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END REGIONS IN THE STEADY STATE OF
MIRROR-CONFINED PLASMAS
John U. Guillory, Jr.
Lawrence Radiation Laboratory
University of California
Berkeley, California 94720
February 24, 1971

ABSTRACT

Previous calculations of steady-state mirror confinement give no

estimate of the density in the region between fhe mirror and the wall

-of.the'Qacuum vessel. In this paper, realistic models for the ion and

;electrbn‘distrlbution'fuhctionsxin the confinement region are used to .

estimate:the external density and external plasma potential. It is

found that this density is usually sufficient fér plasma_in'the_external

. region (a fact of importance to instability stﬁdies). The extefhal ion

density.due to losses from the confinement region depends on the scatter-

- ing raté'(Coulomb or other scattering) in a simple way,lthrough the flux

of escaping ions and the width of the "tail" of the ion distribution

function. Because of their small mass, most of the electrons in the

'external region must usually be trapped in order to preserve quasi-

neutrality; i{e., they must:hAVe turning points in the external region

f'bﬁt stream throUgh“the confinement region as part of the confined elec-
"~ tron d;stributibn. This is brought about by a "shoulder" on the elec-
_ trostatic‘potentiai profile§'¢ cpntinuesvto decrease with distahce out-

‘side the mirror. There is; in general;-é.plasma sheath at the vessel

wall.
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Thevexterhal density may be enhanced by productibn of plasma near
the walls or by electron emission from the walls{.but two-stream insta-
vbillty sets-in at some critical production rate (which is &ery low in
the éase of emitting walls). In the preSenéé of such an "external"
source,'thé-plasma reaches a new steady state, which is described for
the stable and the unstable case. As a corollary to the instabllity
problem, it is shown that the plasma density cannot ordinarily increase
oﬁtward from the mirrors. Finally, the hot-electron plasma ié discussed,
and it ié shown that the availability of cold électrons outside the
mirror "clamps" the potential there and neutralizes the slow escaping

“ions.

%

<



W» ' . SYNOPSIS OF CHAPTER I

_ ‘The usual "loss cone" in midplane velocity space is generalized
to'a "loss region" when ambipolar electrostatic potential is present.
And ‘in fact,'with each spatiai point E‘along a field line, there is
| e ' - y) which

associated a curve in midplane velocity space (v = x,

v
is the.ioéus of ions with turning points at s, alzuming ciglisionless
dynamics. The electrons also have such a turning-point locus (different
from that for ions) for each point S. If there are no particles con-
straiﬁed‘away from the midplane, then in the collisionless approximation
all the:particles at s are represented in the midplane velocity distri-
bution, and the particle density at s comes from those particles which
have not been turhed back toward the midplane at some smalleryg. The
'densify n(s) then is calculable by integrating over the region of.mid-
pléne velocity space "outside" all the curves for points s' less than
s [Eq. (5)}. We discuss these matters quantitatively in part B of
this chapter. Exact and approximate loss boundaries for the'deVice,
as compared with turning-point loci for various turning points‘é,_may
be seen in Figs 2 (p. 8) and B6 (p. 129). It is also instructive to
look at the ion phase space (Fig. 7, p. 31).

In part C of this chapter wé discuss how the midplane velociﬁy
distfibutions of ions, and the plasma potentiai, have beenvcomputed-
from Pokker-Planck equations by various authors in the limit of shbrt
bounce_times; the ion and electron distributions go to zero at the
boundarieé of their respective loss regions in midplane velocity space.

‘We'show that with the simﬁlifications made by these authors upon the
vidss_boundaries and distribution functions, the density would be zero
outside the mirrors (s > L) and vary as (L --s)5 just inside the

mirrors (s < L).
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I.. INTRODUCTION

A. GCenerasl Remarks

-.Classngl analyses of the steady state in mirror-cbnfinement
,syéfeﬁs ighore the density of ions outside the mifrors,l’e and often
treat the electron distribution as nearly Maxwellian (a Maxwellian
distributioh implies nbnzero electron density outsidé the mirror).

.Thé.aim of this work is to estimate roughly the actual densities
and potential drop in this external region. This information should |
be useful in the study 6f end effects on, e.g., flutelike aﬁd loss-
cone-driven instabilities.

Studies of "iine-tying"* stabilization of flute ins,tabilities}?
have éhown the importance of the parameters of the electrical path
conneéting unstably growing regions of qpposite polarity, through the
end regions. If the end regions aré reasonably Short, conductioﬁ .
takeé ﬁiacg through the end walls and their associated sheath’boundafy
layer; two magnetic-field lines are "short.circuifed" together to the
extent that the total external impedance is low. This impedance is
very high and capacitive if a vacuum separates the plasma from the end
walls, but can be fairly small (and sheath-dependent) if the interven-
ving‘medium-is a plasma, begause of the higy conductivity aloﬁg the
megnetic field lines.

Pféliminary studies~hav¢ also been made6 on the coupling between
unstable lpss-gone modes and §lasma'waves in a magnetig mirror geom-
" etry (ﬁith zero plasma poténtial and no externsal plasma), and the
general question of reflection or absorption of convectively unstable

wavés7’8 at the ends of a plasma is an importent one for the feasi-
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.blllty of open ended fusion reactors

In thls paper, rather than attemptlng to solve exactly a well-

. defined problem of limited applicabllity, we attempt to glve order-of-

magnitude estimates and point out. qualitative features without assum-.
ing any spec1f1c magnetic field shape, rarticle source- mechanism, |
scattering,mechanlsm, ete. It is.still necessary to make falrly
lengtnyvmo&el oalouiations in order to get these results, but their

approkimste validity is wide. Results are expressed wherever . possible

‘pin terms'of experimentally measurable quantities, e.g., plasma'poten%

tial'sndiparticle loss rates. It was felt that rough analytical

formulas could be of wider'utility than computer solutions for a few

special osses. This paper is a first step in.analyzing a large prob-

lem offrather amorphous scope, rather than a complete'examinetion of
a simpier soluble problem.
Nonrelativistic equstions are used to describe the adiabatic

motion of particles in a time-independent plasma which is nearly col-

1isionless, t.e., the larger of the rates v (loss rate, inverse of

time reQuired to diffuse in velocity to an untrapped state) and Yo

'(c011151on rate, inverse time for cumulative 90-deg scattering) must,
:be slower than a typical “bounce frequency (along the magnetic field
‘f:from turnlng point to opposite turning point). Bounce times of a few
'vbarely tnapped (or barely un+rapped) particles will be long, as is the
.period of a pendulum w1th nearly enough energy to rotate over the topp
:'but»these-partlcles spend most_of their bounce period‘very near the
»turning points, where SCattering is ususlly_negligible because of low

.density;. so the spatially averaged v_need not be zero for validity of
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wall itself grounded. Steady-state” particle-loss rates maintain the

L

‘mirror-confined plasme. at a-positive potential,,¢o,.at the midplane,

wdééreasing;tov¢

L at s = + L and ¢W at s = i.w-,ga Debye length. or so

o Aawayvfrbm"thé wall. We call the magnetic fieldiat s=0,.L,-W

respectively BO,'BL;-BW, and-define #he mirror ratios RL = BL/BO and

?,Rw = BW/BO.”'GeneraliZing, we define Rs B(s)/Bbufor_any s, and for

éonveﬁiehCefwe"write ¢s in place of @(s).

bec 2 W Effect of Particle:Drifts-

We will examine properties of & relatively. steady state plasma
' in,thisfgeometrxaf‘Becauséﬂthis~stéady~étate is established over a time

long compared with typical bounce periods on the_field line; we must

«.. say & few words about. the effects of the slow drift of guiding centers

B}

across the. field lines..  As-the:guiding centers. of the bouncing par-
ticlés'@ove across the field lines, they sweep out a "drift surface",
which we will assume to be closed10 in the sense of having finite
area. As the guiding centers“drift éiéngvﬁhisléﬁrface, they encounter,
in géneral, Cn g . L
- (a) - different lengths I, from the reference .surface s = .0 to the
mhximafof B, and. different lengthSRthpxtheqwalls:outside,-

(b) different mirror ratios:at the maxima of B, and-thus differ-

© - (e) - different central densities and velocity distributions, and

N ) ’ §74
;

thus different scattering_rates-aﬁd=loss~fluxeswdueﬁfo<plasmalinter-
actions. - I
a,a.”If the "collision" or scattering times are long compared with

.adrift‘times around the -drift surface,‘onemcan see that the effective

ent criteria separating trapped orbits. from untrapped ones, and ¥
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o mirrdr fatio for the drift surface, i.e., the one most effective in
. determining the boundary between trappéd and untrapped orbits, is the

»smﬁliestfmaximum of B on the surface; and the field lines in the

néiéhbdfhobd of this one'qn vwhich Bax has its smallest Valué‘will
play a dominant role in the ion loss. (Electron loss will be seen to
be relatiVéiy'insensitiVe to Bvexéept'as @ may be determined.by B. )
Iﬁ#tﬁé classical mirror device there is azimuthal symmetry: all
field;lihés on a drift surface arevidenfical and none of these diffi-

culties is present. For simplicity, we do the analysis for this case,

- although small deviations from this symmetric geometry are within the

' scope of the theoryll'if we use the average values of I, and W on the

drift surface, but the minimum value of RL. Likewise if the geomefry

is asymmetric in + s, the smaller RL is the one determining the loss

boundary (trapping boundary) in phase space.

3. Subdivision of Midplane Velocity Space
‘For'each point E along a field line, one can draw a curve in e”,

€, space (midplane energy space) such that particles with €| ei on

the curve will have zero parallel Velqcity at the spatial point: (if

they can_get to 8). This curve is just the line

) = eole)) = (B, - De, - ag - 6,) (2)

.,in midplane energy space.  If a particle at the midplane has

> gSup
; e” 0<:?fs. Gs,(Gl),

~ (where .Sup indicates the supremum, or maximum value), then in the
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absence of collisions its turning point isbeydndff (This will be
proved shortly.) Of course, for those particles with U(s',u) =
uB(s') + q¢(s’) monotonicelly increasing for s' < s, we have
Sup €_, S e_- . B
O<s'<s ° s
We consider only s > O in what follows, since there is symmetry
in s. If we assume @(s) monotonically decreasing for all s > 0O (as

indicated by the results of section C for s > I, and by previous
1,13

studies for s < L, then for the electrons U(s,u) is always increas-
ing Whenzo < s <L, but decreases for large u and increases for small .
u.when s > L. TFigure 1 shows U(s,u)ffor the electrons. Figure 2 shows
the 1ihes es(el) of the electrons, for s > L. The crossing of these
lines'reflects the fact that U decreases for large p but is still
incréasihg for small p.

For fhe ions, U(s,u) is monotonically decréasing for s > L, so
that all ions passing s = L are lost. Figure 3 shows U(s,u) for the
ions? aﬁd Fig. 4 shows the line eL(el) for the ions and the correspond-
ing line eL(el) for the electrons. Because the e's are energies at the
midplane, €

magnetic moment invariant, except for a constant scale factor.

= uBo, so that the vertical axis of Figs. 2 and U4 is the

The‘maximﬁm of U(s,n) = uB(s) + q¥(s) will be at some s = M(u),
>__differéntvfor ions and electréns. As p = 0o, M(p) - L, but M(g) = L
for 511 i only if d¢/ds = 0 at s = L (where dB/ds = 0). If d¢/ds <O
at L, then M(u) < L for the ions and M(u) > L for the electrons.

Below some critical Ho there will usually be no maximum of U except

LA
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Fig.vi; Electron potential energy uB(s) - ep(s) vs s, for

uBO/Te =0, 1, 2. Midplane is at s = O, ¢nd wall at s = W.
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Fig. 2. The linesre” =.€s<€l) in midplane energy space, for various
5, L { s < W. Electrons with g > es(el) have turning points
beyond ratial pdint S, 1f they can reach 5. Electrons with mid-
Plane energies to the right of all these lines are lost from the
deViée. Those with energies between ew_(el).and ew(el) are

reflected by sheath at the wall.
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 Fig. 3. Ion potential energy uB(s) + e@(s) vs s, for u]Bo/Te =0, 1, 2, 5.

Lg



~10-

Lo S
- Electrons & Slope-——'—

ions trappe R-1

elpg-¢) Er'gggeodns €, 7€ (€)) : electrons
| | ) - |
- R ions | |

lost Electrons & ions lost

, €
e(¢o '¢|_v) : | |
v XBL7I12-255

Fig. 4. Loss regions in midplane energy space for an
isolated mirror-confined plasma.
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at s.= d (for the ions) or s = W (for electrons). The location or
absence of M(u) determines where and vhether. particles w1th thls value
,of H are trapped If [d¢/dsf is reasonably small, M=~ L for most
'btrapped jons. If udB/ds < ed(-¢)/ds for some s, u where s < M(u),
some iosS‘can be trapped locally, i.e., wifhout pessing through s = 0;
but this case does not ususlly-arise and we will igncre it. Perticles
with turﬁiné‘points beyoﬂd 5 = M(Q)>are lost from'fhe device. Hence

the curve ) v
| €| =»eM(el) = [RM(el) - l]ﬁl - Q[¢o - ¢M(€l)]

is called'the (exact) loss boundary.

4. Density at s in Terms of Midplane Distribution

Now consider a collisionless plasma in the potential proflle of

Eq. (1). The total energy of a particle is conserved:

- |
A q¢s = consts.z e”_+ el + q¢o | (3)

|
=

<+
Mol B

1 will always refer to energies at the midplane); and u is

conserved:

(e“ and'e

[4]

BV eRe | W

”_[Com@iﬁihg these and usihg the tufning point criterion v” = O gives
(2).] Let f£(s; v“,v DR be the. veloc1ty distribution of one. species

only, but

at spatial p01nt 8 (f is expllcitly a function of v” and Vl

its parameters depend on s).

-Assuming that all particles contributing to
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n(s) = fmldvlfdvllf(S;v”’Vl) .
ihcludé's.= O in their orbits, we can use the Jacobian of the trans-

formation in Eqs. (3) and (4) to transform the integration variables
. !

tq midplane velocities

.a(V”,Vle)s‘_ v oRg

)

2 - —r
OPvido iy - %2

2 2 2q _2 . :
where x = = VLO(RS -'l) - = (¢O - ¢S) =3 es(el). We write the inte-

gratioh,ih terms of midplane velocities x E.v”O and y = VLO:

L . xdx :
- 'n(s) = EWRSJ[ydxjr———;—————— f(O;xey), (5)
- \/x“ - X '

where particles with turning points at s' < s do not contribute and

are excluded by restricting the region of integration to

[x|] > sup x_,(y).
s'<s s

C.,'Previous Analyses of Isolated Mirror-Confinement Systems

With Evaluations of the Plasma Potential

1. Nature of the Plasma Potential

On the basis of single particle behavior, Eq. (1) with
¢ = consta.ntllL gives the familiar "loss cone" in midplane velocity

space (or energy space). Since d¢/ds = 0, the maximm of U(s,u) is at

s = L for all pu; perticles with Gi(RL 1) < e” have magnetic moment




trons.’

.electrostatically.

~ neutrals are discussed elsewhere;

-'e(¢d - ¢L) < (RL - l)Tl ;:T”/E, whe?e T and T

;-13— '
t00’sm§ll tb bg confined, and they are iosf in é'tfansit time. The
1bsévboundary{re” =’eL(el) ? (RL - l)el, is a cone»in midplane
Velocit& §pace.‘ | |
::l‘ﬁﬁ£ ordinarily we ' consider plasmé densities, wheré quasi-neutral—
ity must be ensured invthe preéencé of scattering into the loss cone.
The difference ﬁetween-electron and ion séattering rates leads to an
ambipoiér potential, @, which balances electron_énd ion loss rates.

Electrdns'scatter off electrons, ions, and neutrals, if any. JTons

scatter off ions and neutrals, if any, and most ion-neutral encounters

involvé:bharge éXchange. There is also some cooling of ions by elec-
15”'1n the absence of neutrals, the scattering is assumed due to
.CQulomB'éncounters, and the ratio of electron scattering rate (for

cumulati?e scattering through 90 de@ to the ion scattering rate is16

m 1/2 T 3/o -
Ly (4
:.‘gie / Te i

Hence ﬁhleSS‘Ti/Te <-(me/mi)l/3, the electron sééttering rate is the

larger one, and this leads to & positive ambipolar potential‘¢o - ¢L’

which balances elecfron and ion loss rates bj trapping low—u:électrons

17’l8f'-The compiications'arising from collisions with

19li£.suffices, for now, to say that

for /T2 1, @, - g, is almost always positive. However, if almost

~all théfions are tfapﬁed for many transit times, one must have

~

1

perpendicular ion temperatures in energy units. T”/2 is the mean

are. the parallel and

is the mean perpendiéulér energy.

parallel . energy, T,
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In this paper we use the term "isolated" to refér to & mirror-
confined plasma whose density is zero outside the.mirrors so that con-
dificns theré are irrelevant to the plasma contained inside. Usually
this;invoives assuming that U(s,u) has a maximum near s = L for all «
representing trapped particles, and that all particles not trapped éy
this poteﬁtial are lost from the system immediately. In the approxi-
matioﬁ that the maximum of U is at L, the loss boundaries for the
system are just

e - (R - Dep + aldy - £ (6)
Thus'thé loss region in midplane velocity space is no longer 8 cone,
~ but (in_this approximation) a pair of hyperboloids}xa one for‘electrons
and one;for ions, as shown in Fig. 5. This pair of boundaries is -
idénticél with the pair in Fig. 4, which is drawn in enérgy space.

2. Survey of Fokker-Planck Calculations

With the assumption of instant removal of untrapped particles
(the:limif of zero transit time), the steady-state distributions are
zero in their respective 10ss regions. With these as boundary:condi—
tions; the distributionscan be found, in principle, by solving simul-

20,21 for ions and electrons in

‘vtaneoué Fokker-Planck equations
(s,v”,vi) phase space, with some appropriate -source term fof each

| vspeciéé_(or without, if a.slow decay is allowed). If instability is
éléo a scattering mechanism, the scattering terms are larger than for
Coulombvinteractions alone, but this makes no conce;ﬁual change in the

process as long as the scattering rate remains very small compared to

typical bounce frequencies.
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Fig. 5.- Electron and ion loss boundaries in midplane Velocity space

when the plasma potential is nonzero.
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Carrying out this calculation is difficult, and simplifying
assumptioﬁs have:always had to be made. (Note that the location of
the_bouhdaries depends on the solution of the problem.) We list some
of thgée aésumptions, roughly in order of incréasiné severity:

(a) 1In the calculation of ion scattering terms due to electrons,
thé electrons are assumed Maxwellian.

(v) _in calculating ¢O - ¢L’ the loss region for the ions is

taken to be a cone of altered slope

e = (Regp = L)€

instead of Eq. (6). Here R = RL(l + e¢O/Ti)_l, representing the

eff

loss cone angle for a particle with energy e“ + e Just equal to Ti«l7

¢L is taken identically zero, as the reference potential.

b(c) The s-dependence of the problem is ignored bepause the de-
creaseiin scattering fate with s is more or less compensated by widen-
ing of fhe loss cone with s. This is equivalent to assuming a square-

well pdtential ﬁrofile, hence constant density.

(d) The s-dependence can be calculated from the midplane velocity

dlstributlon u51ng collisionless orbit theory:’

(e) Given condition (c), the midplane ion distribution is sepa-
rable in speed and pitch ‘angle. |

(f)' Given condition (c), adequate information is obtained by
SOlViné a one-dimensional Fokker-Planck equation in energy alone.
(TheAaniSotropy in loss regions is translated into a loss factor in
the scaftering raté.)

(g) The ion-electron interaction is neglected.
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. (h)A‘Ion and electron sources are assumed equal and processes

inVoi?ing péﬁtr31S'are ignored.
>   (i) -The plasma potential is ignored.

 ﬁs¢§¢ral authors have used Variéus of these assumptions'in sélving
for loss rétes, distribution functions, midplane potential, axial pro=
files,:efc. We list tﬁose involving Fokker-Planck calculations, along
withithe'assumptioﬁs contained in each (listed above). A "+" means
the assumption is made; a "-" means it is not made. A "+" means both

cases are treated, and a blank space means the assumption does not

apply. '

a b c d é - f g h i
Roberts ef a1.22s23 L+ + - -+ + o+
BenDanieil’eh + + + + + - - ; -
Fowler and Rankinl9’25 + ¥ + 4+ | + - - -
Killeéﬁ and Futch26 ~‘+ .+ + + | ¥ - - -
Marx_and:Killeenef‘?’l5 + = # - - - -+ )

17 13

In addition to the papers mentioned, Kaufman™ ' and Persson = have done

calculations of axial profiles of density and @ based on 5-fuction

29

distributions in the collisionless limit, and‘Post,28 Newcomb,
80 13

Grad,” Persson, and others have discussed the nonlinear integral

équations_for @(s) wbsained from quasineutrality when assumption (d)

_holds. The Newcomb result is discussed in Appendix D.)

In the case where electron and ion sources (integrated over the

trappihg region) are assumed equal,.¢o - ¢L is found by equating

17,1,26,13,15

approximate electron and ion loss rates. ‘Then in calcu-



~18-

lating the profile @(s) from the quasineutrality condition one ignores
'the‘density of loss-component particles (on their way out) since they
A v 31 _

‘are assumed to exit "immediately" on being lost,- > and also uses a
bettéf approximation to the true loss criterionmv For examble,
BenDéniel ca1culates ¢O using a single escape éngrgy e¢o for the elec-
trons (puiely electrostatic trapping) with theielectron loss rate as
caléulaﬁed by Rosenbluth et al.el But in deriving ¢s’ the electrons
~are assumed Maxwellian for e”.< GL(RL -1) + e¢0,52 cut off abruptly
at the‘loés boundary.

| OhLy.the Fowler and Rankin and Killeen and Futch papers treat
more général sourceé, namely ionization events which create cold elec-
trons (trapped) and cold ions (untrapped), as well as an energetic ion
source. | .

5. The Zero of Density near the Mirrors

With the assumption of instant reméval of untrapped particles
(the_limit of zero transit time), there are no particles outside the
‘maxima of U(s,u).' Assuming that these are at s = +L, the density goes

to zerq there in a manner related to the behavior of the midpiane
velocity distributions near the loss boundary. With these assumptions
and assumption (d), we have the followingf
Theorem 1.
If the distribution in midplane velocities x,y goes to

zero at the loss boundary x = xL(yg) in such a way that

f(x,y) « (XL2 - xe)p, with integer p >'O,

as x ~ x from below, then
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n(s) « (L - S)2P+l ‘as s » L from below, .

provided the maximum of U(s,n) is a simple one:
u(L) - u(s) « (L - s)°.
|

17,1,26,13,15

calculations give p = 1 (f has finite, nonzero slope at

the loss boundary), so that n(s) « (L - s)3.
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 SYNOPSIS OF CHAPTER II

_ Thefiﬁportance of several instability modes in mirror confinemenf
dépends on.the axial profile of density, n(s), near the ends of the
plasma.and particuiarly between the mirror and the end wall outside
the nmirror. We show in part A of this chapter that these end regions
(coliectively called region II) are usually plasma-like (i.e., have
small enough Debye length) even if the coulomb scattering loss from the
confinément region is the only source of the external particles. The
density in region I ban be estimated roughly in terms of the ion loss
flux Esee Eq. (10), p. 23], because the average ion streaming veloéity
is more or less a known function of position (from energy cbnservation).
In thisvéxterhal region these ions, all of which are escaping, are
neutralized by electrons, most of which cannot be escaping. This can
only happen if the electrostatic potential decreases from the mirror
to the wall.

‘The electron or ion density at-e‘point in regiodii IY¥ depends on the
electron velocity distribution and the potential energy profile |
U(s,u) = uB(s) + q@(s). If the "collision frequency" is small compared
with the reciprocal transit time, the distribution in phase space can
 be generated approximately from U(s,u) and the distribution in velocity
at the midplane (s = 0), using collisionless orbit theory. [Recall
Eg. (5). of Chapter 1}1 This is discussed in part B of this chapter;

13

the discussion largely follows Persson. These midplane velocity dis-
tributions are thé solution of some complicated coupled Fokker-Planck
equatiohs and are non-Maxwellian over an important part of velocity
space (the "loss region" or generalized loss-cone), because of the rapid
barticle'loss. For the purposes of this study, they can be modelled

by analytic functions (which are-not separable in energy and pitch

angle). [See Egqs. (B16), p. 126, and (B8), p. 116, and Figs. Bl, p. 114}

énd B3, p. 116, for ions; see Eg. {Cl), p. 142, and Fig. 11, p. 47, for

electrons.}
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II. NONISOLATED MIRROR PLASMAS

A. Demonstration of External Plasma Cohditions

i; {Particle Loss Flux

ih'the.study of instabilitiés in mirror plasmaé, a topic of con-
siderﬁblevinterest is that of boundary conditions on the waves aﬁ_the
‘axial termination of the plasma. For the low frequency flute modes,
ﬂ one has the possibility of slowing or quenching the growth if the

S : - L 3.
plasma is electrically connected along B to conducting walls.33’3 s375

For the Post-Rosenbluth loss-cone instability,55 the reflection or
damping Qf the axially convected waves dependé on how n(s) falls
off,?fs and hence on.the behavior of the distribution functions near
the lbss boundaries.

For étudies of this type, thé "isolated" plasma apprdximétion of
section IC is inadequate; a further sophistication is necessary. In
this sectrio>n we show that in many cases of practiéal interest the
Streaming loss alone can give rise to a charged-particle density out-
side the mirrors that is generally iarge enoﬁgh*tp require quasi-
neutrality there. We slso show that with equal ion and electron loss
fluxes, the loss—componént electrons alone cannot maintain the quasi-
neutfaiity, and that the ambipolaf ¢(s) must continue to decrease out
to the wall, with the result that some energetic electrons will have
turning points well outside the mirrors and yet remain trapped. These
electrdns, which we dehofe by superscript ST (streaming outside the
mirrqrs_but still trapped) assist the loss-compon;nt electrons, de-

noted by superscript SF (streaming, free) in balancing the ion loss-

component density. The regioh between mirrors (henceforth called
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region‘I) is thus not isolated from. the extefnal region (regioﬁ II:\
s>1L).

- W§'§dnsider two qualitatively different tyﬁes of 1osé méchaniSm
in.ﬁﬁﬁﬁifollows.' Thé first is a smooth diffﬁéion in e”, elkdué ?o |
mény éveriappihg long-range encéunters with cﬁarged particles (Céulomb
scattefing) or due to fluctuations andvunstable ﬁaves.» Guiding centers
wandé#irandomly but continqously in e”,.el'(or ééunua&entiy}am;iﬁ)..
Partiéies'wander into the loss region only a small amount before their
transit takes-them out of the device, or at leaét'outvof the region
wheré,siéﬁificant scattering occurs (particles with e”, € very near
the loés'boundary eM(el) spend long times near their "turning.points"
at s = M( e,l), but there is lititie chance for ‘scatteripg while they are
there.) The second loss mechanism is collisions with neutréls, which
producéévgbrupt large changes in e”, € We restrict our éonéideration
here"to‘loss by chérge exchange, where a confined "hot" ion strikes a
cold néutral and results in a fast neutral and a cold, untrapped ion.

For statistical purposes, this process "moves" ions discontinuously in
IVelocity-space. Tons bheing lost by charge exchange do not spend long
'timés ﬁear the mirrors since their u =~ O, but they do spend rather
lbné timés in the interior of region I because their parallel_veloci-
‘ties at birth are small.  They afeveventually accelerated out by d@/ds,
- bﬁt they may contribyte aﬁ.appreciaﬁle ion density ngx_at,the-midplane.
If diffusion takes piaceanly in region I then the streéming ion

flux is independent’ of s in region IT except for the "area factor"

B(s)/BL;
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4 : L .

_ B(s) dn ‘

Fi(S) = f §-§_S_T a% <sl)dsl for s > L. (7)
0 & loss _ .

~If v is the inverse loss time of a typical ion by the smooth dif-

fusion méchanism,36 then from Eq. (7)

B, fors > 1, (8)

‘Fi(s).~ RsLnQ

where_nporefers only tb the hot (contained)Aions. noH + nocx = n,-
(Since-Fi(W)‘is measurable, Fi(w) = RwLnOHQ may be taken to.definevv,
or Fi(W) = wanoHv ﬁay be taken to define an..effective leng£h f. We
adopﬁ thg'first convention inball that foilows.) We wili occaéionally
denoﬁe as the "scattering pérameter" the ratio |

v Fi(W)

4] anoHCi”

with éi” é (2T”/mi)l/2 and T” the parallel "temperature" of ions at the

midplane. It is the ratio of a typical transit time L/ci” to the loss

“time v-l. Tt is thus the smallness parameter for all of our analysis.
' 19,26

In the case of energy-preserving scattering, several authors

0 is the cumulative 90 deg

scattering rate and T is the probability of loss given 90 deg scatter-

_ha#e expressed v crudely as v = Tv,, where v

:_ing;’i;e., approximately the ratio of solidxangle subtended by the
loss région (ét a.givén speed) to the total solid angle.

| Thé formulation v = nvo with T <1 is reasonable er largé mirro?
ratios.when particle sources are far frbm the loss boundary, but it is

inadequate for small RL - 1, where v » c”/L while v, remains finite.

0

»




Rt

"~ with negllglble v”), Let Tl _ by a typical value for ¢

"‘for RL~- 1< l T

In thls case an effective v ‘can be calculated only by solv1ng the

pltch-angle diffusion equation with the given sources. It is also

,true.that ions with € = e6¢o —‘¢L)/(RL - 1)w1ll,be losf significantLy

15

duo to cooling by the electrons. With sources neglected,zand a

simple random walk in pitch angle only, it can be shown that
-1 '
1)

(1 - vL/c”) v/v ~ (R, vhen R - 1 is small.

