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University of California 
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ABSTRACT 

Previous calculations of steady-state mirror confinement give no 

estimate of the density ln the region between the mirror and the wall 

of the vacuum vessel. In this p3.per, realistic models for the ion and 

. electron distrlbution functions in the confinement region are used to 

estimate the external density and external plasma potential. It is 

found that this density is usually sufficient for plasma in the external 

region (a fact of importance to instability studies). The external ion 

density due to losses from the confinement region depends on the sc~tter-

lng rate (Coulomb or other scattering) in a sliDple way, through the flux 

of escaping ions and the width of the "tail" of the ion distribution 

function. Because of their small mass, most of the electrons in the 

external region must usUa.lly be trapped in order to preserve quasi-

neutrality; i.e., they must have turning points in the external region 

but stream through the confinement region as part of the confined elec-

tron dlstribution. This is brought about by a "shoulder" on the elec-

trostatic potential profile; ¢ continueE. to decrease with distance out-

side the mirror. There is, in general, a plasma sheath at the vessel 

wall. 
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The external density may be enhanced by production of plasma near 

the walls or by electron emission from the walls, but two-stream insta­

billty sets in at some critical production rate (which is very low in 

the case of emitting walls). In the presence of such an "external" 

source, the plasma reaches a new steady state, which is described for 

the stable and the unstable case. As a corollary to the instab1lity 

problem, j_t is shown that the plasma density cannot ordinarily int;!rease 

outward from the mirrors. Finally, the hot-electron plasma is discussed, 

and it is shown that the ~vailability of cold electrons outside the 

mirror "clamps" the potential there and neutralizes the slow escaping 

ions. 

,, ! 

v 

v: 
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SYNOPSIS OF CHAPTER I 

The usual ''loss cone" in midplane velocity space is generalized 

to a "loss region" when am bipolar electrostatic potential is present. 

And in fact, with each spatial point ~ along a field line, there is 

associated a curve in midplane velocity space (vllo = x, v10 = y) which 

is the locus of ions with turning points at ~' assuming collisionless 

dynamics. The electrons also have such a turning-point locus (different 

from that for ions) for each point s. If there are no p;t.rticles con­

strained away from the midplane, then in the collisionless approximation 

all the particles at s are.represented in the midplane velocity distri­

bution, and the particle density at s comes from those particles which 

have not been turned back toward the midplane at some smaller s. The 

density n(s) then is calculable by integrating over the region of mid­

plane velocity space "outside" all the curves for points s' less than 

~ LEq. (5)]. We discuss these matters quantitatively in part B of 

this chapter. Exact and approximate loss boundaries for the device, 

as compared with turning-point loci for various turning points ~' may 

be seen in Figs 2 (p. S) and B6 (p. 129). It is also instructive to 

look at the ion phase space (Fig. 7, p. 31). 

In part C of this chapter we discuss how the midplane velocity 

distributions of ions, and the plasma potential, have been computed 

from Fokker-Planck equations by various authors in the limit of short 

bounce times; the ion and electron distributions go to zero at the 

boundaries of their respective loss regions in midplane velocity space. 

We show that with the simplifications made by these authors upon the 

loss boundaries and distribution functions, the density would be zero 

outside the mirrors (s > L) and vary as (L - s) 3 just inside the 

mirrors (s < L). 
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I. INTRODUCTION 

A. General Remarks 

Classical analyses of the steady state in mirror-confinement 

systems ignore the density of ions outside the mirrors, 1 ' 2 and often 

treat the electron distribution as nearly Maxwellian (a Maxwellian 

distribution implies nonzero electron density outside the mirror). 

The aim of this work is to estimate roughly the actual densities 

and potential drop in this external region. This information should 

be useful in the study of end effects on, e.g., flutelike and loss-

cone-driven instabilities. 

Studies of "line-tying"'' stabil:i.zation of flute instabilities3- 5 

have shown the importance of the parameters of the electrical path 

connecting unstably gr9wing regions of opposite polarity, through the 
' 

end regions. If the end regions are reasonably short, conduction 

takes place through the end walls and their associated sheath boundary 

layer; two magnetic··field lines are "short. circuited" together to the 

extent that the total. external impedance is low. This impedance is 

very high and capacitive if a vacuum seJBrates the plasma from the end 

walls, but can be fairly small (and sheath-dependent) if the interven-

ing m.edium is a plasma, because of the high conductivity along the 

magnetic field lines. 

Preliminary studies have also been made6 on the coupling between 

unstable loss-cone modes and plasma waves in a magnetic mirror geom-

etry (with zero plasma potential and no ex~rnal plasma), and the 

general question of reflection or absorption of convectively unstable 

waves7 ' 8 at the ends of a plasma is an important one for the feasi-· 

Ill Iii 

' i 
~: 
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bility of open ended fusion reactors. 

In this p:~.per, rather than attempting to solve exactly a well-

defined problem of limited applicability, we attempt to give order-of-

magnitude estimates and point out qualitative features without assum-

ing any specific magnetic field shape, p:~.rticle source mechanism, 

scattering mechanism, etc. 
\ 

It is still necessary to make fairly 

lengthy model calculations in order to get these results, but their 

approxiinate validity is wide. Results are expressed wherever.possible 

in terms of experimentally measurable quantities, e.g., plasma paten-

tial and :r:erticle loss rates. It was felt that rough analytical 

formulas could be of wider u~ility than computer solutions for a few 

special cases. This paper is a first step in analyzing a large prob-

lem of rather amorphous scope, rather than a complete examination of 

a simpler soluble problem. 

Nonrelativistic equations are used to describe the adiabatic 

motion of particles in a time-independent plasma which is nearly col-

lisionless, i.e., the larger of the rates v (loss rate, inverse of 

time required to diffuse in velocity to an untrapped state) and v0 

(collision rate, inverse·time for cumulative 90-deg scattering) must. 

be slower than a typicai bounce frequency (along the magnetic field, 

from turning point to opposite turning point). Bounce times of a few 

barely trapped (or barely untrapped). p:~.rticles will be long,· as is the 

period Of a pendulum with nearly enough energy to rotate over the top, 

but these p:~.rticles spend most of their bounce period very near the 

turning points, where scattering is usually negligible because of low 

.density; so the spatially averaged v need not be zero for validity of 
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wall itself grounded. Steady-state9 :rarticle .. loss rates maintain the 

mirror-confined pla,sma at a :positive potential, ¢
0

, . at the midplane, 

.. decreasing; to. ¢L at s = ± L and ¢w at s = .±· w-, :a D~bye length or so 

. away~·from the wall. We call the magnetic field~·at s = .. 0,. L, ~w 

respectively B0,: Btl :SW' and define the mirror ratios ~ = BL/B0 and 

•;_I\j = Bw/B0 . · · Gene:ralizing, we define R
6

- B(s.)/BO' for any 2_, and for 

convenience we·write ¢ in place of ¢(s). s 

';'-·" 2 •. Effect of Particle :Drifts· 

We will examine properties of a· relatively· steady state plasma 

in this geo~etry:. · .Because this steady state is established over a time 

long compared with typical bounce periods on the field ltne:; we must 

say a few words about the effects -of the slo:w drift of guiding centers 

:a:cross the.c.·field lines .. As.- t:he;.g),liding centers· of tpe bouncing par·-

ticles move across the field lines, they s:weep out a "drift surface" 1 

which we will assume to be closed10 in the sense of having finite 
~ '·. 

area. As the guiding centers drift along this surface 1 t~ encounter 1 

in general, 

(a) . different· len8ths L from the .r~eference :f:!urface s = 0 to the 

maxima of B, and di-fferent lengths, W t~o-C'the .wall-s outside, 

{b) different mirror ratios:~a·t the maxima of B, and-~thus- differ-

ent :criteria sep3.rating trapped orbits .fro:t,n ·untrapped ones, and 

(c) different central densities and. v:elocity distributions, and 

thus different scattering rates· and ·los·s· ·fluxes· due:::<to •plasma ·inter-

actions. 

. , . If the "collision"- or scattering times. are long com:rared with 

·.drift times around the drift surface, one ,.can see that the effective·· 
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mirror ratio for the drift surface, i.e., the one most effective in 

determining the boundary between trapped and untrapped orbits, is the 

smallest .maximum of B On the slirface; and the field lines in the 

neighborhood of this one on which B bas its smallest value will max 

play a dominant role in the ion loss. (Electron loss will be seen to 

be relatively insensitive to B except as ¢ may be determined by B.) 

In the classical mirror device there is azimuthal symmetry: all 

field lines on a drift surface are identical and none of these diffi-

culties is present. For simplicity, we do the analysis for this case, 

although small deviations from this symmetric geometry are within the 

scope of the theory
11 

if we use the average values of L and W on the 

drift surface, but the minimum value of ~· Likewise if the geometry 

is asymmetric in ± s, the smaller RL is the one determining the loss 

boundary (trapping boundary) in phase sp:t.ce. 

3. Subdivision of Midplane Velocity Space 

For each point ~ along a field line, one can draw a curve in € II, . 

€1 SJS.Ce (midplane energy spi.ce) such that pi.rticles with Ell' El on 

the curve will have zero parallel velocity at the Spi.tial point · (if 

they can get to s). This curve is just the line 

(2) 

in midplane energy space. If a particle at the midplane has 

(where Sup indicates the supremum, or maximum value), then in the 



-6-

absence of collisions its turning point is beyond~· (This will be 

proved shortly.) Of course, for those particles with U(s',~) 

~B( s') + q¢( s') monotonically increasing for s' < s, we have 

Sup Es' -
O<s'<s 

€ . 
·S 

We consider only s > 0 in what follows, since there is symmetry 

in s. If we assume ¢( s) monotonically decreasing for all s > 0 (as 

indicated by the results of section C for s > L, and by previous 

studies1 ' 13 for s < L, then for the electrons-U(s,~) is always increas-

ing when 0 < s < L, but decreases for large ~ and increases for small 

~ when s > L. Figure 1 shows U(s,~):;'for the electrons. Figure 2 shows 

the lines Es(E1 ) of the electrons, for s ~ L. The crossing of these 

lines reflects the fact that U decreases for large ~ but is still 

increasing for small ~-

For the ions, U(s,~) is monotonically decreasing for s > L, so 

that all ions passing s = L are lost. Figure 3 shows U(s,~) for the 

ions, and Fig. 4 shows the line EL(€1) for the ions and the correspond­

ing line E
1

(E1 ) for the electrons. Because the E's are energies at the 

midplane, € 1 = ~B0, so that the vertical axis of Figs. 2 and 4 is the 

magnetic moment invariant, except for a constant scale factor. 

The maximum of U(s,~) = ~B(s) + q¢(s) will be .at some s = M(~), 

different for ions and electrons. As~~ oo, M(~) ~ L, but M(~) = L 

for all~ only if d¢/ds = 0 at s = L (where dB/ds = 0). If d¢/ds < 0 

at L, then M(~) < L for the ions and M(~) > L for the electrons. 

Below some critical ~c there will usually be no maximum of U except 

I d 
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0 

I 
1 s=M (J-L) 
I 
I 

L 

Fig. 1. Electron potential energy ~B(s) - e¢(s) vs ~' for 

~B0/T8 = o, 1, 2. Midplane is at s = o, end wall at s = w. 

XIJL 712-25.! 
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.A-- Ew(EJ.) 
~-Ew-{EJ.J 

XBL712""254 

Fig. 2. The lines E/1 = E
8

(E1 ) in midplane energy spice, for various 

E_, L < s < w. Electrons with E/1 > Es(E
1

) have turning p02nts 

beyond patial point E_, if they can reach s. Electrons with mid-

l1l 

plane energies to the right of all these lines are lost from the 

deVice. Those with energies between Ew-(E
1

) and Ew(E
1

) are 

reflected by sheath at the wall. 
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. I 
. s=-M(p.)f 

I 
I 

XBL 712-252 

Fig. 3. Ion potential energy IJ.B(s) + e¢(s) vs s, for IJ.B0/Te = 0, i, 2, 5· 
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Electrons 8 
ions trappe 

Slope R I 
L-1 

L (E.L ) : ions 

I 
SlopeR _

1 L 

Electrons Ell =EL (E'.l): electrons 
trapped, 
ions 
lost Electrons 8 ions lost 

'-------#-----------Ell 

XBL712-255 

Fig. 4. Loss regions in midplane energy space for an 
isolated mirror-confined plasma. 
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at s = 0 (for the ions) or s = W (for electrons). The location or 
/ 

absence. of M(~) determines where and whether particles with this value 

.of~ ~re.trapped. If jd¢/dsl is reasonably small, M ~ L for most 

trapped ions. If lldB/ds < ed(-¢)/ds for some s, ~where s < M(~), 

some ions can be trapped locally, i.e., without passing through s = 0; 

but this case does not usually arise and we will ignore it. Particles 

with turning points beyond s = M(ll) are lost from the device. Hence 

the curve 

is called the (exact) loss boundary. 

4. Density at s in Terms of Midplane Distribution 

Now consider a collisionless plasma in the potential profile of 

Eq. (1). The total energy of a particle is conserved: 

(3) 

( E II and El will always refer to energies at the midplane); and ll is 

conserved: 

[comll!inirig 

Eq. (2).] 

these and using the turning point criterion vii 

Let f(s;v
11
,v

1
) be the velocity distribution of 

(4) 

= 0 gives 

one species 

at spatial point ! ( f is explicitly a function of vII and v 
1 

only, but 

its parameters depend on s). 

Assuming that all particles contributing to 
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include s = 0 in their orbits, we can use the Jacobian of the trans-

formation in Eqs. (3) and (4) to transform the integration variables 
I 

to midplane velocities 

' 

where xs
2 = v~0(Rs - 1) - ;q (¢0 - ¢s) = ~ Es(E1 ). We write the inte­

gration in terms of midplane velocities x = vll 0 andy= v10: 

( 5) 

where particles with turning points at s' < s do not contribute and 

are excluded by restricting the region of integration to 

I xI > Sup x , (y). 
s'<s 8 

c. Previous Analyses of Isolated Mirror-Confinement Systems 

With Evaluations of the Plasma Potential 

1. Nature of the Plasma Potential 

On the basis of single particle behavior, Eq. (1) with 

¢ = constant14 gives the familiar "loss cone" in midplane velocity 

space (or energy space). Since d¢/ds = 0, the maximum of U(s,IJ.) is at 

s = L for all 1-1; particles with E1 (RL- 1) <Ell have magnetic moment 

,,, 

it<, 

·• 
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too small to be confined, and they are lost in a transit time. The 

loss boundary, Ell = EL(€1)- (RL- l)E1, is a cone in midplane 

velocity SJ:Rce. 

I ' 
But ordinarily we consider plasma densities, where quasi-neutral-

ity must be ensured in the presence of scattering into the loss cone. 

The difference between electron and ion SGattering rates leads to an 

ambipolar potential, ¢, which balances electron and ion loss rates. 

Electrons scatter off electrons, ions, and neutrals, if any. Ions 

sea tter off ions and neutrals, if any, and most ion-neutral encounters 

involve charge exchange. There is also some cooling of ions by elec­

trons.15 · In the absence of neutrals, the scattering is assumed due to 

Coulomb encounters, and the ratio of electron scattering rate (for 

cumu~tive scattering through 90 de~ to the ion scattering rate is16 

Hence Unless· Ti/Te < (me/m) 1/ 3, the electron scattering rate is the 

larger one, and this leads to a positive ambipolar potential ¢0 - ¢L' 

which balances electron and ion loss rates by trapping low-~ electrons 

electrostatically. 17,l8 The complications arising from collisions with 

neutrals are discussed elsewhere; 19 it suffices, for now, to say that 

for Ti/T~ ~ 1, ¢0 - ¢L is almost always positive. However, if almost 
\ 

all the ions are trapped for many transit times, one must have 

e(¢0 - ¢L) < (RL - l)T1 .. Tll/2, where T and T~ are the parallel and 

perpendicular ion temperatures in energy units. Tll/2 is the mean 

parallel energy, T
1 

is the .mean perpendicular energy. 
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In this pt:per we use the term "isolated" to refer to a mirror-

confined plasma whose density is zero outside the mirrors so that con-

ditions there are irrelevant to the plasma contained inside. Usually 

this.involves assuming that U(s,~) has a maximum nears= L for all 
1
t=C 

representing trapped particles, and that all particles not trapped by 

this potential are lost from the system immediately. In the ~pproxi-

mation that the maximum of U is at L, the loss boundaries for the 

system are just 

(6) 

Thus the loss region in midplane velocity space is no longer a cone, 

but (in this approximation) a pair of hyperboloids~li3 one for electrons 

and one for ions, as shown in Fig. 5. This pair of boundaries is 

identical with the pair in Fig. 4, which is drawn in energy space. 

2. Survey of Fokker-Planck Calculations 

With the assumption of instant removal of untrapped particles 

(the li~it of zero transit time), the steady-state distributions are 

zero in their respective loss regions. With these as boundary condi-

tions, the distributionscan be found, in principle, by solving simul­

taneous Fokker-Planck equations20, 21 for ions and electrons in 

(s,v
11
,v

1
) phase sp::~.ce, with some appropriate source term for each 

. species (or without, if a slow decay is allowed). If instability is 

also a scattering mechanism, the scattering terms are larger than for 

Coulomb interactions alone, but this makes no conceptual change in the 

process as long as the scattering rate remains very small compared to 

typical bounce frequencies. 

'II 

' .. 



V m''2' 
".lO . 

Symmetric in 

v 
llo 

~ ....... 

-15-

V m 1/2 
no· 

x a L6 97- 3270 

Fig. 5· Electron and ion loss boundaries in midplane velocity space 

when the plasma potential is nonzero. 
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Carrying out this calculation is difficult, and simplifying 

assumptions have always had to be made. (Note that the location of 

the boundaries depends on the solution of the problem.) We list some 

of these assumptions, roughly in order of increasing severity: 

(a) In the calculation of ion scattering terms due to electrons, 

the electrons are assumed Maxwellian. 

(b) In calculating ¢0 - ¢L' the loss region for the ions is 

taken to be a cone of altered slope 

instead of Eq. (6). Here Reff = RL(l + e¢0/Ti)-
1

, representing the 

loss cone angle for a p:~.rticle with energy €1/ + El just equal to Ti. 17 

¢L is taken identically zero, as the reference potential. 

(c) The s-dependence of the problem is ignored because the de-

crease in scattering rate with s is more or less compensated by widen-

ing of the loss cone with s. This is equivalent to assuming a square-

well potential profile, hence constant density. 

(d) The s-dependence can be calculated from the midplane velocity 

distribution using collisionless orbit theory• · 

(e) Given condition (.c), the midplane ion distribution is seJ:Q-

rable in speed and pitch angle. 

(f) Given condition (c), adequate information is obtained by 

solving a one-dimensional Fokker-Planck equation in energy alone. 

(The anisotropy in loss regions is translated into a loss factor in 

the scattering rate.) 

(g) The ion-electron interaction is neglected. 

• 

' ...,.,; 

.. ! 
' 
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(h) Ion and electron sources are assumed equal and processes 

involving neutrals·are ignored. 

(i) The plasma potential is ignored. 

Several authors have used various of these assumptions in solving 

for loss rates, distribution functions, midplane potential, axial pro.-

files, etc. We list those involving Fokker-Planck calculations, along 

with. the assumptions contained in each (listed above). A "+" means 

the assumption is made; a "-" means it is not made. A "+" means both 

cases are treated, and a blank space means the assumption does not 

apply. 

a b c d e f g h i 

22 23 Roberts et al. ' + + + + + 

BenDaniel
1

'
24 

+ + + + + + 

Fowler and Rankin19'
25 

+ + + + + 
' 26 

Killeen and Futch + + + + + 

d 2((.,15 Marx an Killeen + + + ·-
In addition to the papers mentioned, Kaufman17 and Persson13 have done 

calculations of axial profiles of density and ¢ based on 5-fuction 

distributions in the collisionless limit, and Post, 28 Newcomb, 29 

Grad:,~0 Persson, 13 and others have discussed the nonlinear integral 

equations for ¢(s) wbtained from quasineutrality when assumption (d) 

.holds. The Newcomb resUlt is discussed in Appendix D.) 

In the case where electron and ion sources (integrated over the 

trapping region) are assumed equal, ¢0 - ¢L is found by equating 

approximate electron and ion loss rates.l?,l, 26,l3,l5 Then in calcu-
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la.ting the profile ¢(s) from the quasineutra.lity condition one ignores 

the density of loss-component p:Lrticles (on their way out) since they 

are assumed to exit "immediately" on being lost, 31 and also uses a. 

better approximation to the true loss criterion. For example, 

BenDa.niel calculates ¢0 using a. single escape energy e¢0 for the elec­

trons (purely electrostatic trapping) with the electron loss rate a.s 

calculated by Rosenbluth et a1. 21 But in deriving ¢ , the electrons s 

are assumed Maxwellian for Ell < E 1 (RL - 1) + e¢0, 32 cut off abruptly 

at the loss boundary. 

Only the Fowler and Rankin and Killeen and Futch papers treat 

more general sources, namely ionization events which create cold elec-

trons (trapped) and cold ions (untrapped), a.s well a.s a.n energetic ion 

source. 

3· The Zero of Density near the Mirrors 

With the assumption of instant removal of untrapped particles 

(the limit of zero transit time), there are no particles outside the 

maxima of U(s,~). Assuming that these are a.t s = iL, the density goes 

to zero there in a. manner related to the behavior of the midplane 

velocity distributions near the loss boundary. With these assumptions 

and assumption (d), we have the following: 

Theorem l. 

If the distribution in midplane velocities x,y goes to 

zero at the loss boundary x 2 
xL(y ) in such a way that 

with integer p > 0, 

a.s x ~ xL from below, then 

.. 
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as s ~ L from below, 

provided the maximum of U(s,~) is a simple one: 
- - - 2 

U(L) - U(s) ~ (L - s) . 
I 

The proof is given in Appendix A. Typical steady-state Fdklter-Pll'inck 

calculations17' 1 ' 26,l3,l5 give p = 1 (f has finite, nonzero slope at 

the loss boundary), so that n(s) ~ (L - s)3. 
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SYNOPSIS OF CHAPTER II 

The importance of several instability modes in mirror confinement 

depends on the axial profile of density, n(s), near the ends of the 

plasma and particularly between the mirror and the end wall outside 

the mirror. We show in part A of this chapter that these end regions 

(collectively called region II) are usually plasma-like (i.e., have 

small enough Debye length) even if the coulomb scattering loss from the 

confinement region is the only source of the external particles. The 

density in region II can be estimated roughly in terms of the ion loss 

flux [see Eq. (10), p. 23), because the average ion streaming velocity 

is more or less a known functiorr of position (from energy conservation). 

In this external region these ions, all of which are escaping, are 

neutralized by electrons, most of which cannot be escaping. This can 

only happen if the electrostatic potential decreases from the mirror 

to the wall. 

