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University of California, Los Angeles 

405 Hilgard Ave. 
Los Angeles, CA 90095 

 
 
 
 
 
Abstract: This paper extends traditional models of machine learning beyond their 

one-level structure by introducing previously obtained problem knowledge into the 

algorithm or automaton involved. Some authors studied more advanced than 

traditional models that utilize some kind of predetermined knowledge, having a two-

level structure. However, even in this case, the model has not reflected the source 

and inherited properties of predetermined knowledge. In society, knowledge is often 

transmitted from previous generations. The aim of this paper is to construct and 

study algorithmic models of learning processes that utilize predetermined or prior 

knowledge. The models use recursive, subrecursive, and super-recursive algorithms. 

Predetermined knowledge includes: a text description, activity rules (e.g., for 

cognition), and specific structured personal or social memory. Algorithmic models 

represent these three forms as separate structured processing systems: automata with 

1) advice; 2) structured program; and 3) structured memory. That yields three basic 

models for learning systems: polynomially bounded Turing machines, Turing 

machines, and inductive Turing machines of the first order. 

 

Keywords: machine learning, computation in the limit, learning in the limit, Turing 

machine, inductive Turing machine, experience, knowledge 



1. Introduction 

Cognition in general and learning, in particular, has always been important for the 

whole society and separate individuals. Without efficient learning strategies, neither an 

individual nor a society can survive in his/her/its environment. That is why cognition 

has been and is one of the central topics of philosophy. Development of humanities 

and social sciences brought cognition in the center of their studies. Development of 

education directed essential efforts to better understanding learning processes. 

Creation of computers gave birth to a new area – machine learning. 

Learning consists of diverse forms of activity. Further one can consider cognition 

as a kind of learning. It is learning from the environment or nature. Such traditional 

forms as testing, verification, and detection, as well as such new forms as data mining, 

web search, and client monitoring are also kinds of learning. 

Traditional models of machine learning have a one-level structure. An algorithm or 

automaton begins learning without predetermined problem knowledge. Advanced 

models utilize some kind of predetermined knowledge, involving a two-level structure. 

However, these models reflect neither knowledge sources nor means of inheritance. At 

the same time, society mainly acquires predetermined knowledge from previous 

generations. The whole history of science is a magnificent example how previous 

generations provided knowledge for further development, great discoveries, and 

unexpected inventions for next generations. The great Newton wrote, “If I have seen a 

little farther than others, it is because I have stood on the shoulders of giants.” 

To see the situation in more detail, let us consider two events of the first importance 

in the whole history of mathematics: creation of and grounding the calculus. 

It is assumed that calculus was created by two great mathematicians: Isaac Newton 

and Wilhelm Leibnitz. However, as writes Bell [9], it was inevitable after the work of 

Cavalieri, Fermat, Wallis, Barrow, and others that the calculus should presently get 

itself organized as an autonomous discipline. The major base of Newton’s work on 

calculus were results of his teacher Isaac Barrow mostly published in the book 

Lectiones Geometricae (cf., [16]). Actually, this book explained all main constructions 

of calculus application without perceiving the deeper significance and building a 

formalized mechanism. In his turn, Barrow (explicitly or implicitly) utilized results 

and constructions of his predecessors: Fermat, Pascal, and even Archimedes. Lectiones 



Geometricae was the culmination of the 17th century and previous investigations 

leading toward the calculus.  

Leibnitz also wrote that he created calculus under the influence of the works of 

Pascal and other French mathematicians as Leibnitz got his mathematical education in 

Paris [16]. It is interesting to remark that there were few if any new applications in 

Leibnitz’s series of manuscripts, where he built the calculus, but a formalism was 

developed that helped systematize and generalize the diverse geometric results of old 

and is used even now in contrast to Newton’s formalism. 

After the calculus had been built, other mathematicians, such as Euler, the 

Bernullis, and Lagrange, developed it further and found a quantity of important 

applications in a variety of fields. 

Although Newton and Leibnitz built the calculus, they never founded it. The first 

prominent mathematician to suggest that the theory of limits was fundamental in 

calculus was d’Alembert (1754). However, only Cauchy did this grounding to a full 

extent in the 19th century. But this was not the end because although the calculus had 

been grounded as whole, the main concepts that had been used by Newton (fluxions 

and fluents) and Leibnitz (differentials, infinitely small and infinite values) were still 

mathematically ungrounded. Only in the 20th century, Robinson formed a base for 

these concepts creating the nonstandard analysis. 

Taking a broader understanding of experience of generations, we see that one 

culture can utilize and develop what was gained by another culture. For instance, many 

cultures were involved in the evolution of arithmetic. Ancient Greeks based their 

results on the achievements of Egypt and Babylonia. After the decline of science and 

mathematics in Europe during the middle ages, Greek tradition was cultivated by a 

school of Arabian scholars who faithfully translated the Greek classics into Arabic. In 

addition, Arabian mathematics incorporated achievements of Indian mathematics, 

developed both Greek and Indian results and brought their accomplishments to 

Europe, where a new stage of the mathematics development has begun. 

All these and many other examples necessitate mathematical modeling of such 

cognitive and learning processes that take into account knowledge accumulated before 

the process starts. In this paper, we build such models. These models employ 

predetermined knowledge obtained by other similar processes and utilize different 



kinds of algorithms: recursive, subrecursive, and super-recursive. Recursive 

algorithms are algorithms equivalent with respect to their computing power to Turing 

machines. Super-recursive algorithms can do more than Turing machines, while 

subrecursive algorithms (e.g., finite automata) can do less than Turing machines. The 

main goal of this paper is a comparison of recursive algorithms such as Turing 

machines with such super-recursive algorithms as inductive Turing machines. The 

utmost goal of this analysis is learning in the limit modeled by super-recursive 

algorithms. 

 

 

 

2. Theoretical Mechanisms for Modeling Learning Processes 

According to Webster’s Dictionary, ”to learn” is “to gain knowledge, 

understanding, or skill by study, instruction, or experience.”  This specifies three 

distinct forms of learning: 

1. Study as assimilating material from descriptive knowledge sources. 

This is an active form of learning. Examples of descriptive knowledge sources 

are: books, people, data- and knowledge bases, Internet, etc. 