2. Minimum External Density and Maximum Debye Length

Consider the density, in region II, of ions lost by.the smooth

diffusion mechanism. B(s) decreases with s in region IT and pB is the

~ dominant force for these ions. (The potential @(s) probably also de-

creasésg) Tons are thus accelerated out from s =~ L, gaining parallel

energy
%mi"ue = eib(RL - Ry) +eld - 4)

by the time they reach s = W (they creep over the barrier at s = L

Loss 1 among these

ions; vThen
R0 [1,°%%(R, - R) + o8, - B,) *1*‘2 v
0, (1) ~ i” I ..} L R;J” 0 R 7 .

(10)

Loss

The value of T depends oh the mirror ratio as well as T” and T, ;

l
Loss T Loss N
1 ~ L 1

¢ ) + T”]‘ as & look at Fig. 6 1ndicates (the en-v

>> T” but for RL -1 >> 1, T

(B, - 1) [(¢§f

sémble over which € is being averaged lies very nearly on the loss

Y-,

'boundary).

If charge exchange is important and if it occurs with a rate Vox
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 Fig. 6._ Midplane energy space for ions. Contours of ion distribution
for large mirror ratio (top) and small mirror ratio (bottom).
 Enefgy of typical'loss—component ion (small circle) and typical

frapped ion (cross).
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and mostly in the central region where } =~ ¢O,-then the resulting cold
ions are accelerated out of the plasma by d¢/ds; they produce an addi-

tional density. in region II, which comes to

0, (W) = [Ee(%»f '?¢w)/mi]'l/2Rva6xn0H | [ (11)
at s = w The quanfity RWI{\{.canH is "just thé charge exchange loss
fluix at s = W. ‘(Both Eqg. (10) and (11) apply at -other points:s in
region Ii if W is replaced by s eVerywhere in the equﬁtions and if s
is not too near the mirror, where Eq. (10) is improper.)

Whén:both loss mechanisms are important, the ion density in
region II is just the sum of Egs. (10) ana (il). Thése ions, whqse
' density ¢annot be matched by SF electrons, as we will shéw, cause &
large ﬁésitife potential and atfract electrons (from'region T if there
are ﬁd others available) until quasineuﬁrality.is'established; pro-
vided’théﬁ'the resulting Debye length is smalier than thé éize of the -
external region. We have

' 7€ T(S) 1/2
Max kD(s) = Max e s
I<s<W e, (s)
| . XT on

where we have assumed nev'mni and written o (s) for the local mean
electron temperature at s. Tn the absence of ary externally supplied
electrons,'we expect this temperature to be less than or at most
equal to the midplane tempersture Té. Using this fact and Egs. (10)

and (11), we have
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. , . 1/2 ‘v\-l/e | |
X s) < ;——g—— -1/2 Eﬂg_x 10
L§2<W-KD( ) \hwe no ' Q 'ci” } (12)
'with - :
thy . _ . \
Q= {gi?SSQRL - Ry) +eldy - 4 fl/2.+ Vex | ©(Fo - ¢w)%—l/2i fgf .
Ot o AN TR R
i
For vcx/v XK 1, we hévé_nbcx << Ny and
[2hoss(r - R )+ e(d, - )"
Q-l/e " L~ R L W ) C13)

T

Loss | If ﬁ 1 d th
| ~ Tl. L - Rw ~ an e

electron temperature Te <<'Tl, we have

which is a meximum if we assume T

1/4

18
Q,..l/2 < "‘i (RL - RW) ’.

T

since é(¢L - ¢w) cannot be much greater than T . Now certainly

v>1/2 Voo deg

'going to O for RL -+ o and to oo for RL -+ 1), wheie

o -1 _ -7 T In A -3
. Vgo deg (sec ) ~ 0.7 x 10 W (ninem 7, T in .e_V) (1)

is the usual cumulative 90-deg Coulomb scattering rate for ;ﬁrticles

is not Maxwellian we assume Eq. (14)
2 2,1/2
/2 _ (Ty7,°) /v. Tf

i

_ holds within a factor of 2 or so, and use T

of mass A (amu).16 Though f

instability is the dominant loss mechanism, then we expect v to be

much larger than this Coulomb estimate.

for R, - 1 ~ 1 ( the actual coefficient depends on R,



- .27-

Using these Coulomb scattering losses alone, consider two.
o o ,

examples, both with R, = 3, R '= 2, A = 1 amu, L = 100 cm, and

?l 2> re:
(1) for ng =‘101° cm'3, Te‘= 10 eV, T” = 10 eV, T, = 100 ev:
. ! . i
L : |
. : o i
. xD(o) = 0.02 cm _
_Q'1/2 <<1.8 xD(w) < 1.5 cm
%ﬁ- = 3.3 x 1o'ul»
-l
(2) for n, = 1072 cm'5, T, = 100 eV, T” = 1 keV, T, = 10 keV:
: KD(O) = 2.3 x 1072 cm | _
/2 <18 N(W) <5085 -c.
- %2- - 0.h x 107 )
-l

In general this upper bound on AD(W) scales as

C1fe -1 1/ 3% 1/2,,. . -1/2
‘L 1/2?0» lT“ / -TJ_B/ Tel/ei(ln A) l/

 when_the loss is dominated by ion-ion collisions (i.e., minimal loss).
When charge exchange ‘losses are dominant,
_-1/2 | \1/k HﬁwL -1/2
Q-l/2' RwLV§ I R e chi
4 .

4 T4 oty

~

Consider & low density, high temperature system, with R =3, R, ~ 2,

- and I = 1045 cm:

0

‘ ny = 107 cm 7, Te = 100 eV, T” = 1 keV, Tl = 300
1 .

keV, and v__ = 0.2 sec :
T Yex

: (3)vfor n
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1/4 :
e(f, - ¢.) | N -
/ o
R e |
v . Vo
X _ 4.5 %1070 i |
c, /
il

vInﬁthé'ébsencé'of rapid instability losses, the loss-component par-
ticies in this example probably do not constitute &8 Pplasma in région
II.

By'these examples we have verified the intuitive scaling‘ﬁased on

nw/nO ~'Rw(tv/ci”); i.e.,
g0y € Rav/e R, )

where'v is the total ion ioss rate. We have also shown that,fdr rela-
tively high densities and nqt-too-large temperatures, the scattering
loss:albﬁe usually éives rise to an externdl plasma in region II.

3. Electrons in Class "ST"

Since electron and ion fluxes must be equal, however?7, the

dehsityfof streaming SF electrons at s = W is

s

0]

'*f#SF(W) N Fy (W) _ n_-_Te(RL - R) - e(d, - ¢W)"l/2 Rva\
Te b - |

N (m/m)T) 4]

ell

Where:v;vT”,"and ci” still refer to the ions. One sees from this that
uniesé é(¢ -.¢ )/T ~R_ - R, the streaming electrcn'density nSF is

: L W' e L RW e

insufficient for charge neutrdlity at s = W, and similarly at s not

too near L. But if e(¢L - ¢W)/Te ~ R, - R, ~ 1, many of the electrons

»




far
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at's > I would be in class ST, not in SF as assumed

hysical Significance of External Parallel Electric Field

"*Bécause of the small factor (m_/m,) 172 10 the equation for nSF(w),

e must either have nST(W ) > nSF(w ), or e(¢ - ¢ )/T RL Rw, or

both. The latter alternative means an outward electric field of order
Te’dR/dsl, i.e.,

edg Te

. ——— N ——

dB BO

“in the:outer portion of region II. (In Appendix D we shsll dérive the

same result by other-dimensional methods. Such an electric field is
always present when magnetic (or other)38-forces accelerate one species
(say,vwith lower mass) more than the other. The magnitude of the elec-

tric'field is such as to make the acceleration of a typical electron

equal that (primarily magnetic acceleration) of‘a typical SF ion. This

: is done by increasing the number of electrostatically decelerated

electrons. The same situation should occur in plasma rocket nozzles
where the magnetic field expands, although we find no explicit men-
tion of this in the literature.

B. Modél for Estimating the External Density

1. ColliSional and ColliSionless Particle- -Following

When there is no scattering, the density at any point s is related

-  to the outer portion of the midplane velocity distribution by Eq. (5),

' assuﬁing'there are no sources with € > € between O and s. This re-

flects tbe fact that the velOCity distribution f(s v”,v ) is the image

of f(O x,y) under the mapping of’ Eqs (2) and (3) and under the condi-
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tion (on the normalization)7fhat the spatial densify of guiding cen-
téfslinvfhe_image of 2mydydx increases prbportional to B-as the field
vlines.cdnverge. This mapping we call V since the corresponding phase
épaée density in canonical variables is governed by'fhe Vlasov equa-
tion inug and v”. Consider, for example, the ion phase spage cross
sectioh, at some fixed u for which there is an x-type singulaf point

= M(p) near s = L. The separatrix (see Fig. 7) is the phase-space
loss bOundary; and at s = 0 it is just x = xM(y), the midplane loss
boundar&.- (y2 o« uBO.) The orbits are deterministic, as the Vlasov
equation is linear. Thus if £(0;x,y) = O for x| > x (y) then the
density is zero beyond s = L. The same is true with L replaced by
M(u)-

When the orbits.are not collisionless, the problem of the density
of particles escaping over a potential barrier is not trivial. The
case with a velocity-independent barrier where the diffusion coeffi-
cient D is velocity- and space-independent, and where the dynaﬁic

friction is just (Dm/T)v, i.e.,

o O 3 [Dm Pr
v — + 9 (s -L) —=— | — vf] +D —

3s v dv\T v

(with.ge some constant and T the constant temperature) was treated by
Chandrasekhar,39 with the additional requirement that the reference
or»midplané distribution (i.e., the boundary condition, f at'so) be
Maxwéllian (rather than truncated or damped by rapid ﬁraﬁsit time of
the escaping particles). The difffculty of generalizing this situa-

tion analytically to the ion escaﬁe problem has let us to seek simpler
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Fié. 7..'Ion vhase space for typical_given L. Unpopulated orbits

shown dashed. Dot-dash'iine is where B is largest.

far
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if more ad hoc techniques.
We look thus for a model by which we can estlmate n(s) for s > L &

due to scatterlng (etc ), w1thout really changlng the Vlasov equations

*a

~to~the'badly coupled pair of Fokker-Planck equations (parabollc, non-
.deterﬁinistié) including the detailed scatferiné'mechanism. We need
only é érude estimate of the density n(s), not the detailedlsgape of
f ét s ? L;»so it is hoped that,Fokker-Planck solutions can be circum-
vented.

‘To this end, notice that in the présence of slight scattering,
f(s}v”%vl) is not mapped by V back onto part of f(O;x,y)'but onto some
function g(O;x,y]é) which differs noticeably from f near the escape
boundar&. Those particleé which have scattered into the léss regibn
during their transit from O to s, are mapped by V onto that part of
midplane velocity space s,y outs1de the loss boundary This deflnl-
tion_of g ‘is equivalent to defining x and y (for a particle at s) to
that the particle would have if it returned

be the values of v” and vi

»(under time reversal) to s = O without undoing the scattering. The
| deflnitions of X,y in terms of u and H are the same (§ xea €” =K -‘“BO
: -q¢o, 5 y €= gBO, so that x,y is equ;vglent to H,u except fqr asym-

metries in x), but now u,H are stochaktic functions whose expéctation
Value'ih'general depends on s. But if scattering can be neglebted;inv w
the low-density region IT and at the sihgular points M(u) ( in'region T
but near's = 1), the deﬁendence of g on s thére is negligiﬁle} For
this case we abbreviate g(0;x,¥]s) = g(x,y). |

| How does g(x,y) compare with the exact, observable £(0;x,y)?

Consider a typical ion near the separatrix. Starting from s =~ -I,




where it must certainly be trapped in order to bave v > 0, it wanders

ﬁypigally'outside the separatrix during its transit to s = O, énd con-

‘tinues to do so during transit to s =~ +L,'where it is'lost. . If the

ion id$é bQundary in phase space is treated as a source of these ions,
the widﬁhIOf the diffusing‘tuil in velocity varies roughly as the;
square root of time, starting with the particles near s = -L, where
the diffuée tail is freshly "scraped off" by loss of ions thaf were
previoﬁsiy outsidé'the sefafatrix; Thus by symmetry, the spregd of
g(x;y) outside xL(y) is about V2 times the spread of f(O;x,y)_outside

xL(y).  Atvthe sihgular point, the loss-component particles_are

'scraped'bff (see Fig. T), i.e., not reflected; Since there are no

returning particles for s > M, g(x,y) = 0 for x < —xM(y). g is thus

not symmétric in x, although f is.

Another consequence of this>”scraping'off" at s

M(i) is that

the density for this given p abruptly décreasés at s .M(u).-'Inte-
gratinéfbver u to get the total density, we conclude that the ion
density must fall off more rapidly than in the collisionless case for

s'just inside L, :but it falls off to & nonzero value at s = L. To

'-preserve quasineutrality, the electron density must fall of similarly.

Since electrons have novsingular point inside s = L, this requires 8
dpr»in pOténtiél.just inboérd of the mirrors. This phenomehoniis
nOt dependentvoﬁ any modei assumptions except that scattering_ﬁe zero
at the singular point. (Particles near the separatrix spend long |
times ﬁear the singular point, as in the case of the invertéd pendulum. )

The diffusion just discussed could be stated as a diffusion in u
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and the aétion, J = mﬁvndé?'bﬁf the éésum?tidn of.well;defined J in
the_cahonical equations breaks down for the loss component particles,
anda/aJ 'i.)écomes s'omewha{: undesirablé at the separatrix, even when J
is fédefined so as to change continuously across it. |
wé_ﬁse.ordinary velécity spece coordinates and velocity distribu-
tions because of théir widespread usage and direct physical interpre-
tation. (For example, the physical significanée of df(u,J)/u at con-
stant J-is not as obvious as that of af(v”,vl)/avl.) In addition, we
_deal with nonsymmetric distributibns in v” (e.g-, Svaartiéles in
region II) so that v” is more appropriaté'than e”.or H.
éihce ordinarily one avoids having sources in the loss region of
- phasebspgce, we ignore their contribution to the éxternal density. If
such éources are present between s = O and & = L, they may be taken to
be at -s instead of s, so that they are counted in the fictitious mid-
planetdiétribution g. Cold ions from charge exchange are in this
'class;.but are treated separately in what follows.

- 2. Smallness of Spatial Diffusion Effects

Spatial diffusion due to radial density gradients makes only a
swall contribution to the effective v and the amount, A(xe) or'A(yg),
which an ion diffuses in parallel or perpendicular energy in a transit
'time.  Eecause the step size for cross-field spatial diffusion is of
érder éi (the ion gyroradius), the spatial diffusion coefficient is of

2:

~order voai2 while the velocity diffusion coefficient is VoCy The

spatial'contribution to the spread A(xe) in velocity-squared near the

loss boundary is then of order’
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s v\ , @ 2e a(g, - ¢L)'!
A ~ = | —_— — —_———
(X ) c” Ly dr i m, dr . J "1

'[and similarly’for A(ye) with an additiqnal faqtor.of (RL - 1)-1}}. We
have simply used the equation fof,the approximate ién loss boundéfy in
terms’éf'RL and‘¢o - ¢L, which vary with "radius"‘(i;e., flux surface).
The factqf invdlving vol/2 is jusf the‘normal velocity spreading'in a
transit time (see, for example, part 3 of Appendix B), and tﬁeSe cor-
rections_are thus of order ai/rp, where rp is the'sqale length over

vhich R and @ change radially; typically T is of order of the plasms

radius.:



-35a-

SYNOPSIS OF CHAPTER III

_Thé pr@ncip&& results of this study'of external'plasma are given
in this chapter, in the order: 3Ions (A), electrons (B), and potential
(C). We begin by showing that the conceptually simple model of havingl
all the escéping ions come from the loss boundary in velocity space is
inadequate because it gives infinite density near the mirror; instead,
"ions must populate s finite fringe of the loss region. On p. 38,
theorem 2 relates the density n(L) at s = L to the loss flux F(L) and
the fringe width ("tail"™ width) 1/ of the distribution function. Then
l/K is'estimated from the collision rate. From this one has estimates
of the denéity at s = L proportional to (loss rate/typical ion bounce
frequevncy),B/LL Lsee Eq. (18)]. Continuity and energy conservation then
give the ion density at s » L [Eq° (20)] in terms of the local magnetic
field ratio R_ and the potentials ¢S and ¢L, The additional density
contributed by charge exchange is given in Eq. (21), p. 41.

The electron density at a point s in region IT depends mainly on
the potential energy U(s,n) at s (locally), which involves R, and ¢S;
The density is given at s = L by Eq. (23) (see Figs. 12 and 13) and at
the sheath edge near s = W by Egs. (26) and (27).

Eqﬁating n,(s) (a function of R, and ¢s, etc.) with n_(s) (a func-
tion of Rs and ¢S, etc.) would of course give ¢S as a function»of Rs
fletc.). This is computed in Appendix F (see Fig. Fl, p. 177). The
procedure gives fairly simple analytic estimates at s = L [Eq. (51) if
R - R, ~1, or Eq. (32) if R, - Ry, <<'l] and at s = W_ [Eq. (36) or
(37), pz'57]. ‘This latter is the magnitude of the potential fall across
“the sheath. Typicdd values are given on p. 58,-and their scaling with
v explicitly and through 9, is discussed on p. 60.
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~ ITI. RESULTS OF MODEL CALCULATIONS OF

EXTERNAL DENSITY AND POTENTIAL

A. ion Density Outside the Mirrors

1.i'ioné'Near the Loss Boundary _i : | ' |
Aé”diSCussed in thé preceding section, we seek to describe n?F(s)
- for s z'Liby following the collisionless dynamics of a set of particles

" placed just outside the midpléne loss boundary, adjusting this set to

g

reproduce a specified loss flux. Since real diffusing ions are removed
as théy wander past the 1oss boundary, the simplest model would seem to
be to.blace all the escaping ions exactly on the escape boumdary. This,
'homever; would lead to n?F(s) having an infinity at s = L (which would
physicgliy be rounded off by diffusion due to fluctuations there). We
.demonétréte this singularity as follows: Since at s = M(u)tbhe poten-
tial enérgy is a maximum, particles on the escépe boundary will‘havé

v“ =0at s = M(n); and at some s a short distance away,
2., 2 1 o 2
BV = - dU(sm)/astly g x5 (= M),
for &1l p for which s = M(p) is a smooth local maximum, i.e.,
2 2,
o < aTU/as ]y(,y

qu'iffg(x,y).= &5(x - xM+)fy(y), where xM+ is on or just outside the

exact loss boundary xM(y), then

a(s) «_stgﬁydy[ d}-{_S(x - 3y )2 (y) o [ 2mydyt, (v)

xy(¥) V2 - x " (y) SJX/xMQ(y) - x *(y)
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Butfxme(y) -,xge(y) ié‘just'vue at s. So with -

o 42 s, _ f 71/2
YOI R | il :(y)])l i | o
o as M[u(y)j[J | S
'Qﬁéréfﬁ(y) = mye/eBé, we have |
o | L+A

: emydyf (y)
j n(s)ds «.[ -——-—L—j —
L-A h(h) L-a 18- M[u(y)}l

. Lo vds

The s integratioh'onvthe right hand side.diverges logafithmically.
' When AJﬁwa - M(n)| for more than zero measure in u(y) on which
. fy(Y) #vOthhe double integral diverges as a qqnsgquence. Thén sihce
there'are:an infinite number of particles betﬁeen L - A and L + A, the
dénsity is infinite somewhere in this interval.v |
_Yét if small-angle scattering predominates, with only slight

scatteriﬁg during a single bounce period, then (x,y) forvan escaping
ion éahh@t be tdé far from x = xL(y). Physically, then, a ;mall loss
.rate’qanfproducevfairly 1argevdensities near s ;’L aé particles creep
over the_potenfiai.barrier,'creatingva "traffic jam" there. |

:.SinC¢ the siﬁplest model is inadeqﬁate, we take g(x;y) =1go(x,y) +
| gl(#,y),bwhére:go would be f(0;x,y) in the limit of zero transi£ time;
: 81
_Qbservéd ioss flux. Only‘the width of the fail of gl should be import-

' in¢ibd¢s-a "tail" for x > O and y ~ yL(x) sufficient to give the

‘ant, not the exact shape.
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2. Rélatibn Be tween Density and Loss Flux
.:In-Appehdix B we prer ‘
‘Theoreﬁ~2: If‘é(x,y) is zero oﬁfside the loss boundary yL(x) for x < 0
o and decays oufside'fhe.losé bbﬁﬁdar& for x > O‘wifh'a decay

1 1

width K~ © 1in y2, and if K = << ng(x) for all x, then

(L) ~ (R - l)'l/eF(L)K;/?- | (16)

(For'mafhematicai cénvenience we have written the loés boundary és
yL(x) insﬁead of xL(y): "Outside the loss bounaary" refers to y'<@yr(x).)v
In other words,kin the dimensional eQuation F(L)_; n(L)7, the velocity
v is prépértional to.the square root of the decay width ong in
velocity—sqﬁared.v We see then why the mddel decay width must be non-
zero if_the loss flux is nonzero. v(The theorem is proved assuming K
independent of y,bbut iﬁ holds even if K depends strongly on y;)
'.'The height of gvat the originﬁis crudely Qf order.no(c”cl?)‘l.
If thé.height of g(x,y) at the loss boundary y = yL(x) is ¢(x), with

0.0

[ ae®)e(x) ~-

JO . CHC_L K

n 1

then F(L) « 1/k° and n(L)/ny ~ iF(L)/nocH}B/u. This follows from the
definitions of F(L) and g. .

3. Distribution Tail Width and Diffusivity

prpendix B continués with a very rough estimate of « in terms of

\

the velocity-space diffusivity, or, equiValently, the scattering rate.

Tt is found that indeed k1« vl/2 < F(L) ;/2; in fact
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J3/2 -1/2 3 1/2 an

(RL-l)

Ko (xB/e”)

w1th D the bounce- averaged ve1001ty diffusiv1ty for ions near the loss

'.boundary, D~ (c“ + cl )vo,‘where v, 1is the effectlve scatterlng

0

rate (v defined in Eq. (14)° if Coulomb scattering is domlnant )

V90
k. Ion Den81ty at the Mirror and Beyond

Using this estimate of K in theorem 2, one has

n, (L) v 1/2 Lv \B/M -
~ R P— —_— - L (18)
%o Yo cin/ ' '
, whereeA : , 5
| P = —-2(—-“_1 and 0”2/0.!.2 s 1.
¢y (R = 1) :

Those. ions found near x = L are highly anisotropic,'with almost
~all of tneir energy in éyration. ~This may lead to instabilities which
bmodulate U(x,u), and especially near s = L these modulations, say of
order e8¢ in amplitude, can effect K if they are large enough The
ions found near. s = L spend long tlmes there because they are near the
loss boundary, consequently the loss boundary is effectively dlffused
to a width of order e8¢ in parallel energy. (The same phenomenon makes
the conﬁinnum limit of atomic physics indistinct.)ho‘ Since Kfl refers

to'fhe_spfead in ye.instead of x2, we replace Eq. (17) by

K- /c” ~(R.L - l) 85¢/ ”

if this larger than Eq. (17). Assuming this diffusion at s = L is

equlvalent to dlffu31on of the fictitious distribution g(x,y) at the
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midplane, the density n(L) is reduced by a factor of order

L = L -
(= 2/ e )7

whenfcyelofron diffueion dominates K. In fact, when both processes
contrlbute, Kfl should be just the sum of the two values given above.
Equatlon (18) was derived to corroborate an earlier estimate
based on another model for g(x,y) which falls off exponentially with
y - yL.instead of y: - yL?;. This model is. also included in Appendix
B. Writing g(x,y) = go(x,y) +-gl(x,y), where g, would be f, in the
absence of scattering, we' choose gl(x,y) so that g = g, + g, has con-
tinuous'slope and gives the same density as 8q- (This last requirement
is & so@ewhat arﬁificial one whichhelps give an estimate of the dec&yv
width.)-_Fer go(x;y) we take a function Maxwellian at large velocities
inside the trapping region, but going to zero at the loss boundary
y = yL(X) | | |
The decay widfh k_l iny - yL is propertiohalxto the typieal decay

width K1 in y2 - yL%f; and it is again found that approximately

k!« [F(L)] 1/2.

The'ree_ult,
n, (L) /MLy 5/% ’
~ RL(P«/T'I'? (———- - (19)
no \Ci”

compares rather well with Eq. (18) in which one needs a model for v/vo
as a function of T”/TfL amd'RL. (v is the loss rate; Yo is the scatter-

ing rate. Their relation was discussed briefly in section TTA.

i hl
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_...As one moves away from the mirror, this value of ni/nO goes over
S ‘ : :

to . -

7:‘ e iLoss ':_ . o(d. - ‘f;/a
| RO) § "SR, - R) + (¢L 2.) a f—l_\’_\) (20)
20 o _T'l | ' BN |

as in Eq. (10), assuming vy = O 8t s = L. Equation (20) is improper at
, Il , '

s = L; but it reaches the magnitude (19) fairly close to s = L (see

1
e(¢L - ¢S)/T” < 0.02.) The actual transition shape is calculated in

Fig. 8);”v(When T = 1OT" and Lv/c” = 0.k x 10-5, equality occurs at

the lasf'part of Appendix B and is shown in Fig. 9 for typical
parametefs.

5; Effects of Charge Exchange

Charge exchange contributes an additional density of cold ions

. (e

0, () [e(d, - 912 [

R
nH T” s c,

0 ifl

~ Because the charge-exchanged cold ions do not accumulate for long times
s v s . (5 4 " SF .
near s = L as do the SF ions from smooth diffusion, n, (L)/ni (L) is

small. until

2

Ve zﬁﬂﬁunﬂﬁpwg-%ﬂﬂe
Vaiee L Do ] T
| which isitypiéally about 10. (Subsciipt-"diff" réfers to gquantities in’
Eq._(lé),fi.ef,'smooth diffusion.) : |

The estimation of nOH/ﬁO with a given source rate of coid'(say
charge-é#changed) ions is an interesting-and apparently an unsolved

problem. The dehsity n®® = 1 - nfl, of course, comes from ions produced
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Fig.'8. Approximate density outside the main confinement region.

v. = ion loss rate, P = anisotropy factor, T Loss

= mean
1

-perpendicular energy of escaping'ipns.

s
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Bottom curve: computer result,
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almost~cold at and around the top of a pbtential—hill (the plasma

can be rather large. The separation-bf-variables

39

téchniqﬁé.used by Chandrasekhar”” for a Fokker-Planck equation near a

_ppténﬁial); thus nocx
potential maximum fails when a uniform source is'present, and it is
'possiblevthat & Boltzmann-type .collision integrﬁllis more appropriate
for the scattering term when the ions are cold aﬁd can scatter off
ineutrais_of the same temperature as well'as cold.and hot ions. A crude
" dimensional estimate of nocx may be made by equating the production
cex H

rate s'=v n, with n c#/TD, where 7. is the time it takes a cold ex

0 0 D
ion to scatter in energy an amount equal to its temperature TC, or the
time it takes a cold cx ion to drift out of the device without acceler-

ation, whichever is less.

' 'B. External Electron Density in Terms of the Potential

1. "Damped Maxwellian" Distribution

Siﬁce the electron loss bounary does not pass near the origin in
X,y spéce, the electron "distribution" g(x,y) will be very nearly
.Maxwellian in most of the trapping region. It will then fail off near
tﬁe loss boundary, to some small fraction ¢ of its normal Maxwellian
valued ét the boundary, and will decay fairly quickly to zero outside
the loés boundary. We take g(x,y), for the electrons, to be & "damped
Méxwellian": |

g(x,y) = 6(x,¥)E(x,¥),

where*G(x,y) is Maxwellian with temperatures Te” and T_ , and ﬁ(x,y)

is nearly unity well inside the containment region in x,y and zero

well inside the loss region,with a smooth transition in between. A
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'lmodel for_H(x,y) is given by Eq.: (Cl), and g and H are pictured in .
Figs. lO and ll.

2. Den51ty at the error

In Appendlx C we perform the integration in Eq. (5) to obtain the
mirroradenslty ne(L)-gs a function'of.mL = e¢L/Te” (and of P E.e¢O/Te”,
and other-pe;ameters). The result is found to be somewhat sensitive ‘.
to the etrnptness'withewhich H(x,y) drops off,'tut some estimate of
this is made in part 4 of Appendix C. The result is then extended for
s > L out’ to s = W, using an approx1mat10n for Sup €t (s < s), 1.e.,
" for the' integratlon region. We summarize here the results of these
calculations for the case of isotropic electrons (T el = =T, = Te).

Instead of n (L)/n = q)Oech, which one would get with a Max-

. wellian g, we find

0 () =0 5(n) o o o (22)

- SF oy

for & small and @ > 2¢ (ne (L)/no < te ), and

n ST(L)/nV = egquST( a.b,t) | ‘ - ' (23)

e 0~ LG 8,0 8 | |
where the function EST(9,a,b,¢) (replacing e ~') is given by Eg. (C5),
and where ¢ is the height of H(x,y) at the (approximate) loss boundary,
x = xl(y)%eaL E_RW/(RL - RW) for isotropic electronf; and b + 1 =
'measnfeé'the abruptness with which H drops off for x < xl(y)..\Reason-.-t-
-aole values of b lie in the range O <b<ga When t = 0, the profile
:of H atICOnstant-y is a Maxwellian minus a constant for x < x (y).
The functlon EST(@,a, ;&) is shown plotted agalnst (o) for several values

of a,b_invFlgs 12 and 13, whlch also show the pure Maxwelllan result,
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‘Fig. 10. "Damping function’ H(x,y) [Eq. (Cl) of Appendix C] for

y =..