The electron or ion .den_sity at :a' point in region II depends on the 

electron velocity distribution and the potential energy profile 

U(s,~-t) = ~-tB(s) + q¢(s). If the "collision frequency" is small compared 

with the reciprocal transit time, the distribution in phase space can 

be generated approximately from U(s,~-t) and the distribution in velocity 

at the midplane (s = o), using collisionless orbit theory. [Recall 

Eq. (5) of Chapter I~l This is discussed in part B of this chapter; 

the discussion largel; follows Persson. 13 These midplane velocity dis­

tributions are the solution of some complicated coupled Fokker-Planck 

equations and are non-Maxwellian over an important part of velocity 

s~ce (the "loss region" or generalized loss cone), because of the rapid 

particle loss. For the purposes of this study, they can be modelled 

by analytic functions (which are not separable in energy and pitch 

angle). (See Eqs. (Bl6), p. 126, and (BB), p. 116, and Figs. Bl, p. 114~ 
and B3, p. 116, for ions; see Eq. {Cl), p. 142, and Fig. 11, p. 47, for 

electrons.] 

',, 

• I 
! 

1 

i 
,..,! 
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II. NONISOLATE;D MIRROR PLASMAS 

A. Demonstration of External Plasma Conditions 

1. Particle Loss Flux 

In the study of instabilities in mirror plasnBs, a topic of 1con-

. I 
siderable interest is that of boundary conditions on the waves at1 the 

axial termination of the plasma. For the low frequency flute modes, 

one has the possibility of slowing or quenching the growth if the 

plasma is electrically connected along B to conducting walls.33,34,3-5 
35 

For the Post-Rosenbluth loss-cone instability, the reflection or 

damping of the axially convected waves depends on how n(s) falls 

off,~~S and hence on the behavior of the distribution functions near 

the loss boundaries. 

For studies of this type, the "isol~ted" plasma approximation of 

section IC is inadequate; a further sophistication is necessary. In 

this section we show that in many cases of practical interest the 

streaming loss alone can give rise to a charged-particle density out-

side the mirrors that is generally large enough to require quasi-

neutrality there. We also show that with equal ion and electron loss 

fluxes, the loss-component electrons alone cannot nBintain the quasi-

neutrality, and that the ambipolar ¢(s) must continue to decrease out 

to the wall, with the result that some energetic electrons will have 

turning points well outside the mirrors and yet remain trapped. These 

electrons, which we denote by superscript ST (streaming outside the 

mirrors but still trapped) assist the loss-component electrons, de-

noted by superscript SF (streaming, free) in balancing the ion loss-

component density. The region between mirrors (henceforth called 
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region I) is thus not isolated fromthe external region (region II: 

s > L). 

We consider two qualitatively different types of loss mechanism 

in what follows. The first is a smooth diffusion in Ell' E 
1 

due lo 

many overlapping long-range encounters with charged p3.rticles (Coulomb 

scattering) or due to fluctuations and unstable waves.. Guiding centers 
,, . . 

wander randomly but continuously in Ell' E1 (o~ eq~entily}a~;iH). 

Particles wander into the loss region only a small amount before their 

transit takes them out of the device, or at least out of the region 

where significant scattering occurs (p3.rticles with Ell' e1 very near 

the loss boundary EM(e
1

) spend long times near their "turning points" 

' at s = M(E1 ), but there is little chance for scattering while they are 

there.) The second loss mechanism is collisions with neutrals, which 

produces abrupt large changes in ell, e 1 • We restrict our consideration 

here to loss by charge exchange, where a confined "hot" ion strikes a 

cold neutral and results in a fast neutral and a cold, untrapped ion. 

For statistical purposes, this process "moves" ions discontinuously in 

velocity sp3.ce. Ions being lost by charge exchange do not spend long 

times near the mirrors since their ~ ~ 0, but they do spend rather 

long times in the interior of region I because their parallel veloci-

ties at birth are small. They are eventually accelerated out by d¢/ds, 

but they may contribute an appreciable ion density n~x at the midplane. 

If diffusion takes place ~nly in region I then the streaming ion 

flux is indf!P!ndent" of s in region II except for the "area factor" 

B(s)/BL: 
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F. ( s) 
l. 

for s > L. (7) 

If v is the inverse loss time of a typical ion by the smooth d~f­

fusion mechanism, 36 then from Eq. (7) 

for s > L, 

where n0H refers only to the hot (contained)~iona. 

(Since Fi(W) is measurable, Fi(W) = ~n0Hv may be 

(8) 

H ex 
no + no = no· 

taken to define v, 
~ H . 

or Fi(w) = vno v nia.y be taken to define an. effective length L. We 

adopt the first convention in all that follows.) We will occasionally 

denote as the "scattering parameter" the ratio 

LV F
1

(w) 

H . ' 
\rno cill 

(9) 

I l/2 
with cill = (2TII mi) and 

midplane. It is the ratio 

Til the parallel "temperature" of ions at the 

of a typical transit time L/cill to the loss 

time v-l It is thus the smallness parameter for all of our analysis. 

In the case of energy-preserving scattering, several authorsl9, 26 

have expressed v crudely as v = rrv 0, where v0 is the cumulative 90 deg 

scattering rate and TI is the probability of loss given 90 deg scatter-

. ing, i.e., approximately the ratio of solid angle subtended by the 

loss region (at a given speed) to the total solid angle. 

The formulation v = rrv0 with TI ~ l is reasonable for large mirror 

ratios when particle sources are far from the loss boundary, but it is 

inadequate for small RL - l, where v -+ c II /L while v 0 remains finite . 

·~~ 

.... 
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In this case an effective v can be calculated only by solving the 

pitch-angle diffusion equation with the given sources. It is also 

true that ions with €
1 
~ e(:¢0 - ,-~\)/(RL - l)will be lost significantly 

due to cooling by the electrons. 15 With sources neglected,~-and a 
I 

simple random walk in pitch angle only, it can be shown that 

(1 - vL/cll)-
1
v/v0 "' (RL -1)-l when RL - 1 is small. 

2. Minimum External Density and Maximum Debye Length 

Consider the density, in region II, of ions lost by the smoot_h 

diffusion mechanism. B(s) decreases with s in region II and ~B is the 

dominant force for these ions. (The potential ¢(s) probably also de-

creases .. ) Ions are thus accelerated out from s ~ L, gaining Jarallel 

energy 

by the time they reach s = W- (they creep over the barrier at s ~ L 

with negligible vii). Let T 1 Loss by a typical value for E 
1 

among these 

ions: Then 

The value of T Loss depends on the mirror ratio as well as Til and T 
1

; 

Loss Loss 
for RL - 1 << 1, T1 ~. T1 >> Til; but for~ 1 >> 1, T1 

(RL- l)- 1[eC¢6~~~¢L) + ~~~], as a look at Fig. 6 indicates (the en­

semble over which €
1 

is being averaged lies very nearly~ the loss 

boundary). 

If charge exchange is important and if it occurs with a rate v ex 
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tTn 

XBL 712-256 

Fig. 6. Midplane energy space for ions. Contours of ion distribution 

for large mirror ratio (top) and small mirror ratio (bottom). 

Energy of typical loss-component ion (small circle) and typical 

trapped ion (cross). 

'·' 
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and mostly in the central region where ¢ ~ ¢0, then the resulting cold 

ions are accelerated out of the plasma by d¢/ds; they produce an addi­

tional density in region II, whi-ch comes to 

I 

I (11) 
I 

at s = W. The quantity RwL~·cxnOH is just the charge exchange loss 

fll.ix at s = w. (Both Eqs. (10) and (11) apply at other points s in 

region II if W is replaced by s everywhere in the equations and if s 

is not too near the mirror, where Eq. (10) is improper.) 

When.both loss mechanisms are important, the ion density in 

region II is just the sum of Eqs. (10) and (11). These ions, whose 

density cannot be matched by SF electrons, as we will show, cause a 

large positive potential and attract electrons (from region I if there 

are no others available) until qua.sineutrality is established, pro-

vided that the resulting Debye length is smaller than the size of the 

external region. We have 

M:l.x ~(s) = M:l.x 

L<s<W-

where we have assumed n -'n. and written TEXT(s) for the local mean 
e 1 e 

electron temperature at s. In the absence of aqrexternally supplied 

electrons, we expect this temperature to be less than or at most 

equal to the midplane temperature T • Using this fact and Eqs. (10) e 

and (11), w~ have 
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(12) 

with 

Q = 

I ex For v v << 1, we have n0 << n0 and ex · 

(13) 

Loss 
which is a maximum if we assume T1 ~ T1 • If RL - Rw ~ 1 and the 

electron temperature Te << T
1

, we have 

since e(¢L - ¢w) cannot be much greater than Te· Now certainly 

v ~ 1/2 v90 deg for ~ - 1 ~ 1 ( the actual coefficient depends on ~' 

going to 0 for RL ~ oo and to oo for RL ~ 1), where 

1 -7 nO ln A 3 
v90 deg (sec- ) ~ 0.7 x 10 Al/2~/2 (n in em- , T in eV) (14) 

is the usual cumulative 90-deg Coulomb scattering rate for particles . 

of mass A (amu). 16 Though fi is not Maxwellian we assume Eq. (14) 

3/2 2 1/2 holds within a factor of 2 or so, and use T = (TIITl ) . If 

instability is the dominant loss mechanism, then ~e expect v to be 

much larger than this Coulomb estimate. 

·! 
r 
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Using these Coulomb scattering losses alone, consider two 
I . 

examples, both with RL = 3, Rw = 2, A = 1 amu, L = 100 em, and 

Tl >> Te: 

(1) · for n0 = 10
10 cm-3, Te = 10 eV, Til 10 ev, T1 = 100 eV

1

: 

~(o) = 0.02 

Q-1/2 <<1.8 

LV 
ciJI 

em ) ~(W) < 1.5 em 

-4 = 3·3 X 10 I· 

I 

(2) for n0 = 1013 cm- 3 , Te = 100 ev, Til = 1 keV, T
1 

= 10 keV: 

( ) . -3 
A.D 0 = 2. 3 x 10 · 

Q-1/2 < 1.8 

4 -4 
= 0. X 10 

em[ 
f ~(W) '<)(h:5 em. 

i 
) 

In general this upper bound on ~(W) scales as 

when the loss is dominated by ion-ion collisions (i.e., minimal loss). 

When charge exchange ·losses are dominant, 

Consider a low density, high temperature system, with~= 3, Rw "'2, 

and L = 10,3 em: 

(3) for n0 "'n0H = 10
8 cm-3 , Te = 100 ev, Til = 1 keV, T

1 
= 300 

keV, andv ex 
-1 

0.2 sec : 
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A.D(O) = 0.74 em 
\ 
! 

[

e.(¢ _ ¢ )Jl/4 
0 L < 0.8 

"' 
Til . 

< 200 em. 
"' 

In~the ~bsence of rapid instability losses, the loss-component ]::6r-

ticles in this example probably do not constitute a plasma in region 

rr. 

By these examples we have verified the intuitive scaling _based on 

~/n0 "'Ry,(Lv/cill); i.e., 

~(w)/~(o) ~ ~vv/cill)-1/2, (15) 

where v is the total ion loss rate. We have also shown that for :tela-

tively high densities and not-too-large temperatures, the scattering 

loss alone usually gives rise to an external plasma in region II. 

3. Electrons in Class "ST" ' 

Since electron and ion fluxes must be equal, however?7 the 

density of streaming SF electrons at s = W is 

where V, Til,· and cill still refer to the ions. One sees from this that 

unless e(¢L - ¢W) /Te ~ RL - ~ the streaming electron density n~F is 

insufficient for charge neutrality at s = W, and similarly at s not 

too near L. But if e(¢L - ¢w)/Te ~ RL - ~ "' 1, many of the electrons 
f 
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at s 2: L would be in class ST, not in SF as assumed. 

4 .· PhYsical Significance of External Parallel Electric Field 

··Because of the small factor (m /mi) 1/ 2 in the' equation for nSF (W), e · e 

we must either have n;T(w-) >> n;F(w-), or e(¢L ... ¢w)/Te "'~ ~ \!' or 
i 

both. The latter alternative means an outward electric field of order 

T ldR/dsl, i.e., e 

in the outer portion of region II. (In Appendix D we shall derive the 

same result by a:ther·dimensional methods. Such ·an electric field is 

always present when magnetic (or othe~) 38 forces accelerate one species 

(say, with lower mass) more than the other. The magnitude of the elec-

tric field is such as to make the acceleration of a typical electron 

equal that (primarily magnetic acceleration) of a typical SF ion. This 

is done by increasing the number of electrostatically decelerated 

electrons. The same situation should occur in plasma rocket nozzles 

where the magnetic field expands, although we find no explicit men-

tion of this in the literature. 

B. Model for Estimating the External Density 

1. Collisional and Collisionless Particle-Following 

When there is no scattering, the density at any point s is related 

to the outer portion of the midplane velocity distribution by Eq. (5), 

assuming there are no sources with E > E between 0 and s. This re­
s 

fleets the fact that the velocity distribution f(s;v
11
,v

1
) is the image 

of f(O;x,y) under the mapping ofEqs. (2) and (3) and under the condi-
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tion (on the normalization) that the spatial density of guiding cen-

ters in the image of 2nydydx increases proportional to B as the field 

lines converge. This mapping we call V since the corresponding phase 

space density in canonical variables is governed by the Vlasov equa-

tion in sand v
11

. Consider, for example, the ion phase space cross 

section, at some fixed ~ for which there is an x-type singular point 

s = M(~) near s = L. The separatrix (see Fig. 1) is the phase-space 

loss boundary, and at s 0 it is just x = ~(y), the midplane loss 

boundary. 2 (y ~ ~B0 .) The orbits are deterministic, as the Vlasov 

equation is linear. Thus if f(O;x,y) = 0 for lxl ~ x
1

(y) then the 

density is zero beyond s = L. The same is true with L replaced by 

M(~). 

When the orbits are not collisionless, the problem of the density 

of particles escaping over a potential l::errier is not trivial. The 

case with a velocity-independent barrier where the diffusion coeffi-

cient D is velocity- and space-independent, and where the dynamic 

friction is just (Dm/T)v, i.e., 

~f 2 
v- + Q (s -

dS 
L) df = ~ ( Dm vf) 

dV dV T 

(with Q
2 

some constant and T the constant temperature) was treated by 

Chandrasekhar,39 with the additional requirement that the reference 

or midplane distribution (i.e., the boundary condition, fat s0) be 

Maxwellian (rather than truncated or damped by rapid transit time of 

the escaping particles). The difffculty of generalizing this situa-

tion analytically to the ion escape problem has let us to seek simpler 
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XBL 712-257 

Fig. 7• Ion phase space for typical given ~· Unpopulated orbits 

shown dashed. Dot-dash line is where B is largest. 
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if more ad hoc techniques. 

We look thus for a model b,y which we can estimate n(s) for s ~ L 

due to scattering (etc.), without really changing the Vlasov equations 

to the badly coupled rsir of Fokker-Planck equations (rsre.bolic, non-

deterministic) including the detailed scattering mechanism. We need 

only a crude estimate of the density n(s), not the detailed shape of 

f at s ~ L; so it is hoped that_ Fokker-Planck solutions can be circum-

vented. 

To this end, notice that in the presence of slight scattering, 

f(s;v
11
,v

1
) is not mapped by V back onto rsrt of f(O;x,y) but onto some 

function g(O;x,y!s) which differs noticeably from f near the escape 

boundary. Those particles which have scattered into the loss region 

during their transit from 0 to s, are mapped by V _onto that J:art of 

midplane velocity space s,y outside the loss boundary. This defini-

tion of g is equivalent to defining x and y (for a particle at s) to 

be the values of vii and v 
1 

that _the J:B.rticle would have if it returned 

(under time reversal) to s = 0 without undoing the scattering. The 

definitions of x,y in terms of 1-1. and H are the same (m 2 
~XC: €11 = H·;,;·,J.LB-· 

0 

q¢0, 
m 2 

that. x,y is equivalent to H,J.L except for asym-2 Y =~== J.LBo, so 

metries in x), but now J.L,H are stochalstic functions whose expectation 

wlue ih general depends on s. But if scattering can be neglected ;in 

the low-qensity region II and at the singular points M(J.L) (in region I 

but near s = L), the dependence of g on s there is negligible. For 

this case we abbreviate g(O;x,y!s) = g(x,y). 

How does g(x,y) comJ:are with the exact, observable f(O;x,y)? 

Consider _a typical ion near the se:paratrix. starting from s ~ -L, 

-



where :tt must certainly be trapped in order to have vii > o, it wanders 

typically outside the se12ratrix during its transit to s = o, and con­

tinues to do so during transit to s ~ +L, where it is lost .. If the 

ion loss boundary in phase space is treated as a source of these ions, 

the width of the diffusing tail in velocity varies roughly as the 

square root of time, starting with the particles near s = -L, where 

the diffuse tail is freshly "scraped off" by loss cif ions that were 

previously outside the sep~.ratrix. Thus by symmetry, the spread of 

g(x,y) outside ~(y) is about ~ times the spread of f(O;x,y) outside 

x
1

(y). At the singular point, the loss-component particles are 

scraped off (see Fig. 7), i.e., not reflected< Since there are no 

returning particles for s > M, g(x,y) = 0 for x < -~(y). g is thus 

not symmetric in x, although f is. 

Another consequence of this "scrs.ping'off" at s = M(ll) is that 

the density for this given ll abruptly decreases at s = M(ll). Inte­

grating over ll to get the total density, we conclude that the ion 

density must fall off more rapidly than in the collisionless case for 

s ·just inside L, but it falls off to a. nonzero value at s = L. To 

preserve qua.sineutrality, the electron density must fall of similarly. 

Since electrons have no singular point inside s = L, this requires a 

drop in potential just inboard of the mirrors. This phenomenon is 

not dependent on any model assumptions except that scattering be zero 

at the singular point. (Particles near the sep~.ratrix spend long 

times near the singular point, as in the case of the inverted pendulum.) 

The diffusion just discussed could be stated as a. diffusion in ll 
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and the a.ction, J = md)vllds,, but the assumption of well-defined J in 

the canonical equations breaks down for the loss component p:~.rticles, 

and (j/d.J becomes somewhat undesirable at the sep~.ratrix, even when J 

is .redefined so as to change continuously across it. 

We use ordinary velocity space ·coordinates and velocity distribu-

tions because of their widespread usage and direct physical interpre-

tation. (For example, the physical significance of df(~,J)/~ at con­

stant J is not as o.bvious as that of df(v
11
,v

1
)/(Jv

1
.) In addition, we 

deal with nonsymmetric distributions in vii (e.g;, SF particles in 

region II) so that vii is more appropriate than Ell or H. 

Since ordinarily one avoids having sources in the loss region of 

phase space, we ignore their contribution to the external density. If 

such sources are present between s = 0 and s = L, they may be taken to 

be at -s instead of s, so that they are counted in the fictitious mid-

plane distribution g. Cold ions from charge exchange are in this 

class, but are treated separately in what follows. 

2. · Smallness of Spatial Diffusion Effects 

Spatial diffusion due to radial density gradients makes ollly a 

small contribution to the effective v and the amount, 6(x2 ) or 6(y2), 

which an ion diffuses in p:t.rallel or perpendicular energy in a transit 

•time. Because the step size for cross-field spatial diffusion is of 

order ai (the ion .gyroradius), the sp~.tial diffusion coefficient is of 

order v0ai2 while the velocity diffusion coefficient is v0ci
2 

The 

spatial contribution to the spread 6(x
2

) in velocity-squared near the 

loss boundary is then of order 
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. I 

( 
.. )1/2 ,.. (¢ - ¢L)l 

2 2Lv
0 

1 2 dR 2e d 0 6(x ) "' -:-T I y - +- ___ __;;;;... ai 
ell l dr mi dr J 

[and similarly for 6(y
2

) with an additional factor of (RL- 1)-1]. We 
I 

have simply used the equation for the approximate ion loss boundary in 

termsof RL and ¢0 - ¢L' which vary with "radius" (i.e., flux surface). 

The tactor involving v0
1/ 2 is just the normal velocity spreading in a 

transit time (see, for example, p3.rt '3 of Appendix B), and these cor-

rections are 

which RL and 

radius . 

thus of order a./r , where r is the scale length over 
l p p 

¢ change radially; typically r is of order of the plasma 
p 
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SYNOPSIS OF CHAPTER III 

The prffincipt.!l results of this study.of external plasma are given 

in this chapter, in the order: ions (A), electrons (B), and potential 

(c). We begin by showing that the conceptually simple model of having 

all the escaping ions come from the loss boundary in velocity space is 

inadequate because it gives infinite density near the mirror; instead, 

·ions must populate a finite fringe of the loss region. On p. 38, 
theorem 2 relates the density n(L) at s = L to the loss flux F(L) and 

the fringe width ("tail" width) 1/K of the distribution function. Then 

1/K is estimated from the collision rate. From this one has estimates 

of the density at s = L proportional to (loss rate/typical ion bounce' 

frequency) 3/ 4 
[see Eq. (18)]. Continuity and energy conservation then 

give the ion density at s }I L [ Eq. (2o)J in terms of the local magnetic 

field ratio R and the potentials ¢ and ¢L. The additional density 
s s 

contributed by charge exchange is given in Eq. (21), p. 41. 

The electron density at a point ~ in region II depends mainly on 

the potential energy U(s,IJ.) at s (locally), which involves R and¢ ~ 
- s s 

The density is given at s = L by Eq. (23) (see Figs. 12 and 13) and at 

the sheath edge near s = W by Eqs. (26) and (27). 

Equating ni(s) (a function of R and ¢ , etc.) with n (s) (a func-s s e 
tion of R and¢ , etc.) would of course give¢ as a function of R s s s s 
tete.). This is computed in Appendix F (see Fig. Fl, p. 177). The 

procedure gives fairly simple analytic estimates at s = L [ Eq. (31) if 

~ - I\i "' 1, or Eq. (32) if ~ - ~ << l J and at s = W- [ Eq. (36) or 

(37), P• 57). This latter is the magnitude of the potential fall across 

the sheath. Typical values are given on p. 58, and their scaling with 

v explicitly and through ~O is discussed on p. 6o. 
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III. RESULTS OF MODEL CALCULATIONS OF 

• EXTERNAL DENSITY AND POTENTIAL 

A. Ion Density outside the Mirrors 

1. Ions Near the Loss Boundary 
' 

As discussed in the preceding section, we seek to describe n~F(s) 
J. 

for s ~ Lby following the collisionless dynamics of a set of p3.rticles 

placed just outside the midplane loss boundary, adjusting this set to 

reproduce a specified loss flux. Since real diffusing ions are removed 

as they wander past the loss boundary, the simplest model would seem to 

be to place all the escaping ions exactly ~ the escape boundary. This, 

however, would lead to n~ ( s) having an infinity at s ~ L (which would 

physically be rounded off by diffusion due to fluctuations there). We 

demonstlrate this singularity as follows: Since at s = M(ll)-t:the poten-

tial energy is a maximum, particles on the escape boundary will have 

vii = 0 at s = M(ll); and at some s a short distance away, 

for all ll for which s = M(ll) is a smooth local maximum, i.e., 

2 2 
- ~ < d U/ds IM(Il) < O. 

