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ABSTRACT:  Knowledge of vehicle classes is especially useful for monitoring 
commercial vehicles (CVs).  Accurate CV class information will enhance truck traffic 
surveillance and fleet management, such as in port areas by providing information for 
environmental impact investigations.  From an implementation perspective, it is 
recognized that there are often significant advantages to use the existing inductive loop 
infrastructure.  However, inductive loops are not always the most practical surveillance 
technology considering the required implementation effort and cost.  In this regard, this 
study explored the potential of adopting a new vehicle signature detection technology - 
wireless magnetic sensors - for CV classification.  The vehicle signature data used for the 
development of the wireless sensor based models was collected from the University of 
California, Irvine (UCI) Commercial Vehicle Study Test-bed in San Onofre, California.  
Vehicle signatures from round inductive loop sensors were also collected for refining an 
existing round loop based model and for comparison purposes.  Significant dropped data 
was observed in the wireless sensor signatures, which required the implementation of a 
dual sensor data recovery procedure to reconstruct the signatures, which would otherwise 
have been unusable.  The results indicate that the single wireless sensor vehicle 
classification model, which is based on multi-layer perceptron neural network, 
successfully distinguished single-unit and multi-unit trucks with 93.5% accuracy.  The 
double wireless sensor vehicle classification model, which adopted a K-means clustering 
and discriminant function, achieved 73.6% accuracy, while the round loop based model 
produced even better performance (85%) in testing, both according to the FHWA scheme 
F with 13 classes. 
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BACKGROUND STATEMENT 
Vehicle classification algorithms allocate vehicles to predefined categories by processing 
selected vehicle features obtained from traffic sensors to reveal intrinsic vehicle 
characteristics.  Such algorithms have many important applications in transportation 
systems analysis and policy development.  These include travel forecasting, goods 
movement, road design and maintenance, setting user fees, safety, traffic flow modeling, 
environmental impact analysis, traffic management, and automated toll collection.  
Knowledge of vehicle classes is especially useful for monitoring commercial vehicles 
(CVs), since most CVs are heavy and oversized, and consequently possess performance 
characteristics that differ from passenger cars. 

  Monitoring heavy vehicles can assist with pavement design, providing more 
accurate estimates of pavement service life, and scheduling road rehabilitation and 
maintenance. Furthermore, accurate CV class information can enhance truck traffic 
surveillance and fleet management in port areas by providing information for 
environmental impact investigations. This may be of particular interest, as trucks with 
diesel engines are reported (1) to account for 71% of traffic-emitted PM2.5 (fine 
particulate matter). 

Various detection technologies have been investigated and applied to perform 
vehicle classification.  Examples include imaging-based sensors which consist of infrared 
imaging, video imaging and laser range imaging systems, acoustic signature analysis, 
magnetic sensors, and inductive signature systems. Inductive signature-based 
classification systems currently demonstrate advantages over other systems because of 
the widespread infrastructure deployment of inductive loop sensors and the cost 
effectiveness of implementation – requiring minimal out-of-pavement hardware updates, 
and good performance (80-90% accuracy in general [2]). 

Study of vehicle classification using inductive signatures can be dated back to 
1979, when Reijmers (3) examined 5 classes of vehicles, primarily based on vehicle 
length information acquired from double loops. There also exist commercially available 
vehicle classification products that claim capability of performing axle based vehicle 
classification from loop detectors as well as other technologies (4 and 5). 

However, limited studies have sought to achieve reliable CV classification 
performance, due in part to the difficulty of obtaining a large CV dataset.  This exposes 
the need to further improve truck classification performance using a more comprehensive 
CV dataset (2).  Consequently, researchers at the University of California, Irvine (UCI) 
set up a test-bed for advanced CV surveillance research.  This study yields two objectives:  
collecting more truck data for current inductive loop signature-based vehicle 
classification model re-calibration (2), and a new investigation of alternative technologies 
to obtain comprehensive high quality travel data for CVs. 