0, ¢ = 0.1, ¢

= 5T, and k' = 2, 1, 1/2.
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Fig. 11. Da.mped Maxwellian dlS‘tI“lbu‘tlon function. Steep curves:
_ordlnary Maxwellian f(x, 0) (top) and same distrlbutlon multl-'
>' ‘pl:Led by damplng functlon of Fig. 10 w1th k' = 1 (bottom curve)
“and k' = 2 (middle). Loss boundary is at x/c” 4/5. A1l 3

curves are almost indistinguishable at thermal veloc:1t1es (1nset)
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Fig. 15. EST(9,8,b,t) defined in Eq. (C5), vs @, for £ = 0.1, a = 2, and b = 0,,0.5, 1.0 -
(solid curves). Dashed curves: Eq. (C7) (approximation to EST) for ¢ = 0.1, a = 2,
b = 0 (lower curve) and b = 1 (upper curve).
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e¢; and an approximation to EST,

EST(@:an:g) ~ O°5(a_- + ‘l) [(b +1) - g.(a + b)J @5/2 (214')

.good forap < 3, b<1l, and 26 < ¢ <1l. For e¢L or order Te’ then,

ne(L) is roughly proportional ﬁo RL/(RL - Rw) =& + 1, when this |

parameter is not too large; and ne(L) is an increasing function of ¢ 5

5/2

varying roughly as ¢L . These features are also reproduced by a

simple dimensional model in part :6 of Appendix C.

3. Demsity Outside the Mirror

For s > L !

o |

aT :
ne (S) —®0[ ;
£ =~ e _EST(CPS,aS,b, 3] s |
n : _ ‘ . . ;
:')g i

- exp|- —— (@ - 9.)|ESP{o, - (@ - 9) ———; & , b, &
. RL - R RL - R
s s
(25)
where the last term constributes only slightly, énd only for s fairly o
far from L. At the sheath edge, s = W, |

2T ol (e

e EST(®,00,b,£) (26) |

no

and an expression for EST(Q,m,b,¢) is given in Eq. (Cl4) which is of
order ' ' : . e

@3/2[1 + 0.4(1 - D)o + ]

when ¢ < ¢ << 1, or of order §¢1/2 when ¢ < ¢.

I 1 i
1
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“For the SF electrons, whichvmay.be_relatively more important at

the Wail
SF, :
n-"T (W) _ -¢ -a. Q| ko w
£ -~ % tk l/2e O{; e DI W erfC'\/§$; . o (en

To L | o |
Electrons produced at the wall or in region.II ére treated separately

in Chapter IV.

C. Estimate of the External Potential
in this section we equate expressions for n, andvne(m) at.s =1
and at s = W to estimate ¢y and @ . The detailed shape of‘w(s) betwesn
L and W is hpt of great interest as long as ¢(s) is monotonically de-
v R i

creasing; and the'complexity of the formulas leads us to avoid detailed

calculation of o(s).

1l. DPotential at the Mirror

When charge exchange is unimportant, we can substitute Eq. (19)

for n, (1) and Ba. (23) for n.°T(L) tnto n,57(1) = n (1) ~ n5%(1):

R Py TF B avfey )7 e © < mon(oy e ), (28)
yhereb.l RL is the mirror ratio,

e
P = ————— for the ion distribution,
V(RL —Vl)cl

LV is the scattering parameter (transit time x lo#s‘ratej,

ci” for ions, discusseq in.section A

B = effy/T, with @, the‘midplane plasma poteptiai,v

9 = e¢L/Te with ¢L the potential at the mirrors,
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R, - B(W)
aL = = - )
| R, - R, B(L) - B(W)
b= k' -141s a constant < 1, describing'hOW-the electron

distribution falls off near the loss boundary
(eee Appendix C),
E < l.iS'the height of the delectron distribution g, at
| the loss boundary, divided by the height Of a
- Maxwellian there. Typically g < 1.
From the graphs of EST in Figs. 12 and 13 we can get a solutlon for.
| ¢L if - v , o |
0.1 < RL(P«/J_—i——'P)l/u(LV/ci”)B/he 0 <5, ' (29)

v P
The solution lies in the range 0.2 < @, € 2. Typically 9. ~ 5 (e 0.
L . 0

> 107 (from section IIA ), R. ~ 3, and 102 <p< 102;
-3

1o ), Lv/ci”

so that: inequality (29) is satisfied (at least for Lv/ci” <2x10

If Lv/ei”.z 2 x 10 3, the value of‘cpL may be larger than 2 and thuss

off the scale of Figs. 12 and 13, but the Eq. (28) is still valid).
VvSince EST is a monotonically increasing function of ¢, it follows

that ¢L is increased by increasing Le v, wo,_RL, or ci”/cil independ-

ently; however, one should note that v is actually a decreasing function

_of RL’ as is P, and P is. an increasing function of RL The case

'RL -1 << 1 is treated in Appendix E. The dependence of @O on v 1is

dlscuSSed later.

In the range 0 <& ¢ <3, 0<b=«k'-1<1, and2g<<pL52,

1

"where one has the approximation
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EST ~ 0.3 T e 92 (509
R, - By
ignoring the g term in Eq;'éeu) , 7. one can express Eq. (28) as
e ‘ ]
: v - ol ! i !
' 9 (R, - R.) v
gym16 e 0L ol gy

< | BRETF

Becausé,k’ ~ 1 and because of the weak dependence on P, one may use as

2

a rule of thumb, for reasonable mirror ratics (L0 <P< 102),'

@ . : F'

O O°)+ Oo

o~ {e (B, - Rwﬂ | (LV/ci”) ?

v when.RLsf‘Rw > RW@L’-Lv/ci” <1, and v, < V. For large a, the func-

tion EST(@,a,b, &) becomes independent of a; so for a. >> 1 and for

L
b <1, g << 1 and @ in the range ail << @, <2, one has from Eq. (c13)
EST(9. ,a bg)~c1>3/2 for ¢. > t.
_‘L’ L.’ I3 L > » L
Using this in Eq. (28) gives
‘ 0 : . . . |
~ (o Op y2/3 0.5 |
o ~ (e "R (1v/e )77, o (2)

where again the PV1 + P term has been dropped. This result applies
; when Rw =~ RL. |
. When charge exchange is the dominant loss'mechanism'(vck Rglogv),
ve substitute Eq. (21) for n,**(L) and Eq. (23) for n ®'(1) into

ST(

: CXpoy -
ooy (L) ~vne(L) ~ L)
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”/T )1/2 "0 g o) (W /og) = (o - ch)l/EEST('tpL,aL,b;g)

-9

to_getng. When Lv/ci” << LVCX/c < §2e O, this equation may glve

1|
¢ < & in which case the approximation n (L) <<= ST(L) fails, and

one .must add the contribution of SF electrons (see Appendix C).

carefui esfimate of thé deéay width K forielectrons in Eq. (Cl) must then be
made,fas'¢L canidepend fairly'sensitivéiy on it;-vThis difficulty will

- arise again in estlmating @w, which is typlcally < @L . When

(15 o

l”)e is in the range between § and 3, the approximation (30)

is use‘ful and gives

— )

2. Potential Drop at the Sheath

To estimate the sheath potential drop, ¢ » we again start with

W
the case ﬁhere charge exchange contributes negligibly to n, and we
substitute Eq. (10) for ni(wf), and Egs. (26) and (27) for neST(w")

~-and n (W ) into

BCTERRS (TR R o) on vt Re
' ] [ e - w,

~ |1l - exp RW L \‘ EST(9 ;m:b:{;)
| e T
N / vV ' -
: [ P. } - k(pw '

+11 - exp |~ Ry —L——\J L tk l/2e' erfe vkq. , (3k4)
] \‘ . RL - Rw}-} 2 | . q)W
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where k"~ T is the parallel temperature of the SF -electrons strlklng

e'the wall, and ¢ is the height of ‘the electron dlstributlon 8, (x,y) st

the loss boundary, divided by the height of a Maxwellian there. Except
- |

for a factor of.e mo, the first term on the right hand side of this

equation is n‘ (W ) and the second term is n SF(W ). EST(@,oo;b,g)

is given by Eq. (Cl}) in Appendix C; for ¢ << Py < 1,

. 2 .
EST(CPW) 00,b,¢ ) ~ (PWB/

but for‘¢w %< E << 1,

2 1/2
E ,® ,b,t) ~ — .
ST(wa £) 7 £y

of course;'EST(O ©,b,t) = 0. By contrast, n'SF(mw,oo k,E) (where
k -1 e2 is the decay width of the electron dlstrlbution g(x,y) outs1de
the loss boundary) is not zero at Qw = 0, and in fact decreases w1th
"k‘cp’ 2
Ky 5 1/2 1/2
e erfc «/};(pw ~ 1 - ?r (kq)w) , for (kcpw << 1.

1/2

But this decrease is more than offset by the increase in EST(@:E@W
for mw-<< ). For such small Py We neglect the @w in the flrst "exp"
factor of Eq. (33), since P, is not usually so small; then the rlght

hand.side of Eq. (33) becomes
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il -21- e (k) 2| + o(5,7/?)
| i

R, - Ry

when k@ << 1, and the O(cpw

l _ exp| -

3/2

) term is negligible when @y << &

We digress to mention thatfg/k is proportional to (Lv/ci”)e O’

because ‘the eléctroﬁ loss flux, proportional tQA(g/k)e O, must equal

the ion loss flux, proportional to Lv/ci”. Equation (Cl0) of Appendix

C gives the constant of proportionality. Using (C10) for /k in the

above we find that for @w << g,k-l,‘RW(Lv/ci“)e¢o cancels out .of Eg.

(34), leaving @y determined by
2 .

1+ —v:.(kcpw)l/2[l + O(cow/s)]

T .

| | 1 |
~ { mi(ug/m,) {(aL - R(T%/T,) + (o - cpw>] E o)

Here we have used a, = RW(RL - Rw)vand the fact that the ratio.

. . 8P 1 .
L L)[l - (a, +1) e L I} is always nearly unity, both when

L
aLQL 2z 2 (as in the usual mirror end region), and in the case of mag-
netic expansion for direct conversion of ion loss energy,l%l where

Rw ~ 0 and thus a. =~ O. The mw dependence of the right hand side of

L
Eq. (35) is almost always negligible; the @W dependence on thevleft

" hand side is obvious. Thus when the right hand side of Eq. (35) is of
~ order unity, the value of Qw depends on the electron scattefing

(through k) and not explicitly on the ion loss rate v. (We shall see

- shortly that @W depends on k and not v even when @w > &, because

iy ‘ !
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However, the right hand side of Eq. (35) is usually much larger
than unity because. of the small mass ratio m /m . vReturning to Eq.

(3&) ‘and keeping only the EST term on the rlght approx1mat1ng EST by

3/2

@ we get ) L ' : |

l.

., Rw2 11/5!*;1.9\ @72/5' _
P~ ! lﬁss i i__—ée O% : (36)
| R - Ry e
for aLQL 2> 2, or / , /
1/3 ~2/3 :
T i v 9 ' y
o, ~ |l % Lﬂkoi R €16

- for the Rw ~ 0 case. (we have neglected @ - @w compared with

A(RL RW)(TLOSS/T ) on the left side of Eq. (34) and made the approprl-
D

»ate expansion of 1 - e L .) In each of Egs. (56) and (57) the 1/3-

power coefflclent is of order unity, and thus as a "rule- of thumb"

}2/3

b4

L(LV/C ” )e
if this is much larger than ¢.
Typically, however, ¢h ~ E ~ k-l (i.e}’neither approximation is

valid), and we have only an upper bound and an order of magﬂitude esti-

- -mate of ¢ , unless k and ¢ are known weJl enough for a graphlcal

solutlon of Eq. (Bh)
When charge exchange in region I is the dominant source: of ions
" in region IT, we substitute Eq. (21) for n, Xw ) in place ofvthe

' left'handﬂside of Eq. (34). Proceeding as before, we have =
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-

when @ >> ¢, with the R, replaced by RL/QL when R << 1. '(ﬁe.have
-used @w <<,®L, 9ys and Rw'<< R, in this case.)

3 Typiéal Values

To illustrate the calculations of this section, we present the

: Py . . — —_ - ' — l
follow1ng numerical estimates: For RL = 3, Rw = 2, 9 = e¢O/Te = 5,

we show ¢, and @ for the two cases (1) and (2) discussed in section

TIA:
| (}). n, = 10%° cm'j, T, = 10 eV, Ti” ='lOQ.eV, T, = 100 éV, which gives
Lv/ci”1=,3.3 X lO-u from Coulomb scaftering, and | |
(2) n, = 1072 en™?, T, = 100 eV, T,y = L keV, 7, = 10 keV, which

0.4 x lO-u from Coulomb scattering..

ives Iv/e.
gives Lv/cl”

wo | (2)

o)l 0.3 x 1072 0.4 x 1o°LL

L 0.8 | 0.4

— ~ 0.16(") < 0.06
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" The sign "(-)" means that the figure is an upper bound and a good
estimate to within about a factor of 2. 1In both cases (1) and (2) we

vhave estlmated Tﬁoss from
0SS -l{ : | . .
?i ~ (RL - 1) Le(¢o - ¢L) + T”}‘ ‘

» Wevhave:included the anisotropy factor (I’vﬁf?f?)o°l in Eq. (31);
= it reducedithe results by 25%. We have taken k' = 1 in Eq. (31).
When Rw RL (i.e. ’ no- magnetlc field expansion in reglon 11),
3 ¢ is increased to ¢ ] ¢w, and ¢ given by Eq. (32) is not’ s1gn1f1-
cantly different from the value in the table, i.e., the. valuelfor
RL - RW ~ 1. When RW_ 0 (complete magnetic field expan51on, as in
direct conversionul), the calculated values of ¢L and ¢W for the
parameters illustrated are not significantly different from the values
in the table, although the calculations are not very good forvthls :
case.(see Appendix C). In'the table, ¢L is overestimated‘and ¢W is
- probablj«underestimated.
Cherge exchange gives smaller values of ¢L for given loss rate
,'because; as pointed out in secticn ITA, the low—magnetic-moment,ions
created by charge exchange do not spend long times near the mirror as
do ionSvcf'high magnetic moment, lost by .gradual velocity-wandering.
Because ng *(1) « w’ /c 1] while ng (L) « (Lv/ci”) 3/4 , the dependence
bof @L on the approprlate small scatterlng parameter is sllghtly
stronger in the case of charge-exchange loss. This makes @L smaller
‘by about a factor of 3 when charge exchange prov1des Lv /c ” ~ 1o‘h
blnstead of Coulomb. scattering with Lv/c “ ~ 10 h The estimate for

¢ is. unchanged when v is replaced by VCX,



L. DiSCuséion of Results

“The'value of ¢W scales more or less with k-l, i.e., with the SF
electrén.parallel temperature k-lTe, instead of ﬁith Te’ the midplane
temperatufeu This is true both when @ < &, k! (where @, = " HP
with p between 1/2 and 1) and when B > 6 (where QWB/Q o« (Lv/c“)emo «

_1)

The falues of Lv/ci” due tO'Coulomb.scattering gre, of coursg,
undereStimates; but it is well to remember that e(po varies roughly as
Yoe / Yoi -for constant mirror rat10,l7 where vOivand Voe 8T€ the'cumuF
lative 90-degree scattering rates for 1ons and electrons respectlvely.
(A more rgfined calculationl glves @3/ o« VOe/VOi; Thus the
quantity (L\z/ci”)ecPO appearing in the equations of this section is
really-sensitive only to changes in the electron scattering rate. If
the elecffons diffuse anomalously fast in veloéity space because of
turbuleﬁt fields, then the estimates for mw will be larger (iﬁstead of
smaller as one might guess) because @o will be larger. On the.other
hand, if the 3225 are lost anomalously fast, Pq decreases but ¢W does

not. The picture is less clear with P but from Eq. (31) and this

argument,

| o = veo.hvi-o.l’
so that P decreases when ions (only) are lost more rapidly (again,
opposite,ﬁo.what one might guess) because wo decreases. @L andvmw do
not‘change proportionally to @O,

We have noted that the sheath potential ¢W scales more or less

with the temperature of electrons near the wall, rather like the ordi-

nary éheath problem. But care must be exercised in estimating the
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resistance of this sheath. In the usual problemvof'plasma in a box
_ withéut_internal magnetic forces, the dec sheath resistancé is calcu-
latéd aé:d(Fi - Fe)/d¢ovholdiﬁg'thevdisfribﬁtidn funcﬁiéns conétaPt.
Ifbis'assumed that the Maxwell tail of the electron distribution hs
always‘replenished. But in probléms whére.unbound particles are.y'
quickly lost, the distribution function changes (on both collisional
_and,transit-fime scales) when ¢O éhanges, bécéuse the loss bogndary
depends on_¢o. (This vaguely reéembles the problem of & pfobe which
has absorbed néarly all the ions in the flux tﬁbe it intercepts.)

Chénges in ¢O on a time scale slower than collision times cause
cﬁangeé in loss flux because the tail parameters depend on theulbcation
~of the 1dss boundary. (This is just the problem éf detérmining ¢O')
Such changes are inconsistént with equal steady-state loss fluxes.
.Changeé in ¢O on & time séale faster than.collisions buf slower than
bouncevtimes are rectifying: when the loss boundary eats into the dis-
tfibutién; the loss flui temporarily increaseé,‘more than it decreases
'if the'iéss boundary recedesté highef.vélocities. Such changes_in ¢O
aisovfroduce changes in Fe proportional to d¢o/dt rather than ¢O
itéelf;'whenever ¢O is decreasing to a new low.

A féét, purely oscillatory perturbation on_¢o simply mo&eé»the
" steady effeétive,loss boundary for electfons inward to where it would
be if ¢o were replaced by ¢o - 5@ (with 8¢ the perturbation amplitude),
2and.théh‘causeé ¢O to readjust upward on a collisional time scale.
‘Localizea oscillations in ¢ ﬁith wavelength-k” along B cannot'ﬁake
placé.sldwef than the transit time x”/ve“'of the fastest electrons

(i.e., parallel phase‘velocities cannot be less than either the local
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electfeh thermal speed'of the local electron,ekcépe velocity)-becauée
sqch:diethrbances would creeté'Significant-locelispace charge.‘ Thus
'4;556 cenpot discuss low frequency'(Lm/Qvee” <1) lqcal changes in‘¢w
and aSéuﬁe ¢' constant. Daﬁping of low-frequeney electrostatic wavee
'Qith k” ¥ 0 always involves particle loss to the end walls.

The calculatlons in this section clearly show that the steady-
state ¢ ordinarily continues to decrease with s in region II, in con-
tradlctién fo the common statement that d¢/dB’is.proportionél to the
local dlfference in anisotropies of iohs and electrens (see Appendix

D). The reason for the discrepancy lies in the vacancy of part of

Phase space (the dashed orblts in Fig. 7), whlch because of subtleties

discussed in Appendlx D, complicates the usual relation between d¢/ds

and dB/ds.
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SYNOPSIS OF CHAPTER IV

Up to this point the discussion has been of:ions and electrons
born inSide the plasma and appearing out paef the mirrors.e In this
chapter we discuss. the influence of electrons which may be born 1n
,reglon II, between the mirror and end wall, or at themnﬁl.(elther]wall
cathode or secondary em1s51on). Ions born here cannot penetrate the
plasma potential and are returned to the wall, butvelectrons are
accelerated into the confinement region. (How many of these electrons.
' become‘tranped in region I is a delicate matter involving their energy
loss, as discussed in part 7 of Section IVA.) Their contribution to
1nﬁalanciqgthe source input fluxes of electrona and ions, together with
the change in energy loss fluxes of each specieé, causes the plasma
potential to change [see Eq. (54), p. 73] . If almost all externaly -
born electrons ("x"-electrons) are trapped, the change A¢ is of order
T tlmes the ratio of external%source flux F to 1nternal source flux
F. These matters are dlscussed 1n Section IVA
v The possibility of two-stream instability caused by the xfelectrons
is discussed in Section IVB. After pointing out that the stability
criteria are not the same as in the ordinary case (because parallel
velocities are swept out of resonance by the megnetic forces), we dis-
cuss what the nonlinear—steady-state distribution f (x,y) might look
like with the x- electrons somevhat diffused in energy by wave- particle
'1nteractlons (Fig. 16, p. ' 91; Fig. 17, p- 95). It is assumed that the
waves are primarily space- charge waves carried with the "beam" of
X~ electrons (Thls_beam is injected "cold" but is quickly flattened
to a "quasi- plateau"‘on’the electron distribution.) An important fact
isvthat the source is not cut offsand.the distribution function: 1svnot
allowed to relax. The quasi- plateau in midplane velocity upace results

v only because the interactions are “strong.
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IV. EFFECTS OF EXTERNAL SOURCES
Iﬁ this chaﬁter we consider the small change in the steady state
of ‘an imperfecfly confined plasma when "additional" plasma is slowly
intrédgced'into the~equilibra£ed‘system by an external source (such as
emissiqﬁqu secondaries from end walls of the chaﬁber, or a weak elec-
tron béam:rﬁnning throﬁgh'the plasma along magnétic fieldvlines).

A. Effect of External Sources on Confinement: Stable Case

1. Definition of the Problem

The first question faéing such an analysis is whether the strean-
ing’of ﬁhe externally.suppiied electrons (which are supplied near one
edge of a potential well) cauées additional instabiiity (loss-éone
modes_may already be present). An intense beam of even a cold sourcé
at thé'énd walls would produce & bump in the tail of the elecfron dis-
vtribution:and woﬁld excite two-stream modés. 'The analysis of this
unstable;”inhomogeneous systemfwould be difficult; a Qualitativé dis-
cussioﬁ iS'presented in the next section. Here wé consider only thé
case iﬁ:WEich the total eﬁergy in waves due to éuch interactions is
small‘compared with nSFe¢w-—i.e., the ‘case of a very weak beam--and we
take two equal counterstreaming cdmponénts*for symmefry. We also
| assume'fhat.the spectrum of any preexisting instability is hot,changed
‘by ﬁﬁe nevw electron stream, and that the ion distribution is not altered
by the néw waves.
| _ _‘F@f_éimplicity, let us assume that the primary (internal),source
" that sﬁstains the plasme 1s unaffected byvthe new weak electron inputb
frdm the eﬁds. ‘(There is no input of ions at the ends; they are all

‘ repelled by the plasms potential.) We will neglect any changes in the
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energy loss by radiation, and any changes in the'particle loss by dif-

vfuéion across the magnetic field.

2.  Pﬁrtic1e and Enérgy ﬁalancé

| Wé specialize for now (until part 8 of this section) to the case
where the additional electroh input is from fhe eﬁd walls. The input
flux of_électrons sﬁpplied externally from the ends is'just [F#[, the
emissibn'féte at the wall, in electrbné/cm2 sec. (The absolute value
is uséd héré only because outgoing flpx is usually taken as positive.
We willVCOnsider Fx as a positive quantity in whaf fqllows,) _Since
there is already an effective input fluva’bf electrons which just‘
<equdls the loss flux, this additional inﬁut flux [Fx[Amust give rise
to an additional loss flui, AF = [Fxl,vin order that a‘ﬁew steady. state
results;_‘ |

And_what ié trug of particle fluxes is also true of,energ&-fluxes,

if bbfh'ions and electrons are taken into account: in the resulting
-vnew steady state‘énergy cannot be accumulating or draining, so the net

'energy.loss flux must be unchanged.
A}i + A%’e ~ ,]FX{TW, : - (38)
where the energy flux

Fa TR m f xdx ydy g(x,y) (< + 3°) | | (39)

SF

for‘each'species, and where TW is the input temperature of the wall-

born electrons from the external sourcé ("x" electrons). Here A indi-

cates the change due to addition of the "x" electrons, and if their
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’
input‘témperature is negligible, as we will:aSSume, the right hand_
'side of Eq; (38) is zero. The original energy loss rate comes from
'iéns 1égving with energy € + e¢o at the wall (e at the midplane), and
‘electrons leaving in equal numbers (if the sources are pairs), with
v energy_é - e¢o at the wall. The e's refer to midplane kinetic energy
() + L. if we use a bar and superscript SF to indieate an average

over only the loss region appropriate to the given species, so that

'ESF is the average midplane energy of a particle that is leaving the

system, we may write

7,

— SF — SF
1~ Fi(ey + efp), Fo ~F (& - o)

e

- where Fi'and Fe are the ion and electron loss fluxes measured at the

wall. Equation (38) thus becomes
— SF — SF ] _ |
A[Fi(ei +efo) + F (e - efy)] ~ 0, - (0)

- where we have neglected_FXTw as sgcond order in A. Since the éxternally
‘supplied electrons are assumed not to affect the inﬁernai sourée of’
iéns balgpcing Fi we must have AFi = 0. We also assume AX <<:X for
 a1l>quaﬁtities X = e¢o, ESF, F, appearing in Eq. (40), i.e.y we assume
Fx‘is sUffiéiently small thaﬁ the macroscopic properties of thefnew
steadj sﬁate are not greatly different from those in the absénéé of F.

v WO more-or-less compenSatihg errors in the earlier discussion
of thié pfoblemue should now be.pointed out. Equation (MO) ma& be

ekpandéd so that it has the form

F = SF
B,

— SF. — 5
,(ee - e¢o)AFé~+ F(Aﬁe + Oy ~ 0.
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First, the e¢o term was ﬁissing (cf Eq. (11) of fhat report). Second
it was stated that EéSF ~ e¢0, i.e., the midplane energy of the escap-
ihg.éiectrons was taken to be just the electrostatic barrier height.
This is not generally trué; because the electrons.carry out their per-
fendicﬁl&r energy (unless they have none whenrthey are'lost). Using
thenmodei electron distribution given by Eq. (Cl) in Appendix C, we |

now Bhov that for an isotropic damped Maxwellain, ZGSF - e¢o ~T .

3. Evaluation of Mean Electron Loss Energy
The height of the distribution g(x,y) at the loss Boundary
X = xl(y) is '
’ 2 2 2 2
| | ¥ /e,” %, %(y) /e,
g vjzc@) =g S ,

t ge

“(Ry? + 2ef fm)/c 2

where xl(y). Eq. (CL) of Appendix C has been approximated by -

2 1.2 o oo
X, = (Rw - 1)y +2e¢6¢g,for all y, not just y <y,- (The difference
occurs in a lightly populated part of velocity_space.) Since the SF
distribution comes mostly from a narrow strip of constant width in x2

the properties of the SF distribution are those of
SF

Just Qutside x12,

- e¢o is then

gfc(y)[yg + xlz(ry) - 2e¢o/m] 2mydy

[ c(y)2mydy
4 o]
5 | & udu 5
. - SF i e¢ N me JO _ me
€ O - . [0.0) - i ’
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where u = Rwy /c . Thus

e ) o |
AR K | ()

4. Separation into Beam and Plasma Electrons

We proceed on the basis of several new assumptions:

(a) 'Electrons born at the wall have a distribution f in the mid-

“Pplane ve1001ty space, and are treated as dlstlngulshable from electrons

fram the:prlmary internal plasma source. The latter have a dlstrlbu-

tion fp..VExchange of electrons between fp and fx is not allowed, but

‘energy exchange does oceur. The total electron distribution is.

f =f +f , with density n_ = n_ + n_. Likewise for the altered
e P x e P X ,

distribution ge defined in Section.IIB: ge = gp.+ gx. Densities will
refer to midplane values.
(b) Since the external source flux F_ is small compared with the

internal electron source flux F v’ it is physically reasonable to assume

" that the plasma still contains malnly p-electrons in the new steady

' etate,>1.e., n << np. Since np cannot ircrease with time 1n the new

steady stéte, this forces us to assume np'is constant. In the‘new

steady stete, the loss rate vp of a p—electron is time- invarlant and

the loss flux Fp = nPva is still equal to the internal p-electron

input flux ( which is equal to the ion input flux). This means AFP = 0,

where A indicates the change from the old steady state (with FX';ZO) to

the new steady state (with Fx > 0). Since n = np +n is timeeinvariQ
ant, so is n, and thus all the x-electrons going into f, are coming

out. So the loss fiux Fx is equal to the input flux ]Fxl from the
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wall: AF_ = F,. F_ is first order in A.
- b4 X b ¢

(¢) Ions and electrons of p-source origin are born with average

midplene kinetic energies € Ee which are indeperdent of ¢O (as in

i’

the case of Lorentz ionization). We have already tacitly assumed

this by not including changes in the energy source rates in Eq. (38).
(d) The result EeSF - e¢o ~ T_ just derived applies to the

essentially isotropic p-distribution: EPSF - e¢0 =~ Tp. Thus the mean

Y

x .
Similarly we will define T as the mean energy carried out upon loss

energy carried out upon loss of a p-electron is Tp, and F_ = Fpr.

of an x-electron: ?& = FXT*. In general T < T,, Pecause the loss
process is biased toward losing newly-injected cold x-electrons rather
than thermalized x-electrons.

(e) Because the x-glectrons are injected near the phaée-sﬁace
loss boundary, their typical loss rate Yy (including transit time) will
not be-iess‘than vp, and in general vx > vp. If pitch-angle scatter-
ing piedominates, the x-electrons will be scattered into the trapping
region (because of its shape and the fact that x—electrbns éfe injected
with the minimum escape enérgy, i.e.,_e” = e¢o). In this case v_ ~ Vo
But if energy spreading can increase fhe energy of any significant
fraction of x-eleétrons at a rate comparable to that for angle-scatter-
ing,'then Vo >> vp.

(f) The x-electrons are injected cold; so when Yy is of'ﬁhe order

- of the récifrocal tfansit time, T" is some rather small value.<T* <« wp),
and Tx” is of order e¢o. Tﬁénnfx is sharply peaked at e” = e¢o, €~ 0.
Howevér, fX may still have a hump Qf thermalized.electrons centered at

x =0, ¥y = 0. This hump should have an effective temperature ~ Tp,
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reflectingfthe fact that these electrons were thermalized before they -
wefeflost, and'thus their loss time is of order vp << vx;
(g) The p-electron loss rate vy is a function of n, ¢O’ and TP.

The distribution fp remains essentially isbtropic, s0
- PR -
: AVP'WJMO +_&-m+-&—PATp.