Now ifg(x,y) = o(x- ~+)fy(y), where~+ is on or just outside the 

exact loss boundary ~(y), then 
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2 2' 2 
But ·~ (y) -, xs (y) is just vii at s. so with · 

h(y) [-
d~[s,~{y)J I jl/2 

ds2 IM[~{y~ 
2 

where ~(y) = my /2B0, we have 

L~ L~ r f 27Tydyf (y) .. 
, n(s)ds « y J 

j L-6 h(h) L-6 

ds 

The s integration on the right hand side diverges logarithmically. 

When 6 > /L - M(~) I for more than zero measure in ~(y) on which 

f (y) f 0, the double integral diverges as a consequence. Then since 
y 

there are an infinite number of particles between L 2 6 and L + 6, the 

density is infinite somewhere in this interval. 

Yet if small-angle scattering predominates, with only slight 

scattering during a single bounce period, then (x,y) for an escaping 

ion cannot be too far from x = ~(y). Physically, then, a small loss 

rate can produce fairly large densities near s = L as particles creep 

over the potential barrier,· creating a "traffic jam" there. 

Since the simplest model is inadequate, we take g(x,y) = g0(x,y) + 

g1 (x,y);, where g0 would be f(O;x,y) in the limit of zero transit time; 

g1 includes a "tail" for x > 0 and y "'yL(x) sufficient to give the 

observed loss flux. Only the width of the tail of g1 should be import­

ant, not the exact shape. 
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2. Relation Between Density and Loss Flux 

In Appendix B we prove 

Theorem 2: If.g(x,y) is zero outside the loss boundary y
1

(x) for x < 0 

and decays outside the loss boundary for x > 0, with a decay 

-1 2 -1 2( ) width K in y , and if K << y
1 

x for all x, then 

n(L) "'(~ - l)-l/2F(L)~/2 • (16) 

(For mathematical convenience we have written the loss boundary as 

y
1

(x) instead of x
1

(y): ttoutside the loss boundary" refers toy <;;y
1

(x).) 

In other words, in the dimensional equation F(L) = n(L)v, the velocity 

v is proportional to the square root of the decay width of g in 

velocity-squared. We see then why the model decay width must be non-

zero if the loss flux is nonzero. (The theorem is proved assuming K 

independent of y, but it holds even if K depends strongly on y.) 

( 2)-1 The height of gat the origin is crudely of order n0 cl/cl • 

If the height of g(x,y) at the loss boundary y = y
1

(x) is c(x), with 

00 1 r d(x2)C(x) "' . nO 2 -
.J0 cl/cl K 

then F(L) a: l/K
2 

and n(L)/n0 "' [F(L)/~cl/] 3/4 . This follows from the 

definitions of F(L) and g. 

j ... Distribution •rail Width and Diffusivity 

. Appendix B continues with a very rough estimate of K in terms of 

the velocity-space diffusivity, or, equivalently, the scattering rate. 
. ' 

It is found that indeed K-l oc v1/ 2 
a: F(L) l/2; in fact 
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(17) 

with D the bounce-averaged velocity diffusivity for ions near the loss 

- ( 2 2) . D "' ell + c 1 v0, where v0 is the effective scattering 
I 

boundary; 

rate (v0 = v
90 

defined in Eq. (14)'if Coulomb scattering is domindnt.) 

4. Ion Density at the Mirror and Beyond 

where 

Using this estimate of K in theorem 2, one has 

2 
ell 

p = -,_.---'·"-· --2 
c1 (!\ - 1) 

and 

(18) 

Those ions found near x = L are highly anisotropic, with almost 

all of their energy in gyration. This may lead to instabilities which 

modulate U(x,~), and especially near s = L these modulations, say of 

order eo¢ in amplitude, can affect K if they are large enough. The 

ions found near s = L spend long times there because they are near the 

loss boundary; consequently the loss boundary is effectively diffused 

to a width of order eo¢ in :r:arallel energy. (The same phenomenon makes 

the continuum limit of atomic physics indistinct.)40 Since K-l refers 

to the spread in y2 instead of x2, we replace Eq. (17) b,y 

if this larger than Eq. (17). Assuming this diffusion at s :::::~ L is 

equivalent to diffusion of thf: fictitious distribution g(x,y) at the 
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midplane, the density'n(L) is reduced by a factor of order 

when cyclotron diffusion dominates K. In fact, when both processes 

-1 . 
contribute, K should be just the sum of the two values given above. 

Equation (18) was derived to corroborate an earlier estimate 

based on anot};ler model for g(x,y) which falls off exponentially with 

2 2: 
y - yL instead of ir: - yLj.. This model is also included in Appendix 

B. Writing g(x,y) = g0(x,y) + g1(x,y), where g0 would be f 0 in the 

absence of scattering, we choose g1(x,y) so that g = g0 + g1 has con­

tinuous slope and gives the same density as g0 • (This last requirement 

is a somewhat artificial one which h~l!ps give an estimate of the decay 

width.) For g0 (x,y) we take a fUnction Maxwellian at large velocities 

inside the trapping region, but going to zvro at the loss boundary 

-1 The decay width k in y - yL is proportional to the typical decay 

width K-l in-:/ - yL~~:; and it is again found that approximately 

The result, 

(19) 

compares rather well with Eq. (18) in which one needs a model for v/v0 

as a function of TIJ/T1 amd 11.. (v is the loss rate; v0 is the scatter­

ipg rate. Their relatipn was discussed briefly in section IIA. 

il ill 
I 
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As one moves away from the mirror, this value of ni/n0 goes over 
I 

to 

- (20) 

as in Eq. (10), assuming vii = 0 at s = L. Equation (20) is improper at 

s = L, but it reaches the magnitude (19) fairly close to s = L (see 

Fig. 8). (When T.L = lOTH and Lv/cll = 0.4 x 10-3, equality occurs at 

e(¢L - ¢s)/TII :S 0.02.) The actual transition shape is calculated in 

the last part of Ap~ndix B and is shown in Fig. 9 for typical 

parameters. 

5· Effects of Charge Exchange 

Charge exchange contributes an additional density of cold ions 

(21) 

Because the charge-exchanged cold ions do not accumulate for long times 

nears= Las do the SF ions from smooth diffusion, nicx(L)/niSF(L) is 

small Un.til 

which is typically about 10. (Subscript "diff" rjfers to quantities in 

Eq. (19), i.e., smooth diffusion.) 

The estimation of n0H/n0 with a given source rate of cold (say 

charge-exchanged) ions is an interesting and apparently an unsolved 

problem. The density ncx _ n - nH, of cow-se, comes from ions produced 
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XBL697- ~271 

Fig. 8. Approximate density outside the main confinement region. 

Loss v = ion loss rate, P = anisotropy factor, T1 = mean 

perpendicular energy of escaping ions. 
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Fig. 9· Relative density vs R outside the mirror. Top curve: approximate formula [Eq. (20)] 

with <p neglected. Middle curve: approximate formula [Eq. (20)] with computer <p. 

Bottom curve: computer result. 
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almost-cold at and aronnd the top of a potential-hill (the plasma 

potential); thus n0cx can be rather large. The seJSration-of'-variables 

technique used by Chandrasekhar39 f'or a Fokker-Planck equation near a 

potential maximum fails when a nnifor.m source is present, and it is 

possible that a Boltzmann-type .collision integral is more appropriate 

for the scattering term when the ions are cold and can scatter off 

neutrals of the same temperature as well as cold and hot ions. A crude 

dimensional estimate 

t ex H "th ra e S = V n0 Wl 

ex of n
0 

may be 

ex/ no . TD' where 

made by equating the production 

TD is the time it takes a cold ex 

ion to scatter in energy an amonnt equal to its temperature Tc' or the 

time it takes a cold ex ion to drift out of the device without acceler-

ation, whichever is less. 

B. External Electron Density in Terms of the Potential 

1. "Damped Maxwellian" Distribution 

Since the electron loss bounar,y does not pass near the origin in 

x,y space, the electron "distribution" g(x,y) will be very nearly 

Maxwellian in most of the trapping region. It will then fall off near 

the loss boundary, to some small fraction ~ of its normal Maxwellian 

value~ at the bonndary, and will decay fairly quickly to zero outside 

the loss bonndary. We take g(x,y), for the electrons, to be a "damped 

Maxwellian": ·: 

g(x,y) = G(x,y)H(x,y), 

where G(x,y) is Maxwellian with temperatures Te// and Tel' and H(x,y) 

is nearly nnity well inside the containment region in x,y and zero 

well,inside the loss region,with a smooth transition in between. A 

I 
i 

~- l. 
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model for H(x,y) is given by Eq. (Cl), and g and H are pictured in 

Figs. 10 and 11. 

2. Density at the Mirror 
., 

In Appendix C we perform the integration in Eq. ( 5) to obtain the 
. I 

mirror density ne (L) as a functi~n of cpL = e¢L/Tell (and of cp0 = e¢0/Tell, 

and other p3.rameters). The result is found to be somewhat sensitive 

to the abruptness with which H(x,y) drops off, but some estimate of 

this is made in part 4 of Appendix c. The result is then extended for 

s > L out to s = W , using an approximation for Sup € , (s' < s), i.e., 
s - ' 

for the integration region. We summarize here the results of these 

calculations for the case of isotropic electrons (T II = T 1 = T ) • 
-cp cp e e e 

of ne(L)/n0 = e 0e L, which one would ge~ with a Max-Instead 

wellian g, we find 

( ST n L) ~ n (L) e e (22) 

. ~ -~ 
for s small and cpL > 2; (ne (L)/n0 < ;e ), and 

ST '"<po 
ne (L) /n0 = e EST( cpL,aL b, s) (23) 

cp . 
where the function EST(cp,a,b,s) (replacing e L) is given by Eq. (C5), 

and where s is the height of H(x,y) at the (approximate) loss boundary, 

x = x1 (y); aL = ~/(11,.,. ~) for isotropic electrons; and b + 1 = K' 

measures the abruptness with which H drops off for x < x1(y). 'Reason­

able values of b lie in the range 0 < b < 2. When b = 0, the_ profile - '~ 

of Hat constant y is a Maxwellian minus a constant, for x ~ x1(~). 

The fUnction EST(cp,a,b,;) is shown plotted against cp for several values 

of a,b in Figs. 12 and 13, which also show the pure Maxwellian result, 

' 
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t:l,l.f ·------1-

0.1 -------- -·--·-----t-------1r--

l--

0 OS J.O l.S"' 2,_0 2..5" 

Fig. 10. "Damping functionu H(x,y) (Eq. (C1) of Appendix C) for 

y = o, s = 0.1, ¢0 = 5Te' and K' = 2, 1, 1/2. 
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Fig. 11. Damped Maxwellian distribution function. Steep curves: 

ord1nary Maxwellian f(x, 0) (top).and same distnbution multi-

pi1ed by damping fUnction of Fig. 10 with K' : 1 (bottom curve) 

and K' : 2 (middle). Lbss boundary is at x/cl/ = ,.[5. All 3 

curves are almost indistinguishable at thermal velocities (inset). 



'· 

s..-:-

'f, I I I I /--/- I / I 

1~ h 

2,., I 

J. 

--
0.4 0.8 1.2 1.6 

Fig. ·u~-. EST(cp,a,b,~) defined in Eq_. (C5), vs cp, for~= 0.1, a= 2, and b = 0,, .. 0~5, 1.0 

(solid curves). Dashed curves: Eq_. (C7) (approximation to EST) for~= 0.1, a= 2, 
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Fig. 13. EST(cp,a,b,~) defined in Eq. (C5), vs cp, for ~ = 0.1, b = 0, and 
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• .. 

I 

+ 
\0 

I 



-5~-

e~, and an approximation to EST, 

good for a~ ~-3' b ~ 1, and 2~ < ~ < 1. For e¢1 or order Te' then, 

ne (L) is roughly proportional to ~/ (~ - Rw) = a
1 

+ 1, when· this 

parameter is not too large; and ne(L) is an increasing fUnction of ¢
1

, 

va~ing roughly as ~15/2 • These features are also reproduced by a 

simple dimensional model in part ;6 of Appendix c. 

3· Density Outside the .Mirror 
i 

For s > L 

n ST(s) -~0~ 
e ~ e <EST(~ ,a ,b, ~) . s s 

nR L 
. [ 1\i - exp - (~ -

L 
~- Rs 

/ ! 

- (cp - ~ ) L s 

where the last term constributes only slightly, and only for s fairly 

far from L. At the sheath edge, s = W , 

n ST(W) 
e -cp [ -a ( cp -¢ll_)] 0 L L 'W 

e 1- e EST(cpw,oo,b,~) (26) 

and an expression for EST(cp,oo,b,~) is given in Eq. (Cl4) which is of 

order 

3/2[ ] ~ 1 + o.4(l- b)cp + ••• 

1/2 when g << ~ << 1, or of order ~~ when cp ~ ~. 

• 

·' 

•' ! 
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For the SF electrons, which may be relatively more important at 

the wall 

JkcP; 0 
(27) 

Electrons produced at the wall or in region II are treated separately 

in Chapter r/. 

c. Estimate of the External Potential 

In this section we equate expressions for ni and ne(~) at s = L 

and at s = W- to estimate ~L and ~w· The detailed shape of ~(s) betwesn 

Land W- is not of great interest as long as ~(s) is monotonically de-

creasing, and the·complexity of the formulas leads us to avoid detailed 

calculation of ~(s). 

1. Potential at the Mirror 

When charge exchange is unimportant, we can su.bstitute Eq. (19) 

for n. (L) and Eq. (23) for n ST(L) into n. SF(L) = n (L) ~ n ST(L): 
~ e ~ e e 

where 

(28) 

~ is the mirror ratio, 

for the ion distribution, 

LV is the scattering parameter (transit time x loss rate), 

ci/1 for ions, discussed in section IIA 

, ~O = e~0/Te with ~O the midplane plasma pote~tial, 

~L = e~L/Te with ~L the potential at the mirrors, 
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B(W) 
a = --- = -----

L ' ~ - Rw B(L) - B(W) 

b = K' - 1 is a constant < 1, describing how the electron 

distribution falls off near the loss boundary 

(see Appendix C), 

~ < 1 is the height of the delectron distribution g, at 

the loss boundary, divided by the height of a 

Maxwellian there. Typically ~ << 1. 

From the _graphs of EST in Figs. 12 and 13 we can get a solution for 

<pL if 

(29) 

cpo 
The solution lies in the range 0.2 < <pL ~ 2. Typically cp0 - 5 (e -

2 · . I -4 · ) -2 ·2 
10 ) , LV cill ~ 10 (from section IIA , RL - 3, and 10 < P < 10 ; 

so that inequality (29) is satisfied (at least for Lvlcill ~ 2 x 10-3• 

I 
-3 . 

If LV c1 11. ~ 2 x 10 , the value of cpL may be larger than 2 and thuss 

off the scale of Figs. 12 and 13, but the Eq. (28) is still valid}. 

Since EST is a monotonically increasing function of cp, it follows 

that <pL is increased by increasing L, v, cp0,.RL' or cilllcil independ­

ently; however, one should note that v is actually a decreasing function 

of ~' as is P, and cp0 is an increasing function of ~· The case 

~ - 1 << 1 is treated in Appendix E. The dependence of cp
0 

on v is 

discussed later. 

In the range 0 < aL<pL < 3, 0 ~ b = K' - 1 ~ 1, and 2~ < cpL ~ 2, 

·where one has the approximation 

II 
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EST ~ 0.3 ~ K' 5/ 2 

~-1\T 

ignoring the ~ term in Eq. ~24) ·' : .... one can express Eq. (28) as 
I 

(3o) 

q>o <~ - Rw) 
e· 

o.4 ·L 0.3 I 

(P ,.Jl + P)
0

"
1

( ~ ~ • 
1 

(31) 

\Cill) 
K' 

Because K' "' 1 and because of the weak dependence on P, one may use as 

' ( -2 2) a rule of thuDiq, for reasonable mirror ratios 10 < P < 10 , 

when ~·- 1\T ~ 1\TcpL, Lv/ cill << 1, and vex < v •. For large ~' the func­

tion EST(q>,a,b,s) becomes independent of~; so for aL >> 1 and for 

-1 
b ~ 1, s << 1 and q>L in.the range aL << q>L ~ 2, one has from Eq. (Cl3) 

.. Using this in Eq. (28) gives 

(32) 

where again the P yl + P term has been dropped. This result applies 

When char. ge exchange is the dominant loss mechanism ( v · > 10
2

v) 
ex ~ ' 

we substitute Eq. (21) for n.cx(L) 
l 

n~cx(L) ~ n (L) ~ n ST(L) 
l · e e 

and Eqe (23) for n ST(L) into 
e 
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-cp 
to get cpL. When Lv/cil) << LVcx/ci/1 < s2

e 
0

, this equation may give 

cpL < s, in which case the approximation n SF (L) <«..n ST(L) fails, and . e e 

one must add the contribution of SF electrons (see Appendix c) •. A 

careful estimate of the decay width K for electrons in Eq. (Cl) must then be 

made, as cpL can·1depend fairly sensitively on it. This difficulty will 

arise again in estimating ~' which is typically << cpL. When 
cp 

(LVCX/ci/l)e O is in the range between s2 and 3, the approximation (30) 

is useful and gives 

(33) 

2. Potential Drop at the Sheath 

To estimate the sheath potential drop, ¢w, we again start with 

the case where charge exchange contributes negligibly ton. and.we 
•]. 

substitute Eq. (10) for ni(w-), and Eqs. (26) and (27) for neST(w-) 

and n SF(W-) into 
e 

(34) 

Ill 

... 

... 
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.-1 ' . . 
where k Te is the pJ.rallel temperature of the SF electrons striking 

the wall,and ~is the height of the electron distribution ge{x,y) at 

the loss boundary, divided by the height of a Maxwellian there. E;xcept 
. -cpa . .. : 

for a factor of e , the first term on the right hand side of this 
I 

equation is n ST{W-) and the second term is n SF(w-). EST(cp,oo,b,~) 
e · e 

is given by Eq. (Cl3) :in Appendix C; for ~ << cpw < 1, 

but for cpw « ~ << 1, 

2 1/2 
EST{~,m, b, ~) ~- ~~ • 

Vi 
Of course, EST(O,oo,b,~) = 0. By contrast, ne8F(CJlw,oo,k,~) {where 

-1 2 . 
k c is the decay width of the electron distribution g(x,y) outside e 

the loss boundary) is not zero at cpW = 0, and in fact decreases with 

k~ 2 lk 
e erfc ·l'k'CP ~ 1 - - (kcp.W) , ·. v 1\.'f'w . -fiT 

. ; . 1/2 
But this decrease is more than offset by the increase in EST (i~ ~cpW 

for cpw<< ~). For such small cpw, we neglect the cpw in the first "exp" 

factor of Eq. (33), since cpL is not usually so small; then the right 

hand side of Eq. · (33) becomes 
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[1 exp( _ ~~\JJ{~ !k-1/2 [1 + ~ (k~)1/2] + o(~3/2)} 
when k~W << 1, and the o(~w3/2 ) term is negligible wheri ~w << ~· 

~ 
We digress to mention that·; ~/k is proportional to (Lv/cill)e 

0
, 

. -~ 

because the electron loss flux, proportional to (~/k)e 0, must equal 

the ion loss flux, proportional to Lv/ci))" Equation (ClO) of Appendix 

C gives the constant of proportionality. Using (ClO) for /k in the 
' ~ 

-1 0 
above we find that for C!Jw << ~,k , ~(Lv/cill)e cancels out of Eq. 

(34), leaving ~W determined by 

1 + _.:_ (k~) 1/2[1 + o(cpj<l] 
,ji . l 

- {1Tk(me/mi) [ (~ - ~)(,.,toss /Te) + ( 'PL - ~)] J -1/2. ( 35) 

Here we have used aL = ~(RL - ~) and the fact that the ratio . 
· ... 

.. . -aL~L [ -1 -aL~Ll- l 
(l - e . ) l - (aL + l) e j is always nearly unity, both when 

aL~L ~ 2 (as in the usual mirror end region), and in the case of mag-

41 
netic expansion for direct conversion of ion loss energy, · where 

~ ~ 0 and thus aL ~ 0. The ~ dependence of the right hand side of 

Eq. (35) is almost always negligible; the cpw dependence on the left 

· hand side is obvJ.ous. Thus when the right ·hand side of Eq. (35) is of 

order unity, the value of cpW depends on the electron scattering 

(through k) and not explicitly on the ion loss rate v. (We shall see 

shortly that ~W depends on k and not v even when cpW ~ ~' because 

~0 -1 ) e cc v • 

' •· I 

i 

' i 
··l 

' 

... 
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However, the right hand side of Eq. (35) is usually much larger 

than unity because of the small mass ratio m /m .• Returning to Eq. - e 1 

(34) and keeping only the EST term on the right, approximating EST by 

~3/2 , we get 

cp. ~ w (36) 

(37) 

for the ~ ~ 0 case. (We have neglected ~L - cp.W compared with 

(~ - RwH'S:oss /Te) on the left side of Eq. (34) and made the appropri­
-aL~L 

ate expansion of 1 - e .) In each of Eqs. (36) and (37) the 1/3-

power coeffici~nt is of order unity,· and thus as a "rule-of-tht.unb", 

if this is much larger than ~· 

Typically, however, Cl\v"' ~ "'k-l (i.e. neither approximation is 

valid), and we have only an upper bound and an order of magnitude esti-

mate of cp.W' unless k and ~ are known well enough for a graphical 

solution of Eq. (34). 

When charge exchange in region I is the dominant source of ions 

in region II, we substitute Eq. (21) for n.cx(w-) in place of the 
J. 

left hand side of Eq. (34). Proceeding as before, we have 
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-1 . 
when ~ << k , ~' and 

when ~ >> ~' with the ~ replaced by ~~~L when Rw << 1. (~e have 

used ~W << ~L' ~0, and~<< RL in this case.) 

3· Typical Values 

To illustrate the calculations of this section, we present the 

following numerical estimates: For RL = 3, ~ = 2, ~O = e¢0/Te = 5, 1 

we show ~L and ~W for the two cases (1) and (2) discussed in section 

IIA: 

(1) n0 = 10
10 

cm-3, Te = 10 eV, Till = 100 eV, Ti -- 100 eV, which gives 

Lv/ci// = 3·3 x 10-
4 

from Coulomb scattering, and 

(2) n0 = 1013 cm-3, Te = 100 eV, Till = 1 keV, Ti = 10 keV, which 

I. 4 -4 gives LV c11/ = 0. x 10 from Coulomb scattering._ 

LV (1) (2) 

0.3 X 10-3 4 -4 0. X 10 

0.8 o.4 

< o.o6 

"I 
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The .sign "(-)"means that the figure is an upper bound and a good 

estimate to within about a factor of 2. In both cases (l) and (2) we 

have estimated ~ass from 

We have included the anisotropy factor (P~l + P)O.l in Eq. (31); 

it reduced the results by 25%. We have taken K' = 1 in Eq. (31). 

