of media playback, such as playback rate, via Javascript. Below, the

same two media elements have been modified programmatically to slow down the

playback rate. (This functionality might be helpful for trying to describe particularly

fast speech.) Another new functionality of media tags is the so-called media

fragment syntax, which enables an HTML author to specify a “clip” of the entire

recording to play by default. This is done by appending start and stop types to the

value of the src (source) attribute. Note that media fragments can be controlled

directly from page markup, as opposed to requiring a custom Javascript program.

36

1.7 Custom elements for language documentation: docling.js

As we have seen, some of the default HTML elements have a significant amount of

interactivity encapsulated into their definition. In order to create a usable video

player, for instance, one need only insert a <video> tag into a web page, and specify

the file to be played. But the document-oriented origins of HTML remain. Standard

HTML elements are still very “generic” in the sense that they are in no way linked to

any particular domain of knowledge aside from very generic document structure.

Consequently, the set of default elements is intended to support the creation of rich,

interactive documents, but the HTML standard itself has never been designed with

any particular kind of content in mind.

37

Figure 1.19 - The Wugly

Docling, our fearless

mascot

A new development in the web

standard, Web Components, has provided

tools to for customizing HTML itself.

(WHATWG) (2020) This technology is the

basis of the current work: specifically, the

Custom Element sub-standard of the Web

Components defines a way for authors to

create new HTML elements —

distinguishable from standard elements in

that their tag name must contain at least

one hyphen — which can be programmed

in arbitrary ways. The current work is in

large part an explication of a library of such custom elements called docling.js
(for “documentary linguistics with Javascript” — many Javascript-based libraries are

named in this way). Each element will be explained through the dataflow/workflow/

implementation lens. In some cases we will analyze the dataflows and workflows of

existing software (such as ELAN, above), and develop a new custom element

intended to fill a gap in current practice. In other cases we will be generating

elements which are intended to be composed into larger applications. For instance,

by building on the implementation of an <orthography-view> element which

displays a set of orthographies for a particular language, we can create another

element, <transliteration-editor>, which refers to the <orthography-
view> element, but which aids in a distinct task: transliterating from one

orthography to another.

38

At this point I wish only to introduce the concept of web components — much

more will be said about why web components are a good match for a community

effort for creating language documentation software in Chapters 3 and 4.

1.8 On motivations and voice

While this work is not a complete tutorial on programming, it does amount to a

thorough introduction to how web technologies can be used to construct useful

applications for linguistic fieldwork. One might question the utility of writing

“about” programming without explicitly teaching programming. But in my view,

attempting to train all participants who create and work with digital language

documentation materials to become programmers is not a realistic, or even

desireable, goal. But the community as a whole seems to be in a kind of holding

pattern insofar as we are relying exclusively on existing software tools, some of

which have changed little in a decade. Few new user-facing applications for the

fundamental tasks of transcription, time alignment, morphological analysis, and

generation of reference and pedagogical materials for language revitalization and

learning have emerged in the recent years. Worse, the existing tools were not

designed to be interoperable, and thus, by necessity linguists must cobble together

work-around workflows involving complex input/output steps. And even when new

tools do emerge, it seems to be accepted as a given that they will only expand the

current complex of tools. Consider for instance this diagram delimiting how one tool

(Audiamus) was expected to fit into the existing software network:

39

Figure 1.20 - Berez and Thieberger:

Workflow for creating well-formed

linguistic data (Berez and Thieberger 2011)

Such a complicated combination of resources make this workflow difficult to

maintain. Four distinct applications are explicitly mentioned, and presumably others

would be necessary for other steps. While all of the steps addressed by this diagram

are important and integral steps in language documentation, the notion that they

should be parceled out to individual applications, each with distinct platform

requirements and learning curves, is not a sustainable approach for the future.

A simple armchair experiment is sufficient to show that this state of affairs is

anomalous. Let us imagine that some organization, perhaps the LSA, somehow

found the means to fund a massive new software project with infinite programming

resources. This magical project would handle all of the kinds of documentary data

40

and usage that we would want to support. In this scenario, it seems unlikely that

such a workflow, with its baroque input/export procedures, would be recreated. Such

systems may be a testament to the dedication and ingenuity of their creators, but

they are nonetheless products of historical accident. Surely, that hypothetical system

would be designed in such a way that all layers of linguistic analysis would be

handled in a similar fashion: working on morphological analysis, for instance, would

not be siloed into a separate application from an application for carrying out time

alignment.

But we do not need massive funding and an army of programmers to get started

down this road. And that alternative possibility is what I am trying to address in this

work. If nothing else, I hope to show that we can imagine new ways of doing and

using documentation that are built on a coherent underlying representation of

documentary data — a representation which should be familiar to working linguists.

My intent here is to design and implement a modular approach to building software

for language documentation. I have striven to design this system in a way that there

are many “points of entry”: a user who is interested only in making use of a

completed corpus should be able to view content in a web browser as simple HTML

pages. A user who is creating documentation should be able to understand how to

use basic user interfaces (such as a dictionary editor or interlinear text editor) with a

minimum of training. And those who wish to delve into customizing or even creating

applications should be able to work at any linguistic level: the actual implementation

of an interface that deals with corpus-level analysis is very similar in terms of code

implementation to one which is designed to work at a much lower level, such as

annotating phonetic features of a single phone. Data can be passed from one to the

41

other. And both work in the very same computing environment, the most universal

computing environment yet developed: the Web Platform. Our reliance on the

“software status quo” has engendered a rather insidious complacency: as far as

software is concerned, the complacency says, we should just make do with what we

have. This work is my attempt to push back against that notion. We should not just

make do, we should strive to create a system which is at once coherent and flexible,

future-proof and extensible.

And it is this spirit of universality that I must mention two unusual choices I have

made in terms of the style of this work. Firstly, the reader may have already noticed

that with the exception of the current section, I write in the first-person plural. That

choice may seem anachronistic or even pretentious (the royal we?), but after several

attempts to recast the work in an alternative style, I am convinced that “we”, “us”,

and “our” are the right pronouns here. I want to bring others into the fold, in the

sense that all linguists should see that they can play a role in how they make use of

their computers to do their work. Writing a dissertation can be a lonely endeavor —

what has carried me through has been the motivation that my work may become a

small step in a path toward a larger, community effort.

The second choice has to do with how I use the term “linguist”: namely, I assign it

a meaning which is very broad. While there has been commendable and considerable

discussion of the notion of collaborative linguistic fieldwork in recent years (e.g.,

Yamada (2007)), our terminology is in some ways becoming a victim of its own

success. After all, language documentation has a long history of blurring the lines

between “linguists” and “speakers”: just to cite the North American context, Parker

42

McKenzie, Paul Platero, and Ella Deloria were all linguists as well as “speakers”.

Rather than proliferate labels for all the infinite possible combinations of roles

(which can also change for an individual from project to project or year to year), I

simply refer to all participants as linguists.

1.9 Outline in brief

Below is a brief overview of the contents of this work.

Introduction

Background context regarding linguists and their data. Brief introduction

to HTML markup, the Web Platform, and a library of custom HTML

elements designed specifically for use in language documentation.

Organization of this work.

Data types and dataflows

A data type is a machine-readable means of representing information in a

computer. In this chapter, we define the term “data types”, and explain their

relationship to workflows and components. We also give a bird’s-eye view

of the full hierarchy of data types developed herein.

Viewing documentation

We begin by considering “Views” — custom HTML elements which display

43

1.html
2.html
3.html

documentary data structures .

Components in fieldwork

Having seen how documentary data structures can be displayed, we

consider the larger task of designing user interfaces for creating and

editing documentary data. We demonstrate the importance of context to

documentation workflows, and

Avenues ahead

Thoughts about possible reuse of these techniques, including language

revitalization, language pedagogy, and further analysis for typology.

44

4.html
5.html

2. Data types and dataflows: Building a Boasian Database

2.1 Toward a Boasian database

2.2.1 Designing a documentary database

The term hypertext hasn’t aged particularly well. The futuristic connotations that

generated so much enthusiasm for the web in the eighties — when many believed

that ubiquitous access to knowledge would be an unbridled boon to humanity —

must now be at the very least counterbalanced by all of the misinformation and

antisocial uses to which the web has been put. It is very much a double-edged sword.

And yet, the basic concept behind hypertext — the idea that knowledge is not

necessarily always best “consumed” linearly, like a novel, but rather as a network of

linked, interrelated parts which may be traversed in non-linear fashion — remains a

compelling one. And, to readers, writers, and users of language documentation,

reading in a non-linear fashion is very familiar.

Linguists often jump around their combined resources — such as grammars,

dictionaries, corpora — following cross-references of many kinds. Indeed, one might

be so bold as to argue that language documentation, especially, has always had a

“hypertextual” character. This is because documentation is constructed from

information of varied types, any particular datum of which must be evaluated —

indeed, can only be evaluated — in the light of how that particular datum relates to

other data. As Firth famously put it (1957), “you shall know a word by the company it

45

keeps.” But for the working documentary linguist, Firth’s mandate does not address

the crucial detail: if we are to treat our documentation as a model of relationships

between words and other linguistic units, how are we to actually go about managing

the data that represents those relationships?

For our goals, put bluntly, this question amounts to asking “how should we put

our documentation into a computer?” The term “well-structured data” is often

thrown about, but what does it mean, exactly, to say that data is “well-structured”, or

even “structured” at all? Exactly what kinds of information are we to include? How is

that data to be encoded in a machine-readable way? And what kinds of utility will

such effort to encode documentary information ultimately provide? We may

summarize these questions with one overarching question: How should we

design a documentary database?

Designing a database is no small undertaking — there are professionals whose

entire careers are dedicated to the task. Fortunately, however, we do not have to start

from scratch. While the full arc of the long history of language documentation was

mostly pre-digital, thinking about types of data is in no way dependent on the use of

a computer. As we shall see below, many of the notations and nomenclature

developed by the field, even in a pre-digital era, can be conceptualized as a kind of

database structure. Indeed, one of the most familiar frameworks for thinking about

data in documentary linguistics — the Boasian trilogy — can be thought of as such a

design, at least in broad strokes. The trilogy consists of the combination of three

“data types”: the corpus or text collection, the grammar, and the dictionary. But as

Woodbury (2011) points out, Boas (1917) was more interested in documentary data

46

as a network than as a mere list of types:

“All three were interrelated parts of a documentary whole, treating, in

different ways, overlapping empirical domains; and it would be a mistake to

project from any one of these a specific theoretical domain or level of

analysis.” (Woodbury 2011)

The defining idea of the trilogy is that its parts are inherently interrelated, not

simply that they are each required individually: data from each of the three

documentary types must be understood via reference to the other two. As Woodbury

emphasizes, the key insight behind the notion of the Boasian trilogy is not that we

should merely list three distinct, useful types of documentary data, it is the

recognition that those three data types are inseparable. In the print domain, such

interrelationships between the three main documentation types is approximated

with the familiar textual mechanism of the cross-reference: by means of arrows, as it

were, from one point in the stream of text to another point in that stream.

In the remainder of this section, we will investigate the nature of such cross-

references in the print and digital domains, proceeding to the notion that neither

cross-references nor hyperlinks are sufficient in and of themselves to digitize the

defining interrelatedness of the Boasian trilogy. Modeling interrelationships in data

is, of course, a task at which computers can be made to excel — indeed, a database

may be understood (at least in part) as a network or graph of interrelated

information which enables “manipulation and arrangement” of many kinds. But the

construction of any database depends on clear definitions of the internal structure of

each of the data types with which it is intended to capture. We will describe a

47

particular machine-readable “object notation” known as JSON that can be used to

encode structured data in a machine-readable way. In the third section, we will

outline a core catalog of data type representations which emphasize rather than

obscure such interrelatedness.

This shift toward conceptualizing documentary data in terms of structured

computational objects — as opposed to textual content with textual cross-referencing

— offers many benefits to the working documentarian as well as to linguists in

general. We shall see how the object model enables hierarchy to be encoded in a

useful way: thus, words may be represented as “containing” morphemes, words may

in turn be collected into a lexical analysis of a higher-level object with translations

and transcriptions — a sentence. Sentence objects are contained in Text objects,

and at a higher level still, Texts may be collected into a Corpus. The list of unique

individual words collected from texts are then collected into a dictionary (or lexicon

— on the distinction, see the section below). And finally, we will see how

grammatical categories may be treated as an enumerable data types in their own

right — that representation, while simple, goes a long way toward making claims

about the distribution of grammatical categories within usage more accountable to

the corpus. Finally, in the last section, we consider another useful product of this way

of conceptualizing our documentary data: the dataflow. Having described a specific

method of encoding documentary data in sections 1-3, section 4 shows how

particular configurations of data may be thought of as inputs and outputs of

particular documentary tasks. Thus, as mentioned in the previous chapter, a word

elicitation task may be conceptualized as having an input consisting of a list of

glosses (“prompts”), and an output consisting of “words” with glosses and forms.

48

This notion of dataflows is both abstract and generic: it does not describe the actual

steps which must be taken to transform an input into an output. But this

abstractness is by design: by characterizing such transformations of documentary

data in an abstract fashion, we will be in a position to experiment with many kinds of

applications — implemented user interfaces which enable users to carry out

particular steps which “complete” a dataflow.

2.3.1 A shift in viewpoint: from streams of text to databases of objects

Jeffrey Heath’s documentation of the Australian language Nunggubuyu, is a prime

example of a thoroughly cross-referenced “print trilogy”. Published as three volumes

— Functional Grammar of Nunggubuyu -Heath (1984), Nunggubuyu Dictionary

-Heath (1982a), and Nunggubuyu Myths and Ethnographic Texts -Heath (1982b),

Heath’s work maps directly onto the three parts of the Boasian Trilogy. But the

degree to which all three parts are interrelated through extensive cross-referencing is

remarkable. The three volumes cross-reference each other in a deep way, such that

the interrelated content of the three volumes functions as a kind of “print hypertext”.

The great value of Heath’s granularly interlinked trilogy was recognized in an

interesting reconsideration of Heath’s work (Musgrave and Thieberger 2012, 64).

They trace references of many kinds amongst the three volumes. In this section I

recreate the references they used, discussing them in the context of our current

discussion. In the case of the dictionary, they cite the following entry for the form

dhanᵍiḏ! ‘to chop’:

49

The entry begins with the form itself and then two senses. Each sense contains a

word class symbol (here, Rf), and a simple definition to chop. I have highlighted the

headword, which is also found in the corpus excerpt below. Such example sentences

are of course typical of many dictionary entries, but it is the last feature that makes

Heath’s approach stand out: following the definition, he gives a exhaustive list

(namely, “16.14.3, 43.4.1, 43.6.4”) of attestations of that form within the

corpus volume (Heath 1982b). It is this last element, which might be said to be

“hypertextual”. Heath describes his referential system as follows:

The three-part sequences like “15.4.3” refer to NMET (i.e., my own texts

volume) and indicate text number (15), segment number within that text

(4), and line of Nunggubuyu text within that segment (3).

The citation scheme Heath describes here cross-references three levels of

specificity: an identifying number of a text, a paragraph number (or using Heath’s

term “segment”) within that text, and finally a line number within the segment. Note

that the entry given by Musgrave and Thieberger is actually rather atypical of

Heath’s dictionary, in which many entries contain textual references with a dozen or

more such references. Heath was attempting to be comprehensive in the linkage

between the three volumes.

50

But referencing particular lines within a segment is in a sense “extra-linguistic”.

It is dependent on the layout characteristics of the text itself. If the typography of the

text were changed somehow — say, if the content were re-set in a different font size,

or a different typeface, then the entirety of the text would rewrap. Consequently, the

references to particular “lines” would have to be recast (an enormous undertaking in

a work of this scale). As Musgrave and Thieberger point out, the linkages between

dictionary and corpus are closely linked to the physical print layout, which requires

the reader to count physical lines in a segment in order to resolve the reference.

Reference may also be directed from the corpus to the grammar, and Musgrave

and Thieberger highlight the form mari as occurring in the grammar volume with its

own set of corpus reference. There is a section of the grammar about this particular

particle, as follows:

51

The amount of information encoded in this verbose referencing system is

impressive, but using three physical volumes is unwieldy at best. Even the scanned

versions of the volumes, now available online, are difficult to traverse. Confronting

this state of affairs, which is both rich in information and difficult to use, is

frustrating. It is clear that references may point in principle between any two of the

grammar, dictionary, and corpus, as diagrammed below:

There are six possible “directions” of reference among the three parts of the

52

Boasian trilogy, and we have seen examples of three such references: 1) from the

grammar to the corpus; 2) from the dictionary to the grammar; and 3) from the

dictionary to the corpus. Referencing of this kind gives the reader confidence that

claims made about lexicon, grammar, and usage of Nunggubuyu are being described

in a defensible (and checkable) manner.

There is an important issue to keep in mind as we consider how to design a

system which can emulate all of these kinds of links: there is a difference between

simply “pointing at” from one point in text to another point in text, and actually

modeling data in such a way that linkages between data objects can be maintained

automatically. In the next section we address this idea more deeply, and then

proceed to develop a set of concepts and vocabulary for modeling data which we can

use to create a “Boasian database”.

2.4.1 Beyond hyperlinks

Heath’s extensive cross-referencing increases the documentary power of his

Nunggubuyu documentation greatly: it helps a reader to traverse the non-linear

trilogy effectively. Hyperlinks carry out much the same function as cross-references,

but in digital form (and without the need to physically manipulate volumes and

pages). This “jumping” functionality is undeniably useful in both the print and digital

domains, but such links do not in and of themselves constitute a “database” in the

sense we will employ here. Even given its relatively early date of publication, Heath

set high goals for the usefulness of his work: he explicitly states that his goal in

creating a print “database” was to make his own work easier to subject to “cross-

53

examination”. Here, Heath seems to be stating a goal that goes beyond just cross-

referencing (or, in web terms, hyperlinking). He wants his readers to have access to

the “raw data which underlie the analysis”. Heath’s goal is to make it possible for

other linguists to carry out original research using his documentation. In other

words, he wants his work to be usable as a database, and not only as a (readable)

document. This stance is admirable, and quite remarkable given the year of

publication. He explains that his approach:

“…gives a more patient (or more skeptical) reader a feeling for the raw data

which underlie the analysis and an opportunity to ‘cross-examine’ the

author by going directly to the data. It also encourages readers with highly

specialised interests, or with a different theory of language, to discover new

patterns which I overlooked or did not have space to discuss.” (Heath 1984,

5)

Taking this dedication to accountability as a starting point, Musgrave and

Thieberger describe a sort of “wish list” for a digital linguistic database:

The interrelatedness of the various components discussed above

immediately suggests that hypertext would be a better means of

presentation and additional benefits could come from making the

grammatical description a multimedia object, rather than a text object.

Examples could be heard in the original sound recorded by the researcher,

or even seen as video clips where such presentation would aid the consumer

(for example, where gesture added an important element of meaning to the

utterance). In addition to the improved accessibility of the descriptive

54

information, such presentation would bring the consumer much closer to

the primary data, actual language in use, and therefore multimedia language

description would increase substantially the standard of accountability in

linguistics. However, the standard paper and ink presentation of

grammatical description has an established linear format which is not

suitable for the new medium.

Thieberger and Musgrave suggest that multimedia references be added to

Heath’s database, since time-aligned audio or video could enhance the

documentation by bringing even more “accountability” to it.

In the following excerpt Musgrave and Theiberger describe their methodology for

actually carrying out the digitization:

A small segment of the description of Nunggubuyu is available online at

http://users.monash.edu.au/~smusgrav/Nunggubuyu. The XML source of

these pages was hand-coded and HTML was then generated using search-

and-replace in a text editor. Obviously, these procedures are time-

consuming and, having established reasonably stable principles for

encoding the material, our next priority is to automate the process as much

as possible.

The ability to follow links from individual texts (such as Milton [Gabaṉja] and

Heath (2018)) to dictionary entries (such as Milton [Gabaṉja], Heath, and Musgrave

(2018)) is very useful, and the demonstrations of hyperlinked navigability in the

online sample are certainly tantalizing. Obviously re-keyboarding the entirety of

55

http://users.monash.edu.au/~smusgrav/Nunggubuyu

Heath’s work would be a mammoth undertaking. Even so, the goals of the

digitization project as described in Musgrave and Thieberger (2012), seem to be

limited to a process of converting textual cross-references into digital hyperlinks.6

But such a complete conversion, even if completed, would miss important

functionality that Heath himself foresaw as desirable. Expressing the details of just

what sorts of functionalities are possible in a “Boasian database” will constitute the

remainder of the present work. In general, however, we may emphasize again the

importance of the idea that documentation is not best conceived of as a set of three

extended texts (grammar, corpus, dictionary) which contain cross-references or

hyperlinks to other points in those texts. Rather, we should model our data as

collections of abstract “objects” which have complex, composite internal structures.

We must shift from thinking about our documentation through the lens of a text

model, to thinking about it through the lens of an object model.

A clarification of the notion of an “object model” is the goal of the next two

sections. We will explore what it means to “represent” or “model” a real-world entity

in a database, focusing on a carefully chosen set of attributes of an entity can serve to

identify it in a useful way. We will walk through some examples of such data

modeling below. We will discuss how objects may be understood as a bundle of

attributes, in turn consisting of properties (names) and values. We will introduce

two ways to conceptualize objects: firstly as an abstract “nested table” visualization,

and secondly as a machine-readable data notation called JSON, for Javascript
Object Notation. The visualization and the syntax are directly interchangeable.

By thinking of the data captured in documentation in these terms, we shall see how

56

the data-interrelationships Heath sought to represent as cross-references in his

Nunggubuyu print database can be operationalized as an object database in a real-

world computational environment — the web platform.

2.5.1 What is database design?

Perhaps the most widely known form of database is the spreadsheet. Spreadsheet

programs such as Microsoft Excel and OpenOffice Calc are exceedingly common in

many kinds of work. The basic steps to creating a spreadsheet seem almost trivial:

one writes down headers for each of the columns of interest, and then fills in values

for each header in each row. We create such a table for each kind of information we

are interested in tracking, and voilà, a database which can be sorted and searched in

various useful ways.

Of course, this is a simplification of the process. For one thing, spreadsheets are

created for specific purposes, and when someone sits down to create a spreadsheet,

he or she is usually already fairly familiar with the type of data that they want to

record.It is easy to overlook just how many conventionalized “data definitions” we

make use of in our daily lives. Consider, for example, a non-linguistic example: cars.