(h)_”The ion loss rate v, is essentially independent of the elec-

tron distribution, and depends only very weakly:on ¢O' Since 

AF, = Ov(Fi equals the unaltered ion source flux), F; = Ln,v, then

impliés'n'is constant: An =~ O. ‘Also note that n; =n-= np + n_ and

n_ = Fx‘/Lyx together imply

{(Waiving of this assumption is discussed below.)

i)' The energy carried out by ions is . = F.(E;SF + ef ), where
» i iti 0

ZiSF'depends very weakly on ¢O through ¢O - ¢L (discuésed below), and
".is also esséntially independent. of the electron distribution. " This
- allows us to set AEiSF ~ O.

To see the physical significance of condition (1), observe. first

- SF ‘ .
 that €, depends on ¢O only through ¢O Q.¢L, since oply ¢O —_¢L

'occurS'in the expreésiqn for the ion. loss boundary. If, for example,

‘all thefpdtential change M) occurs in region II, i.e., if the potential

, shaﬁe_befween s = L and s = -L is not changed, then condition (i) is

~

satisfied. It is also satisfied to a good approximétion~if the ion

loss comes almost entirely‘from pitch~angle scattering: ions'wénder
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ﬂ-out along the lines e” te = constant, and each elgment of density on
vthe 0ld loss boundary transforms to one with the same total enérgy on
the altered loss boundéry, e#cept for the very small region near the
minimumvion trapping energy.

5. Results

We Sﬁmmarize assumptions (a) through (i) as follows:

AF = AF, =0 AF = F
P i X X
Fi = Lvini =_Lvin vi,lndependent of ¢O’ Tea- o=~ 0
F =1T1v.n
Y PP
Fx = L?xnx o
nm +n =n
v P X ] . .
' — SF -~ SF « = SF _
;i.' Fi(ei + e¢o) e; depends qnly on Ty Leg 0.
= F T
?I> PP
= F T*
Ix = Ty

V.. = VP(nJ ¢O’va)

These assumptions allow a solution for A¢O and ATb. To express ATe_L

and ATe in terms of AT , we proceed from the definitions
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T =
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f n o
= Tp ;l - ;— + T L to first order in nx/nv
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since T, = T, to zero ordéw. Likewise,

3 ATe”v = A.Tp

+ i;_(_ (TX” -.

Te)-

(2)

(k3)

With assumptions (a) through (i), the equations for conservation of

particie'flux and energy flux

and

. ‘becomes

and

and

, eA¢O + o +"I'*FX/F ~ O,

“Then, fromn_+1n_=n
b P X

and An = 0,

*
F v T

v

(4k)

(45)

(46)

(&7)

(48)



-72-

. . '_l
N T v T ov
where - I'=|-— -2 4 2_P (49)
- ‘ v oT ’ :
Vp ae¢0 PP
The square brackets in Egqs. (47) and (49) are positive since vy in-

creases with Tp and decreases with ¢O. Using Egs. (42) and (43) then

one has
- - % "
AT F T T dv_ b v T
e.L»N ___X I\_k_ __e___..__p 5‘_ -—E(l - T -—E, (50)
T, F o \Te vy ¢¢o) vy Te /]
oy F[ T Ty v [T, )
and _§ﬂ~__§ r—|--2_2 |_ .2 -"—”fl-r. (51)
T, F oL T\ vpofy] vi\T o
At this point let us introduce a model for vp(¢, n, T?:
-ef /T
-y 0 p . '
vy © n¢0 e (52),

where‘y'is a dimensionless constant of order unity. When y = 5/2,this

is just the model used by BenDaniel.l In the model of Appendix c,

_ _ 31n (&/k)
T 7 9 1n %

(9 = efo/T.)

so that y measures the sensitivity bf the electron distribution tail
shape to changes in the escape energy e¢o. (Features of the velocity
: ' : ' 4
distribution near the loss boundary cutoff.are discussed by deBoer 3

for hard sphere collisions; the Coulamb case is mentioned.)

With the model (52) for vy» Bas. (47) through (51) become

*
e F v T .
0 .
PO 3 e , (53)
Te F Vx' Te



>tion sﬁape, Y

e Ry oo\ T | .
—LLp X _1?-;‘14,—-;“——‘ o - (5%)
Te . F vx \ (DO/ Te B C
z ) _l ) .

T=(9y + 1+ 7/9) - (<) | (55)
AT F i T v / 4 T*ﬂ

| e¥z_l‘,(1-r-_xf‘- --2+r§'l_+-$—m§ (56)
AT v [ o, \ v EEAL AN
_ef z__x.g.-(lu-1+1““.—‘Pr+1‘l+—'-— - (57

. Tel P L \\Te . } vx q)o Te o

S

It is dbvibus;that when the x-electrons are not'assimilated, i.e.,

* -
when vx.>> vp and T << Té, all the quantltles‘ée¢o/Te, AT/Te,are*

'much smaller than Fx/F' In the opposite limit, when the x-electrons

_ are isotropized and assimilated into the ordinary p-electron distribu-

x = vp; and since the energy loss flux comes from a

thermalized bump of density ny (nl < nx) with loss rate vp and not from

" the nonthermalized sﬁike of essentially zero perpendicular energy, one

~ has

':wheré hl z'nx_in the limit of good thermelization. (We have:used

F =nv .) In this case then .

STX T XX

| eA¢O FX'

A - c—

T R
e R
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Thus the temperature changes are small in either case, but the plasma
potentiél changes noticeably if the electrons from the wall are ran-
domizéd in velocity, i.e., well trapped by the plasma.
6. Discussion

Let vp/vx = . When a << 1, the quantities jea¢0/Te] and
,eAmJ/Te] for j = p, e, e” are small, of order_d, compared with
FX/F.' Most of the electrons from the walls return to the walls within
a fewftfansit times and their distribution has a sharp peak at
X2 = 2e¢6/m, y ~ O. Because this is at the 1¢s$ boundary, the dis-
tribution of SF electrons (those escaping) has the éame sharply peaked
shape in y, superimposed on a broader gaussian in ¥ repreéenting the
p-electrons and those x-electrons which have been trapped. Thé SF
electrons in the sharp peak do not carry appréciable energy out of
the plaéma. They entered with none, and leave with none. The plasma
potential ¢O need not decrease much to bring the total electron loss
fluk up to F + Fx’ the new total input flux, because this is done by

the change in the shape of the distribution £+ £,

In the opposite limit, o =~ 1, electrons from the wall have a dis-
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}trinution with more.er less the same shape as the ordinary'piasma
electrens; because they are effectively thermalized and trapped. There
_nay be a small neak in their distribution as deseribed above;'but'this
?is swanned by.the larger,. nearly isotropic, nearly Maxwellian hump.
These electrons entered with_no ei. They gain=enefgy from the plasma
throuéh»seattering and enhance the perpendicuier energy loss when they
are lost} this meens the.iggi must carry out less energy, and ¢O must

drop (AP < 0) to accomplish this.
In either of these cases, Egs. (38) and (40) give

SF .~ SF _ : 1
+0e” = - TeFx/F. | ﬁ (58)

Beg +ley

~In general, escaping electrons and ions have exchanged energy via col-

lisions and via the plasma potential. When Fi = Fe’ the sum .
— SF
e
wall emits electrons as an additicnal source, in excess of the ionc

+ e SF must'equal the sum of the source energies. But when the

source'strength, the loss rates are correspondingly unequal, sevthat
. . (58) holds (assuming electrons born cold at the wall). This de-
coupling ‘of the ion and electron throughput rates is simllar to that
dlscussed in Ref. 19. '

When assumption (h) fails, i.e., when the ion loss rate v changes
(due to either the change in the ion loss boundary with ¢ - ¢L’ or
the ehange in the electron distributlon) one has

_iEqs. (u7) and (53) then have on their right-hand sides the addltlonal

_term +FAn/n, and one can write
-An/n ='Awi/vi,

~Also, if AEiSF is not neglected, the right-hand sides of Egqs. (47)
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- and (53) have yet another extra term:
— SF
TPsley /Te’

and the equations fdr Ame”/Te and Amel/Te have an éxtra term -AEiSF/Te
on the right-hand sides.

In_éll the results of this section, the values of Vo and T* have
been left as arbitrarylparameters, discussed only in limiting cases.
The actual values depend oﬁ the details of the scattering mechanism.
Even once a mechanism is assumed (say Coulomb scattering without non-
thermal waves or neutrals) the values must be found by computer solu-
tion of the appropriate Fokker-Plance equation (although if appears
that the linearized F~P equation for fx may be used instead of the
full F-P equation for fp + fx). Such a computation has not been done
as paf% of this study, but represents an intereéting, well-defined
area for further exploration. The resultant electron Bistribution fx
should look qualitatively as in Fig. 1k,

7. Fraction of x-Electrons Trapped for Longer than One Transit

A lower bound on the fraction of "x" electrons trapped for more
than one transit comes from the energy and angle diffusion of test
electrons in a thermal plasma. (This gives a lower bound because if
the electron distribution deéays rapidlyloutside the loss boundary,
scattering of a test electron upward in energy is less probable than
for athermal distribution of background electrons.) For e¢o ~ HTe and
ce ~leci the ions contribute negligibly, and ﬁhe expectation value of
the énergy loss of an electron with kinetic energy e” after passing a

distance I, though a thermal plasma of densify n and Debye length hD



- X
- Fie 14. Contours of hypothetical,midplane velocity distributibh;'f*?
_ 0£ electrons born cold at the end-walls. Also shown: electron ' -

loss boundary.
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isuu
Be 1 T, 1/2L 1,1 o
-~ f__ C— A (1 + 5 1n 3.5A), - (59)
T 2 i€ A ,
e Ul D

where A = Manna. When this i1s small, the increase in the par?llel

energy spread of fx is

5eL/2 |
ol ' (60)

ke,

% see Egs. (5-15) and (5-16) of Ref. 16.. Limitations of the estimate

o7 L
[¢) m

are discussed there.g Thus the spreading due to diffusion is much

larger than the slowing due to dynamic fnxction when these are related
in the usual collisional way. (With nonthermal waves present the rela-
tionvmay change, and diffusion may be strongly velocity-dependent near

the velocity-space boundary of the wave spectrum.) The mean square

angle deflection is 45. >
' T L .
(56)° ~( 2| — A7L 1n A. (61)

I/ ™

For € = e¢o = MTE,

2
1/ de 1 e
P B\ N

2 Te 2 Te
For n ~ny = lOlo cm_5 and Te = 10 eV, or for Ny = lO13 cm-5 and
> =~ 1.2 x lO5 so that

Te-= lOO_eV, one has nhD

-';'%’E'/Te ~ 0.6 x 1070

L/)\D.

it
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_Fof“a'ohe—meterItraversal, - 5E/Te ~ 3 x 107 in n = 108 at 10 eV,

13

and f §E/Te ~ 0.03 in n = 1077 at 100 ev. in the latter.caée,

: (66)rmss~'7 dég-

‘But thgisensitive depehdence on:Te (gz/e“ « Tefe) means that for
n=10" and T = 10 eV, 8¢/T ~ 3 and (86)_  ~ /2, so that the

_ , e e rms
minimUm'(collisional) scattering is not always small. .

If dynamic friction is small, diffusive spreading causes somewhat
less.than.half of the flux F# to be scattered into the loss region.
(see Fié. 14) in a transit timeo Thus the trapping fraction is lafger
than‘i/Q. The actual value can be determined only from computer cal-
culaﬁion with a model for the scattering process. Finite temperatﬁre
v TW of:the x-electron source reduces fhis trapping fraétion (by creat-.
ing mqre'electrons gygzg_the escape energy), and‘largef Rw —_l-increasesi
the tiapping fr%ction (bﬁ magnetically trapping electrons that.have

diffused in pitch angle).

8. Distributed External Source

| . The effective temperature of the x-electrons (and thus their
.fstability) can be greatly incréased if they are produced in;fegion IT
 -by; fdf:ekample, photoionization,instead of at the wall. Then they
popﬁiateithé segmenﬁ between é(¢o - ¢L)aand e(Qo'- ¢w) in midplané
energy space along the e” axis. Their TL is still small, but_spfeading-
of theif paréllel energy at any spatial point implies a much_sﬁaller
:peak.height.» For this case, also; all the x#electrohs afe trﬁﬁped,'
sincé thé external source 1is in-the trapping region rathér'than Just

outside -the loss boundary. ThéAbnly,practical difference in flux
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balance conditions is that cold ions are also produced by the "x"
‘sourcé, and are accelerated out by the electric field. Thus the
measured ion flux at the wall is once again equal to the electron flux

(assuming equal internal sources). Thus there is a AFi and
ofE (55T o )]~ (e@) |7 (1)] i + Foep + Fae, T
ivi 0] IT' 7" x 0 i

where,FX now must be measured inboafd of the x-source, say at s = L,
and where (e¢)II is a source-weighted average over region II; (The new
cold ions from the "x" source are not included when calculating‘EiSF,

since they do not pass through the midplane.) To maintain steady state

without a change in the primary internal source, one must have

oF (L) = F (L),

(Ry/R)F, (L)

o . aE (W)

The flux of X-ions coming out at s = W is the same, except for the

flux-tube area factor RW/RL, as the flux of new x-electrons going into

‘region I at s = L. Writing F_= (Rw/RL)FX(L) and AF, = AFe(w) as before,

Eq. (45) is modified to read

. . | |
Def ) + AT+ (T + {e¢>II)Fx/F'z 0 . (62)
. . - : . %
.(again neglecting AﬁiSF).v This is the same as Eq. (45), but with T
replaced by T + (e¢)II. Thus the equations for Ae¢o, Amp, AT ATe”‘

‘are the same as Egs. (47) through (51) [or (53) through (57)] with the

. * ' * .
exception that T is replaced by T + (e¢)II. The physical significance
of.the'(e¢)II contribution is that not only do the x-electrons gain

energy from the plasma by scatﬁering and then lose it to the walls, but

(N



g
also x-ions born in fegion II tfansfer energy to the walls immediately
ﬁhen they are accelerated out. Thus the external source heats the end-
walls attthe expense of reducing ¢O’ and this occurs even moregﬁhen
eléctronfidn paifs are born at nonzerd ¢(s) in.fegion IT than when they
are bdfnﬂat the:Wall, where @ = O.

.Inbidentally, we note that this anal&sis is also true for a cold
source:placed in region I also, since the location of the source with
respéct tb the mirror was not essential fo the afgument‘given.l For a
localized cola source (e¢)II is replaced by e¢ at the source, whérever
it is Situated. The cése of emission from the wall is now seeh to be
‘a speciai'case of this more'generél result, as long &s the stéﬁility is

not alﬁéréd.

B. 'Two{Stream Instability Resulting‘from External Electron Source

1. Naturé of the Problem

In this section we consider qualitatively the results Qf pnstable
_interéétibn between électrons emitted by the walls and the plasme in
regions T and IT. Analysés of an electron ﬁeam entering a uniform,

46,47

have predicted instability most violent rather near

48,49

boundea plasma
the plasmg bOuﬁdary,-and this is in agreement with observations.
The same situation is expected when électrohs produced at the*gnd-walls
of a.mirfor device interact with the tenuous ST electron com?onént in
region‘IIg _

_Of course, the full problem of steady—stafe wave amplitudes in
this inhomogeneous plasma-beam system (with particle source and loss)

has not,been solved. To do so would require taking into account:
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(a)' emission and absorption of waves at different points,
[ 50
s Fa) - —_
(v) ~regenerative effects {where o = waounce for some large
integer N) which can alter the usual Landau damping,

(C). finite-length effects on the wavenumber spectrum,

(d) nonlinear mode-coupling, e.g., between plasma waves and cyclo-

o1 o2

tron waves”  or low frequency beam waves,

(e) the nonresonant part of the diffusion tensor (which allegedly
heats the main distribution of electrons)?3

:(f) depletion of the distribution by the loss process,

(g)' bdundary conditions on waves at the sheath,

(h) failure of the WKB approximation at the turning pointé of
particles rescnant with é given wave, and

(i) béam bunching and.coherence eff‘ects47 due to trapping in
finite amplitude waves.

54

Recent work by Kaufmen and Nakayama includes several of these

effects (a, b, ¢), and gives the formal equations for a one-dimensional
problém, although applying them to a case like the present one is quite

difficult. Portions of topics (a) and (d) are treated by Kopecky and

Preinha,elter,51 but their results do not apply where aﬁe <L . every-

ce

'wherevin the system. 1In this case there is no coupling to electron

i

cyclotron oscillations?55 Since w? 5 x 109 n (c.g.s.), while a

typical wie (B = 10 kG) would be 3.4 x 1022, it follows that wie/mie

is small everywhere in the device unless n/32 > 10° cm™ G_e, e.g.
n> 1052 e and/or B < 10 kG. Since densities in region II are
expected ‘to be much smaller than the central density Y certainly the

end region can be regarded as "highly magnetized," so that diffusion



{0 B there is no significant quasilinear diffusion in v

_7excitéd at s =

;83_

chafapferiStics in the resonant region of local velocity space‘will be

25

linés pf.cdhstahtvvl. In other words,'u>is approximately conserved
:byvﬁhe inétability; Evén if electroétaﬁié waves propagate at éh anglé
he | 1 excepﬁvdue'to
gyroresonance at uninterestingly large velocities.

. 2. The Unstable Waves

A representative dispersion relation k(w) for a (homogeneous plasma

56,49

with a weak bump in the tail of fe'is given in Fig. 15. This weak-
“beam situation probably describes fairly wellvthe quasi-plateau state a
moderate distance away from the-introduétion of a nearly mono-energetic

beam. We will assume that, at low densities as here, the cyclotron

- wave interactions are weak compared with the interaction (circled in

P

Fig. 15) between plasma waves
| (p) [1+2 2 o] L
[~ — a0 e | <
Re ¢k w, 1+ 2(k)x.D) + for kA, << 1 - (63)
: 52
and beam space-charge waves (doppler shifted)

Remk(b) - kv 2 (nx/nST)l/ERe[lksze- (Dp? ) 1'-1/2] | (64)

. where;nx_is the density of beam electrons. If the wavelengths of inter-

est-are_short-compared with other sﬁatial»gradient lengths, a wave

sl will propagate to 52
the local (WKB) dispersion relation,fé});;g%'(6&),;yithaw$s$v&ics) and

with o constant, and k given by

Vo = (),
vo(e) = [ef(e) fm, /2.

The Eeam’waves have w/k-w v. and thus their wavelength.increasés as they

0



slow
cyclotron wave ,
/
plasma
wave
cyclotron
slow wave '
- space charge
wave
¥ fast
 space charge
wave
fast
cyclotron
wave
Re w/w,
1 | T =
| we /wp

Fig. 15. Dispersion relation fdr plasma and weak beam (AN/VO ~ 0.6\/527;).
Mpdes shown>as interéecting inside circle have differing Im w.
w == @b plasma wave
= W, cyclotron wave
@ ~ kvt fast space charge wave on beam
w = kvo_ slow space charge wave on beam
fast cyclotron wave on beam

W=~ + kv
c 0

e e, + kvo slow cyclotron wave on beam
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propagate into region I. The plasma wave cannot go far toward s = O
becéuse the local plasma-frequency increases with decreasing.s,-and the

52

wave is soon attenuated by wp(s) > w, or converted into a beam wave

in a distance of order 2W(nST/ )1/2

LD. (This description somewhat
oversimplifies:the diepersion relation in the,cifcle region, where the
vave is really neither of the above simple modes;)

.Faihberg and Shapiro,h6 in theoretically.analyzing.a beam in.a
bounded but otherwise homogeneous plasma, conclude that after the wave

‘saturation time the oscillations are strongest in a layer which in our

,“problem_is
>\D ST/ l/5< W - s<(nST/n )xD

. (which'may'include all of region IT and some of I). Energy carried
into this region by the beam is carrled out by oscillations. -They esti-

‘mate the energy den51ty in this region; ‘for our problem the estimate is

waves

€ vaves ~ [e#(e) oz ()] Qn;‘evﬂ(s) :

which is the same order as the beam kinetic energy nexe¢(s), Eecause

_the beam. velocity is not much greater than thefmal, i.e., the’group
vf‘velocitj'is.not much smaller than the beam velocity. (If i£1Were, the
'; wave_ehergy could be much larger than_the beam energy.) This study,
evhoweVer, ineludes»no reflection of waves from the opposite endfof the
‘ device; the wave energy estimate gay thus be too low. |

- Bernstein and Engelmann57

estimate the wave energy for a homogene-
ous one-dimensional quasilinear problem. For our problem,'where the

plateau width at s in region II can be as large as the. beam velocity
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vo(s), their estimate becomes
| ‘

7111&.}(

& wave S

ne(s)Te(s) .
5) o

The linear growth rate58 is of order mp(nex/ne)l/s, which is probably

largest near the sheath, where nex/néjg 17 Thus

wave ~

G <n (W)ed, - - (65)

5.  Model Assumptions

We .proceed to iliustrate a simple model based\on thé following ad-
hoc assumétions: | |

(a)‘ Electrons bofn:at the wall are alﬁost cold and are a¢celer-
ated across the sheath potential ¢W >0 ﬁéfform a beam. Any ions born
at the wéll return immediately to the wall without compietely'pene-
_trating the sheath. |

(5) The injected beam is strong enough not to be a ”genﬁle” bump
at s = W-, but is not strong enough to violate'nex < neST + néSF. The
~beam is emission limited, not space-charge limited.

.(c) Wave-particle interactions near s = W in region Ii!ére suffi-
ciently étrong that they scatter particles in v” into a quasiiinear or
'-nonlineaf final state in a time less than the transit time across
vregion‘II; [The ratio of plasmé reriod to transit time isvof ofder
KD/(W é L).] - BEnergy change in a transit time is thus not smali, vio-
lating the assumption of Ref. S5k. |
(4) Particle trapping by waves may occur in the region of strong-

est interactions, and a quasi-plateau in f results, at least in the

g mm en
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midplane distribution.
(e) : The waves travel into region I as space-charge waves- on the

beam, i;é.; with o = kvb,'vﬁlz'N/2e¢1557me; While the disperéiOn rela-

) tion.may'be of "beam type" at s = W, it is of "Landau type" farther

inside the plasma because the sharp bump flattens to a plateau.56
(f) The waves cause rapid diffusion of plasma electrons in v“

over the resonance region, thus making af/av” ~ 0 in this region

L, WaQé-Particle Resonaﬁce-Localization in Mirror Systens

In the problem of a plasma in an electrostatic potential well,
particlés,that resdnate with a wave of phase velocity vO(s) at one
point do:so.at all points,\if the wave is "carried" on a beam moving

with VO(S). Hence the stability criterion for such a wave is just

<o.

a 'V"2 VeV
W”fd 1 f(‘ ”) .L) V“= o

When magnetic mirror forces are present, this simple criterion breaks

and g = O resonaté with

down, because only those particles with I = Yo

the wave at all s. Those with v) > v. and p # O resonate only at some

0

point on their orbit. The decrease in the number of resonantly absorb-

ing partiéles at v” = vy is partly compensated for by the fact that all

particles with v” >v%)absofb small amounts of energy at some resonance

" points éibng their orbits.

This discussﬂbn leads to the conclusion that a‘system with bounce

times dependent on p should be less stable to two-stream turbulence

onset than a system where the bounce time is independeﬁt of HFY A fairly

sharp decrease in the maximum stable.beam density should occur aé a
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slight magnetic field inhomogeneity is introduced. When the bonnoe

" time is independent of p, all particles in the main d‘istr'ibu.t.io:n with
” = w/k resonate with the beam space charge wave “and help damp it;

but when only particles with p =~ O resonate for long path lengths, the

same number'of p = O beam electrons put energy info_the wave, but fewer

main-distribution electrons can effectively absorb the wave energy.

5. vElectron Velocity Distribution with a Noninteracting ""Beam of

Externally Supplied Electrons

Consider the behavior of the electron distribution when a small
flux [F f of electrons is emitted by the walls. As avbeginning stage,
we 1mag1ne the case where the emitted x-electrons do not 1nteract with
each other or the rest of the electrons (and hence are not trapped).
This give a spike in the tail of the electron distribution. Next, we
turn on the twoestream interaetions, assumed to produce scattering only

This gives the initial plateau on the electron distri-

N

Ik

bution. Finally, we consider qualitatively the colllsional steady

in v”, not v

state‘where the electrons, thrown into the plateau by plasma_0501lla—
tions, diffuse in pitch angle as well as energy. A balance between the
input rate,ﬁo the plateau and diffusion out of the plateau (‘a.n(.iveventu.-=
: ally'onf of the system) determines the new steady state.

. v_The wall, at zero potential, emits some distribution fi£W,y”,vl)
. of electrons. Each of these falls through the sheath, gaining kinetic
' ene.r&r‘.egéw (¢w is the potential at the sheath "edge" s = W , a'Debye
lengfh orst away from the wall). Thus at s = W , no electron in
class,k“has parallel energy less than e¢w; Compare this with the

class of ST electrons, which has a rather ordinary, symmetric distribu-
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tion functidn at s = W Gbecause they are'being réflected by the sheath
poténfiai) with a temperature Te(w-)'certainly no greater than the mid-
plane temperature T_. The obvious conclusion is that, for any s < W,

the x electrons form a spike, or bump, at

: - 41/2
WHZ?%)’ vy <0,

just beyond the cutoff (for u = 0) of the symmetric ST distribution,

esc .

)1/2

| . _ | 2e
v =Y —'(E_ ¢s
e

If the x-electrons are born at the wall with a temperature T, << Te(W_),

then at s = W the bump corresponds to.a density

distributed over a velocity spread (8€” ~ Tw)

rof =
E«f'r\)

W

)-1/2

. 2 '
( T, , s(v,°) ~= 1, (66)
e e

even if none of these electrons are subsequently trapped in the system.

o) =

This is to be compared with the density n > (W ), distributed over a
velOCity spread of order

e (%; i TR S R Y (6D

e a ~1 . s e s . :
provided e¢L(RL - RW) <T,. (This is just the maximum € of the ST

electrons; see Appendix C, section 1.) The flattening of the bump by

waves leaﬁs to a profile at vl:= 0 qualitatively like the one in Fig. 16.

Wi
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. .

(b)) 0<s<W

Vi

Fig. 16. EleCfrOn_distribution function profile fe(s;v”,o), fdr v“ <0,
at various points s, -Flattened "beam" is shown superimpdsed on the
ST distribution. Unflattened "bean", in the absence of wave inter-

actions, is shown dashed.
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6. Velocity Distribution with a Diffusing "Beam" of Externally

Suppiied Electrons

We now discuss the collisional steady state problem when some of’

the flux ]FX] is trapped for many transits. If one chooses to solve a

59

Fokker-Plaﬁck—type equation in velbcity space.éldne at some spatial

point s, there will be effectively a source at V” = VO(S)+’ v, = 0

| = 0, if both walls emit). The loss con-

(and one at vy = —<NO(S)+’ v
' 3 1
dition may be represented approximately6o by the boundary condition

' f(s,v'”,yl) =0

at | V) =vvesc(s,vl) + Ay(s,vl)
and - v = Vesc(s’vl) + av(ern - s,vl) (68)
S s s
~ds! N[ . ds!
where Av(s,vl) ~_/‘ D” — + (RS - l)Jr D, =
esc esc

1

aré_the-elements of the velocity diffusivity tensor, assumed diagonal,

corresponding to the decay width L in Appendix B. (Here Dﬂ and D

at the escape boundary.) The integrated x-source strength at s is

R, |F ]

n=—

Rw vo(s) :

p

(69)

wherevB is the fraction of the béam "absorbéd", i.e., not losf to the
walls in one transit (or soonef if there is beamvreflection),vand T is
the beﬁm transit time. If s is near the emitting wall (but in the
plasmg and not the sheath), the velocity—space diménsionsbof the source

are (as before)
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1/2"

vy~ (avp/e) ey, Bv S E('émwlme) (70)

If s is not near the emitter, the sharply peaked ''source" will have

diffused to a width

by the~timé it reaches s to act as a source theré.

But in addition to the sﬁread 6v” in v” duelfo ordinary diffusion,

) there'will_be a much larger spread, v, - Vs caused by the waves. The

0

"source strength" will be distributed from Vl(S) (determined by marginal

stability) up to v.(s) in such a way that bf/av” = 0 over the source

of
regionj-i.e., the source.deﬁsity will vary roughly as fp(vl,o) - fp(v”,o),
where f represents the distribution withouﬁ waves or x—sourcé; Though
linear Superposition does.not really apply-here,.we may crudely consiaer

f as the sum of fp, maintained by the internal sources, and fx due to

the x sburces alone. fp satisfies a Fokker-Planck equation and is taken

. as given. To estimate fx’ one might ignore dynamic frietion and the v-

dependenée of D;for v not too far from the source, fx is approximately

a solution of Poisson's equation

e 1 9 of

D” aV”g + Di ;: gv—l V_L -a:-,i(' = S(V”,Vl) + ‘.S(—V”,Vl) ‘ (72)

withﬂthe'source S as just described, and boundary conditions (68). The

peak height of £ 1is then crudely of order
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T _ﬁ‘-ln [(vol-'v‘l)/SVL] _

Dl'(Vo - V.‘l)

where'ﬁ_is the integrﬁféd input rate; Eq. (69).  This expreésion is
derived as the'maximuﬁ poféntial on the surface of a long prolate
spheroid of uniform source'density.6l From this ﬁeak, f% decays (e.g.
in Vl) With‘a dependence.somewhere between l/vlg and 1n l/vl, for‘-

1

and its image in a grounded plane normal to it near one end.) For

v S ée. (Consider the weak dipole potential formed by a chargéd rod

_‘large,vl,Tor for v, - Y] 2 s Eq. (72) breaks down (e.g., it gives

1

ihfinité density), partly from neglect of dynamic friction, which moves
particles toward the origin, and partly from the assumption of. constant
D” and Dl (a particle diffuses more or less along'constant energy con-

tours). The form of £ for v, > cé should be Maxwellian in v

1 1

A qualitative display of v, dependence of f at v” ~ v, is shown
f = 0'is shown in Fig. 16.
It is qualitatively obvious that if flattening of f by waves is

1/2

“in Fig.vl7, and the v“ dependence Of_f at v
ignored for v, > (ETW/me) » the external electron density ne(é) for
‘a given valué of #(s) is increased by this trapping of é'elecfrons.
-Quasineutraiity thus requires a feduétion of @ in region IT. The mag-
ﬁitude’of this reduction‘of ¢ depénds'on the'final.wiath in vl'of the
.plateaﬁg‘ If this width is small, the change in ne(s) for gifen #(s)
will beISmall, but there is no reason to expect that this is #he cése.