When~~~ (i.e., no magnetic field expansion in region II), 

¢W is increased to ¢L ~ ¢w, and ¢
1 

given by Eq. (32) is not' signifi­

cantly different from the value in the table, i.e., the value for 

~ - ~ ~ 1. When~~ 0 (complete magnetic field expansion, as in 

direct conversion
41), the calculated values of ¢Land ¢w for the 

parameters illustrated are not significantly different from the values 

in the table, although the calculations are not very good for this 

case (see Appendix c). In the table, ¢
1 

is overestimated and ¢w is 

probably underestimated. 

Charge exchange gives smaller values of ¢
1 

for given loss rate 

because, as pointed out in section IIA, the low-magnetic-moment ions 

created by charge exchange do not spend long times near the mirror as 

do ions of high magnetic moment, lost by gradual velocity-wandering. 

ex( ) ex/ n.sF(L) ( / )3/4 d Because ni L o: Lv cill while 
2 

o: Lv cill- , the ependence 

of cp
1

.on the appropriate small scattering parameter is slightly 

stronger in the case of charge-exchange loss. This makes ~L smaller 

· ex/ -4 by about a factor of 3 when charge exchange provides LV cill ~ 10 

I -4 
instead of Coulomb scattering with LV cill ~ 10 • The estimate for 

cpW is unchanged when v is replaced by vex. 
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4. Discussion of Results 

¢ -1 The value of W scales more or less with k , i.e., with the SF 

-1 electron p:~.rallel temperature k T , instead of with T , the midplane e e 

temperatureo This is true both when ~W < ~' k-l (where ~ « (k-l)p 

3/2 ~0 
with lJ between 1/2 and 1) and when~> ~ (where ~W « (Lv/cll)e « 

~k-1). 

The values of Lv/ci/1 due to Coulomb scattering are, of course, 
~0 

underestimates; but it is well to remember that e varies roughly as 

I . 17 
v0e v01 for constant mirror ratJ.o, where v0i and v0e are the cumu-

lative 90-degree scattering rates for ions and electrons respectively. 

(A more refined ca~culation1 gives ~/2e~0 « v0e/v0i.) Thus the 

quantity (Lv/cil/)e 0 appearing in the equations of this section is 

really sensitive only to changes in the electron scattering rate. If 

the electrons diffuse anomalously fast in velocity space because of 

turbulent fields, then the estimates for ~will be larger (instead of 

smaller as one might guess) because ~O will be larger. On the other 

hand, if the ions are lost anomalously fast, ~0 decreases but ~W does 

not. The picture is less clear with ~L' but from Eq. (31) and this 

argument, 

0.4 -0.1 
~L « ve vi ' 

so that ~L decreases when ions (only) are lost more rapidly (again, 

opposite to what one might guess) because ~O decreases. 

not change proportionally to ~Oo 

~Land~ do 

We have noted that the sheath potential ¢W scales more or less 

with the temperature of electrons near th~ wall, rather like the ordi­

nary sheath problem.· But care must be exercised in estimating the 

lrl 

... ', 

i 

! 
·' ' 
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resistance of this sheath. In the usual problem of plasma in a box 

without internal magnetic forces, t,he de sheath resistance is calcu-

lated as d(Fi - Fe)/d¢0 holding t:Pe distribution functions consta
1

nt. 

It is assumed that the Maxwell tail of the electron distribution ~s 
I 

always replenished. But in problems where unbound particles are 

quickly lost, the distribution function changes (on both collisional 

and transit time scales) when ¢0 changes, because the loss boundary 

depends on ¢
0

• (This vaguely resembles the problem of a probe which 

has absorbed nearly all the ions in the flux tube it intercepts.) 

Changes in ¢0 on a time scale slower than collision times cause 

changes in loss flux because the tail parameters depend on the location 

of the loss boundary. (This is just the problem of determining ¢0 .) 

such changes are inconsistent with equal steady-state loss fluxes. 

Changes in ¢0 on a time scale faster than collisions but slower than 

bounce times are rectifying: when the loss boundary eats into the dis-

tribution, the loss flux temporarily increases, more than it decreases 

if the loss boundary recedes to higher velocities. Such changes in ¢
0 

also produce changes in Fe proportional to d¢0/dt rather than ¢0 

itself; whenever ¢0 is decreasing to a new low. 

A fast, purely oscillatory perturbation on ¢0 simply moves the 

·. steady effective loss boundary for electrons inward to where it would 

be if ¢0 were replaced by ¢0 - o¢ (with o¢ the perturbation amplitude), 

and then causes ¢
0 

to readjust upward on a collisional time scale • 

Locali:z;ed oscillations in ¢ with wavelength "-II along B cannot· take 

place slower than the transit time "-ll/vell of the fastest electrons 

(i.e., parallel phase'velocities cannot be less than either the local 
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electron thermal speed or the local electron excape velocity) because 

such disturbances would create significant local space charge. Thus 

·one cannot discuss low frequency (Im/21rce/l <.1) local changes in ¢w 

and assume ¢0 constant. Damping of low-frequency electrostatic waves 

with kll :f 0 always involves particle loss to the end walls. 

The calculations in this section clearly show that the steady-

state ~ ordinarily continues to decrease with s in region II, in con-

tradiction to the common statement that d¢/dB is proportional to the 

local difference in anisotropies of ions and electrons (see Appendix 

D). The reason for the discrepancy lies in the vacancy of part of 

phase space (the dashed orbits in Fig. 7), which, because of subtleties 

discussed in Appendix D, complicates the usual relation between d¢/ds 

and dB/ds·. 

i 
! 

• i 
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SYNOPSIS OF CHAPI'ER IV 

Up to this point the discussion has been of ions and electrons 

born inside the p~asma and appearing out past the mirrors. In this 

chapter we discuss the influence of electrons which may be born in 
r .. . . . I 

. region II; between the mirror and end wall, or at the.:JI.]_ (either !wall 

cathode or secondary emission). Ions born here cannot penetrate the 

plasma potential and are returned to the wall, but electrons are 

accelerated into the confinement region. (How many of these electrons 

become trapped .in region I is a delicate matter involving their energy 

loss, as discussed in part 7 of Section IVA.) Their contribution to 

unlalanci~the source input fluxes of electrons and ions, together with 

the change in energy loss fluxes of each species, causes the plasma 

potential to change [see Eq. (54),. p. 73 J . If almost all externaly 

born electrons ("x"-electrons) are trapped, the change ~::,¢0 i~ of order 

T times the ratio of external~source flux F to internal-source flux 
e x 

F. These matters are discussed in Section IVA. 

The possibility of two-stream instability caused by the x-electrons 

is discussed in Section IVB. After pointing out that the stability 

criteria are not the same as in the ordinary case (because parallel 

velocities are swept out of resonance by the magnetic forces), we dis­

cuss what the nonlinear-steady-state distribution f (x,y) might look e 
like with the x-electrons somewhat diffused in energy by wave-particle 

interactions (Fig. 16, p. 91; Fig. 17, p. 95). It is assumed that the 

waves are primarily space-charge waves carried with the "beam" of 

x-electrons. (This beam is injected 'rcold" but is quickly flattened 

to a "quasi-plateau" on the electron distribution.) An j,mportant fact 

is that the source is not cut off and the distribution function is not 

allowed to relax. The quasi-plat~au in midplane velocity space results 

only because the interactions are strong. 
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IV. EFFECTS OF EXTERNAL SOURCES 

In this chapter we consider the small change in the steady state 

of an imperfectly confined plasma when "additional" plasma is slowly 

introduced into the equilibrated system by an external source (such as 

emission of secondaries from end walls of the chamber, or a weak elec­

tron beam running through the plasma along magnetic field lines). 

A. Effect of External Sources on Confinement: Stable Case 

1. Definition of the :problem 

The first question facing such an analysis is whether the stream­

ing of the externally supplied electrons (which are supplied near one 

edge of a potential well) causes additional instability (loss-cone 

modes may already be present). An intense beam or even a cold source 

at the end walls would produce a bump in the tail of the electron dis­

tribution and would excite two-stream modes. The analysis of this 

unstable, inhomogeneous system would be difficult; a qualitative dis­

cussion is presented in the next section. Here we consider only the 

case in which the total energy in waves due to such interactions is 

small compared with nSF e¢w-- i.e., the case of a very weak beam- -and we 

take tw.o equal counterstreaming components for synnnetry. We also 

assume that the spectrum of any preexisting instability is not changed 

by the new electron stream, and that the ion distribution is not altered 

b,y the new waves • 

For simplicity, let us assume that the primary (internal).source 

that sustains the plasma is unaffected by the new weak electron input 

from the ends. (There is no input of ions at the ends; they are all 

repelled by the plasma potential.) we·will neglect any changes in the 
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energy loss by radiation, and any changes in the particle loss by dif-

fusion across the magnetic field. 

2. Particle and Energy Balance 

We specialize for now (until part 8 of this section) to thecase 

where the additional electron input is from the end walls. The input 

flux of electrons supplied externally from the ends is just IF I, the 
X 

2 .. • 
emission rate at the wall, in electrons/em sec. (The absolute value 

is used here only because outgoing flux is usually taken as positive. 

We will consider F as a positive quantity in what follows.) Sinc.e 
X 

there is already an effective input flux F of electrons which just 

'equals the loss flux, this additional input flux IF I must give rise 
X 

to an additional loss flux, .6F == IFxl' in order that a new steady state 

results. 

And what is true of particle fluxes is also true of energy fluxes, 

if both ions and electrons are taken into account: in the resulting 

new steady state energy cannot be accumulating or draining, so the net 

energy loss flux must be unchanged. 

\ 

6 1. + 6 'if ~ IF I TW' 
l e · x 

where the energy flux 

:f- ~ ~ J xdx ydy g(x,yHx
2 

+ y
2

) 

SF 

(38) 

(39) 

for each species, and where TW is the input temperature of the vall­

born electrons from the external source ('tx" electrons). Here 6 indi-

cates the change due to addition of the "x" electrons, and if their 

II 

~ ' 
' 
' 
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input temperature is negligible, as we will assume, the right hand 

side of Eq_• (38) is zero. The original energy loss rate comes from 

ions leaving with energy E + e¢0 at the wail (E at the midplane), and 

electrons leaving in equal numbers (if the sources are pairs), with 

energy E - e¢0 at the wall. The E 's refer to midplane kinetic energy 

(II + 1). If we use a bar and superscript SF to indicate an average 

over only the loss region appropriate to the given species, so that 

-sF is the average midplane energy of a particle that is leaving the 
E 

system, we may write 

7. ~ F (€.sF- e¢ ) 
e e 1. 0 

where F
1 

and Fe are the ion and electron loss fluxes measured at the 

wall. Equation (38) thus becomes 

where we have neglected FxTW as second order in 6o Since the externally 

supplied electrons are assumed not to affect the internal source of· 

ions balancing F. we must have 6F. = 0. We also assume tSI.. << X for 
l }. 

ll t ·t· X ~ -SF F . . E (40) ' a quan 1. J.es = e)U0, E , , appearu1g ln q. , 2.e., we assume 

Fx is sufficiently small that the macroscopic properties of the new 

steady state are not greatly different from those in the absence of Fx· 

Two more-or-less compensating errors in the earlier discussion 

of this problem
42 

should now be pointed out. Equation (40) may be 

expanded so that it has the form 
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First,' the e¢0 term was missing ( cf Eq_. (11) of that report). Second 

-SF ¢ it was stated that Ee :::::: e 
0

, i.e~, the midplane energy of the escap-

ing electrons was taken to be just the electrostatic barrier height. 

This is not generally true, because the electrons carry out their per-

pendicular energy (unless they have none when they are lost). Using 

the model electron distribution given by Eq. (Cl) in Appendix c, we 

now ~how that for an isotropic damped Maxwellain, €eSF - e¢0 ~ Te· 

3. Evaluation of Mean Electron Loss Energy 

The height of the distribution g(x,y) at the loss boundary 

2 2 2 I 2 -y /c -x1 (y) c 
= ~e e e e 

where x
1 

(y). Eq_. (CJL) of Appendix C has been approximated by 

2 ' 2 
x1 = (Rw - l)y +2e~r/'F; for all y, not just y < y0 . (The difference 

occurs in a lightly populated part of velocity space.) Since the SF 

distribution comes mostly from a narrow strip of constant width in x2 

just outside x
1

2, the properties of the SF distribution are those of 

-SF ¢ C(y). The quantity Ee - e 0 is then 

so 

~J C(y)[ y
2 

+ x1
2

(y) - 2e¢0 /m] 217YdY 

J C(y )217Ydy ' 

2 
- SF me 
E - e¢ ~ _e_ 

e 0 .2 

I' 

-u, 
~ udu 

me e 
2 

---:---- = -- ' 

Iro e -udu 

0 

2 ! 

• 

• i 
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where u = 11,;i /ce 
2

• Thus 

-SF 
E - e"' lO::l ~ • · e · · 'fJo e (41) 

4. Separation into Beam and Plasma Electrons 

We proceed on the basis of several new assumptions: 

(a) Electrons born at the wall have a distribution f in the mid­x 

plane velocity space, and are treated as distinguishable from electrons 

from the primary internal plasma source. The latter have a distribu-

tion f • Exchange of electrons between f and f is not allowed, but p p X 

energy excharige does occur. The total electron distribution is 

f = f + f , with density n = n + n • Likewise for the altered e p x e p x 

distribution g defined in Section IIB: g = g + g • Densities will e e p x 

refer to midplane values. 

(b) Since the external source flux F is small compared with the 
X 

internal electron source flux F , it is physically reasonable to assume 
p 

that the plasma still contains mainly p-electrons in the new steady 

state, i.e., n << n • 
X p 

Since n cannot increase with time. in the new 
p 

steady state, this forces us to assume n is constant. In the new p 

steady state, the loss rate v of a p-electron is time-invariant, and 
p 

the loss flux F = n LV is still equal to the internal p-electron p p p 

input flux ( which is equal to the ion input flux). This means .6F = 0, 
p 

where !J. indicates the change from the old steaqystate (with F =·0) to . X . 

the new steady state (with F > 0). Since n = n + n is time~invari-x p X 

ant, so is n , and thus all the x-electrons going into f are coming 
X X 

out. So the loss flux F is equal to the input flux IF I from the 
X- X 

'•! 
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wall: ~x = Fx· Fx is first order in~. 

{c) Ions and electrons of p-source origin are born with average 

midplane kinetic energies €i, €e which are independent of ¢0 {as in 

the case of Lorentz ionization). We have already tacitly assumed 

this by not including changes in the energy source rates in Eq. (38). 

(d) The result € SF - e¢
0 
~ T just derived applies to the 

e e 

essentially isotropic p-distribution: -SF r1. 
E - ey;o ""' T • p p 

Thus the mean 

energy carried out upon loss of a p-electron is T , and 5- = F T • p p p p 

* Similarly we will define T as the mean energy carried out upon loss 

* of an x-electron: ~ = F T • 
X X 

* In general T < Txl because the loss 

process is biased toward lo-sing newly-injected cold x-electrons rather 

than thermalized x-electrons. 

{e) Because the x-electrons are injected near the phase-space 

loss boundary, their typical loss ~te vx {including transit time) will 

not be less than v , and in general v > v • If pitch-angle scatter-
p X- p 

ing predominates, the x-electrons will be scattered into the trapping 

region {because of its shape and the fact that x-electrons are injected 

with the minimum escape energy, i.e., Ell = e¢0). In this case vx "'vp. 

But if energy spreading can increase the energy of any significant 

fraction of x-electrons at a rate comparable to that for angle-scatter-

ing, then v >> v • 
X p 

(f) The x-electrons are injected cold; so when v is of the order 
X 

* * of the reciprocal transit time, T is some rather small value (T << W ), 
p 

and Txll is of order e¢0 • ~&1:1fx is sharply peaked at Ell = e¢0, E 1 .. 0. 

However, f may still have a hump of thermalized electrons centered at 
X 

X = 0, y = 0. 

Ill 

This hump should have an effecttve temperature ~ T , 
p 
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reflecting the fact that these electrons were thermalized before they 

were lost, and thus their loss time is of order v << v • 
p X 

(g) The p-electron loss rate vp is a function of n, ¢0, and Tp. 

The distribution f remains essentially isotropic, so 
p 

(h) .· The ion loss rate vi is essentially independent of the elec­

tron distribution, and depends only very weakly.on ¢0 • Since 

.6"1!'. = 0 (F. equals the unaltered ion source flux), F. = Ln.v. then 
1 1 1 ~1 1 

implies· n is constant: 611 ~ 0. Also note that ni = n = np + nx and 

nx = Fx/Lvx together imply 

Lm =Lm­p 

(Waiving of this assumption is discussed below.) 

( i) · The energy carried out by ions is 'J-i = F i (€/F + e¢0), where 

€i SF depends very weakly on ¢0 through ¢
0 

-: ¢L (discussed below), and 
J 

is also essentially independent of the electron distribution. This 

allows us to set &.SF~ o. . . 1 

To see the physical significance of condition (~), observe first 

that €iSF depends on ¢
0 

only through ¢0 ~ ¢L' since only ¢0 - ¢L 

occurs in the expression for the ion loss boundary. If, for example, 

all the potential change~ occurs in region II, i.e., if the potential 

shape between s = L and s = -L is not changed, then condition (~) is 

satisfied. It is also satisfied to a good approximation -if the ion 

loss comes almost entirely from pitch-angle scattering: ions wander 
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out along the lines €11 + €1 = constant, and each element of density on 

the old loss boundary transforms to one with the same total energy on 

the altered loss boundary, except for the very small region near the 

minimum ion trapping energy. 

5· Results 

We summarize assumptions (a) through (i) as follows: 

6F ::: &. = 0 
p l 

Fi = Lvini = Lvin 

F = LV n p pp 

F =LV n 
X XX 

rm +· n = n 
r·p :~·x 

. if i = F i (€i SF + e¢0) 

f = F T p p p 

* 1 = F T 
X X 

vp = vp(n, ¢0 , TP) 

6F =F 
X X 

vi independent of ¢0 , Te .:. Lm ~ 0 

-SF -SF 
Ei depends only on Ti .: • .6Ei <:;; o. 

These assumptions allow a solution for 6¢0 and 6Tp. To express 6Tel 

and 6T 
e 

in terms of 6T , we proceed from the definitions 
p 

J.lrEd3v 

n 
p 

= T . 1 pi 
1. 

n + n p X 

n ) n X X 
-- + T -xi n n 

n 
X 

to first order in n /n . X 

because Tpl ~ TPII ~ Tp 

"'.! 

! 
i ' 
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n 
X (T · - T ) so 6T = 6T +-el p xl e n 

(42) 

since T = T to zero or<lftf. Likewise, e p 

n 
6Tell = D.T 

X 
(Txll T ). +- -·p e n 

(1+3) 

With assumptions (a) through (i), the· equations for conservation of 

particle flux and energy flux 

np. 6vp + v 6n = tiF = 0 p p p 

and A 7f . + D. f + 6 f = 0, 
1 p X 

becomes 

and * eN/J0 + 6T + T F /F "'"' 0. p X 

Then, from n + n = n and 6n"'"' 0, 
p X 

6n "'"'­p 

v F 
p X n--. 

v F 
X 

These equations give 

and [ 
* ~ .. \ 

6T F V T T ov J'~ .~"'"'r~ .....R+.~- ~_E._ ., 
T F c.· v .. 'T v den<O · e 1-:x · e p 'f' 

(44) 

(45) 

(46) 

(47) 

(48) 
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where (49) 

The square brackets in Eqs. (47) and (49) are positive since v in-
p 

creases with TP and decreas~s with ¢0 • Using Eqs. (42) and (43) then 

one has 

mel F [ T* I T 0v i 
vp ( <:1 )] x e p : -- ~-

;- r Te l- v P e¢0 I -~ 1-r 
T e X . . 

... 

(50) 

[ * )] 
mell ___ F T Te dvp \. vp Txll 

and X 

r Te (- vP Oe¢o ~- vx (Te ~ 1 - r , T F e 

(51) 

At this point let us introduce a model for vp(¢, n; T~: 

-e¢0/T 
vp a: n¢

0
-re P (52), 

where r is a dimensionless constant of order unity. When r = 3/2,this 

is just the model used by BenDaniel. 1 In the model of Appendix c, 

a ln (~/k) 
r = - a ln cp

0 

so that r measures the sensitivity of the electron distribution tail 

shape to changes in the escape energy e¢0 . (Features of the velocity 

. . 43 
distribution near the loss boundary cutoff.are discussed by deBoer 

for hard sphere collisions; the Coulomb case is mentioned.) 

With the model (52) for vp, Eqs. (47) through (51) become 

--,:::,: 

T e 

II 

[ *] F v T 
- r~ -R+cp --

F v 
0 

T x e 

(53) 
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\ *] . l T 
1+:_)-. 

Cl>o/ Te 

(54) 

(r < 1) (55) 

F r( 
~·ll-~ 
F \ 

' ) * ..... Txl v . I -y T · p ' . 
-)- + ll +- - i 
T V '\ q> T 1 

e x 0 e J 
(56) 

(57) 

It is obvious. that when the x-electrons are not assimilated, i.e., 

* when vx >> vp and T << Te' all the quantities t::£¢0/Te' tir/Te are 

much smaller than F /F. In the opposite limit, when the x-electrons 
X 

are isotropized and assimilated into the ordinary p-electron distribu-

tion shape, v :::::: v ; and since the energy loss fltix comes from a 
X p 

thermalized bump of density n
1 

(n
1 
~ nx) with loss rate vp and not from 

the nonthermalized spike of essentially zero perpendicular energy, one 

has 

* T n1 vp 
-""--· 
Te nx vx 

where n1 ""' nx in the limit of good thermalization. (We have used 

F = n v .) In this case then 
X X X 

F 
X 

:F 
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b.T yr F F 
- J "'- 2 << 2 

Tp cp0 F J;"F 

LYr 1 rr F F 
__ e_ "' _ 2 << 2 
~~ cp

0 
F F . e 

X X rrJ F F 
- cpo ;- << ;-· 

Thus the temperature changes are small in either case, but the plasma 

potential changes noticeably if the electrons from the wall are ran-

domized in velocity, i.e., well trapped by the plasma. 

6. Discussion 

Let v /v =a. p X 
When a<< 1, the quantities let:i/J0/Tel and 

I eb.Tj./Te I for j = p, e 1, ell are small, of ordera, comptred with 

F /F. Most of the electrons from the walls return to the walls within 
X 

a few transit times and their distribution has a sharp peak at 

x
2 = 2e-6/m, y ~ 0. Because this is at the loss boundary, the dis­

tribution of SF electrons (those escaping) has the same sharply peaked 

shape in y, superimposed on a broader gaussian in y representing the 

p-electrons and those x-electrons which have been trapped. The SF 

electrons in the sharp peak do not carry appreciable energy out of 

the plasma. They entered with none, and leave with none. The plasma 

potential ¢0 need not decrease much to bring the total electron loss 

flux up to F + F , the new total input flux, because this is done by 
X 

the change in the shape of the distribution f + f • 
p X 

In the opposite limit, a ~ 1, electrons from the wall have a dis-



-75-

tribution with more or less the same shape as the ordinary plasma 

electrons; because they are effectively thermalized and trapped. There 

may be a small peak in their distribution as described above, but this 

is swamped by the larger, nearly isotropic, nearly Maxwellian hump. 

