
UCLA
UCLA Previously Published Works

Title
Knowledge, experience, generations, and limits in machine learning

Permalink
https://escholarship.org/uc/item/3bc4p075

Journal
Theoretical Computer Science, 317(1-3)

ISSN
0304-3975

Authors
Burgin, Mark
Klinger, Allen

Publication Date
2004-06-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3bc4p075
https://escholarship.org
http://www.cdlib.org/

KNOWLEDGE, EXPERIENCE, GENERATIONS, AND

LIMITS IN MACHINE LEARNING
Mark Burgin and Allen Klinger

Department of Computer Science
University of California, Los Angeles

405 Hilgard Ave.
Los Angeles, CA 90095

Abstract: This paper extends traditional models of machine learning beyond their

one-level structure by introducing previously obtained problem knowledge into the

algorithm or automaton involved. Some authors studied more advanced than

traditional models that utilize some kind of predetermined knowledge, having a two-

level structure. However, even in this case, the model has not reflected the source

and inherited properties of predetermined knowledge. In society, knowledge is often

transmitted from previous generations. The aim of this paper is to construct and

study algorithmic models of learning processes that utilize predetermined or prior

knowledge. The models use recursive, subrecursive, and super-recursive algorithms.

Predetermined knowledge includes: a text description, activity rules (e.g., for

cognition), and specific structured personal or social memory. Algorithmic models

represent these three forms as separate structured processing systems: automata with

1) advice; 2) structured program; and 3) structured memory. That yields three basic

models for learning systems: polynomially bounded Turing machines, Turing

machines, and inductive Turing machines of the first order.

Keywords: machine learning, computation in the limit, learning in the limit, Turing

machine, inductive Turing machine, experience, knowledge

1. Introduction

Cognition in general and learning, in particular, has always been important for the

whole society and separate individuals. Without efficient learning strategies, neither an

individual nor a society can survive in his/her/its environment. That is why cognition

has been and is one of the central topics of philosophy. Development of humanities

and social sciences brought cognition in the center of their studies. Development of

education directed essential efforts to better understanding learning processes.

Creation of computers gave birth to a new area – machine learning.

Learning consists of diverse forms of activity. Further one can consider cognition

as a kind of learning. It is learning from the environment or nature. Such traditional

forms as testing, verification, and detection, as well as such new forms as data mining,

web search, and client monitoring are also kinds of learning.

Traditional models of machine learning have a one-level structure. An algorithm or

automaton begins learning without predetermined problem knowledge. Advanced

models utilize some kind of predetermined knowledge, involving a two-level structure.

However, these models reflect neither knowledge sources nor means of inheritance. At

the same time, society mainly acquires predetermined knowledge from previous

generations. The whole history of science is a magnificent example how previous

generations provided knowledge for further development, great discoveries, and

unexpected inventions for next generations. The great Newton wrote, “If I have seen a

little farther than others, it is because I have stood on the shoulders of giants.”

To see the situation in more detail, let us consider two events of the first importance

in the whole history of mathematics: creation of and grounding the calculus.

It is assumed that calculus was created by two great mathematicians: Isaac Newton

and Wilhelm Leibnitz. However, as writes Bell [9], it was inevitable after the work of

Cavalieri, Fermat, Wallis, Barrow, and others that the calculus should presently get

itself organized as an autonomous discipline. The major base of Newton’s work on

calculus were results of his teacher Isaac Barrow mostly published in the book

Lectiones Geometricae (cf., [16]). Actually, this book explained all main constructions

of calculus application without perceiving the deeper significance and building a

formalized mechanism. In his turn, Barrow (explicitly or implicitly) utilized results

and constructions of his predecessors: Fermat, Pascal, and even Archimedes. Lectiones

Geometricae was the culmination of the 17th century and previous investigations

leading toward the calculus.

Leibnitz also wrote that he created calculus under the influence of the works of

Pascal and other French mathematicians as Leibnitz got his mathematical education in

Paris [16]. It is interesting to remark that there were few if any new applications in

Leibnitz’s series of manuscripts, where he built the calculus, but a formalism was

developed that helped systematize and generalize the diverse geometric results of old

and is used even now in contrast to Newton’s formalism.

After the calculus had been built, other mathematicians, such as Euler, the

Bernullis, and Lagrange, developed it further and found a quantity of important

applications in a variety of fields.

Although Newton and Leibnitz built the calculus, they never founded it. The first

prominent mathematician to suggest that the theory of limits was fundamental in

calculus was d’Alembert (1754). However, only Cauchy did this grounding to a full

extent in the 19th century. But this was not the end because although the calculus had

been grounded as whole, the main concepts that had been used by Newton (fluxions

and fluents) and Leibnitz (differentials, infinitely small and infinite values) were still

mathematically ungrounded. Only in the 20th century, Robinson formed a base for

these concepts creating the nonstandard analysis.

Taking a broader understanding of experience of generations, we see that one

culture can utilize and develop what was gained by another culture. For instance, many

cultures were involved in the evolution of arithmetic. Ancient Greeks based their

results on the achievements of Egypt and Babylonia. After the decline of science and

mathematics in Europe during the middle ages, Greek tradition was cultivated by a

school of Arabian scholars who faithfully translated the Greek classics into Arabic. In

addition, Arabian mathematics incorporated achievements of Indian mathematics,

developed both Greek and Indian results and brought their accomplishments to

Europe, where a new stage of the mathematics development has begun.

All these and many other examples necessitate mathematical modeling of such

cognitive and learning processes that take into account knowledge accumulated before

the process starts. In this paper, we build such models. These models employ

predetermined knowledge obtained by other similar processes and utilize different

kinds of algorithms: recursive, subrecursive, and super-recursive. Recursive

algorithms are algorithms equivalent with respect to their computing power to Turing

machines. Super-recursive algorithms can do more than Turing machines, while

subrecursive algorithms (e.g., finite automata) can do less than Turing machines. The

main goal of this paper is a comparison of recursive algorithms such as Turing

machines with such super-recursive algorithms as inductive Turing machines. The

utmost goal of this analysis is learning in the limit modeled by super-recursive

algorithms.

2. Theoretical Mechanisms for Modeling Learning Processes

According to Webster’s Dictionary, ”to learn” is “to gain knowledge,

understanding, or skill by study, instruction, or experience.” This specifies three

distinct forms of learning:

1. Study as assimilating material from descriptive knowledge sources.

This is an active form of learning. Examples of descriptive knowledge sources

are: books, people, data- and knowledge bases, Internet, etc.