Most people are familiar with cars, and interact with them on a regular basis. We

drive them, we ride in them, and on occasion we buy them. Let us consider that last

kind of interaction. Specifically, let us try to articulate some how we conceptualize

kinds of “cars” when it comes to buying one. Consider this vintage car advertisement,

for instance:

57

It is not difficult to reconceptualize the information in this ad as a spreadsheet. A

few details need to be reconstructed: the “Comet” was a model from Mercury, the

model of Volkswagen was probably a “Bug” and so forth. Indeed, it is interesting to

consider the fact that the advertiser felt comfortable leaving out the “model” and

“make” on a few of the listings. This probably is reflective of the fact that the average

1960s newspaper reader already knew that a Comet was a model of the Mercury

“make”, and that a Volkswagen in the $1000 range was probably a Bug (and not a

van, for instance). We make use of this kind of background knowledge constantly.

And it is often precisely that kind of background knowledge that is put to use when

58

someone creates a new table in spreadsheet: we “just know” — it is part of our

knowledge of our world — that the convention for designating a kind of car is to

specify (at least) its year, make, and model. To this author’s ear, at least, the three

attributes are so conventionalized that they even demand a particular grammatical

order. “1958 Plymouth Belvedere” sounds grammatical, but any other permutation is

not: 1958 Belvedere Plymouth (?), Plymouth 1958 Belvedere (?), etc.

We can express, then, the complete information implied in the advertisement as

follows:

It is this set of attributes of a car that constitute the shared understanding

between the seller and the buyer — were that not the case, the seller at Ellwood

Motors would not have paid for an ad spot in a newspaper containing just that

information. Consider, for instance, the fact that the ad says nothing whatever about

color.

We might assume that such a thing is obvious, but is it? When a hypothetical

59

customer spotted the second-from-last listing and muses, “That’s a loaded Belvedere,

I’ll go down to Ellwood Motors and check it out”, what exactly do they expect to see?

They expect all of the attributes of the car in the listing to be fulfilled. What is that

information? Roughly, it consists of the values in the row of the spreadsheet that

contains that listing. After all, that information is all that was exchanged between the

seller and the buyer in order to enable a potential sale: the year (1958), the make

(Plymouth), the model (Belvedere), a particular price, and a list of features (four

doors, a heater, a radio, an automatic transmission, 31K miles and it’s in “like new”

condition).

Like any word, these notions have complicated semantic ranges. After all, what

exactly is a “make”? Trying to define that in a priori terms is every bit as difficult as

defining the senses of any polysemous word in a dictionary entry. Consider how

readily we can determine what should not be included in a database, given our

background knowledge of the world. Consider the “2008 Sikorsky S-434”. Those

three tokens seem like they could very well be a year/make/model triple, and should

therefore fit into the database, just like a “2019 Tesla S3” would. Except that

Sikorskies are helicopters, not cars. It is a very difficult problem to explain how

humans are able to maintain a workable understanding of how “the world” can be

boiled down to heavily conventionalized representations such as the year/make/

model triple. And yet, humans do that.

When we create a database, then, more often than not, all we are doing is

formalizing such a representation as a list of objects represented in terms of these

identifying attributes. The car buyer and the seller already share a “working

60

definition” of cars: at the very least, they share the notions of year, make, and model.

There are many shared conventions for representing cars, each of which has its own

list of conventionalized identifying attributes: in the US, for instance, the

Department of Motor Vehicles (DMV) makes use of the “Vehicle Identification

Number” (or VIN). That database doesn’t stop at identifying kinds of cars in terms of

year/make/model: the kind that the DMV’s database tracks is unique cars, specific

cars with particular accident and ownership histories, and so forth. (Copying a VIN

from one car to another is actually considered a criminal enterprise!) The DMV has

its own reasons for caring about uniquely identifying cars — law enforcement,

taxation, inspections, etc.

Considerations such as these are behind the design of every database, no less in

language documentation than any other field. Fortunately, both the conventional

data types and their lists of identifying attributes have been fairly well determined as

the field has evolved. We just need to write them down and implement them in a

computer program. In the next section we will explore the notions of data type,

attribute, property, value, object, and array. Together these notions will prove

sufficient to construct a system which can encode arbitrary documentary data.

61

2.6 An object model of documentary data, and a JSON

implementation

2.7.1 Precedents

It is important to point out that in general terms the model described here

is not a novel structure: the model described below has clear precedents in

the literature. The question of how best to go about digitizing documentary

data has been well studied: see Zaefferer (2006), Nordhoff (2012), to name

a couple. These and other researchers have repeatedly recognized what

might be called “basic” structures in documentary data. This is a good

sign: it means that there is some conventionalized agreement within the

field as to what kinds of information a documentary database should

contain.

In particular, Bow, Hughes, and Bird (2003b) Towards a general model of

interlinear text and Bow, Hughes, and Bird (2003a) A four-level model for

interlinear text, have served as touchstones in the development of the model used

here. In Bow, Hughes, and Bird (2003a), the authors develop a logical model of the

structure of interlinear text, one which is quite close to the model which will be

employed here for corpora. In Bow, Hughes, and Bird (2003b), the authors carry out

a detailed survey of a range of interlinear texts in various formats, analyzing how

their structures can be compared and conceptualized as data. In the lexical domain, a

variety of work has also been carried out, with many relevant observations dating

back decades. Hsu (1985), is an insightful work, especially given the fact that is a

62

software manual, describing how dictionary data can be modeled using the

productive LEXWARE package. Other relevant works include: Jacobson,

Michailovsky, and B. Lowe (2001), Michailovsky et al. (2014), Thieberger (2004),

Michaelis et al. (2013), Goodman et al. (2015), and Palmer and Erk (2007) inter alia.

The novel aspect of the current work is not, then, the particular details of the data

model we will use as the basis for applications. It is the fact that we are striving to

represent all kinds of documentary data in a unified fashion, in a single platform,

and then build on that structure to develop an approach to creating applications for

manipulating such data. This kind of unity in design is a prerequisite for the kind of

ubiquitous interlinking that Heath sought in his print database of Nunggubuyu.

In order to define a data model which can be effectively represented in a

computer, however, we must be explicit about the design and structure of that

model.

2.8.1 Machine-readable data types with JSON: attributes, objects, and arrays

In the previous section, we discussed the conceptualization of the notion of a “car”.

We suggested that in some contexts, a car might be represented as a year/make/

model triple. Each of these three pieces of data might be viewed as an attribute

which consists of pairs of properties (names) and values. In our introduction,

describing a car “type” consisted of adding a row to a spreadsheet with those

properties as “headers”, and then filling in the values in each corresponding cell, as

in the leftmost tabulation in the display below. But this is not, of course, the only

possible formulation of this data.

63

The difference between the two tabulations seems trivial: both are mere

rearrangements of the same information. In the left tabulation labels are placed

above their corresponding values, whereas in the right tabulation labels are placed

alongside them:

It is worth considering just how conventionalized our interpretations of such

tabulations are — it is the typographical differentiation of properties as opposed

to values that aids in interpreting the relationships between properties and values,

even the unfamiliar layout used in the rightmost tabulation.

As discussed in general terms above, the “Car” data type is represented here as a

particular set of properties (year/make/model) and with appropriate values for each.

In the context of computer programming, such a notion of a bundle of property/

value pairs is often referred to as an object. In practice and pedagogy of “object-

oriented programming”, the notion of objects includes other features, but for our

purposes we will focus primarily on this simple, data-oriented representation. This

simple notion will serve us well as we study means of recording documentary data in

a persistent way, one that can be readily processed by computer programs, displayed

64

in various formats, and loaded into interactive user interfaces — that is to say,

applications.

When a computer program runs, objects are “created in memory”. The details of

how this is actually achieved are beyond the scope of this discussion; we may simply

conceptualize this process as a means of creating “virtual” objects whose attributes

maybe retrieved by property names. There are various functionalities which

programming languages impart to each object when they are added to memory. For

instance, it is possible to retrieve the values of a particular object’s attrbutes by

referring to their corresponding properties. We may imagine such an exchange as a

sort of dialog between a programmer and the computer:

Computer: I have an object which is a car.

Programmer: What is the value of the property called `year`?

Computer: 1958.

Programmer: What is the value of the property called `make`?

Computer: Plymouth.

But of course, computers do not “converse” in natural language, it is through a

programming language that such a “conversation” is carried out. We will not delve

into that kind of programming here, but we will discuss one notation system which is

widely used in many programming languages, known as JSON for Javascript
Object Notation. Although its origins are in the Javascript programming

language, the notation is widely used as a data exchange format.

One way to “get an object into” a program is to record it in a machine-readable

65

form, which the program can then load into memory. Many modern computer

programming languages — including for example languages which prioritize

learnability, such as Python, Javascript, and Ruby — have built-in mechanisms for

using objects as described above. While the syntax for encoding objects differs

slightly from programming language to programming language, a slightly formalized

version of the notation which is used by Javascript — hence the name “Javascript

Object Notation” — has become a standard across languages, precisely because it is

both simple and usable in distinct computing platforms. JSON will serve as the

primary data storage format for the applications developed in this work.

Machine-readable formats do not rely on visual characteristics (such as those

used above to differentiate properties and values). Rather, they are defined via strict

syntactic rules about sequences of characters. JSON is just one such format. HTML
and CSS are others. Programs in the Javascript programming language (which

together with HTML and CSS is one of the default computer languages of the web

platform) are also written as such “plain text” in accordance with a strict (and

complicated) set of syntactic rules. The rules for JSON, which has become a de-facto

standard data exchange format on the web, are the simplest of any of the four web

platform languages.7 All JSON data can contain only the following types of data:

66

Value type Brief explanation

strings Textual content. Strings must be contained in "double quotes".

numbers
Numerical values. Unquoted numbers which may be integers (like 5)

and decimals (1.5).

true or false
Unquoted special values used in logical operations. These are referred to

collectively as “Booleans”.

objects

As described above. Each property is delimited from its value by a colon

(:), and each such pair is in turn delimited by a comma. The entire

object is wrapped in “curly” brackets ({}). See Figure 2.8 below.

arrays
Lists of any other values, enclosed in square brackets ([]). with each

item delimited by a comma (see below). See Figure 2.9 below.

null
An unquoted keyword used to indicate an empty value (not used at the

current time in docling.js — empty strings are used instead to

simplify rendering.)

The diagram below demonstrates how the car object we have been discussing

could be represented as a JSON object.

67

And the two-row spreadsheet view might be built from data such as the following:

The first represents the car as a single object. An object is notated between curly

brackets. Within the curly brackets, each property/value pair is separated by a

comma. The property label must be surrounded by double quotes (e.g., "year"), but

the value may or may not have quotes depending on the specific type of value; here,

68

we have represented a year as an (unquoted) number, whereas the make and model

are quoted and are thus stored as “strings”.

In the second code excerpt, the description of the car as an object appears again

exactly as it did in the first excerpt, but in this case it is “nested” within an array. The

easiest way to conceptualize an array is to simply note that the rows of the

“spreadsheet view” containing two cars is a list with two objects of the same data

type: they contain the same properties (such as "model"), while each object’s values

for those properties differ ("Belvedere" vs "Century").8

2.9.1 Documentary data types

Because the data about the Belvedere and the Century have the same properties, and

the values corresponding to the properties are of the same kind of information

(textual make and model, numerical year), we can say that each is an instance of the

same data type. We can also say that the spreadsheet-style table represents an array

of such instances. Because the graphical presentation of the spreadsheet format

requires that every row share column headers, we can say that the array of instances

itself can be thought of as having a data type.

We are now in a position to better understand the data introduced in the small

example application in the previous chapter. We can recall that before the user fills

out the translations of the suggested prompts, the interface looks like this:

69

Note that the spreadsheet-style tabulation on the right is like an empty

spreadsheet: it has column headers, but no content in its rows.

Now the data consists of an array of three “word” objects. In the same way that

the year/make/model triple has a special status in identifying a particular kind of

car, the form/gloss pair has a special status in identifying a particular word. We will

have much more to say about the structure of this data type in Chapter 3.

Before leaving the topic of data types and how they are structured, we need to

address the topic of nesting. So far, all of the arrays of objects that we have

considered and visualized with the spreadsheet-style tabulation have been truly

“tabular”. That is to say, our sample data thus far has consisted of rows of data,

where each value is “simple” in the sense that it is either textual — a “string” in

programming terminology — as in make, model, form, or gloss, or a number as in

year. But while the “features” property for each car listing was represented in our

model as a simple string, in fact, we could also conceptualize those values as a list —

an array. After all, the string is comma-delimited:

70

4 door, radio, heater, automatic transmission, 31000 miles, like new

Rather than think of the “features” attribute in this way, we could also think of

them as a simple array of strings:

We can take such a simple table and insert it as the value of an object property as

follows:

Here, the value of the features property is itself a nested list. We could just as

71

easily represent the same information as an array of objects:

The only visual difference in these two structures is whether each individual

“feature” is represented as a plain string or an object. If we wanted to add more

elaborate information about each feature (as opposed to the simple one-string-per-

feature representation in the previous structure), we could do so here — perhaps

adding the feature’s price, etc. Both the array-of-strings and the array-of-objects

representations are useful in different contexts.

But enough automotive examples. This will all be clearer when we begin to

consider documentary data, and as we explore the design and implementation of

applications in Part II. This brief foray has given us enough complexity in data to

introduce essentially all of the mechanisms that we need to represent arbitrary

documentary data. As we shall see, data in documentary linguistics is filled with

nested information of the type described in the “features” in the car database. We

now proceed with a brief overview of all the data types necessary for our “Boasian”

72

database of documentary data.

2.10 Designing a Boasian Database

The “Boasian trilogy” of grammar, corpus, and dictionary is a well-established

convention for recording documentary data: it remains highly cited within the

language documentation literature (Woodbury 2011; Chelliah and De Reuse 2010,

14; and Ameka, Dench, and Evans 2006, etc). For a useful, brief survey of how texts,

grammars, and dictionaries have influenced the development of linguistic theory, see

(Rice 2011, 192–94). As mentioned above, the utility of viewing disparate kinds of

documentary data as a unified “trilogy” is that it expresses the way in which that

disparate data is interrelated. One might say that the conventionalization of the

notion of a trilogy as a model for documentation is a kind of collective

acknowledgement that all of those elements must be present for it to be said that a

language has been reasonably well documented.

But the Boasian trilogy is typically defined in fairly general terms. What

constitutes a dictionary, for instance? Is a simple list of words with brief definitions

sufficient, or should the linguist attempt to emulate a 30,000-entry encyclopedic

work such as the Hopi Dictionary of the Third Mesa Dialect with head words,

combining forms, form classes, usage examples, definitions, morphology, loanwords,

and cross-references (Hopi Dictionary Project 1998, xvii–xviii)? Different languages

require different information by their very natures, different researchers will focus

on different aspects of the language, and so forth. Just what constitutes a “text” or

73

“grammar” are equally complex issues.

Yet, the frustration mentioned in the previous chapter seems to arise in part from

a disconnect between the way software presents documentary data and linguists’

own conceptions of what the software “should” do: if linguists are frustrated that

their tools do not allow them to “manipulate and arrange” their data as they see fit,

what exactly does that mean, in terms of the actual information stored and the actual

processes that the linguists wish to carry out with user interfaces? Clearly, there is a

received if diffuse understanding of what variety of information the Boasian trilogy

contains, but how should a “Boasian database” actually be designed? And how can

we capture the notion that all three parts of the trilogy should be explicitly linked to

each other? The remainder of this chapter describes one answer to this question.

2.11.1 A catalog of data types in docling

Language Data Type

The Language object contains basic metadata about a language, information about

the phonetic inventory, and orthography. It is useful to compile this information into

a single object, as information such as orthographic transliteration may need to be

referred to from many points within an application. Much more could be said about

the structure of the Language object, but the following sample is sufficient to give

some idea of the key objects that can be linked together.

74

Note that this is only example data. The object which is the value of the

metadata property is arbitrarily extensible, as necessary. For instance, we could

elaborate the metadata with language codes, geographical region, and family

subgrouping information:

75

(Such extensibility should be borne in mind throughout the following examples;

in each data type’s metadata value, the fields included are only intended to give an

idea of what kind of information a linguist might find useful — metadata might be

much more elaborate in a given project.)

Word Data Type

As mentioned above, the Word data type is defined quite simply: it is an object with

at least form and gloss attributes:

76

Examples in this section are from the author’s fieldwork on Hiligaynon:

Leipzig glossing notation may be used (in both values) for morphologically

complex words:

While the form and gloss attributes suffice to identify a word, they most certainly

do not exhaust the kinds of information with which words may be annotated. The

full set of annotations which apply to each word is stored in a single place — a

dictionary object or “entry” object — rather than every time the word occurs. As we

shall see, even the tokens of words (within syntactic contexts, rather than dictionary

entries), may be annotated with arbitrary information as the linguist sees fit. One

might choose to add an orthographic field and a “phrasal” translation, for

instance:

77

Similarly, a word from a tone language such as San Martín Duraznos Mixtec

might be considerably elaborated, including additional fields indicating tonal

information. One approach to handling multilingual values is also presented here,

with the fields tone and gloss also made available in a Spanish localization.

78

All such decisions are intended to be extensible; we will discuss the design and

use of Word objects more fully in Chapter 3.

Sentence Data Type

The choice of the term “sentence” to represent the “unit of interlinear text” is one of

the most problematic in this system, as opposed to other labels such as “phrase”,

“intonation unit”, “utterance”, and so forth. However, like all of the labels for the

objects in this catalog, we are speaking only of a convention for data representation.

79

For this reason the most general, generic term has been chosen whenever possible. It

should also be noted that these terms will only explicitly be used within data files and

“behind the scenes” of user interfaces. The following example in Hiligaynon

demonstrates minimal attributes for a Sentence object:

Note that the nested Word objects have the same relationship to the Sentence

object that the “features” had to each car listing in the non-linguistic example above.

Note that the fact that the Words have internal structure (i.e., both form and gloss

attributes) necessitates their representation as objects rather than as strings.

80

We will see some modifications of this basic structure in Chapters 3 and 4.

Text Data Type

The Text object primarily functions as a container for an array of Sentences. As we

saw above for the Language object, the Metadata may be elaborated with

additonal fields as necessary. We will have much more to say about what kinds of

metadata one might want to insert into documentation at many levels of analysis in

later chapters. (Metadata need not be limited to the Text level by any means.)

81

The Text object contains three levels of nesting. Word objects are nested as

arrays, and those arrays are in turn nested in Sentence objects, and finally, an

array of Sentence objects are nested in Text objects.

Corpus Data Type

Just as Text objects contain an array of Sentence objects, a Corpus object

contains an array of Text objects. At this level of nesting, our tabulation

visualization — thus far useful for condensing information in a compact, generic

form — starts to become difficult to read easily. For this reason, the tabulation below

82

demonstrates how texts are nested in a corpus object, but leaves out the content of

the texts, and has only cursory metadata for each.

Note that the corpus object does not itself contain an array of Text objects itself

— rather, it contains an array of references to Text objects. This is a much more

manageable approach to storing text data, for several reasons. For one, there should

be no a priori constraints on how Texts are grouped into corpora. Indeed, a single

text may profitably be included in multiple corpora: obviously, the sample

Hiligaynon text included here is part of the corpus produced in the particular

fieldwork class in which it was created. But it is easy to imagine other hypothetical

corpora: a corpus of Hiligaynon monologues collected from the internet; a collection

of first-person accounts of education in the Philippines, and so forth.

Lexicon Data Type

I am not indulging in trivialities when I point out that even if all the

meanings of the words are wrong, the dictionaries maintain their value as

word collections.

Benno Landsberger, quoted in Oppenheim (1968)

83

A brief aside with regard to the relationships between corpora and dictionaries is

relevant here. There is a paradox in the history of the Boasian Trilogy (Chelliah and

De Reuse 2010, 227). Namely, while the original advocates of the notion of the

Boasian Trilogy (including Boas himself) produced many grammars and corpora,

they produced few if any dictionaries. As Chelliah points out, Boas himself never

published a dictionary, nor did Bloomfied; Sapir published just one, on Southern

Paiute [Chelliah and De Reuse (2010) p. 227]9. The lack of published dictionaries is

easily ascribed to the tedium of producing them, given that it can take far longer than

producing a grammar or corpus. And yet, if we step back and consider the difference

between identifying words and defining words, the paradox becomes less

mysterious.

In a (modern) interlinear glossed text, each word is accompanied by a

morphological gloss. Indeed, most linguistics journals and publishers require that

morphological glosses be included in accordance with the Leipzig Glossing Rules

(Comrie, Haspelmath, and Bickel 2015) and the Generic Style Rules for Linguistics

(Haspelmath 2014). While a morphological gloss is in no sense as nuanced as a prose

dictionary entry with a prose definition, multiple senses and other apparatus, it does

serve a crucial function in documentation: together with the form that it glosses, a

gloss can serve to uniquely identify a word. If the full set of words in the

interlinearization of all the sentences in a corpus are aggregated, duplicates

removed, and sorted, the result is a basic but useful representation of the known

word-forms in a language.

Viewed from this point of view, while it is true that the “trilogists” did not in fact

84

create traditional dictionaries, they did identify all the words in their corpus

uniquely, via a recording of the word’s phonetic form and some unique

representation of the word’s meaning and structure. Here, we will refer to such a list

of unique words which is identified by a form and a gloss as a lexicon. Like many of

the terms we will use in this work, the term “lexicon” can mean many things in many

different contexts in linguistics (the “mental lexicon”, “lexicography”, etc.). We do

not dispute those usages, we are simply specifying a label for this sense of “a

collection of unique glossed forms”.

Perhaps the simplest way to conceputalize the notion of Lexicon as it will be

used here is to imagine that all of the Words which occur in a complete corpus are

removed from their sentential contexts, sorted into a single array, and then duplicate

form/gloss pairs removed. This list of unique Words is a Lexicon.

A personal aside on “data guilt”

Fieldwork data is messy. It is essentially never as finished as we

would like it to be. Every element in documentation is subject to

change, revision, or even removal. Of course, this state of affairs is

in direct conflict with academic ideals for writing and publishing,

where we strive to make our work error-free and entirely defensible.

How are we to resolve this conflict? In the opinion of this author, the

answer is that we fight back against our own inclination to perfect

every jot and tittle of our documentary work before we share it with

our colleagues. To borrow a term from the description of verbal

85

aspect, we should think of the production of a documentary

database as an atelic event, not a telic one.

And it is for this reason that I am sharing my own incomplete

documentation: some of the annotations in example data structures

in this chapter are confused, incomplete, or simply wrong. Looking

back at my work, why did I gloss both ákon and ko as 1S.ERG1?