2. Learning by instruction is receiving prescriptive knowledge from 

outside sources. This is a passive form of learning. Examples of prescriptive 

knowledge sources are people, instruction manual, computer programs, etc. 

3. Learning by experience is acquiring knowledge and achieving 

understanding and skill from person’s life and behavior. This comes from 

observation (passive learning form) and experimentation (active learning form). 

There are combinations of different learning forms. They result in interactive 

learning experiences, including possibility of reference to printed text, computer files, 

and human experts. 

Both understanding and skill can be formulated as knowledge. Understanding is 

knowledge of relations in a system. Skill is a kind of procedural knowledge that 

people are able to apply in their activity. Very often skill is implicit knowledge. 

Here is a working definition of learning. 



Definition 1. Learning is a process of taking or receiving some information 

(learning material) and transforming it. The product is knowledge, state or behavior of 

a learning system. 

Learning proceeds both from particulars to general presentations (induction) and 

from general rules to particular facts (deduction). For instance, when a teacher wants 

to learn how to help her student to get better results in the class, she applies the theory 

of learning styles to this student and learns how better to teach him. This is deduction. 

In presenting material to be learned there are two complementary classifications: 

wholeness and transparency. 

In the wholeness classification, material to be learned may be: 

1. in a complete form represented as a whole; 

2. in an incomplete form given/taken by parts of the whole: 

a. all parts are given after some time; 

b. it is possible to view only some parts. 

The transparency classification yields that material to be learned may be: 

1. represented explicitly; 

2. given/taken in a transformed form: 

a. reconstruction of knowledge can be done by known algorithms; 

b. reconstruction of knowledge cannot be done by known 

algorithms. 

Another issue is the learning result form. We distinguish between three kinds of 

learning: 

1. Factual or partial learning. Here a learner determines or finds whether 

some element x belongs to a set X (has a property P). 

2. Class or enumerative learning. Here a learner represents or separates or 

builds elements from some set X (that have a property P). 

3. Mechanism or constructive learning. Here a learner builds or finds a 

machine (mechanism, rules) to generate or separate a set X (all elements with a 

property P). 

Class learning has the potential of being infinite and becoming or emerging. 

Mechanism learning is actually infinite or existing. 



Remark 1. Some researchers do not consider factual knowledge as a kind of 

knowledge, contrasting facts that are given as input to knowledge that is obtained as a 

result of knowledge acquisition system functioning. This approach contradicts the real 

situation in science, mathematics, and everyday life. For example, the fact that 2 + 2 = 

4 is an important part of our knowledge about the ordinary arithmetic. Important 

elements of mathematical knowledge are such facts as: e is approximately equal to 

2.71, the set of all real numbers is a field, the set of all integer numbers is a ring, and 

not all functions are continuous. Important elements of physical knowledge are such 

facts as: the velocity of light in the vacuum is a constant, it is impossible to build a 

perpetuum mobile, and that atoms consist of protons, neutrons, and electrons. In 

everyday life, journalists, detectives, and the majority of other people are seeking fact 

and not general theories or mechanisms. 

People often contrast learning and reasoning (e.g., [4]). However, reasoning is a 

powerful intellectual tool. It is used for various purposes: learning/cognition, 

explanation, persuasion, etc. That is why approaches to learning are similar to the 

kinds of reasoning. 

The main reasoning schemes correspond to three major types of learning: 

 learning from similarity/by analogy (abduction); 

 learning from experience or by experimentation (induction);  

 learning by rules (deduction). 

Thus, inductive inference is the main cognitive strategy in science and also a 

popular learning technique. Kelly et al [24], describe four basic inductive approaches 

to learning:  

1) A process is organized obeying the rules motivated by considerations 

other than finding the truth and/or avoiding error (e.g., conformity with practice 

or intuition); 

2) The possibility of errors is neglected if there are not “too many” or if 

they are all “too remote”; 

3) Even significant possibility of error are forgivable if we do the best we 

can; 

4) All errors are avoided in the limit. 



This classification reflects three approaches to achievement of a remote goal when 

there is a measure of success available. We assume that it is impossible to get the 

result simply from initial data. It also implies the necessity to apply some process of 

inductive inference. 

The first approach, amelioration, starts with some initial object, which is then 

gradually improved. 

The second approach, perfection, starts with some initial object, from which the 

procedure moves through some intermediate results to the best outcome. 

The third approach, satisfaction, also starts with an initial object but then aims at 

some satisfactory result. 

It is possible to realize all these approaches by any of the three learning types. Since 

the main concern here is inductive learning, we separate three possible situations for a 

learning process: 

1. Complete or desired knowledge/skill is obtained after a finite number 

of steps and the learner knows it. 

2.  Complete or desired knowledge/skill is obtained after a finite number 

of steps but the learner does not know it. 

3. No finite number of steps can result in complete or desired 

knowledge/skill. 

This corresponds to three modes of computation [12, 13]: 

1. Recursive computation. 

2. Inductive computation. 

3. Limit computation. 

There are abstract automata and algorithms that work in each mode. Thus, we can 

model the related learning types. In the following the main emphasis is on inductive 

learning. It provides the most adequate model for learning in nature and society. 

 

 

 

 

 

 



3. One-Level Inductive Processes 

Limiting recursive functions [19] and their version, trial-and-error predicates [29] 

were the initial one-level inductive schemes. 

Definition 2. A partial function f(x) is called limiting recursive if there is a total 

recursive function g(x, n) such that 

f(x) = lim n→∞ g(x, n)                  (1) 

Definition 3. A partial function f(x) is called limiting primitive (partial) recursive if 

g(x, n) in (1) is primitive (partial) recursive. 

Definition 4. A predicate P(x1 , x2 , x3 , … , xn ) is called trial-and-error predicate 

if there is a general recursive function g(x1 , x2 , x3 , … , xn , y) such that 

P(x1 , x2 , x3 , … , xn ) = lim y→∞ g(x1 , x2 , x3 , … , xn , y) 

As in the theory of recursive functions and algorithms, a class of algorithms 

(functions) defines sets that are decidable (enumerable) with respect to this class. 