2. Learning by instruction is receiving prescriptive knowledge from

outside sources. This is a passive form of learning. Examples of prescriptive

knowledge sources are people, instruction manual, computer programs, etc.

3. Learning by experience is acquiring knowledge and achieving

understanding and skill from person’s life and behavior. This comes from

observation (passive learning form) and experimentation (active learning form).

There are combinations of different learning forms. They result in interactive

learning experiences, including possibility of reference to printed text, computer files,

and human experts.

Both understanding and skill can be formulated as knowledge. Understanding is

knowledge of relations in a system. Skill is a kind of procedural knowledge that

people are able to apply in their activity. Very often skill is implicit knowledge.

Here is a working definition of learning.

Definition 1. Learning is a process of taking or receiving some information

(learning material) and transforming it. The product is knowledge, state or behavior of

a learning system.

Learning proceeds both from particulars to general presentations (induction) and

from general rules to particular facts (deduction). For instance, when a teacher wants

to learn how to help her student to get better results in the class, she applies the theory

of learning styles to this student and learns how better to teach him. This is deduction.

In presenting material to be learned there are two complementary classifications:

wholeness and transparency.

In the wholeness classification, material to be learned may be:

1. in a complete form represented as a whole;

2. in an incomplete form given/taken by parts of the whole:

a. all parts are given after some time;

b. it is possible to view only some parts.

The transparency classification yields that material to be learned may be:

1. represented explicitly;

2. given/taken in a transformed form:

a. reconstruction of knowledge can be done by known algorithms;

b. reconstruction of knowledge cannot be done by known

algorithms.

Another issue is the learning result form. We distinguish between three kinds of

learning:

1. Factual or partial learning. Here a learner determines or finds whether

some element x belongs to a set X (has a property P).

2. Class or enumerative learning. Here a learner represents or separates or

builds elements from some set X (that have a property P).

3. Mechanism or constructive learning. Here a learner builds or finds a

machine (mechanism, rules) to generate or separate a set X (all elements with a

property P).

Class learning has the potential of being infinite and becoming or emerging.

Mechanism learning is actually infinite or existing.

Remark 1. Some researchers do not consider factual knowledge as a kind of

knowledge, contrasting facts that are given as input to knowledge that is obtained as a

result of knowledge acquisition system functioning. This approach contradicts the real

situation in science, mathematics, and everyday life. For example, the fact that 2 + 2 =

4 is an important part of our knowledge about the ordinary arithmetic. Important

elements of mathematical knowledge are such facts as: e is approximately equal to

2.71, the set of all real numbers is a field, the set of all integer numbers is a ring, and

not all functions are continuous. Important elements of physical knowledge are such

facts as: the velocity of light in the vacuum is a constant, it is impossible to build a

perpetuum mobile, and that atoms consist of protons, neutrons, and electrons. In

everyday life, journalists, detectives, and the majority of other people are seeking fact

and not general theories or mechanisms.

People often contrast learning and reasoning (e.g., [4]). However, reasoning is a

powerful intellectual tool. It is used for various purposes: learning/cognition,

explanation, persuasion, etc. That is why approaches to learning are similar to the

kinds of reasoning.

The main reasoning schemes correspond to three major types of learning:

 learning from similarity/by analogy (abduction);

 learning from experience or by experimentation (induction);

 learning by rules (deduction).

Thus, inductive inference is the main cognitive strategy in science and also a

popular learning technique. Kelly et al [24], describe four basic inductive approaches

to learning:

1) A process is organized obeying the rules motivated by considerations

other than finding the truth and/or avoiding error (e.g., conformity with practice

or intuition);

2) The possibility of errors is neglected if there are not “too many” or if

they are all “too remote”;

3) Even significant possibility of error are forgivable if we do the best we

can;

4) All errors are avoided in the limit.

This classification reflects three approaches to achievement of a remote goal when

there is a measure of success available. We assume that it is impossible to get the

result simply from initial data. It also implies the necessity to apply some process of

inductive inference.

The first approach, amelioration, starts with some initial object, which is then

gradually improved.

The second approach, perfection, starts with some initial object, from which the

procedure moves through some intermediate results to the best outcome.

The third approach, satisfaction, also starts with an initial object but then aims at

some satisfactory result.

It is possible to realize all these approaches by any of the three learning types. Since

the main concern here is inductive learning, we separate three possible situations for a

learning process:

1. Complete or desired knowledge/skill is obtained after a finite number

of steps and the learner knows it.

2. Complete or desired knowledge/skill is obtained after a finite number

of steps but the learner does not know it.

3. No finite number of steps can result in complete or desired

knowledge/skill.

This corresponds to three modes of computation [12, 13]:

1. Recursive computation.

2. Inductive computation.

3. Limit computation.

There are abstract automata and algorithms that work in each mode. Thus, we can

model the related learning types. In the following the main emphasis is on inductive

learning. It provides the most adequate model for learning in nature and society.

3. One-Level Inductive Processes

Limiting recursive functions [19] and their version, trial-and-error predicates [29]

were the initial one-level inductive schemes.

Definition 2. A partial function f(x) is called limiting recursive if there is a total

recursive function g(x, n) such that

f(x) = lim n→∞ g(x, n) (1)

Definition 3. A partial function f(x) is called limiting primitive (partial) recursive if

g(x, n) in (1) is primitive (partial) recursive.

Definition 4. A predicate P(x1 , x2 , x3 , … , xn) is called trial-and-error predicate

if there is a general recursive function g(x1 , x2 , x3 , … , xn , y) such that

P(x1 , x2 , x3 , … , xn) = lim y→∞ g(x1 , x2 , x3 , … , xn , y)

As in the theory of recursive functions and algorithms, a class of algorithms

(functions) defines sets that are decidable (enumerable) with respect to this class.

Definition 5. A set X is called limiting recursive (limiting recursively enumerable)

if its characteristic function χS(x) (its partial characteristic function CS(x)) is limiting

recursive.

Definition 6. A set X is called limiting primitive (partial) recursive (limiting

primitive (partial) recursively enumerable) if its characteristic function χS(x) (its

partial characteristic function CS(x)) is limiting primitive (partial) recursive.

Following results that relate the construction of limiting recursion to the

arithmetical hierarchy levels were proved by Gold [19].

Theorem 1. a) A set S is limiting (partial) recursive if and only if S belongs to the

level Σ2 ∩Π2 of the arithmetical hierarchy.

b) A set S is limiting recursively enumerable if and only if S belongs to the

level Σ2 of the arithmetical hierarchy.

c) The class of limiting partial recursively enumerable sets is contained in Σ3,

contains Σ2 ∪Π2, and is not closed under complementation.