Quite frankly, I don’t remember. I can see that those glosses need to

be fixed. In fact, my entire analysis of voice marking in pronouns

needs revision. It is quite difficult for me to resist the urge to correct

these errors before including them in this document — I have strong

feelings (guilt, embarrassment, and worse) linked to my own

documentary analysis. But if we are going to tackle the problem of

interacting with documentary data in a holistic manner, we must

also face the simple fact that our databases are and will always

remain imperfect. The more quickly we transfer our data into a

familiar, legible format, the more likely we are to notice errors.

Let us consider all of the words from the three-sentence Text example above.

Note that this is from incomplete fieldwork.

86

These words are in their order of occurrence in the three sentences in the sample

text. If we sort them by form, we see some repetitions:

87

The word mga ‘PL’, the Hiligaynon plural marker, occurs twice in these

sentences, as does ko ‘1S.ERG1’. For the purposes of a Lexicon, we wish to remove

such repetition. Having done so, the array looks like this:

88

The distinction is minimal in this short list, but it balloons quickly as corpora

grow. (The difference between the full list of tokens in a corpus as compared to the

full list of unique words in a corpus varies in accord with Zipf’s Law (Manning,

Raghavan, and Schutze 2008, 1:82).)

In order to improve the portability of an instance of the Lexicon data type, we

will also include a metadata attribute with key information, and the list of words will

be placed under a words attribute, as follows:

89

And here, then, is our small in-progress working lexicon of Hiligaynon, such as it

is:

90

Grammar Data Type

The Corpus data type is probably familiar in broad outline to documentary

linguists. The notion of the Lexicon as a list of unique form/gloss pairings (as

opposed to dictionary entries), is perhaps somewhat less familiar as a “format”, but it

is easily understood as a highly constrained kind of word list. The way that we will

define the Grammar here, however, is probably quite unfamiliar. A full

development of this data structure and its application in docling.js applications

is beyond the scope of the current work, but here is a simple example of some key

fields:

Here is a sample grammar table for a language whose grammatical categories

may be familiar to many readers, Latin:

Describing such a structure as a “Grammar” may seem, at best, presumptuous.

How can the most complex part of documentation — the grammar — be reduced to

nothing but a list of categories? It is better to think of this list as a set of symbols

which point to particular configurations of grammatical features; symbols such as

these are used throughout the data model used in docling.js. The Grammar data

91

object serves as a single source of truth for the denotation and symbolization (via

abbreviations) of grammatical category labels in the database. The terms in this

particular list are derived from a particular source, Moreland and Fleischer (1990).

(Note the use of mixed-case abbreviations and periods, no longer current practice).

We shall see that many other kinds of grammatical categorization, however, may be

expressed in the same way — including categories which are not familiar from

Leipzig-style morphemic glossing abbreviations. The locus for application of these

categories is not constrained to the morphological context; we may use the same

notion of category/value pairs to create useful labels for categorizing elements at any

level of Boasian database, and for constructions which may have complex

grammatical structures. Such labels may refer to analytical levels — a label for a

voice construction, for instance, may make reference to linguistic units at the

morphemic or syntactic levels, for instance.

2.12 Modeling data change with dataflows

At this point we may proceed to define the notion of a “dataflow”, introduced in the

previous chapter, in a more detailed fashion. Recall that in that chapter, a dataflow

was defined as the set of changes which convert one state of documentary data into

another state. Thus, in the sample lexical elicitation application (§1.3.3.1) the

dataflow consisted of adding values for the form attribute for each word in a list.

But that is a very simple example, involving only the modification of a single

attribute of a particular data type (the form of a Word data type). The notion of a

92

http://localhost/book/1.html#iterative-recording-interface

dataflow is intended to be very generic: a dataflow may involve any transition from

one state of data to any other. Initially, we will constrain the kinds of modifications

we make to operations involving instances of the data types cataloged above, but it is

of course possible to extend that list.

2.13.1 Familiar documentary dataflows

Note that the dataflow itself is not a definition of a user interface “UI” or what is

sometimes called “user experience” or “UX”. What it does define is a logical

representation of input and output states of some abstract documentary task. That

logical representation, however, helps to better define some of the working

terminology documentary linguists make use of as they describe the kinds of work

they are carrying out. Indeed, dataflows are a convenient way to formalize the

meanings of some of these familiar terms.

To read the dataflow diagrams, compare the structure of the input with that of

the output. The difference between the two is the substance of the dataflow. Thus, in

the elicitation dataflow, forms are added; in glossing, glosses are added; in

tokenization, an array of word forms is added; in time-alignment, links to media are

added, and so forth.

Elicitation

For example, the elicitation dataflow viewed above may be defined in a manner that

is only slightly more verbose than the presentation in Chapter 1:

93

Here, we have explicitly indicated the input and output stages of the dataflow.

Note that the values of the input and output attributes are themselves simply

instances of the Lexicon data type: the only difference between the information in

the two data types is that the output Lexicon’s words attribute contains Words

with a specified form attribute.

Here are a few more examples of dataflows defined for familiar terms from

documentation.

Glossing

Glossing is, in a sense, the inverse of the Elicitation dataflow just presented. In this

case, the input is an array of Words containing only form attributes, and the output

is an array of Words containing both form and gloss attributes.

94

Time-alignment

The familiar operation of adding start and stop timestamps to a sentence (a primary

annotative functionality of the ELAN software package) is called “time-alignment”.

95

Note that in this case media links10 were added at the level of the sentence; the

same type of link attribute could be added at the word or even phoneme level. We

shall explore these structures in more detail in Chapter 3.

Word Exemplification

[{ "input": { "lexicon": { "metadata": "…",

"words": [{ "form": "…", "gloss": "…" }] },

"corpus": ["…"] }, "output": { "lexicon": {

"metadata": "…", "words": [{ "form": "…",

"gloss": "…", "examples": [{

"transcription": "…", "translation": "…",

"words": [{"form": "…", "gloss": "…"}] }]

}] }, "corpus": ["…"] } }]

In this dataflow, an array of “example” sentences is added to each word in a

96

lexicon. The examples of each word are drawn from the corpus. This output of this

dataflow is comparable to a typical use of the slipfile as described by Munro in

Chapter 1. This output is essentially identical to Heath’s dictionary to corpus

reference system as described at the beginning of this chapter, where the dictionary

entry for the word dhanᵍiḏ! was followed by a series of cross-references to a corpus.

Note that in the dataflow shown above — and in this regard the data structure is

unlike Heath’s “print database” — the example sentences are not simply referred to

within the entry data, rather, full copies of the sentence data structures are

“embedded” within the word data structure itself.

The notion of embedding full example sentence data within the word entries as

described here raises a number of questions of efficiency as far as implementation is

concerned. Crucially, it casts the example sentences themselves as being encoded

redundantly — once in the corpus, and once in the dictionary. It is important to bear

in mind that in actual implementation, “behind the scenes” mechanisms provided by

programming languages and database tools are designed to handle such issues. In

fact, there are many, diverse methods of doing so. The details of how this works are

beyond the scope of the current work, but suffice it to say that an example sentence

which appears in a dictionary display in one interface and a corpus in another may in

fact be stored just once. Gere, we are concerned with presenting an interpretable

data model of documentary data that is familiar and understandable to people — to

working linguists. Because linguists are familiar with the notion that example

sentences within dictionary entries are “drawn from” corpora, we simply stipulate

that such data linkages must be supported and leave the particular implementation

to a later discussion of the source code itself.

97

We shall see in Chapter 5 how this dataflow output may used to “render” an

variety of familiar notational formats, especially those familiar from dictionary

entries with example sentences. We shall also see that exemplification of this kind

may be generated automatically.

Because we have described these examples only in terms of arrangements of data

types, they may seem at this point to be rather too abstract. More examples will be

developed and worked through with sample data in Chapters 3 and 4, but it is hoped

that this collection of dataflow descriptions provides, at least, some evidence that the

data model we have described is useful. These precise definitions of dataflows will be

helpful in Chapter 4, in which we address the problem of defining actual steps —

which we will refer to as workflows — which, when completed by the linguist, result

in the fulfillment of the dataflow operation.

As we have seen, orienting ourselves towards “objects” in documentary data

provides a useful way of characterizing both the nature of documentary data (data

types), and processes by which it may be altered (dataflows). This viewpoint helps to

shed some light on the precise nature of the “sorting plague” that Bloomfield and

Harrington lamented as so laborious and time-consuming. Because their materials

were physical — notebooks, slipfiles, and other paper artefacts — physically

rearranging those materials in order to “carry out” a data flow such as word

exemplification would have been a daunting prospect. And while details of how such

“collation” (to borrow Bloomfield’s label) was carried out are scant in the literature,

it is clear that sorting a database of thousands upon thousands of physical objects

would have been excruciating. Considering also that a single sentence may serve as

98

an exemplification of any of its constituent words, it seems likely that fileslips would

have been produced for every word in a sentence, in order that each fileslip could be

found exemplifying each of those words — resulting in massive duplication of data.

Compared to such Sisyphean efforts, the power of a mid-range laptop is astonishing.

All data in a computer, after all, can be treated as a virtual entity, and duplicated and

rearranged almost at will, and in the blink of an eye.

In the next chapter, we will turn from the structure of documentary data to

approaches to designing and implementing software which supports that data

structure.

99

3. Viewing Documentary Data

In the previous chapter we considered an abstract model of documentary data which

can be encoded as JSON objects and arrays. That model is useful for thinking about

“pure” documentary data, and for storing such data in a reliably simple way, but of

course a data format such as JSON is not itself acceptable as a user interface: we do

not want to directly edit JSON files. Rather, we need effective ways to display that

data legibly. We will build such a system “on top” of HTML itself, in the form of web

components: “custom” HTML elements which are specifically designed to 1) display

documentary data and 2) make such data interactive and editable.

We saw in Chapter 1 how the HTML markup language can be used to encode

structured documents. HTML is composed of a set of default “tags” which serve

various purposes within an HTML document. Some are used to break text into

paragraphs (the <p> tag). Others indicate that a run of text is important (,

typically rendered with a bold typeface) or emphasized (, typically italic). The

logical hierarchy of different sections of the document may be set off with headings

and subheadings of various levels (<h1> being the highest, followed by <h2> down

to <h6>) — the section you are currently reading begins with an <h2> heading, while

the entire chapter begins with an <h1>. For encoding data which are in a tabular

relationship, there are a whole series of tags, including <table>, <tr> for rows,

<td> for cells, and several more.

But there are also many default HTML tags which are unrelated to the conventions

for marking up a structured document. Such elements allow the reader to edit

100

content. The <button> tag, for instance, makes its content “clickable”: . For

inputting text, the <input> tag is available: . Other tags include

the <select> or so-called “dropdown”: . If you tried manipulating these

example elements, you might be left wondering why they were included in the page,

since they seem to do nothing. But this reveals an important fact about such

“interactive” elements: unless functionality is programmed to accompany their

presence, interactive elements do nothing. It is up to web developers to define how

the basic functionality of such elements should be associated with computations of

some kind.

The HTML standard “HTML Living Standard” (2021) only specifies what the

building blocks are — the task of defining how to combine elements into a usable,

useful application is what “web development” really involves. It does not answer, in

other words, questions such as “what sort of information should be collected in

<input> tags?”, or “what interactive behavior should occur when the user clicks a

<button> or makes a selection in a <select>?”. In our case, the kinds of

information we seek to use is documentary data of the sort described in Chapter 2.

The purpose of the docling.js library is to bridge this gap between the

programmable environment of the web browser, and digital documentary data itself.

The library attempts to provide an answer to the question “How can we use the

design palette provided by the web-browser programming ecosystem to compose

applications which represent the full gamut of data types that are important to

documentary linguists?”

Here, then, we begin the process of working through basic user interfaces for all

101

of the data types described in Chapter 2. The docling.js library is responsible for

providing coordination between structured documents (HTML), documentary data

(which we encode and save as JSON files), and what is sometimes called “user

behavior”. User behavior is everything a human being does to interact with an

application: typing on the keyboard, controlling the cursor with a mouse or a

trackpad, and so forth. In the current work, we will be thinking of web development

as more of a design problem than as a programming problem. The goal is to help the

reader build up a mental catalog of building blocks that can be composed into

designs for applications that can be implemented. While this book is not a tutorial in

programming Javascript — simply reading it will not be sufficient to equip one to

implement working applications — it does include high-level introductions to three

topics which are arguably “behind the scenes” of a working web application. These

topics are:

1. How HTML elements work together in docling.js applications

2. How CSS (see below) can be used to modify the presentation of those

applications

3. How the JSON syntax may be used both to conceptualize abstract data and to

persist “physical” copies of documentary data as files

To a significant extent, the docling.js library is designed to abstract the

details of how these technologies are actually being used behind the scenes.

However, to the degree that details are introduced here, it is hoped that linguists will

find themselves in a position to evaluate how the web platform can be used to

achieve their goals. One might question whether it is reasonable to describe a

102

software library without delving into the details of the software code itself, but

familiarizing oneself with the design of applications helps users to understand what

kinds of challenges arise when implementing user interfaces for carrying out

documentary tasks. While it is hoped that a subset of readers will be inspired to

investigate the code itself, a more critical first step for the field is to empower

linguists to understand how a functioning system — the docling.js library — can

open many avenues in documentation work.

It is the application design process, then, applied to the domain of documentary

linguistics, that is the topic of the remainder of this work. In the remaining chapters,

we will work through the implementation of user interfaces for displaying and

interacting with data of the data types described in thus far (Word, Sentence, Text,

etc).

Source code

For interested readers, the source code for every

docling.js component is available with a test

page in the docling/ subdirectory of the

directory in which you are reading this web

document:

docling/

103

docling/

Note that this source code will be soon be available

independently at:

https://github.com/docling-forum/docling.js/

This link is also available in the chapter navigation

bar at the top of this page.

For instance, a test page and brief documentation

for the <text-view> element is available at:

docling/text/text-view/text-view.html

Sample data for this chapter

Except where otherwise noted, the sample data in

this chapter is from the author’s unpublished

fieldwork on a text in Hiligaynon (Central Visayan,

Austronesian), from a university fieldmethods

class context. The origin the text is a YouTube

video from a YouTuber named Juan Lee (“Ilonggo

Boy”). The author and the speaker from the

fieldmethods class, Joshua De Leon, carried out a

series of rehearing sessions to transcribe the

Hiligaynon, the (highly imperfect) morphological

104

https://github.com/docling-forum/docling.js/
docling/text/text-view/text-view.html
https://www.youtube.com/watch?v=cUqMWG4QJMk
https://www.youtube.com/watch?v=cUqMWG4QJMk

analysis is by the author. Interestingly, Lee, the

YouTuber, attended Central Philippine University

(CPU) in Iloilo City on the island of Panay. CPU

provides schooling for all ages, and Lee states that

his entire education took place at the same

institution “from nursery school” all the way

through college. De Leon had attended CPU for

high school, and thus was quite familiar with Lee’s

observations about life on the campus. Their

shared educational experience also makes the text

and its rehearings interesting as a point of

comparison between Lee’s use of Hiligaynon and

De Leon’s. In terms of data, the text contains some

900 words, and is segmented into 143 sentence

units. This is unpublished fieldwork, and it

presents all the complexities and imperfections of

a work in progress. Nevertheless, the data

structure — the form in which the transcriptions

and analysis are recorded, however imperfectly —

has been adapted to the docling.js data model.

A selection of sample data drawn from a wide

variety of languages is also included in this work.

105

The full repository of sample data is available

alongside the docling.js Javascript library

mentioned above, in its own data/ directory. For

example, the JSON representation of the

Hiligaynon text just mentioned is available at:

data/languages/hiligaynon/corpus/

education_in_jaro/education_in_jaro-text.json

3.1 Reviewing key concepts

We have introduced a fairly large list of terminology so far, so we will pause briefly to

summarize and distinguish key terms. We will discuss the three-way classification of

web components in the next section, but also summarize them here for convenience.

Object

An object is one of two abstract data structures which are used in JSON data.

Data type

A data type is an object with pre-determined property names and particular

types of values. For example, a Word data type is defined as having properties

form and gloss, each of which has a textual (or “string”) value.

106

data/languages/hiligaynon/corpus/education_in_jaro/education_in_jaro-text.json
data/languages/hiligaynon/corpus/education_in_jaro/education_in_jaro-text.json

Dataflow

An abstract description of a change in data from one state to another. For

instance, we may describe the process sometimes referred to as glossing or

defining as the process of adding a gloss property to an object which already

contains a form: {"form": "casa"} becomes {"form": "casa", gloss:
"house"}. Note that dataflows are intentionally “agnostic” as to how the

change is carried out through a user interface.

View components

Views are legible presentations of a data object at one point in a dataflow.

Editors

(See Chapter 4) User interfaces which assist the linguist in actually “carrying

out” a data flow — either adding or modifying the values of a given object.

3.2 A first look at web components

In Chapter 1, we introduced some of the standard HTML elements. In general, HTML
files consist of a series of tags which are interpreted by the browser when it loads an

HTML page. Because tags may contain not only text but also other tags — that is to

say, tags may be nested — a hierarchical structure is encoded into the HTML
document, and the browser can refer to both individual tags as well as “sub-trees”

within the document’s full tree of nested elements.11 The HTML file is said to be the

source of what the user sees in the web browser. In the display below, a very simple

107

1.html#dataflows-workflows-and-components

HTML file appears on the left, and a simulation of how it would be rendered in a

browser appears on the right. In this case we are considering a simple user interface

for presenting a “talking dictionary”-style dictionary entry.

With some comparison, the relationship between the “rendered” content and the

raw HTML tags on the left should be fairly apparent. The img tag, for instance,

corresponds to the image of a window. Note that it contains a src attribute which is

set to the value window.jpg, which is “pointing to” a JPG image file. But this

example is just standard HTML. Each bit of the rendered display has been hand-

written into the HTML: the form bentana was inserted into a tag, for

instance (which, by default, displays its contents in a bold font). An <audio> tag

with an explicit reference to an .mp3 file was also included directly, and so forth for

the other annotations associated with this word. The display is usable (if not

particularly aesthetically pleasing), but hand-coding such content directly as HTML
has many drawbacks: it’s very tedious to write so much HTML markup, and doing so

108

is particularly error prone. Perhaps worst of all, once that markup has been hand-

written, any change in the design of the markup (say, for instance, when an author

chooses to use some tag other than to contain forms) will require further

hand-coding of that change in order to propagate it across all existing markup.

Clearly, this is not a scalable solution.

It is precisely because of problems such as these that the combination of “bare-

bones” data in JSON format and web components is so powerful. Web components

are defined programmatically (as Javascript code), but one need not be a Javascript

programmer in order to make use of them — one only needs to understand how the

web component’s tag and its associated HTML attributes

12 are defined, and how to

point it to the data it needs to render. This is because we can design web components

in such a way that they can “consume” JSON data (such as a Word object), and then

insert all the various values from that data into particular empty tags within a kind of

“skeleton” HTML template. This is done automatically as far as an HTML author is

concerned; the author need only know how to import the web component and

specify where it should find its data files. Typically, those data files are JSON files,

and we define the web component to expect an HTML attribute called src to point to

that data file.

Let us imagine a recasting of the previous word entry display as a web component

rather than hand-coded markup. We’ll call our custom element <entry-view>, and

we’ll define it with an attribute called src which can name a JSON file.

Let us consider a JSON object which represents the information about a word

109

displayed in the hand-coded HTML above:

Note that we have added some extra information here, including a reference to an

image, audio, and a reference to the word’s etymon. In the demonstration below,

notice how the HTML markup has been reduced to two tags: the first (<entry-
view>) informing the browser that we wish to use that custom element, and

secondly, a <script> tag which “imports” the definition of the custom element

itself.13 Note also that the <entry-view> tag is “pointing to” a file containing the

JSON data above. Again, in practice we would probably not approach this using a file

containing a single word, but rather, a whole lexicon or other data structure which is

likely to be useful in description and documentation. This encapsulation is in fact of

great benefit, because a simple tag with just a few customizable attributes is very

easy to understand and use.

110

The web component standard is simply a means of allowing new HTML elements

to be created which work in a similar manner. The docling.js library is

intentionally designed to be specific to the context of web-based language

documentation. For example, below we see a demonstration of the custom <text-
view> component which renders a standard interlinear presentation of a Text
object.

111

The <text-view> tag is one component defined in the docling.js library.

Again, we see the src (for “source”) attribute specifying the name of a JSON file (in

this case, education_in_jaro_sample-text.json. For simplicity’s sake, we

are looking at an abbreviated version of the Education in Jaro Hiligaynon text with

just three sentences. The <script> tag imports the docling.js library, which

includes a component which defines the <text-view> tag. Additionally, because

the formatting is more complex than the simple word entry displayed above, we are

also adding a <link> tag which imports CSS rules which are responsible for

controlling how the generated content looks: transcriptions are bold and in a

slightly larger font, forms and glosses render in the familiar “tiered” interlinear

format, and so forth. With these three tags in place inside of an HTML page, and

assuming that the docling.js, education_in_jaro_sample-text.json, and

docling.css files are in the same directory as the HTML page itself, the rendered

content on the right will appear. Note that once the web component has carried out

112

its rendering tasks, the single <text-view> tag is automatically populated with

many additional “internal” tags to create structured, consistent markup. (In fact, the

generated markup for this brief three-sentence example already contains 130

individual HTML tags.) Furthermore, the <text-view> web component enables

time-aligned playback if the correct data is present in the associated JSON file.

Again, the component itself can be designed with particular uses and layouts in

mind — the <text-view> shown here is merely a default possible rendering of a

Text data as defined in the previous chapter. As we shall see in the next chapter, the

same JSON data may be displayed with a variety of interfaces, appropriate to quite

different documentary workflows.

3.3.1 A typology of web components for docling.js

Within the general notion of web components, docling.js components were

designed in three “flavors”. This is merely a convention to try to keep the

implementation of docling.js components as consistent as possible across the

library. These three types of web components are views, lists, and editors. In the

remaining sections of this chapter we will consider View components (which are

used to display data objects) and the closely related List components, which are

responsible for displaying arrays of objects. We will discuss the more complicated

issue of designing and defining Editor components in the next chapter, but the

following list will give an overview of some basic components for basic data

documentary data structures.

113

Data Component Purpose

Word <word-view> Display a Word

Word <word-list> Display multiple Words

Lexicon <lexicon-view> Display a Lexicon

Sentence <sentence-view> Display an interlinear Sentence

Text <text-view> Display an interlinear Text

Sentence <sentence-list> Display multiple Sentences

Lexicon <lexicon-editor> Edit a list of Words

Sentence <sentence-editor> Edit a Sentence

Word <word-editor> Edit a Word

Text <text-editor> Edit an interlinear Text

Note that we adopt a simple, consistent naming convention for our three types of

components, which are named first for the documentary data type that they address,

and (after a hyphen) for which of our three types they implement.