Definition 5. A set X is called limiting recursive (limiting recursively enumerable) 

if its characteristic function χS(x) (its partial characteristic function CS(x)) is limiting 

recursive. 

Definition 6. A set X is called limiting primitive (partial) recursive (limiting 

primitive (partial) recursively enumerable) if its characteristic function χS(x) (its 

partial characteristic function CS(x)) is limiting primitive (partial) recursive. 

Following results that relate the construction of limiting recursion to the 

arithmetical hierarchy levels were proved by Gold [19]. 

Theorem 1. a) A set S is limiting (partial) recursive if and only if S belongs to the 

level Σ2 ∩Π2 of the arithmetical hierarchy. 

b) A set S is limiting recursively enumerable if and only if S belongs to the 

level Σ2 of the arithmetical hierarchy. 

c) The class of limiting partial recursively enumerable sets is contained in Σ3, 

contains Σ2 ∪Π2, and is not closed under complementation. 

However, the exact location of the class of limiting partial recursively enumerable 

sets in the arithmetical hierarchy was not defined by Gold. 

Later the idea of functions computed in the limit was transformed into the 

construction of algorithmic inductive inference and learning in the limit [18]. The 



development of this direction brought researchers to the following concept (e.g., [5]). 

Definition 7. An inductive inference machine (IIM) M is a generating procedure 

that requests inputs from time to time. It produces some words as its partial output also 

from time to time. These words produced by the machine after receiving each portion 

of data are called conjectures. The final result of the inductive inference machine M is 

the word w to which the computational process of M converges. 

Definition 8. If u(n) denotes the conjecture produced by an inductive inference 

machine M after receiving the portion of input data with the number n, then the 

computational process of the inductive inference machine M stabilizes (or converges) 

to a word w if there exists a number n0 ∈ N such that u(n) equals w for any n > n0 . 

Here procedure means some algorithmic scheme such as Turing machine that is 

described by effective operations, but for which it is not specified how the result is 

obtained. This means that an inductive inference machine is a super-recursive 

algorithm. 

All these approaches and constructions are synthesized in the concept of inductive 

Turing machine. First, we turn to simple inductive Turing machines. They realize 

inductive computation of the first level.  

The simplest realistic inductive Turing machine has the same structure as a 

conventional Turing machine with three tapes and three heads: input, working, and 

output. This structure is much closer to the architecture of modern computer than that 

of a Turing machine with one tape. 

Both, inductive and ordinary Turing machines go through similar computational 

steps. Their differences lie how they determine their outputs. We know that a 

conventional Turing machine produces a result only when it halts. We assume that this 

result is a word written on the output tape. A simple inductive Turing machine also 

produces words as its results. In some cases, it stops at its final state and gives a result 

like a conventional Turing machine. The difference begins when the machine does not 

stop.  An inductive Turing machine can give a result without stopping. To show this, 

we consider the output tape and assume that the result has to be written on it.  

It is possible that in the sequence of computations, the word that is written on the 

output tape after some step is not changing although the machine continues to work. 



Then the last reached (unchanging)  word is taken as the result of this computation. 

Thus, an inductive Turing machine does not halt but it still produces a definite result 

after a finite number of computing operations. This explains the name “inductive.” In 

induction we also proceed step by step checking if some statement P is true for an 

unlimited sequence of cases. When it is found that P is true for each case whatever 

number of cases is considered, we conclude that P is true for all cases. 

While working without halting, an inductive Turing machine can occasionally 

change its output. However, people are able to use machines that occasionally change 

outputs.  They can be satisfied that the result just printed is good enough, even if 

another (possibly better) result may arrive in the future. And if you continue 

computing, it will eventually come. Another example is a program that outputs 

successively better approximations to a number. Once a few digits of accuracy are 

attained, the user can use the output generated even if the machine is not "done". All 

these properties essentially extend the possibilities and indicate uses of inductive 

Turing machines. 

Theorem 2. For any Turing machine T, there is an inductive Turing machine M 

such that M computes the same function as T, i.e., M and T are functionally equivalent. 

This theorem demonstrates that Turing machine is, in some sense, a particular case 

of inductive Turing machine. 

To show that inductive Turing machines are more powerful than ordinary Turing 

machines, we need to find a problem that no ordinary Turing machine can solve and to 

explain how some inductive Turing machine solves this problem. To do this, consider 

the halting problem for an arbitrary Turing machine. It was proved unsolvable for 

Turing machines. Today it is one of the most popular unsolvable problems in the 

theory of algorithms.  

However, there is an inductive Turing machine M that solves this problem. This 

machine M contains a universal Turing machine U as a subroutine. Given a word u 

and description D(T) of a Turing machine T, machine M uses machine U to simulate 

T with the input u. While U simulates T, machine M produces 0 on the output tape. If 

machine U stops, and this means that T halts being applied to u, machine M produces 

1 on the output tape. According to the definition, the result of M is equal to 1 when T 



halts and the result of M is equal to 0 when T never halts. In such a way, M solves the 

halting problem. 

So, even the simplest inductive Turing machines are more powerful than 

conventional Turing machines. At the same time, the development of their structure 

allowed inductive Turing machines to achieve much higher computing power than 

have the simplest inductive Turing machines described above. This contrasts to such a 

property of a conventional Turing machine that by changing its structure, we cannot 

get greater computing power.  

Abstract automata are used to model, while physical machines are used to realize 

learning systems. In this case, the forms of predetermined knowledge correspond, 

respectively, to separate structural components of the device: infware, software, and 

hardware of the automaton. 

 

 

 

3. Memory in learning processes 

The place where information is stored and preserved is traditionally called 

memory. Thus, memory is one of three central components of any learning system. 

Functioning of memory influences complexity of different processes in a system. 

There are three types of complexity of any process (and learning, in particular):  

- the complexity of separate steps/operations;  

- the complexity of separate subprocesses; 

- the complexity of the whole process.  

Two first types of complexity exist on three levels: microlevel, macrolevel, and 

megalevel operations and subprocesses. 