' Some of the "density increase" from x-electron input is compensafed by

rapid diffusion of ST electrons with g = zero across the resonance

region and out of the éystem. The actual magnitude of the x-input flux

]
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' Fig. 17. Electron distribution profile £(s5v4(s)7,v,), showing the
unperturbed distribution fp (Lower curve) and the total f = fp + fx

" (upper curve). Abscissa is any comPOHEnt-of,vl._ _
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is thus not easily distinguishable from the net input flux

of particles with T, ~

W; but this ambiguity is common to all twb—

stream analyses. »

Tﬂe "nearly colligionless“ behavior of f(s,v ,vl) breakS'downbin
'thé.rééénance part of phase.space, including moét-br ail of région IT
at lOW'g; because of the»rapid diffuéién in v ‘See Fig. 18.

It‘is important whether wdve amplitudes at the wall are sﬁall (ask
usually bbservéd in éxperiments, e.g. Ref. 49). If they are not, there
‘may be.stfong reflection of the beam on entry.(in which case the "ab-
sorption»éoefficient" B is much reduced); in addition, the lossvof
resonant main-distribution electrons is enhanced; An estiﬁate'of B
(or’the'"transmission coefficient" 1 - B) from a purely diffusional ..
model is not very reliable because dynamic friction slows beamvelec-

- trons and increases the trapping. vBut in the unstaple case, where the
" beam is spread'downward over AN”:e Vo = V1> 6v“, essentially all beam
electrons are trapped (B = 1) and‘lost much later'by'ordihary hpn—
resonant diffusion processes. |

T. - Anisotropy Instability Near the Mirror

Finally,‘there is another streaming instability question to be
looked at in connection with region IT: ions aré»acceleratedvout
(sfarting from a distributioﬁ, at s = L, with T} >> T” locally) while
the electron distribution is nearly symmetric in v“. ‘In the frame of
reference with the mean ion velocity (& non-inertial one) thé électrqnsv
have‘a.driftvvelocity that is maintained by the reflection.of the ST
electrons. Ordinarily this condition is sufficient for an ion cyclotron-

62

wave streéming instability if the difference between the mean veloci-

ties of lons and electrons 1is greater than a few times the ion velocity

Ul
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Fig. 18. Electron phas space for p =~ O. Phase space density is flet in the shaded region.

_L6..
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sPread abbut>its mean.. In the present case we exﬁéct that, although

the sPréad in ion'v“qis small near the mirror, the lafge spread in ion
o | '

1
the ion perpendicular energy is converted to parallei energy by'maghetic

v, damps the cyclotron waves and the instability cannot grow. (And if

expaﬁsion, the densityvbecomes s0:low that the insﬁ&bility is probably
unimportant even if it does exist faf from the mifrof.)

Perhaps more importantly, the large anisofropy of thgkion distri-
bution very near the mirrof makes it susceptible to the anisotropy
instability§3’6lL althdugh the requirement'of‘long”parallel wavelength
is probably not satiéfied because of:inhbmogeneity. -The behavior of
these instabilities is not studied here but is,suggested as a relevant

research problem. Resonance between electron bounce and ion cyclotron

motion probably does not need to be considered, as typically TO.4 >> 1.
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'SYNOPSIS OF CHAPTER V

. Im this chapter we show that even with an externalvsource_of
electrdns,'the steady-sﬁate density cannot incfease with s in region
II withdut‘being‘unétable to two-stream instability. This is because
B(s) and B(s) both decrease in region IT. (An exceptional s is the
sheath at the wall, buf stability.conditions in terms of dne/dé at

s = W are well known.) This means that attempts to increase the
external denéity to values exéeeding the density at the mirror must
result in instability (which slightly enhances the loss of confined
electrohs and also alters the condﬁctivity of the external region).
This appears to be true whether or not the orbits are nearly collision-

less.
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V. A COMMENT ON "DENSE EXTERNAL PLASMA"
Expefimental and theoretical studies of plasma stabilization by

v"llne tylng’5 5’65 67

both‘indicate that stabilization is usually ime. .
provedras n(s) in’region IT is made larger. In some experiments the
density of cold plasma may be'high’throughout the device SO that the
plasma ﬁétential is reduced and the densiﬁy-n(s) in region II is of the

0

of gradients due to recombination or directed sources in L < s < W ,

same order as n.. However, in this section we show that in the absence

the vélueé of n(é) in region II in a steady staté cannot be much larger
 than n(L) without causing two-stream insfability; the plasma purges
vmost of the external density,upon formation, sweeping electrdns into
regioﬁ_I aé the plasma potential grows, and sweepiné ions out to the
walls.

| We bégin by defining a "normal" velocity distributiop f(sjv 5V )
as one wﬁose only‘maximum with respéct to V“ is at v” = 0. We prove
the following theorem:
 'Theofem 3: If f(s; Y| yl) is normal, and
If U (s,u)/as > 0 at s for all p at which f(s v ,/—— uB) £ 0,

d n{s
Thena—é—g- <0
(and hence, if dB/ds < O, certainly dn(s)/ds < 0).

- Proof of theorem-

(a) -Collisionless Case
‘In_éteady state, the Vlasov equation for guiding-center motion

along s (with flux coordinates Q,B normal to s) can be written
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| %[H"} =Y g‘?? i %M%'%IF o o (73)

vhere p = p(a,B,s;v”,vl)'is dN/deBdeBV (d3v = 2wvldvldvn),:andrthe
den81ty dN/d =n is %[Ajvp,'since dodfds = BdBr; Hencejrd3vp = n/B.

D1v1d1ng Eq. (73) by v” and integrating dBV,
3w/B) _ 183, L % W
s m V” V”

U(s,av 2/28) |
1 1 1 op
EfQTWldVl - as -[dV” ﬁsﬁ

Now p is related to the usual velocity distribution f(s;v”,vl) at s;

‘ dBVf(S;V”’XL) =n = BJ(dBVQ(a,B,s}v”,vl),

ie€e, P = £/B. U81ng B 5_ (n) ,gg g %E we have

on E v l Bf . ' (7
as B fmldlg- d” V” l (7)

If £ is "normal", (l/v“)(af/av”) is always negative. Hence when

dU/3s > 0 for all v

_L’
9n _nd_,
ds B Os :

(b) Collision-Dominated Case

For collision-dominated .electrons f « exp [- (mv2/2 + U)/Te] and
-u/T,

n «< Be 9“ , SO

on n 3B _n_ J(s,0
Os ~ B JOs T, S ?

" the same as Eq. (7#). (We neglect higher u just for simplicity since
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on;y'cold eléctfons.are collision-dominated.) This result should not
be sufpri§ing, since if a_collisipn term vp. is added toithe Vlasov
eqpatién (75), the coﬁtribution'after performing

; : éo .

f if-”—vp

- i

is nearly zero, assuming p is almost even in v”.

For the same reason, a source S(x,v”,vl), even in v“,_gives.no

‘f contribution. This completes the proof.

Returning to Eq. (74), one may notice that for completely Max-

wellian f and dﬁ/ds = 0, the right side of (74) is just -(n/B)dB/ds,

i.e. n(S)“is constant. But when @(s) decreases with s and dominates

_dU/ds,lthen n{s) decreases at least as fast as B(s), unless f is not

"normal." From Fig. 2 one can show that when @(s) decreases in region

- II, essentially all electrons there have

e( <ed¢>< d:B>"l
p < — s
| (BL Bw) TN 48/ 7

assuming that no electrons of greater i are supplied externally.

-« )IIfindicates an average-éver s in region II.) Certainly at those

s. for Vhich
edp (aB\™t  Jeap\ /aB\* .
— (=] >(= | (1)
ds \ds ds //II ds,/;I o

the df/ds term is larger in magnitude than the pdB/ds term, so that

n(s) decreases faster than B(s) at these s. When inequality (75) is

~
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reversed ?ﬁt'd¢/ds is still hegative, n(s) decreasés more sloﬁly than

- B(s) but still does not increase, because the right-hand side of Eq.
(74) cannot be as large in magnitude as‘(n/B)‘]dB/dsl°

‘ From ﬁhis theorem it followé‘that if, on the_éverage in region II,
5U(s,u)/as-> 0 for almost all the electrons at s;.égg if ne(s) is‘sig-
nificaﬁtly.iarger than ne(L) somewhere 1in region II; then eithey fe is
not norma1 where dn/ds is large, or else the steady state assumption
is vioidted, orythefe are directed sources or recombination gradients
iﬁL<s<w';

Barring very high neutral densities (n_N-'l < We_, with g the

N N
cross:Séction for electron neutral collisions) this means that the
' steady;state case of dense external plasma, n > n(L), is unstable
unless é¢/as is large and positive somewhere in region IT (becaﬁse for
‘most electrons, U(s,u) ~ - ef(s) and { is small enough that the pB(s)
term does not déminate. »
But #(s) cannot decrease as usual in region I and then increase
.in - region II, because ions produced by occasional ionization eyents ..
6or scaftered from elsewhere in velocity spacé) could then be trapped
in the resulting potential depression. Since these ions would mostly
be.ve£y cbld, they would be trapped in the depression for very léng
times and thus contribute very high density--higher than could be
neutrgiized by slight changes in @ bringing in more electrons. Thé
density 6f these cold ions, nc, would be at least of order

n® ~n v*/v
e . esc

' - *
where n, is the density of electrons doing the ionization, v 'is the

™



.

dominant mechanism for cold ion escape, and Ve
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frequency of ionizing collisions, and Vase is the escape rate of the
cold ioné from the depression. Ion—neutral'collisions are probably the

/v. ‘becomes exceed-
sC’ 1in :

ingly small when the depression depth (~ eAf) is more than about 5T,
(vin.is the ion neutral collision fréquency,'Tc is the cold ion tempera-
; | :

ture).u3 'We conclude, then @that for n® << n , the depth of any such
b ) | e

potential depression eb¢ can be of order Tc but not of order Te. Large

. positive d@/ds in region II is thus excluded.
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Vi._ SUMMARY AND CONCLUSIONS

The. inpprtance of several instability.modes in mirror confihement
dépendson the axial profile of density, n(s), near the ends of the
plasma éhd'particuiérly between the cohfihemenﬁ region -L < s < L
("regioh I") and the end wall (é = 3w, w > L) outside the mirror. We
have showh that these "end zone" regions I, < ‘s,‘< " (coilectively
called region II) are usually plasma-like (i.é., have small enough
Debye leﬁgth). The dehéity there can be estimated roﬁghly in terms of
the iﬁn 1bss flux,.because the average ion streaming vélocityvis more
or leésva knoﬁn function.of position (from energy conversion),' In
this external region these ions, all of which are escaping; are neutral-
_ized»ﬁ&_electrons, most of which are not escaping. This can only happeﬁ
if the:electrostatic potential decreases from the mirror to the wall.

The electron or ion density at a point in region II debends on
the electfon velocity distribution and the potential energy profile
U(s,u)v=qu(s) + a@(s). If the "collision frequency" (for momentum
transfer) is small compared with the reciprocal transit time, ﬁhe dis-
tribution in phase space can be generated approximately from U(s,u)
and the'distribution in velocity at the midplane (= = 0), using.colli-

’ sionless orbit theory.13’26

This is discussed in Sections IB (and IIB);
the discussion largely follows Persson.13 This midplane velocity di;-
tribution is the solution of complicated coupled Fokker-Planck equa-
tions.zwhose Fokker-Planck coefficients are not always the ordinary
 ones due to Coulomb encounters). The distribution is non-Mexwellian

over éh important part of velocity space (the "loss region" or general-

ized loss cone), because of the rapid particle loss.
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Witﬁ infinitely rapid-loss,vthere are no pérticles in the loss
regiohs  The Fokker-Planck solutions of several aﬁthors, discussed in
Sectioﬁ‘IC (and another, for hot-electron plasma, in Appendix E), are
of this type. These solutions, which we might call fo(x,y) (x, y the
parallel and perpendicular velocities at the midplane)_can be roughly
modelled'by analytic funcfions (which are not usually separable in
energy and pitch angle). But the deﬁsity n(s) of both species as cal-
culated”from either the computer'codes or thé analytic model fO goes
to zero ét the mirror, like the cube of the distance from the maximum
of B (proved in Appendik A), and the density outside the confinement
region is zero by assumption.

When transit times are finite, however, one must gét a distribu-
tion f ﬁhich is like fo well inside the trapping_region, but has a
small ﬁtail" or fringe of particles diffused into the loss region.
From the height and decay width of this'fringé one calculates the
density‘and flux in region II. (A theorem relating these is given in
part 2 of Appendix B.) But both the flux and decay width are known
from the macroscopically averaged (and measurable) loss rate and col-
lision réte (see part 3 of Appendix B), so the density in fegion II
can be calculated in terms of the U(s,u) profile. For the elegtrons,

ne(s) at a point s in region IT depends mainly on U(s,u) at s

: (locally) and not on U(s',u) at other s'. For the ions, ni(s) depends
mainly on the magnetic field at s and weakly on $(s) and @(L). Ex-

pressions for-ni(s) and né(s) are derived from the analytic model dis-

tributions in Appendices B and C, respectively, and are'reported in

Sectibns TIITA and IITB of the main text. (Cold iomns produéed from
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cherge exchange are included.) Equating these densities gives the ‘
externel'potential B(s), as reported‘in Section IIIC. ' Of lnterest is
the magnifude of the abrupt potentiel drop at the_end wall, s = W, and
aleo the value and behavior of ¢ at the mirror,‘since this determines
the relatiﬁe'number of electrons ﬁhich can pass beyond the mirrors

(to nenﬁralize escaping ions) but still remain confined in the:device
(-w < s<'W) Electrons of this class (called ST: -streaming beyond
mirrors but stlll trapped) are relatlvely 1sotroplc in the end regions,
while_free streaming (SF)_untrapped ions . or electrons alone are far
from isotropy. Another interesting feature of ¢(s) is thaf the ratio
E”/V” ln‘B changes sign near ﬁhe mirror, but continues to scale with
- electron temperature. A comparison with an equation for E“/V” In B.
is glven in Appendix D.

Up to this point of our summary, the discussion has been of ions

and electrons born inside the plasma and appeefingvout past the mirrors.

In Chépter IV we discuss the influence of electrons which may be born
in region II; between the mirror and end wall, or at the wall (either
wall cathode or secondary emission). Jons born here cannot penetrate
the_plesme potential and are returned to the wall, but electrons are
.accelefated info the confinement region. How many electronS'ere
_trapped there ge'a delicate matter involving their energy loss, as
diecueSed invéection IVA. Their contribntion to unbalancing‘the source
input fluxes of.elecfrons and ions, together:with the change in energy
loss fluxes of eech species, causes the plesma potential tO’change. If
almgst. all externally born electrons ("x" electfons) are trapped, the

change - é¢ 1s of order T times the ratio. -of external-source flux
0 e , : .



-107-

to internal-source flux. These matters are discussed in Section TVA.
The,pOSSibility of two-stream instability caused by the x-electrons

is discusced in Section IVB. After pointing outethatvthe stability

criteria are not the same as in the ordinary case (because parailel

velocities are swept out of resonance by the magnetic forces), we

discuss what the nonlinear-steady-state distribution fe(x,y) might
look like with the x-electrons somewhat diffused in energy by wa?e-
particle interactions. (Of course, information on the final wave
spectrum'is not availabie from any simple analytic methods.) It is
assumed that the’waves are primarily space-charge waves carried with
the "béem"vof x-electrons. (This beam is injected "cold" but is

quickly'flattened to a "quasi-plateau" on the electron distribution.

~ An important fact is that the source is not cut off andvthe'diStribu-

~tion function is not allowed to relax. The quaSi—plateau in midplane

veIOCity'space results only because the interactions are strong.
In Section V we show that even with an external source of electrons,

the steady state density cannot increase with s in region II without

'being unstable to two-stream instability. This is because ¢(s) and

B(s) both decrease in region II. (An exceptional s is the sheath at
the wall but stability conditions in terms of’dhé/ds at s = Weare well
knoﬁn.68 This means that attempts to increase the external density
to veers exceeding the density at the mirror must result in'iﬁsta-

bility (which'slightly enhances the loss 6f confined electrons and also

alters the conductivity of the external region). This appears to be

true whether or not the orbits are nearly collisionless.

_Appendix E includes brief discussions of some interesting cases
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not tréated in the main analysis. The magnetosphere and other mirror
vconfigurations without an "external" region aré mentioned in part 1 of
: Apﬁendiva. The hot electron plasma, with @(s) scaling with ion tem-
peratﬁre and differing in topology from the usual case, is discussed
in_part'e. Part 3 treats weak mirrors, where all the ions are essenti-

ally'uhtrapped even though their collision time may be long.

1

H
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* APPENDICES

A. Density Near the Mirrors in the Limit»bf'Zero Boﬁncé-Time

Ir the potential for paréllel.motipn; U(s,u), has a Simplé maxi-
mum-at s = L for all p, and if all particles include s = O in their
orbits’,_"then we have the following,
Theorem 1 - ‘

For a Vlasov guiding-center plasma with midplane distribution
f(x,y)'suéh that £ = 0 for x > xL(ye) and f(x,y) a:[xLe(yg)W;‘xg]p

with integer p, in the limit as x - x. from below

L
n(s) « (L - s)2p+l as s » L from below.
Proof:
® Loaed)
n(s) = R ./’ 2mydy ° e £, Y )
2 »2 2
0 xs X =X N

The x2 integration is taken only out to XL2’ since f = O for
x2'> ng. X, is the midplane parallel velocity for which

particles just reach &, and it depends on y. xL is the midplane
parallel velocity for which pafticles Just reach L, i.e. the

escape velocity. Expanding f(x,y)

Fe(x,y)

f(x,y) = -E;—;SEr
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- where S(y) is the derivative just quoted.

a(x?)'f

Tet t = ~A/x° - X so that =22 dt.
- x
s

W

B ; v , o o
©Let XSE = xL2 - 52 (Sevmay depend on y), so that x = X, maps

onto t = 0 and x? = xL2 maps onto t = 6. We have then

FFFF @® s}
n(s) - 4WRL_/’ ydy (y)J[' at(s” - %),
0 0

 since RS - RL ¥ 0. For integer p, the t integration gives

"ap§2p+l,'where ap is & numerfcal constant (ao = 2, 8, = &/5,

gé % 16/15).

2 B
Now, by hypothesis, U(L,n) - U(s,p) « (I, - s8)” as s = L;

- and xL2 - xs2 < U(L,u) - U(s,u), so 82 « (L n_s)g; let us say

‘ 52(Y) = D(y)(L - 5)2. Then

n(s) » (L - s)2p+lI, where
. ® :
I = brRa jr yay S(y)[D(Y)]p+l/2.
0

v in the preceding it was assumed tﬁat U(s,u)'has a maximum at

5 = L, independent of p. Suppose the maximum of U(s,u) is at'é = M(p)
cdrresponding to escape velocity x = xM(y). If M(u) > W forﬁste W,
say u < Wy then, assuming f(x,y) £ 0 for x < xM(y) when |

v :1(23uw/m)l/2, there will be particles all the way out to s = W.
TheSé will be the particles with p so smallvthat U(s,u)'has-nd maxi-

mum inside the device. Such a case occurs for electrons when



d¢/ds <~O~for L < s <W; electrons with small u are frapped only by

U

=

\ , -112-

- e@, which ordinarily increases for all s > O.

L

iy
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B. Model Calculations of External Ion Density Due to Scattering Loss
(Avlist of symbbls and definitions peculiar to this appendix is
given at the end of the appendix.) |

1. Introduction

-Because the ion loss regiéh in midplane velocity space incluﬁes
the origin, the ién midplane distribution ié Quite unlike a Makwellian.
Ve writé.the "distribution function" g(x,y) (see section 4) as
’go(x,y) + gi(x,y), where él is a small correction, but g, is nearly
_identicél with the actual distribution function f for X,y well inside
‘ fhe trapping region, and 8o goes to zero at the loés boundaryrv‘An
| analytic function with the genefal_features of g, is shown in Fig. B-1.

°T have yielded typical ion midplane dis-

Computer calculations by Marx
tributions 8qe These involved solving a two-dimensional.Fokkér;Planck'
..éqpationvfor ions coupled to Maxwellian electrons. One result'for 8q
is pictured in Fig. Bj2. The analytic model function (Fig. B-1) rises
more.steeply with y but otherwise reproduces the quaiitative features
of Fig. 3—2.

The‘correction gl(x,y) is small but nonzero at the 1oss_boﬁndary
v and decfeéses rapidlybaway from it. Such a correction is neceséary to
>give:n§nzero loss flux. The loss fiux (and the accompanying dénsity of
jrioﬂé in.région II)depend on the height and décay width of the fﬁail"
g, in the loss region [x > xL(y) or y < yL(x)], but should be i#sensi—
| tive to the detailed shape of gq: .The general features of go,igl, and
-g'= gb + gl near the loss boundary are shown in Fig. B-3. v

2. Density at "Mirrors", s = L

We now present a simple theorem relating the density'at the mirror
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_ Flg. B-l. Con l'- s and CI‘(‘JSS sectlon of an analytlc model for ion
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. dlstrlbutlon go(x,y) | v :
go(x,y) = Nexp(-5 /c” ) - exp( xL /c” ) exp( -y /cl)
'Ripple ‘is spurlous and caused by coarse - c.omputation grid Loss
'boundary is sshown dashed. Contaur helghts (O 85g0max)(N/6 + O. Ol) E s
_fqr_N =0, 1, 6
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2.0

5 10 15
X

Fig. B-2. Contour lines and cross section of gb(x,y) as calcu;ated by
Marx. Loss boundary shown dashed. Contour heights

(0.85g,.,.) (/6 + 0.01) for N =0, 1, --+ 6.
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Fig. B-3. Dependencé,oh~y_(for fix
x > 0. Lower level: X <. 0.-

Upper level:
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throat to the loss flux.
Theorem: - If gl(x,y) is zero outside the loss boundary yL(x) for
- X <0 and decays outside the loss'boundary for x > 0 with

a decay width Kt in‘yg; and if K1 <« ylg(x) for all x,

then

n(L) ~ (R, ] l)-l/gF(L)Kl/Qf ©(B1)

Proof:  F(L) = R [Ewydyj’xdx gl(x,y) over the region x > 0, y < yL(x)e
If the height of g at the loss boundary y = yL(x) is €(x), then
.
¥y (x)

' .
F(L) = 5 RLj a(x")c(x) f Ay )E("), (B2)
0 0 :

‘where E(ye) is any function that decays from unity as y2
‘departs from ng(x), with a decay width k. Because of this
one has

v o)

_j a(y®)EGE) ~ k7
0

if KyL2 >> everywhere. Next,

n(L)

o)) O (®)

N
- X )

~over the same region. Since xLz(Y) and‘yLQ(x) represent the

same boundary, we rewrite the radicand

x> - X (y) - (RL - l)y + = e(¢ ¢
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e .'@L : 1>[y-5<>;> -]

with ‘Y (RL - 1) [x + = e(¢ ¢L)1 ‘and change the
“order of integration. Letting t = /yL2 - y2 we have

o | - , oy i
R . r i -,L. . N - P
v =1/2 1. 2 g R Hes2y-  pEyy
a(n) = TR(R - V2| ax o) | Bk BGF): (B
” 0 ' o
. ' o ~1 2 R =
~Since E has decay width.K = in t~, one has,. for KyL— > 1,

oo ”
J(‘vdt,E[yg(t)] ~ K"l/?, so that’

0]

-1/2 1/2.

F(L)K

n(L) ~ 2(RL
(QED)

‘We: have chosenE to decay with y2 instead of x° so that g will be
' nonzero in the neighborhood of x=0and y < yL(O), representing loss
of ions with small parallel veloctiy by cooling and angle—seattering.
The fact that K-l is the decay width in y2 rather than normal to

yL (x) is reflected in the factor (RL - l)-l/2’f

We note two examples of this theorem: for'ihstance, let ,“

2 2.
-K(y." - ¥%)
c(x)e g for y < yL(x) and x > 0
(1) 8i(x,y) =<0 - . for y < yL(x) and x < 0.
- v {‘arbitrary for y >y (x).

@

F(L) RLK j[ “a(®)e(x)
S 0

For this form of gl,
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& - D V@ (85)

and ' ' n(L) =

’As»a's¢cond example, let

2,2 ,
3 -x" /e !
(i1) gi(X,y) = ke for x > O only on the thin strip

ng(x) -kt < ye‘s y=2(X); gl(x;y) = 0 elsewhere.

For this form, F(L)

3 Rey” 2

- 1) MRrry 2,

li

and | n(L) = 2(R

L

Since g, is a perturbation on g,, one expects the height C(x) or
3 to‘be everywhere small compared with the meximum height of gos which

is of order no/c“cle. If it is smaller by a factor of order K_l, i.e.

;Hoo n l‘
Cif J d(xg)C(x) ~ 5~ >
. 0 C”CL K

.,then .F(L') « 1/k° and n(L)/ny ~ [F(L)/noc”]}/u'(énd in general, if

’/‘ a(:2)c(x) « P2,

o
Cthen . n(L) = [F(L)]Pfl/p““g,
the exponent being between 1/2 for p = O and 1 for p = o). The height

x‘of go'jﬁst inside the trapping region, at y2‘= yL2 + K-l, is of order

-1 . o)
8K T, where S is ago/a(y ) evaluated at y = yL(x).v If g < g, at
2 2 -1 . ' ' 2 2

Yy = yL + K 7 and if go + gl varies smoothly, then at y = yL,, the

height C must be roughly of order SOK-l or less.
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53;- Estimate of « and n(L) from Diffusivity in Velocity Space

A dlmen51onal estimate of K in terms of the velocity space dlf-
:} fu51vity, D, can be made from the dimen51onal form of the diffusion
-‘equation, , |

(AV) ~ Dt. !
In a tran51t time of order 2L/c”, ‘an 1on whlch began at s = -1 as
.barely trapped, statistically wanders into the neighborlng "untrapped"

region of phase space during its transit to s = +L . Thus
(av) ~ (c” D}l/e

whefe D is‘avspatial average of D over a field line. Next, observe

that =

= A(y®) = 2<yL)Ay

Except for R -1<1, Ay AV, A typlcal value of yL, when'

L

R -1 > 1, is (yL(x)> yL(c”), SO we use

-1/2
2

<yL) ~ c”(RL - l)

assuming é(¢o - ¢L) < T”. Thus. ve have

”‘if w§ now write D ~ (c”2 + clg)vo, vhere v, is the 90 deg cumulative
" "eollision frequency", and observe that the loss rate v « Vg, Ve can

3 put this expression (B6) into (BS) in the form

w0/ = my(ey - DR ,,)(Lv/c,,)

K;l:N 23/2(RL - 1) -1/2 ”(~— D { ;  o - (B6)
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We obtain'

)y~ mm) e, (1)

" where P c” / ¢, (RL - l) and we have assumed 1 + c” /c ~ 1.
Because v/v is unspec1f1ed and depends on RL’ we cannot describe the
dependence on RL/ but for RL - l'~ 1, i.e., intermediate mirror ratios

in the range 1.3 to 5, (v/vo)l/LL ~ 1. The salient feature,
\3/h
n(L) « (LV/C”)B/ ’

is thusf'explained°

. A Slightly Different Model for g

One need not take g, to decay over a constant width k1 in y2
(although the mathematics may be a burden otherwise); other simple
models are possible. As an example of a model with constant dsCay

width in y instead of ye, we show the calculatioﬁs for the form

, ~x(y. - ‘
% so(x)(Al - Bl)e (yL ) for x > 0 and y < yL(x)
gl(x,y) .y 0 ; for x < 0 and y < yL(x)(Bg)
| -a(y-y) -b(y-y,) | |
So(x)[Als - Bje fory > yL(x)

_with a > b and Al > Bl’ where S,

: [instead of dgo/a(y )] and kT is the decay width in'y instead of in

» ye. Figure B-4 shows the qualltatlve .shape of this 8-

is now Bgo/ay evaluated at yL(x) +0

In order to relate the flux F to k (and show the reasonableness

of our ordering C ~ S

Ok ), we impose on g, the (somewhat art1f1c1al)

cond1tion69 that
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. Fig. B-b. gl(xv,y) vs' y for fixed x > 0, based on Eq. (B8).
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' . (el @® ,
(a) J dx | - 2mydy g, (x,¥) = O,

. J "(D O 1 )

- i.e., that»gl contributés'no correction to the total density
.

| dx ; enydy g~(x,¥y) = n..

-00 0
In addition, we requre that the slope of go + 8y be continuous across

the loss boundary:

E %; (&g +.gl)§
y¥0 | }VL;O

B

- (p) | g; (g, + &)

and_that“gl should produce the observable flux Fi(w) at the wall:
| ¥y (x)

: .
(c) - Jf- xdx Jf enydy g, (x,¥) = F, (W) /Ry
. T 0

| (Since'F(s)/RS does not vary with s in the absence of scattering, and
since g is that distribution which would occur just at the midplane if
p all‘écatteripg took place befdre the mideplane,:at s.< 0, we can evalu-
ate»thé firsf moment integral at s = 0.) |

1

- Neglecting a ~, b'l, and kT compared to yL(x) for all x, ‘condi-

‘tion (&) gives

o - -1 | ’
2a A, - eb lBl + k (Al - Bl) = 0, R - (B9)
while condition (b) gives
ah, - BB, + k(Al - Bl) = 1. N o (B10)

i

' Condition (c) is the simplest and most important, and gives
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21rk'1(Al' - B)J = F, _ | (B11)
pw. |
where  J= [ xdx 8y(x)y (%)
| J -
ahd' ~_'_> F= Fi(W)R;l

is the fictitious flux at s = O which gives rise to the known flux -

Fi(w) &t s = W. Combining Eqs. (B9) and (Bl0), we have

k2 + (a + D)k + 1 ab - oo
. 2 F #
For a,b < k this gives
k ~ /T3/F } (B12)

(with equality in the limit a,b << k).. This means Ay - By = v(2k)_l,
so that C(x) = g [x,y (x)] I (x), as we assumed.