Views

• <word-view>
• <sentence-view>
• <text-view>
• <lexicon-view>

114

As in the <entry-view> example above, View components generally take a single

data object as input, and generate HTML markup which is appropriate for that data.

In the current chapter, we will consider <word-view>s for rendering Word objects,

<sentence-view>s for rendering Sentence objects, <text-view>s for

rendering Text objects, and <lexicon-view>s for rendering Lexicon objects.

Simple attribute values of objects are rendered as standard HTML elements — for

example, a <word-view> will render its associated Word’s form value, a string,

inside of an HTML tag, and a <sentence-view> will render its associated

transcription value into a paragraph (<p>) tag, and so forth.

Lists

• <word-list>
• <sentence-list>

Note however that as we saw in the previous chapter, some JSON objects have

attributes where the value is in fact not simply textual content, but rather another

JSON object. We can distinguish these values as being simple or complex — a Word
object may have an attribute with the property form and a value which is simply a

string (such as bentana). However, the attributes of some data objects may have

values that are themselves not mere strings, but objects or arrays. Namely: a

Sentence has an array of objects of the Word data type representing its glossed

words; a Text contains an array of objects of the Sentence data type; and a

Lexicon (like a Sentence) contains an array of objects of the Word data type. For

cases where the value of a data object is complex, views will delegate their rendering

115

to a list component. Unlike view components, list components accept an array of

objects as their data, and then automatically “stamp out” a view for each object in

that array. Thus, a <word-list> component will automatically generate as many

“child” <word-view>s as the array contains Words. List components are also useful

as a target for defining search and sorting functionality.

Editors

• <word-editor>
• <sentence-editor>
• <text-editor>
• <lexicon-editor>

The most complex type of component in docling.js are Editors. Editor

components provide an interface for editing data — either creating entirely new

objects, or else by modifying existing objects: in terms of JSON data, we can say that

editor components not only take JSON data as input, they also allow users to modify

(or create from whole cloth) data which is ultimately output from the component.

We shall see that editors are a prime target for customization, as many kinds of

fieldwork workflows can be characterized as a sequence of editing steps. Note that

the design and implementation of Editor components is very closely linked to how

linguists go about carrying out the steps of their documentary work — because

linguists use many different methodologies and techniques while working, it is

important to bear in mind that the very same change from input to output data —

that is to say, the very same dataflow — may be accomplished via entirely distinct

116

Editor components, each with their own user interface design. We will discuss this

notion in Chapter 4. For more on the distinction between View (and List)

components versus Editor components, see §4.1.

3.4 Displaying data with view and list components

We will begin our discussion of the design of components in docling.js with the

task of displaying data in a legible form for users. In Chapter 2, we used the JSON
syntax as a convenient means of discussing abstract definition of data types. JSON is

convenient not only as a way of conceptualizing data — docling.js components

are designed to “accept” documentary data in the JSON format directly. To put it in

general terms, when JSON data of the correct data type is “inserted into” to a

docling.js component in a page, the component “knows” how to automatically

render that data in a useful format.

Let us consider this process using our basic definition of a Word object, which is

defined as a bundle of a form and a gloss, both of which are stored as string values

in an object like the following sample Hiligaynon word. As we shall see, many other

kinds of useful information could be recorded about this word beyond a simple form
and gloss, but for the sake of simplicity we will consider only these two key fields in

our exposition of <word-view>s.

First, we may render the word using the “abstract” tabular representation from

Chapter 2:

117

4.html#designing-user-interfaces-for-documentation-workflows

{ "form":"eskwelahan", "gloss": "school" }

And here is the equivalent data recorded in the machine-readable JSON data

syntax:

{

"form":"eskwelahan",

"gloss": "school"

}

We see that this Word is defined as an object (it is contained in curly brackets {})

which has two comma-delimited properties, form and gloss, which are respectively

associated with the values eskwelahan and school. (Recall that both properties and

values are double-quoted, and are delimited by colons.)

But neither the abstract, but legible, tabulation above, nor the explicity, but

poorly legible raw JSON syntax is familiar to linguists. We may compare a typical

linguistic notation of the sort one might find in a glossary as something like the

following:

118

<word-view>

eskwelahan ‘school’

This is of course just one possible typographic presentation of a word that might

be found in a print dictionary — obviously dictionary entries in general may be far

more complex, but simple “glossary” or “word list” formats of this kind are

nonetheless quite common in published documentation. It is important to keep in

mind that for a linguist reader, such a conventional typographic presentation is a

data structure, in the sense that the reader knows how to map the typographical

details onto categories of data. That this is the case can be shown by the fact that the

conventions may be changed, without changing the core roles of each piece of data —

choices about which typographic features should be used to indicate which data

categories is largely a matter of aesthetics and convention. The table includes four

examples which recreate the formatting of glossary-style “entries” in published word

lists. (Entries have been simplified in some cases). Note that the permutations of

bold or italic text differ between the examples. (In the case of the last example, no

typographical variation is used at all.14)

119

Excerpted entry Form Gloss Source

hraiwadubo turtledove bold (no styling) Gothic (Lambdin 2006, 336)

āditta ‘burning, blazing’ (no styling) ‘quoted’ Pali (Gair and Karunatillake 1998, 182)

seka̱wet ‘chipmunk’ italic ‘quoted’ Cupeño (Hill 2005, 136:470)

school hóhé (no styling) (no styling) Eastern Kayah Li (Solnit 1997, 372)

Table 3.1 - Varied styling of forms and glosses drawn from published grammars

Again, for the purposes of digital language documentation, what matters is not so

much that data be formatted in a particular way. What matters is that the

categorization of data categories be captured in the content of the HTML document —

and thus, within the user interface — in some systematic, unambiguous way. The

docling.js components are designed to use only the minimum amount of default

styling rules necessary to differentiate common classes of documentary data, while at

the same time allowing for emulation of standard documentary notations. These

defaults will be described below as we progress through the description of each

component.

3.5.1 Granularity in digital documentation

Before preceding to the description of WordViews, let us set out a principle that has

been applied in the implementations of all the components in the docling.js

120

library: the granularity of HTML markup. We will refer to an HTML document as

“granular” to the degree to which every “piece” of the data it represents is “marked

up” within the HTML managed by that component. For example, a component for

displaying a Word object (per our working definition) will be “granular” insofar as it

unambiguously encodes the “pieces” of an instance of the Word data type. Although

our working definition of the Word data type is defined as having just two attributes,

a form and a gloss, we will only say that a Word is “granularly marked up” if the

HTML used to represent unambiguously encodes all three of the following “pieces” of

data:

1. The form value

2. The gloss value

3. The Word as a whole

The last piece is crucial. A Word, after all, is a complex object, in the sense that it

is a bundle of attributes which each have a name (form, gloss) and a value

(“eskwelahan” and “school” in our example), but the bundling itself establishes a

new entity which must also be marked up. We shall see examples of what

consequences fall out from granular markup in discussions of specific components

below. We may summarize the notion of granular markup, then, as follows:

GRANULAR MARKUP: HTML markup is granular insofar as (1) every

object and (2) every value of every object in the data associated

with the markup is displayed with a dedicated HTML element.

This principle has been adhered to throughout the implementation of

121

docling.js library of components. In the next section we will take a look at our

first such docling.js component: the <word-view>. We will inspect the granular

markup that the component manages directly, and discuss how that markup can

serve as a flexible basis for designing interfaces for recording, modifying, and re-

using words.

It should be borne in mind that the granular markup which is used inside

docling.js components is not to be written “by hand” — the purpose of custom

HTML elements is to generate appropriate markup for data without onerous hand-

coding of HTML.

3.6.1 <word-view>

The first requirement set forth for a <word-view> above is that it unambiguously

indicate what markup corresponds to a word object and its properties and values.

There are many ways that this might be done in HTML, but in docling.js a custom

element is defined to represent every data type in the documentary data model from

Chapter 2. Note that custom HTML elements are identifiable as such by the hyphen in

their tag-name. A <word-view>’s internal, generated markup looks something like

the following:

<word-view>

eswelahan

school

</word-view>

122

Default styling rules for a <word-view> stipulate that the tag with a

class of form is rendered with its font weight set to “bold”, resulting in the following

presentation:

eskwelahan school

<word-view>

But there is more going on here than simple formatting of two strings of text. If

you are reading this document on a device with a “pointing device” such as a

trackpad or mouse, try moving your cursor over (“hovering over”) the words

eskwelahan and school individually (on some mobile devices, clicking the words may

work as well). The display of a status message You are hovering over the form data

or You are hovering over the gloss data has been programmed to appear as a

function of your cursor’s location over those rendered tags. Furthermore,

each “hovered” stretch of text is highlighted with a distinct background color, as a

function of the type of data which that text conveys.

This simple example displays one of the most crucial advantages of the web

platform as an environment for digital language documentation: Granular markup is

123

the basis for both modifications in visual presentation, and for customized,

programmatic responses to user behaviors. Those stylistic and behavioral

modifications can be applied selectively to individual elements or to sets of elements.

There is an entire “language” (in the sense of “syntax for formatting text in a

machine-readable way”) called CSS (Cascading Style Sheets) for handling the

selection of elements in documents and modifying the way they are presented. We

will introduce some of the basic concepts of CSS as we progress though components

in this chapter.

Note that the “hover” behavior in the previous example was a customization of

that particular <word-view>. The particular hover behavior (namely, displaying a

message and changing background colors) is not part of the generic, “base”

functionality of a <word-view>, and consequently other instances of the <word-
view> component in the document do not exhibit those behaviors. This customized

interaction is not particularly useful or reusable, but it demonstrates how

components may be customized to change how data, markup, and user interactions

interact. In practical terms, the possibilities for how such interactions might be

defined are practically limitless. We shall see how such components may be

combined into full applications for carrying out key documentary tasks.

It is also worth noting the way in which these two elements are

displayed: they “run together” on a single line. As we shall see below, this style of

laying out the content of the two spans of text can be overridden such that they are

arranged vertically in a column, as would be appropriate in the context of an

interlinear gloss.

124

3.7.1 <sentence-view>

Moving on now to a more complex docling.js component, we may consider the

<sentence-view>. The data representing a Sentence is more complex than that

for a word, in that it contains (at least) transcription and translation
attributes, as well as a compound value for its words attribute: an array of Word
objects. In Chapter 2 (2.3.1), we saw how the JSON data syntax represents objects via

“curly brackets” ({}), and arrays are delimited by square brackets ([]). The value of

a Sentence’s words attribute is an array of Word objects, and thus contains a

sequence of comma-delimited objects inside an array. Here, for example, is JSON
representation of the first sentence object from the sample Hiligaynon text:

125

2.html#sentence-data-type

{

"transcription": "Hello, ako si

Juan Lee.",

"translation": "Hello, I’m Juan

Lee.",

"words": [

{

"form": "hello",

"gloss": "hello"

},

{

"form": "ako",

"gloss": "1S.ABS"

},

{

"form": "si",

"gloss": "PERS"

},

{

"form": "Juan",

"gloss": "Juan"

},

{

126

"form": "Lee",

"gloss": "Lee"

}

]

}

JSON data representing a sample sentence

which will be used in the discussion below.

The tabulation format from Chapter 2 may also be used for a simpler

visualization:

As both the “raw” JSON syntax and the tabulation visualization demonstrate, this

simple Sentence object contains two string attributes — a transcription and a

translation, and an array of Word objects, each with its constituent form and

127

gloss. This data structure has the benefit of being machine-readable: a computer

can “understand” the structure of the JSON file.15 But while JSON and abstract table

representations like those above have been helpful in our own conceptualization of

the data, at this point we will turn away from thinking strictly in terms of data

formats, and toward the notion of how to form user interfaces for interacting with

data in a more usable way. We wish to present data of this (and other) documentary

data types using notations which are already familiar to documentary linguists. It is

the responsibility of the docling.js components to do just that: a docling.js
component defines a “piece of user interface” that maintains an association between

the data and the display (and which can be combined with other such components).

In the remainder of this section we will investigate how granular markup generated

by the <sentence-view> component leads to good usability characteristics for as

many users as possible.

Granularity and responsiveness in the <sentence-view> component

We saw an example of this in the discussion of <word-view>s above, which manage

the relationship between Word objects and granular HTML markup. But when we

turn to the Sentence data type, it becomes clear just how important it is that the

relationships between data and user be maintained correctly. It is not just a matter of

making the presentation look “right” or “familiar”, it is also a matter of ensuring that

the markup generated by a component is granular.

The consequences of granular markup (and the lack thereof) can be seen in the

demonstration below. Consider the two following, seemingly near-identical

128

renderings of the example Sentence data:

These two presentations are nearly identical visually, and adhere to the familiar

“four-tier” interlinear text format. As described in style guides for major linguistics

journals (such as LSA (2021) and IJAL (2021)), this format consists of four “tiers”:

(1) a transcription line (or “baseline”); a list of morphologically glossed words, each

represented by (2) a form set in bold text together with a (3) corresponding gloss;

and finally (4) a free translation (in this case, into English). In the “three-tier”

format, the initial transcription line is dispensed with.

But the underlying markup of these two displays is distinct in a crucial way —

129

only Display Two is granular in the sense defined above. We can get a feel for the

importance of granularity here by interacting with the display, and modifying its

visual characteristics.

Resizing the <sentence-view>’s container

One such interaction is the way that the content reacts to the size of its container. To

see this, the “resize handle” in the lower right corner of the demo above may be used

to adjust the width of the demo. Each display responds distinctly when the

containing box is made smaller than the default width of the content: in that context,

the content of the first interlinear is obscured — it is said to “overflow” in CSS jargon

— and it becomes partially obscured from view, and thus unusable. However, the

second interlinear “responds” to the resizing, with each <word-view> “wrapping”

onto a new line as necessary, without disturbing the internal vertical arrangement of

its form and gloss.

Increasing font size

A similar change can be effected by adjusting the font size of the interface via the

range input (or “slider”) to the largest size. As the font size increases, the user

interface also adapts in the second display, but not the first. Note that changing font

sizes may be more than a convenience for users with limited vision: it may be the

only way that they can interact with visual documentation on a screen.

130

Highlighting constituent <word-view>s

It may help to visualize this behavior by toggling the borders of each <word-view>
via the button labeled Toggle <word-view> borders. A red border <word-view>
will appear around each word, with its two internal tiers. That it is possible in

Display Two to “target” the individual <word-view>s in this way is a simple

consequence of the fact that there is an element which corresponds to the word level

of analysis in that display: it is granular markup. In the first display, there are no

elements corresponding to each word as a whole.

Enumerating elements in terms of source order

The third button is perhaps more informative, in that it enumerates the HTML
elements corresponding to the form and gloss values in the order in which they

appear in the HTML source. Note that in the first display, the numbers proceed across

each row, whereas in the second row, they proceed first down the tiers, and then

across.

The structure of <sentence-view> markup

The example Sentence object’s three properties are rendered in accordance with

the type of data their values contain. The transcription and translation
properties are rendered in a manner which is analogous to the way the form and

gloss properties of the Word object was rendered in the <word-view> component:

each is displayed within a standard <p> (paragraph) tag. The second element is a

<word-list>, which is responsible for rendering the Sentence’s individual

131

<word-view>s. which we will explain in the next section. Here is part of the

resulting markup:

<sentence-view>

<p class="transcription">Hello,

akó si Juan Lee.</p>

<word-list></word-list>

<p class="translation">Hello, I’m

Juan Lee.</p>

</sentence-view>

Generated HTML markup in a <sentence-

view>

(Contents of the nested <word-list> are

explained below)

Notice that unlike the and
in the <word-view> above, when the <p> tags here are displayed, they each are

assigned a new line, whereas the s marking up eskwelahan and school ran

together onto a single line. This distinction is referred to as the display value of the

HTML elements: <p> tags are said to be block-level elements and tags are

said to be inline elements. That the display of individual elements can be addressed

and modified in this way is one reason we can say that the web platform separates

132

logical structure from presentation.

Accessibility is a universal concern

So far, we have discussed these variations in markup as though the visual modality

were the only means by which users would want to access this content. And indeed,

the fact that we can define markup which adapts to available space means that we

can create web content which can adapt to physical screens of differing sizes. In web

design circles, such markup is referred to as responsive (Allsopp (2000), Marcotte

(2010)). Responsive design is a crucial consideration for web-based documentation,

since we must bear in mind that the use of mobile devices continues to increase

rapidly. We should expect that the proportion of linguists who access language

documentation via the web (especially in communities with limited bandwidth

availability) will continue to increase with time. Non-responsive formats such as

PDFs are of limited utility on mobile devices.

But responsive design is just one aspect of a much more consequential, and

critical, concern: accessibility. Visual accessibility (in the contexts of varying device

size and the limitations of vision for some users) probably affects most users of the

web. But we should not limit our concern to those users. Indeed, the notion that the

web should be a universal means of accessing information is one of its original

design principles:

The Web is fundamentally designed to work for all people, whatever their

hardware, software, language, location, or ability. When the Web meets this

goal, it is accessible to people with a diverse range of hearing, movement,

133

sight, and cognitive ability.

Thus the impact of disability is radically changed on the Web because the

Web removes barriers to communication and interaction that many people

face in the physical world. However, when websites, applications,

technologies, or tools are badly designed, they can create barriers that

exclude people from using the Web.

Initiative (WAI) (n.d.)

Building documentation with the web platform enables many avenues for the

development of accessible content. Responsiveness to a variety of device types is just

one of these capabilities. The basic principle of granularity in markup advances this

goal. We shall see more examples of accessibility in subsequent sections.

3.8.1 <word-list>

We saw some examples of rendered <sentence-view>s in the previous section.

Between the <sentence-view> and its contained <word-view>s, there is an

intermediary element called a <word-list>. In the display below, identical

<word-list> components are shown in two distinct contexts: first (left), within a

<sentence-view>; and second (right), within a <lexicon-view>.

134

We will look at the <lexicon-view> in more detail in the next section, but note

the difference in display characteristics within the two contexts: in the <sentence-
view> context, the form and gloss spans display as described in the previous

section, stacked vertically and wrapping across lines, whereas in the <lexicon-
view> context, the layout corresponds to what we saw in the description of <word-
view>s: a “one-word-per-line” layout of the kind found in simple dictionaries. The

actual content of this “lexicon” looks rather peculiar here, in fact, since in most cases

we would expect to see such a display with sorted “entries”.

Roughly speaking, these differences in display are controlled by selecting the

nested <word-list> components and applying distinct style rules which toggle the

display property of CSS. The display property is quite powerful, and is used to

enable the distinct renderings of words in these two contexts. (For more details, see

135

“Display - CSS: Cascading Style Sheets” (2021).) Without delving too deeply into the

mechanics of CSS, we may note in passing how the two relevant CSS rules are

defined:

sentence-view word-list word-view {

display: inline-grid;

}

lexicon-view word-list word-view {

display: block;

}

The sequence sentence-view word-list word-view means “select all

<word-view> elements which are nested with <word-list>s and then

<sentence-view>s.” The specific property of display is then set within the curly

brackets. Briefly, the display property here is set to the value inline-grid,

which instructs the element to behave like an inline element — that is, to sequence

themselves like words in a line of text — but for the content of the element (that is,

the paragraphs containing the form and gloss values) to “stack” vertically. The

second rule works similarly, selecting those <word-view>s which are (grand-

)children of a <lexicon-view>, and then carries out essentially the opposite

configuration: each <word-view> gets its own line, but the form and gloss values

run together on the same line. The docling.js has been designed with default

presentations of familiar documentary content in mind. All such defaults may be

overridden by modifying the defaults, or adding completely new CSS rules.

136

Despite the quite varied appearance of these elements, the feature of making the

same “logical” structure (in this case, a <word-list> which contains constituent

<word-view>s) render differently in different contexts actually helps to keep the

system simple. A <word-list> component isn’t defined to “check” which context it

is appearing in (a <lexicon-view> or a <sentence-view>) — it is implemented

with the single, simple responsibility of generating <word-view>s for an array of

Word objects.

3.9.1 <metadata-view>

Thus far we have been considering fairly small, isolated quantities of data — Words

and Sentences. But as we begin to delve into displaying the instances of the

Lexicon data type, we encounter a common problem in documentation: how to

keep track of data about data, that is to say, metadata. Before proceeding to the

discussion of the <lexicon-view> itself, we will briefly survey the <metadata-
view>, a simple presentation of arbitrary inline metadata that may is included by

default in <lexicon-view>s, <grammar-view>s and <text-view>s.

While metadata may be added to any of the documentary data types in the

docling.js library, by default the Lexicon, Text, and Grammar require at least

minimal metadata be included alongside the data itself. Note that there it is only one

required field: title — otherwise, there are no specific requirements as what

metadata fields should be present, nor how those fields should be arranged, beyond

the fact that it should be possible to represent that data as a JSON object. We briefly

introduced this notion of metadata in our discussion of various data types in the data

137

type catalog 2.3.1 in Chapter 2. This design is based on the premise that differing

documentation projects (and archives) require different kinds of metadata, and that

docling.js is not intended as a metadata standardization mechanism.

To render these metadata objects, we define a <metadata-view> which can

render a metadata object regardless of its structure. In the case of lexicons, such

metadata may contain essentially any kind of annotation, but some simple defaults

might include a name for the lexicon, details about what language or languages it

contains, information about the contexts in which it was recorded, and so forth. Note

that the <metadata-view>s are responsible only for rendering such metadata, not

for editing it.

Below are three example <metadata-view>s populated with metadata drawn

from various kinds of data in the docling.js JSON format.

138

2.html#a-catalog-of-data-types-in-docling

The question of standardizing or normalizing metadata structure is a complicated

one: often archives specify particular metadata schema to be used in deposits. Here,

we are taking a pragmatic approach, specifying only that certain data types (at least

Text objects, Lexicon objects, and Grammar objects) should have an “inline”

metadata structure — that is to say, basic identifying metadata of some kind should

always be included in the same file as the data itself. This approach avoids the

common frustration of a discovering a “metadata-less” data file whose origins are

unknown. In many cases such data may become unusable, if, for instance, it is

separated from a metadata spreadsheet.

139

3.10.1 <lexicon-view>

In §2.3.1.6 we described the Lexicon documentary data type, which is used to store

a list of unique words. In the current section we see an implementation of a user

interface for displaying Lexicons, the <lexicon-view> component, whose design

we will now consider. Both <lexicon-view>s and <word-list>s manage a list of

Word objects. However, the <lexicon-view> has a more complicated list of

responsibilities than simply iteratively rendering its list of words. Every <lexicon-
view> is responsible for providing a user interface which allows the user to carry out

three key tasks in interacting with lexical data: 1) view associated metadata, 2) sort

the words in the lexicon according to various criteria, and 3) search the lexicon

according to various criteria.