For example, in a computer, the operations of elements from its ALU are 

examples of microlevel operations (e.g., compare two bits, add two bytes) The 

operations of ALU are macrolevel operations (e.g. compare two 32 digit numbers, add 

two 32 digit numbers). Operations from programming languages are examples of 

megalevel operations (e.g., x + y, n!). 



Two latter types of process complexity are related to complexity in inductive 

inference (and more generally, in learning) considered by Ambainis [2]:  

- the complexity of computations necessary for learning;  

- the complexity of learning itself;  

Some complexity measures better reflect properties of computations, while others 

better reflect features of learning. Several attempts to separate these two kinds of 

complexity have been made.  

For space (memory) complexity, Freivalds, Kinber, and Smith [17] did such a 

separation. They proposed considering two kinds of memory: long-term memory and 

short-term memory, and incorporated this idea in Inductive Inference Machine (IIM), a 

theoretical device they developed for inductive inference. IIM uses long-term memory 

to remember portions of input it has seen and, perhaps, other necessary information. In 

addition, IIM has a short-term memory for computations. Each time when IIM reads 

new input data, this memory is automatically cleared: it cannot be used to remember 

information. 

The complete triadic stratification of process complexity explicates a more 

developed three-type-gradation of memory: operation memory, short-term memory, 

and long-term memory.  

Operation memory performs information storage for separate steps/operations. 

Consequently, it stores information for the least time. 

Short-term memory performs information storage for separate subprocesses. 

Consequently, it stores information for longer time. 

Long-term memory performs information storage for the whole process. 

Consequently, it stores information for the longest time. 

Usually, in artificial intelligence (cf., for instance, [27]) and psychology (cf, for 

instance, [6]), only the two latter types are considered. However, a more advanced 

model of the mind contains all three parts [7, 20, 34]. The model portrays the mind as 

containing three memory stores: sensory, short-term, and long-term. Each store is 

characterized by its function (the role it plays in the overall workings of the mind), its 

capacity (the amount of information it can hold at any given instant), and its duration 

(the length of time it can hold any item of information). 



Computers also have three levels of memory: registers, which constitute a special 

holding area of the CPU for the numbers the ALU uses for computation; primary 

storage, which is electronic circuitry that holds data and program instructions until it is 

their turn to be processed; and additional storage media and devices as a long-term 

memory [27]. Today two types of long-term storage media are the main ones in use: 

magnetic and optical. Primary storage includes: RAM, CMOS memory, and ROM. 

Magnetic storage includes: floppy disks, hard disks, tapes, and Bernoulli disks. Optical 

storage includes CD-ROM and WORM. 

Memory of a Turing machine is its tape(s). In addition, it is possible to store 

information in the states of the Turing machine. 

Inductive Turing machines have many more possibilities for memory 

stratification. They are able to realize all three types of computer memory, as well as 

their subtypes and new types of memory (e.g., quantum memory). 

Experience of an individual or society is usually considered as a big data and 

knowledge base. Such knowledge includes not only declarative knowledge, but also 

model, procedural, and problem knowledge. Knowledge, according to contemporary 

understanding is a system in which connections play a central role. Thus, a structured 

memory of an inductive Turing machine provides efficient means to represent these 

connections and the knowledge system. At the same time, experience also includes 

skills and understanding. These attributes cannot be completely reduced to explicit 

knowledge – they are mainly related to implicit knowledge.  

Experience is a kind of implicit knowledge. Examples of implicit knowledge are: 

weights of neurons in neural networks [21], connections in a structured memory with a 

dynamic structure, and connections between nodes/automata in virtual or potential 

grid automata [14, 15]. 

Implicit knowledge gives an explanation to intuition, at least, for some kind of 

intuition. It is possible to consider two forms of implicit knowledge: internally implicit 

and externally implicit. 

Externally implicit knowledge of an individual is hidden from others, but the 

individual is aware of it. In contrast to this, individual is not aware of his/her internally 

implicit knowledge. Accordingly, there are two types of intuition: explicit intuition 



based on externally implicit knowledge and implicit intuition based on knowledge that 

is internally implicit. 

For instance, experimental intuition is an explicit intuition when a person derives 

a general pattern from a quantity of examples and then uses it to make decisions in 

similar situations. 

 

 

 

4. Stratified Learning 

All kinds of memory considered in the previous section are individual. To study 

learning processes that go through generations, we introduce also social memory. If 

learning is performed by some class of automata A, then the results of algorithms from 

A are stored in this memory. Examples of such classes are: 

- the class of all inductive inference machines; 

- the class of all inductive Turing machines. 

Acquired experience and knowledge can be embodied or stored in three forms: 

 as texts describing obtained knowledge (descriptive or propositional 

representation), 

 as activity rules (prescriptive or procedural representation), and 

 as a specific structure of individual (personal) or social memory (recreative 

or structural representation). 

Using this classification, we now consider three classes of learning system models 

that utilize experiences of previous generations: 

1. Automata with an advice [8].  

2. Automata with a structured program [13]. 

3. Automata with a structured memory [15]. 

Automata with an advice can preserve in the memory for advice knowledge 

obtained by previous generations. 

The most popular automaton with an advice is the, so-called, advice-taking Turing 

machine [8, 30].  



Definition 9. An advice function f(x) is some function, the values of which 

depend only on the length of x and are written on a special tape of a Turing machine. 

Hence, advice functions provide external information to the machines, just as do 

oracles. However, the information provided by an oracle may depend on the actual 

input, whereas the information provided by an advice function does not. Indeed, only 

the length of the input matters. Consequently, advice-taking Turing machines form a 

subclass of Turing machines with oracles. 

Advice-taking automata are important in complexity theory. The definitions and 

results in this theory are often based on special Turing machines that can determine the 

result of an oracle “for free”, that is, in constant time.  

Definition 10. An advice-taking Turing machine is a Turing machine enhanced 

with the possibility to access the advice tape. The access for advice and reading the 

value of its advice f(x)  takes place in constant time.  

The fact that the advice value f(x) can be determined in constant time (while f(x) 

can be an intractable or even undecidable function) essentially increases the power and 

efficiency of an advice-taking Turing machine in comparison with a regular Turing 

machine. For example, an advice-taking Turing machine can calculate in polynomial 

time many functions that a regular Turing machine cannot (including some intractable 

ones).  