However, the exact location of the class of limiting partial recursively enumerable

sets in the arithmetical hierarchy was not defined by Gold.

Later the idea of functions computed in the limit was transformed into the

construction of algorithmic inductive inference and learning in the limit [18]. The

development of this direction brought researchers to the following concept (e.g., [5]).

Definition 7. An inductive inference machine (IIM) M is a generating procedure

that requests inputs from time to time. It produces some words as its partial output also

from time to time. These words produced by the machine after receiving each portion

of data are called conjectures. The final result of the inductive inference machine M is

the word w to which the computational process of M converges.

Definition 8. If u(n) denotes the conjecture produced by an inductive inference

machine M after receiving the portion of input data with the number n, then the

computational process of the inductive inference machine M stabilizes (or converges)

to a word w if there exists a number n0 ∈ N such that u(n) equals w for any n > n0 .

Here procedure means some algorithmic scheme such as Turing machine that is

described by effective operations, but for which it is not specified how the result is

obtained. This means that an inductive inference machine is a super-recursive

algorithm.

All these approaches and constructions are synthesized in the concept of inductive

Turing machine. First, we turn to simple inductive Turing machines. They realize

inductive computation of the first level.

The simplest realistic inductive Turing machine has the same structure as a

conventional Turing machine with three tapes and three heads: input, working, and

output. This structure is much closer to the architecture of modern computer than that

of a Turing machine with one tape.

Both, inductive and ordinary Turing machines go through similar computational

steps. Their differences lie how they determine their outputs. We know that a

conventional Turing machine produces a result only when it halts. We assume that this

result is a word written on the output tape. A simple inductive Turing machine also

produces words as its results. In some cases, it stops at its final state and gives a result

like a conventional Turing machine. The difference begins when the machine does not

stop. An inductive Turing machine can give a result without stopping. To show this,

we consider the output tape and assume that the result has to be written on it.

It is possible that in the sequence of computations, the word that is written on the

output tape after some step is not changing although the machine continues to work.

Then the last reached (unchanging) word is taken as the result of this computation.

Thus, an inductive Turing machine does not halt but it still produces a definite result

after a finite number of computing operations. This explains the name “inductive.” In

induction we also proceed step by step checking if some statement P is true for an

unlimited sequence of cases. When it is found that P is true for each case whatever

number of cases is considered, we conclude that P is true for all cases.

While working without halting, an inductive Turing machine can occasionally

change its output. However, people are able to use machines that occasionally change

outputs. They can be satisfied that the result just printed is good enough, even if

another (possibly better) result may arrive in the future. And if you continue

computing, it will eventually come. Another example is a program that outputs

successively better approximations to a number. Once a few digits of accuracy are

attained, the user can use the output generated even if the machine is not "done". All

these properties essentially extend the possibilities and indicate uses of inductive

Turing machines.

Theorem 2. For any Turing machine T, there is an inductive Turing machine M

such that M computes the same function as T, i.e., M and T are functionally equivalent.

This theorem demonstrates that Turing machine is, in some sense, a particular case

of inductive Turing machine.

To show that inductive Turing machines are more powerful than ordinary Turing

machines, we need to find a problem that no ordinary Turing machine can solve and to

explain how some inductive Turing machine solves this problem. To do this, consider

the halting problem for an arbitrary Turing machine. It was proved unsolvable for

Turing machines. Today it is one of the most popular unsolvable problems in the

theory of algorithms.

However, there is an inductive Turing machine M that solves this problem. This

machine M contains a universal Turing machine U as a subroutine. Given a word u

and description D(T) of a Turing machine T, machine M uses machine U to simulate

T with the input u. While U simulates T, machine M produces 0 on the output tape. If

machine U stops, and this means that T halts being applied to u, machine M produces

1 on the output tape. According to the definition, the result of M is equal to 1 when T

halts and the result of M is equal to 0 when T never halts. In such a way, M solves the

halting problem.

So, even the simplest inductive Turing machines are more powerful than

conventional Turing machines. At the same time, the development of their structure

allowed inductive Turing machines to achieve much higher computing power than

have the simplest inductive Turing machines described above. This contrasts to such a

property of a conventional Turing machine that by changing its structure, we cannot

get greater computing power.

Abstract automata are used to model, while physical machines are used to realize

learning systems. In this case, the forms of predetermined knowledge correspond,

respectively, to separate structural components of the device: infware, software, and

hardware of the automaton.

3. Memory in learning processes

The place where information is stored and preserved is traditionally called

memory. Thus, memory is one of three central components of any learning system.

Functioning of memory influences complexity of different processes in a system.

There are three types of complexity of any process (and learning, in particular):

- the complexity of separate steps/operations;

- the complexity of separate subprocesses;

- the complexity of the whole process.

Two first types of complexity exist on three levels: microlevel, macrolevel, and

megalevel operations and subprocesses.

For example, in a computer, the operations of elements from its ALU are

examples of microlevel operations (e.g., compare two bits, add two bytes) The

operations of ALU are macrolevel operations (e.g. compare two 32 digit numbers, add

two 32 digit numbers). Operations from programming languages are examples of

megalevel operations (e.g., x + y, n!).

Two latter types of process complexity are related to complexity in inductive

inference (and more generally, in learning) considered by Ambainis [2]:

- the complexity of computations necessary for learning;

- the complexity of learning itself;

Some complexity measures better reflect properties of computations, while others

better reflect features of learning. Several attempts to separate these two kinds of

complexity have been made.

For space (memory) complexity, Freivalds, Kinber, and Smith [17] did such a

separation. They proposed considering two kinds of memory: long-term memory and

short-term memory, and incorporated this idea in Inductive Inference Machine (IIM), a

theoretical device they developed for inductive inference. IIM uses long-term memory

to remember portions of input it has seen and, perhaps, other necessary information. In

addition, IIM has a short-term memory for computations. Each time when IIM reads

new input data, this memory is automatically cleared: it cannot be used to remember

information.

The complete triadic stratification of process complexity explicates a more

developed three-type-gradation of memory: operation memory, short-term memory,

and long-term memory.

Operation memory performs information storage for separate steps/operations.

Consequently, it stores information for the least time.

Short-term memory performs information storage for separate subprocesses.

Consequently, it stores information for longer time.

Long-term memory performs information storage for the whole process.

Consequently, it stores information for the longest time.