These electrons entered with no €
1

• They gain energy from the plasma 

through scattering and enhance the perpendicular energy loss when they 

are lost; this means the ions must carry out less energy, and ¢0 must 

drop (t:JP < 0) to accomplish this. 

In either of these cases, Eqs. (38) and (40) give 
' 

~SF+ ~-SF= _ T F /F. 
i e e x (58) 

In general, escaping electrons and ions have exchanged energy via col-

lisions and via the plasma potential. 
-SF -SF . 
€ + € • must equal e J. 

When F. = F , the sum 
J. e 

the sum of the source energies. But when the 

wall emits electrons as an.additional source_. in excess of the iom 

source strength, the loss rates are correspondingly unequal, so that 

Eq. (58) holds (assuming electrons born cold at the wall). This de­

coupling of the ion and electron throughput rates is similar to that 

discussed in Ref. 19. 

When assumption (h) fails, i.e., when the ion loss rate v. changes 
]_ 

(due to either the change in the ion loss boundary with ¢0 - ¢L' or 

the change in the electron distribution) one has 

Eqs. (47) and (53) then have on their right-hand sides the additional 

term +r~/n, and one can write 

-~/n =6.v/vi . 

. Also, if &.sF is not neglected, the right-hand sides of Eqs. (47) 
]_ 
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and (53) have yet another extra term: 

I I - SF/ and the equations for &elf Te and &el Te have an extra term -6e:i Te 

on the right-hand sides. 

* In all the results of this section, the values of v and T have 
X 

been left as arbitrary parameters, discussed only in limiting cases. 

The actual values depend on the details of the scattering mechanism. 

Even once a mechanism is assumed (say Coulomb scattering without non-

thermal waves or neutrals) the values must be found by computer solu-

tion of the appropriate Fokker-Plance equation (although it appears 

that the linearized F-P equation for f may be used instead of the 
X 

full F-P equation for f +f). Such a computation bas not been done 
p X 

as part of this study, but represents an interesting, well-defined 

area for further exploration. The resultant electron Uistribution f 
X 

should look qualitatively as in Fig. 14. 

7. Fraction of x-Electrons Trapped for Longer than One Transit 

A lower bound on the fraction of "x" electrons trapped for more 

than one transit comes from the energy and angle diffusion of test 

electrons in a thermal plasma. (This gives a lower bound because if 

the electron distribution decays rapidly outside the loss boundary, 

scattering of a test electron upward in energy is less probable than 

for a~rmal distribution of background electrons.) For e¢0 ~ 4Te and 

c ~ lOc. the ions contribute negligibly, and the expectation value of 
e 1 

the energy loss of an electron with kinetic energy Ell after ~ssing a 

distance L though a thermal plasma of density n and Debye length ~ 

I I 
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Fig. 14. 

X 
Contours of hypothetical midplane velocity distribution, f ~ 

X· 

of elec~rons born cold at the end-walls. Also shown: electron 

loss boundary. 
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1 iT )l/2L e -1 
-v- (- . -A (1 

2 \Ell ;>..D 

1 
+ 2 ln 3· 5A), (59) 

where A= 47r~3 • When this is small, the increase in the parallel 
I 

energy spread of f is 
X 

r 

(60) 

! see Eqs. (5-15) and (5-16) of Ref. 16 •. Limitations of the estimate 
'I 

are discussed there.! Thus the spreading due to diffusion is much 
.) 

larger than the slowing due to dynamic fn,ction when these are related 

in the usual collisional way. (With nonthermal waves present the rela-

tion may change, and diffusion may be strongly velocity-dependent near 

the veloci ty;...space boundary of the wave spectrum.) The mean square 

angle 

1n A. 

For n ~ n
0 

= 1010 cm-3 and Te = 10 eV, or for n
9 

= 1013 cm-3 and 

Te = 100 eV, one has ~3 ~ 1.2 x 105 so that 

<II 

(61) 
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For a one-meter traversal, - 5€/T "' 3 x 10-3 in n = 1010 at 10 eV, . e 

and - oe/T "'0.03 in n = 1013 at 100 ev. In the latter. case, e 

(oe)rmss"' 7 deg. 

But the sensitive dependence on Te (oe/ell ex: Te-2) means that for 

13 . 
n = 10 and T = 10 eV, oe/T "' 3 and (oe) "' ~/2, so that the e e rms 

minimum (collisional) scattering is not always small. 

If dynamic friction is small, diffusive spreading causes somewhat 

less than half of the flux F to be scattered into the loss region 
X 

(see Fig. 14) in a transit time. Thus the trapping fraction is larger 

than 1/2. The actual value can be determined only from computer cal-

culation with a model for the scattering process. Finite temperature 

TW ofthe x-electron source reduces this trapping fraction (by creat­

ing more electrons above the escape energy), and larger ~ - 1 increases· 

the trapping fraction (by magnetically trapping electrons that have 

diffused in pitch angle). 

8. Distributed External Source 

The effective temperature of the x-electrons (and thus their 

stability) can be greatly increased if they are produced in region II 

by, for example, photoionization,instead of at the wall. Then theY, 

populate the segment between e(¢0 - ¢
1

)t..and e(¢0 - ¢w) in midplane 

energy space along the €1/ axis. Their T
1 

is still small, but spreading 

of their parallel energy at any spatial point implies a much smaller 

peak height. For this case, also, all the x-electrons are trapped, 

since the external source is in the trapping region ~ther than just 

outside the loss boundary. The only practical difference in flux 
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balance conditions is that cold ions are also produced by the 11 X11 

source, and are accelerated out by the electric field. Thus the 

measured ion flux at the wall is once again equal to the electron flux 

(assuming equal internal sources). Thus there is a 6F. and 
l 

F6E.sF 
l 

where.F now must be measured inboard of the x-source, say at s = L, 
X 

and where (e¢)II is a source-weighted average over region rr. (The new 

ld . f th II II t . l d d h l l . t . - SF co 1ons rom e x source are no 1nc u e w en ca cu a 1ng Ei , 

since they do not pass through the midplane.) To maintain steady state 

without a change in the primary internal source, one must have 

& (L) = F (L), 
e x 

or &e(W) = (~/RL)Fx(L). 

The flux of x-ions coming out at s = W is the same, except for the 

flux-tube area factor ~/RL' as the flux of new ~-electrons going into 

region I at s = L. Writing F = (R_/RL)F (L) and 6F = 6F (W) as before, · x -w x e e 

Eq. (45) is modified to read 

(62) 

( · -SF again neglecting 6E
1 

) • · This is the same as Eq. (45), but with T* 

. * 
replaced by T_ + (e¢)rr· Thus the eq.uations for t::£¢0 , 6Tp' .6.Tel' 6Tell 

are the same as Eqs. (47) through (51) [or (53) through (57)] with the 

* * exception that T is replaced by T + (e¢)rr· The physical significance 

of the (e¢)II contribution is that not only do the x-electrons gain 

energy from the plasma by scattering and then lose it to the walls, but 

I II 

-· 
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also x-ions born in region II transfer energy to the walls immediately 

when they are accelerated out. Thus the external source heats the end-

walls at the expense of reducing ¢0, and this occurs even more.when 

electron-ion pairs are born at nonzero ¢(s) in region II than when they 

are born at the wall, where¢= 0. 

Incidentally, we note that this analysis is also true for a cold 

source placed in region I also, since the location of the source with 

respect to the mirror was not essential to the argument given. For a 

localized cold source (e¢)II is replaced by e¢ at the source, wherever 

it is situated. The case of emission from the wall is now seen to be 

a special case of this more general result, as long as the stability is 

not altered. 

B. Two-Stream Instabi!li.lty Resulting from External Electron Source 

1. Nature of the Problem 

In this section we consider ~ualitatively the results of unstable 

interaction between electrons emitted by the walls and the plasma in 

regions I and II. Analyses of an electron beam entering a uniform, 

bounded plasma.46,47 have predicted instability most violent rather near 

the plasma boundary, and this is in agreement with observations. 48,49 

The same situation is expected when electrons produced at the end-walls 

of a mirror device interact with the tenuous ST electron component in 

region II. 

Of course, the full ~roblem of steady-state wave amplitudes in 

this inhomogeneous plasma-beam system (with particle source and loss) 

has not been solved. To do so would re~uire taking into account: 
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(a) 

(b) 

emission and absorption of waves at different points, 

regenerative effects50 ·~where ill= ~~L for some large -·oounce 

integer N) which can alter the usual Landau damping, 

(c) finite-length effects on the wavenumber spectrum, 

(d) nonlinear mode-coupling, e.g., between plasma waves and cyclo-

. 51 52 tron waves or low frequency beam waves, · 

(e) the nonresonant part of the diffusion tensor (which allegedly 

heats the main distribution of electrons)~3 

(f) depletion of the distribution by the loss process, 

(g) · boundary conditions on waves at the sheath, 

(h) failure of the WKJ3 approximation at the turning points of 

particles resonant with a given wave, and 

(i) beam bunching and coherence effects
47 due to trapping in 

finite amplitude waves. 

Recent work by Kaufman and Nakayama54 includes several of these 

effects (a, b, c), and gives the formal equations for a one-dimensio~al 

problem, although applying them to a case like the present one is quite 

difficult. Portions of topics (a) and (d) are treated by Kopecky and 

Preinhaelter, 51 but their results do not apply where ill <<ill every-
pe ce 

where in the system. In this case there is no coupling to electron 

cyclotron oscillations·. 55 Since ill
2 

_ 
pe 

typical ill
2 (B = 10 kG) would be 3.4 x ce 

3 x 109 n (c.g.s.), while a 

1022 
' 

it follows that ill
2 

/ill
2 

pe ce 

is small everywhere in the device unless n/B2 > 105 cm-3 G-2, e.g. 

13 -3 I n > 10 em and or B < 10 kG. Since densities in region II are 

expected to be much smaller than the central density n
0

, certainly the 

end region can be regarded as "highly magnetized," so that diffusion 

lj 

- ' 
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characteristics in the resonant region of local velocity sp:~.ce will be 

lines of constant v1 •55 In other words, 1..1. is approximately conserved 

by the instability. Even if electrostatic waves propagate at an angle 

-to B there is no significant quasilinear diffusion in v1 except due to 

gyroresonance at uninterestingly large velocities • 

. 2. The Unstable Waves 

A representative dispersion relation k(w) for a (homogeneous plasma 

with a weak bump in the tail off is given in Fig. 15. 56, 49 This weak­
e 

beam situation probably describes fairly well the quasi-plateau state a 

moderate distance away from the·introduction of a nearly mono-energetic 

beam. We will assume that, at low densities as here, the cyclotron 

wave interactions are weak compa.'red with the interaction (circled in 

Fig. 15) between plasma waves 

Re ~ (p) ~ w [1 + 2 (kA )2 + ···] 
.K p 2 D for ~ << 1 (63) 

and beam space-charge waves (doppler shifted) 52 

R (b) k . ( ac/ ST)l/2R [lk2 2/· 2 11 -1/2] e ~ ~ v0 ± n n e v0 wp - (64) 

where nx is the density of beam electrons. If the wavelengths of inter-

est are short compared with other spatial gradient lengths, a wave 

. excited at s = s
1 

will propagate to s
2 

with en constant, and k given by 

,.;·:· ().,, 
the local (WKB) dispersion relation~ t63):r:or (64~.,-.witb'xw:· ~::# & Cs) and ':' .,p . . p 

The beam waves have w/k ~ v
0 

and thus their wavelength increases as they 

'Ji 
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plasma 
wave 

slow 
cyclotron wave 

slow 
sp:~.ce charge 

wave 

cyclotron 
wave 

fast 

cyclotron 

Fig. 15. Dispersion relation for plasma and weak beam (6v/v0 ~ o.6~). 
Modes shown as intersecting inside Clrcle have differing Im m. 

m~ID plasma wave p 

m~m cyclotron wave c 

m~ kv0+ fast sp:~.ce charge wave on beam 

ill""' kv
0

_ slow sp:~.ce charge wave on beam 

m""' me + kv0 fast cyclotron wave on beam 

m""' -me + kv0 slow cyclotron wave on beam 
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proJ:agate into region r. The plasma wave cannot go far toward s = 0 

because the local plasma fre~uency increases with decreasing s, and the 

wave is soon attenuated by mp(s) > m, or converted into a beam wave 52 

· ST/ x 1/2 in a distance of order 2Tr(n n ) ~· (This description somewhat 

oversimplifies the dispersion relation in the circle region, where the 

wave is really neither of the above simple mode's~) 

Fainberg and Shapiro, 46 in theoretically analyzing a beam in a 

bounded but otherwise homogeneous plasma, conclude that after the wave 

saturation time the oscillations are strongest in a layer which in,our 

problem is 

(which may include all of region II and some of I). Energy carried 

into this region by the beam is carried out by oscillations. They esti-

mate the energy density in this region; for our problem the estimate is 

which is the same order as the beam kinetic energy n xe¢(s), because 
e . 

the beam velocity is not much greater than thermal, i.e., the group 

velocity is not much smaller than the beam velocity. (If it were, the 

'• wave energy could be much larger than the beam energy.) This study, 

however, includes no reflection of waves from the opposite end of the 

device; the wave energy estimate may thus be too low. 

Bernstein and Engelmann57 estimate the wave energy for a homogene-

ous one-dimensional ~u.asilinear problem. For our problem, where the 

plateau width at s in region II can be as large as the beam velocity 
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vo(s), their estimate becomes 

rmax 
13, wave.~ ( ) 

n (s)T (s) • 
e e 

. (I) s 
p 

The linear growth rate 58 is of 

largest near the sheath, where 

order w (n x/n )1/ 3, 
p e e 

x/ . •< lrr" Th. n n. ~ .; .. ;c us 
e -e "' 

6 < n (W-)e¢w • wave "' e 

3. Model Assumptions 

which is probably 

(65) 

l{e proceed to illustrate a simple model based \on the following ad-

hoc assumptions: 

(a) Electrons born at the wall are almost cold and are acceler-

ated across the sheath potential ¢w > 0 to ·form a beam. Any ions born 

at the wall return immediately to the wall without completely pene-

trating the sheath. 

(b) The injected beam is strong enough not to be a "gentle" bump 

at s = W-, but is not 'strong enough to violate n x < n ST + n ·SF The 
e e e 

beam is emission limited, not space-charge limited. 

(c) Wave-particle interactions near s = w- in region II ·are suffi-

ciently strong that they scatter particles in vii into a quasilinear or 

nonlinear final state in a time less than the transit time across 

region II. [The ratio of plasma period to transit time is of order 

~/(W - L).] Energy change in a transit time is thus not small, vio­

lating the assumption of Ref. 54. 

(d) Particle trapping by waves may occur in the region of strong-

est interactions, and a quasi-plateau in f results, at least in the 

•· 
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midplane distribution. 

(e) The waves travel into region I as space-charge waves on the 

beam, i.e., with ru ~ kvb' vb ~ J2e¢{s)/me. While the dispersion rela-

t_ion may be of "beam type" at s = W , it is of "Landau type" farther 

56
1 

inside the plasma because the sharp )rump flattens to a plateau. 

(f) The waves cause rapid diffusion of plasma electrons in vii 

over the resonance region,. thus making df/dvll ~ 0 in this region 

4. Wave-Particle Resonance Localization in Mirror Systems 

In the problem of a plasma in an electrostatic potential well, 

particles that resonate with a wave of phase velocity v0(s) at one 

point do so at all points, if the wave is "carried" on a beam moving 

with v0(s). Hence the stability criterion for such a wave is just 

~jdv1.2f(vll'vl) I - < 0 • avll vii-VO 

When magnetic mirror forces are present, this simple criterion breaks 

down, because only those particles with vii = v0 and 1-1 = 0 resonate with 

the wave at all s. Those with vii > v0 and 1-1 l 0 resonate only at some 

point on their orbit. The decrease in the number of resonantly absorb-

ing particles at vii = v 0 is partly compensated for by the fact that all 

particles with vii >v-Q abs<:_rb small amounts of energy at some resonance 

points along their orbits. 

This discusstcn leads to the conclusion that a system with bounce 

times dependent on 1-1 should be less stable to two-stream turbulence 

onset than a system where the bounce time is independent of ~. A fairly 

sharp decrease in the maximum stable beam density should occur as a 
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slight magnetic field inhomogeneity is introduced. When the bounce 

time is independent of ~, all puticles in the main distribution with 

vii = m/k resonate with the beam space-charge wave and help .damp it; 

but when only particles with ~ ~ 0 resonate for long path lengths, the 

same number of ~ = 0 beam electrons put energy into the wave, but fewer 

main-distribution electrons can effectively absorb the wave energy. 

5· Electron Velocity Distribution with a Noninteracting "Beam of 

Externally Supplied Electrons 

Consider the behavior of the electron distribution when a small 

flux /F / of electrons is emitted by the walls. As a beginning stage, 
X 

we imagine the case where the emitted x-electrons do not interact with 

each other or the rest of the electrons (and hence are not trapped). 

This give a spike in the tail of the electron distribution. Next, we 

turn on the two-stream interactions, assumed to produce scattering only 

in vii' not v1 , This gives the initial plateau on the electron distri­

bution. Finally, we consider qualitatively the collisional steady 

state where the electrons, thrown into the plateau by plasma oscilla-

tions, diffuse in pitch angle as well as energy. A balance between the 

input rate to the plateau and diffusion out of the plateau (and eventu-

ally out of the system) determines the new steady state. 

The wall, at zero potential, emits some distribution f'x{W;-v
11

,v1 ) 

of electrons. Each of these falls through the sheath, gaining kinetic 

energy e¢w C¢w is the potential at the sheath "edge" s = w ' a Debye 

length or so away from the wall). Thus at s = w-, no electron in 

class x'has parallel energy less than e¢W~ Compar,e this with the 

class of ST electrons, which has a rather ordinary, symmetric distribu-
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tion function at s = w- (because they are being reflected by the sheath 
' ' 

potentiai) with a temperature Te(W-) certainly no greater than the mid­

plane temperature T • The obvious conclusion is that, for any s < w-, 
e 

the x electrons form a spike, or bump, at 

(vii < o), 

just beyond the cutoff (for ~ = 0) of the symmetric ST distribution, 

v = v = (2e ¢ )I/2. 
esc 0 m s e 

If tqe x-electrons are born at the wall with a temperature TW << Te(w-), 

then at s = W- the bump corresponds to a density 

n 
e 

X IF I 
X 

distributed over a velocity spread (cEll ""' TW) 

(66) 

even if none of these electrons are subsequently. trapped in the system. 

This is to be compared wit? the density neST(W-), distributed over a 

velocity spread of order 

2 
m e 

(67) 

provided e¢L(f1. - I\i)-l ~ Te· (This is just the maximum E1 of the ST 

electrons; see Appendix C, section I.) The flattening of the oump by 

waves leads to a profile at v 
1 
~ 0 qualitatJ,vely like the one in Fig. 16. 

,,, 
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(a) at s = W 

(b) 0 < s <' w 

(c) at s = 0 

I 
I 
I 
I 
I 
I 
I 
I 
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Fig •. 16. Electron distribution furtction prOfile fe ( s;vll ,o), for vii < o, 

at various points E' Flattened "beam" is shown superimposed on the 

ST distribution. Unflattened "beam", in the absence of wave inter-

actions, is shown dashed. 
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6. Velocity D~stribution with a Diffusing "Beam" of Externally 

Supplied Electrons 

We now discuss the collisional steady state problem when some of' 

the flux IF I is trapped for many transits. If one chooses to solve a 
X 

Fokker-Pla~ck-type equation59 in velocity space alone at some spatial 

point s, there will be effectively a source at vii = v0(s)+, v1 = 0 

(and one 
1

at vi/~ - Jv0 (s)+, v1 = o, if both walls emit). The loss con­

dition may be represented approximately60 by the boundary condition 

f(s,~ll'v1) = 0 

at vii= vesc(s,v1 ) + 6v(s,v1) 

and (68) 

where 

s 

J ds' 
6v(s,v) "' Dll v 

esc 

s 

+ (R - l)J D ~ s 1 v esc 

corresponding to the decay width K -l in Appendix B. (Here D1~ and D 
1 

are the elements of the velocity diffusivity tensor, assumed diagonal, 

at the escape boundary.) The integrated x-source strength at s is 

Rs IFxJ t3 
n = (69) 

Rw v0 (s) -r 

where t3 is the fraction of the beam "absorbed", i.e., not lost to the 

walls in one transit (or sooner if there is beam reflection), and -r is 

the beam transit time. If sis near'the emitting wall (but in the 

plasma and not the sheath), the velocity-space dimensions of the source 

are (as before) 

,,, 
I,; 
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(70) 

If s is not near the emitter, the sharply peaked "source" will have 

diffused to a width 

6v - ·[J D ds 
-8 Jl/2 

1 1 vo 
(71) 

by the time it reaches s to act as a source there. 

But in addition to the spread ovll in vii due to ordinary diffusion, 

there will be a much larger spread, v0 - v1, caused by the waves. The 

"source strength" will be distributed from v1 (s) (determined by marginal 

stability) up to v0(s) in such a way that df'/cwll = 0 over the source 

region; i.e., the source density will vary roUghly as fp(v1,o) - fp(v
11
,o), 

where f represents the distribution without waves or x-source. Though 
p 

linear superposition does not really apply here, we may crudely consider 

f as the sum of f , maintained by the internal sources, and f due to 
p . X 

the x sources alone. f satisfies a Fokker-Planck equation and is taken p 

as given. To estimate f , one might ignore dynamic friction and the v­
x 

dependence of D;for v not too far from the source, fx is approximately 

a solution of Poisson's equation 

(72) 

with the sourceS as just described, and boundary conditions (68). The 

peak height of f is then crudely of order 
X 
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where n is the integrated input rate, Eq. (69). This expression is 

derived as the maximum potential on the surface of a long prolate 

h . d . f . f d . t 61 F th. k f d ( sp erol o unl orm source ensl y. rom lS pea , ecays e.g. 
X 

in v
1

) with a dependence somewhere between l/vl
2 

and ln l/v
1

, for· 

v1 ~ ce. (Consider the weak dipole potential formed by a charged rod 

and its image in a grounded plane normal to it near one end.) For 

large v1, or for v1 - vii~ ce' Eq. (72) breaks down (e.g., it gives 

infinite density), partly from neglect of dynamic friction, which moves 

particles toward the origin, and partly from the assumption of. constant 

Dll and D1 (a particle diffuses more or less along constant energy con­

tours) •. The form of fx for v1 ~ ce shoUld be Maxwellian in v1 • 

A qualitative display of v1 dependence of f at vii ""' v
0 

is shown 

in Fig. 17, and the vii dependence of f at v 1 = 0 is shown in Fig~ 16. 

It is qualitatively obvious that if flattening of f by waves is 

ignored for v1 >> (2TW/me) 1/
2

, the external electron density ne(s) for 

a given value of ¢(s) is increased by this trapping of ~ electrons. 

