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1\ Minicourse in Lie Perturbative Hethods 

Harry E. Mynick 

Lawrence Berkeley Laboratory 
University of California 
Berkeley, California 94720 

ABSTRACT 

LBLII 8453 

We give a skeletal presentation of the mechanics of Lie pertur-

bative methods. The discussion is intended to enable the reader to 

begin to use the methods himself. The technique is illustrated by a 

specific example, in which we derive the ponderomotive Hamiltonian 

for a particle moving in a curl-free electric field. 

~~ 
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Given any function G of the phase variables z _ (g,£), we 

define the operator G by 

V' 

c - {c, } _ ac;a9·a/ae 

1 One can show that the operator 

canonical transformation (C.T.). 

00 

L (1/n!)Gn 
n=O 

Now if we have a Hamiltonian of the form 

00 

Ho(~) - H(~) - I 
m=O 

t:~ (z) m -

induces a 

(1) 

(2) 

where H0 = H0 (£) (so that the zero-order problem is exactly soluble). 

we can induce C. T. s of t·he type TG, to remove the _g-dependent part 

of H, to successively higher orders in the perturbation parameter t:, 

as follows. We write 

( 
v 1 2"'2 ) ( 2 

1 + t:G 1 + ZS G 1 +. . . HO + t:Hl + t: H2 + .. ·) 

(3) 

00 

Writing H
1 

= L we read off the from Eq.(3), to as high 
m=O 

order as desired. Up to 
2 0 ( t: ) , one has 

Hl Hl v .... 

0 
- Ho, 1 - GlHO + Hl -HOGl + Hl' 

(4) 

Hl 1 v2 
GlHl + H2 2 - Z GlHO + 



-3-

v v 

Here we have used the property GF -FG, which follows from (1), 

in obtaining the second form for 

We now remove the g dependence to 0(E), and thereby determine 

the generator G
1

, by stipulating that 

(5) 

-
where H

1 
means an average over the zero-order orbit of H1 (g,~). 

With this differential equation defining c
1

, we have subtracted all the 

secularity out of c
1 

and the C.T. it induces (i.e. c
1 

oscillates about 

zero), in addition to removing the ~dependence in H up to 2 
(E ) • To 

see the former property, we note from Eq. (1) that -H
0 

=(d/dt)
0

, the 

time derivative along the unperturbed trajectory, and so 

t 

Jco-traj.)dt'(Hl- Hl), (6) 

-
where by definition of Hl, the right-hand side is nonsecular. 

Now we proceed analogously to second order. 

2v 

H2 E G2 1 
(1 + 2v 1 1 2 1 = e H E G2 + ... ) (Ho + EHl + E H

2 
+ ... ) -

(7) 

Where Kl(~) - H
0
1 + EH1

1 
(th ' d d t t f H1

) d e g-1n epen en par o , an 

(8) 
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The second form for here comes from the third of Eqs.(4) and Eq. (5). 

Analogous to (5), we determine G
2

, and remove the g-dependence of H
2 

2 
to O(E ), by requiring 

(9) 

Thus 

( t (Hl Hl) 

J (0-traj) 2 2 
(10) 

The extension of this process to arbitrary order in E should be clear. 

In the event that H = H(~,t), we reduce the problem to the 

situation already treated by extending our phase space to have one 

additional degree of freedom, with new coordinate t, conjugate momentum 

E, and Hamiltonian 

(11) 

. 
The system develops in a new time variable 8 (so f- df/d8). The 

equations of motion are then 

. 
t 'dH/'dE = 1 (hence t 8), (12a) 

. 
E -'dH/'dt -'dH/'dt, and (12b) 

()H/'dp' £ -'dH/Clg, (12c) 
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as before. [We may think of the term E in H as a reservoir, feeding 

energy in and out of the term H representing our original system, at 

just the rate needed to give H its time dependence. Thus Eq. (12b) 

is to be expected.] We now treat this 8-independent Hamiltonian, with 

exactly soluble zero order part H0 (~,E) = H0 (~) + E, just as described 

above. 

Example 

We consider the motion of a particle, moving freely except for the 

perturbing influence of any number of electrostatic plane waves, each 

having wave vector ~~ and frequency w~. The Hamiltonian is then 

where 

v_~ 

H0 (~) = p2
/(2m), H1 (_g,t) =I v£ exp i(~~·g- w~t), and 

9v 
and (~-'lv,w-~) = -(~~,w£). The unperturbed trajectories 

of H = H + E · are given by 

~(8) constant, E constant, 

_g(8) q(o) + 8~, t 8 , 

(13) 

(14) 

where v - oH/ o~ ~/m. We thus have H1 
0, and so Eq. (5) reads 



Thus 
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d8' I V'i exp i[!:'i•(q(O) + 8'~)- w'i8'] 
traj.) 'i 

From Eq. (8):, we have, finally 

Eq. (17) is the standard expression for the ponderomotive Hamiltonian. 

Using (16) in (17), one readily obtains the more explicit form 

(16) 

(17) 

(18) 

We now see at a calculational level how to obtain this result using 

Lie methods, as well as how to proceed in other problems. The interested 

reader is referred to the bibliography for a fuller development of the 

1 2 mathematical theory, ' as well as for applications to problems in plasma 

physics, such as magnetic field self-generation3 , expressions for the 
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3 
ponderomotive force in magnetized plasmas, mode coupling in inhomo-

4 
geneous magnetized plasmas, and particle motion and guiding center 

5 6 
theory. ' 
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