Sorting

The order in which words are displayed can vary depending on the workflow in

which the <lexicon-view> is being used. As a simple example, a <lexicon-
view> might sort its words by form (the typical view), or by gloss (a “reverse”

lexicon). We shall see this control in context in the <lexicon-view> example

below.

Search

Search, or filtering of the words in a lexicon, is key functionality of <lexicon-
view>s. (Note that explicitly carrying out a search through a query interface (of the

sort found in an internet search engine, for instance) is only one means of searching

140

2.html#lexicon-data-type

a <lexicon-view>. As we shall see in the section on <text-editor>s, below, the

search functionality in a <lexicon-view> may also be programmatically used in

semi-automated glossing.)

User interaction with these responsibilities is carried out through a set of controls

in the “header” of the view. Typically, the header is the rendered above the <word-
list>. Here, then, is a basic rendering of a very short lexicon:

The sample data here were chosen purposefully: many of the glossed form in this

small lexicon contain the label ERG1 or ERG2. I frankly do not recall why I used these

141

labels at the time. This is down to my own poor practice in annotating my

documentation at the time I created it, but a similar situation can arise when a

linguist is trying to gain understanding of earlier work, which is sometimes

unpublished or even in manuscript form.

The very basic default implementation of search in this interface does permit

wildcard searches, which would be relevant in trying to recover an understanding of

what these terms mean. For instance, searching for the query *ERG1 in the gloss
input will turn up forms that end with the grammatical category label ERG1. More

likely, we would want to try to begin comparing ERG1 and ERG2, so in that case one

approach would be to use a string search like *ERG* over the gloss field. This at least

serves to begin filtering the data.

String searches as these, however, can only take us so far. In the next chapter we

will see more nuanced search interfaces which include more granular conceptions of

grammatical categories and linguistic units like morphemes. For now however let us

turn to the components necessary for rendering texts.

3.11.1 <sentence-list>

The <sentence-list> component is analogous to the <word-list>, but rather

than rendering an array of Words via a sequence of <word-view>s, it renders an

array of Sentences with a sequence of <sentence-view>s. Like the <word-
list>, <sentence-list>s typically only occur within a parent view, usually a

<text-list>, as we shall see in the next section.

142

3.12.1 <text-view>

At this point we have seen the necessary components to build up a view of a Text
object. In the sample extract below, we see a basic demonstration of the component.

The default view contains a metadata section, a search section, and then the main

content, consisting of a <sentence-list> which in turn renders <sentence-
view>s.

The structure of the Text data type is more complicated than that of a Lexicon,

given that Texts contain an array of Sentence objects, which themselves contain

143

an array of Word objects. In practice we want to take advantage of this granular

representation, since we might want to carry out various kinds of search across the

Text object.

At this point we have surveyed the most important data types likely to be

necessary for recording documentary data in a fairly transparent and maintainable

way. Thus far, however, the discussion has been about data in abstract terms —

comparatively little has been said about the way in which such data should be

produced and used. Of course, directly editing large JSON files is certainly not a

feasible approach to digitizing documentation. Instead, in the next two chapters we

turn to the question of user interfaces and how they relate to linguists’ workflows. In

Chapter 4 we consider how to display (or “view”) such data, and in Chapter 5 we

broach the more complex topic of how to edit it — a task which is deeply intertwined

with the varied nature of our documentary practices and workflows.

144

4. Components for documentation workflows

4.1 Designing user interfaces for documentation workflows

In Chapter 1 we discussed a generic approach to specifying a dataflow, a workflow,

and a user interface. We saw how a particular dataflow (transformation of input data

into output data) could be carried out via various kinds of fieldwork “workflows”.

Chapter 2 described how data types (such as Words, Sentences, Texts, and

Lexicons) could be designed as an abstract data structure, which in turn could be

encoded with the JSON notation. Chapter 3 addressed the presentation of such data

in the form of “web components” — custom HTML elements designed specifically to

display documentary data types.

But displaying data is only a small part of the much larger problem of creating

user interfaces for managing documentary data. Beyond simply displaying data, we

also need to address the tasks of creating and editing data. The diagram below draws

this distinction with two flowcharts. The flowcharts depict how data flows through a

component. In the upper chart, data is depicted as “flowing into” (or being loaded

into) a View component. The View then generates an appropriate presentation of

that data (typically as HTML markup) to the user. As far as data is concerned, the

View component’s responsibilities are simple: it serves only to display data.

In the lower flowchart, representing Editor components, data flows not only in,

but also out. Like View components, Editor components must generate a legible

145

user interface in the form of HTML markup, but that generated markup will include

user interface elements which the user can control. The user (the linguist) can use

those controls to insert data into or edit data in an Editor, as opposed to simply

viewing pre-existing data in the manner of a View component.

An Editor component is designed to enable editing of a particular data type.

Returning to our now-familar Word data type, a <word-editor> component could

provide a means of editing a form and a gloss. As shown in the gray input element

in the flowchart, Editors may optionally accept existing input data — typically data

which is only partially complete, such as an array of Word objects with gloss values

but with empty form values. (A Swadesh list is data of this kind.) As we shall see

below, an Editor may also be designed to create data “from scratch,” without any

pre-specified values.

From one viewpoint, “digital language documentation” can be conceptualized as

a series of steps which progressively carry the documentation closer toward an ever-

more developed Boasian Database: as collection and recording instances of many

different data types progresses. But to understand fieldwork merely as the collection

of structured data is far too simplistic. All working linguists know that fieldwork is

not a matter of marching up a hierarchy of data types, one after the other, from

146

phonemes to discourse, building up tidy, complete data structures as we go. It is true

that the data model of the “Boasian trilogy” as introduced in Chapter 2 is reasonably

simple and fairly complete, at least insofar as “raw” documentary data is concerned.

But in practice, fieldwork is a messy affair. Fieldwork requires jumping back and

forth between the whole set of data types: progress is often shaped in a

conversational and sometimes even happenstance manner (a sought-after minimal

pair turns up during the elicitation of a narrative; an unusual syntactic construction

appears in an offhand comment while investigating phonology, etc.). Our goal here is

not to attempt to somehow standardize fieldwork workflows into some hypothetical

“logical” recipe for building up documentation. To the contrary, we wish to embrace

the way that documentary linguists adapt to the changing interests and concerns of

both the research itself and the people who are participating in it: our goal is to

develop interfaces that support the varied nature of documentation processes.

As we saw in Chapter 1, where we considered the implications of thinking of

including “record” buttons within a user interface for a word-collection workflow,

there are many ways that linguists might go about carrying out particular

documentation tasks.

It is tempting to imagine that we could define a tidy set of Editor components

that paralleled the basic View components we discussed in the previous chapter

exactly: in such a scenario, a <word-editor> would be written for editing Words, a

<text-editor> for editing Texts, and so forth. There is in fact some utility to

creating such “default” editors for particular data types. In the display below, a

<word-view> component appears next to a very simple <word-editor>

147

component. The instance of a Word data type displayed by the <word-view> has

two properties, a form and a gloss, and just so, the <word-editor> provides

inputs for a form and a gloss.

This approach is fairly easy to understand in simple cases, but it glosses over the

complexities of real documentary workflows. It is difficult to define what we mean by

“editing” in a general way, even where the data being edited has a straightforward

structure, as it does here. Consider, for example, how language typology might play

in to the utility of a simple word-editing interface. The simple <word-editor>
component displayed above is a custom component, but it is itself composed of

“default” HTML elements, specifically, the standard <input> element, which was

introduced in §1.3.4.

148

.html#from-documents-to-applications-a-functional-overview-of-html-and-the-web-platform

Standard HTML elements have presentational defaults, such a default width. But

many languages (particularly agglutinative and polysynthetic languages) have words

that are very long indeed, far too long to fit legibly within the default width of a

standard HTML <input>. For example, it would be quite frustrating to try to enter a

complex form from a polysynthetic language — exemplified here by the Alutor

(Chukotko-Kamchatkan) word t-akka-n-nalgə-n-kuww-at-avə-tk-ən ‘1SG.S-

son-CAUS-skin-CAUS-dry-SUFF-SUFF-PRES-1SG.S’ (Gerdts 1998, 92). As shown in

the pre-filled form below, these inputs are by no means sufficient to input such a

word:

Editing such a word results in a horrible user experience: it is impossible to see

the entire word at once! 16

149

Workflows to transcribe individual words in other languages might encounter no

such difficulties — “isolating” languages which tend to have monomorphemic words

tend to have short words, for which an unmodified HTML <input> tag with the

default width might suffice. In this work we advocate the stance that we should not

attempt to create “the” word-editing interface. Instead, we should think about how a

user interface could assist in the process of carrying out a workflow — we should seek

to develop a design process for creating editable user interfaces which meet our

working needs.

To that end, this chapter is not organized like the previous one, where we

surveyed View components in a roughly hierarchical sequence of increasingly

“larger” data structures, from Words, to Sentences, to Texts, from Words to

Lexicons, etc). Rather, the sections of the current chapter are based on specific,

actual workflows that linguists might use as they are carrying out fieldwork. As we

shall see, the way in which the content of data structures is actually built up in

fieldwork can vary drastically depending on the workflow a linguist is using. We seek

to encourage support for a variety of workflows, not to constrain or standardize

workflows merely for the sake of uniformity in practice.

150

We also describe the process of composition, whereby composite user interfaces

for complex workflows, handling complex data structures, are composed from

simpler components. Ultimately, it is not possible to enumerate all the ways that

linguists go about collecting data. However, reusable patterns will emerge. Again, we

emphasize the idea that designing interfaces for documentation is a design problem:

we must equip ourselves with a vocabulary for discussing how documentary

workflows and user interfaces should relate in particular contexts.

4.2.1 Static documents vs. interactive interfaces

The interpretive nature of transcription has long been a topic of discussion in

language documentation as well as linguistics at large. Ochs (1979) is a seminal

article on this topic, having been repeatedly cited in the literature on language

documentation (see Seidel (2016), Himmelmann (2012), Bird (2021), and Meakins,

Green, and Turpin (2018) inter alia). Ochs was concerned with the relationship

between transcription — the written record of speech events — and information.

One of the important features of a transcript is that it should not have too

much information. A transcript that is too detailed is difficult to follow and

assess. A more useful transcript is a more selective one. Selectivity, then, is

to be encouraged. But selectivity should not be random and implicit. Rather,

the transcriber should be conscious of the filtering process. The basis for the

selective transcription should be clear. Ochs (1979) p. 167

The use of digital representations of linguistic data was by no means novel in

1979 — even in 1967, Samarin could state that the “linguistic use of electronic

151

computers already has a relatively long history” (Samarin 1967, 170) — but Ochs was

working in a world where creating and using digital corpora remained a time-

consuming and expensive undertaking: there was therefore little room for

“experimenting” with the presentation of data. This “formatting debt” enforced a

kind of uniqueness on transcriptions: committing to one way of arranging the print

transcription was not a trivial, transparent matter of “formatting”. It was a

consequential decision about what the permanent, canonical representation of that

speech should be. Deciding how to present data in print is a decision to be made with

great attention, Ochs argues, because the presentation could influence or even

constrain the reader’s interpretation.

Ochs’ example data consisted of two-column transcripts of interactions between

adults and children — her domain was child language acquisition — each speaker

was arranged in one of two columns. She suggested that decisions about the ordering

of those columns, i.e., whether the child’s speech first or second — subtly modulated

the way that a reader would interpret the data. If the adult was placed in the left

column, she suggests, the child would be interpreted in a more subsidiary or reactive

role. If the child were first, it was the adult who would be taken to be reactive. But

such decisions are far less categorical and final in the digital domain. Digital

representations of data are malleable, and formatting of data is actually less

consequential, precisesly because the display of data can be itself be selective and

even interactive: the reader can be given the option to re-arrange the display in more

than one way.

Let us consider an interactive display of data which is comparable to Ochs’, but

152

also more oriented toward language documentation than child language acquisition

per se. We will make use of a brief excerpt from the Murrinhpatha Language

Acquisition Project (LAMP) (Forshaw 2016).

Turning then to the example problem of the ordering of columns in a child-adult

dialog transcript, below we present a digital interface in which the order of columns

is modifiable. Choosing one of the three “radio button” options in the header of the

excerpt below allows the user to toggle the display between child-first, adult-first,

and left-aligned views.

153

This small interface demonstrates a distinct advantage of digital representations

of documentary data: displays may be designed to be not just selective — as Ochs

recognized all (typeset) documents must be — but selectable interactively. In the

previous demonstration, a single data structure (a text where each sentence is

annotated with metadata indicating the age of the speaker) can be rendered and re-

rendered. Interface controls (a simple radio-button interface here) allow the user to

make decisions about how to arrange the contents of the interface.

We shall see below how flexible interaction with data is a key consideration when

designing user interfaces for specific language documentation workflows. If we begin

the task of designing a user interface by asking how we want to interact with

documentary data itself, we are much better positioned to effectively support our

working methods, as opposed to always adapting them to the range of software

interfaces that happen to exist.

4.3 Transcription

A personal aside on digital transcription

Like many linguists, I tend to romanticize the raw materials of

fieldwork: notebooks cast a particularly strong spell. Writing notes

in notebooks is, quite frankly, fun.

However.

154

One day in my graduate fieldmethods course, in a “one-on-one”

session with Joshua De Leon, our marvelous teacher of Hiligaynon,

I was taking notes in one of my notebooks. A Moleskine with a plain

brown cover and no lines and a spine that lays flat, thank you very

much. And I had to use Pilot G2 black ink fine-tip pens. For later

corrections, I would switch to a red G2, but it had to be extra fine…

I had asked Joshua a question, and as always he had responded

with enthusiasm, humor, and high-speed Hiligaynon. I started

scribbling an attempt at a transcription of his reply. I wanted to get

it right, and it was taking some time.

Joshua leaned across the table. “Pat!” he said, finally. He was tired

of waiting for me to write.

I looked up.

“Why don’t you just type it?!”

I will not forget the look of disbelief on his face. We were, after all, in

an air conditioned university classroom, surrounded by technology.

A notebook was the wrong tool for that job in that context. (It

remains an appropriate tool in other contexts.)

I realize that many linguists have the opportunity to work in

locations that are remote from conveniences such as electricity,

without reliable access to computers, and they must continue to rely

155

on written notes. I still cherish my old notebooks, but if I could find

the time I would digitize them all immediately. I no longer believe

that manuscript transcriptions are inherently more flexible than

“born-digital” transcriptions.

And at that moment, I opened up a text file, and typed his utterance.

I closed my notebook for good. The new text file presented its own

problems, but at least it was searchable. It was a start.

As a first design problem, we will consider challenges surrounding the fundamental

task of transcribing utterances in a phonetic alphabet. Transcription is problematic

in a digital context, and particularly so in the early stages of fieldwork when it is not

clear whether a given perceived phonetic feature is significant (or even really

present). Linguists err on the side of narrower transcription in early stages, where

possible, but a narrower transcription style brings its own challenges. Most glaringly,

it requires more symbols, and this in turn requires a means of inputting those

symbols. Many approaches to handling phonetic input have been suggested. There

are many precedents for web-based tools, mostly in the form of “clickable” IPA

charts, including Szynalski (2021), Ishida (2021), and Ruter (2021), and the

International Phonetic Association’s own “i-charts” “IPA i-Chart” (2021). Most of

these tools take advantage of the familiarity of the International Phonetic Alphabet

to linguists, by providing the same visual layout as the standard charts, but

programming the interface such that clicking the character inserts it into a text field.

Others are based on the graphical similarity of some characters (Szynalski (2021)),

so that «β», «ɓ», and «ʙ» are grouped together.

156

These interfaces are quite useful for certain tasks, but from our perspective they

also have limitations. One problem is that they are not modular: they are not easily

integrated into other user interfaces, and as Bowern (2015) points out (p. 40), “as

soon as you are typing even small amounts of data extra keystrokes or mouse clicks

slow down data entry considerably.” Imagine, for instance, trying to insert IPA

characters via one of these tools into the <word-editor> interface above. The

change in context of loading an external website, typing a significant amount of

content, and then copying and pasting that text back into the <word-editor> is far

too slow to be of use during fieldwork, especially when such steps try the patience of

the speaker.

There is another fundamental problem with these interfaces: they do not make

the featural phonetic details associated with each of the characters searchable.

Linguists are able to make use of the IPA charts because they are trained in

phonetics: they understand that a character such as «β», «ɓ» and «ʙ» symbolize

particular speech sounds with particular phonetic features (a voiced bilabial

157

fricative, a voiced bilabial implosive, and a voiced bilabial trill). Understanding that

system makes looking up characters in a table possible. That knowledge can be a

crucial part of transcription: the IPA charts (and the emulated interactive interfaces

above) are practical indices of the IPA alphabet precisely because they are organized

in terms of phonetic features: if you know how the features correspond to the charts,

you can usually locate the character corresponding to particular phonetic features.

The challenge as far as the working linguist is concerned during fieldwork is to

convert that phonetic knowledge into characters on the screen. In this section we will

explore the design of a transcription component which aims to provide a linkage

between phonetic features and phonetic characters which can be used quickly, with a

minimum of keystrokes. We shall see that this featural phonetic information is

helpful not only for finding characters to use in transcription, but also in many other

tasks fieldworkers face: building up phonetic inventories, defining phonemic

orthographies and transliteration schemes, and finding minimal pairs.

4.4.1 Manuscript transcription

Consider the two short excerpts from early-stage fieldwork of Hiligaynon. The first is

from the first page of this author’s 2012 fieldwork carried out at UCSB, and the

second is from fieldwork carried out in 1965, now preserved in the UCLA Phonetics

Lab archive (the full pages are available at the links in the caption). There is nothing

particularly remarkable about these excerpts — each contains transcriptions of the

Hiligaynon word duhá ‘two’ — except perhaps that despite the nearly 50-year gap

between their production, the actual transcriptions are quite similar.

158

Figure 4.7 - Transcriptions of the word for
two from early-stage fieldwork

(“Hiligaynon Swadesh List” (1966)) [full
scan] and (Hall (2012)) [full scan]

For simplicity I have chosen a word which had only slight variation in

transcriptions between theese two fieldwork projects. Here is the full list of

transcriptions of this word from the two sources:

Documentary linguists must carry out some mental gymnastics during fieldwork

transcription of this kind. Remembering that the specific diacritic which indicates

that the voiced plosive “d-sound” has a “dental” place of articulation is the “bridge”

[◌̪] is a feat of pure memorization. (It is not to be confused, for instance, with the

inverted bridge [◌̺] — which specifies apical place of articulation.) One would

typically simply look in the IPA diacritic chart, where diacritics are listed together

159

data/languages/hiligaynon/corpus/hil_wordlist_1965/hil_word-list_1965_01.jpg
data/languages/hiligaynon/corpus/hil_wordlist_1965/hil_word-list_1965_01.jpg
data/languages/hiligaynon/corpus/ucsb-fieldwork/2012-09-27.p1.jpg

with associated phonetic or suprasegmental features:

This list is not enormous, and once found, a given character could simply be

copied into a manuscript (modulo the difficulties of cutting-and-pasting diacritic

marks). But note, crucially, that we have found this character via linguistic labels, not

typographical labels. Linguists looking for the diacritic for “dental place” are more

likely to be familiar with a term from articulatory phonetics (“dental”) than they are

with an obscure typographical label such as “bridge”.17 So we need to provide a

mapping between the phonetic nomenclature which is familiar to linguists on the

one hand, and the full repertoire of IPA characters, on the other.

160

This raises a challenge, however: the range of possible speech sounds that has

been documented is in the thousands. The current state of the PHOIBLE database of

phonological inventory data contains 3,183 entries (Moran and McCloy 2019)). In a

useful overview of the design and history of the International Phonetic Alphabet

(IPA) from its origins to the Unicode era, Moran and Cysouw18 point out a design

feature of the IPA which explains how the IPA can serve as a way to encode such

complexity. The IPA itself — the alphabet or repertoire of identified characters — is

not a database of speech sounds. It is, rather, a featural system: it enumerates

symbols that stand for a particular permutations of phonetic features:

The IPA is intended to be a set of symbols for representing all the possible

sounds of the world’s languages. The representation of these sounds uses a

set of phonetic categories which describe how each sound is made. These

categories define a number of natural classes of sounds that operate in

phonological rules and historical sound changes. The symbols of the IPA are

shorthand ways of indicating certain intersections of these categories.

Roach (1989), quoted in Moran and Cysouw (2018)

This quote is an explicit statement that the IPA is intended to be understood as

encoding phonetic features. For example, the IPA character d (identified by U+0064
in Unicode) is by default associated with the following phonetic features (they may

be read directly off the IPA pulmonic consonant chart):

161

Likewise, the diacritic mark ◌̪ , known in Unicode as COMBINING BRIDGE
BELOW (Unicode codepoint U+032A), is associated in the IPA with just one phonetic

feature: the dental place of articulation.

This featural design means that there is no unitary Unicode character

corresponding to the “voiced dental stop”, d̪ . As far as Unicode is concerned, that

representation of a phone is a sequence of the two characters — in a piece of

transcribed text, it is equivalent to the sequence U+0064 followed by U+032A. We

may represent this featural arithmetic schematically as below:

Linguists already know this information. In learning to use the IPA, they see how

its characters can be combined into a symbolic representation of phonetic features

and values that they already know and understand. But if we wish to build user

interfaces which help linguists during fieldwork, then we must be sure that such

basic knowledge is “implemented” in a familiar, usable way in the user interface.

4.5.1 Finding characters and phones

Given this background, we can describe the steps which must be carried out during

162

fieldwork in order to create arbitrary IPA transcriptions:

Figure 4.9 - Phonetic transcription

workflow

1. Find necessary phonetic character via

phonetic (and not typographical)

nomenclature.

2. Insert that character into a text input.

We may begin with the second task: one simple approach to aiding the user in

inserting a character is simply to provide a button for each desired character directly

adjacent to the input field where it is to be used. In the demo below, clicking the

button containing the dental diacritic «◌̪» appends it to the «d» character already

present in the input:

163

This is a reasonably intuitive, if imperfect, user interface. We will explore some

iterations of a design based on this input to the point that it enables the workflow as

defined. All interfaces are imperfect. The reader may wish to consider their own

reactions to the utility of this component as we work through its design: what

specific changes might improve it?