Quasineutrality thus requires a reduction of ¢ in region II. .The mag-

nitude of this reduction of ¢ depends on the final width in v
1 

of the 

plateau. If this width is small, the change in n (s) for given ¢(s) e 

will be small, but there is no reason to expect that this is the case. 

Some of the .~!density increase 11 from x-electron input is compensated by 

rapid diffusion of ST electrons with 1-L ""' zero across the resonance 

region and out of the system. The actual magnitude of the x-input flux 

I II 
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Fig. 17. Electron distribution profile f(s;v0(s)-,v
1

), showing the 

unperturbed distribution f (lower curve) and the total f = f + f 
p p X 

(upper curve). Abscissa is any component of v 
1 

• 

.. 

'\ .. 
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is thus not easily distinguishable from the net input flux 

of parti~les with Te ~ TW; but this ambiguity is common to all two­

stream analyses. 

The "nearly collisionless" behavior of f(s,v ,v
1

) breaks down in 

the resonance part of phase space, including most or all of region II 

at low IJ., because of the rapid diffusion in vii" See Fig. 18. 

It is important whether wave amplitudes at the wall are small (as 

usually observed in experiments, e.g. Ref. 49). If they are not, there 

may be strong reflection of the beam on entry (in which case the "ab-

sorption coefficient" 13 is much reduced); in addition, the loss of 

resonant main-distribution electrons is enhanced• An estimate of 13 

(or' the "transmission coefficient" l - 13) from a purely diffusional ,_, 

model is not very reliable because dynamic friction slows beam elec-

trans and increases the trapping. But in the unstable case, where the 

beam is spread downward over 6vll ::::::: v 0 - v1 >> oviJ, essentially all beam 

electrons are trapped (~ = l) and lost much later by ordinary non-
' 

resonant diffusion processes. 

7· Anisotropy Instability Near the Mirror 

Finally, there is another streaming instability question to be 

looked at.in connection with region II: ions are accelerated out 

(starting from a distribution, at s = L, with T1 >> Til locally) wh~le 

the electron distribution is nearly symmetric in v
11

• In the frame of 

reference with the- mean ion velocity (a non-inertial one) the electrons 

have a drift velocity that is maintained by the reflection ·Of the ST 

electrons. Ordinarily this condition is sufficient for an ion cyclotron­

wave streaming instability62 if the difference between the mean veloci­

tles of ions and electrons is greater than a few times the ion velocity 

'" 
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Fig. 18. Electron pharespace for~~ 0. Phase space density is flat in the shaded region. 



spread alJout its mean.·. In the present case we expect that, although 

the spread in ion vllllis small near the mirror, the large spread in ion 

v1 damps the cyclotron waves and the instability cannot grow. (And if 

the ion perpendicular energy is converted to p:~.rallel energy by magnetic 

expansion, the density becomes so·low that the instability is probably 

unimportant even if it does exist far from the mirror.) 

Perhaps more importantly, the large anisotropy of the ion distri-

bution very near the mirror makes it susceptible to the anisotropy 

instabillty~3' 64 although the requirement of long parallel wavelength 

is probably not satisfied because of inhomogeneity. -The behavlor of 

these instabilities is not studied here but is suggested as a relevant 

research problem. Resonance between electron bounce and ion cyclotron 

motion probably does not need to be considered, as typically -rw . >> l. 
e Cl 
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SYNOPSIS OF CHAPTER V 

In this chapter we show that even with an external source of 

electrons, the steady-state density cannot increase with s in region 

II without being unstable to two-stream instability. This is because 

¢(s) and B(s) both decrease in region II. (An exceptional s is the 

sheath at the wall, but stability conditions in teJ7ms of dn /ds at 
e 

s =Ware well known.) This means that attempts to increase the 

external density to values exceeding the density at the mirror must 

result in instability (which slightly enhances the lossoof confined 

electrons and also alters the conductivity of the external region). 

This appears to be true whether or not the orbits are nearly collision­

less. 
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V. A COMMENT ON nDENSE EXTERNAL PLASMA" 

Experimental and theoretical studies of plasma stabilization by 

"line tying" 3- 5, 65-67 both indicate that stabilization is usually im~n• 

proved as n(s) in region II is made larger. In some experiments the 

density of cold plasma may be high throughout the device so that the 

plasma potential is reduced and the density n(s) in region II is of the 

same order as n0 • However, in this section we show that ln the absence 

of gradients due to recombination or directed sources in L < s < W , 

the values of n(s) in region II in a steady state cannot be much larger 

than n(L) without causing two-stream instability; the plasma purges 

most of the external densityupon formation, sweeping electrons into 

region I as the plasma potential grows, and sweeping ions_out to the 

walls. 

We begin by defining a "normal" velocity distributiop f(s;v ,v ) 

as one whose only maximum with respect to v·
11 

is at vii = 0. We prove 

the following theorem: 

Theorem 3: If f(s;~II'Il) is normal, and 

If dUe(s,f..l)/()s > 0 at s for all f..l at which f(s;vii•'J! f..lB)- :/- O, 
e. 

d n(s) 
Then ds B("S'Y < 0 

(and hence, if dB/ds ~ 0, certainly dn(s)/ds < 0). 

Proof of theorem: 

(a) Collisionless Case 

In steady state:, the Vlasov equation for guiding-center motion 

along s (with flux coordinates a,~ normal to s) can be written 
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1[ J dP 1 dU(a1 ~) dp m H,p = vii d'S - iii s 'dV
11
= 0 (73) 

where p = p(a,(3,s;v
11
,v1 ) is dN/dadf3dsd3v (d3v = 2Trv1dv1dv/)),:~artd:the 

density dN/d3r = n is njd3vp, since dadf3ds = Bd
3
r. Hencef a3vp = n/B. 

Dividing Eq_. (73) by vii and integrating d3v, 

Now p is related to the usual velocity distribution f'(s;vll,v
1

) at s; 

d3vf'(s;vi/':V:l) = n = B f d3
vp(a,(3,s;vff'v1), 

i.e., p : ~/B. Using B }. ( ~) : ~ - ~ ¥s we have 

dn n dB lf2Trv d dUJd 1 df' ( 74) 
dS - B ds = iii . 1 v 1 ds VII 1 dVjj . 

If' f' is "normal", (1/vl/)(()f/dvH) is always negative. Hence when 

au/as > 0 f'or all vl' 

dn_E_~<O. 
dS B dS 

(b) Collision-Dominated case 

For collision-dominated electrons f' a: exp [- (mv
2
/2 + U)/TeJ and 

-PIT 
n « Be-u, .. e, so 

dn _ ~ dB _ !:._ dU( s,O) 
ds B ds - T --as--- ' 

e 

the same as Eg_. (74). (We neglect higher~ just f'or simplicity since 

.. 
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only cold electrons are collision-dominated.) This result should not 

be surprising, since if a collision term vp is added to the Vlasov 

equation (73), the contribution after performing 

CD 

J 
-(I) 

dvll 
-vp 

viii/ 

is nearly zero, assuming p is almost even in vii" 

For the same reason, a source S(x,v
11
,v1), even in v

11

, gives.no 

contribution. This completes the proof. 

Returning to Eq. (74), one may notice that for completely Max­

wellian f and d¢/ds = o, the right side of (74) is just -(n/B)dB/ds, 

i.e. n(s) is constant. But when ¢(s) decreases with s and dominates 

dU/ds, then n(s) decreases at least as fast as B(s), unless f is not 

"normal." From Fig. 2 one can show that when ¢( s) decreases in region 

II, essentially all _electrons there have 

iJ.< <
ed¢\/ dB)-l 

= ds ~~ ds II' 

assuming that no electrons of greater IJ. are supplied externally. 

({ )II_indicates an average overs in region II.) Certainly at those 

s for which 

¢ 

( 
-1 < \ < \-1 

ed dB- ed¢ -dB 

ds ds) > ;;: /II ds/II ' (75) 

the d¢/ds term is larger in magnitude than the !J.dB/ds term, so that 

n(s) decreases faster than B(s) at these s. When inequality (75) is 

I'! 
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reversed but d¢/ds is still negative, n(s) decreases more slowly than 
I 

B(s) but still does not increase, because the right-hand side of Eq. 

(74) cannot be as large in magnitude as (n/B)IdB/dsl. 

From this theorem it follows that if, on the average in region II, 

au(s,~)/ds > 0 for almost all the electrons at s; and if n (s) is sig-
-- e 

nificantly larger than n (L) somewhere in region II, then either f is 
e e 

not normal where dn/ds is large, or else the steady state assumption 

is violated, or there are directed sources or recombination gradients 

in L < s < w-

Barring very high neutral densities (~-l ;:S WCJeN with creN the 

cross.section for electron neutral collisions) this means that the 

steady-state case of dense external plasma, n > n(L), is Unstable 

unless a¢/ds is large and positive somewhere in region II (because for 

most electrons, U(s,~) ~ - e¢(s) and Ji is small enough that the ~-tB(s) 

term does not dominate. 

But ¢(s) cannot decrease as usual in region I and then increase 

in region II, because ions produced by occasional ionization events ... 

~or scattered from elsewhere in velocity sp3.ce) could then be trapped 

in the resulting potential depression. Since these ions would mostly 

be very cold, they eould be trapped in the depression for very long 

times and thus contribute very high density--higher than could be 

neutraLized by slight changes in ¢ bringing in more electrons. The 

Jt. 
t. 

... 

. c 
density of these cold ions, n J would be at least of order ~ 

c * n "' n v /v e esc 

* where ne is the density of electrons doing the ipnization, v is the 
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frequency of ionizing collisions, and v is the escape rate of the · esc 

cold ions from the depression. Ion-neutral collisions are probably the 

dominant mechanism for cold ion escape, and v /v. becomes exceed­esc 1n 

ingly small when the depression depth ("' et:::I/J) is more than about 5T c 

(v. is the ion neutral collision frequency, T is the cold ion tempera-
ln · 1 c 

ture).
43 We conclude, then, 1 that for nc << ne' the depth of any such 

I 
potential depression et¢ can be of order Tc but not of order Te· Large 

positive d¢/ds in region II is thus excluded. 
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VI. SUMMARY AND CONCLUSIONS 

Tae,,i:r.tLpprtance of several instability modes in mirror confinement 

depen~on the axial profile of density, n(s), near the ends of the 

plasma and particularly between the confinement region -L < s < L 

("region I") and the end wall (s = ±w, w > L) outside the mirror. We 

have shown that these "end zone" regions L < lsi < w (collectively 

called region II) are usually plasma-like (i.e., have small enough 

Debye length). The density there can be estimated roughly in terms of 

the ion loss flux, because the average ion streaming velocity is more 

or lessa known function of position (from·energy conversion). In 

this external region these ions, all of which are escaping, are neutral-

ized by electrons, most of which are not escaping. This can only happen 

if the electrostatic potential decreases from the mirror to the wall. 

The electron or ion density at a point in region II depends on 

the electron velocity distribution and the potential energy profile 

U(s,IJ.) = 1-LB(s) + q¢{s). If the "collision freq_uency" {for momentum 

transfer) is small compared with the reciprocal transit time, the dis­

tribution in phase space can be generated approximately from U(s,IJ.) 

and the distribution in velocity at the midplane (.:s = 0), using col1i­

sionless orbit theory. 13, 26 This is discussed in Sections IB (and IIB); 

the discussion largely follows Persson. 13 This midplane velocity dis-

tribution is the solution of complicated coupled Fokker-Planck eq_ua-

tions ·{whose Fokker-Planck coefficients are not always the ordinary 

ones due to Coulomb encounters). The distribution is non-Maxwellian 

over an important part of velocity space (the "loss region" or general-

ized loss cone), because of the rapid particle loss. 
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With infinitely rapid loss, there are no particles in the loss 

region• The Fokk.er-Planck solutions of several authors, discussed in 

Section IC (and another, for hot-electron plasma, in Appendix E), are 

of this type. These solutions, which we might call f 0(x,y) (x, y the 

parallel and perpendicular velocities at the midplane) can be roughly 

modelled by analytic functions (which are not usually separable in 

energy and pitch angle). But the density n(s) of both species as cal-

culated from either the computer codes or the analytic model f 0 goes 

to zero at the mirror, like the cube of the distance from the maximum 

of B (proved in Appendix A), and the density outside the confinement 

region is zero by assumption. 

When transit times are finite, however, one must get a distribu-

tion f which is like f 0 well inside the trapping region, but has a 

small "tail" or fringe of particles diffused into the loss region. 

From the height and decay width of this fringe one calculates the 

densityand flux in region II. (A theorem relating these is given in 

part 2 of Appendix B.) But both the flux and decay width are known 

from the macroscopically averaged (and measurable) loss rate and col-

lision rate (see part 3 of Appendix B), so the density in region II 

can be calculated in terms of the U(s,~) profile. For the electrons, 

n (s) at a point s in region II depends mainly on U(s,~) at s e 

(locally) and not on U(s',~) at others'. For the ions, ni(s) depends 

mainly on the magnetic field at s and weakly on ¢(s) and ¢(L). Ex-

pressions for n.(s) and n (s) are derived from the analytic model dis-
l e 

tributions in Appendices B and C, respectively, and are reported in 

Sections IIIA and IIIB of the main text. (Cold ions produced from 
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charge exchange are included.) Equating these densities gives the 

external potential ¢(s), as reported in Section IIIC. Of intere.st is 

the magnitude of the abrupt potential drop at the end wall, s = w, and 

also the value and behavior of ¢ at the mirror, since this determines 

the relative number of electrons which can pass beyond the mirrors 

(to neutralize escaping ions) but still remain confined in the device 

( -W < s<I·;W.}. Electrons of this class (called ST: streaming beyond 

mirrors but still trapped) are relatively isotropic in the end regions, 

while free streaming (SF) untrapped ions or electrons alone are fa.L'· 

from isotropy. Another interesting feature of ¢(s) is that the ratio 

EII/'VII ln B changes sign near the mirror, but continues to scale with 

electron temperature. A comparison with an equation for EII/'VII ln B 

is given in Appendix D. 

Up to this point of our summary, the discussion has been of ions 

and electrons born inside the plasma and appearing out past the mirrors. 

In Chapter IV we discuss the influence of electrons which may be born 

in region II; between the mirror and end wall, or at the wall (either 

wall cathode or secondary emission). Ions born here cannot penetrate 

the plasma potential and are returned to the wall, but electrons are 

accelerated into the confinement region. How many electrons are 

trapped there "its a delicate matter involving their energy loss, as 

discussed in Section IVA. Their contribution to unbalancing- the source 

input fluxes of electrons and ions, together with the change in energy 

loss fluxes of each species, causes the plasma potential to change. If 

a-lniqst. a.lL externally born electrons ("x"-electrons) are trapped, the 

change · 4¢0 is of order T times the ratio of external-source flux . e 

i 
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to internal-source flux. These matters are discussed in Section IVA. 

The possibility of two-stream instability caused by the x:-:-electrons 

is discus:]ed in Section IVB. After pointing out that. the stability 

criteria are not the same as in the ordinary case (because parallel 

velocities are swept out of resonance by the magnetic forces), we 

discuss what the nonlinear-steady-state distribution f (x,y) might e 

look like with the x-electrons somewhat diffused in energy by wave-

particle interactions. (Of course, information on the final wave 

spectrum is not available from any simple analytic methods.) It is 

assumed that the waves are primarily space-charge waves carried with 

the "beam" of x-electrons. (This beam is injected "cold" but is 

quickly flattened to a "quasi-plateau" on the electron distribution.) 

An important fact is that the source is not cut off and the distribu-

tion function is not allowed to relax. The quasi-plateau in midplane 

velocity space results only becam;e the interactions are :3trong. 

In Section V we show that even with an external source of electrons, 

the steady state density cannot increase with s in region II without 

being unstable to two-stream instability. This is because ¢(s) and 

B(s) both decrease in region II. (An exceptional s is the sheath at 

the wall but stability conditions in terms of dn /ds at s = W are well e 
68 known. This means that attempts to increase the external density 

to values exceeding the density at the mirror must result in insta-

bility (which slightly enhances the loss 6f confined electrons and also 

alters the conductivity of the external region). This appears to be 

true whether or not the orbits are nearly collisionless. 

Appendix E includes brief discussions of some interesting cases 

,, 
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not treated in the main analysis. The magnetosphere and other mirror 

configurations without an "external" region are mentioned in part 1 of 

Appendix E. The hot electron plasma, with ¢(s) scaling with ion tern-

perature and differing in topology from the usual case, is discussed 

in part 2. Part 3 treats weak mirrors, where all the ions are essenti-

ally untrapped even though their collision time may be long. 

i 
i 

" ! 
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APPENDICES 

A. Density Near the Mirrors in the Limit of Zero Bounce Time 

If the potential for JBrallel 1p0tion, U(:S,IJ.), has a simple maxi-

mum at s = L for all IJ., and if all JBrticles include s = 0 in their 

orbits, then we have the following, 

Theorem 1 

For a Vlasov guiding-center plasma with midplane distribution 

f(x,y) such that f = 0 for x :=: xL(y
2

) and f(x,y) a: [ ~2(y2 )·- x
2JP 

with integer p, in the limit as 'x -+·xL from below 

n(s) a: (L - s) 2p+l as s -+ L from below. 

Proof: 
2 

00 XL 

n(s) = Rs f ':hcyily f 2 
0 X 

s 

The x
2 

integration is taken only out to xL2' since f = 0 for 

x
2 > xL

2 
xs is the midplane parallel velocity for which 

particles just reach s, and it depends on y. ~ is the midplane 

parallel velocity for which particles just reach L, i.e. the 

efil.cape velocity. Expanding f(x,y) 

f(x,y) 

we have, for s -+ L from s < L, 

n(s) 

li 

2 x· 
oo . L 

-+ Rs j 2eydy s(y) J 
2 0 X 
s - X 

.s 
2 
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where S(y) is the derivative just quoted. 

d(x2 ) 

Let·t ~x2 2 so that =:22 dt. = - X s 
Jx2 ~ - X s 

Let x 2 = x 2 - 52 (52 may depend on y), so that x
2 = x 

2 
s L s 

onto t 
2 2 = 0 and x = ~ maps onto t = 5. We have then 

(]) 

n( s) -+ 47TRL J ydy 

0 

5 

(y) f dt(5
2 

- t
2

)P, 

0 

since Rs -+ RL f 0. For integer p, the t integration gives 

maps 

2p+l . ( 4/ ap5 , where ap is a numerical constant a 0 = 2, a1 =, 3, 

a2 = 16/15). 

Now, by hypothesis, U(L,Il) - U( s,ll) a: (L - s)
2 

as s -+ L; 

and xL
2

- xs
2 

a: U(L,Il) - U(s,ll), so 5
2 

a: (L ·· s)
2

; let us say 

a2
(y) = D(y)(L - s) 2 • Then 

where 

(l) 

I= 4~~ap ~ ydy s(y)[D(y)]p+l/
2

. 

0 

In the preceding it was assumed that T:J( s,ll) has a maximum at 

s = L, independent of ll· Suppose the maximum of U(s,ll) is at s = M(ll) 

corresponding to escape velocity x = ~(y). If M(ll) ~ W for some 1-1, 

say ll < llw' then, assuming f(x,y) f 0 for x < ~(y) when 

y = (2:B~.Lw/m) 1/2 , there will be p:1rticles all the way out to s = w. 

These will be the p:1rticles with ll so small that U(s,ll) has no maxi-

mum inside the device. Such a case occurs for electrons when 
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d¢/ds < 0 .for L < s < W; electrons with small 1-1. are trapped only by 
.;.... 

U ~- e¢,\which ordinarily increases for all s > 0. 

/ 

'" 
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B. Model Calculations of External Ion Density Due to Scattering Loss 

(A list of symbols and definitions peculiar to this appendix is 

given at the end of the appendix.) 

L Introduction 

Because the ion loss region in midplane velocity space includes 

the origin, the ion midplane distribution is quite unlike a Maxwellian. 

We write the "distribution function" g(x,y) (see section 4) as 

g0 (x,y) + g1 (x,y), where g
1 

is a small correction, but g0 is nearly 

identical with the actual distribution function f for x,y well inside 

the trapping region, and g
0 

goes to zero at the loss boundary. An 

analytic function with the general features of g0 is shown in Fig. B-1. 

Computer calculations by Marx27 have yielded typical ion midplane dis-

tributions g0 • These involved solving a two-dimensional Fokker-Planck 

equation for ions coupled to Maxwellian electrons. One result for g0 

is pictured in Fig. B-2. The analytic model function (Fig. B-1) rises 

more steeply with y but otherwise reproduces the qualitative features 

of Fig. B-2. 

The correction g1 (x,y) is small but nonzero at the loss boundary 

and decreases rapidly away from it. such a correction is necessary to 

give nonzero loss flux. The loss flux (and the accompanying density of 

ions in region II) depend on the height and decay width of the ''tail" 

g1 in the loss region [x > x
1

(y) or y < y
1

(x)J, but should be insensi­

tive to the detailed shape of g1 • The general features of g0, g1, and 

g = g0 + g1 near the loss boundary are shown in Fig. B-3. 

2. Density at "Mirrors", s = L 

We now present a simple theorem relating the density at the mirror 
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•" I j, 

2 . 

1 . 

• 

o~----~~--~--------~ 
0 . 5 1 • 0 1 . 5 

X 

Fig. B•l. CQntoy~1i~~ and cro~s _section of an analYtic model for ibn 
~ ~4' ' .. ~ .,J ~ • ""~·1. ,~.~., .. 

distribution g0(x,y): 
-~ . . . 2 2 

g0 (x,y) = N[expC-x /ell ) 

Ripple is spurious and caused by coarse ·computation grid._ Loss 

boundary is shown dashed • 

. for N = o, 1, •• · 6. 

"' 

-, 

•. 

_i 

. i 
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2..Qr------r----,-----t 

0 
0 0.5" 

X 
LO 1.5 

Fig. B~2. Contour lines and cross section of g0(x,y) as calculated b,y 

Marx. Loss boundary shown dashed. Contour heights 

(0.85g0max)(N/6 + 0.01) for N = 0, 1, • • • 6 • 
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throat to the loss flux. 

Theorem: If g
1 

(x,y) is zero outside the loss boundary y
1 

(x) for 

x < 0 and decays outside the loss boundary for x > 0 with 

d "dth -l . 2 d "f -l < 2 ( ) f ll a ecay w1 K 1n y , an 1 K . ~ y
1 

x or a x, 

then 

(Bl) 

Proof: · F(L) == I1, J 2rrydy J xdx g1 (x,y) over the region x > 0, y < y
1 

(x). 