_ 117 2% %o e -

Tb relate the density n(L) to the flux Fi(L) we again rewrite the

~

. redicand in Eq. (B3)

_l;n(L) = RLf%dyf > & (x,¥)

Vi T xB()
as (& - Dy -,
with ¥ o) = (R - 1)'1[x2 + 2 eldy - ¢L)] o (813)

and change the order of integration, so that

[T
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00 ¥y (%) Jiy e k(yy,-y)
f xdx So(x)jL
F, (L) L *© (%) ~k(y, -¥)
;[‘ xdx So(x) ydy e
0 0
-ky

 The y-integration in the denominator gives k—lyL - k_2(1 - e I‘),.
And since kyL >> 1 for all x, we need keep only the first térmk?ou The
y-integfation in the numerator can also be done approximately for

kyL‘>>_l. We use

L  k(yy) e
) ey e R .-
- ~ '\/2ij e™™ aw
0 N, -y, +v) 0
vy, 2
-2 L ;[. e gy
2 GE;—
L O
and replace the upper limits by oo. Again neglecting (3yL)'l com-
‘pared with unity, we get (W/Q)l/_z(k-ly'L)l/2 for the integral. Thus
, o |
' ) xdx So(x)\/yL(xi
a AL >
i 1/2 -1/2 1l/2 0
L MR 1) ey /e 2O , ()
F, (1) | |
| | e sy w00
o ,

which ‘shows the dependence of ni(L)/Fi(L) on Kl/2‘= (k/QyEyP)l/g.
[yzyp is a typical value of yL(x) defined by the ratio of integrals in
_Eq._(lS);]
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Now, if for go(x,y) we take'the analytic model of Fig. B-1,

(Pl oy 20y /e] R 2
| 'N[e fo L T e }J,/

o for x <'xL(y) .
go(x:Y)~_=. , v : . : o (316)
0 S . forx> x (¥)
we_fiﬁd -
o 0 2N ' . -hx2 E
Solx) = — =—5 (R, - 1) .exp{— e(By - ) /Topp|vy (x)e ™ (BLT)
Y e C e

'wherejf.é c”2/(RL - 1)ec 2 % (% c“2)/Téff and h = (1 +;P)Cﬂgf vﬁsing
the definition (B12) for yLE(x), one has then
ee] 3 ' _ o
J= J[ xdx So(x)yL(x)=:NEﬁ2(l + ht‘:)h-2 exp(~ hd + 6/c”?)
0 : : S

where & = %— e(¢o - ¢L)o And the integral in the numerator of (Bl5)
1 ‘ '

becomes

oo - ' e

: Jr xdx_SO(x)yLl/z(x) = Nc 2(RL - 1)%74e- n” 4'7/h' uB/Ué/méagdu,
o . - : o

% hd -
50 thgt; .
S n,{. 1/2 o o : o
L) (f) / (, - 1o 2o, (m18)
F, (L) 2 : ' . _ '
 where  p(bs) = (hﬁ)l/h(l + h5)-lehs 8 :Ui/ue-UdU, L (BL9)
: 15 -

relaté& to the incomplete gamme function F(7/h,h8),7l,is shown in

Fig. B=5.
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'Féf BS = (1 + P)ee(d, - ¢ )/mc“ > 0.2 (ie. typicallj~.

. .;T i < < 25 Te ), is of‘order 1/2 to 1. For hd < 0.2, o(hd) ~ (hS)l/h
vand for h6 > 1, ice. ”'<< e(¢vt- ¢ ) or R - 1'<<v1,‘one has
p(hS) ; (ha) . Now if ve use the estlmate (wJ/F) / for k,

';and work out the normalizatlon N, we flnd

(1 + P)5/2 | e(¢ ¢ )/T | ﬁ | c® ho-Boo
o 7 . 032 T (a0
o J ;-nd#_B/Eh;l/Eélg(l + hB)
and: o o
"-, '(1) fiu | P 5/4
fi—— '1/2113/8%(9\/? YL/ [ (h8) ]l/”p(hs) y
 ;_Since [1 + (hS) ]1/hp(h8) I>Pok. alhﬁhﬁypwéa@aﬂfwfﬁte -
o 5/ |
1(L) _ RL(P\/.l._:--)l/u F } L ()
"o "o H/ a

. with-only very weak aependenée on e(¢O - ¢L). Since F = nva,_the
'quantity-F/nOc” is crudely the rétio of bounce time to loss timé,;for
j‘a typical.ion, i.e. Eq. (B7) is recovered.

‘5; Density at s> L

Let the exact ion loss boundary in Fig. B- 6 be called y = yM(x)

or x = xM(y)° Let the line y = s(X) or X = XS(Y) be

2
vy = (R

D P 5‘; by - 8] (m2)
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»x2
. Fig. 346. Exact igss boundary (curvéd) and approximate loss boundary
| tliﬁe yLe(x)] for ions. Also shown is v
v B = (R, - DT 4 2e(8, - 8 )/m,].

'[Réplacing s by L gives formula for yL2(x).]
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,_ i’hen -

= n(s) = J[2mydy — &, (x,y)
-x (¥

over the region y < yM(x) becomes

i »-1/2 © L nd -
n(s) = mR_(R_ - 1) ax” J g (oY) (223)
. - , /. 2 2 -
S : , Yy, -9
VFor-méthemafical ease, we retuin tb,the model
, S pr
Ky ¥y
g,(x,¥) = C(x)e

(whefe'ye'previously usedvthe approximate boundary yL2 instead of the

exact'yMe). Then the y-integration in Eq. (B23) becomes

' 2 2
M ydy -K(yM -y7) .
Yf . L (e
' 5 B : -
0 Ny, - ¥

 €fWhenvé,>:L, one has yse > yMe for all x. M(y)‘is tﬁe»ﬁalye Qf s for
‘yhibh'&?(dR/ds) + (2e/mi)(a¢/ds) = 0. Expanding R and { abogt‘RL and
R; ¢L:ahd-letting |
S »
o
2 i
;:Qne‘gép$ (for y such that M - L is small),
O MeLa-y /R" |
Ry = RL + —(c, *ly )W'2/R"
Yy =y - (c”-/y v/ R
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2

"XM - XL2 ~ - % (CHQ/YQ)W'Q/R"

L2 2 ~' '3 L4 [2 o2 | -1 W' |
K(XL_ - Iy ) = -3 C” K{% f E; (¢O - Qbﬂ | n(x ) | (B25)
where prime means d/ds evaluated at s = L. (y' and r" ére both negs-

tive.)  Now, writing yMQ'- ye,in Eq. (B24) as

2oy - 2 L (2 -3 2) 4y 2D
gives
2 2y
K(yL Yy ) K(y -yL yay -k(y~-¥")
Y = J[ —_— (B26)
0 \/

where'the factors in front of the integral depend only on x and have
positive exponents, the first given by Eq. (BES) and the second by

Eq. (B22) and Eq. (B22) with s replaced by L :

2 2, ,.2
Ky~ -y ) =&+ 0,
11
CE - Ky
‘ R, -1 R -1
ce(@. -0 @B, -9
o=— |0 5 0 L, o (B27)
m.\R -1 R -1
i s L

Since Rg <R and ¢s < ¢L < ¢O for s > L, it follows that ¢ and 6 are
“ both positive increasing functions of s. { has a second order zero
-at s.='L, while the zero of 6 there is first order if V' £ 0. n is

indepehdent of s. letting t = Kl/e'\/ys2 - ye, Eq. (B26) becomes

1/2
Moy

S
Y = Kﬁl/eeujf dt <—:--t
u1/2
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were u = (6 + 0) +0(x°) = K[ysé(x) - 7 2(0)]. (see Fig. B-6.)

- Y is a:monotonic decreasing function of u:

Y & K“l/2 [iéi'-'ul/g]  for u <<'1 and Kys2;>> 1, and
'YcéﬂK'l/?(vKu)fl/e . - for u>>1 and Kysg >> Ue

(In this latter case the upper limit of Y may be replaced by oo with
- an error of only exp -Kysg.) The function u(;,xe) is always positive
and has positive du/ds. For large enough s - L, au/ax? is also posi-
tive,fqr‘all xe, but for small s - L, u decreases somewhat before it
v"incréases with 32, the decrease being due to n(xe) # O;:

| Thé approximation Yy = ¥p» 1-e- m =0, gives a reasonab;y:good
estimate for n(s) using Eq. (BQB), but gives dnfds = - ® at s = L

because
. 00 ®
.a 2 : '
:EE_[_ dx C(xe)Y{u(s,xz)] = J( dxec(xg) %% g% ;
0 ¢

this is - oo at s = L because dY/du = - oo at u = O while du/ds is

finite at s = L. For a better estimate of n(s) which gives finite

" dn/ds, one may replace n(xg) by 7 ~ % Max(n). Then Egq. (B23) becomes

. _ .
n(s) =~ WRS(BS - 1)’1/2§"1J[ . dulc(E—%—g)Y(u)
SR o

where ® = 6 + 1. This can be integrated by parts if C(x°) is of the
P =0 his ~grated
e X
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- , . ' =] r -t2
n,(s) '~ "R (R - 1)1/2,5t — |2 1/eez¢j - dte
o NET)
or T2 2 -8, 85 0 42
- e Jr . dt e - Sle e Jf dt e
Je /5
where ‘
2 =/t
__K ok i
S TR -1 (Vo - %) - [q""’* S2 =71 (% “’s)]
5, =1 + %—;‘ﬁf—z |
S5 = SML(\J:O - Ws_) v
2 ., (12
- RL - l, K//L \ _1/2

abd & S

For any X, the function

decreases from Wl/2/2 at X = O'tovzero at X = oo; the decrease is

{ rapid_at firsf (negative infinite slope) and slow for large Xo

At s = L, z has a second-order pole, while the 7 term (eléCtrig
.1field“at:s = L) prevénts ¢ from having a zero; éo the first term in
\-brackets vanishes and the remaining terms go to approximatelyvr

@ 2

-en.j dt eft

E
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since S, '

2 3
2/(1 - z) is -1 at 5 = L. _

and S, are both large and Sy ~1lats=L. ‘The coefficient

As Rs1decreases from RL’ a point is reached where z = 1. The

coefficient z/(l - 2z) has a first-order pole, b@t’the square bracket

there. Next, the
1/2

has a first-order zero since Sl =1and ¢ + 82 = 5

-] 5
‘point RS = 1 is reached (if R, < 1). Here the factor (Rs - 1)

becomes infinite, but z = 0 and ¢ = @ with 20 = A(Wb - ws) finite.

The p@fameters 8y Sz Su.ére finite but g, « (RS - l)'-l/2 is infinite.

3 1
The second term in brackets vanishes (¢ = o) ‘and thélrésult for niﬁs)

is finite: at s such that R = 1,

-1/26’?$W0‘WS)J[ -2

dt e

ny(s) = v(g/K)ﬁ‘
C , \Az(wo-ws) N

For R, < 1 the original expression is still correct (if oo is
replacéd'by -ico in the first integral) but the'terms in the bracket
-are imaginary, as is the factor (RS.- 1)'1/2 outside the bracket. The

‘ functions ¢ and @ are negative, and 5, is imaginary. One can rewrite

ni(s)vin terms of o' = [®], z' = |z], s,' = 8, with ,Rs - 1| instead

of R. - 1:
8
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(0 0]
2
- ' -

1(5) E IR |1/2 1/2775-,1-2pz (2') l/22<b[ st oot

v NEALN

o 42 S, 8, 2
+ e J[ at e’ - Sl'e e ‘j dt e .
'—
778, ES

In practically all cases one can take S, = @, which corresponds

2
‘ o '
to replacing the upper limit of Y by oo (i.e., Kl/"yS >> 1) before

- doing the integration by parts. Comparing ni(s) to ni(L) then,

™ . o _ l/g 1 , i
ny(e) R 3L — [z'l/2E(z<D) - E(@)] - (m8)
ni(L) R ARy -1 E(n) 1 -z o
for RS > 1, where
.
: 2
E(X) = —% exf at et ,
VT R
For R_=.1 |
S B L R CURRA)
n;(L) R\ /% E(n)
“and f-.or.RS <1l
”'h.(‘)-"_R o1 1/2l 2] 1 V9] .2
S Y A _ Tl oelon) = e
n (L) R IRg - 1] EM) 1+ |z] \ﬁ 0

For convenience, we repeat the definitions

' -1 )
B G L -2 2
ZE = - ith /M~ d Kk >>c
| [MRs'l Rn-l)} T o |
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2 w@_ﬁ Ws “_&UWO ﬁQwL”
RS -1 | -R:BE i,l

%,

T=% k?JQI(Wb - “'L)'IW'QWI':L , (prime = d/ds at s = L)

and }'f' ¥ = e¢/(% micue) s subscriptéa as necessary.

A plot of Eq. (B28)“vs.RS and ¢s is shown in Fig. B-7.for typical

5 ‘._‘ ) _- . L P ) '2._. n =
pa?ameters R, =3, 9 - @ = L, Te/Tiﬂ’— 1/2, Kd”. = 10, 7 = 0.2. The
Fortran progrem used in making the plot (TONs) is given in Appendix F.

To obtain the behavior of ni(s)'for s fairly far from L, we
- expand'Eq; (B28) for z << 1, & >> 1, and 20 << 1, and keep only the’
o N 1/2 e

léading term, z ', for the expression in brackets. (This ordering

is\the proper one if 6 << Kc”2;/i.e., if Te <<‘£ miciug). - Then

2
writing
| F(L) = RLLnOv s
-2
L EEy e
and. A/2, 1020 1yL/2 /3L el oL,
. 8 \RL 5 RS ”
we have '
n(s) RL‘— 1 1/2 RIv
B (\RL‘RS " 4 - (329)

¥

for s sufficiently large. To compare this with EQ. (20) of the main
text, simply note that for this model

0SS ' -1
L ~ ?”(RL -1) .

TL "

&
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Fig B-T. Ct
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. 6. Small Mirror Ratio

Here we examine P = (e /c )( - l) lyhen R - 1 << 1. The - E
I Ry R ; T .

';'quantitleS'c”2\and_cl2 come from the model

- e

-xg/CHQ .'XL2(Y)/°”é_ ;yg/élz

Exg < XLIE(Y)] .

g_o(":’&) -

- They are asymptotic "tail'temperatures" in the confinement region.

The actual,temperétures T” =v2(€”) and T = <€l> may be calculated

o

- from goiA . _
m. 2 a1
T“ = -2— C“(l + ~P) H

o m 2 , vl
Ty = E‘ci (1 + wP)(l +P) 7,

‘with o = (T o/ - %) + 5/2.  Note that T” <D c”2 and TJ_> 2 12

~ When RL - 1< 1, P can be 1arge without 1im1t and the’ approx1matlon

Ty =2c¢p, T, == c (made frequently in the main text) fails. One
I .2-'_H, 17271 . | s
-may write v
. ‘ 1 B 1 _
- 1 - LI ) - ° o
P=P (1 - wP) whe)re P (T,,/’Il)(f{l‘. 1) | o

(P remains finite as Rt - lv» 0, while P becomes infinite.)

_Bﬁt the limit RL - 1-+.0 is not stfictly applicable in th;s
papef bééause of the ihitial requirement;XVT <1 (where T ié'a typical
bounce time and v the inverse loss time). v is felated to the. scatter-
ing rate QO by v/vd = X(RL - l)-l with some_cohsfant'n ~ l,'whgn o
R -1 << 1. Thus_even>if e stay$ finite as RL*f lféid T” go tp ’ . i

zero, we have the limitation _ SR

(R, - J.)3/2 >> MIv/v),
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 where;mu2/2 = T . Slnce Lvo/v 1s usually quite small (say 10-5) this

_L.
is not a serious restriction on the values. of RL one might wish to
:cdnsider. If c”'is held constant as RL - 1and T” become -small, the
'condition v1 << 1 imposes a practical upper limit on P:

2 1. v2/3
C“ (L‘VO _

P <<

G Vv

For c”2/cl'2 ~ 0.1 and LVO/D ~ lO-h this means that in Eq. (B21)

(/T +}ﬂ.1>)l}/b’ <2,

7. Symbols Peculiar to This Appendix

a, Al’_b’ B, = parameters in the model (B8) for gi(x,y).
vc”,'c_L = (2T”,_L/mi):l/2 ordinarily, but when using quantiﬁies
derived from (B16) for gg9
é”; cl = agymptotic "thermal SPeed“ parametérs in go° Fér
| RL - 1 > 1 the difference in definition is_negligible.
For RL -1 <1, see fihal part of this appendix.
c(x) 6r.C(x2)= height of g(x,y) at the loss boundary vy = yL(x) :

[or X = xL(y)].

D = velocity space diffusivity, in some average sense
(averaged over velocities where the distribution
function is large).

D = spatial average of D over a typical bounce orbit.

~~
~
no
S
1

any function that decays from unity as y2 decreases
2 N .
from y, (x).

F = Fi(s)/Rs for any s. P is independent wof s for s > L.
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P

i

:/L=

. SO(X)

S5 S SB,_S

t, u;.U,.w
Y

Z

B

L - it
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(1 + ?)c”-g. See P.
| Trax syeor 0.
< 0 0 YL x.f‘

decay width, in y, of the model (B8) fof.gl(x,y).
normalization. of go(x,y) in model -(B16). Value given

in Bgé={B20).

DA Lraxry e s} o) ’ -P/2

arbitrary exponent in “[" a(x)e(x) « k “
o o

(C” /Cl )(RL - 1)

rarameter in C(x) « e X o8

e
slope of g, at yL(x). 8y = 98y/dy or ago/a(y2),
= functions defined on pége 133. .
various temporary integration variablés.
'integral defined by Eq. (B24).

~lt. see M, t. |

(2e/m,) (B, - #;) |

<[, -0 - - DY

small quanﬁity measuring electric. field at thé_m;rror:

3 4o o

s

=3 ke[ 4 22 0y - 9] B where;' means

Hl

d/ds at s = L and where { = é¢/(m1/2)¢”2. n ié an
average of 7, or order 1/2 Max(n).

ie- ¢O-¢S-_¢O -'¢L p

m, RS -1 RL -1

‘decay width in y° of g (x,¥)-

5 .
amplitude of C(x) in C(x) = ge-/Lx for some /L ~ c“~2.




i
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L \1/e
e¢/Te as elsewhere in this paper.
6+ 7. See 6, n.
e¢/(mi/2)c”2; subscripted like @ where necessary.

5/2 + (Te/Ti”)(wo ‘v@L)-



-1ho-

C. Model Calculations of

.. Bxternal Electron Density as a;Functioﬁ of Potential . -
1. Model for g(x,¥) . o
_For the electrons we take g(x,y) to be a Maxwellian multiplied by
" a function H(x,y) such that H~ 1 in the confinement region and H ~ O
in the 10ss region, with a smooth transition between them:
. “52/ﬂ7 éyﬁfgg | . ,

g(x,y) = Neexp (:ix /c” ﬁ*exp?G-y./cl_)H(x.y)h

It is'convenienf to take for H the form
7 —K'(xje_-xg)/cﬁ } N
1-(1-¢)e ‘ for x~ < x y°)
. : : -K(xg-xijlcﬁ o ”‘2> 5 ,

H(x,y) = < ge ) ,s for x~ > xl.(y ) and x> 0

0 ‘ | for X } xle(yg) and x < 0,

o /
where
2 2e
2, .2\ _ ' : 2> 2
x,(y7) = > pe . for y- _ vy, .. (C1)
(R, - 1)y" += ¢ - |
L R z % ,

;T4 ; . 2 — 28 ) - C .v.
.(see.Flgf c1) with y,© = (== 4, )/ (R, - R)). ~w¢ take £ <1, «' 2 1,
K>1 ahd note that for smooth slope k' = gk(1 -.g)‘l} Figures 10
and 11 show g and Hvs x for ¢ = 0.1, k' = 1, 2. The parameter ¢ is - &

“the value of H at thevescapé velocity xl; k' measures the abruptness

@

" of. the damping at x < X 3 K measures the abruptness of the decay for
o . L o o2 .22
'x >x;. The region of integration in x,y for ne(L) is x° > x (¥y°)

where .
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x? >x2 : absolute loss from device

x®>x?%: turning point beyond s= L

XBL 697 -3274

Figf'C¥lw 1Approximate electron loss boundaries ih midplane energy

. space.
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flkﬁn

1265 =, - 07+ 2 (4, - 4

Then
- 0 ;yQ/ce.
né(L) = NRL.jﬁ 21ydy e 1
0 .
DB
X a(x) <28 -k (x5-%7) /2
xf : . e ”[l (1 - te 1 I
e EE |
|
® d(xg) -x‘e/c2 -K(X2-X >/c2]!
1 1
+§’jxe — | ” J«(& (c2)
1 L }

2 : E{ralué.tion of Integrals

To do these integrals by parts, first transform from x,y to t,u

as fOlZ_Lc‘st:

c”t‘= X" - x 2 ;Li_i;d:‘"(\xz)/qyxe —,vxLQ}z .Ec”dt

Cou = 5/312 - xL? = «/?2e¢L/m) - (R, - RYC 5 2ydy = (B, - Rw) 2udu

'x  from X - to o meps into t from O to oo.

y from 10 to y, maps into u from ¢l/2 to O, where ¢ = = e¢/c”

Yy from , yo to oo will be done separately Then

S-E1

- . 2,,2 2 (a1 N2 P
:X‘/C”e-K (Xl-X )/é” ) e-XL/C”e-(b+l?u . bt~

a -'
> '-xg/‘cﬁ -K(xg—xjg_)/cﬁ -x_i/cﬁ +(k-l)u2§:' -ktg’

e .

&
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where " b=k'--lland  k = Kk + 1.

-

So the x-integrations in the curly bracket of Eq. (C2) become

u S

2,5
-x5 /cf : 2 : 2 2.
c”e v L 2 Jf at et - 2(1 - g)e-(bﬂ‘)u f at ePt
' 0. - 0
2 ® 2
.\ ge(k-l)u f 3t ookt
‘ u

4

If we vtake ¢ <1, «>1, and «' > 1, all parentheses are intrinsically

positive. Next let

2 e
R, -1 cye
a + 1= L 1+ T“———
Ry - By €1 (RL - 1)
and |
9, =2 eBo/e)” = e/
Then
VG Bl by - (an)d
e e =e e e o
s0 - ne(L) = N‘rrclﬁ—-—;’—-:—':e ¢ i / d(u?)e o 2] dt e
o R Ry 0 0

| _'( 2,2 212y @ 5 |
+ TR ¢ jf a(y%)e ,y_/c%ﬂL ”)f cpat e¥t . (03)
y02 | | -

We do the first three double integrals by.parts:_
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I, = UdV=UV-,g=ﬁ-deU;

1
U2 2
-t -u
U=f_;1te ) U = e au;
O .
2. (a+l)u o (a+l)u?
av = 2d(u") ‘ v e T
: & + 1
80 ,
, A s V% 5
I = eaCP eﬁ at e_t - e-aq) du eau
1 a + 1 .
0 0
: ) ' / - L.
Similai‘ly ‘the second double integral is
: : \/@ e -a®P /¢ 2
I, - ——-‘i)-gil'_'b ) 9 e‘wf at e "€ f du e
K -0 0 =
u
‘, v o , . -
For I3, , U= f dt e'kt s - dau ="—e&u du;
(ka2 , 2 f ()l
av = te' a(u”) V=p—=—e H
, T+ 8
© Ve
2 au® ./ \1/2
_ 3 ay kp -kt -a¢ f du e _ 1wy -84
I5 k+8 - e . d_t ? +e 21k €
. 0
2,2 2,2 . { -2, 2
: O o) (@ @) (e (R-R) (e Ty
- Finally, e =e e : » 80 that
| 4 s lo'e) N -2, 2 00
- -(@5%e) o, ~(8+1)(R-Ry) (e )y R
Ih = e *f d(y )e’ , . C” v dt e
LI 5 _
Yo 0

5 ~(00#) (&) (R ) (e )y

e 1/2

ol
13

(s DR - Y

L

3
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c Be_&)O e-a¢"l A% 1/2.
| ')

N

.‘—'RL --Rw a +'lv5
Noté that; wifh their respective coeﬁficients in (C3), Il alone
gives #hé_qeﬁsity due ﬁo a Maxwellian cutoff abruptly at x,, I, is
_ the dambiﬁg correction (always negative).fof ST particles; I3 is ‘the
"tail"-éf’SF electrons with y < Yo i.e. deelerated in region IT but
still lost; IM is duve to electronsvwith y > Yor accelerated oﬁt from
's = I ' by the predominance of magnetic forces. We expect 15 énd Ih to
be much smaller than Il + I2 fdr reasonably large ﬁy because the
"tail" is small (héight « t) and short (k >> 1) for reasonable loss
flux. _' |

‘ 3
quently, we have

Treating I, + I, as a small correction to be dealt with subse-

et

. Y S
e—wf dt ebt. - e_aﬁf dt ea't
0 0

- g)(g-:‘-%

—

From Figf 11 one can see that, for'xle(o)'z 'Oc”2 > hvc”2 (i.e.
e¢o 2 4 Té”) and k* > 1, the normalization N differs by at most a

percent or two from that of an ordinary Maxwellian:
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= a2 g2
N = no'rr . C” él .

And for isotropy, where E” = cl;

RL 1

- RW a +.1A_

For this cése, then,

Cnm) g o
S~ CESN§, 8, b, t), 3 (ck)

n

0

0 = 8/ - B e

withv¢L;E §¢L/Te and a

. v | VB V&
' 2 2 ; .2
EST($, &, b, &) = — e”f at ™" - e'a@f at e**
- -8 , at :
_(1-@(::“%”13@/ [ ol
, 0 ~(c5)

3. Varioﬁs A?proximations

For a$, b <.3, a power series representation,

| ': ‘ Vai 2 2 n '
e-7¢f FPY oGP B (8
-0 0 :

'(with_y ='a, b, or -1) .converges reasonably. As an approximation to

Eq. (C5) one has (for the isotropic case)

EST(@) a, b, E,) =




The'nﬂ= O term invﬁhe sum is zero; the n = 1 term is % (a + 1)¢0,

which is small of ordér t; the first "large" term is the n = 2 term,

=

k@) +1) - i+ 0|
and for‘ﬁ.= 3,

T XF§ # 3 (a + 1)[(3 - 1) + b(a +b) - 5(32 £ 17 4 ab)]¢3 .

We shall see shortly that it is not unreasonable to take & = 0.1,

a=2 fo %, and b = 0. Por these values we have Table CI. Crudely

then, if one expects & <K ¢'5 1,

n_(L) -# - _ : ‘
e ~0.3 Oa + 1)[(1: +1) - t(a + b)]¢5/2, (c7)

o)

| _ B i y et
for a not too large. (Recall that a + 1 = RL_/(RL Rw) and b + 1 = Kk'.)

For b'¥ O the dominance of the n = 2 term (65/2 approximation) is less;

for & = 2 and ¢ = 0.1 the coefficients of @n in the sum, when b= 0.5,
- 1.0, are listed in Table CII.

For af > 3 (e.g. for R, - R, << 1) but b < 1, we use the asymp-

totic form72
. NG} 1/2 _
: ‘ _aqj ) '&'t2 ) ¢ 1 3
e dt e "= 1 + + A+ e
% . 2af - 2af  4(a@)

so that, again for the isotropic case,



~Table CI. Terms in the series eXpans;Aipnvéf, EST(®,a,b,¢t) for b = O.

‘Il--term - ‘12. term »
1 - (-a)" (1 - &) : ki % (& - p™)(-1)" ‘('z'r%ﬂ"‘r Coef. of @" in E.
i a=2, 3 a=2, 3 - a=2, 5
n=1 3 ' L -2.7 - 3.6 % 1 0.20 0.27
n=2 -3 -8 5.4 10.8 % 0.64 ‘_0.75
n = 5 9 28 -10-8 _52-)"' 7}8( 15 "Ocl)"' ‘Oowal“' } .

-BOHT -
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Table CII. Coefficients of @ in the sum Eq. (C6) when b = 0.5, 1.0.

b=0.5 . b=1.0
&l - 0.20 0.20
2 1.00 1.36

3 -0.396 -0.755

i 0.233 0.415




. ,.'_x_lfS/Q.."'

o 2 o pTgh
EST(é) ayxb, §) zl___ '1/2 E: v $ 1
' S ST o (Cn + 1)!! L

-(1-¢)

.
f 1
ll-(l-e)( !
" 2ag ) \a L 2a¢
in which the last line is a small correction. The

Eq. (C5) and the approximate forms of Egs.

in Figs. 12 and 13 for several values of a, b.

The correction terms involving I3 andeu are
_¢O

e a + 1 _a¢‘

SF
ne ) (L) = E.no

,§[

v'l/z
%

'
]
=

-af

e

+
e e
w .

o

8-+ 1) . . |
(él)nb;‘ .
18 - b B .
3 ] ) ®
+ oo '
k(ag)”

J

4

"exact'" form of

(c7) and (C8) are shown

@

2
+ ek¢J(‘- at e Xt

Ve

For a 2 1, the first function in square brackets reaches a maximum of

less than 0.55 at ¢ < 1.

1

'O.8v9i‘<:_l and behaves like 3 k- ¢ -1/2 for ¢ > ot

The second function is always less than

The coefficient ‘

~of efa¢(1n the last term is always less than 0.27 for k > 1 and a > 1.