In recent years, extensive research has been conducted at UCI on inductive 
vehicle signatures obtained from conventional inductive loops through the use of 
advanced high-speed scanning detector cards.  Since inductive vehicle signatures such as 
those obtained from inductive loops vary across vehicle types, vehicle classification 
models can be developed to categorize vehicles based on their physical features.  
Previously, vehicle classification studies from UCI have been focused on utilizing vehicle 
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signatures from inductive loop detectors (2 and 6) and more recently, the studies have 
been carried out using Blade inductive sensors, which can provide both the undercarriage 
profile and axle configuration of each vehicle.  This fusion provides the potential for 
distinguishing between CVs at a more detailed level (7 and 8). 

Another new traffic surveillance technology called the wireless magnetometer, or 
wireless magnetic sensor, recently has shown potential as an alternative to inductive loop 
detector systems to provide conventional traffic performance measures.  Its main 
advantage lies in the wireless communication between the in-pavement magnetometers 
and the out-of-pavement access points, which removes the need for installing lead-in 
cables from each sensor.  In addition the footprint of each magnetometer is significantly 
smaller than a conventional inductive loop sensor, which reduces the installation time and 
overall road closure window.  The potential for obtaining detailed vehicle signature-based 
information from this sensor is still currently under evaluation.  At this point, only one 
signature-based investigation has been performed at a test site with limited control 
vehicles.  Hence, there is a need to further investigate this technology for developing a 
practical signature-based vehicle classification system. 

A unique dataset of CV signatures using conventional inductive loops and the 
new wireless sensors was collected for this study.  The data was collected at UCI’s 
Commercial Vehicle Study Test-bed (CVS Test-bed). 

 

UCI TEST-BED FOR COMMERCIAL VEHICLE STUDY 

Test-bed Layout 
 
The UCI CVS Test-bed is located at the California Highway Patrol (CHP) I-5S Truck 
Weigh and Inspection Station in San Onofre, between Los Angeles and San Diego, 
California. I-5 is a major truck route in Southern California and truck volumes at the San 
Onofre site are high. The CVS Test-bed was chosen as the data collection site for 
investigating commercial vehicles due to the high volume and variety of commercial 
vehicles that enter the site daily.  It has a single lane entrance ramp from the I-5S, which 
expands into three lanes approaching the weighing scales followed by a single lane exit 
ramp back to the mainline freeway.  Two temporary detector stations were set up at the 
entrance and exit ramps as shown in FIGURE 1(a).  The upstream and downstream 
detector stations span a distance of 0.35 miles. 

Each detector station is instrumented with single 1.8 m (6-foot) conventional 
inductive round loop sensors together with an array of wireless magnetic sensors.  The 
array of magnetic sensors at the upstream detector station consists of a leading sensor 
followed by a set of seven sensors spaced equally at 0.30 m (1 foot) laterally across the 
lane and 1.8 m (6 feet) downstream from the leading sensor.  At the downstream detector 
station, a single leading sensor was installed with three sensors spaced equally at 0.30 m 
(1 foot) laterally across the lane and 1.8 m (6 feet) downstream from the leading sensor.  
FIGURE 1(b) shows the actual setup of the cabinet with a pole-mounted wireless access 
point and the array of seven sensors at upstream. 
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(a) Study site layout 

 
(b) Wireless sensors setup 

FIGURE 1 Study Site

The conventional inductive round loop sensor is connected to an advanced 
inductive loop detector card, which was in turn connected to an industrial PC via the 
Universal Serial Bus (USB) interface.  The advanced inductive loop detector card 
provides sampling of inductance signals at 1200 samples per second.  Communications 
with the wireless magnetic sensors is achieved via a wireless access point physically 
connected to the PC via a Cat-5 Ethernet cable.  The wireless magnetic sensors were 
configured to transmit magnetic signature data at 128 samples per second for each 
detected vehicle.  All data was logged into the PC hard drive, to be later retrieved for 
analysis after data collection. 
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Data Description 
 