If the height of g at the loss boundary y == y
1

(x) is C(x), then 

2 
' .. oo YL (x) 

F(L) == ; l1, j d(x
2

)c(x) j d(y
2

)E(y
2

), (B2) 

0 0 

where E(y2 ) is any function that decays from unity as y
2 

departs from y
1

2(x), with a decay width K-1
• Because of this 

one has 

-1 
"' K ' 

if Ky
1 

2 >> everywhere. Next, 

(B3) 

over the same region. 
2 . 2 

Since ~ (Y) and y
1 

(x) represent the 

same boundary, we rewrite the radicand 

2 2 2 2 2 ¢ 
X - X (y) == X - (R - l)y +- e(¢ - ) 

L . -L m. 0 L 
1 
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as (~ - l) [y1
2{x) - y2 ] 

with Y.. 2(x)~ = (R_ - l)-1 (x2 + 3_ e(¢ - ¢ )] ·and change the L. · -L · m; 0 L ~-
. 1. . 

order of integration. Letting t = ~y12 - y2 we have 

. r oo .,_. y L . ,_, . 

n(L) = -~ ~ (~ - 1) •l/2 J ·. d(x2
) c(x) J ~at ~{*2 ): (:&t) · 

0 0 

Since E has decay width K-l in t
2 , one _has,. for Ky

1 
2 >> 1, 

YL . .· 

1 [ 2( )] -l/2 ; . dt E y t -v K , so that 

0 

(QED) 

We have chosenE to decay wi.th y
2 instead of x2 so that g will be­

nonzero in the neighborhood of x = 0 and y < y
1
(o), representing loss 

of ions with small p3.rallel ·veloctiy by cooling and angle-scattering. 

The fact that K-l is the decay width in y2 rather than normal to 

y
1

2(x) is reflected in the factor (~- 1)-l/2 • 

We note two examples of this theorem: for instance, let 

-K(y 2 _ y2) 

\

. C{x)e L 

(1) g1(x,y) = 0 

_ arbitrary 

For th1s form of g1 , 
00 

for y ~ y1 (x) and x > 0 

for y ~ y1 (x) and x < 0 

for y > yL ( x) • 

~(L) = ; ~K-l j d(x
2

)c(x) 
. 0 

'" 
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As a second example, let 
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(ii) g1 (x,y) == ~e for x > 0 only on the thin strip 

2 -1 2 2 
YL (x) - K < y ~ y= (x); g1 (x,y) == 0 elsewhere. 

For this form, 

and 

(B5) 

Sin'ce g
1 

is a perturootion on g
0

, one expects the height C(x) or 

~ to be everywhere small compared with the maximum height of g0 , which 

. 2 -1 
is of order n

0
/cl/cl . If it is smaller by a factor of order K , i.e. 

if j 
0 

then F(L) a: l/K
2 

and n(L)/n0 "' [F(L)/n0cll f/4 
(and in general, if 

00 

)
. d(x2 )c(x) a: K-p/2 , 

0 

then n(L) a: [F(L)]p+l/P+2, 

the exponent being between 1/2 for p == 0 and 1 for p = co). The height 

f . t . "d th t i . t 2 2 -l . f d o g0 JUS 1.ns1. e e rapp ng reg1.on, a y = yL + K , 1s o · or er 

-1 2 s0 K , where s0 is (Jg0 /?J(y ) evaluated at y == yL (x). If g
1 

_:::: g0 at 

2 2 -1 2 2 
Y = YL + K and if g0 + g1 varies smoothly, then at y == yL , the 

-1 height C must be roughly of order s
0

K or less. 
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.. ·~ 

3• Estimate of.K and n(L) from Diffusivity in Velocity Space 

A dimensional estimate of K in terms of the velocity space dif-

fusivity, D, can be made from the dimensional form of the diffusion 

equation, 

In a transit time of order 2L/cl/, an ion which began at s = -L as 

barely trapped, statistically wanders into the neighboring "untrapped" 

region of phase space during its transit to -s = +L . Thus 

where D is a spatial average of D over a field line. Next, observe 

that 

ExcePt for RL - l << l, cy "'b.V. A typical value of yL, when · 

RL - l ~ l, is (yL(x)) ,.,. yL(cl/), so we use 

(B6) 

If we now write D "' ( c/1
2 

+ c 1
2

)v0, where v0 is the 90 deg cun:iulative 

. "collision frequency", and obserVe that the loss rate v o: v0, .we can 

put this expression (B6) into (B5) in the form 
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We obtain 

(B7) 

where P = c11 2l c/C~ - l) and we have assumed l + c11
2 lc / "' l. 

Because vlv
0 

is unspecified and depends on ~' we cannot describe the 

dependence on RLl but for~- l ·"' 1, i.e., intermediate mirror ratios 

in the range 1.3 to 5, (vlv0)114 ~ 1. The salient feature, 

I 314 n(L) ex: (Lv ell) , 

is thus explained. 

4. A Slightly Different Model for g
1 

One need not take g1 to decay over a ·constant width K-l in y2 

(although the mathematics may be a burden otherwise); other simple 

models are possible. As an example of a model with constant decay 

2 width in y instead of y , we show the calculations for the form 

for x > 0 and y < yL(x) 

for x < 0 andy < yL(x) (B8) 

for y > yL(x) 

with a> band A
1 

> B1, where s0 is now dg0ld.Y evaluated at yL(x) + 0 

(instead of dgold(y2)] and k-l is the decay width in y instead of in 

y
2

• Figure B-4 shows the qualitative .shape of this g1 • 

In order to relate the flux F to k (and show the reasonableness 

of our ordering C "'s0k-1 ), we impose on g
1 

the (somewhat artificial) 

condition69 that 

'" 
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_., 

,, 

Fig. B-4. g
1 

(x,y) vs y for fixed x > 0, based on Eq .• (BB). 

"I 

I 

-I 
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(a) 

-123 ... 

co <D J dx J 21rydy g1 (x,y) 

-<D 0 

o, 

i.e., that g
1 

contributes no correction to the total density 

co 00 

{ --
dx I 

j ) 
-co 0 

In addition, we requre that the slope of g0 + g1 be continuous across 

the loss boundary: 

(b) 

and that g
1 

should produce the observable flux Fi(W) at the wall: 

oo yL (x) 

J xdx J 2'1f.Ydy g1(x,y) = Fi(w)/Rw· (c) 

-00 0 

(Since F(s)/R does not vary with s in the absence of scattering, and s 

since g is that distribution which would occur just at the midplane if 

all scattering took place before the mideplane, at s < 0, we can evalu-

ate the first moment integral at s = o.) 
-1 -1 -1 Neglecting a , b , and k compared to yL(x) for all x, condi-

tion (a) gives 

(B9) 

while condition (b) gives 

aA1 - bB1 + k(A1 - B1 ) = 1. (BlO) 
' 

Condition (c) is the simplest and most important, and gives 



where 

Yl24-

co 

J = I xdx so(x)yL(x) 

0 

and F = Fi(w)n;
1 

is the fictitious flUx at s = 0 which gives rise to the known flux 

Fi(W) at s = w. Combining Eqs. (B9) and (BlO), we have 

2 l 1T"J k + (a + b)k + - ab = o. 
2 F 

For a,b ~ k this gives 

(Bll) 

(Bl2) 

(with equality in the limit a, b << k).. This. means A
1 

- B
1 

= (2k) -l, 

so that C(x) = g1[x,y1 (x)] = ~ k-
1s0(x), as we assumed. 

To relate the density n(L) to the flux F.(L) we again rewrite the 
J. 

radicand in Eq. (B3) 

n(L) = ~ 1 21ryily 1 2 xdx 2 gl (x,y) 

.j X - ~ (y) 

as (~ - l)[yL2(x) - y2), 

with 2 . -1[ 2 2 y1 (x) = (~.- l) x + mi e(¢0 (Bl3) 

and change the order of integration, so that 

,, 

.. 

·=-· 

i 
. ~ 
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oo ry (:>c) yO:y e -k(yL-y) J xdx s0 (x) 

0 0 JyL2 - y2 = (I\ - l) -1/2 ______ "'7"'""T ___ _ 

J 
oo · YL (x) -k(y -y) 

· xdx s0(x) ~ ydy e L 

0 0 

(Bl4) 

-ky 
Th · t t · · th d · t · k-l - k-2 (1 - e L). e y-2n egra 10n 1n e enom1na or g1ves yL 

And since kyL >> 1 for all x,.we need keep only the first ter!IU?'Qf! The 

y-integration in the numerator can also be done approximately for 

kyL >> l. We use 

-k(y -y) . r=-

J 
YL.(x) yO:y e L j"'YL 2 

-;;;::=:::::=::;:;:====:;: ""' ~ e -kw dw 
0 --j(yL - y) {yL + y) 0 

-.fi: 
3 1 ·j 1

' 2 -kw
2 

- - · w e dw 
2~ 0 

and replace the upper limits by oo . Again neglecting (~) -l com-

(~/2)l/2(k-lyL)l/2 Thus pared with unity, we get , for the integral. 

' 
(Bl5) 

which shows the dependence of n. (L) /F. (L) on K
1 / 2 

= (k/2ytLyp)l/2 • 
1 l 

[ y~yp is a typical value of yL (x) defined by the ratio of integrals in 

Eq. (15) ·] 
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Now, if for g
0

(x,y) we take'the analytic model of' Fig. B..,l, 

r 21 2 2 I 2] 2 2 . [ -x ell -~ (y) c/1 -y lc 
N e - e e for x < ~(y.). 

(Bl6) 
for x > ~(y.) 0 

we find 

where P = c/1 21(~- l)c 
2 

= (~ c
11

2
)1Teff and h = (1 + P)cij

2
• Using 

2 . 
the definition (Bl2) for yL (x), one has then 

.00 

J ) . -2 -2 I 2) 
J = xdx s0 (x yL (x) ==N.~II (1 + ho )h exp(- ho ~ o ell 

0 

where & = ;_ e(¢0 - ¢L). And the integral in the numerator of (B15) 
]. 

becomes 

00 I .~2 2 t) 00 · . 

1 I '14' Cvf c» -£' · /4 /' jJ.¥ · .. · 1 2 -2 11 . · ""· . _) --~ .. -u 
xdx s0 (x)yL (x) = Nc (~ - l)c e n ? . u- u1- e. .:_.du, 

o . .· ~o ho 

so that . 

where 

ni_(.L) ( 7r)ll2 · -114 -114 112 
-- ~ - (~ - 1) o k p(ho), 
F.(L) 2 . 

]. 

00 

p(ho} = (hB)114 (1 + ho)-lehO J u314e-udu, 

ho 

(Bl8) 

(B19) 

related to the incomplete gamma function r(714,h5), 71 is shown in 

Fig. B•5. 

j 
.• I 

i 
I 
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~ 

-

.. 

:r 

I 

0 . 
bO 

·r-1 
!i. 
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. . 2 . . 
.· _.For ho = (1 + P)2e(¢0 - ¢1)/m~ll > 0.2 (i.e. typically--

Till ~-_25 Te), p is of order 1/2 to 1. For ho :::; 0.2, p(ho) ::::: (ho )
1

/
4

; 
. ~ ·. 

and for bo >> 1, i.e. Till << e(¢0 - ¢
1

) or ~ - 1 << 1, one has 

p(ho) :::::1 - ~ (ho)-1 • ·Now if we use the estimate (rrJ/F) 1 / 2 fork, 

and work out the normalization N,.we find 

(B20) 

giving 

and 

(B21) 

with only very weak dependence on e(¢
0 

- ¢
1

) • S:i,nce F = n0Lv, _the 

quantity F/n0cll is crudely the ratio of bounce time to loss time, for 

a typical ion, i.e. Eq. (B7) is recovered. 

5· Density at s > L 

Let the exact ion loss boundary in Fig. B-6 be called y = yM(x) 

or X = X..(y). Let the line y = y (x) or X = X (y) be M _ · S s 

y2 = (R - l)-l·[x2 + g_ e(¢0- ¢ )]. 
S D. · S 

]. 

(1322) 

'" 

.. 
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Fig. B-6. Exact loss boundary (curved) and approximate loss boundary 

[line yL 
2

(x)] for ions. Also sho!"n is :r 

y 2(x) = (R - l)-1[x2 + 2e(¢0 - ¢ )/m.]. s s s ]. 

[Replacing s by L gives formula for yL
2

(x).] 

,,, 
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Then " 

n(s) 

over the region y < yM(x) becomes 

·For mathematical ease, we return to.the model 

""2. 2. 
-K(y -y ) 

g
1

(x,y) = C(x)e M 

(B23) 

( whe;e .we previously used the approximate boundary y'L 2 instead of the 

2 
exact yM ) . Then the y-integration in Eq. (B23) becomes 

y = e 

2 2 -K(y -y ) 
M (B24) 

When s > L, one 
2 2 

has y s > yM for all x. M(y) is the value of s for 
. . 2 

whfch y (dR/d:s) + (2e/m1)(d¢/ds) == o. Exp:mding Rand¢ about 11, and 

¢L and letting 

· one get.s (for y such that M - L is small), 

M- L::::::- 1)r'/R" 
1 4 4 '2 

~ ""' ~ + 2( ell /y )1jr' /R" 
2/ 2 2; \jrM""' 1jrL - (ell y )1jr' R" 
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where p:dme means d/ds evaluated at s = L. ( 1jr' and r" are both nega­

tive.)· Now, writing yM2 - y2 in Eq. (B24) as 

gives 

. 2 2 2 2 y 22 
K(yL -yM ) K(y s -yL ) j· M ydy ··K(y s -y ) 

Y=e. e -----e 
·I 2 2 

0 '/ys - y 

(B26) 

where the factors in front of the integral depend only on x and have 

positive exponents, the first given by Eq. (B25) and the second by 

Eq. (B22) and Eq. (B22) with s replaced by L : 

K(ys2 - YL2) = ~x2 + e, 

~: ( Rsl_ l- ~1- l)K, 

e = 2e ( ¢o - ¢ s - ¢o - ¢L) K. 

m. R - l R - l 
~ s L 

(B27) 

Since R~ < R
1 

and ¢s < ¢
1 

< ¢0 for s > L, it follows that ~ and e are 

both positive increasing functions of s. ~ has a second order zero 

at s = L, while the zero of e there is first order if 1jr' t 0. ~ is 

independent of s. Letting t = K1/ 2 VY 2 - y2, Eq.- (B26) becomes 
s 

Kl/2y 

y = K-l/2euj sdt e-t2 

l/2 
u 
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where u = (sx
2 

+ 8)+T)(x
2

) = K[y.s
2

(x) - yM
2

(x)J. ·(See Fig. B-6.) 

.y is a monotonic decreasing fUnction of u: 

· y -1/2 ·r·.J7T·. l/2J 
.~ K 2- U for u <<1 

2 
and Ky s .. >> 1, and 

-1/2( )-1/2 Y~ K 7TKU for u >> 1 2 and Ky >> u. 
s 

(In this latter case the upper limit of Y may be replaced by em with 

2 2 an error of only exp -Ky • ) The function u(s,x ) is always positive s 

and bas positive au/as. For large eriough s - L, au/dx2 is also posi-

2 tive for all x , but for small s - L, u decreases somewhat before it 

increases with x2, the decrease being due to T)(x2) f o. 

The approximation yM = yL' i.e. T) = 0, gives a reasonably good 

estimate for n(s) using Eq. (B23), but gives dn/ds = - m at s = L 

because 
. 00 

·· ~s J dx
2

C(x
2

)Y(u(s,x
2

)] = 

0 

this is - oo at s = L because dY/du = - oo at u = 0 while au/as is 

finite at s = L. For a better estimate of n(s) which gives finite 

dn/ds, one may replace T)(x2) by Tj ""~ Ma.x(T)). Then Eq• (B23) becomes 

n{s) ~ rrR
8
(R

8
- l)-l/2 t-1 j 

00

du c(u ~ ~~Y(u) 
<I> 

where <I> = e + T)· 

. - Jtx2 
form ~e 

This can be integrated by parts if c(x2) is of the 

. . ·' . ,. 

., ' 



... . 

·1/2 ~ n.(s) Rl 'ITR (R - 1) -;; 
J. s s -~ 

where 

z =It/~ 

a:i:ld ~' · 

For any X, the function 

00 

exj dt 

,{X' 
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z 
r::-z 

decreases from '!Tl/2/2 at X = 0 to zero at X = co; the decrease is 

rapid at first (negative infinite slope) and slow for large X. 

At s = L, z has a second-order pole, while the ~ term (electric 

field at s = L) prevents ~ from having a zero; so the first term in 

brackets vanishes and the remaining terms go to approximately 

( (]) -t2 
-e 11 J dt e 

vf 
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since s2 and s
3 

are both large and s1 ~ l at s = L. The coefficient 

z/(1 ~ z) is -1 at s = L. • 

As Rs decreases from 11.' a point is reached where z = l. The 

coefficient z/(1 - z) has a first-order pole, but the square bra'cket 

has a first-order zero since s
1 

= l and ~ + s2 = s
3 

there. Next, the 

point Rs = lis reached (if 1\i < 1). H~re the factor (Rs - 1)-1 /
2 

becomes irtfini te, but z = 0 and ~ = oo with z~ = It ('ito - 1)rs) finite. 

The p3.rameters s
2

, Sy s4 are finite but s
1 

a: (Rs - l)-l/2 is fnfinite. 

The second term in brackets vanishes (~ = oo') and the result for n.~s) 
1 

is finite: at s such that R = 1, ' . s 

n:i.(s) 

I -s s 5r 00 
-t2 

s4 -l 2e 2e j dt e 

rs; 

-t2 
dt e 

For R < l the original expression is still correct (if co is s 

replaced by -ioo in the first integral) but the terms in the bracket 

are imaginary, as is the factor (R - 1)-
1/ 2 outside the bracket. The 

s 

functions ~ and z are negative, and s
1 

is imaginary. One can rewrite 

n1(s) in terms of~'= 1~1, z' = jzj, s1 ' = s1 with IRs- lj instead 

of R - l: 
8 

_j . 
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ni(s) ~ iR IR - 11-l/2K-l/2 1 z' 
s s tv l + z 1 

In practically all cases one can take s
2 
~ <D, which corresponds 

to replacing the upper limit of Y by oo (i.e., K1/ 2ys >> l) before 

doing the integration by p:1.rts. Comp:~.ring ni ( s) to ni (L) then,, 

for R > 1, where 
s 

l )
1
1

2 
l z ] ~ [z-l/2E(z~) - E(~) 

l E(Tl) l - z 

CD 

E(X) - -- e dt e • 
2 xJ. -t2 

For R = l s 

and for R < l 
s 

\li .JX 

For convenience, we repeat the definitions 

[

K l l )] -l -2 2 
z = ~ Rs _ 1 - Rr; _ 1 , with /L"' ell and K >> ell 

(!328) 
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2( ~Q 
<l> =: Kcll R 

' s 

- ~ s 

- 1 

- - 3 K 2(,,,- "' )-1 ... ,,2"'R" ,-1 
~ = ~ . ell ~o - •L ' v . , . (prime = d/ds at s = L) 

and ~ = e¢/(~ micll2) ' subscripted a.·s necessary. 

A plot of Eq. (B2~)· vs Rs an<i ¢
8 

is shown in Fig. B-7. for typical 

p3.rameters ~ '== 3, cp0 ..: cpL = ·4, Te/Till = 1/2, Kdll
2 

= 10, T1 = 0.2. The 

Fortran program used in making the plot (IONS) is given in Appendix F. 

To-obtain the behavior of ni (s) for s fairly far from L, we 

expand Eq. (B28) for z << 1, <I> >> 1, and z<l> << 1, and keep only the 

leading term, z-1 / 2 , for the expression in brackets. (This ordering 

is the proper one if e << Kc 11
2 ,~i.e., if Te <<~mici/12). -Then 

writing 

and 

we have 

,!", • 

for s sufficiently large. 

- 1 )1/2 -1 

ell ' 
R s . 

(»29) 

To comp3.re this with Eq. (20) of the main 

text, simply note that for this model 

I I 
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2 • 8 2 • 6 2 . 4 2 .. 2 2 • 0 
R 

Fig. B-7· Contours of relative ion density in region II. Equating 

this to electron density from Appendix C gives a curve of 

.. <pL - <p vs R. 

,, 
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6. Bmall Mirror Ratio 

( 2/ 2 -1 Here we examine P = . ell c 1 ) (I!. - l) when 11. -
. 2 .• 2 . 

quantities ell . and c1 come from the model 

1 << l. The 

·. [ 2/ 2 2( )/ 2]' . 2/ . 2 . -x .. ell -xL y ell . -y c 1 
g

0
(x,y) = N e - e . e 

.. 

They are asymptotic "tail temperatures" in the confinement region. 

The actual. temperl?tures Til = 2( Ell) and T1 = ( € 1 ) may be calculated 

from g. • . o· 
m . 2( · ) -1 

Til = 2 ell l + P ; 

· m 2( ( )-1 T1 = 2·c1 l + ruP) 1 + P , 

· m 2 m 2 
with ro = (.Te/TII )(cp0 - cpL) + 5/2. Note that Til : 2 ·ell and TJ? 2 c 1 • 

When 11,.- l << 1, P can be large without limit, and the approximation 

m 2 m 2( . Til = 2 ell , T 1 = 2 c 1 made frequently 1:n the main text) fails. One 

~may write 

(P' remains fini.te as ~ - l -+ 0, while P becomes infinite.) 

But the_limit ~- l-+ 0 is not strictly applicable in this 

];Sper because of the initial requirement Xv-r << l (where -r is a typical 

bounce time and v the inverse loss time) •· v is related to the scatter­

ing rate v
0 

by v/v
0 

= :>..(~- 1)-l with some constant-~ "'1, when 

·1\ ... 1 << 1. Thus even if cill stays finite as ~ - l'Efnd Til go to 

zero, we have the limitation 
! ., 



,, 
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2 . -3 
where<mu /2 = T 

1
• W.nae Lv0/u is usually quite small (say 10 ) this 

is not a serious restriction on the values. of RL one might wish to 

consider. If c/1 is held constant as RL - 1 and Til become emall, the 

condition v-r << 1 imposes a practical upper limit on P: 

2 I ·)-2/3 c I LV 
p << ~ \__..£ . 

cl u 

2/ 2 I -4 c ) For ell c1 :': 0.1 and Lv0 u ""'10 this means that in Eq. B21 

7. Symbols Peculiar to This Appendix 

a, A1, b, B1 == parameters in the model (B8) for g 1 (x,y). 

ell, c1 == (2TII,1 /mi)1/
2 

ordinanly, but when using quantities 

derived from (Bl6) for g0, 

ell, c1 == asymptot1.c "thermal speed" parameters in g0 • For 

~ - 1 ~ 1 the difference in definition is negligible. 

For ~ - 1 << 1, see final part of this appendix. 

2 
C(x) or C(x )== height of g(x,y) at the loss boundary y == yL(x) 

[or x = xL (y)] • 

D = velocity space diffusivity, in some average sense 

(averaged over velocities where the distribution 

function is large). 

D = spat1.al average of D over a typical bounce orbit. 
·. 2 2 
E(y ) = any function that decays from unity as y decreases 

2 
. from yL (x). 

F = F i ( s) /Rs for any s. F is independent \Of s for s > L. 
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. 2 
h = (1 + P)cg- • See p. 

J = Jo 00 

xdx s0(x)yL (x). 

k = decay width, in y, of the model (B8) for g1(x,y). 

' 
N =normalization. of g

0
(x,y) in model (Bi6). Value given 

in Eq~,4B2o) • 

-p/2 
a:. K • 

s1 , s2 , Sy s4 = functions defined on page 133. 

t, u, U, w = various temporary integration variables. 