Usually, in artificial intelligence (cf., for instance, [27]) and psychology (cf, for

instance, [6]), only the two latter types are considered. However, a more advanced

model of the mind contains all three parts [7, 20, 34]. The model portrays the mind as

containing three memory stores: sensory, short-term, and long-term. Each store is

characterized by its function (the role it plays in the overall workings of the mind), its

capacity (the amount of information it can hold at any given instant), and its duration

(the length of time it can hold any item of information).

Computers also have three levels of memory: registers, which constitute a special

holding area of the CPU for the numbers the ALU uses for computation; primary

storage, which is electronic circuitry that holds data and program instructions until it is

their turn to be processed; and additional storage media and devices as a long-term

memory [27]. Today two types of long-term storage media are the main ones in use:

magnetic and optical. Primary storage includes: RAM, CMOS memory, and ROM.

Magnetic storage includes: floppy disks, hard disks, tapes, and Bernoulli disks. Optical

storage includes CD-ROM and WORM.

Memory of a Turing machine is its tape(s). In addition, it is possible to store

information in the states of the Turing machine.

Inductive Turing machines have many more possibilities for memory

stratification. They are able to realize all three types of computer memory, as well as

their subtypes and new types of memory (e.g., quantum memory).

Experience of an individual or society is usually considered as a big data and

knowledge base. Such knowledge includes not only declarative knowledge, but also

model, procedural, and problem knowledge. Knowledge, according to contemporary

understanding is a system in which connections play a central role. Thus, a structured

memory of an inductive Turing machine provides efficient means to represent these

connections and the knowledge system. At the same time, experience also includes

skills and understanding. These attributes cannot be completely reduced to explicit

knowledge – they are mainly related to implicit knowledge.

Experience is a kind of implicit knowledge. Examples of implicit knowledge are:

weights of neurons in neural networks [21], connections in a structured memory with a

dynamic structure, and connections between nodes/automata in virtual or potential

grid automata [14, 15].

Implicit knowledge gives an explanation to intuition, at least, for some kind of

intuition. It is possible to consider two forms of implicit knowledge: internally implicit

and externally implicit.

Externally implicit knowledge of an individual is hidden from others, but the

individual is aware of it. In contrast to this, individual is not aware of his/her internally

implicit knowledge. Accordingly, there are two types of intuition: explicit intuition

based on externally implicit knowledge and implicit intuition based on knowledge that

is internally implicit.

For instance, experimental intuition is an explicit intuition when a person derives

a general pattern from a quantity of examples and then uses it to make decisions in

similar situations.

4. Stratified Learning

All kinds of memory considered in the previous section are individual. To study

learning processes that go through generations, we introduce also social memory. If

learning is performed by some class of automata A, then the results of algorithms from

A are stored in this memory. Examples of such classes are:

- the class of all inductive inference machines;

- the class of all inductive Turing machines.

Acquired experience and knowledge can be embodied or stored in three forms:

 as texts describing obtained knowledge (descriptive or propositional

representation),

 as activity rules (prescriptive or procedural representation), and

 as a specific structure of individual (personal) or social memory (recreative

or structural representation).

Using this classification, we now consider three classes of learning system models

that utilize experiences of previous generations:

1. Automata with an advice [8].

2. Automata with a structured program [13].

3. Automata with a structured memory [15].

Automata with an advice can preserve in the memory for advice knowledge

obtained by previous generations.

The most popular automaton with an advice is the, so-called, advice-taking Turing

machine [8, 30].

Definition 9. An advice function f(x) is some function, the values of which

depend only on the length of x and are written on a special tape of a Turing machine.

Hence, advice functions provide external information to the machines, just as do

oracles. However, the information provided by an oracle may depend on the actual

input, whereas the information provided by an advice function does not. Indeed, only

the length of the input matters. Consequently, advice-taking Turing machines form a

subclass of Turing machines with oracles.

Advice-taking automata are important in complexity theory. The definitions and

results in this theory are often based on special Turing machines that can determine the

result of an oracle “for free”, that is, in constant time.

Definition 10. An advice-taking Turing machine is a Turing machine enhanced

with the possibility to access the advice tape. The access for advice and reading the

value of its advice f(x) takes place in constant time.

The fact that the advice value f(x) can be determined in constant time (while f(x)

can be an intractable or even undecidable function) essentially increases the power and

efficiency of an advice-taking Turing machine in comparison with a regular Turing

machine. For example, an advice-taking Turing machine can calculate in polynomial

time many functions that a regular Turing machine cannot (including some intractable

ones).

Computations performed by Turing machines with oracles and Turing machines

with advice are non-uniform because a different advice string may be defined for

every different length of input.

Automata with structured programs can preserve knowledge obtained by previous

generations in the form of a program.

Automata with structured memory can preserve knowledge obtained by previous

generations in the form of the structure of their memory.

Modern neurobiological studies show that automata with structured memory

provide relevant models for representation of learning processes in the brain.

According to Knudsen [25], learning is a balance of innate and experiential influences.

The capacity of a network to learn from experience is limited by innate factors that

establish and refine initial patterns of connectivity [23]. These patterns represent

specific substructures in the structured memory of a learning system. In biological

systems, these patterns of connectivity can contain remarkable specificity, imparting a

high degree of functionality that reflects many generations of selections [33]. This

gives evidence to the hypothesis that experience of generations accumulates in

structures of the memory.

The structure of any inductive Turing machine, as an abstract automaton, consists

of three components, which we can call hardware, software, and infware. We begin

with the infware, that is, with a description and specification of information that is

processed by an inductive Turing machine. Computer infware consists of information,

or more exactly, data processed by the computer. An inductive Turing machine M is

an abstract automaton, which works with symbolic information in the form of words

of formal languages. Consequently, formal languages with which M works constitute

its infware. Usually, these languages are divided into three categories: input, output,

and working language(s). In contrast to the languages of everyday life (e.g., English,

German or French), inductive Turing machines use formal languages.

A formal language L consists of three parts: the alphabet A of L, a finite set of

symbols; the set A* of all words in A, which are finite strings of symbols; and the

subset L of the set A*. Elements from L are called the words of the language L. The set

L is often represented by generating rules RG, i.e., the rules that build words from L, or

by selection rules RS, i.e., the rules that separate words that belong to L from all other

words in A*.