Data were collected from both the round inductive loop and wireless magnetic sensors on 
May 29th, 2008 between 9:30am and 1:30am.  About 1200 vehicle signatures were 
collected for each sensor type at each location, yielding a total of 2400 vehicle signatures 
for both detector stations. The speeds of the vehicles ranged from about 15 to 50 mph, 
with a mean of 27.6 mph and a standard deviation of 5.9 mph. Side-fire video data was 
concurrently recorded for visual ground truthing of vehicle classes at both locations. 

The round loop data was found to generally be of high quality, and thus was 
applied directly to re-calibrate an existing round loop based classification model.  
However, a significant proportion of signatures was observed with dropped information 
in the wireless sensor data, which required the development of a data recovery procedure 
(these data would otherwise have been unusable). The following section describes this 
procedure in detail. 

 

WIRELESS SENSOR DATA PREPROCESSING AND RECOVERY 
The wireless sensors measure the x-, y-, and z-axis components of the Earth’s magnetic 
field in the direction of travel, perpendicular to the direction of travel, and the field out of 
the ground, respectively.  Since the y-axis measurement is usually corrupted by the 
magnetic signals from vehicles traveling in adjacent lanes (11), the y-axis data was not 
considered for further analysis. 

After the raw signature was initially processed, a major problem was observed: a 
significant number of vehicle signatures had dropped signal packets.  When a dropped 
packet occurs, the signal is observed to stay at the level where the last data value was 
observed, and maintains that level for a certain time period, all three dimensions at the 
same time. According to the manufacturer of the wireless sensors, the sensor sends data 
packets at every 1/8 second. Because the sampling rate of the sensor is 128 Hz, dropped 
packets in problematic signatures therefore should contain 16 data points. One example 
of such a problematic signature is depicted in FIGURE 2.  The flat portions of the 
signature between the vertical lines indicate dropped packets in the signal. 

 

 
FIGURE 2 Example of dropped packets observed in vehicle signature 

About 70% of the upstream signatures and 50% of the downstream signatures 
were affected by dropped packets, with either single or multiple drops observed.  This 
posed a challenge for data analysis, thus a signal recovery scheme was developed to 
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account for this issue and is described in the section below.  Moreover, after further 
investigating the signatures, it is found that signatures from sensors other than the two 
placed in the middle of the lane (the single leading sensor and the mid-array sensor) were 
very different from each other.  This variation, together with the problematic signatures 
(i.e., signatures with dropped sections) made it impossible to decide directly which of the 
signatures were representative of vehicle characteristics. However, we found that 
signatures from the two mid-lane sensors showed repeatability. The reason might be that 
there is only one lane at both detection stations, so most of the vehicles will drive closer 
to the center of the lane. The repeatability of the signatures is very useful for recovering 
some of the signatures with dropped sections.  Therefore, the data from the single leading 
sensor and the mid-array sensor were selected for further analysis. 

 
Vehicle Signature Processing Procedures 
Two classification models were developed in this study for the wireless sensors:  the 
Single Sensor Vehicle Classification (SSVC) and the Double Sensor Vehicle 
Classification (DSVC) models.  In the SSVC model, only the signatures with no dropped 
sections were analyzed.  In the DSVC model, vehicle signature recovery was 
implemented by comparing signatures from both sensors to reconstruct an error-free 
vehicle signature.  This procedure increased the size of the dataset available for 
classification model development. The steps for this procedure are described below.  
Steps 2 and 3 in the vehicle signature recovery algorithm are not necessary in the data 
processing of the SSVC model and thus were skipped. 
 