Computations performed by Turing machines with oracles and Turing machines 

with advice are non-uniform because a different advice string may be defined for 

every different length of input. 

Automata with structured programs can preserve knowledge obtained by previous 

generations in the form of a program. 

Automata with structured memory can preserve knowledge obtained by previous 

generations in the form of the structure of their memory. 

Modern neurobiological studies show that automata with structured memory 

provide relevant models for representation of learning processes in the brain. 

According to Knudsen [25], learning is a balance of innate and experiential influences. 

The capacity of a network to learn from experience is limited by innate factors that 

establish and refine initial patterns of connectivity [23]. These patterns represent 

specific substructures in the structured memory of a learning system. In biological 



systems, these patterns of connectivity can contain remarkable specificity, imparting a 

high degree of functionality that reflects many generations of selections [33]. This 

gives evidence to the hypothesis that experience of generations accumulates in 

structures of the memory. 

The structure of any inductive Turing machine, as an abstract automaton, consists 

of three components, which we can call hardware, software, and infware. We begin 

with the infware, that is, with a description and specification of information that is 

processed by an inductive Turing machine. Computer infware consists of information, 

or more exactly, data processed by the computer. An inductive Turing machine M is 

an abstract automaton, which works with symbolic information in the form of words 

of formal languages. Consequently, formal languages with which M works constitute 

its infware. Usually, these languages are divided into three categories: input, output, 

and working language(s). In contrast to the languages of everyday life (e.g., English, 

German or French), inductive Turing machines use formal languages.  

A formal language L consists of three parts: the alphabet A of L, a finite set of 

symbols; the set A* of all words in A, which are finite strings of symbols; and the 

subset L of the set A*. Elements from L are called the words of the language L. The set 

L is often represented by generating rules RG, i.e., the rules that build words from L, or 

by selection rules RS, i.e., the rules that separate words that belong to L from all other 

words in A*.  

The language L of an inductive Turing machine consists of three parts L = ( LI , 

LW  , LO ) where LI is the input language, LW is the working language, and LO is the 

output language of M.  Each of them has the following structure LX = (AX, RX, LX) 

where AX is the alphabet, RX is the set of generating rules, and LX is the set of all 

words of the language LX where X is one of the symbols I, O or W. Usually the 

generating rules for formal languages as a whole consist of one operation, which is 

called concatenation and combines two words into one. For example, if x and y are 

words, then xy is the concatenation of x and y. Taking the alphabet AX = {1, 0} with 

two words x = 1001 and y = 001 in this alphabet, we have 1001001 as the result of 

concatenation. The set A* of all finite strings in the alphabet A is also a formal 

language; it includes the empty word ε that contains no symbols. Because a formal 



language is an arbitrary subset of A*, it is possible to consider the languages of an 

inductive Turing machine M as one language L(M), which consists of three parts: LI , 

LW , and LO . 

Now let us look at the hardware or device D of the inductive Turing machine M 

with a structured memory. Computer hardware consists of all devices (the processor, 

system of memory, display, keyboard, etc.) that constitute the computer. In a similar 

way, the inductive Turing machine M has three abstract devices: a control device A, 

which is a finite automaton and controls performance of the machine M; a processor 

or operating device H, which corresponds to one or several heads of a conventional 

Turing machine; and the memory E, which corresponds to the tape or tapes of a 

conventional Turing machine. The memory of the simplest inductive Turing machine 

consists of three linear tapes, and the operating device consists of three heads, each of 

which is the same as the head of a Turing machine and works with the corresponding 

tapes. 

The control device A has the state structure or configuration S = (q0 , Q, F ) 

where Q is the set of states or the state space of A and of M, q0 is an element from Q 

that is called the start or initial state, and F is a subset of Q that is called the set of 

final (in some cases, accepting) states of M. It is possible to consider a system Q0 of 

start states from Q, but this does not change the computing power of an inductive 

Turing machine. The automaton A regulates: the state of the whole machine M, the 

processing of information by H, and the storage of information in the memory E. 

The memory E is divided into different but, as a rule, uniform cells. It is 

structured by a system of relations that provide connections or ties between cells. Each 

cell can contain a symbol from an alphabet of the languages of the inductive Turing 

machine M or it can be empty. Formally, E = (P, W, K) where P is the set of all cells 

from E, W is the set of connection types, and K ⊆ P×P is the binary relation on P that 

provides connections between cells. In such a way, K structures the memory E. Each 

of the sets P and K is also structured. The set P is enumerated, that is, a one-to-one 

mapping ν of P into the set N of all natural numbers is given. A type is assigned to 

each connection from K by the mapping τ: K → W .  



In a general case, cells from the set P also may be of different types. This 

stratification is represented by the mapping ι: P → V where V is the set of cell types. 

Different types of cells may be used for storing different kinds of symbols. For 

example, binary cells, which have type B, store bits of information represented by 

symbols 1 and 0. Byte cells (type BT) store information represented by strings of eight 

binary digits. Symbol cells (type SB) store symbols of the alphabet(s) of the machine 

M. Cells in conventional Turing machines have this type. Natural number cells, which 

have type NN, are used in random access machines [1]. Cells in the memory of 

quantum computers (type QB) store q-bits or quantum bits. When different kind of 

devices are combined into one, this new device has several types of memory cells. In 

addition, different types of cells facilitate modeling the brain neuron structure by 

inductive Turing machines. 

Likewise, the set of cells P is divided into three disjoint parts PI , PW , and PO , 

where PI is the input registers, PW is the working memory, and PO is the output 

registers of M. Correspondingly, K is divided into three parts KI , KW , and KO which 

define connections between the cells from PI, PW, and PO . Usually, input registers are 

used only for reading, while output registers are used only for writing. For simplicity, 

we consider PI as one register and PO as one register, which are, as a rule, one-

dimensional tapes. Besides, it is possible to consider only such inductive Turing 

machines that have the read-only input register or tape. 