Thus, for all ¢,

SF ;o
ne (L) -wo

for k, a > 1,

o gt Yo . .
compared with n_ (L)/nO = e EST(@L, a

L’

this correction is only important for ¢ < 0.2 for any k, a > 1.

k = 10 and a = 2, n /n has a meximum of O.l6te

b, ¢) in Fig. 7 , so that

(For

O at ¢ = 0, dropping
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R SF ST
to about O.1lkhte at @ = 0.2; and n_ = n_" at ¢ ~0.12. By the time
' ST ' '

' SF
(=) 2 5ne ')

® is as 1érg¢'asv0.2, n

L. Equation for the Loss Flux

¢

We have said that we expect ¢ < 1 and k >> 1. Some insight into
appropriate sizes for ¢t and k is gained from the egquation for electron

flux at s = W based on this model g(x,y):

o 2,2 2,2 2 2,2
. o 'y /c ) . C =X /c ) _K(X -X )/C .!.
Fo(W) = %T:’-T Rw[ a(y?)e lf' a(x2)e | te 1 ”_i

Letting u = c_e(xg - x 2) the integral over X becomes
e I 1

22/2 . ® |
‘gcﬁe 1 ”‘[ du_e-ku, where k = « + 1 as before.
0

B ) o) .
Then, using the definitions of x, , &, and ¢,

7 -9 5o By
o En )
o 0 '
@ 2
' (9,-9) j 2% By
' 7y02
where : ' A, = Clz + (RW - l)cﬁ2
= 72 -
and - BL = Cl + (RLv- 1)0”2-
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Now.usihg;yog E.c”2¢/(RL —'BW) to define

o -
Rw'— an ) c”
oy + 1= By [0 = |1 e
RL RWL_ c (3w - 1)
and o
. | 'é RL‘—.l - c”e | |
a. +1 =81y m:——-—— 1l + ————— =a +1,
L L0 : 2
RIJ - Rw L ~.c..L (RL - l)- .
we have
S ' (a0 a0
L L oy %k l - e e L
F(W) —————c”e - + = .
' 2 RL Rw k ay t 1 ar + }
. “3f2 -1 -2 . .
‘Then, again using N = ndvv c” c, , we have for the ;sotrop;c case
)= cl = G
| t 1 -0 1 ;
Fe(w) = — 1., e 91 - 3%, - (c10)
: k 2 . a+ 1 ' , :

"~ where ﬁe have used a = AL'= ay + 1= R&/(RL - RW) for isotropy. . For
a, ap > 2 this result depends only'weakly on Q. Compare this with

" the ion £lux F (W) = (Rva/ci”)noci”, where the parenthe51s is typi-

cally -of order 10 =33, Fe = Fi gives
— =24/ e 1 +-— e .
k ce 8.’ + 1 - Ci”
?

For prétons with T” = 10 Te and for @O = 5,’24/5 e Oci”/ce ~ 40, so

0.1 and k = 10

that ¢/k ~ 0.01 typically. Thus if, for instance, &

this”can'be satisfieéd. If we now choose k' = kt/(1

) so that the

slope of g is continuous, then t/k becomes (using k = K+ 1) just

o
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,§2/K', showing that 1if the "damping" of g is not too abrupt (say

< é):thén ¢ is in fact small. If the ion loss of the ratio T,y /T,
is enhanced»by a factor of ten, the smallness of & begins to break
down. The actual realistic values for.K' and ¢t can be determined ohly
from the détailed nature ofvthe scattering process.

5. Extension to é > L

The preceding analysis does not require that L Be the point of

‘maximum B; only the values of a and @ would be éhanged if I had been

some othérvpoint Se The'region of integration in (02), however, may
not have the simple form

> (R, - 157 + 2 eld, - 4,)

for some general point s as it does for s = L. A look at Fig. 2
will verify this. Fortunately, most of the alterations occur in the
region y =~ Yoo and if ¢0'~ 5and ¢ ~ 1, Yo is. large enough so that

there are only a few electrons in this.part of velocity space. The

~ contribution to ne(L) from values of the integration variable y larger

than some ¥yo for O < ¥y < Yor is found by replacing u? = ¢ by

o
n
ye)

i

2, 2
in the limits of the d(u2) integration in Eq. (C3). Thus the ratio
ST

- 2, 2 *
n,’ due toy > ¥y 'an /‘VO - EST(¢ ,a,Db,¢)

sT -
ne EST(CP:a}b: §)

= € .

2 2
-a‘(pyl /yo

~ e (1 - yle/yoe)s/2
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for-a¢:5 2 (or less than this if Yy >'O.9 yO)Q For ylg/yo2 = 1/2
this‘ratio is about 1/16, ifa=2and ¢ ~ 1. 'S0 for poinﬁs g>1L

I repiaced by

- but not too near W, ne(s)/no-isfgiven-by Eq. (C4) with a
‘ a = RW/(RS - Rw) and’@L = e¢L/Te replaced by @s = e¢s/Te:

e | :
_ 0. . L
n(s)/ny~e "EST(v,8 4bst),

again ignoring the SF particles (terms I, and Ih);

3

ﬁét us now look more caréfully at the region of integration for
s > L. Particles contributing to ne(s) are those which are not turned

around at any s' < s, i.e. those to the right of all lines es,(el)

B2
1735

for s' < s in Fig. 2. (Recall that e”_= g xa, € In con-
structing Fig. 2, we have assumed that d¢/ds < 0 at all s--including
s = L, where dR/ds = 0.) 1In general, part of the exact integration

" boundary is the envelope of ‘the preceding € lines

{i]

e” = es,(el) (RS, - })el +f§(¢0[- ¢sv)’

and thus its shape depends on the final answer, ¢s

The lines €y = es(el) and €| = EW+(€l) intersect ét‘

If d¢/ds'< 0 at I where dR/ds = O, then as s increases beyond L, this
value>of € fifst‘deéreases, then increases again (an efféct related

to the fact that the msximm of U = uB - e is at a value of s slightly
largér_thgn L if u ¥'O.) For s near L, so that e¢é/(Ré - Rw) <

e¢l/(Ri - RW)’ the triangle |

o

o




e

| . ef

es(el) <.e” < éW+(él),' Q <e <

is thus a good appréximationzto the region of integration for the ST

particles (integrals I, and 12). For s nearer to W, where e¢s/(RS - Rw)

1
> e¢L/(RL - Rw), the upper portion €, > e¢L/(RL - Rw) (d.e. y.> yo)

of the triangle should not be part of the integration region, ‘and
using the technique just discussed for evaluating the contribution
frgm Yy greater than some y, we can subtract iﬁ off. The remainder,
according to Fig. 2, is a much better approximation to the exact inte-
gratibn'region. A still better approkimation is obtained by sub-

tracting off all of y > ¥,» where y, in the intersection of xs(y)

S m (., - 8 |
P e (4
2 RL - RS‘

(see Fig. c-2):

N s
neST( s ) -(po i N
—_—— e (EST(@ s8_,b, k)
n ) \ S S

o

Rw

' : ' : Rg. - RW
-exp | - ——— (@, - O )|EST|®0 - (@ - 9 ) ——

R - Ry ' R, - Ry

i

% i
:asyb,gl
<

where EST is understood to be zero if its first argument is negative.

‘The correction term increases from zero at some s € W to a finite

value at s = W . The worst casévisuobvicusly s = Wrg ﬁgereﬁ9é3n3¢w and
RS = Rw’ﬁi°e' the left and right boundaries of the integration region

for neSTvare the parallel lines
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&

. F_igo_' C-2. Exact integration region for ST electrons at s (heavy curve).
Approximate ini:egrat-ion region (.déshéd triangle) truncated at yo2
oyl | | ‘ S
. .‘)’l . . - |
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€” = (RW - l)f_.l. + e(i¢o —¢W)
| €” = (RW - l)el + e_¢o .

For this case a_ = @, Be we have

ST
n_ (W) - -a_ (o -9 ) _
e O{% - UL w‘}EST(ww,aa,b,g)f - (c12)

o

We note in passing that

e

5 % @ 2nq)n _ .
EST(®,00,b,¢) = -—-'®l/2 £ + } '————-f——‘—'[l - (1 - é)(-b)n} (c13)
’ T T (en + 1)1!! :

b

-

and the éorrection due to SF particles is (hkm)_l times the ¢ term in
this expression, i.e. negligible except for ¢ < &.

When formula (B2) is generalized to an arbitrary point s, the con-
tribution from the SF electrons may also be corrected by extending the
: y2 integration only up td_y2 = y02 in Fig. C-2. And since the contri-
butiéﬁ of those particles agove yo2 is negligible, we can.write an

expression analogous to Eq. (Cl2) for neSF(W):

SF |
n T (W) -a_Q Ro o)
e ~ L'L| 1,,-1/2 "W 0
'—T = [l - € } 5 Ek e erfc wkcpw _e

(c1k)
o _

where the expression to the right of the square bracket is just the
o SF L

~ previous form of n_ (L) with L, changed to @ and ar changed to ag

| (aw = 0).

6. Comparison with Simpler Models

Now we compare the entire damped-Maxwellian model with first the
ordinary Maxwellian and second a simple dimensional model.
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If g is an undamped Maxwellian for x > x, (particles leaving the
"device) but still zero for x < axl"(no SF particies returning from
s>Ltos <L), then we have K = 0, k = 1, and ¢ = 1 in Eq. (Cl) and

' subséQUently., The term involving Ig,is zéro. For this caéé; then,

e : (0] (p_j . -t -acpf at
e . e’ | dt e -e dt e

0

and

e e a?J( at 2 4 &% [ dat et . (c15)

nO,_ . '\/’T_T 0 : \/_(TJ

If partiélés afe also sﬁpplied in the returning tail so th;t the
 éntir§_distribution is Maxwellian, thenrthe region ofvintégration_fof
.the SF particles is doubled. The terms involving a thén cancel to
give thévusual‘resulf |

n (L) -Hggd)
e .

o

The.“démping"_of the Maxwellian,thus replaces

n (L) -9, @
e ‘e

‘n

0
0 (L) -2@, | :
with =e EsT(.ch,aL,p,,g)-. (see Fig. 13.)
n ' ' ‘ :
O . .

A simple dimensionsl estimate of n(s), for s nearvl; may be got

by exp§nding g(x,y) in X - xle near y =. 0 and assuming g(xl,y) =0
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(i.e. neglectlng the SF particles). For simplicity, we take

” =c |= ¢, and c >y, (see Fig. C-2) so that exponentlal decay of
g and yabcan be .neglected over the integration region for n(s). For
s near L, £he integration region consists of the two triangles in

x2,y2 (one for x > O and one for x < 0);

2
c. @
2
x?<x2<x2, vy2<y E—-E—-—s—,
S 1 0 R -
v . RW
| i : f th i y 2(R - ')'l
(for s = L, see Fig. C-1). The area o ese is.c o "(R, - R ) "
: 2
We write g(x,y) = (x12 - xg)so, where 5, = - dg/d(x°) evaluated at

X = X and y = O. Then

: g(x,y)
B E d dx” ) ————————
o) =3 a(y >fc ———

becomes’

n(s);& R.C, u 2 -

where ( ) means an average over the integration region. But, crudely,
e S Y
/.2 2/
X - X
S .
and for a rough guess (an underestimate, actually) at SO’ we calculate

it from a Maxwellian:
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Thus we have

ﬁ S , 'ﬁﬂ o -Q
(-) ~'rr-3/2 s -qiss/?e 0

0 - Bg - RW

n

c . o
(for s near L}y which should be compared with Eq. (CT).

(c16)

i
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D. Comparison with Existing Theory for ¢s

29 as

In this appendix wé discuss an équation‘due to Newcomb

. .
presented by Kaufman.7

ea¢<s) (s) |
” [ /V” - (VLQ/V”2>e ) (Dl)'

dB(s) 23(5)

where the local values of these averages, at s, are to be used. We
first recapitulate the derivation, then discuss the result. Let the

functional S(A) of any function A(s,u,H) be defined by

's<A) 7 f au j R [2m, (5 - uB - qa¢)]1/e

spec1es a 0 uB+qa¢

o - F_(ugH) £
x 27 ) (6,0,8). (v2)
-
where Fa(u;H) is the midplane distribution functiom, f_, of species a

except for a constant normalization factor Fa(u;H) = 2w/m82[fa(v”;Vlﬂ

with v = v”(u,H) and v\ = v (u). This functional is linear; and for

1
any constant function A_ = Ca(s),
- %0 @ -
s(c) = Caf a(uB) | a[om, (8 - uB - qa¢)]l/2Fa(u,H)
B a 0 0 '

§: Cana’
a

where we have simply inteérated by parts.
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To calculate dS(A)/ds, one must consider the S~ dependence of -

(a) the factor B bEfore the 1ntegral _ S [:j - “

(b) the B and ¢ in th'e 1imit of integration
(c) the B and ¢ in the integrand and T v |
(d) A in the 1ntegrand |

The contribution of (v) is identically zero since the integrand is » \A’ :

zero at the limit of integration. For dS(A)/ds we have then

oy

. ds(A) 1 4B 1.4B B . -
— =-—38A) - ——§|——— A
ds B ds 2B ds \H - uB - qf
1 a¢ q¢, - LA

- — — 8 |—————— A} +5[—|¢.3D3)
ofas \H-uB-qf | |3s; ,

vFrom’dnésineutrality, S(q) = 0; so with A = g we have from Eq. (D3)

| d¢(sj S(qV /V“ ) o ""(nh)
- . . \ B¢
aB(s) QBB(q /mv” v o , ]

The funetionals s(A) are dimensionally and qualitatively like an aver-

"age of A multiplied by the density, summed over species:

m 2

"'2'7S(q2/mY”2) ~ /T ell (s) + ne /T ”(S) ' A e (D5) :' | ;
‘and | 'S(qxié/vne) ~ ne[(vig/vnz)i - <7'2/v”?)g] ;ﬁ - (D6) | ;3 E
evaiuated at s. Thus o E | » \ .;

ed@(s) n“(s)
-dB(s) 2B(s)

[<v iRy - By ]
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. T T,
Cwith _T”(s) - el vatuated at s,
o Tel * T

Crudely, VLE/VHQ ~ Ti(s)/TH(S)' At the mirror, T,; is very small

il
since only the SF ions are creeping over the barrier. TeH is not so
small if @ continues to decrease in region II. So, using Tl(s)/B(s) =
Tl(o)/BO, Eq. (D1) becomes

edg T, |

- —— N c———

dB QBO

near the mirror. Tii indicatesithe usual midplane temperature. The
right side is finite as dB/ds - 0, so df/ds - O at the mirror.

In region II we see that Eq. (p1) predicts increasing, rather
than decréasing, ¢; the right side does not change sigh. But this

- equation is not correct in region II, as we now show. S(1) =E: n,

a

”holds only when the region H > uB + q¢ is filled with particles
vgoverned by F(u,H), as a look at the lower limit of the H integration
in S'éhdws. The more general lower limit to be used in the definition
(D2).df S is

H; = Sﬁp [uB(s') +'qs¢(s')] a : (p7)

s'<s
as in Eq. (5 ) of the main text, in the language of midplane veloci~-
ties x and y. But with this change in the integration limit, it is

still not true that % S(1) = n, or 8(q) = 0. Instead,

ey -3 aem iy - s - o)) Yor ) (08)
i |
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' where Hg is the expression (D7), a function of p but not s. (This

neﬁ expression is.obtainedAupon integrating (D2) By parts with the new

vlower 11m1t of H-1ntegratlon ‘The subtractlon represents the fact

that the low v” part of phase space at 5 in region II is empty if
there»ere_only SF particles there.) So if

sup [uB(s') + af(s')] # uB(s) + ah(s),

as in reglonsI;Sfor the ions, then Eq. (D¥) is 1ncorrect, even though
q.-(D}) is still correct. - The contrlbutlon (b? from the l;m;p of

integretion is again zero, bu£ now for a different reason: the limit

sup [uB(s") + q¢<s )]

'<s

. for the ions iB independent of s.

Furthermore, if dff/ds < O at the mirror, instead of O as implied

‘by,Eq.;(Dl), then for ions the maximum of WB + q¢ occurs at

. =.NKﬁ) < L. This means that even at § ~ L, the more general lower

) limitimnst be used; Consequently, Eq. (D1) also fails near the

mirrbr, and there is no physical requirement that d@/ds be zero there.
From Eq. (D8) and. quasineutrality ve bave S(q) =-X(q) instead of

O where

‘ll

s(q)

x(a)

Z f 2m (H' - HB - (la¢)]l/eFa(u)Ha'.)Aa(,s:“;Ha") " (D9)

with H' given by Eq. (D7) H! is a function of u.
If one plans to use Eq. (D3), there can now ‘be special problems

“evaluating the left hand side, if H' - pB - g¢ ¥ O over only part of
. é_ : ;
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the p-integration fangevfor species a. If it is zero for all u'for

il

both species, there is no problem because X(q) = 0. If it is nonzero

for all p for both species, 'we have

as(e) 1 as [ B 1 [ oP
_ =——3X\|q +2q ) +— — X/ . (p10)
ds  2B'ds H' - uB - gf o¢ ds KH' - uB < gff

But if fo; some &, Hé - uB - qa¢v¥ O for some p > uo(s), but B -
B - qf = O for u < uy(s), the coefficients of the X's in Eq. (D¥0)
cannot be factored out.. The terms of (D10) are separately infinite;
having nonintegrable singularities in the integrands because

1/2 departs from zero linearly at p = po(s). The

(H! - pB - g @)

situation is analogous to

: HX -y

,' ’ J; ‘d“ \/Eﬁ |

x - )% + o[ x - 1)']

- for an arbifrary function h(u), where, for x and y positive, one

cannot write the expression as

00 ' 0o
R -
0 AJT&bovey o J/(above)

The proper nonsingular version of Eg. (D30)

as(a) - ® T e ag\2)Y/2
. = 5? Bqa«/ma724[- dp (Hé - uB - qa¢)(p E_ +q v
. s . ‘ a, : 0 ’ \ S

ds
1
x Fa(u,Hé)

is too. unwieldy to give a useful expression for (d¢/ds)(dB/ds)’l-w'.h
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when substituted into Eq. (D3).
If d¢/ds % O‘at s = L where dB/ds = O, then the maximum of pB + q¢
lies outside the mirror for electrons (for those § large enough that
thereiis;é maximum) and inside'fhe mirror for the ions. 'I‘hus’Xi gies
problems'for at least éome range Qf s <L and Xe gives prob;ems for a
certain distance beyond L. If for some s, uB + q¢ < Sup(uB + q¢)
for all u, -or if.one simply ignores the electron density at the larg-
est value of p for which uB - e¢.= Sup(uB - e¢), then_one can get a

useful expreséion. For s > L, the first conditibn is satisfied by the

ions. Ignoring large-u electrons then, we have, from Egs. (D3) and

(0¥0) .
S 1 [xlev Zay®) - slav, /vy
P 2, 2y 2, 2 (p11)
aB 2B | -X,(e /mA” ) + s(e /mV“ )
in region II, where
m . AN

;E Aﬁa =H, - kB - qa¢

is the minimum parallel kientic energy of species a at s. Hé is given
by Eq. (D7). Fi is zefo when A”2 < 0. Fa is an average of Fa on the
forward and backward velocity sheets. Like S, X is always non-negative.
X(A)-is-dimensionally and qualitatively like an average over §f

.AA” £im¢s a mean valug of F at the loss boundary. Since the ion

spread in parallel energy for a given p is small in region II,»the Xi's

nearly cancel the Si's. The result is
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- ed¢ Tel \
e ~ — = const. > 0,

- dB . 230

for s sufficiently far from L in region IT.

bl

e
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E. ATYPICAL SPECIAL CASES . -

1. Simplification when B(s) Has No Maximum Inside the Device

Tn the case W < I (or L undefined) there is no region IT outside
the confinement region. Density at the wall can be evaluated from the
loss'raté Just as ni(L) was evaluated previously.. The loss boundary

in‘midplane energy space becomes simply
€“ = (RW - l)el- - q_¢o.

In some short-mirror experiments, for example DCX l.S,‘['}5 this is the

geometry. The meaningful "mirror ratio" for such devices is just R,

© Theorem 3 remains valid, so that there cannot be a denser external

A

plasma without strong two-stream instability.
The magnetosphere is another mirror-confinement situation with

no local maxima of B in the region accessible to particles. At the

~ ionosphere (the "ends": s = W) it also differs from the situation

assumed thus far, in that the gravitational field produces an upward-

i

~directed ambipolar electric field there (i.e., 0¢/ds » 0), and this

allows the plasma density there to be greater than in the rest of the

‘magnetosphere. (The second premise of theorem 3 is violated.) But

because‘the ionosphere layer is thin compared with the magnetosphere

dimensions, this dense, collision-dominated layer can be considered

" part of the "wall", i.e., to be at 8 = W', with a suitable reformula- .

tion of conditions at the "sheath". (Because the ionosphere is free

to emit electrons, it can have little if any sheath drop.) Only the

76 has electron temperature high enough

7

region outside the plasmapause

to givé_significant plasma potential. As with some ion-injection
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experiﬁeﬁtél9, it is not clear that the equilibrium source rates of

ions:aod‘electrons are eqoel; and-Because R, is‘large (of order lOO),
vthe ioovloss times are much longer than correspooding 90 deg scetter-
ing timeét-‘But in eny case, if the ring'cﬁrrent belt78
-3

has an equa-
and Debye length'of order 20 meters

(3 x 10‘6 earth radli)”?9 then because KD varies only as n 1/2, there
is no_doubt that the plasma condition is satisfied at allvs. Hence

the rihgﬁeurrent belt is not isolated from.the‘ionoséhere,vin the sense
of seetion,IIA;

2. Hot-Electron Plasma

WheﬁbTé >> Ti’ the dimensionless plasma potential QO = e¢6/Te
is redﬁced because scattering rates are smaller at higher temperatures,
and ¢b'is detefmined by'equating electron and ion loss ratest For
T /T ‘~ (m /m 1/3, the value of @O necessary to maintain equal loss
tfluxes becomes very small, as mentioned in section IB. 1In this case
one cannot generally have nearly-isotropic electrons, and the "damped’
-Maxwelliah" model of section IIIB is no longer a good'one; theAelec-
tron lossrregion reaches nearly to.the origin in velocity space.
- Typically in hot-electron 1aboratoryzplasmas§q T, > T ell beceuse of
electron heating by gyroresonance, and this is consistent with good
confinement. - There is usually astarger cbntribﬂ&iom “ofadold- electrons
to féinéar v = 0. LAs a further difference, often the ions in such
experiments are mostly untrapped (SF), maintaining quasineutrality by
virtue'of their low T. and thus long transit times. Since usually no
attempt is made to heat the ions, they may be collisional, 1i. e.,

V., L/c >> l. Electron scattering may be primarily due to neutral
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81

atoms..
. ... 82 .
O.1s negatlve and scales with Ti’

vien T/, > (my/n)73, 4 5o
so_thgt_the shapés of the loss regions and distributions for ioné and
eiectrons‘afe>just interchanged from the usual case with Ti >> Te.
Fokker-Planck calculations, both'initial value problems and steady
state ones, have been reported by Liebe;manBl for typical hot-electron
plasma; ignoring the plasma potential and external regions.

To éee‘what happens‘in the external region when ¢O is negative,
Considef as an example the‘case where the ions are collisional, i.e.,
the ion loss region in midplane velocity space is filled by the Maxwell
tail asiif thefe were no loss boundary. The ion density at s = L is
fhen |

n,(n) = n,57(w) + n,%(1),

with ,

JTIT

dt e

0
’ - (E1)

ng ST

n

SF \/I@} o) '
n,” (L) LN 2 [¥] 2
i . o O e-alWJJ( gt Bt te Jf at ot
o VT 0 JTHT
o o :
wherg‘wb = e¢O/Ti, T = e¢L/Ti, and a = a = RW(RL - Rw) . These
equations are taken over directly from Eq. (Cl4) for electrons, and it

is assumed that rgion ITI is collisionless so that no SF ions return to

regionvI. The electron density at s = L is

n (L) = n % (1) + n (1),
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with'

e

n SF(L) ~ nOH-RL.'Pl./)-F(L\J/ce‘)_3/1L
a0 %) ~ER [(2/m )8 - 4] T2 - (52)

as given in Egs. 119) and (21) for ions; P and v now refer to electrons
- 2,2 -1}, . c . o :

v is the loss rate and P = (0”,/01 )(RL - 1)77|5 F, is the effective
source flux of cold electrons. The electrons, however, are quickly

acceierated out from s = L because of their low mass and their magnetic

moment, so that the density neSF(s) decreases rapidly with s for s > L.

Tn order that the ion density may decrease similarly, @(s) increases

rather sharply with s to its maximum value, at which niST = 0 and

ni = niSF. If this maximum 1is reached at s-ome's1 < W and nésF continues

to decrease rapidly beyond s
SF v
3 "o

of ¢’féVerses, accelerating out ions and (more importantly) making a

niSF may not bé’able to decrease corre-

l’
',wo,

spondingly (note that ny when ¥ = 0) unless the gradient
trapping well for cold electrons entirely in‘region II. The situation
is somewhat like that discussed at the end of section V. If cold

electrons. can collect in this new depression in -¥ (Fig. E-1), it need

not be very deep because now

where TII refers to cold particles trapped entirely within region 1T
(superscript ¢ refers to particles without magnetic moment, sﬁfeaming
thréﬁghfregion II). The new contributioﬁ neTII can be:quite:large for
a givgn depth of the potential depression, since the escape time of

!

cold particles from such a depression scales‘with the energy-scattering
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Fig. E-1. Potentisl energy, -V, for low-magnetiesmoment ions in a hot- electron plasma.

Hypothetical -¥ vs s, showing possible trapping of cold ions in region II.
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time.

If thevelectrons'trappéd-in thié depression have temperature
Tw < Ti,'and if suffiéient background gas is available to supply
such eleétrons, then ) stayé within a few times TW of its maximuﬁ
value,v¢l,‘as s increases. Thus ¢W = ¢l; the évailability of very
cold eléctfons."clamps" ¢ at roughly its maximum value for all.s out-

board'of.the maximum. But if fhe ions are so cdld that 'I'i ~ then

W’
- - the scale'bf ¢(sj is of-order TW and the depression is not a ﬁegligible
feature. And since fhe maximm of ¢ in this case is no longer at the
wall és.assumed in referring to potentials in Eq. (Ei) to the wall,
one must change |¥,| to [¥, - ¥, | and ’ﬁil to |¥p - ¥,| in Eq; (g1),

if thé'wall is still defined as the zero of potential. (wi isvthe

dimensionless potential ef/v, at s,, i.e. the maximum value of ¥.)
i 1 :

3. Sﬁali Mirror Ratio

'Décreasing temﬁerature and decreasing mirrorvratio both increase
the pérticle lﬁss rate.(except in the case where the loss rate is
- governed by.transit time). Let v be the loss rate of that species
which‘scafters slowest. (When discussing both speciés at once, we will
use "<ﬁ_to refer to this species and ">" to refer to the faster-scatter-
ing species.) When RL - l,~ 1, v is of order vo/ln RL, where'vo is
the cumulative 90-degree scattering rate, and transit times are assumed
much fasﬁer than 1n RL/VO. But as RL -1- O; v increases to the in-
versé:transitvtime, v“/L. By contrasf, the faster-scattered épecies
is coﬁtained largely by the plasma potential and its loss rate is

sensitive to RL only through the dependence of ¢O on RL (except, of

course, when ¢O becomes very small). In order that the loss rates
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always be équél, |¢Oj must decrease(and then increase, if ¢O begins
at some negative value for ioderate RL -.l), as RL = 1 - 0, until the
situation is just that of plasma in a box (dB/ds = 0), where most of
the poténtial'¢o»appears at the sheath and n(s) ~ Dy for all s < W .
Then | |

Po/Te ~ 12 | /ve))>
independent of scattering rates (and almost always positive) instead of
efo/Ty, ~ ln[vo(>)/vo(<)]

as in the case of moderate mirror ratiosl7 and short bounce times.

(For nonrelativistic Coulomb scattering, Vo < m_27'3') In the mirror-

free 1imit, the time required to scatter into the velocity-space loss
‘region is zero, and the loss time is just the transit time. In this
limit the collisionless model is not a very good one; the distribution

of the slower scattering species is all "tail." '(In,the notation of

1

section II¥g,k ~ = T.) The isotropy factor P in Egs. (28) through (31)

becomes large, as discussed at the end of Appendix B. In the hot-

electron plasma, if one assumes that electron lifetime is given by
-1 -1 -
V< = Voe 1n R.L + L/Vé”,

while idn lifetime, for zero plasma potential, is

-1 -1 o
V> =V0i lnRL+L/v_i,.