Step 1: Detect dropped packets 
Ideally, dropped sections of a signature should consist of multiples of packet sizes 
according to the manufacturer (16, 32, 48, 64, etc consecutive data points with the same 
magnitude). However, it was observed that some signatures had as few as 10 consecutive 
data points that maintained a fixed magnitude—indicating potential missing data.  
FIGURE 3 shows the cumulative distribution of the number of dropped data points in 
vehicle signatures. To ensure the quality of the signatures used for model development, a 
stricter threshold of 10 data points was used to determine if a dropped section exists. 
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FIGURE 3 Cumulative Distribution of Number of Consecutive Dropped Data Points
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Step 2: Data recovery 
To recover a dropped section, the temporal offset of the signatures between the two 
sensors in the middle of the lane was first determined by shifting the signature from the 
mid-array sensor to a position that best fits the signature of the single leading sensor.  The 
Sum of Absolute Differences (SAD) between the two signatures for all points in each 
signature (excluding any portion with drops) was used as the measurement criterion.  The 
two signatures were considered to be the best fit at the location where SAD has the 
minimum value.  Next, a section of the front end of the signature for the mid-array sensor 
and the back end of the signature for the single leading sensor were removed with the 
section size corresponding to the offset value.  FIGURE 4(a-b) shows an example of 
signatures before and after the alignment procedure. 

After the two signatures were aligned, it was determined if there was an overlap 
between dropped packets.  If there existed more than 10 overlapped dropped packet 
points, the signature was considered unusable and subsequently discarded.  However, if 
there  was

the dropped sections with the corresponding portion of the other 
hicle 

 

were fewer than 10 data points in the overlapped dropped packets, the signature  
recovered by replacing 
sensor’s signature where good data existed.  FIGURE 4(c) shows an example of a ve
signature after recovery.  

 
(a) Double signatures before recovery 

 
(b) Double signatures after alignment 

 
(c) Recovered signature 

FIGURE 4 Signature recovery process 
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Finally, a correlation analysis was performed for the two signatures; the signature 
pairs were discarded if they demonstrated poor correlation.  The Pearson’s correlation 
coefficient with a threshold criterion of 0.95 was used in this analysis. This increased the 
overall quality of the selected signatures, which also improved the accuracy of vehicle 
length measurement. 

 
Step 3: Noise elimination and signature magnitude averaging 
In this step, a magnitude threshold value of 0.1 was set to determine the start and end of a 
normalized signature.  This step ensures that the noise data generated due to the tailgating 
vehicles will not be include nature cons tency was 
further improved by averaging the two signatures. 
 
Step 4: Smoothing 
The “5 point non-causal averaging filter” technique was applied by taking the average of 
the signature’s 2 immediate preceding and subsequent points to reduce the effects of 
noise within the signature. 
 
Step 5: Feature extraction 
The Piecewise Slope Rate (PSR) approach (12) was subsequently applied to extract the 
features from the signatures.  The PSR approach has been shown to be capable of 
representing the original signature (2 and 12).  30 PSR values as well as vehicle length 
(in the case of the DSVC model) were extracted from a raw vehicle signature as the 
essential feature sets for the wireless sensor vehicle classification models.  

 

VEHICLE CLASSIFICA  
As mentioned above, we propose two CV classification models:  the Single Sensor 
Vehicle

as 

C model in this study utilizes a classification scheme consisting of 
s: the single-unit truck and the multi-unit truck.  Because effective vehicle 

odel adopts the more 

 
uble sensor counterparts.  Furthermore, some agencies may 

classification scheme as opposed to a more detailed one 
ification, it is often desired to just distinguish 

d as part of the true signature.  Sig is

TION MENT MODEL DEVELOP

 Classification (SSVC) Model and the Double Sensor Vehicle Classification 
(DSVC) Model.  As single sensors can not provide accurate vehicle length estimation (
can double sensors), their ability to classify vehicles is more limited.  However, the 
SSVC model can be adopted at detector locations where only a single sensor is deployed 
in each lane.  The SSV
two classe
length can be estimated by double sensors, the proposed DSVC m
comprehensive FHWA Vehicle Classification Scheme F (2 and 11).  For the round loop 
vehicle classification, the Real Time Vehicle Classification (RTVC) model was re-
calibrated with the same procedure discussed in that previous study (2). 
 