4.6.1 A user interface design for inputting phonetic transcriptions

Before we proceed with the design of our IPA input interface, we should pause to

recall that there is no such thing as a perfect user interface. IPA data is large and

complex; there are many possible ways that we could assist a user in inputting IPA

transcriptions. The design below may or may not meet the needs of a given

documentation project, but it does demonstrate how key Unicode and phonetic data

can be integrated into a usable interface.

The IPA defines a repertoire of characters, but it is not an inventory of speech

sounds (phones) — although sometimes the two categories overlap: the character

«d» can represent a specific speech sound: a (pulmonic) voiced alveolar plosive

consonant. And that character is part of Unicode. But there is no character

corresponding to the voiced dental plosive in the IPA. To represent that phone with

Unicode, one must use a combination of «d» with «◌̪», as described above. Which

characters can be combined is a matter of linguistic knowledge, not Unicode

encoding. It is also a matter of historical happenstance: an explanation for why the

labiodental fricative has its own unitary Unicode character ([f]) but the labiodental

plosive does not (it is spelled [p̪]) would have to resort to many details about the

164

history of the IPA which are not entirely linguistic in nature. (It is probably relevant

that many European languages have [f], few have [p̪].)

The interface below allows the user to find Unicode IPA characters via a string of

search terms identifying phonetic features. To see how the search works, try clicking

the button at the beginning of each list item to see the query run:

1. uvular - search which matches uvular consonants

2. fricative palat voiced - matches voiced fricatives that are palatal or palato-

alveolar (search term order is arbitrary)

3. uvular plosive - search which matches uvular plosive consonants

4. aspirated - matches the aspiration modifier letter [ʰ]

5. uvul plos - abbreviated version of previous

6. front rounded - search which matches front rounded vowels

You may also of course type similar queries directly in the filter box. A button is

generated for each matching phone, but as of yet they do nothing — the character

palette is managed by this component, but it must be embedded into another

component to be used.

165

At last we are in a position to create a useful text input interface for arbitrary IPA

text. To do this, we will embed our <ipa-palette> component inside a new

component, <ipa-input>. This latter component provides a (large) text field for

inputting text directly, but also hooks up the buttons in the <ipa-palette> to

insert characters wherever the cursor is in that field.

166

4.7.1 Inferring phonetic inventories from transcriptions

Because <ipa-input> associates phonetic features with Unicode characters, and

because Unicode defines whether individual characters are “base” characters,

diacritics, or modifiers (see Davis and Heninger (2020)), it is possible to derive a

basic inventory of phones directly from transcriptions. This functionality is

demonstrated below, where an IPA input automatically updates consonant and

vowel inventory charts as the user transcribes. Try pasting in some random

characters such as ptkbdgɓɗɠmnŋk͡pg͡bt͡saui into the input to see the generated

inventory.

This interface recognizes the difference between “base” characters such as «p»
and «θ» and “modifier” letters such as «ʲ» or «ʰ», thus can classify a phone such as

«pʰ» as a unitary grapheme. Based on the values for the place, manner, and voicing

features of each such phone, the consonant chart is generated dynamically from the

167

transcription. This makes the chart available in concert with the process of

transcription, an interesting variation on the way such charts are often treated

during fieldwork: as outputs, rather than tools which are available for reference

throughout the documentation process. We shall see below that the same principle

can be put to work at a larger scale than a single, one-line input field.

In the next section, we will further explore ways in which the context of fieldwork

influences the design of software for carrying out fieldwork.

4.8 From workflow to interface

In this section we investigate the relationships between two very different workflows

for the same dataflow. In the first, we consider a traditional user interface for

eliciting the Hiligaynon Swadesh list described above, one which is very similar in

layout to the paper elicitation schedule. In the second, we consider a novel interface

where textual prompts are replaced by images.

4.9.1 Scheduled vocabulary

In the current example we will consider how the <ipa-input> component

described above can be incorporated into a very traditional user interface for eliciting

a “scheduled” vocabulary.

The scanned document below is the complete record of the resource described

above (“Hiligaynon Swadesh List” 1966), a “Swadesh list”19 elicitation carried out by

168

the UCLA Phonology Lab. This particular resource is interesting because it allows us

to reconstruct the specifics of the workflow by comparing the recording and the

scanned transcription.

Although the transcript is “analog”, the physical paper itself did serve as a kind of

user interface for the participants. It contained both readable glosses to serve as

prompts, and as a medium on which to record transcriptions of corresponding

forms. But careful reflection on how workflow and output intertwined in this project

can help us to better understand both how to implement a digital user interface, and

169

to foreground opportunities for the integration of aids which stand to make the

process more efficient and the resulting data more useful.

Figure 4.16 - Sample word from UCLA

Hiligaynon elicitation schedule, məˈinməˈin̪̪itit ̪̪̚̚ ‘hot’

Recalling that this fieldwork was carried out under the auspices of the UCLA

Phonology lab, it is not surprising that what is transcribed is a close phonetic

representation without morphological analysis. 20

However, a documentary linguist would be likely to revise this representation,

given that the word has internal morphological structure — the prefix transcribed

(narrowly) here as mə is one of a complex set of verbal prefixes in Hiligaynon.

Morphological glossing might be captured using the rules described in the Leipzig

Glossing Rules (Comrie, Haspelmath, and Bickel 2015). A broader orthography

might also be employed:21

170

Note, then, that we can think of this data structure as “evolving” in keeping with

research aims. The diagram below portrays this as a “lifecycle”, summarizing how

the attributes on a documentary data object might change in accordance with

research goals. Again, it should be emphasized that as long as the core “identifying”

attributes of a particular data type are present (in the case of Word objects,

something corresponding to the form and something to the gloss), then it is

natural and expected that other attributes might be added. Any component which

can render a default Word object will be able to render that object even if not all of its

attributes are being displayed.

171

Although we have thus far been using a “working model” of a Word data type

which was defined as the set of form and gloss properties, this particular

documentary workflow involves progressive modification to the data structure, even

re-casting the narrow transcription məˈin̪it ̪̚ from being described as the “basic” form
to being a phonetic transcription. There is nothing atypical about modifying data

progressively in this way. Data structures are to be defined by their uses: to the

phonologist, the structure seen in “step 1” might serve as an endpoint (and in fact,

the sample data was archived in that form). Just so, a historical linguist might

recombine these values and properties in yet another way, using a very terse gloss
such as HOT with a broadly transcribed phonemic form (perhaps mainit) for the

purposes of historical reconstruction. Our purpose here is not to evaluate such

transcriptions, but simply to stress that the shape of data structures is strongly

172

influenced by the nature of research goals and workflows. Consequently, we should

expect that user interfaces designed to support differing workflows — even when

those workflows result in an identical data transformation — will have quite different

user interface controls and functionality.

An aside on representing grammatical categories

I have skirted somewhat the issue of the detailed representation of how

morphological glossing and grammatical category labels should be handled.

A full account of data modeling for grammatical classification is beyond the

scope of the current work, but we can take a brief look here at how a simple

“grammar object” may be structured, in keeping with the notion of the

“Boasian Database”.

The symbol field is the familiar abbreviation for the grammatical category label;

by associating traditional labels with both the category name and the value (or

exponent) of that category, we maintain the link between familiar notation (PAT,

IRR, etc.) and the structured data which represents the category-value relationship

within the grammatical system. This analysis was chosen precisely because it is

173

rather idiosyncratic; whatever one’s evaluation of Wolfenden’s categorization of

verbal affixes into categories such as trigger might be, this data structure remains

a useful way to capture such classifications.

There is much more to be said about the representation and use of grammatical

data such as this, but I would like to point out an important fact: because this

structure links abbreviations (“symbols”), categories, and values, modern Leipzig-

style morphological glossing can be treated as a kind of serialized database, e.g.:

because PAT is stored as the value “patient” of the category “trigger”, we could then

retrieve any verb via either value or category. That is to say, “Show me all verbs

which are marked with a value for ‘trigger’”, becomes as feasible as “Show me all

verbs glossed with the PAT abbreviation.” Such flexibility is very important, as it

enables us to search not only for values of particular grammatical categories, but also

the categories themselves.

See §5.2.3 for some thoughts on possible further development of this approach.

It is instructive to listen to the first minute or so of the Swadesh list recording, as

recorded here:

The way that the recitation occurred (together with the scanned Swadesh list)

makes it clear that the prompts were pre-arranged or “scheduled”.

174

5.html#limitations-of-current-project

Participant A: I come from the Philippines, particularly in La Paz, Iloilo

City. My native language is Hiligaynon.

Participant B: Following are 50 words from the Swadesh Diagnostic word

list.

Participant A: ‘One’, iˈsah, iˈsah, iˈsah.

Participant A: ‘Two’, d ̪uˈhɑh, d ̪uˈhɑh, d ̪uˈhɑh.

Participant A: ‘Three’, d ̪əˈko ͡əʔ, d ̪əˈko ͡əʔ, d ̪əˈko ͡əʔ.

It is likely that there were three separate workflows involved in this fieldwork.

Workflow 1: Create (typewritten) Swadesh list elicitation schedule

(Participant B?)

Workflow 2: Record recitation (Participant A)

Workflow 3: Transcribe the recording (Participant B? Some third

participant?)

We can infer that this is what happened because the recording of the audio is too

fluent to have allowed for the simultaneous narrow phonetic transcription — the

transcriptions must have been carried out after the whole recording was complete.

Note also that strictly speaking, those transcriptions do not represent the entirety of

what was spoken: the speaker uttered each Hiligaynon word three times, but there

was just one (manuscript) transcription per word in the document. Below is an

implementation of a simple <lexicon-editor> (with transcriptions pre-

populated) which recreates the original “user interface” fairly closely. Note that this

interface incorporates the <ipa-input> component described above. In principle,

it might be possible to use that capability to enable transcription in a close

175

orthography that would be fast enough that the linguist and speaker could alternate

recording and transcription.

Note also that the design of this user interface recreates the “by-column” layout

of the original document, which is actually less than ideal in the “scrolled”

environment of a web browser, since upon completion of word #25, the user must

scroll all the way back up to continue with #26. CSS allows us to change this default

to number the words across rows. Compare the two layouts by clicking here:

176

As always, there is room for improvement in this interface. Most glaringly, it is a

poor workflow to have to continually re-select individual phonetic characters via the

<ipa-palette> when editing each form — it would be much more convenient to

make the characters chosen with the character palette available across all the form

editors. Making this change would be a good next iteration in the development of

this interface. Another improvement would be to decide on how best to handle

inputting a broad transcription in addition to the narrow transcription.

Design is iterative

177

In this author’s experience, it is often the case that what constitutes a “good”

user interface only becomes apparent after creating a usable prototype. It

would seem obvious that adding the <ipa-input> component inside a

lexicon-editing interface would make it easier to input IPA transcriptions —

and it does, to an extent. But in the context of editing 50 words, it

immediately becomes clear that the <ipa-input>s should share “state” — if

a phonetic character is useful in transcribing one form, of course, it is likely

to come up again. Designing user interfaces is always an iterative process.

4.10.1 Image prompts: sharing an interface between both participants

In the previous interface design, we discussed the design of a user interface which

was quite similar to its traditional analog “user interface”: a Swadesh elicitation

“schedule”. We thought about the independent workflows which constituted the

whole documentation task, noting that the transcription stage was likely carried out

by the linguist after the speaker’s work was completed. Consequently, both the

original schedule and the modern user interface are oriented toward the participant

that is carrying out the transcription role — the basic workflow here is not that

different from using a standard spreadsheet interface and filling out forms and

glosses in a row-by-row fashion (aside, of course, from the input of a complex

phonetic orthography). In such a workflow, and in cases where the participant who is

speaking is not the same as the one doing the transcription, then it is the transcriber

who is most likely to be “using” the user interface, in the sense of actually carrying

out editing of transcriptions.

178

But what if we questioned this assumption? There are, of course, good reasons to

avoid direct translation from the working language — in this case, English. Let us

consider a different stage of documentation, one where the phonetic inventory has

stabilized and a phonemic orthography is in place. At this stage the focus shifts from

phonetic nuance to other levels of analysis: morphology, syntax, lexis, and so forth. A

common task in this stage is to collect vocabulary within a particular semantic

domain — we’ll consider the names of various fruits.

A very simple modification to an interface like the previous can enable quite

different workflows: by simply replacing the English gloss with an image, the user

interface becomes one that both the linguist and the speaker use together. By styling

the interface with some dramatic images and typography, the tone of the workflow

can change quite a bit as well. Tedium is a very real concern when working in

fieldwork. Putting work ahead of time into creating a user interface that has some

aesthetic appeal can express respect and appreciation for the speaker’s

contributions, and can make the task more interesting and fun for all involved.

(Furthermore, interesting images may stimulate other genres of fieldwork: short

narratives about memories related to the image. In this author’s experience working

with Hiligaynon, the image of a starfruit prompted a story about how ubiquitous and

inexpensive they are in the Philippines, but are considered gourmet and expensive in

the United States.)

In the interface below, only the image and a form transcription input is visible.

The English “gloss” is present in the data structure as it was before, but only the

image is shown. The images were chosen for an unambiguous view of the fruit, but

179

also because they are pleasing to look at. (Images: su-lin (2007), Katigbak (2009), H

(2016), S (2016), Bharatan (2009).)

Note also that this interface is paginated: it looks more like a photo album than

an endless list, contributing a small element of surprise and interest. A change as

simple as this can improve the speaker’s experience of the documentation task. Note

that the inline demonstration above can also be presented in an immersive, full-

screen user interface. To try the fullscreen experience, (hit Escape to return).

4.1 Harmonizing time-aligned data

Ultimately, our goal in creating digital fieldwork is to increase our ability to recall all

instances of a given linguistic unit, such that we can better evaluate its behavior in all

known contexts. In this section we consider the design of an interface which adds

180

audio capabilities to the word elicitation interfaces we just discussed.

We noted an interesting discrepancy between the fieldwork recording and the

contents of the transcripion in the scheduled vocabulary user interface. In the

original recording, each word was uttered three times, but the transcription

summarized those three utterances with a single transcription. Thus, the output data

of that workflow was not “time-aligned” in that documentation project: the three

utterances are treated as a small database of evidence for an idealized (or

“phonemecized”) transcription of the form. (It is of course possible to easily recover

the utterances of a given word within the recording by a simple search, but it

remains true that no utterance-level timestamps were recorded.)

As we mentioned in Chapter 2, Musgrave and Thieberger (2012) suggest that we

think of media as a fourth pillar of the Boasian trilogy. But from the point of view of

developing a Boasian database, it seems better to see time-alignment of media as

being closely linked to the corpus, not to the lexicon or grammar. In that approach,

linkages within the dictionary and grammar become references to the corpus.

Let us consider what design changes would be required in order to add audio

recording capabilities to our image labeling interface. As always, there are three

main questions to answer:

1. What is the dataflow?

2. What is the workflow?

3. What is the user interface?

181

2.html#beyond-hyperlinks

It is straightforward to tabulate what the time-alignment data for the Hiligaynon

Swadesh list recording would look like. For instance, for the segment of the

recording corresponding to the word isá ‘one’, we have a recitation of the English

gloss, and three repetitions of the Hiligaynon form (to hear the relevant segment,

). Aside from a slight falling intonation (list intonation) in the final repetition,

the utterances are quite similar. Thus the only difference in each time-aligned

transcription are the start and end times.

Note also, however, that we have changed the field names in this data. Rather

than using form and gloss, we have switched to using transcription and

translation. This is because we observe the convention that only texts have time-

alignment information as primary data. Word objects within a Lexicon should

only maintain time-alignment information via reference to Sentence or Word
instances in a specific Text. This puts us in a better position to reconsider the time-

alignment data produced in our first discussion of the iterative recording interface

from Chapter 1. By treating the iterative recording interface as producing Text data

rather than Lexicon data, we are actually in a better position to merge data from

distinct sources, thus increasing the accountability of our documentation. For

instance, the utterances of the common word isá ‘one’ from the UCLA recording

could be easily merged with content from some other long fieldwork recording which

has been captured as a Text JSON structure.

182

I note here in passing that I only came to this conclusion about the

granularity of timestamps being germane to Texts rather than Lexicons

after I had implemented the iterative recording interface in Chapter 1. In

hindsight, it makes much more sense to think of that user interface as

creating Sentence data rather than Word data, but it did not seem so

obvious as the first interface was being created — it seemed obvious that we

were “recording words”. Herein lies a lesson: sometimes the best way to

better understand how to structure our data comes from attempting to build

a user interface to do something with that data.

Let us assume, then, that the time-alignment information tabulated above will be

produced interactively, and that they will be captured within an instance of the Text
data structure, with each utterance corresponding to a Sentence rather than a

Word. We can then programmatically derive a Lexicon which references each time-

aligned utterance.

One of the appealing features of a component-based approach is that it is possible

to create interfaces from existing components. In this case, we can reuse (with slight

modifications) the audio recording components that were used in the iterative

recording interface described in Chapter 1. An excellent way to begin the design

process is with a rough sketch such as the one below:

183

Figure 4.21 - A sketch design for an

interface that combined image-labeling,

audio-recording, and IPA input.

Below, the sketch design is labeled to show how it is built up from other

components:

184

Figure 4.22 - The constituent components

in the previous design: (1) the image labeler

component; (2) the audio-recorder

component; and (3) an IPA input

component.

While we have not completely implemented this design, a diagram like this is an

excellent (and necessary) step towards implementation. A design at this level of

granularity can serve as a clear roadmap for implementing a working user interface

relatively quickly: the individual component parts are already working, and the input

and output data are well defined. Like the previous image labeling interface, this

interface offers opportunities to modulate the relationship between the linguist and

the speaker during fieldwork.

185

The reader is encouraged to reflect on their own reaction to the example designs

above: would any of these have met your needs in your own fieldwork experience?

For what reasons? If not, what workflow steps are not addressed in these designs?

Analyzing dataflows and workflows precisely is a skill which can be learned and

practiced. That skill, in turn, better enables linguists to participate in the design of

new user interfaces which might actually be implemented — after all, there can be no

implementation of software without a clear statement of exactly what the software is

meant to do, and how it should work.

4.1 Automatic data updates depend on User Interface Design

While the data model we have developed here is fairly complete, one area where the

current implementation of docling.js needs significant development is the degree

to which documentary data of various kinds can be automatically synchronized. For

instance, the task of “glossing” — morphological annotation of textual materials —

for example, is one of the most time-consuming tasks in producing a digital corpus.

(Automating the assignment of glosses to forms is the major function of Fieldworks

(FLEx).) Such automated synchronization of the content of a corpus and a lexicon,

therefore, is of great importance to documentation, and adding user interfaces with

this capability to docling.js is an important near-term goal.

That it is useful for lexicons and corpora to be automatically synchronized is

prima facie an obvious desideratum. But how, exactly, is that that synchronization to

be maintained with regard to user interface design? For instance, how should the

186

interface inform the user that the lexicon has been updated? Should a change to a

given word be silently propagated across all texts in the whole corpus, or should

some process of double-checking each occurrence of a change be put in place

whereby the linguist can evaluate the generality of the change? There simply are no

generic answers to such questions. The way that data changes as it is created and

modified within a user interface is strongly dependent on the kind of workflow the

interface is designed to enable.

It is hoped that the examples in the present chapter at least demonstrate the

utility of building up composite applications (as we did when we inserted the <ipa-
input> component into the scheduled vocabulary elicitation interface). Indeed,

even that composition has lingering user interface details that could be improved

upon: for instance, the state of the button palette should be shared across the whole

interface, the drop-down interface is causing the remainder of the content to be

pushed down in a confusing way, and so forth. Such problems are not marginal in

software design. They are expected to arise as user interfaces become more complex.

The docling.js library can serve as a starting point for ideating and then

prototyping novel interfaces, which can then be improved through testing and

critique. It is only through such an iterative, collaborative process that we can begin

to solve the larger problem of dynamic linking and harmonization of composite data

structures.

Because of these constraints, in the final chapter of this work we will turn to what

amounts to social factors in software design for language documentation: building

on the existing expertise of linguists will require a kind of design process which

187

includes as many participants as possible. We will refer to this process as

participatory design.

188

5. Avenues ahead

In this work, we have considered domains that are not traditionally associated with

linguistics at all, including data modeling and user interface design. Our goal has

been to demonstrate that documentary data may be structured in such a way that it

is at once familiar to linguists and amenable to implementation in functioning user

interfaces. A simple data model was described — built with the simple notions of

objects (bundles of property/value pairs) and arrays (lists of objects) — which can

be used to capture a wide swathe of documentary data types and their

interrelationships. In the previous two chapters, we considered the complementary

topic of how to design user interfaces for displaying and using such structured data.

The details of the workflows that we carry out as we complete various tasks in

documentation were shown to warrant close analysis, as it is the details of those

steps and the contexts in which they are carried out which constrain the design of

appropriate and helpful user interfaces. In this final chapter, we consider how

docling.js fits into the larger context of the Web Platform, the powerful browser-

based computing environment which has evolved from the World Wide Web (which

is itself a specific application of more general internet technology). We will also

sketch out some suggested trajectories for those who would like to participate in the

design of new software interfaces for language documentation.

189

5.1 The Web Platform and docling.js

The Web Platform, a computing environment which can be thought of as “residing”

primarily within web browsers, has evolved from the familiar World Wide Web. And

yet, the Web Platform as such is unknown to most users of the web. Web browsers

are themselves designed to be user-friendly façades over the complexities of the

internet itself. Understanding how the familiar web browser application packages

and exchanges information via the internet can help us to understand better how our

work in user interface design fits into the Web Platform as a whole.

The browser’s user interface is akin to many other “desktop” applications, with

the distinction that it retrieves and sends data to and from “websites”, rather than

opening and saving them on the same computer that is running the browser. This

basic conceptualization of how the World Wide Web functions is roughly correct:

web browsers are like any other desktop application, except that “files” are replaced

with “web pages”, and file names are replaced with URLs, Universal Resource

Locators (which begin with http:// for Hypertext Transfer Protocol

22). In effect,

URLs identify content on the web, and the primary function of the World Wide Web,

is to enable document-linking via links within those files. HTTP is the set of rules (or

protocol) which describes how the web browser (the client), and a server (a remote

computer connected to the internet) exchange data. In the case of the World Wide

Web, this data consists of hypertext encoded as HTML files. Thus, the client (web

browser) sends a request to a URL, and the server responds with the corresponding

page.

190

But in fact, this data-transfer system is more similar to the “desktop” model —

opening a file stored on the same computer as the application is running — than the

browser user may realize. It is easy to think of a web page as somehow residing “on”

the server — and indeed, it is stored on that server — but when we speak of a server

“serving” a page to the web browser, what actually happens is that an HTML file is

simply copied from the server to the user’s computer — what appears to be a “page”

is just an HTML file. In fact, it is possible (if unusual) to simply open an HTML file in

the same way one might open a word processing file in a word processing program or

a .pdf in a PDF viewer (all browser applications’ menus include the same File >
Open option as those other programs).