The language L of an inductive Turing machine consists of three parts L = (LI ,

LW , LO) where LI is the input language, LW is the working language, and LO is the

output language of M. Each of them has the following structure LX = (AX, RX, LX)

where AX is the alphabet, RX is the set of generating rules, and LX is the set of all

words of the language LX where X is one of the symbols I, O or W. Usually the

generating rules for formal languages as a whole consist of one operation, which is

called concatenation and combines two words into one. For example, if x and y are

words, then xy is the concatenation of x and y. Taking the alphabet AX = {1, 0} with

two words x = 1001 and y = 001 in this alphabet, we have 1001001 as the result of

concatenation. The set A* of all finite strings in the alphabet A is also a formal

language; it includes the empty word ε that contains no symbols. Because a formal

language is an arbitrary subset of A*, it is possible to consider the languages of an

inductive Turing machine M as one language L(M), which consists of three parts: LI ,

LW , and LO .

Now let us look at the hardware or device D of the inductive Turing machine M

with a structured memory. Computer hardware consists of all devices (the processor,

system of memory, display, keyboard, etc.) that constitute the computer. In a similar

way, the inductive Turing machine M has three abstract devices: a control device A,

which is a finite automaton and controls performance of the machine M; a processor

or operating device H, which corresponds to one or several heads of a conventional

Turing machine; and the memory E, which corresponds to the tape or tapes of a

conventional Turing machine. The memory of the simplest inductive Turing machine

consists of three linear tapes, and the operating device consists of three heads, each of

which is the same as the head of a Turing machine and works with the corresponding

tapes.

The control device A has the state structure or configuration S = (q0 , Q, F)

where Q is the set of states or the state space of A and of M, q0 is an element from Q

that is called the start or initial state, and F is a subset of Q that is called the set of

final (in some cases, accepting) states of M. It is possible to consider a system Q0 of

start states from Q, but this does not change the computing power of an inductive

Turing machine. The automaton A regulates: the state of the whole machine M, the

processing of information by H, and the storage of information in the memory E.

The memory E is divided into different but, as a rule, uniform cells. It is

structured by a system of relations that provide connections or ties between cells. Each

cell can contain a symbol from an alphabet of the languages of the inductive Turing

machine M or it can be empty. Formally, E = (P, W, K) where P is the set of all cells

from E, W is the set of connection types, and K ⊆ P×P is the binary relation on P that

provides connections between cells. In such a way, K structures the memory E. Each

of the sets P and K is also structured. The set P is enumerated, that is, a one-to-one

mapping ν of P into the set N of all natural numbers is given. A type is assigned to

each connection from K by the mapping τ: K → W .

In a general case, cells from the set P also may be of different types. This

stratification is represented by the mapping ι: P → V where V is the set of cell types.

Different types of cells may be used for storing different kinds of symbols. For

example, binary cells, which have type B, store bits of information represented by

symbols 1 and 0. Byte cells (type BT) store information represented by strings of eight

binary digits. Symbol cells (type SB) store symbols of the alphabet(s) of the machine

M. Cells in conventional Turing machines have this type. Natural number cells, which

have type NN, are used in random access machines [1]. Cells in the memory of

quantum computers (type QB) store q-bits or quantum bits. When different kind of

devices are combined into one, this new device has several types of memory cells. In

addition, different types of cells facilitate modeling the brain neuron structure by

inductive Turing machines.

Likewise, the set of cells P is divided into three disjoint parts PI , PW , and PO ,

where PI is the input registers, PW is the working memory, and PO is the output

registers of M. Correspondingly, K is divided into three parts KI , KW , and KO which

define connections between the cells from PI, PW, and PO . Usually, input registers are

used only for reading, while output registers are used only for writing. For simplicity,

we consider PI as one register and PO as one register, which are, as a rule, one-

dimensional tapes. Besides, it is possible to consider only such inductive Turing

machines that have the read-only input register or tape.

At the same time, to model a modern computer with its advanced hierarchical

memory, the set P has to be subdivided into more than three components.

Each cell from a linear two-sided tape has two neighbors left and right. The first

cell in a one-sided tape has only one neighbor. The structure of a linear tape (the

standard for Turing machines) is realized by the relation Lin with connections of two

types: R and L. Each cell with the number i is connected to the cell with the number i +

1 with the connection R, and each cell with the number i + 1 is connected to the cell

with the number i with the connection L (here i = 1, 2, 3, …). To get a two-sided

linear tape, we reenumerate the corresponding part of P by integer numbers and use

the same connections. To get a two-dimensional tape, we can use ties of four types W

= {R, L, U and D}. Enumeration of cells by natural numbers is transformed to labeling

the cells by pairs of integer numbers. Then each cell (i, j) is connected to four of its

neighbors: to (i + 1, j) by the connection R, to (i - 1, j) by the connection L, to (i, j + 1)

by the connection U, and to (i, j - 1) by the connection D.

It is possible to realize an arbitrary structured memory of an inductive Turing

machine, using only one linear one-sided tape L. To do this, the cells of L are

enumerated in the natural order from the first one to infinity. Then L is decomposed

into three parts according to the parts PI , PW , and PO of the structured memory. After

this nonlinear connections between cells are installed according to the relation K and

the mapping τ: K → W . When an inductive Turing machine with this memory works,

the head/processor is not moving to the right or to the left cell from a given cell, but

uses the installed nonlinear connections.

Such realization of the structured memory allows us to consider an inductive

Turing machine with a structured memory as an inductive Turing machine with

conventional tapes in which additional connections are established. This approach has

many advantages. One of them is that inductive Turing machines with a structured

memory can be treated as multitape automata that have additional structure on their

tapes. Then it is conceivable to study different ways to construct this structure.

In addition, this representation of memory allows us to consider any configuration

in the structured memory E as a word written on this unstructured tape.

In a similar way, it is feasible to build, study and utilize Turing machines with a

structured memory. They have almost the same hardware (they do not necessarily need

the output tape, but always have final states) and the same software as inductive

Turing machines with a structured memory. But in contrast to inductive Turing

machines, Turing machines have to stop to produce a computational result.

If we look at other devices of the inductive Turing machine M, we can see that the

processor H performs information processing in M. However, in comparison to

computers, this operational device performs very simple operations. When H consists

of one unit, it can change a symbol in the cell that is observed by H, and go from this

cell to another using a connection from K. This is exactly what the head of a Turing

machine does.

It is possible that the processor H consists of several processing units similar to

heads of a multihead Turing machine. This allows in a natural way one to model

various real and abstract computing systems by inductive Turing machines. Examples

of such systems are: multiprocessor computers; Turing machines with several tapes;

networks, grids and clusters of computers; cellular automata; neural networks; and

systolic arrays. However, such representation of information processing systems is not

always efficient. This is why other models of information processing systems have

been constructed, and are and will be utilized.