Single Sensor Vehicle Classification 
 
Classification Scheme 
Despite the incapability of single sensors to obtain accurate vehicle lengths, there are still 
some advantages for single sensors, namely, that they are less expensive and easier to
install compared to their do
require only a simplified general 
such as the FHWA scheme.  For CV class
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between single and multi-unit trucks.  Therefore, a vehicle classification scheme with tw
classes, the single-unit truck and the multi-unit truck, was used for the SSVC mode
 
Methodology: Multi-Layer Perceptron Neural Network (MLPNN) 
Neural networks have been applied extensively in signal processing and ma

o 
l. 

ny other 
elds that fall under the category of pattern recognition (7 and 14).  The Multi-Layer 
erceptron Neural Network (MLPNN) was applied in this research to predict the CV 

e-

d 

, 
t with the 

the model can still achieve an overall correct 

Predicted Class 

fi
P
classes with a single sensor. 

The overall dataset used in this model development consisted of 1075 clean 
vehicle signatures (without any dropped packets) including signatures from 557 singl
unit vehicles (51.8%) and 518 multi-unit vehicles (48.2%).  A stratified random sampling 
technique was used to partition the dataset.  For each class, the dataset was partitione
into three parts:  60 percent of the sample was assigned to train the MLPNN, 20 percent 
was applied for validation during the training process to prevent over-training, and the 
remaining 20 percent was used for testing of the final model. 

Both z and x dimension data was used to train the MLPNN model.  It was found 
from the results that there was no significant difference in correct classification rates 
between the two dimensions.  TABLE 1 shows the classification results for training

alidation and testing of the MLPNN.  It can be seen from TABLE 1 thav
absence of vehicle length information, 
lassification rate of 93.5%. c

Observed Class 
1 2 Correct Rate

Training 
1 
2 

Overall

326

5 

8 

305

97.6% 

98.4% 

98.0% 

Validation 2 13 91 87.5% 

1 101 10 91.0% 

Overall 89.3% 

Testing 
1 
2 

106

8 

6 

96

94.6% 

92.3% 

Overall 93.5% 

TABLE 1 CV Classification Results for SSVC Model 
 
Double Sensor Vehicle Classification 
 
Classification Scheme 
Vehicle length information is widely used for vehicle classification; therefore, it is 
desirable to use a more detailed classification scheme if the effective vehicle length 
inform  ation can be extracted using two sensors.  The standard axle-based FHWA Vehicle
Classification Scheme F (13) was used for the DSVC model development.  Because 
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vehicle classes 1, 4, and 13 were absent from our dataset, a total number of 10 vehicle
classes were selected for model development. 

A total of 1638 vehicle signatures were generated from the data recovery 
procedure.  A stratified samp

 

ling technique was applied to form the training and testing 
datasets.  Approximately 70% of the data (1183 cases) were randomly selected from each 
vehicle class and assig  dat t an th % (455 cases) were 
assigned to the testing dataset.  FIGURE 5(a) t tes th ies by vehicle classes 
for training, testing and overall datas .  It e serve e three datasets follow 
similar distribution pa can resen e ulatio

 
Vehicle Length Estimation 
Vehicle length is calcu ultiplying th ated vehicle speed with the 
difference of the acti  of t  two se ive se peed trap).  The results 
of vehicle length estimation are sh FIGURE 5(b), which presents accurate vehicle 
class distribution patterns as depicted in FIGURE 5(a). 
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(b) Vehicle Length 