At the same time, to model a modern computer with its advanced hierarchical 

memory, the set P has to be subdivided into more than three components. 

Each cell from a linear two-sided tape has two neighbors left and right. The first 

cell in a one-sided tape has only one neighbor. The structure of a linear tape (the 

standard for Turing machines) is realized by the relation Lin with connections of two 

types: R and L. Each cell with the number i is connected to the cell with the number i + 

1 with the connection R, and each cell with the number i + 1 is connected to the cell 

with the number i with the connection L ( here i = 1, 2, 3, … ). To get a two-sided 

linear tape, we reenumerate the corresponding part of P by integer numbers and use 

the same connections. To get a two-dimensional tape, we can use ties of four types W 

= {R, L, U and D}. Enumeration of cells by natural numbers is transformed to labeling 



the cells by pairs of integer numbers. Then each cell (i, j) is connected to four of its 

neighbors: to (i + 1, j) by the connection R, to (i - 1, j) by the connection L, to (i, j + 1) 

by the connection U, and to (i, j - 1) by the connection D. 

It is possible to realize an arbitrary structured memory of an inductive Turing 

machine, using only one linear one-sided tape L. To do this, the cells of L are 

enumerated in the natural order from the first one to infinity. Then L is decomposed 

into three parts according to the parts PI , PW , and PO of the structured memory. After 

this nonlinear connections between cells are installed according to the relation K and 

the mapping τ: K → W . When an inductive Turing machine with this memory works, 

the head/processor is not moving to the right or to the left cell from a given cell, but 

uses the installed nonlinear connections. 

Such realization of the structured memory allows us to consider an inductive 

Turing machine with a structured memory as an inductive Turing machine with 

conventional tapes in which additional connections are established. This approach has 

many advantages. One of them is that inductive Turing machines with a structured 

memory can be treated as multitape automata that have additional structure on their 

tapes. Then it is conceivable to study different ways to construct this structure. 

In addition, this representation of memory allows us to consider any configuration 

in the structured memory E as a word written on this unstructured tape. 

In a similar way, it is feasible to build, study and utilize Turing machines with a 

structured memory. They have almost the same hardware (they do not necessarily need 

the output tape, but always have final states) and the same software as inductive 

Turing machines with a structured memory. But in contrast to inductive Turing 

machines, Turing machines have to stop to produce a computational result. 

If we look at other devices of the inductive Turing machine M, we can see that the 

processor H performs information processing in M. However, in comparison to 

computers, this operational device performs very simple operations. When H consists 

of one unit, it can change a symbol in the cell that is observed by H, and go from this 

cell to another using a connection from K. This is exactly what the head of a Turing 

machine does. 



It is possible that the processor H consists of several processing units similar to 

heads of a multihead Turing machine. This allows in a natural way one to model 

various real and abstract computing systems by inductive Turing machines. Examples 

of such systems are: multiprocessor computers; Turing machines with several tapes; 

networks, grids and clusters of computers; cellular automata; neural networks; and 

systolic arrays. However, such representation of information processing systems is not 

always efficient. This is why other models of information processing systems have 

been constructed, and are and will be utilized. 

Connections between the control device A and the processor H may be differently 

organized:  

1) The processor H may be rigidly connected to A. In this case, the 

memory E or its part moves when it is necessary to observe the next cell. This is 

similar to the work of a floppy disk or CD.  

2) The connection between A and H may be flexible, allowing H or its 

parts to move from one cell to another under the control of A. This structure is 

virtually realized when data from the RAM of a computer are taken to registers 

of arithmetic units of the same computer.  

3) Another option is that the processor H or its parts function 

autonomously from A, only sending to A information about the content of cells. 

In this case, H or its parts contain those instructions from the software that 

regulate operation of H or its parts. This mode of operation models the 

intelligent agent approach to computation. There an agent moves to the location 

of data and performs its operation at this new site. 

We know that programs constitute computer software and tell the system what to 

do (and what to not do). The software R of the inductive Turing machine M is also a 

program; it is in the form of simple rules. The traditional representation assumes that 

the processor H functions as one unit. The rules for functioning have the following 

form: 

qhai → ajqk ,          (1) 

qhai → cqk           (2) 

It is also possible to use only rules of one form: 



qhai → ajqkc               (3) 

Here qh and qk are states of A, ai and aj are symbols of the alphabet of M, and c is a 

type of connection from K.  

Each rule directs one step of computation of the inductive Turing machine M. The 

rule (1) means that if the state of the control device A of M is qh and the processor H 

observes in the cell the symbol ai , then the state of A becomes qk and the processor H 

writes the symbol aj in the cell where it is situated. The rule (2) means that the 

processor H then moves to the next cell by a connection of the type c. The rule (3) is a 

combination of  rules (1) and (2). 

Like Turing machines, inductive Turing machines can be deterministic and 

nondeterministic. For a deterministic inductive Turing machine, there is at most one 

connection of any type from any cell. In a nondeterministic inductive Turing machine, 

several connections of the same type may go from some cells, connecting it with 

(different) other cells. If there is no connection of this type going from the cell that is 

observed by H, then H stays in the same cell. There may be connections of a cell with 

itself. Then H also stays in the same cell. It is possible that H observes an empty cell. 

To represent this situation, we use the symbol Λ. Thus, it is possible that some 

elements ai and/or aj in the rules from R are equal to Λ  in the rules of both types. Such 

rules describe situations when H observes an empty cell and/or when H simply erases 

the symbol from some cell, writing nothing in it.  

The rules of the type (3) allow an inductive Turing machine to rewrite a symbol in 

a cell and to make a move in one step. Other rule representations for inductive Turing 

machines separate these operations. Rules of the inductive Turing machine M define 

the transition function of M and describe changes of A, H, and E. Consequently, they 

also determine the transition functions of A, H, and E. 

When the processor H consists of several processing units or heads, there are 

several functioning modes:  

Uniform synchronized processing (processor units function synchronously):  At 

each step of M each unit performs one operation; they all are controlled by the same 

system of rules. 



Uniform concurrent processing (processor units function concurrently): Units 

perform operations independently of one another, but all of them are controlled by the 

same system of rules. 