Connections between the control device A and the processor H may be differently

organized:

1) The processor H may be rigidly connected to A. In this case, the

memory E or its part moves when it is necessary to observe the next cell. This is

similar to the work of a floppy disk or CD.

2) The connection between A and H may be flexible, allowing H or its

parts to move from one cell to another under the control of A. This structure is

virtually realized when data from the RAM of a computer are taken to registers

of arithmetic units of the same computer.

3) Another option is that the processor H or its parts function

autonomously from A, only sending to A information about the content of cells.

In this case, H or its parts contain those instructions from the software that

regulate operation of H or its parts. This mode of operation models the

intelligent agent approach to computation. There an agent moves to the location

of data and performs its operation at this new site.

We know that programs constitute computer software and tell the system what to

do (and what to not do). The software R of the inductive Turing machine M is also a

program; it is in the form of simple rules. The traditional representation assumes that

the processor H functions as one unit. The rules for functioning have the following

form:

qhai → ajqk , (1)

qhai → cqk (2)

It is also possible to use only rules of one form:

qhai → ajqkc (3)

Here qh and qk are states of A, ai and aj are symbols of the alphabet of M, and c is a

type of connection from K.

Each rule directs one step of computation of the inductive Turing machine M. The

rule (1) means that if the state of the control device A of M is qh and the processor H

observes in the cell the symbol ai , then the state of A becomes qk and the processor H

writes the symbol aj in the cell where it is situated. The rule (2) means that the

processor H then moves to the next cell by a connection of the type c. The rule (3) is a

combination of rules (1) and (2).

Like Turing machines, inductive Turing machines can be deterministic and

nondeterministic. For a deterministic inductive Turing machine, there is at most one

connection of any type from any cell. In a nondeterministic inductive Turing machine,

several connections of the same type may go from some cells, connecting it with

(different) other cells. If there is no connection of this type going from the cell that is

observed by H, then H stays in the same cell. There may be connections of a cell with

itself. Then H also stays in the same cell. It is possible that H observes an empty cell.

To represent this situation, we use the symbol Λ. Thus, it is possible that some

elements ai and/or aj in the rules from R are equal to Λ in the rules of both types. Such

rules describe situations when H observes an empty cell and/or when H simply erases

the symbol from some cell, writing nothing in it.

The rules of the type (3) allow an inductive Turing machine to rewrite a symbol in

a cell and to make a move in one step. Other rule representations for inductive Turing

machines separate these operations. Rules of the inductive Turing machine M define

the transition function of M and describe changes of A, H, and E. Consequently, they

also determine the transition functions of A, H, and E.

When the processor H consists of several processing units or heads, there are

several functioning modes:

Uniform synchronized processing (processor units function synchronously): At

each step of M each unit performs one operation; they all are controlled by the same

system of rules.

Uniform concurrent processing (processor units function concurrently): Units

perform operations independently of one another, but all of them are controlled by the

same system of rules.

Specialized synchronized processing: Each processor unit has its own system of

rules, but all of them function synchronously, i.e., at each step of M each unit performs

one operation.

 Specialized concurrent processing: Each processor unit has its own system of

rules and they perform operations independently of one another.

In what follows, we consider for simplicity only the case when the processor H

consists of one unit and M always starts functioning from the same state. Thus, the

functioning of the inductive Turing machine M begins when the control device A is in

the start state q0 , the working and output memories are empty, and the processor H

observes such a cell in the input register PI that this cell contains some symbol and has

the least number of all non-empty cells in the input register. It is possible that nothing

is written in the input register PI. In this case, H observes an arbitrary cell. When H

observes an empty cell, we denote the content of this cell by the symbol Λ.

A general step of the machine M has the following form. At the beginning of any

step, the processor H observes some cell with a symbol ai (for an empty cell the

symbol is Λ) and the control device A is in some state qh .

Then the control device A and/or the processor H choose from the system R of

rules the rule r with the left part equal to qhai and perform the operation prescribed by

this rule. If there is no rule in R with such left part, the machine M stops functioning.

If there are several rules with the same left part, M works as a nondeterministic Turing

machine (e.g., [22, 26]) performing all possible operations. When A comes to one of

the final states from F, the machine M also stops functioning. In all other cases, it

continues operation without stopping.

For an abstract automaton, as well as for a computer, two things are important.

Specifically, not only how it functions, but also how it obtains its results. In contrast to

Turing machines, inductive Turing machines obtain results even in the case when their

operation is not terminated. This results in essential increase of performance abilities

of systems of algorithms.

The computational result of the inductive Turing machine M is the word that is

written in the output register PO of M: when M halts while its control device A is in

some final state from F, or when M never stops but at some step of computation the

content of the output register PO becomes fixed and does not change although the

machine M continues to function. In all other cases, M gives no result.

Theorem 3. Any (inductive) Turing machine T with a recursive memory can be

simulated by a (inductive) Turing machine D with one conventional tape, i.e., the

machine D computes the same function as T, imitating all moves of T.

Proof here is similar to that for equivalence of different classes of Turing

machines. It is done by the standard procedure in which D writes in a special tape

consequent instantaneous descriptions of the machine T (e.g., [22]).

Some object that, in contrast to Turing machines, an inductive Turing machine

does not always inform a user that a result was obtained. This is the cost that we have

to pay for its higher computational power. However, mathematicians and computer

scientists encountered similar situation with Turing machines. Having the class of all

Turing machines or any other class of recursive algorithms, one never knows whether

the given machine will produce the necessary result or not. In contrast to this, the

condition that an algorithm always gives a result is often demanded. Trying to limit

ourselves to recursive algorithms that always give a result brings us to the following

situations: either we have a sufficiently powerful class but one cannot distinguish

algorithms from this class from others or we can build all such algorithms but they

have insufficient computational and decision power. Thus, we have to make a choice:

either to use more powerful algorithms or to know more about algorithms that are

used. From this perspective, an inductive Turing machine is the next step in the

evergoing trade off between knowledge and power.

5. Learner models and learning potency

As the basic models for learning systems, we take: a polynomially bounded Turing

machine (PBTM), which gives the most general model for solving tractable problems;

Turing machine (TM), which gives the most general conventional model for

computations; and inductive Turing machine of the first order (ITM1), which gives the

most general computational model that is the closest to Turing machines [15].

Definition 11. A Turing machine T is called polynomially bounded if there is a

polynomial P(n) and whenever T is given a word x of length n as input, computation

of T halts after making at most P(n) steps.

Thus, the function P(n) gives a boundary for time complexity of T.