FIGURE 5 Frequency distributions of dataset for DSVC model development 
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Methodology: K-means Clustering and Discriminant Analysis 
Because of the very small sample sizes observed in some vehicle classes, the neural 
network approach did not perform very well in distinguishing those under-represented 
vehicle classes from the classes with dominant samples, such as vehicle class 5 and 9.  
Therefore, a procedure combining a K-means clustering technique and discriminant 
analysis was used to develop the DSVC model.  The proposed DSVC model is illustrated 
in FIGURE 6. 

 
as used in the first level 

 
As described in FIGURE 7, a feature “X-Median” (2) w

K-means clustering. For a selected portion of a vehicle signature consisting of N PSR
values, the value of “X-Median” for that portion is denoted as the following:   

XMDN =
PSRN / 2 + PSRN / 2+1

2
, if N is even number 

XMDN = PSR N +1( ) 2 , if N is odd number 

This feature was chosen based on the visual observation from the signature plots.  It is 
observed that the sensor signature is able to capture the axle information.  The front axle 
configuration of the vehicle could not be easily observed from the signature probably due 
to the complex ferrous composition of the drive units.  However, the rear part of the 
signature usually shows the spikes from which the number of axles can be inferred.  
FIGURE 7 demonstrates a comparison between a trailer with a tandem in the back and a 
trailer with single in the back.  If the signature is divided into three portions, the absolute 
value of the x-median of the third portion is observed to be larger for a single axle trailer 
than a tandem trailer.  Therefore, this x-median feature was added to the DSVC model 
development.  

 
FIGURE 6 The proposed co ssification modelmmercial vehicle cla  structure 
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Th

1. From each class, randomly sample 70% of the data for training, 30% for 

3. Within each of the two training clusters, divide cases further to 4 clusters 
based on vehicle length. ined. 

4. Perform discrim ehicle length and 30 PSR values. 

The 

 

 

 
FIGURE 7 Comparison between two typical signatures 
(Upper: tandem on the back; Lower: single on the back) 

e classification procedure is described as follows: 

testing. 

2. Divide training cases to 2 clusters based on x-median value 

8 final clusters are obta

inant analysis using v

5. Find cluster membership of testing case, using cluster center values generated 
from step 2 and 3. 

6. Use discriminant functions obtained from step 4 to determine vehicle class for 
each testing case. 

This model gave an overall testing performance of about 73.6% (TABLE 2).  
performance is not significantly better than other vehicle classification models (2 and 8), 
but it shows improvement from previous studies based on the same sensor technology (9-
11).  This initial evaluation of the technology shows its potential as a candidate for 
vehicle classification and surveillance, despite the observed problems with dropped data
packets. 
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TABLE 2(a) Training results 

 

 

TABLE 2(b) Testing results 
TABLE 2 CV Classification Results for DSVC Model 

 
Single Round Loops Vehicle Classification 
 
The vehicl rch is a heuristic 
method model, 
named RTVC, is designed with
used in
from single loop inductive signature data.  Three vehicle classification schemes—
includi
demonstrat odel is capable of categorizing vehicle types in greater 
detail t

eam 

downstream station (1180 vehicles), was applied to the new heuristic decision 
ee for performance testing.  The results are listed in TABLE 3.  It was found that the 
verall performance for both training and testing datasets was somewhat lower than 

previously found (2), but nevertheless quite high 85%-90% correct match rates were 
achieved.  It should also be noted that correct-classification-rates are low in general for 
vehicle classes with small samples, which was also observed from the previous study.  

e classification model for round loops used in this resea
 combined with decision tree and K-means clustering approaches (2).  This 

 real-time implementation considerations.  The features 
 the classification model were extracted from PSR values, which were obtained 

ng the FHWA scheme—were utilized for model development.  The results 
e that the RTVC m

han the FHWA scheme provides for.  However, due to the small proportion of 
large trucks, re-calibration is required to refine the RTVC and to improve the 
performance for the large trucks group. 