The user may also fill out some information to be processed by a program

running on the server. Such a program running on a server is said to be running on

the “server side” of the interaction: it “listens” for requests for particular URLs, and

finds the corresponding resource, usually an HTML file. Or, if the user sent along

information that they input into their browser, the server will run a program to

process the information, and perhaps programmatically generate a new HTML page

from the output of that program. So for instance, perhaps the user is using a web-

based dictionary, the web page containing a simple form with an <input> for a

form, an <input> for a gloss, and a <button> to submit the word might allow

them to send a request to https://example.com/dictionary/add-word, and

“submit” a new word at that URL, perhaps the form gato and the gloss cat. The

server in turn “decodes” that encoded information, and runs a program which adds it

to its database. When the submission is complete, the server will generate a response

page that contains text like “thanks for contributing the word gato ‘cat’!”. Now the

191

database has been updated, and other users can make use of it. One obvious use

would be search: a user might fill out a form at https://example.com/
dictionary/search/ which contains a field to enter an unknown form. If they fill

in that input with “gato”, the server will receive the query, run its search program

over the database, and finally generate a response page displaying the form with its

gloss. For most of the history of the web, these two basic kinds of requests (i.e., those

for HTML files “at” a particular URL and requests that pass information to a server-

side program) encompassed the vast majority of user interactions.

However, a subtle shift has taken place: the web — still very much in use as just

described — has also evolved into the “Web Platform”. To understand what this

means, consider which of the two computers involved in requests and responses —

the user’s computer acting as a “client” and the internet computer running a website

and thus acting as a “server” — is actually carrying out more computation.

In the scenario described above, all of the database-related functionality is

carried out on the server: adding terms, running queries, and dynamically generating

pages of results. When we talk about the “Web Platform”, we’re talking about

functionality that is not carried out by a remote server, but which is instead carried

out on the user’s computer, by the browser application itself. The user interfaces we

have been describing here are, in effect, applications which are themselves running

“on” the browser application. It is this relationship which explains the term

“platform”: it is called the “Web Platform” because it arose within the context of the

web, but in fact a more easily understandable name might have been the “Browser

Platform”: the browser as a computing and programming environment in its own

192

right. The crucial feature of this programming environment is that it has its own

“native” programming language, known as Javascript. The browser knows how to

execute computer programs without any assistence from the server which are

embedded inside of a <script> tag inside of an HTML page23.

This is a powerful idea, because it means that web “pages” which are delivered in

the same way as a traditional HTML document can also function as an interactive

application. To return to the dictionary example, rather than divvying up the work

such that the browser’s only job is to send off word submissions and display results

generated on the server, the server might send an HTML file called

dictionary.html which contains all of the embedded programs necessary to run

a complete dictionary application with no further interaction with the server at all.

Inside dictionary.html there would be a <script> tag containing a Javascript

program that contains the entire dictionary, plus code to implement “search”

routines, render results, and so forth. In this usage pattern, the server’s only role is

to provide the HTML file with its embedded Javascript code.

But beyond this basic means of providing interactivity, the Web Platform consists

of a whole suite of additional functionalities which are now standardized,

programmable functionalities of web browsers — each of which can be used from

within Javascript programs, and thus made interactive as well. These individual

functionalities are called (again, a sensible acronym) APIs, for “Application

Programming Interfaces”. One might think of Web APIs as the list of all the things

modern browsers can do, and the range of functionalities, and thus, the possibilities

for designing and implementing applications, is quite extensive. As of 2021, there are

193

almost 100 different Web APIs. (Hegaret 2011) We have already made use of some of

these APIs “behind the scenes” in the examples in this work, including the Media

Stream Recording API, which is an interface for recording audio and video in the

browser; the Custom Elements API, for developing Web Components, and many

more. One of the unique aspects of the Web Platform is that all of these APIs are

available for development in a single computing environment, the browser itself.

Any of these functionalities may be combined by Web Platform applications. The

Iterative Recording interface we saw in chapter 1, for instance, is only possible

because the Media Stream Recording API is part of the Web Platform. The Web

Platform enables and encourages the combination of functionalities in novel ways.

Furthermore, although we have just been at pains to distinguish between the

(earliest) server-oriented original pattern and the modern browser-oriented pattern,

these two approaches are in fact two sides of the same coin: an application which is

largely “client-side” in that the majority of necessary computation is carried out by

Javascript programs running within the browser may also make use of occasional (or

even frequent) requests back to a server (or even multiple servers). Our client-side

dictionary application, for instance, might periodically request data updates from a

server, even as the user is working with the application. Similarly, the program might

allow the user to periodically submit updates back to the server, in a “syncing”

pattern.

docling.js addresses only the “browser-side” part of this picture however. It is

designed to demonstrate how it is possible to build complete user interfaces for

documentation within the Web Platform, independently of any server configuration

194

beyond a very basic HTTP server. The existence of the Web Platform means that we

may begin the process of designing interfaces to meet our data and workflow needs

immediately, without committing to any particular server setup. While this might

seem like a technical detail, it is an important one, because configuring servers is the

least standardized part of the internet technology landscape. Running servers with

custom server-side code requires significant investment to reimburse programmers

to maintain that specialized server side code. But the basic HTTP server functionality

described above is very inexpensive. There are innumerable free or nearly-free

options for hosting the HTML, Javascript, CSS, and audio (or even video) files that

can be used to create a platform that relies on visitors’ computers to carry out the

lion’s share of the computation. There is a clear path, then, from fostering

community engagement in user interface design for documentation interfaces to

deploying (where appropriate) those interfaces to the web.

If we predicate the design of new user interfaces on creating general server-side

solutions, then we face a different problem, and one which is less amenable to

participation by the documentation community at large. User interfaces — the tools

we use on a daily basis — are where our expertise as linguists can be most profitably

and immediately applied. In the next section I lay out several kinds of participation

that interested linguists can pursue in accordance with their own interests.

5.2 Fostering a documentation interface design community

As we saw in the previous two chapters, many variables interact in the design of a

195

user interface. Fortunately, in language documentation we have a fairly well-

established model of documentary data which we can use as a starting point. The

opportunity at hand in the present work is to empower linguists with the skills and

conceptual framework necessary to participate in a process that applies their

specialized working knowledge to bear as a key component of user interface design

space.

The diagram above portrays a way of thinking about how a community of

participation for building documentation tools could take shape. The triangle

classifies roles that participants in a digital documentation project might choose to

assume, and the size of each layer corresponds to the “slice” of the documentation

community that might participate at that layer.

5.3.1 Designers

Linguists who design user interfaces to meet their documentation

workflow needs. Linguists who choose to take on the role of designers. The

middle layer — designers — is highlighted, as it corresponds to the target audience

for the present work. Understanding the designer role is a prerequisite for

(optionally) assuming an implementer role, but there are no prerequisites for users,

196

beyond familiarity with the use of particular applications. A typical participant at this

level will be a working documentary linguist who has familiarity with current

software and experience using it to create digital documentation of various kinds.

These potential participants are those with a degree of fieldwork experience, and

who may have experienced frustration in some aspects of their digital documentation

work by incompatiblities in existing software tools. It is unrealistic to expect that all

such linguists would choose to learn to program entire applications from the ground

up — despite the fact that many have considerable technical expertise and even

programming experience (often in languages which are adjacent to the approach

described here such as R, Python, or Praat scripting). However, these linguists are in

a good position to understand the approach demonstrated with the docling.js
library. The data model will be easily understandable to them. What remains is to

practice the skills of (1) imagining user interfaces that meet their needs, and (2)

describing those imagined interfaces in such a way that they can actually be

implemented. On some ideas for helping would-be interface designers, see the next

section.

The approach of “sketching” designs is a well-developed aspect of web design (see

Garrett (2002), Krug (2013), Buxton (2007), and Greenberg et al. (2011)). The pair

of images in the figure below include a simple design sketch (by Sunkulp

Ananthanarayan) and an implemented prototype created by Ananthanarayan and

this author. The prototype corresponds quite closely to the original design, which

was intended to help make a disparate collection of interlinearized texts searchable.

The prototype needs more iterative improvement before it could serve as a tool

which is ready to be shared with the larger user community of general linguists, but

197

it met Ananthanarayan’s research goal, which was to search across a corpus of texts

in different formats.

This is a good example of participating in interface design: 1) Ananthanarayan

specified the desired workflow (querying across multiple texts); 2) the dataflows

involved (filtering all the sentences from a corpus that matched a given query); and

3) the basic user interface desired to enable (1) and (2). These are learnable skills,

but because our current “cultural” relationship to software in documentation is more

oriented toward troubleshooting existing software than toward designing new

198

interfaces, such skills are not cultivated enough.

5.4.1 Implementers

Programmers who implement designs. This work has treated web

components (custom HTML elements) as a kind of conceptual “black box”: we have

considered design for documentation tools purely in terms of deciding how modular

“components” function and to some extent how they be composed into more

complex user interfaces. Of course, programming is unavoidably complex. The Web

Platform offers certain advantages, however, to those who wish to understand better

how client-side applications work. Most importantly, the web browser environment

makes it possible to inspect how a user interface is construcuted. In the screenshot

below, a programmer has used a special command (Command-click on Mac,

Ctrl+Shift+click on Windows/Linux) to inspect an individual button with in an

instance of the <ipa-input> component described in Chapter 4. In the lower part

of the screenshot, the developer tools have opened, and the HTML markup of the page

is highlighted to show the individual <button> tag which contains the ŋ character.

199

Figure 5.3 - Inspecting an element in a web
browser

Developer tools are readily available in all modern web browsers, and they have

many capabilities beyond simply matching rendered layout to HTML source.

Javascript code can be run directly against pages for debugging purposes, CSS can be

modified in real time, network requests and responses can be tracked, the

accessibility of an interface can be evaluated, and so forth. docling.js was

designed with a convention whereby every one of its web components exposes its

data in such a way that it can be accessed directly from within the developer tools.

This can aid developers in understanding the relationships between user interfaces

and the “raw” data they are displaying and maniupulating.

200

Using the developer tools is a primary means of coming to grips with how the

various elements of the Web Platform function together. The same learning

trajectory can be applied to learning how docling.js applications work, with a

minimum of up-front configuration: the only necessary step is to open a web page

containing a docling.js application, either locally or hosted on a server.

5.5.1 Users

The linguistics community in general. Even participating in the design of the

user interfaces, let alone implementing user interfaces with code, requires a degree

of time commitment. The demands on many working linguists may not allow them

to take on the work of participating in an iterative process of user interface design.

Nonetheless, it is hoped that if a community design process can be brought to a

critical level of participation, then a steady stream of usable interfaces can be shared

for use by the linguistics community at large. How exactly this would happen

remains to be seen. Primarily it would involve participation by many more people

than the current author. The scope of the present work, by focusing on the design

layer, and demonstrating a functional working model of the implementation layer,

aims to encourage linguists to realize that there is a clear path to becoming a

productive participant in the design process, and that there is a range of degrees of

participation possible. One might say that we’re advocating a “choose your level of

participation” model in the design process.

The goal of this 3-layer approach is to increase the number of participants at all

levels. The docling.js software library is intended to be as transparent and self-

201

contained as possible — that is to say, no software libraries beyond the Javascript

programming language itself is required in order to understand the code base in its

entirety.24

The functionalities of the Web Platform on which docling.js is built are

standardized: that is to say, they are part of the same standards system that defines

HTML, CSS, and Javascript itself. This minimizes risk moving forward, because

whatever new standards emerge, web standards are defined as being “backwards

compatible” — put simply, this means that whatever changes inevitably come to the

definition of the web, the standards used to define docling.js will continue to be

supported by all web browser manufacturers.

5.6.1 Documentation histories: Certainty and revision

Bowern (Bowern (2007)) offered several criteria for evaluating manuscript

fieldnotes, which offer an interesting point of comparison for “born-digital” user

interfaces:

• When you cross something out, can you still read the rest of the

word?

• When you write over a letter/word, can you tell which is the right

representation and which is the wrong one?

• When you have two alternative transcriptions, can you tell which is

right, or if they are both legitimate variants?

• Can you tell what is a deduction on your part and what was a

metacomment made by your consultant?

202

• Can you tell what you need to check and what you know is right?

• Can you easily work out when these notes were written, who the

consultant is, and what the notes are about?

Many of these problems are solved if a featural phonetic alphabet like the IPA can

be used as the input orthography, but some are actually somewhat more difficult in

the digital context. One of the features of manuscript fieldnotes is that the

fieldworker has a vast array of annotative techniques that trace changes, corrections,

reevaluations, and so forth, but if a correction is made in a digital document,

corrections are lost. It is interesting to think through just what kinds of corrections

are found on fileslips; the example below (Oswalt (1975)) is marked up with red

rectangles to distinguish the various “content types” in the fileslip. Note that the

upper left corner contains a note that says check. What is the digital equivalent of

such an annotation? It might be profitable to explore adding a “status” tag to a

word’s metadata (or even a grapheme or phoneme’s metadata) to track “processual”

problems such as these.

203

5.7 An open-access online course and next steps

In the coming year I will be creating a course based on the materials in this work:

“Designing User Interfaces for Language Documentation with docling.js”. This

course will delve deeper into the basics of implementation than the current work.

The tentative outline is as follows:

204

Unit Topic Description

1 The Web Platform What is it, and what does it offer for language documentation?

2 JSON Modeling documentary data

3 HTML Structured markup for structured documention

4 Templating Rendering documentation in standard notations

5 Javascript The Web Platform’s built-in programming language

6 Web components packaging functionality in custom HTML elements

7 Corpora Interacting with Interlinear Texts

8 Lexicons Managing words in the corpus

9 Grammar Representing grammatical categories

10 Application design From user interface components to full applications

11 Deploying Examples of hosting docling.js applications on the web

Table 5.1 Course Outline

The course has several goals. One is to create an open resource online for any

linguists who are interested in exploring the use of the Web Platform for language

documentation. Another is to give the system a test-run: the hope is to develop

documentation projects with several language communities which will serve as

examples of organically designed projects that meet the needs of their creators.

As a primary outcome of this course, I plan to complete a set of user guides for all

205

of the components in the docling.js library. Thus far, some of the important

guides have been written (see examples below), the documentation for the remaining

components will be developed during the course, in collaboration with course

participants.

• word-view guide

• sentence-view guide

• text-view guide

• metadata-view guide

• lexicon-view guide

Interested readers might also wonder what steps they might take if they would

like to get involved in the evolution of docling.js and the larger discussion of

participatory design of software for language documentation.

• Programmers The source code of

• Users

• Designers You might consider

5.8 Conclusion

In this work I have described a simple, coherent, extensible, hierarchical data model

which is sufficient for capturing a broad range of documentary data. I have described

the design and implementation of prototype library of user interfaces in the form of

web components, which are composable in the sense that they can be built up from

206

docling/word/word-view/word-view.html
docling/sentence/sentence-view/sentence-view.html
docling/text/text-view/text-view.html
docling/metadata/metadata-view/metadata-view.html
docling/lexicon/lexicon-view/lexicon-view.html

simple user interface into more complex “compound” applications. Such interfaces

and applications can be designed to meet the needs of particular documentary

workflows. It is the opinion of this author that our field is suffering from a kind of

creeping institutionalization of what can be called “troubleshooting culture” in our

relationship to technology: we put ever more effort into creating workarounds for

software tools to force applications which were not designed to work together to

meet all our needs, as opposed to designing new, custom tools specifically for our

needs.

Language documentation is now a thoroughly digital discipline — there is no

going back. We need to be intentional about how we approach both the form and

construction of digital documentation moving forward. We are privileged to have the

opportunity to work with many language communities who see value in language

documentation. We must strive to ensure that our work is digitized in the most

useful and maintainable way possible, so that our work may continue to protect the

heart of the whole endeavor: human voices. It is incumbent upon us to not only help

preserve their words, but also to ensure that we strive to create novel tools which can

prioritize their needs, as well as those of academia.

Sapir said that language is “the most massive and inclusive art we know, a

mountainous and anonymous work of unconscious generations.” It is interesting to

consider which of the appellations about language also apply to language

documentation. Unlike language itself, language documentation is neither

unconscious nor anonymous. But like language itself, it is massive in scale, and

sometimes overwhelming in its scope. To succeed, it must be inclusive, valuing the

207

contributions of all participants. A unified software system can play an important

role in enabling those contributions. There is plenty of room for innovation, and

perhaps there is even an opportunity to generate feelings of potency… and even joy?

So, let us begin.

References

208

Allsopp, John. 2000. “A Dao of Web Design.” A List Apart. https://alistapart.com/

article/dao/.

Ameka, F. K., A. C. Dench, and N. Evans. 2006. Catching Language: The Standing

Challenge of Grammar Writing. Vol. 167. Mouton de Gruyter.

Berez, Andrea L., and Nicholas Thieberger. 2011. “Linguistic Data Management.”

The Oxford Handbook of Linguistic Fieldwork, 90–118.

Bharatan, Vilma. 2009. “Custard Apple - Annona Squamosa.”

https://www.flickr.com/photos/16454146@N06/3291420066/.

Bird, Steven. 2021. “Sparse Transcription.” Computational Linguistics 46 (4):

713–44. https://doi.org/10.1162/coli_a_00387.

Bird, Steven, and Gary Simons. 2003. “Seven Dimensions of Portability for Language

Documentation and Description.” Language 79 (3): 557–82. http://emeld.org/

workshop/2003/bowbadenbird-paper.pdf.

Boas, Franz. 1917. “Introductory.” International Journal of American Linguistics 1

(1): 1–8. http://www.jstor.org/stable/1263397.

Bow, Catherine, Baden Hughes, and S. G. Bird. 2003a. “A Four-Level Model for

Interlinear Text.”

Bow, Catherine, Baden Hughes, and Steven Bird. 2003b. “Towards a General Model

of Interlinear Text.” In Proceedings of EMELD Workshop, 11–13.

https://www.linguistlist.org/emeld/workshop/2003/bowbadenbird-paper.pdf.

Bowern, Claire. 2007. “Online Notes to Accompany Linguistic Fieldwork: A Practical

Guide.” https://web.archive.org/web/20081006040542/

http://www.ruf.rice.edu/~bowern/fieldwork/Fieldnotes.pdf.

———. 2015. Linguistic Fieldwork: A Practical Guide. Springer.

209

https://alistapart.com/article/dao/
https://alistapart.com/article/dao/
https://www.flickr.com/photos/16454146@N06/3291420066/
https://doi.org/10.1162/coli_a_00387
http://emeld.org/workshop/2003/bowbadenbird-paper.pdf
http://emeld.org/workshop/2003/bowbadenbird-paper.pdf
http://www.jstor.org/stable/1263397
https://www.linguistlist.org/emeld/workshop/2003/bowbadenbird-paper.pdf
https://web.archive.org/web/20081006040542/http://www.ruf.rice.edu/~bowern/fieldwork/Fieldnotes.pdf
https://web.archive.org/web/20081006040542/http://www.ruf.rice.edu/~bowern/fieldwork/Fieldnotes.pdf

Brugman, Hennie, and Albert Russel. 2004. “Annotating Multi-Media/Multi-Modal

Resources with ELAN.” In LREC. https://pdfs.semanticscholar.org/3dac/

d66abb9a06950017e057a14c911b592b1809.pdf.

Buxton, Bill. 2007. Sketching User Experiences: Getting the Design Right and the

Right Design. 1st edition. Amsterdam Boston: Morgan Kaufmann.

Chelliah, Shobhana L, and Willem J De Reuse. 2010. Handbook of Descriptive

Linguistic Fieldwork. Springer.

Comrie, Bernard, Martin Haspelmath, and Balthasar Bickel. 2015. “The Leipzig

Glossing Rules: Conventions for Interlinear Morpheme-by-Morpheme Glosses.”

Department of Linguistics of the Max Planck Institute for Evolutionary

Anthropology & the Department of Linguistics of the University of Leipzig. 28.

https://www.eva.mpg.de/lingua/pdf/Glossing-Rules.pdf.

Crowley, Terry. 2007. Field Linguistics: A Beginner’s Guide. Edited by Nick

Thieberger. Oxford: Oxford Univ. Press.

Davis, Mark, and Andy Heninger, eds. 2020. “UTS #18: Unicode Regular

Expressions.” https://unicode.org/reports/tr18/.

“Display - CSS: Cascading Style Sheets.” 2021. Technical {Documentation}. MDN

Web Docs. https://developer.mozilla.org/en-US/docs/Web/CSS/display.

Dockum, Rikker, and Claire Bowern. 2019. “Swadesh Lists Are Not Long Enough:

Drawing Phonological Generalizations from Limited Data.” Lang. Document.

Descript 16: 35–54.

Firth, John R. 1957. “A Synopsis of Linguistic Theory, 1930-1955.” Studies in

Linguistic Analysis.

Forshaw, William. 2016. “Little Kids, Big Verbs: The Acquisition of Murrinhpatha

210

https://pdfs.semanticscholar.org/3dac/d66abb9a06950017e057a14c911b592b1809.pdf
https://pdfs.semanticscholar.org/3dac/d66abb9a06950017e057a14c911b592b1809.pdf
https://www.eva.mpg.de/lingua/pdf/Glossing-Rules.pdf
https://unicode.org/reports/tr18/
https://developer.mozilla.org/en-US/docs/Web/CSS/display

Bipartite Stem Verbs.” {PhD} {Thesis}.

Gair, James W., and W. S. Karunatillake. 1998. A New Course in Reading Pāli.

Motilal Banarsidass Publ.

Garrett, Jesse James. 2002. The Elements of User Experience: User-Centered

Design for the Web. Indianapolis, Ind: Peachpit Pr.

Gasser, Emily, and Claire Bowern. 2014. “Revisiting Phonotactic Generalizations in

Australian Languages.” Proceedings of the Annual Meetings on Phonology 1 (1).

https://doi.org/10.3765/amp.v1i1.17.

Gerdts, Donna B. 1998. “Incorporation.” The Handbook of Morphology, 84–100.

Goodman, Michael Wayne, Joshua Crowgey, Fei Xia, and Emily M. Bender. 2015.

“Xigt: Extensible Interlinear Glossed Text for Natural Language Processing.”

Language Resources and Evaluation 49 (2): 455–85. https://doi.org/10.1007/

s10579-014-9276-1.

Greenberg, Saul, Sheelagh Carpendale, Nicolai Marquardt, and Bill Buxton. 2011.