Definition 12. The memory E is called recursive if the relation K ⊆ P×P that

provides connections between cells and all mappings ν: P → N, τ: K → W , and ι: P

→ V are recursive.

Here recursive means that there are some Turing machines that decide/build all

naming mappings and relations in the structured memory. In addition, we consider

potentially achievable knowledge for a given model, which performs without any

restrictions on accessible resources.

Theorem 4. Experience of previous generations does not add to potentially

accessible knowledge for TM learners.

Proof. According to our model, experience of generations is accumulated in the

structure of the memory of the learning model. Here we take a Turing machine M0

with a structured memory as a model of a learner. This memory is built, i.e., all

memory connections are established, by another Turing machine M1 with a structured

memory. If the memory of M0 is developed by n generations, then the memory of M1

is developed by (n – 1) generations, and we can prove our statement by induction in

the number n of generations.

1. n = 1. It means that there is only one generation and the learner receives no extra

knowledge to build its memory. Thus, the memory of the learner is one or several

linear tapes of an ordinary Turing machine, and the statement of the theorem is true by

the definition.

2. n > 1 and we assume that that the statement of the theorem is true for (n – 1). It

means that the machine M1 that develops the structure of the memory of the machine

M0 is an ordinary Turing machine.

To prove the necessary result, it is sufficient to show that functioning of M0 can be

modeled by an ordinary Turing machine T. In this case, in spite of its structured

memory containing the experience of n previous generations, M0 can do (and in

particular, can learn) no more than the ordinary Turing machine T.

To model M0, T has a working tape L0 that is used for simulation of the memory of

the machine M0 and the working tape L1 that is used for computation of all

connections in the memory of M0.

The machine T functions in the following way. Simulation of one step of the

machine M0 consists of three stages: at first, T finds an instruction u that corresponds

to the relevant instruction v of M0 , then (stage 2) T computes the necessary connection

that is prescribed by the instruction v, and only after this (stage 3), T performs the

instruction u. Performance of u may demand several operations of T.

Standard methods of Turing machine modeling described, for example, in [22, 26],

allow one to build a machine T that realizes operations of the machine M0 step by step.

This completes the proof of Theorem 4.

Theorem 5. Experience of previous generations does not add to potentially

accessible knowledge for PBTM learners.

Proof. To prove this statement, we take the proof of Theorem 4 and check that if

time complexity of the machine M0 is bounded by a polynomial P0(n) and time

complexity of the machine M1 is bounded by a polynomial P1(n), then time complexity

of the modeling machine T is bounded by a polynomial Q(n) = P0(kP0(n)) where k is

some number that depends only on M0 . The description of functioning of the machine

T allows us to show that this is true and in such a way to prove Theorem 5.

As remarked Paul Stelling, if we take a fixed length m of input, experience of n

generations with n much bigger than m allows one to achieve exponential, or even

higher complexity, to solve problems that are not polynomially bounded for inputs

with the length less than or equal to m. However, for all inputs, any fixed number of

generations does not take us outside polynomial boundaries.

For inductive models of learners, we consider only learning of facts.

Definition 13. Inductive Turing machines with recursive memory are called

inductive Turing machines of the first order (ITM1).

Theorem 6. In terms of arithmetical hierarchy, each generation adds one level to

potentially accessible knowledge for ITM1 learners.

Proof. Elements of the arithmetical hierarchy are relations of natural numbers [30].

The set of all recursive relations is taken as the base for building the arithmetical

hierarchy. Levels in the arithmetical hierarchy are labeled as Σn if they consist of all

relations ∃ x1 ∀ x2 ∃ x3 … ∀ xn-2 ∃ xn-1 ∀ xn R(x1 , … , xn , z1 , … , zm) limited to n – 1

pairs of alternating quantifiers starting with ∃ and having recursive R(x1 , … , xn , z1 ,

… , zm). Similarly the class of all relations ∀ x1 ∃ x2 ∀ x3 … ∃ xn-1 ∀xn R(x1 , … , xn ,

z1 , … , zm) that start with ∀ and have n – 1 alternations of quantifiers is labeled as Πn

and recursive R(x1 , … , xn , z1 , … , zm). The classes Σ0 and Π0 are defined as having

no quantifiers, consist of all recursive relations and thus, are equivalent. The classes Σ1

and Π1 are defined as having a single quantifier: relations from Σ1 have the form ∃ x

R(x, y) and relations from Π1 have the form ∀x R(x, y) where R(x, y) is a recursive

relation and y is an arbitrary vector of natural numbers. By the definition, we have

inclusions Πm ⊆ Σn ∩Πn and Σm ⊆ Σn ∩Πn for any n > 1 and any m < n.

Results from [29] show that it is sufficient to prove the theorem only for relations

with one free variable, which have the form ∃ x1 ∀ x2 ∃ x3 … ∀ xn-2 ∃ xn-1 ∀ xn R(x1 ,

… , xn , z) or ∀ x1 ∃ x2 ∀ x3 … ∃ xn-1 ∀xn R(x1 , … , xn , z) and are some sets of natural

numbers.

For the proof, we use induction on the number n of learning generations.

1. As the base for induction, we take one generation. According to the statement

of the theorem this generation has to be able to learn sets from Σ1 and Π1 . Results of

of Gold [18, 19] and Burgin [10] show that ITM1 learners can learn, that is, decide or

compute, any set from Σn ∪Πn .

This completes the first step of our induction.

2. To make a general inductive step, we assume that if we have (n –1) learning

generations, then the (n –1)th generation can learn any relation from the class Σn-1 and

the class Πn-1 . Let us consider an arbitrary relation Q(z) that belongs to the class Σn . It

means that Q(z) = ∃ x1 ∀ x2 ∃ x3 … ∀ xn-2 ∃ xn-1 ∀ xn R(x1 , … , xn , z), where R(x1 , …

, xn , z), is a recursive relation. Then, by the definition, the relation K(x1 , z) = ∀ x2 ∃

x3 … ∀ xn-2 ∃ xn-1 ∀ xn R(x1 , … , xn , z) belongs to the class Πn-1 .

By our assumption, a learner from the (n –1)th generation can decide whether a

given pair (x, z) belongs to the relation K(x1, z) or not. Utilizing this knowledge, an

ITM1 learner M checks if the pair (1, z) belongs to K(x1, z). Then it checks if the pair

(2, z) belongs to K(x1, z). Then it repeats the same for the pair (3, z) and so on. After

each test with a negative result, M writes 0 on its output tape. If one of these tests

gives the positive result, then M writes 0 on its output tape and continues to do so

forever.