Round inductive loop data collected from the UCI CVS Test-bed at the upstr
steam station (comprising 1200 vehicles), was applied for model re-calibration.  Data 
from the 
tr
o
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Therefore, significantly larger sample size in each vehicle class is the key to improve 
classification performance. 

 

 
Table 3(a) Training Results 

 

 
Table 3(b) Testing Results 

TABLE 3 CV Classification Results for RTVC Model 
 

FINDINGS AND DISCUSSION 

n 
on of 

be 

sired, the 
-means clustering and discriminant analysis is a 

better c

n 
 

on 
may 

scheme. 

Comparison between the Three Vehicle Classification Models 
 
The MLPNN used in the SSVC model provides good results for a general classification 
scheme with two vehicle classes.  Its main potential is where there is primarily interest i
distinguishing only between single-unit and multi-unit vehicles.  The implementati
one sensor is easier and less costly than that of two sensors and has more potential to 
implemented in the real world for generating simple CV classification information. 

In the case where more detailed information about vehicle classes is de
DSVC model with the combination of K

andidate.  It was also found that the correct classification results for the DSVC 
model were not as good as the RTVC model.  However, it should be noted that there are 
several issues with the magnetic sensor technology.  First, the issue of dropped packets i
vehicle signatures as observed in this study could be resolved by the manufacturer in the
future.  This should be helpful to our model development and gaining better classificati
performance.  We also observed that the vehicle signatures from the wireless sensors 
provide more detailed information about vehicle body structures than round inductive 
loops.  Therefore there is potential to design a new more detailed CV classification 
scheme to account for such signature characteristics, and to be adaptable to the FHWA 
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Low Correct Classification Rates for Certain Vehicle Classes 
 
For both the DSVC and RTVC models, significant classification errors were observed for 
class 6 and class 8.  Many vehicles of class 6 were misclassified as class 5, and many of 
class 8 were classified as class 9.  This is not unexpected because of the similarity of the 
vehicle signatures observed in these classes.  Vehicles could be very similar in length 
between class 5 and class 6 as well as class 8 and class 9.  The only possible way to 
distinguish them from each other is from exact axle information extracted from the 
signatures.  A very small variation in the signature could cause misclassification quite 
easily. 

It was also noticed that the performance for vehicle classes with only a few 
samples was generally low, an small to be representative.  
The results for these classes, such as class 2, 3, 10, 11 and 12, are not necessarily 
indicative of model limitations.  A significant larger number of samples in each vehicle 
class would be helpful for classification model development, and thus potentially increase 
the model performance. 

 

CONCLUSIONS 
This research explored the potential of adopting new vehicle signature detection 
technology, wireless magnetic sensors, for commercial vehicle classification.  Two new 
vehicle classification models, S osed for the wireless sensor 
based models w g vehicle 
classification model, RTVC, wh

odified for model improvement and comparison purposes.  A major problem observed 
was the frequency of dropped data in many vehicle 

ecovery procedure to 
ble.   

perform

d their sample sizes were too 

SVC and DSVC, were prop
ith different classification schemes.  In addition, an existin

ich utilizes single round inductive loop detector data, was 
m
with the wireless magnetic sensors 
signatures. This required the implementation of a dual sensor data r
reconstruct the signatures, which would otherwise have been unusa
 
The results show that the single wireless sensor vehicle classification model, which is 
based on a multi-layer perceptron neural network, successfully distinguished single-unit 
and multi-unit trucks with 93.5% accuracy.  The double wireless sensor vehicle 
classification model, which adopted a K-means clustering and discriminant function, 
achieved 73.6% accuracy, while the round loop based model produced even better 

ance (85%) in testing, both according to the FHWA scheme F with 13 classes. 
 
In addition to resolution of the dropped data problem with the wireless sensor, 
classification performance of all the models developed could be improved through 
collection of more CV data so that no vehicle class suffers from a sample size that is too 
small. 
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