Specialized synchronized processing: Each processor unit has its own system of 

rules, but all of them function synchronously, i.e., at each step of M each unit performs 

one operation. 

 Specialized concurrent processing: Each processor unit has its own system of 

rules and they perform operations independently of one another. 

In what follows, we consider for simplicity only the case when the processor H 

consists of one unit and M always starts functioning from the same state. Thus, the 

functioning of the inductive Turing machine M begins when the control device A is in 

the start state q0 , the working and output memories are empty, and the processor H 

observes such a cell in the input register PI that this cell contains some symbol and has 

the least number of all non-empty cells in the input register. It is possible that nothing 

is written in the input register PI. In this case, H observes an arbitrary cell. When H 

observes an empty cell, we denote the content of this cell by the symbol Λ.  

A general step of the machine M has the following form. At the beginning of any 

step, the processor H observes some cell with a symbol ai (for an empty cell the 

symbol is Λ) and the control device A is in some state qh . 

Then the control device A and/or the processor H choose from the system R of 

rules the rule r with the left part equal to qhai and perform the operation prescribed by 

this rule. If there is no rule in R with such left part, the machine M stops functioning. 

If there are several rules with the same left part, M works as a nondeterministic Turing 

machine (e.g., [22, 26]) performing all possible operations. When A comes to one of 

the final states from F, the machine M also stops functioning. In all other cases, it 

continues operation without stopping. 

For an abstract automaton, as well as for a computer, two things are important. 

Specifically, not only how it functions, but also how it obtains its results. In contrast to 

Turing machines, inductive Turing machines obtain results even in the case when their 

operation is not terminated. This results in essential increase of performance abilities 

of systems of algorithms. 



The computational result of the inductive Turing machine M is the word that is 

written in the output register PO of M: when M halts while its control device A is in 

some final state from F, or when M never stops but at some step of computation the 

content of the output register PO becomes fixed and does not change although the 

machine M continues to function. In all other cases, M gives no result. 

Theorem 3. Any (inductive) Turing machine T with a recursive memory can be 

simulated by a (inductive) Turing machine D with one conventional tape, i.e., the 

machine D computes the same function as T, imitating all moves of T. 

Proof here is similar to that for equivalence of different classes of Turing 

machines. It is done by the standard procedure in which D writes in a special tape 

consequent instantaneous descriptions of the machine T (e.g., [22]). 

Some object that, in contrast to Turing machines, an inductive Turing machine 

does not always inform a user that a result was obtained. This is the cost that we have 

to pay for its higher computational power. However, mathematicians and computer 

scientists encountered similar situation with Turing machines. Having the class of all 

Turing machines or any other class of recursive algorithms, one never knows whether 

the given machine will produce the necessary result or not. In contrast to this, the 

condition that an algorithm always gives a result is often demanded. Trying to limit 

ourselves to recursive algorithms that always give a result brings us to the following 

situations: either we have a sufficiently powerful class but one cannot distinguish 

algorithms from this class from others or we can build all such algorithms but they 

have insufficient computational and decision power. Thus, we have to make a choice: 

either to use more powerful algorithms or to know more about algorithms that are 

used. From this perspective, an inductive Turing machine is the next step in the 

evergoing trade off between knowledge and power.  

 

 

 

5. Learner models and learning potency 

As the basic models for learning systems, we take: a polynomially bounded Turing 

machine (PBTM), which gives the most general model for solving tractable problems; 



Turing machine (TM), which gives the most general conventional model for 

computations; and inductive Turing machine of the first order (ITM1), which gives the 

most general computational model that is the closest to Turing machines [15]. 

Definition 11. A Turing machine T is called polynomially bounded if there is a 

polynomial P(n) and whenever T is given a word x of length n as input, computation 

of T halts after making at most P(n) steps.  

Thus, the function P(n) gives a boundary for time complexity of T. 

Definition 12. The memory E is called recursive if the relation K ⊆ P×P that 

provides connections between cells and all mappings ν: P → N, τ: K → W , and ι: P 

→  V are recursive. 

Here recursive means that there are some Turing machines that decide/build all 

naming mappings and relations in the structured memory. In addition, we consider 

potentially achievable knowledge for a given model, which performs without any 

restrictions on accessible resources. 

Theorem 4. Experience of previous generations does not add to potentially 

accessible knowledge for TM learners. 

Proof. According to our model, experience of generations is accumulated in the 

structure of the memory of the learning model. Here we take a Turing machine M0 

with a structured memory as a model of a learner. This memory is built, i.e., all 

memory connections are established, by another Turing machine M1 with a structured 

memory. If the memory of M0 is developed by n generations, then the memory of M1 

is developed by (n – 1) generations, and we can prove our statement by induction in 

the number n of generations. 

1. n = 1. It means that there is only one generation and the learner receives no extra 

knowledge to build its memory. Thus, the memory of the learner is one or several 

linear tapes of an ordinary Turing machine, and the statement of the theorem is true by 

the definition. 

2. n > 1 and we assume that that the statement of the theorem is true for (n – 1). It 

means that the machine M1 that develops the structure of the memory of the machine 

M0 is an ordinary Turing machine.  



To prove the necessary result, it is sufficient to show that functioning of M0 can be 

modeled by an ordinary Turing machine T.  In this case, in spite of its structured 

memory containing the experience of n previous generations, M0 can do (and in 

particular, can learn) no more than the ordinary Turing machine T. 

To model M0, T has a working tape L0 that is used for simulation of the memory of 

the machine M0 and the working tape L1 that is used for computation of all 

connections in the memory of M0. 

The machine T functions in the following way. Simulation of one step of the 

machine M0 consists of three stages: at first, T finds an instruction u that corresponds 

to the relevant instruction v of M0 , then (stage 2) T computes the necessary connection 

that is prescribed by the instruction v, and only after this (stage 3), T performs the 

instruction u. Performance of u may demand several operations of T. 

Standard methods of Turing machine modeling described, for example, in [22, 26], 

allow one to build a machine T that realizes operations of the machine M0 step by step. 

This completes the proof of Theorem 4. 

Theorem 5. Experience of previous generations does not add to potentially 

accessible knowledge for PBTM learners. 