' Then, if ions fill the Maxwell tail, ¢O increases to zero when RL.

decreases to
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Woi Yoe

%%@L » W  \ -

o U WYoi T Voel

. (The exponential argpmenf is usually small if Te/Ti is veryulargg.) ¥
- For smaller Rp, ¢6 is positive and scales with T, Just as if the
 electron scattering rate were lérgest°
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F. FORTRAN PROGRAMS
* ‘ ’ A relativély trivial FORTRAN program, XTRNL, wa.s run to calculate
the relative ion density ni(s)/ni(L) vs R and @ - @, and the rela-

tive eleétron density ne(s)/ne(L) (ST + SF electrons) vs R_ and P - P

for typical parameters, and to compare the two functions to find

9,

ent of this calculation, the model ion velocity distribution function,

- wé vs RS from quasineutrality. "In the same program but independ-

Eq. (Bi6),_was tabulated. Thié was contour-plotted by CALCOMP, as was
the relative ion density. Trivial subroutines IONPLOT and FIPLOT (not
shownvhéré) invoked the University of California Graphical Display
System (GDS) to drive the CALCOMP. The program was run on a CDC-6400
and took»h.& seé to compile and 11.9 seé to execute. Since the plét
routines are not instructive, we list the grid size and contour spacing

here:

TONPLOT [Plotting ni(s)/ni(L)],
‘Grid size in both r and mL-Q: 0.05
Contour interval: 0.05
ni(s)/ni(L) from 1.0 (at s = L and ¢ = @L) down to about Ok18 (for

R=R, = 2and ¢ = 1)
FIPLOT [Plotting Eq. (316)]
‘Grid size in both x = vi/c, and y = vy/c,: 0.05
| | 171 | U

Contours: 7, given by (0.85 FIMAX)(N/6 + 0.01), N= 0, 1, -+ 6.
(FIMAX is the maximum height of the function.)
The results of IONPLOT are shown in Fig. B-7, page 137; those xdf

FIPLOT, in Fig.‘B—l, page 11k, A‘plot of the computed potential_@L - @S
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Vs R‘is shewn in Fig. F-l, and illustratesrthe approach to 1inear

dependence of the parallel electrlc fleld on B as dlscussed in Appendlx'

B (on p. 166) and. on p. 29 of the maln text. Values. of the dens1ty
'along the curve @L - w vs R are used in Flg 9 to compare w1th a

s1mple approx1mate formula Eq. (20)

@
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Fig. F-1. "Potential vs R outside the mirror (computer result for Rw =2, R
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RUN FORTRAN COMPILER VERSION 2.3 B.1l

PROGRAM XTRNL(OQUTPUT,TAPE99)

CALL SECOND(X)
000005 PRINT 5,X
000013 CALL IONS _
000014 CALL SECOND(X)
000016 PRINT 5,X
000024 CALL FION
000025 CALL SECOND(X)
900127 PRINT S,X
000035 CALL ELECTRN
9900356 CALL SECONDUXT™

| 000240 PRINT 5,X
000046 CALL POTNTL
00N047 CALL SECOND(X)
00051 PRINT 5,X
000057 FORMAT(% TIME USED IS%F10.3)
AO0057 ST — ,

000061

END

_8L'[..



FUNCTION ERF(X) | '
ERPOR FUNCTION . | C3 BKY* ERF

ERF=2/SQRT(PIJ*INTEGRAL OF EXP(-T2T} FROM 0 79 X.

YOHOYOY OY

Js

ING AN APSROXIMATION DUE TO HASTINGS. ABSOLUTE ERROR ABNAUT 3E-T

DIMENSION A{(S)

DATA A/.0000430638,.0002765672,.,0001520143,.0092705272,.0422820123
1y.070523078%4 / ,

Y = ABS(X)

10

T = A(LV*Y

DO 10 1=2,6

T = (T ¢+ A(1))RY
CONTINUE
T=1./(T+1,.)
ERF=1.-T¢%16

-6LT-

ITF {(X.LT.0) ERF. = =-ERF
RETURN S
END



FORTRAN COMPTLER VERSION 243 pal -

REAL FUMCTION E(Q)
Elur(u)-(1./(GQDT(J.1a1SQoQ)))*SUHM
IF(Q)Tehe b
& IF(Q- 84154949 : _
__—_””“S“E EXP(Q)*TTT:ERF(SOQT(O))) T T T e mm
GO Y010, :
Ko GET T0 7. IF Q NFGATIVC
7 E=1,
.6G0:Y0 10
: 9 GN-70- 314 : : « '
——————— ‘TTG *—-‘TOprJ 1—’—' o ) ST e e e e e T T e
‘ ARNTN=1, : o
SyMN=Y,
DO 317 N=1lslp
TOPN=(2,8N=) )& TOPN
BOTNz-2 ¢BOTN#Q

-0gT-

T INATARNZROTNS — s e e e e o

C SUMN=SUMNGTN
A1 7 CONTINYE
E=ETNF (Q)
10 RETURN
- END




REAL FUNCTION DAWSON(A,))
COMMON/ZACOM/ACOM - ' '
EXTERNAL EXPAT2

AU=A=U

310

311

TF(UY318,313,310

IF(AU-10.0) 311,311,314

N=0

ACOM=A

CALL QUAD(0.0,SQRT(U) ,AREAL,AREA2,RELERR, N, EXPAT2) |

QUAD IS A BINARY DECK WHICH INTEGRATES EXPAT2 FROM 0. TO SORT(U)(

NaXs Ka)

314
315

GIVING AREA2 AS VALUE OF INTEGRAL. _ ,

EXPAT2 MUST BRE GIVEN BY A REAL FUNCTION SUBRCUTINE OF CONF VARIABLE
DAWSON=(2. /SQRT(3 1416))*EXP( -AU) *AREA2 '
GO 71O 319

IF(A)311,315,316

DAWSON=(2.0/SQRT(3, 1416))*SQRT(U)

316

G0 TO 319

TOPN=1,

BOTN=1,

SUMN=1,

DO 317 N=1,10
TOPN=(2.%N-1, }*TOPN

_IBT_

317

BOTN=2,.%AUXBOTN

TN=TOPN/BOTN

SUMN=SUMN+TN

CONTINUE

SERTES=SUMN

DAWSON=(2.0/SQRT(3,1416))%*(. 5/(A*SORT(U)))*SE”[ES

318
319

GO 1O 319
DAWSON =0.0
RETURN

END



-fBRTRAN COMPILER VERSION 2.3 8.1 .. . . '

SUBROUT INE IONS
COMMON/E /F (21 521)

“COMMON/R/RL yRW, DELT
- REAL NEDECAY,

€ CGNSTS RL.RH.HIDTH DELT DELTAL, gTEMP~TE/TI PARALLEL
C Y IS DEP VBL OF XTRNL PROB., Y .GT. C. 0, USUALLY,.LT. 1.0
¢ Y= MAX POTL = POTL(R) o }
c 1F DELTAL=DELTy MAX POTL IS POTLI(RL) o - .
£ FOR THIS PROBLEM, Y IS PHY{L)-PHY(S), AND DELTAL =0FELT
¢ PHY =SMALL SCRIPT PHY IN APPENDIX B. PHI=CAPITAL PHI.
C ‘1S CALLED ETA-BAR IN APPENDIX B
C IN THESIS NOTATION, SZ*(PSI(O)-PSI‘L))/(RL-I)‘KAPPA,~(ETA BAR) o
c ~PSISTE/TI(PARALLEL ) #PHY 5
€ PST SCALED TO TI, PHY SCALED TO'TE) . . S
C FtEeJ) 18 RELAYJVE ION DENS AT PBINT Re YJ DEF!NED
€ BY R=RL-.05%(1-1.)%(RL-RW)
C AND YJ=.05%{4=~1.) . .
€ ARTTHMETIC STATEMENT FUNCTIGNS FOLLON
BECAYlZoPHl;51082o53)=(l/(1.-lli*(E(Z*PHI)/SQRT(Z) E(PHI)
~ +HEXP(~S2)}2(E(PHI+S2)-S1*E(S3)))
§ - "BECAUSE SZ 1S LARGE, THE CONTINUATION LINE IS NEGLIG!BLE
€ CAN SHOW Z=1. IMPLIES Sl=1. AND PHI+S2=53, -
: ‘ . “NEDECAY (Z4PHI4S1452,53)=(Z/(1. *Z))*(E(Z*PHI)/SQRT(Z)+DA“SON(G»FWI)
- 0—EXP( =S2)*( DAWSON(GPHI~ S2)4S1%E(S3))) :
€ BECAUSE $2 IS LARGE. THE CONTINUATION LINE IS NEGL!GIBLE
c G STANDS FQOR 1.0

DECAY1(Z,PHII=(0,5~ PHI)*E(PHI)+SQRT(PHI/3 1416’
DECAVLG(Z'PHI33(11(1.-2))*((1 ISQRT(Z))*E(Z*PHI’*E(PHI))




LI
«

DEFINITION. ..

DAWSON(A,U)=2/SQRT{PI}*EXP(-AU)Y*INTEGRAL(O, SQRT(U)) EXP(A*T*T)OT
COMPARE DAWSON{1,Q) WITH E(Q)ee.
E(Q!=2/SQRT(PI)*EXP(Q)*INTEGRAL(SQRT(Q),INFD OF EXP(—T#T)DT

- DECAY_IS USED WHEN 2 IS POSITIVE (R _LARGER THAN UNITY)

s XakaXalalakakake

"NEDECAY IS USED WHEN Z IS NEGATIVE (R SMALLER THAN UNITY)

NEITHER IS USEC WHEN R=1., SINCE BOTH ARE ZERQ BUT COEF BZ=INF)
DECAY1 IS USED WHEN Z=1., BECAUSE DECAY IS PECULIAR THERE
DECAYLG IS USED WHEN Z IS LARGE, JUST TC AVOID WORK.

SPECIFY CDNSTS NOwW

WIDTH=0.1

DELTAL=4.0

P=0.2

TEMP=0.5

o0

WITH THESE CONSTS, AS R GOES FROM 3 TO 2,71
GOES FROM INF TO 0.2 AND PHI FROM 0.2 TO (15.2 WHEN YJ= 1)
6=1.0 -

- A=HIDTH®({RL=-1.)

SH=1.75QRT{1.+A)

S2=TEMP¥DELT/A-P

S3L=(1.41./7A) #DELTHTEMP

S4=1.+1./A
XNORM=1./(E(P)-EXP(~ SZl*(E(P+SZ) SlL*E(SBL)))

- PRINT 864, XNORM

86
WETH THESE VALUES OF CGNSTSg AG.Zy 51L=.9(APPROX), $2=9, 8,53L§§g.

FORMATC1X, % XNORM= *,E10.4)

A

AND S4=6.

WITH THESE CONSTS, THE EXP(- SZD‘... PART OF XNORM IS SMALL.
APPROXIMATELY, XNORM =1. /E( 2) 1 4
POS2QTEMP*DELT/A

C-¢QT-



13
14
20

BEG!N QALCULATXGN OF F(R.Y)

.73*(RL‘Rﬂl

A }—5001315,15013
IF(ABS(R‘I.)‘.OOI'25925,14
IF(R'I.’35’25920 '
BZ*(R/RL)*SQRT((R&:‘,QIABS(R-I ) $XNORM

21

- 30°

40

IT=WIDTHZ {1/ IR-TV -1 7 (RL-120) .

ZI1-1S INFINITE WHEN R=RL (15), AND ZERO WHEN R=1.. (25)

“Z11S NEGATIVE FOR R <6¥. RL OR R .tV. I.

CIF(ZI.LT. (000 ANDLRSGE{1.))GC. TO 55 . R R
PFCABSTZ TS ,GWJ~061»45.%8360 T b TR ECRarE L
ZI=ABS(ZIY - . Lw;w;g‘w e '

96

IF(Z1.EQ.0.0)60 T0 25 7

SlﬁSQRT(lﬂlﬂl )IABS(R—I.D?*SIL

~PRINT 98,Ry21+PHIsB2 - ' '
FGRNAT(IX,*R~*,F6 2.*1!‘*»510 ﬁg*PHl *vElO 4. : 82=*,E10 4)

FRON HERE Tﬂ STATEHENT 79 = CALCULATIGN QOF F(R YY) IN DRDINARY CASE

50

DO 79 J=1921 -

YJ={J-11%,05

53=ll.*l./ﬂi*(DELT*YJl*TEHP :
TH ={(1. /NIDTHI* ({DELT+YJ)/(R-1, )—DELTAL/(RL ~1.))5TEMP
TH IS NEGATIVE WHEN R «LT. 1., AND INFINITE, WHEN . R |
TH: IS ZERQ: WHEN R=RL AND ¥J=DELTAL-DELT, AND.

“wwﬁweewfﬁfgﬁEwWMMFﬁ“ﬂ ¥I MUST Be'hesaVIve TO GET“ANY ornea sh i G
ZERO OF TH FORR LT+ RL. -

 PHE=ABS(THeP)

FAFy J V= B22DECAY (215 PHI 3S1,52,53) "

10

IF(1.67.2)GC 70 79

ETEST=E(PHI)

26
79

PRINT 26,ETESToR,YJ

FORMATU1X,¥ETEST  #E10.4,% R *®,F5.2,%  YJ  #%F4.2)

CONTINUE

‘GO TO 80

-ret-



CALCULATION OF F(R,Y) IN PECULIAR CASES Z=INF,1,0,NEG

C

- C FIRST CASE. R NEAR MIRROR. R=RL)
: 15 21=9999, -
BZ=(R/RL)*SQRY((RL—1 )/(R-l ))IE(P!
DO :19 J=1,21"
Y I=(J-1)1%,05 : '
o PHI=(1./WIDTH)*((DELT+YJ)/(R-1. )—DELTAL/(RL-I ))*TEHP +P
18 F{1,J)=B2%DECAYLG(ZI,PHI)
, 19 CONTINUE
C END OF FIRST CASE
: GO0 TO 80
G SECOND CASE-'ZI?A;..B;!S_Nﬁéﬂxﬂﬁgl.ﬂﬂt,AT,MRLw
45 D0 49 J=1,21
YJ={J=1)%,05
PHI=(1. /HIDTHI®({DELT+YJ) /(R-1. )—DELTALI(RL—I.))*TEMP +P
PHI=ABS{PHIY) .
F(l.J)zBZtDECAVl(lI.PHl) A
49 CONTINUE =~ = L .
c END OF SECOND CASE @
‘GO -TO 80 i
55 PRINT SéyRy 21
(o 21 IS NEGATIVE, R EXCEEDS RL
56 _FORMAT(1TH_ z IS NEGATIVE,R-,F& 3'5H 211=4€10.3)
| 21=0.0
c THIRD CASE. ZI1=0. (R=1.)
25 DO 29 J=1,21 :
YJ=(J-11%.05 ‘ _
c S1 IS NOT USED SINCE IT IS SINGULAR. DITTQO B82. S2 IS IN CONSTS.
N S3= (141  JAI*(DELTHYJ)I*TEMP
FELoJd)=(E((DELT+YJI)*TEMP)I-EXP (- szxtE(Ssilsckrtsa))tXNORM*SQRT(Att
- +{R/RL)
29 CONTINUE

.END OF THIRD CASE
GO T0O 80 :



3

_END e

FGURfH CASE. R .LT. Loy BUT NOT 100 NEAR 1.
35 S1=SQRT((RL=1.)/ABS(R-1.})*S1L ' e
¢ §2.1S DEFINED IN CONSTS. '
B2=(R/RL)*SCRT({RL~1.)/ABS{R~1. »)*xnoam
ZI=MIDTH/(14/(R-1.)-1./(RL=1:)) -
II=ABS(ZI) '
DO 39 J=1,21
Yi=Jd-1)%.05
835 (Lot le FAYE(DELTHYJ)ATEMP : _
TH ={1. /HIDTHI®((DELT+YJ) /(R-1.)- DELTALI(RL-I.!)#TEHP :
 PHE=ABSI{THeP)}
F(1.J)zBZ*NEﬂECAY(ZI.PHI.Sl.52.531
. 39 CONTINUE
C.° END:OF FOURTH CASE
80 ce«r:uus ‘ :
81 PRINT 76,(x,x=1.21,21,tx,(F(x.J) J=1 .21.21.1 1,21) .
__76 FORMAT (60X *ARRAY F*IIiX,#COL*,llIllII(lx'*R*oIZ'llFll.é)VT
PRINT 169(K yK=252092) 9 (19 (FIIJ)gd=2920492)01=1,21)
16 FORMAT (60X, *ARRAY F*//lXo*CUL*.lOIl!IIllX,#R* 12.10F11 4))
c J GOES ACRGSSy I soes DOWN
CALL IONPLOT -
100 RETURN

-98T_
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FORTRAN COMPILER VERSION 2.3 B.l

SUBROUTINE ELECTRN
COMMON/ R/RL yRW,DELT
‘COMMON/ELEC/ELEC(21,21)
_DIMENSION STU(21,421),SF{21,21)

ESTUALUI=EXPIUIRERF(SQRT(U)) - DAHSON(AoU)

4~ {1l.-XEE)¥{1.4A)/ (A-B)*{DAWSON(B,U)-DAWSON(A,U))

ESF{A UI=XEE*({(1.+A}/{CK+A}¥, S*IDANSON(A'U)+E(CK*U)*.S/SQRY(C&)l
+40.5%({CK-1.)/7(CK+A) ) =SQRT (1. /CKI*EXP(-A%U) )
SSTCAGU)=EXP(UI*ERF (SQRT{U)) ~DAWSON{A,U)

++ (1 ~XEEY* (1. +A)* (DAWSON(A, U)=DAWSON(A-.01,U) }*100.0

NOTATION. .. EST(AyU) IS EST(PHY,A,B,XEE) IN THESIS e
‘A=Ay U=PHY. (ORDER OF FIRST 2 VARIABLES INTERCHANGED.) = ,
SST IS SPECIAL VALUE OF EST FOR CASE A=8 A
SEE SUBROUTINE IONS FOR DEFINITION OF DAWSON

€T T TTARTTH STATEMENT FUNCTIGONS FOLLOW
c
c /7
c
¢
C . CK IS CALLED K IN APPENDIX C.
€ SPECIFY CONSTS FOR ELECTRONS

8=0.0

- XEE=0.1

CK=10.0
PHYO-4.7

o e, S

AL=RW7{RL-RW)
PHYCFL=PHYO-DELT
PRINT 4036

_Lgt_



CALCULATION OF ELEC(I.J) w ORDINARY CASES
- DO 400 1=1,21"
 R=RL~.05%(]= 1)*(RL -RW)
~ IF(R-RW)335, 345.330 o
335 R=RW-
345 AI=9999.
GG 10 350
330 AI=RW/(R-RW} - |
. IFLAI-B)3504355,350 -
350 00 399 J=1,21
YJ= o 05%(J=~1}
US=PHYOFL=YJ
IFCUJ)36543654360
365 UJ=0.0
360 IF(RL-R)375,375,380

o

380 UPR=UJ-YJI*(R-RN) /7 (RL-R)
TFIUPR)IZT5,3754390

390 CGRRST=EXP(~QN*YJ/(RL-R))

391 CORRSF=CORRST ‘ ) :

ST(I,JI=ESTIALUJ )~ CGRRS?*EST(AI?UPR]

_SF(IeJ)=ESF(A17UJ’-C0RRSF*ESF(AI UPRY

STySF. ARE THE ST,SF ELECTRN DENSITIES EXCEPT FOR FACTGR EXP( PHYO)
ELEC(I'J3=BNORH*(ST(I J)*SF(I'J))/(ST(1’1)+SF(1 1¥)
GO T0 399 -

- 375 R=RL

395 GO TO 385 ~ : 7

. 385 UPR=0.0
CORRST=0.0

60 TO 391

399 .CONTINUE :. -
GO TO 400

-88'[-



‘.C' . NOW THE CASE AI"B
© .....355_D0_999 J=1:21
: YJ=,05%(J=1)
UJ=PHYOFL-YJ
IF(UJ)965 9609960
965 UJd=0.0"
960 IF{RL-R)975,575,980
.. 980 UPR=UJ-YJ*(R-RW)/ (RL-R)
IF{UPR)S95,965,990
990 CORRSTBEXP(“RH*VJ/(RL°R))
GO TO 991 :
[ o IF ‘UPR 1S NEGATIVE OR ZERO NOW
- 995 60 TQ 985
IS R=RL
985 UPR=0.0
CORRST=0.0
991 CORRSF=CORRST -
ST(IQJ’=SST(A19UJ)-CORRST*SST(AIyUPR)
- SF{IyJ)=ESF(AI UJ)~CORRSF*ESF(AI ,UPR)
B ELEC(IvJ’=BNORN*(ST(IyJ)*SF(I’J))/(ST(lql)*SF(lvl)’
999 CONTINUE
c END' OF THE CASE AI=B
400 CONTINUE
4000 PRINT 40064(K,K=1,21,2), (Ip(ST(!oJ’tJ-loZI,Z’,I 1,21) :
4006 FORMAT(60X,=ARRAY ST*//IX»‘COL* 11I1177C¢1Xe*R%y12411E11.47))
L DENSL=ST{141)#SF(1l,1) S
4010 PRINT 4016, DENSL
4016 FORMAT(LX*DENSITY AT L¥*,4X,E12.4/)
PRINT 4036
4020 PRINT 40263 K yK=5915) (14 {SF{LeJd)yd= 5115’01 1,21)
4026 FORMAT(60Xs*ARRAY SF%x//1X,3COL*, 11[11//(1X *R¥%, IZ,llEll 4/))
_PRINT 4036 '

-69-[_



- D0 4030 M—I.B :
IF(H—2)402114022o4023s_

| 4022 ADUT=0:1

GO TO 4024

4023 AOUT=0.3

4024 DO 4029 N=1,21
UN=.1%{N-1)
TEST=ESTLACUT JUN)
PRINT 4116,UN,TEST

4116 FORMAT (1X¢%UN* 45X 2E11.4)

4029 CONTINUE

260 T0 4030 -
4021 AQUT=0.0
D0 4032 N=1,21
UN=o1%{N-1)
TEST=SSTC(AOUT ,UN)
_PRINT 4116, UN,TEST
"'4032 CONTINUE

4030 CONTINUE
" PRINT 4036
4036 FORMAT (1HI)
o7 RETURN
___END.

-06T1-



SUBRAUTINE POTNTL
COMMON/R/RL ,RWSDELT
COMMON/F/F{21,21)

C SEE SUBROUTINE IONS
‘ COMMION/ELEC/ELEC(21,21)
c SEE SUBROUTINE ELECTRN

(2

406

DIMENSION CHARGE(21,21)
PRINT 406 :
FORMAT(1X,xY OF R*/)

401

RNUTINE TI FIND Jy GIVEN T, SUCH THST F(I1,J)=FLEC(T,J)
DD 500 1=1,21 . ‘ .
R=RL-,05*%(I-1)*(RL-RW)

DO 499 J=1,21 ‘

YJ=.05%(J-1)

CHARGE(T,J)=F{1,J)-ELEC(T,J)

IF{J-1)499,499,430

¢y -

430

450
466

SIGND=(CHARGE(I4J) ) *x{CHARGE(I4-1))
TF{STIGND)4604499,499

PRINT 4663RyYJ9FlT14J)sF(1,J-1)
FORMAT(IXyFTe393FT7e3,4,E12.4,4E12.4)

SIGN OF CHARGE HAS CHANGED ON CHANGING J. THIS MEANS A ROOT.

G50 70O 499

499
500

CONTINUE
CONTINUE
50 TO 501
RETURN

© END

-161-
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SUBRWUTINE FION

" CALCYLATES THE ION.DISTRIBUTION AF EQUATION B-16
ALL VELOCITIES ‘SCALED TO SQRY OF Z*TI(PERP)/H
‘DIWENSIUV FI(41441) :

’CDMHON/FIMAX/FIMAX

’L=3.

DELT=2.6
DATA CPAR2/.3333/
DATA TRATI/.125/

CPAR2 IS TI(PAR)/TI(PERP)

CHOY

710

- TRATIO IS TE/TI{PERP)

2=CPARZ/(RL-1.)

DD 780 I=1,41 , : _ - . o
YI=.05%(1-1) ' , 1
XU2=(RL~-14)%YIXY]~ (DELT*TRAT!O! ' - o ‘
LF(XL2) 725,725,720

~ 720

730

"IF(BRACKET) 735,730,730

DD 779 J=1y41
XJ=,05%(J-1)
BRACKET=EXP({-XJ*XJ/CPAR2Z2)-EXP(~- XLZ/CPARZ’

-861-

FI(I,J)=BRACKET*EXP(-YI*YI)
60 7O 779

T35
779

T25

FITT,J7=0.0

CONTINUE

GN TN 780

DO 729 J=1,41
XJ=.05%(J=1)
FI(1,J)=0.0

729
730
721

- 136

0

CUONTINUE

CONTINUE

PRINT T7R6,(KyK=1,21 Z!v(lolFI(le)’J 1,2142)51=1,441)
FORMAT(1HL, *ARRAY FIONX//1Xy*J € 11T/ 701X %] # IZ,IIEII 4)’
FIMAX=1./(142)V %01 41 /L) %5 (~ Z)*:XP(‘DELT*TRATIOI(RL 1.))

PRIMT 796,FIMAX

196
790

FORMATUIX, % FIMAX %, EL1.4,77)
CALL FIPLOTHFI)
RETURN

END

@ _ . S ' ' o N *
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sub ¢
sub cx

C(x)-

sub e .-

R

_]_93-

‘ ‘Gi‘ SYMBOLS USED IN THE MAIN TEXT
Rw/(R - Rw), function of position at which R = B/BO is
évéluated. (Geﬁerélized form for aﬁisotropy, p. 1k5.)
Ryl (R, - )
ion gyroradius in Sec. IIB.
atomic weight, Sec. ITA.
K;- 1 measures extent to which the electron loss erodes
the trapped electron distribuﬁion Jjust inside trapping
region.
function derived from BenDaniel calculations, typically
b~ 1.
magnetic field strength.
thermal speed (2T/m)l/2 at midplane. Exact value of c
is defined as a parameter in the analytic form of gfx;y).
c is sﬁbscripted as follows: | |
parameters for species beingiconsidered.

electron parameter, when ce” = Cqy
"cold", referring to cold particles.

"chargé exchange"

height of the ion distribution g(x,&) at the loss
boundary y - yL(x).

velocity spaée diffusivity, averaged over velocity space
near the‘losé boundary v |
mégnltude of electron charge.

referring to electrons



EST(®,a,b,t)

f(S5V”:Vl)'
F(s) V

.
g
&(xy) .
G(x,¥)
 H.
:H(X,yj'

sub i

g0

functiqn giving dimensionless electrén density vs.o.

b and ¢ are parametefs of the "damping" of'ge(x,y).
energy in,waves duégtd satprated %nstability.

ususl distribution functionuf(V)f

same‘thing, at spatial point s:

fiux‘ofvescaping pargicles, per unit area normal to
fié]& liﬁé, evaluated at point s.

value of-j’QW ydy xdx g(x,y) at midplane which would -
give the observed F( ) at large s if the dynamlcs were
colLisidnless.

en?rgy loss flux

modified midplane distribution fﬁnction, see Sec. IIB.
same .

Maxwellian in midplane velocity space x,y.

total energy (Sec. IIB).

damping factor multiplying Maxwellian;

referring to ions

T (Romanvnumeral) refers to spatial region between mirrors. II refers

to region outside mirrors.

integer

action integral

inverse decay width of ge(x,y), as in Appendix C;
k=K +1 [k - decay width of'H(x,y)].

wave vector, in Ch. IVB.

A
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L - = distance along field line from midplane to mirror.
m o = particle mass.
:M(u) : . ‘= distance from midplane to point of highest

potential energy, for a given magnetic moment p. Under-

stood to depend on species. For most p, M(p) = L.

n = number density, particles/cmj.
N t' = normalization of distribution function
P L = (0“2/012)(RL - l)-l, referring usually to ions.
q : = particle charge
Q  _ = coefficient in ni(w) = Q(Lv/ci”), Sec. IIA.
T o = coordinate(s) normal to s.
R =B/B,. R =B/B, R =B/B, =B/B, R =B/B. For
any s, B = B(s).
S ' = arclength coordinate along field line,‘measured from
midplane.
S?Es .= ma#imum value; over the range of st consistent with
s'<s.
8T ‘ ' - : referring to particlesvstreaming through region I but
| trapped within the device.
Sf : : referriﬁg to pérticles streaming through region I aﬁd
not trapped within the device.
T ’ = temperature at‘midplane, in energy units (subscripted as
necessary with e, i, |, l);
T(s) . = effective temperature at spatial point s.
u | = dummy_integration variable. |
U ’ = U(s,u) = uB + qf, potential f.or parallel motion. -

v = velccity.:
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v . = Vlasov>transformation,of yélocity;distribution at point.
s info velocity distfibuﬁioﬁ at s =.O. . / ‘ ’;33
W - value of s at the end wall (ﬁidplaﬁé-wail distaﬁce). .-
subW = evaluated attﬁali.' | .
sub W = evaluated about é‘Debyé le;gth"from the wall (R, = Ry~ »

‘but § and n vary rapidly in the sheath).
sub x f" referring to electfoﬁsiborh in region II or at the end

walls. Such electrons afe'called x-electrons.

X o = parallel velocity at“midpléne;
v o = perpendicular velocit&-at midplane.
o . = paramétér inuéeé..IVA'describing extent to which "x"

electrons from‘thé'wall are trépped and thermalized for

long times in the device.

o .= magnetic field coordinate in Ch. V.
B = magnetic field coordinate in Ch. V.
. B ‘ ’ = fraction of "x" electrons trapped for longer than one

tranéit time through the dévice;

oy . , = dimensionléss constant of Ordervgnity in Sec. IVA.

A;‘é L »!‘v : 8v”, 8Vl’ '8§“, Bel = width ostome peak featu;e.én the
velocity distribution.

A (operator)

change in parsmeters from the case where "x" electrons - . A

are absent.
‘e?

e = kinetic energy at midplane. €” = enérgy'OfIParallel

motion. ‘= uB =.energy of gyromotion (drift motion

.'Gl

ignored).
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decay cénstant in velocity space for‘the "démping"
function;H(x,y) outside the loss boﬁndary. K? ;kdecay
constant for H(x,y) inside fhe loss‘boundary.

k.z K+ 1; b =K' - 1. |

wavelength.'

Debye length;

piasma parameter hwnxDB.

mégnetic moment .

loss rate. VO = collision rate (for cumulative 90;degree
scattering). Vo, = loss rate due to charge exchange.

vp = loss réte of "p" (main plasma) electrons; V. = loss
rate of "x" electrons. Vege = €5cape time of cold par-
ticles from a simple potential well. v* = ionization
rate. B

height of electron mock-distribution ge(x,y)rat the loss
boundary, divided by height of the corresponding
Maxwellian there.

3.1416.

phase-space‘density (£/B) in apsv space (ch. V).

cross section (Ch. V).

bounc time

electrostatic potential. Subscript indicates where
evaluated,ve;g. ¢L = ¢g(L), ¢S = @(s), ¢W = ¢(W—j.

e¢/Te, dimensionless potentialf Similarly subscripted.

see list of simbols at end of Appendix B.
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e¢/‘I’i for, e.g., hot electron plasma,
with T, .
i

-wave frequency (angular), Sec. IVB.

where ¢ scales
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