In such a way, the result of M is 1 when z belongs to Q(z) and is 0 when z does not

belong to Q(z). It means that M learns the fact whether z belongs to Q(z) or not.

In a similar way, we can prove that some ITM1 learner M decides whether an

arbitrary number z belongs to Q(z) or not for an arbitrary relation Q(x) that belongs to

the class Πn . The difference in the proof is that in this case M outputs 1 when before it

gave 0 and outputs 0 when before it gave 1.

This completes the general step of our induction.

By induction the statement of the theorem is true. Theorem 6 is proved.

5. Conclusion

The paper analyzed how power grows when a learner uses the experience of previous

generations. It is demonstrated that neither recursive nor subrecursive algorithms give any

increase of potentially learnable knowledge. Only super-recursive algorithms allow achieving

better results in stratified learning.

These results explain why the historical approach to education is good for history, art, and

literature, but is bad for mathematics and natural sciences. The reason is that mathematics and

natural sciences do not achieve independent results. Due to their quest for unification, they build

shortcuts. This is possible only using experience and knowledge of previous generations.

Consequently, long ways by which past generations reached essential results become

unreasonable.

To conclude, we formulate some open problems. An interesting problem is to consider how

experience of generations influences other learner models, for instance, such as Turing machines

with oracles or with advice and inductive Turing machines with oracles or with advice.

As it has been demonstrated (cf., [31]), learning/cognition in teams is more powerful and

efficient than individual learning. That is why another interesting problem is to consider how

experience of generations influences learning and cognition in a group.

Acknowledgments
The authors are grateful to Paul Stelling for helpful remarks.

References

 [1] A.V. Aho, J.E. Hopcroft, J.D. Ulman, The Design and Analysis of Computer Algorithms,

Reading, Mass., Addison-Wesley P.C. 1976

[2] A. Ambainis, Relations between Two Types of Memory in Inductive Inference (unpublished

manuscript)

[3] D. Angluin, Computational Learning Theory: Survey and Selected Bibliography, in Proc.

24th ACM Symposium on Theory of Computation (1992) 319-342

[4] D. Angluin, C. Smith, Inductive Inference: Theory and Methods, Comput. Surveys, 15:3

(1983) 237—269

[5] K. Apsïtis, S. Arikawa, R. Freivalds, E. Hirowatari, C. H. Smith, On the inductive inference

of recursive real-valued functions. Computability and complexity in analysis, Theoretical

Computer Science , 219:1-2 (1999) 3-17

[6] R.L. Atkinson, R.C. Atkinson, E.E. Smith, D.J. Bem, Introduction to Psychology, Harcourt

Brace Jovanovich, Inc., San Diego/New York/Chicago, 1990

[7] R.C. Atkinson, R.M. Shiffrin, Human Memory: A Proposed System and its Control

processes, in The Psychology of Learning and Motivation, Academic Press, New York, 1968

[8] J.L. Balcazar, J. Diaz, J. Gabarro, Structural Complexity, Springer-Verlag, Berlin/Heidelberg/

New York, 1988

[9] E.T. Bell, Men of Mathematics, Simon and Schuster, New York, 1965

[10] M. S. Burgin, M. Nonlinear Phenomena in Spaces of Algorithms, International

Journal of Computer Mathematics, v. 80, No. 12 (2003) 1449-1476

 [11] M. Burgin, Super-recursive Algorithms as a Tool for High Performance Computing,

Proceedings of the High Performance Computing Symposium, San Diego (1999) 224-228

[12] M. Burgin, How We Know What Technology Can Do, Communications of the

ACM, 44:11 (2001) 82-88

 [13] M. Burgin, Topological Algorithms, in Proceedings of the ISCA 16th International

Conference “Computers and their Applications”, ISCA, Seattle, Washington (2001) 61-64

[14] M. Burgin, Cluster Computers and Grid Automata, in Proceedings of the ISCA 17th

International Conference “Computers and their Applications”, International Society for

Computers and their Applications, Honolulu, Hawaii (2003) 106-109

[15] M. Burgin, Super-recursive Algorithms, Springer, New York/Berlin/Heidelberg, 2004

[16] D.M. Burton, The History of Mathematics, The McGrow Hill Co., New York, 1997

 [17] R. Freivalds, E. Kinber, C. Smith, On the impact of forgetting on learning machines,

Proceedings of the 6-th ACM COLT , San Jose, California (1993) 165-174

[18] E.M. Gold, Language Identification in the Limit, Information and Control 10 (1967) 447-

474

[19] E.M. Gold, Limiting Recursion, Journal of Symbolic Logic, 30:1 (1965) 28-46

[20] P. Gray, Psychology, Worth Publishers, New York, 1994

[21] S. Haykin, Neural Networks: A Comprehensive Foundation, New York, Macmillan, 1994

[22] J.E., Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata Theory, Languages, and

Computation, Addison Wesley, Boston/San Francisco/New York, 2001

[23] L.C., Katz, C.J. Shatz, Synaptic activity and the construction of cortical circuits, Nature 274

(1996) 1133-1138

[24] K.T. Kelly, O. Schulte and C. Juhl, Learning Theory and the Philosophy of Science,

Philosophy of Science 64 (1997) 245-267

[25] E.I. Knudsen, Instructed learning in the auditory localization pathway of the barn owl,

Nature, 417 (2002) 322-328

[26] J.C. Martin, Introduction to Languages and the Theory of Computation, McGrow-Hill, New

York, 1991

[27] M. Minsky, The Society of Mind, Simon and Schuster, New York, 1986

[28] J.J. Parsons and D. Oja, New Perspectives on Computer Concepts, Course Technology, Inc.,

Cambridge, Massachusetts, 1994

[29] H. Putnam, Trial and Error Predicates and the Solution to a Problem of Mostowski, Journal

of Symbolic Logic, 30:1 (1965) 49-57

[30] H. Rogers, Theory of Recursive Functions and Effective Computability, MIT Press,

Cambridge, Massachusetts, 1987

[31] U. Schöning, Complexity theory and interaction, in The Universal Turing Machine - A Half-

Century Survey, Oxford University Press, Oxford (1988) 561-580

[32] C.H. Smith, A Brief Survey of Team Learning, in Proceedings of the International

Workshop Quantum Computation and Learning, Riga, Latvia, 1999

[33] N. Tinbengen, The Study of Instinct, Oxford University Press, New York, 1976

[34] N.C. Waugh, D.A. Norman, Primary Memory, Psychological Review 72 (1965) 89-104