Proof. To prove this statement, we take the proof of Theorem 4 and check that if 

time complexity of the machine M0 is bounded by a polynomial P0(n) and time 

complexity of the machine M1 is bounded by a polynomial P1(n), then time complexity 

of the modeling machine T is bounded by a polynomial Q(n) = P0(kP0(n)) where k is 

some number that depends only on M0 . The description of functioning of the machine 

T allows us to show that this is true and in such a way to prove Theorem 5. 

As remarked Paul Stelling, if we take a fixed length m of input, experience of n 

generations with n much bigger than m allows one to achieve exponential, or even 

higher complexity, to solve problems that are not polynomially bounded for inputs 

with the length less than or equal to m. However, for all inputs, any fixed number of 

generations does not take us outside polynomial boundaries. 

For inductive models of learners, we consider only learning of facts. 

Definition 13. Inductive Turing machines with recursive memory are called 

inductive Turing machines of the first order (ITM1). 



Theorem 6. In terms of arithmetical hierarchy, each generation adds one level to 

potentially accessible knowledge for ITM1 learners. 

Proof. Elements of the arithmetical hierarchy are relations of natural numbers [30]. 

The set of all recursive relations is taken as the base for building the arithmetical 

hierarchy. Levels in the arithmetical hierarchy are labeled as Σn if they consist of all 

relations ∃ x1 ∀ x2 ∃ x3 … ∀ xn-2 ∃ xn-1 ∀ xn R(x1 , … , xn , z1 , … , zm ) limited to  n – 1 

pairs of alternating quantifiers starting with ∃ and having recursive R(x1 , … , xn , z1 , 

… , zm ). Similarly the class of all relations ∀ x1 ∃ x2 ∀ x3 … ∃ xn-1 ∀xn R(x1 , … , xn , 

z1 , … , zm ) that start with ∀ and have n – 1 alternations of quantifiers is labeled as  Πn 

and recursive R(x1 , … , xn , z1 , … , zm ). The classes Σ0 and Π0 are defined as having 

no quantifiers, consist of all recursive relations and thus, are equivalent. The classes Σ1 

and Π1 are defined as having a single quantifier: relations from Σ1 have the form ∃ x 

R(x, y) and relations from Π1 have the form ∀x R(x, y) where R(x, y) is a recursive 

relation and y is an arbitrary vector of natural numbers. By the definition, we have 

inclusions  Πm  ⊆  Σn ∩Πn   and   Σm  ⊆  Σn ∩Πn for any n > 1 and any m < n. 

Results from [29] show that it is sufficient to prove the theorem only for relations 

with one free variable, which have the form ∃ x1 ∀ x2 ∃ x3 … ∀ xn-2 ∃ xn-1 ∀ xn R(x1 , 

… , xn , z ) or ∀ x1 ∃ x2 ∀ x3 … ∃ xn-1 ∀xn R(x1 , … , xn , z ) and are some sets of natural 

numbers. 

For the proof, we use induction on the number n of learning generations.  

1. As the base for induction, we take one generation. According to the statement 

of the theorem this generation has to be able to learn sets from Σ1 and Π1 . Results of 

of Gold [18, 19] and Burgin [10] show that ITM1 learners can learn, that is, decide or 

compute, any set from Σn ∪Πn . 

This completes the first step of our induction. 

2. To make a general inductive step, we assume that if we have (n –1) learning 

generations, then the (n –1)th generation can learn any relation from the class Σn-1 and 

the class Πn-1 . Let us consider an arbitrary relation Q(z) that belongs to the class Σn . It 

means that Q(z) = ∃ x1 ∀ x2 ∃ x3 … ∀ xn-2 ∃ xn-1 ∀ xn R(x1 , … , xn , z ), where R(x1 , … 



, xn , z ), is a recursive relation. Then, by the definition, the relation K(x1 , z) = ∀ x2 ∃ 

x3 … ∀ xn-2 ∃ xn-1 ∀ xn R(x1 , … , xn , z ) belongs to the class Πn-1 .  

By our assumption, a learner from the (n –1)th generation can decide whether a 

given pair (x, z) belongs to the relation K(x1, z) or not. Utilizing this knowledge, an 

ITM1 learner M checks if the pair (1, z) belongs to K(x1, z). Then it checks if the pair 

(2, z) belongs to K(x1, z). Then it repeats the same for the pair (3, z) and so on. After 

each test with a negative result, M writes 0 on its output tape. If one of these tests 

gives the positive result, then M writes 0 on its output tape and continues to do so 

forever. 

In such a way, the result of M is 1 when z belongs to Q(z) and is 0 when z does not 

belong to Q(z). It means that M learns the fact whether z belongs to Q(z) or not. 

In a similar way, we can prove that some ITM1 learner M decides whether an 

arbitrary number z belongs to Q(z) or not for an arbitrary relation Q(x) that belongs to 

the class Πn . The difference in the proof is that in this case M outputs 1 when before it 

gave 0 and outputs 0 when before it gave 1. 

This completes the general step of our induction. 

By induction the statement of the theorem is true. Theorem 6 is proved. 

 

 

 

5. Conclusion 

The paper analyzed how power grows when a learner uses the experience of previous 

generations. It is demonstrated that neither recursive nor subrecursive algorithms give any 

increase of potentially learnable knowledge. Only super-recursive algorithms allow achieving 

better results in stratified learning. 

These results explain why the historical approach to education is good for history, art, and 

literature, but is bad for mathematics and natural sciences. The reason is that mathematics and 

natural sciences do not achieve independent results. Due to their quest for unification, they build 

shortcuts. This is possible only using experience and knowledge of previous generations. 

Consequently, long ways by which past generations reached essential results become 

unreasonable. 



To conclude, we formulate some open problems. An interesting problem is to consider how 

experience of generations influences other learner models, for instance, such as Turing machines 

with oracles or with advice and inductive Turing machines with oracles or with advice. 

As it has been demonstrated (cf., [31]), learning/cognition in teams is more powerful and 

efficient than individual learning. That is why another interesting problem is to consider how 

experience of generations influences learning and cognition in a group. 
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