Sketching User Experiences: The Workbook. 1st edition. Amsterdam ; Boston:

Morgan Kaufmann.

H, Abdullah. 2016. “Sweetsop.” https://www.flickr.com/photos/potent2020/

29250675404/.

Hale, Kenneth. 2001. “Ulwa (Southern Sumu): The Beginnings of a Language

Research Project.” Linguistic Fieldwork, 76–101.

Hall, Patrick. 2012. “Hiligaynon Fieldnotes: Numerals.” Unpublished.

Haspelmath, Martin. 2014. “The Generic Style Rules for Linguistics.” Zenodo. Doi

10.

Heath, Jeffrey. 1982a. Nunggubuyu Dictionary. Australian Institute of Aboriginal

211

https://doi.org/10.3765/amp.v1i1.17
https://doi.org/10.1007/s10579-014-9276-1
https://doi.org/10.1007/s10579-014-9276-1
https://www.flickr.com/photos/potent2020/29250675404/
https://www.flickr.com/photos/potent2020/29250675404/

Studies.

———. 1982b. Nunggubuyu Myths and Ethnographic Texts. Australian Institute of

Aboriginal Studies.

———. 1984. Functional Grammar of Nunggubuyu. Australian Institute of

Aboriginal Studies.

Hegaret, Philippe le. 2011. “100 Specifications for the Open Web Platform and

Counting W3c Blog.” https://www.w3.org/blog/2011/01/100-specifications-for-

the-ope/.

Henke, Ryan, and Andrea L. Berez-Kroeker. 2016. “A Brief History of Archiving in

Language Documentation, with an Annotated Bibliography.” Language

Documentation & Conservation 10 (December): 411–57.

“Hiligaynon Swadesh List.” 1966. Los Angeles, California.

http://archive.phonetics.ucla.edu/Language/HIL/hil_word-list_1965_01.wav.

Hill, Jane H. 2005. A Grammar of Cupeño. Vol. 136. University of California

Publications in Linguistics. Univ of California Press.

Himmelmann, Nikolaus P. 2012. “Linguistic Data Types and the Interface Between

Language Documentation and Description.” Language Documentation 6: 21.

Hopi Dictionary Project. 1998. Hopi Dictionary/Hopìikwa Lavàytutuveni: A

Hopi-English Dictionary of the Third Mesa Dialect. University of Arizona Press.

Hsu, R. 1985. Lexware Manual: Computer Programs for Lexicography Developed

at the University of Hawaii. University of Hawaii Department of Linguistics.

http://www.montler.net/lexware/LexwareManual-RobertHsu.pdf.

“HTML Living Standard.” 2021. Web standard. HTML Standard.

https://html.spec.whatwg.org/multipage/.

212

https://www.w3.org/blog/2011/01/100-specifications-for-the-ope/
https://www.w3.org/blog/2011/01/100-specifications-for-the-ope/
http://archive.phonetics.ucla.edu/Language/HIL/hil_word-list_1965_01.wav
http://www.montler.net/lexware/LexwareManual-RobertHsu.pdf
https://html.spec.whatwg.org/multipage/

IJAL. 2021. “International Journal of American Linguistics Style for the Formatting

of Interlinearized Linguistic Examples.” International Journal of American

Linguistics. https://www.americanlinguistics.org/wp-content/uploads/IJAL-

interlinear.pdf.

Initiative (WAI), W3C Web Accessibility. n.d. “Web Content Accessibility Guidelines

(WCAG) Overview.” Web Accessibility Initiative (WAI). Accessed September 28,

2020. https://www.w3.org/WAI/standards-guidelines/wcag/.

“IPA i-Chart.” 2021. https://www.internationalphoneticassociation.org/IPAcharts/

inter_chart_2018/IPA_2018.html.

Ishida, Richard. 2021. “IPA Character App 27.” https://r12a.github.io/pickers/ipa/.

Jacobson, Michel, Boyd Michailovsky, and John B. Lowe. 2001. “Linguistic

Documents Synchronizing Sound and Text.” Speech Communication, Speech

Annotation and Corpus Tools, 33 (1): 79–96. https://doi.org/10.1016/

S0167-6393(00)00070-4.

Katigbak, Sunny. 2009. “CALAMANSI.” https://www.flickr.com/photos/

40223927@N08/4450918508/.

Klar, Kathryn. 2002. “John P. Harrington’s Field Work Methods: In His Own

Words.” Report of the Survey of California and Other Indian Languages,

Proceedings of the 50th Anniversary Conference, 12: 9–17.

https://escholarship.org/uc/item/7s82h46g.

Krug, Steve. 2013. Don’t Make Me Think, Revisited: A Common Sense Approach to

Web Usability. 3rd edition. Berkeley, Calif.: New Riders.

Ladefoged, Peter. 2003. Phonetic Data Analysis: An Introduction to Fieldwork and

Instrumental Techniques. Wiley-Blackwell.

213

https://www.americanlinguistics.org/wp-content/uploads/IJAL-interlinear.pdf
https://www.americanlinguistics.org/wp-content/uploads/IJAL-interlinear.pdf
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.internationalphoneticassociation.org/IPAcharts/inter_chart_2018/IPA_2018.html
https://www.internationalphoneticassociation.org/IPAcharts/inter_chart_2018/IPA_2018.html
https://r12a.github.io/pickers/ipa/
https://doi.org/10.1016/S0167-6393(00)00070-4
https://doi.org/10.1016/S0167-6393(00)00070-4
https://www.flickr.com/photos/40223927@N08/4450918508/
https://www.flickr.com/photos/40223927@N08/4450918508/
https://escholarship.org/uc/item/7s82h46g

Lambdin, Thomas O. 2006. An Introduction to the Gothic Language. Wipf; Stock

Publishers.

LSA. 2021. “Language Style Sheet.” Language: Journal Of The Linguistic Society Of

America. http://www.linguisticsociety.org/files/style-sheet.pdf.

Manning, C. D., P. Raghavan, and H. Schutze. 2008. Introduction to Information

Retrieval. Vol. 1. Cambridge University Press Cambridge.

Marcotte, Ethan. 2010. “Responsive Web Design.” A List Apart.

https://alistapart.com/article/responsive-web-design/.

Meakins, Felicity, Jennifer Green, and Myfany Turpin. 2018. Understanding

Linguistic Fieldwork. Routledge.

Michaelis, Susanne Maria, Philippe Maurer, Martin Haspelmath, and Magnus

Huber, eds. 2013. Atlas of Pidgin and Creole Language Structures Online.

Leipzig: Max Planck Institute for Evolutionary Anthropology. https://apics-

online.info/.

Michailovsky, Boyd, Martine Mazaudon, Alexis Michaud, Séverine Guillaume,

Alexandre François, and Evangelia Adamou. 2014. “Documenting and

Researching Endangered Languages: The Pangloss Collection.” Language

Documentation & Conservation 8: 119. https://halshs.archives-ouvertes.fr/

halshs-01003734.

Milton [Gabaṉja], and Jeffrey Heath. 2018. “Olive Python and the Two Boys.” In,

edited by Simon Musgrave. Nunggubuyu Texts Online.

http://users.monash.edu.au/~smusgrav/Nunggubuyu/texts/NMET-1.html.

Milton [Gabaṉja], Jeffrey Heath, and Simon Musgrave. 2018. “Ngambi ‘Bathe’.”

Nunggubuyu Online Dictionary. http://users.monash.edu.au/~smusgrav/

214

http://www.linguisticsociety.org/files/style-sheet.pdf
https://alistapart.com/article/responsive-web-design/
https://apics-online.info/
https://apics-online.info/
https://halshs.archives-ouvertes.fr/halshs-01003734
https://halshs.archives-ouvertes.fr/halshs-01003734
http://users.monash.edu.au/~smusgrav/Nunggubuyu/texts/NMET-1.html
http://users.monash.edu.au/~smusgrav/Nunggubuyu/dictionary/ngambi.html

Nunggubuyu/dictionary/ngambi.html.

Moran, Steven, and Michael Cysouw. 2018. The Unicode Cookbook for Linguists.

Language Science Press. https://doi.org/10.5281/zenodo.1296780.

Moran, Steven, and Daniel McCloy, eds. 2019. PHOIBLE 2.0. Jena: Max Planck

Institute for the Science of Human History. https://phoible.org/.

Moreland, Floyd L., and Rita M. Fleischer. 1990. Latin: An Intensive Course. Univ of

California Press.

Munro, Pamela. 2001. “Field Linguistics.” The Handbook of Linguistics, 130–49.

Musgrave, Simon, and Nick Thieberger. 2012. “Language Description and Hypertext:

Nunggubuyu as a Case Study.”

Nordhoff, Sebastian, ed. 2012. Electronic Grammaticography. LD&C Special

Publication 4. University of Hawaiʻi Press. http://hdl.handle.net/10125/4528.

Ochs, E. 1979. “Transcription as Theory.” Developmental Pragmatics, 43–72.

Oppenheim, A. Leo. 1968. “In Memoriam: Benno Landsberger 1890-1968.”

Orientalia 37 (3): 367–70. https://www.jstor.org/stable/pdf/43074242.pdf.

Oswalt, Robert L. 1975. “Kashaya Dictionary.” http://cla.berkeley.edu/item/2412.

Palmer, A., and K. Erk. 2007. “IGT-XML: An XML Format for Interlinearized

Glossed Texts.” In Proceedings of the Linguistic Annotation Workshop, 176–83.

Raskin, Jef. 1994. “Intuitive Equals Familiar.” Communications of the ACM 37 (9):

17–19.

Rice, Keren. 2011. “Documentary Linguistics and Community Relations.” Language

Documentation & Conservation 5: 187–207.

Roach, P. J. 1989. “Report on the 1989 Kiel Convention.” Journal of the

International Phonetic Association 19 (2): 67–80.

215

http://users.monash.edu.au/~smusgrav/Nunggubuyu/dictionary/ngambi.html
https://doi.org/10.5281/zenodo.1296780
https://phoible.org/
http://hdl.handle.net/10125/4528
https://www.jstor.org/stable/pdf/43074242.pdf
http://cla.berkeley.edu/item/2412

Ruter, Weston. 2021. “International Phonetic Alphabet (IPA) Chart Unicode

‘Keyboard’.” https://westonruter.github.io/ipa-chart/keyboard/.

S, Ingrid. 2016. “Starfruit.” https://www.flickr.com/photos/33682034@N00/

29024081433/.

Sakel, Jeanette, and Daniel L. Everett. 2012. Linguistic Fieldwork: A Student Guide.

Cambridge University Press.

Samarin, W. J. 1967. Field Linguistics: A Guide to Linguistic Field Work. Holt,

Rinehart; Winston.

Sánchez, Roberto (speaker). 2013. “Narrative - Making a Canoe,” Dâw Language

Collection/La Colección del Idioma Dâw, July. https://www.ailla.utexas.org/

islandora/object/ailla%3A264379.

Sapir, Edward, Philip Sapir, and William Bright. 1900. The Collected Works of

Edward Sapir. Berlin ; New York : M. de Gruyter. http://archive.org/details/

collectedworksof10sapi.

Seidel, Frank. 2016. “Documentary Linguistics: A Language Philology of the 21st

Century.” Language Documentation and Description 13: 23–63.

Solnit, David B. 1997. Eastern Kayah Li: Grammar, Texts, Glossary. University of

Hawaii Press.

su-lin. 2007. “Inside the Rambutan.” https://www.flickr.com/photos/su-lin/

1251225290/.

Suzuki, Shunryu. 2010. Zen Mind, Beginner’s Mind: Informal Talks on Zen

Meditation and Practice. Shambhala Publications.

Szynalski, Tomasz. 2021. “Type IPA Phonetic Symbols - Online Keyboard.”

https://ipa.typeit.org/full/.

216

https://westonruter.github.io/ipa-chart/keyboard/
https://www.flickr.com/photos/33682034@N00/29024081433/
https://www.flickr.com/photos/33682034@N00/29024081433/
https://www.ailla.utexas.org/islandora/object/ailla%3A264379
https://www.ailla.utexas.org/islandora/object/ailla%3A264379
http://archive.org/details/collectedworksof10sapi
http://archive.org/details/collectedworksof10sapi
https://www.flickr.com/photos/su-lin/1251225290/
https://www.flickr.com/photos/su-lin/1251225290/
https://ipa.typeit.org/full/

Thieberger, N. 2004. “Documentation in Practice: Developing a Linked Media

Corpus of South Efate.” Language Documentation and Description 2: 169–78.

https://minerva-access.unimelb.edu.au/handle/11343/34484.

(WHATWG), Web Hypertext Application Technology Working Group. 2020. “HTML

Standard: Custom Elements.” HTML Living Standard.

https://html.spec.whatwg.org/multipage/custom-elements.html.

Wolfenden, Elmer. 1971. Hiligaynon Reference Grammar. Pali Language Texts:

Philippines. PALI language texts: Philippines.

Woodbury, Anthony C. 2011. “Language Documentation.” In The Cambridge

Handbook of Endangered Languages, edited by Peter K. Austin and Julia

Sallabank, 159–86.

———. 2014. “Archives and Audiences: Toward Making Endangered Language

Documentations People Can Read, Use, Understand, and Admire.” Language

Documentation and Description 12: 19–36.

Yamada, Racquel-María. 2007. “Collaborative Linguistic Fieldwork: Practical

Application of the Empowerment Model.” Language Documentation &

Conservation 1 (2).

Zaefferer, D. 2006. “Realizing Humboldt’s Dream: Cross-Linguistic

Grammatography as Data-Base Creation.” Catching Language: The Standing

Challenge of Grammar Writing, 113.

1. Its use has become so widespread that in some cases it is even

institutionalized: IJAL now requires that submissions to the IJAL Texts

Online series be created with ELAN. https://www.americanlinguistics.org/

wp-content/uploads/preparing-ELANfiles.pdf↩

217

https://minerva-access.unimelb.edu.au/handle/11343/34484
https://html.spec.whatwg.org/multipage/custom-elements.html
https://www.americanlinguistics.org/wp-content/uploads/preparing-ELANfiles.pdf
https://www.americanlinguistics.org/wp-content/uploads/preparing-ELANfiles.pdf

2. This is a very general outline of the annotation process in ELAN; this

description presumes a considerable amount of preliminary configuration:

tiers must be configured, “linguistic types” must be specified, and so forth.

Furthermore, at the very granular level of the user interface, much more

could be said about the precise steps take in terms of clicking, dragging,

keystrokes, and other actions required to achieve the task. All user interfaces

requires conventions of this sort.↩

3. Again, the designers of ELAN are not to be faulted for such claims: the tool

does what they claim it does.↩

4. Much more will be said about the mechanics of transcription in Chapter 4:

transliteration, input methods, and so forth.↩

5. The interested reader who would like to gain a more in-depth understanding

of HTML and related technologies may wish to refer to the “how-to” in

/howtos/html-basics/.↩

6. The possibility of using OCR (Optical Character Recognition) to expedite the

process of converting print materials to digitized materials is feasible in some

instances. In most cases, OCR must be post-edited, and if we are to extract

structured information from the flow of text, further manual interventions

may be necessary. The quality of the text recognition depends to a large

degree on the quality of the input — for example, Heath’s typescript

manuscripts have considerable noise, and would probably introduce enough

errors that OCR output would have to be carefully post-edited.↩

218

howtos/html-basics/3_structure.html

7. The entire syntax of JSON may be expressed through the visual

representation called a railroad diagram, as shown at https://json.org. A

corresponding representation for the Javascript programming language

would be many orders of magnitude more complex.↩

8. We should also note that the “whitespace” in these JSON texts is insignificant

where it appears outside of quotes. Thus, as far as the computer is concerned,

the following rather single-line, unindented recasting of the object view of the

Belvedere data is completely identical to the first serialization as far as the

computer is concerned: {"year": 1958, "make": "Plymouth",
"model":"Belvedere"}. Indentation is helpful for human readers,

however, and as data formats go JSON is fairly readable.↩

9. It is worth noting hat Sapir himself considered that work incomplete: it was

in “no sense a complete dictionary of the language but necessarily includes

only such material as I happened to record.” (Sapir, Sapir, and Bright 1900,

558)↩

10. Again, note that this data structure is a “skeleton” and contains only

properties, not values — hence, the sample time stamps are empty. Examples

will be seen in Chapter 3.↩

11. The terms tag and element are sometimes used interchangeably, but strictly

speaking, the tag refers to the syntax as used in HTML as illustrated in Figure

1.7 (e.g., <tag>content</tag>), whereas the element is the object which

the browser creates in memory upon parsing an HTML page.↩

219

1.html#sample-html-tag
1.html#sample-html-tag

12. The term attribute unfortunately has many meanings in programming, and it

is not used consistently. In the context of JSON data, we are using the term

attribute to indicate a property/value pair. So for instance in the JSON
object {"form": "bentana", "gloss": "window"}, the form and

bentana constitute an attribute, with the string form functioning as a

property, and bentana functioning as a value. The situation is analogous for

gloss and window. In the context of HTML, we speak of HTML attributes as

property/value pairs which are encoded inside of an HTML tag, and which

modify the behavior or associated information of a tag in some way. The

syntax for HTML attributes and property/value pairs in JSON objects is of

course different: in an HTML attribute, the property (also sometimes referred

to as the “name”) and its corresponding value are separated by an equals

sign: <entry-view src="bentana.json">.↩

13. Note that in practice we do not need to import every custom element in the

docling.js library individually — rather, we can simply import the

docling.js file itself, which will make all the defined custom elements

available at once.↩

14. The example for Eastern Kayah Li, it should be noted, is drawn from the

English-Kayah index to the full Kayah-English glossary; in this case, simple

one-word glosses and forms are distinguished by no other device than simple

word delimitation — in the full glossary more complex formatting is

employed.↩

220

15. Here, we will not delve into the details of exactly how the computer may be

instructed to interpret the content of the JSON data, we simply accept as a

premise the idea that once data is encoded in this way, it is possible to

retrieve “parts” of the data programmatically, in a granular fashion. That is to

say, once this data has been read by the computer, we may “ask” questions

like “what is the transcription?” or “what is the form of the second word?”,

and the computer will “know” to respond with the correct strings ("Hello,
ako si Juan Lee." and "ako", respectively.) The process of interpreting

a textual data format such as JSON, HTML, or CSS is called “parsing” by

computer scientists, in a much more limited way than it is generally used in

linguistics.↩

16. Users of ELAN sometimes have to grapple with a similar problem, where the

width of the text input is controlled by the width of the waveform selection,

and word wrapping does not take place:

↩

17. Let us pause to appreciate the “dental bridge”. Ahem.↩

18. See Chapter 4 of Moran and Cysouw (2018).↩

19. For recent re-evaluations of appropriate sizes of basic vocabulary lists, see

221

Gasser and Bowern (2014) and Dockum and Bowern (2019).↩

20. I have included the number field under a metadata object as an aside — it is

relevant because we are dealing with a numbered list, and that numbering

might be important to preserve, for instance, for comparing with another list.

We will ignore this metadata in the rest of the current discussion, but it is

worth noting in passing that it is useful to think of the concept of “metadata”

in a flexible way: it should be adaptable at any level of analysis as necessary

(here, we are adding metadata at the word level).↩

21. Note that the grammatical category labels used here express just one analysis

of the grammar verbal affixes in Hiligaynon and related Philippine

languages. Such analysis is a topic of long-standing debate: which

grammatical categories they are thought to express and the labels used to

signify the various values of those categories is highly variable from source to

source. For convenience, the analysis used here follows Wolfenden (1971)↩

22. Or more recently, its encrypted derivative, Secure HyperText Transfer

Protocol, identifiable in URLs beginning with https://.↩

23. More commonly, individual Javascript files are “imported” from their own

files, which reside alongside the HTML. This approach has the benefit that the

same Javascript program can be imported into different HTML pages, and

thus reused. Importing of this kind is also available with CSS stylesheets.↩

24. Thus, it is hoped that linguists with programming experience will be able to

222

follow the design of the code base and how to extend it without committing

undue learning time toward learning additional Javascript-based software

libraries or “frameworks” designed to enable the implementation of larger

scale projects (currently popular Javascript frameworks at the time of writing

include ReactJS, svelte, and ember.js).↩

223

https://reactjs.org/
http://sveltejs.com/
https://emberjs.com/

	Contents
	Introduction
	‘Large, windless apartments’: History, technique, and technology
	Dataflows, Workflows, and Components
	Some sample applications
	ELAN and time-alignment
	An alternative approach to time-aligned lexical data: an iterative recording workflow
	Iterative recording interface

	From documents to applications: A functional overview of HTML and the web platform

	Custom elements for language documentation: docling.js
	On motivations and voice
	Outline in brief

	Data types and dataflows: Building a Boasian Database
	Toward a Boasian database
	Designing a documentary database
	A shift in viewpoint: from streams of text to databases of objects
	Beyond hyperlinks
	What is database design?

	An object model of documentary data, and a JSON implementation
	Precedents
	Machine-readable data types with JSON: attributes, objects, and arrays
	Documentary data types

	Designing a Boasian Database
	A catalog of data types in docling
	Language Data Type
	Word Data Type
	Sentence Data Type
	Text Data Type
	Corpus Data Type
	Lexicon Data Type
	Grammar Data Type

	Modeling data change with dataflows
	Familiar documentary dataflows
	Elicitation
	Glossing
	Time-alignment
	Word Exemplification

	Viewing Documentary Data
	Reviewing key concepts
	A first look at web components
	A typology of web components for docling.js
	Views
	Lists
	Editors

	Displaying data with view and list components
	Granularity in digital documentation
	<word-view>
	<sentence-view>
	Granularity and responsiveness in the <sentence-view> component
	Resizing the <sentence-view>’s container
	Increasing font size
	Highlighting constituent <word-view>s
	Enumerating elements in terms of source order

	The structure of <sentence-view> markup
	Accessibility is a universal concern

	<word-list>
	<metadata-view>
	<lexicon-view>
	Sorting
	Search

	<sentence-list>
	<text-view>

	Components for documentation workflows
	Designing user interfaces for documentation workflows
	Static documents vs. interactive interfaces

	Transcription
	Manuscript transcription
	Finding characters and phones
	A user interface design for inputting phonetic transcriptions
	Inferring phonetic inventories from transcriptions

	From workflow to interface
	Scheduled vocabulary
	An aside on representing grammatical categories

	Image prompts: sharing an interface between both participants

	Harmonizing time-aligned data
	Automatic data updates depend on User Interface Design

	Avenues ahead
	The Web Platform and docling.js
	Fostering a documentation interface design community
	Designers
	Implementers
	Users
	Documentation histories: Certainty and revision

	An open-access online course and next steps
	Conclusion

	References