Y = integral defined by Eq. (B24). 

z = It/~. See ll, ~· 

6 = (2e/mi )(¢0 - ¢L) 

~ = K[(Rs -1)~1- (RL- 1)-1] 

~ = small quantity measuring electr1c f1eld at the m1rror: 

· 3 4( 2 2e d. d. ] -1 2l 
1
-1 ~· = 2 Ken . X -i: iil. (YJO - YJL) V' R" ' 

l 

where ' means 

. . . 2 
d/ds at s = L and ,where v = e¢/(m/2)cg • ~ is an 

average of ~' or order 1/2 Max(~)·. 

K =·decay w~dth of g1(x,y)~ 
2 

~ = amplitude of C(x) in c(x) = ~e- /L x for some 

"' 
\. 

I 
i 
I 

I 

., 

I 
. ' 

, 
.I 
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D = (2T/mi) · • 
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~ = e¢/T as elsewhere in this paper. e 

. 1 = e + ~. see e, ~· 

'ljr = e¢/(m/2)c
11

2, subscripted like ¢ where necessary. 

w = 5/2 + (Te/Tii!)(~O .. ~L). 



-142-

c. Model Calculations of 

External Electron Density ~s a Ji'unction of Potential 

1. Model for g(x,y) 

For the electrons we take g(x,y) to be a Maxwellian multiplied by 

a function H(x,y) such that H ~ 1 in the ~onfinement region and H ~ 0 

in the loss region, with a smooth transition between them: 
. .-·-, .-. r 

··.((: /cl --~/- lr.:.· . 
( ) N ' . ( ,: 2'; 2L. " 2;' 2) ( ) g x,y. eexp -~ ell ) exp·. ~-Y c 

1 
H x.y . 

' It i,s convenient to take for H the form 

2 2( 2) for x < x
1 

y 

H(x,y) - 2 .. 2( 2) for x > x
1 

y and x > 0 

0 
2 . 2 2 for x > x

1 
(y ) and x < 0, 

where· 

2 2 - ( oc:L -
xl (y 2 ) -w 

l ' 

I 

2 2e ¢ ¢ l)y + :m- C o - 1) 

l)y2 + 2e ,S 
m 0 

(see Fig. Cl) with y
0

2 = (;e ¢
1

)/(R
1 

i 

2 > 2 
for y < y0 , (Cl) 

We take ~ < 1, K' > 1, 
. -

K ~ 1 and note that for smooth slope K 1 = ~K(l - ~) -l. Figures 10 

and 11 show g and H vs x for ~ = 0.1, K' = 1, 2. The :rarameter ~ is 

'the value of H at the. escape velocity x
1

; K' measures the abruptness 

· of. the damping at ~- < x
1

; K measures the abruptness of the decay for 

x > x1 • The region of integration in x,y for ne(L) is x.2 > ~2(y2 ) 

where 

~-
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x2 
I 

x2 >x 2 : absolute loss from device 
I 

x 2 > x ~: turning point beyond s = L 

X BL 697-3274 

Fig. c..:.l. .Approximate electron loss boundaries in midplane energy 

sp3.ce. 



Then· 

ne(L) = ~ f 
0 

00 2 2 
-y /c 

1 21Tydy e 

I I'J 

1 X~ 2 2 2 . j 1 .. xl d(.·x .)· -x /ell [ X · . -e- 1 - (1 -
- 2 J '2 2 

.·. xL x-~ 
. \ .. 

- 2 2 I 2] -K' (x1-x ) ell 
~.)e. 

(C2) 

.2. EValuation of Integrals 

To do these integrals by parts, first transform from x,y to t,u 

as follows: 

X froni XL to ooo maps into t from 0 to oo. 

y from JO to Yo maps into u from ~1/2 ·.· 2 ¢/ 2 to 0, where ~ =iii e e
11

• 

y from Yo to 00 will be done separately. Then 

and 
2/ 2 2 2 I 2 2/ 2 2 2 -x ell -K(x -x1) ell -~ ell +(k-l)u , -kt 

e e = e e e ' 

'" 

·' 

. ,. ~.: 



.. 

where b = K' --11 and k := K + l. 

So the x:-integrations in the curly bracket of Eq. (C2) become 

u 

~)e-(b+l)u dt ebt . 2! 2 
0 

2 00 21 
+ ~0 (k-l)u ~u dt 0 -kt ( 

J 

If we take ~ < 1, K > 1, and ~<' :;:: 1, all J8rentheses are intrinsically 

positive. Next let 

and 

Then 

so 

a + 1 = L 1 + 2 II R - 1 [ c 
2 

RL - Rw cl (RL 

2 -¢0 -a~ (a+l)u 
= e e e 

2 u 2 

' 
u t2 

2 f dt e-

O 

- 2(1- ~)e-(b+l)u J dt ebt 

0 

(k-l)u
2J- co -kt

2l 
+ ;e u dt e j 

(C3) 

we· do the first three double integrals by p3.rts: 

I' 



so 

[ 

d::! 
. . ' ~ 2 

I = 2 eaq> e~/ dt e-t. 
. 1 a + 1 J . 

0 
I 

2. 
-u dU = e · du; 

2 
V = 2 e(a+l)u . 

a + 1 ' 

-aq:> au . 1 ~ 2] 
- e .. 

0 

du e . 

Similarly the second double integral is 

u 2 
U = J dt e -kt , 

0 

i:u2 
dU = -e du; 

[ 

00 
2 · . J If au

2 
• )1/2 ] 

I __ s a!l1; ~ j dt -kt -sf du e 1 t''rr · -aq; 
3 k e e e + e . - -2 - e • · +a . · k 

,;; . o· 

2/ 2 2/ 2 ' -2 2 -(y c1 + xL ell} -(q)0~) -(a+l)(RL-1\v)(cll )y 
.Finally, e = e e , so that 

00 

J -kt2 
• ell dt e 

0 

= 



Note that, with their respective coelficients in (C3), I
1 

alone 

give·s the density due to a Maxwellian cutoff abruptly at x
1

, I
2 

is 

the damping correction (always negative) for ST particles; I
3 

is the 

"tail" of SF electrons with y < y
0

, i.e. cl;.aelented in region II but 

still lost; I4 is due to electrons with y > y0, accelerated out from 

s = L by the predominance of magnetic forces. We expect I
3 

and I4 to 

be much smaller than I
1 

+ r
2 

for reasonably large ~' because the 

"tail" is small (height a: E) and short ( K >> l) for reasonablJr loss 

flux. 

Treating I
3 

+ r4 as a small correction to be dealt with subse­

quently, we have 

n (L) 
e 

~r vi 
e -afij dt 

0 

From Fig. 11 one can see that, for x
1

2 (o) = tP
0

cll
2

;:: 4 c
11

2 
(i.e. 

e¢
0 

;:: 4 Tell) and Kl' ;:: 1, the normalization N differs by at most a 

percent or two from that of an ordinary Maxwellian: 
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,. . 

And for isotropy, where ell = c1 , 

1 - 1. 

For this case, then, 

(c4) 

3. various Approxi:ma. tions 

For a~, b~ < 3, a power series representation, 
. "' 

Jf 2 <J) 

e -r~ 1 at E:;'Yt = j/2 ~ 
0 0 

(with r = a, b, or -1) converges reasonably. As an approximation to 

Eq. (C5) one has (for the isotropic case) · .. 



The n' = 0 term in the sum is zero; the n = l term is 3 (a + l)e¢, 

which is small of order e; the first "large" term is the n = 2 term, 

and for n = ~' 

We shall see shortly that it is not unreasonable to take s = 0.1, 

a = 2 to 3, and b = 0. For these values we have Table cr. Crudely 

then, if one expects s « f < 1, 
~ 

n (L) -qp · j 
e "'0.3e 

0
(a + l)[(b + l) .. s(a + b)]t5 2

, (C7) 
no 

for a not too large. (Recall that a+ l ~ RL/(~- ~)and b + l = K'.) 

For b ·f. 0 the dominance of the n = 2 term (fl5/ 2 approximation) is less; 

for a= 2 and s = 0.1 the coefficients of ~n in the sum, when b = 0.5, 

1.0, are listed in Table err. 

For a¢~ 3 (e.g. for RL - ~ << l) but ~ ~ 1, we use the asymp­

totic form 72 

-aqS ( .)¥ at2 [ rpl/2 
e ') dt e ~ -

0 2a¢ 

l 3 ] 1 
+ 2a¢ + 4 (a;) 2 + ••• 

so that, again for the isotropic case, 



Table CI. Terms in the series e)q:ension of EST((!),a, p, ~) for b = O. 

r1 term r2 term 
- n (1 - ~) -~ ·- bn) ( -l)n. 

2n 
- (2n+l)!! a 

~ 3 a 3 --

n = 1 3 I 4 ~ 2.7 I - 3.6 2 
3 I . 

;.4 I 10.8 4 
n = 2 -3 - 8 

15 

I 
-10.8 I -32.4 

8 
n = 3 

9 r 
28 

7 X 15 

21.6 I - 1.16 
n = 4 -15 I ~80 96- -

I 
b3 X 15 

•_t• 

~~·•w--.--~ ...,._- ·---·-- •< ·•~--·-•••-

Coef~ of (!)n in ~ 

a=2, 3 

o.2o I 0.27 

-0.64 I 0.75 

-0.14 '-0.34 

0.11 I 0.27 

I --

~ 

I 

·ii) 

1·. 
1-" 
+ 
'B 

I 

" 
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Table err. Coefficients of cpn in the sum Eq. (C6) when b = 0. 5, 1.0. 

b = 0.5 b = 1.0 

"'' 11 il 1 0.20 0.20 

2 1.00 1.36 

3 -0.396 -0.755 

4 0.233 0.415 

(a = 2) 



( co 
2nf6n I ;)f'" + 1)(H)'\nl EST(4!P, ~, b, ') ~ --=- .1/2 p= (1 ~ L-.fi .. 0 (2n + 1)!! .a-b ..J 

r- ' t •• ·]} (c8) 
1 I - ( 1 - ~ ){ a + 1 \ !1 

1 3 

- 2a~l~ +- + 
4(a~) 2 

+ 
\a-b.JL 2a~ 

"' 
in which the last line is a small correction. The "exact" form of 

Eq. (C5) and the approximate fonns of Eqs. (C7) and (C8) are shown 

in Figs. 12 and 13 for several values of a, b. 

The correction tenns involving r
3 

and ·r4 are 

-¢ 
0 e 

~n --
0 {iF 

a + 1~e -a'l>j Jildt 

k + aL 0 

2 at 
e 

m 

+ ekf j, dt 

A 

For a ::: 1, the first function in square brackets reaches a maximum of 

less than 0. 55 at W < L The second f1inction is always less than 

8 . '-12 1 -1 ·-1/2 -1 0. 9k and behaves like 2 k ~ for f ~ 2k . The coefficient 

-~ll 
of e in the last term is always less than 0.27 for k > 1 and a > L 

·Thus, for all ¢, 

for k, a ~ 1, 

-rp 
compared with n:T(L)/n0 = e 

0EST(~L' aL' b, ~) in Fig. 7 , so that 

this correction is only important for ¢ ~ 0.2 for any k, a > 1. (For 
. -~ -

k = 10 and a = 2, n:F/n0 has a maximum of 0.16~e 0 at ¢ = o, dropping 

~~ ; 
I 

' . : 

'' 
' 



-151: 
.·' ... ~ 

. -1P 
4 0 · SF 

to about 0.1 ge at ~ = 0.2; and n = e 
. ST SF 
~is as large as 0.2, ne ~ ~ne .) 

4. Equation for the Loss. Flux 

ST .1.. n at ~ ...., 0.12. 
e By the time 

We have said that we expect ~ < · l and k >> 1. Some insight into 

appropriate sizes for ~ and k is gained from the equation for electron 

flux at s = W based on this model g(x,y): 

CD 2 2 CD 2 2r 2 2 2l N'TT J 2 -y/clf 2 -x/cll. -K(x-xl)/cl/!• 
F (W) = -2 R_ d(y )e d(x )e ~e J 

e -w . 2 2 
0 x

1 
(y ) '"'-· ( C9) 

_:2( 2 2 2 1 
Letting u = ell x - x

1 
) the integral over x becomes 

2 -xl 2/ c 0 1. OJ . k 
~clle due- u, where k = K + l as before. 

0 

Then, using the definitions of x
1 

2
, r1-, and ct;

0
, 

where - -2 ( -2 t\y = cl + Rw - l)cll 

and ~L = c~2 + (~ - l)cij2· 
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·. 2 2 
Now using y0 = ell cp/(1\ - ~) to define 

Rw- 1 ~ 
2 

J ell 
~ + l = ~02/cp = . . l + 2 ' . 11.-~ cl (Rw-

and 2 
2 ~- 1 ~ ell 

1)] aL + l = t3LYO ~ = . l + 2 =a +. l, 
R - ~ cl (RL-L .. · 

' 

we have 

[ 

-(~+;L)cp .-aLcp J . NIT ~ 4 -cp0 ~ l - e e . 

2 1\ - ~ ell e . ~ . ~ + l + aL + l • 
F (W) e 

-3/2 -1 -2 Then, again using N = n0rr ell c1 , we have for the isotropic case 

c/1 = c 1 = ce' 

( ) 0 -acp 
-· t' --1 --_-;-[ -. l. --. J 

F W = - n0ce ---- e l - e 
e k 2,fo' . a+l · 'l (ClO) 

where we have used a = ~ = ~ + l = ~/(1\ - ~) for isotropy. For 

a:, acp ~ 2 this result depends only weakly on cp. ComJSre this with 

the ion flux F1 (w) = (¥v/cill)n0cill' where the p3.renthesis is typi­

cally -of order lo-3· 5: F = F. gives e 1. 

cpo cill [ 
1 -acpj=~ !V'V 2.j1T e --=.11 l ~- ~ e --

ce a + l ·· cill 
- = 
k 

cp 
For protons with Til = 10 Te and for cp0 = 5, 2 J1T e 0c111 /ce::::: 4b, so 

that ~/k ~ 0.01 typically. Thue if, for instance, ~ = 0.1 and k = 10 

this can be satisfied.. If we now choose K' = K~/(1 - ~) so that the 

slope of g is continuous, then ~~k becomes (using k : K + l) just 
'• 

,. 

,p 
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~ 2/K', showing that if the "damping" of g is not too abrupt (say 

K' ~ 2) then ~ is in fact small. If the ion loss of the ratio Tiii/Te 

is enhanced by a factor of ten, the smallness of ~ begins to break 

down. The actual realistic values for K' and ~ can be determined only 

from the detailed nature of the scattering process. 

5· Extension to s > L 

The preceding analysis does not require that L be the point of 

maximum B; only the values of a and cp would be changed if L had been 

some other point s. The region of integration in (c2), however, may 

not have the simple form 

x2 > (R - 1)~ + g e(¢ - ¢ ) 
. s · m 0 s 

for some general point s as it does for s = L. A look at Fig. 2 

will verify this. Fortunately, most of the alterations occur in the 

region y ~ y
0

, and if cp
0 

~ 5 and cp ~ 1, y
0 

is large enough so that 

there are only a few electrons in this part of velocity space. The 

contribution to n (L) from values of the integration variable y larger 
e 

than some y
1

, for 0 < y
1 

< y
0

, is found by replacing u2 = cp by 

2 
u = * 2 2 cp = cp(l - y /y ) 1 0 

in the limits of the d(u2) integration in Eq. (C3). Thus the ratio 

ST ne due to y > y1 

n e 
ST = e 

2/ 2 -acpyl Yo EST(cp*,a,b,~) 

EST(cp,a,b,~) 



for acp ~ 2 (or less than this if y1 > 0.9 y0) ~ For y1
2/y0 

2 
= 1/2 

this ratio is about 1/16, if a = 2 and cp ~ 1. So for points s > L 

but not too near W, ne(s)/n0 is given by Eq. (c4) with a1 replaced by 

a = R~/(R - R~) and'cpL = e¢L/T replaced by ¢ = e¢ /T : s ~~ s ~~ · e s s e 

agairi ignoring the SF particles {terms I
3 

and I 4). 

Let us now look more carefully at the region of integration for 

s > L. Particles· contributing ton (s) are those which are hot turned 
e 

around at any s 1 < s, i.e. those to the right of alllines Es 1 ( E
1

) 

( 
. . m 2 m 2 

for s 1 < s in Fig. 2. . Recall that €!1 = 2 x , E 1 = 2 y • In con-

structing Fig. 2, we have assumed that d¢/ds < 0 at all s--including 

s ~ L, where dR/ds = 0.) In general, part of the exact integration 

boundary is the envelope of the preceding Es' lines 

and thus its shape depends on the final answer, ¢s 

The lines EU = Es(€1) and Ell= EW+(E} intersect at 

e¢ 
s 

€1 = 
R - R · s w ~ 

If d¢/ds < 0 at L where dR/ds = 0, then as s increases beyond L, this 

value of E1 first decreases, then increases again {an effect related 

to the fact that the:;.maximum of U = ~B - e¢ is at a value of s slightly 

larger than L if 1-J. I o.) For s near L, so that e¢ /(R - R~) < s s -w 
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E ( E ) < Ell < E.._ ( E ) , 
S l W+ l 

0 < 
er/J 

E < _ _;-e_··-· 
l R - R 

s w 

is thus a good approximation to the region of integration for the ST 

particles (integrals r
1 

and I 2 ). For s nearer to W, where e¢ /(R - R.) s s -w 

> ~¢1/(~ - ~), the upper portion e1 > e¢1/(R1 - ~) (1.e. y > y0) 

of the triangle should not be part. of the integration region, and 

using the technique just discussed for evaluating the contribution 

from y greater than some y
1 

we can subtract it off. The remainder, 

according to Fig. 2, is a much better approximation to the exact inte-

gration region. A still better approximation is obtained by sub-

tracting off all of y > y
1

, where y
1 

in the intersection of xs(y) 

and x
1
(y), 

m 2 e~¢D - ¢s) - y = _.....;;.;.. __ _ 

2 l ~ - Rs 

(see Fig. C-2): 

n ST(s) -~ ~ 
_e __ ~e 0 <EsT(~,a,b,g) 

\ s s 
' L 

-exp [- 11, ~ Rs (q>L - '~'s~ES+S - (<PL - <i's) ~ -
where EST is understood to be zero if its first argument is negative. 

The correction term increases from zero at some s * W to a finite 

value at s = w-. The worst' casinis'.;.ebyir;msly:· s -...·wr~ ~~ere~s·;:;.:::J¢w ~B.g 

Rs = ~' i.e. the left and right boundaries of the integration region 

for n ST are the parallel lines 
e 
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I 
l I 

tl 
II 
I 

-'--.~·· '-- v'- = me.fb 
tP . R&.-Rw 

.ae~ m .c 

Fig. C-2. Exact integration region forST electrons at s (heaVy- curve). 

. 2 Approximate integration region (dashed triangle) truncated at y
0 

2 or y1 . 

_., 
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€11 == (~ - l)!_l + e(;o - ¢w) 

Ell (~ l)E l + e¢0 , 

For this case a == ro , ·ae we have 
s 

n ST(w) 
e e 0 t -cp [ 

We note in passing that 

(Cl2) 

EST( cp, oo, b, s) 
,~ 2ncpn ]1 

+ \ ---- [1 - (l - s)(-b)ri ¢c13) 
/_J (2n + l)!! 
l 

) 

and the correction due to SF p3.rticles is (4kcp)-l times the s term in 

this expression, i.e. negligible except for cp ~ s• 

When formula (B2) is generalized to an arbitrary point s, the con-

tribution from the SF electrons may also be corrected by extending the 

y2 integration only up to y2 = y
0

2 in Fig. C-2 •. And since the contri­

bution of those particles above y
0

2 
is negligible, we can write an 

SF expression analogous to Eq. (Cl2) for n (W): e 

n SF(w) 
e (Cl4) 

where the expression to the right of the square bracket is just the 

SF 
previous form of ne (L) with cpL changed to cpw and aL changed to ~ 

(~ = o). 

6. Comparison with Simpler Models 

Now we compare the entire damped-Maxwellian model with flrst the 

ordinary Maxwellian and second a simple dimensional model. 
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If g is an undamped .Maxwellian for x > x
1 

(p:~.rticles leaving the 

device) but still zero for x < -x
1

· (no SF particles returning from· 

s > L to s < L), then we have K = 0, k = 1, and ~ = 1 in Eq. (Cl) and 

subseqtiently. The term involving I 2. is z~ro. For this case, then, 

:n S.T(L) 2 -cp .. [ J .J$ e 0 cp . · = ~ e e · dt 
no .. . kfo o 

. -acpJ. ~ at2]. 
e dt e 

0 

and 

n SF(L) 
e 1 ._cp' [ J~ 

- e 0 ·· e-a~ dt 

,;rr 0 

If :particles are also supplied in the returning tail so that the 

entire distribution is Maxwellian, then the region of integration for 

the SF :particles is doubled. The terms involving a then cancel to 

give the usual result 

ne(L) -f<~o~q,) . 
--= e 

no 

The "damping" of the ~ellian, thus replaces 

with 
li (L) e . 

(See Fig. 13.) 

A simple dimensional estimate of n( s),. for s near L, may be got 

by expanding g(x,y) in x
2 

- x
1

2 
near y = 0 and asstimirtg g(x

1
,y) = 0 

'I 

\. 

, .. 
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(Le. neglecting the SF particles). For simplicity, we take 

ell = c1= ce and ce > y0 (see Fig. C-2) so that exponential decay of 

2 g andy can be neglected over the integration region for n(s). For 

s near L, the integration region consists of the two triangles in 

x2 ,y2 (one for x > 0 and one for x < 0); 

2 2 
Y <Yo -

R 
s 

(for s = L, see Fig. C-1). 

2 

. 4 2 -1 
The area of these lS c ~ (R - R) . e s s -w 

We write g(x,y) (x -
1 

2 I 2 x )s
0

, where s
0 

= - dg d(x ) evaluated at 

x = x1 and y = 0. Then 

7r J- 2 J 2 g(x,y) 
n(s) 2 Rs d(y ) d~x} ----

Vx2 - x 2 
s 

becomes 

. 4 2 
n(s) - R c ~ (R s e s s 

where ( ) means an average over the integration region. But, crudely, 

< 
2 2) X - X 

Jx~- x 2 
- c ~ 1/2 

e s ' 

s 

and for a rough guess (an underestimate, actually) at s0, we calculate 

it from a Maxwellian: 

-qJO 
no e 

8o = ~/2 ~. 
e 
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Thus we have 

(Cl6) 

I 
(for s near L')~ which should be compared with Eq. (C7)· 

,. 

1,! Iii 
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D• Comp:~.rison with Existing Theory for ¢ s 

. 29 
In this appendix we discuss an equation due to Newcomb as 

presented by Kaufmani 
74 

where the local values of these averages, at s, are to be used. 

(Dl) 

We 

first recapitulate the derivation, then discuss the result. Let the 

functional S(A) of any function A(s,~,H) be defined by 

S(A) - L 
species a 

00 00 

B 1 dl-1 J dH[2ma(H- ~B- ~¢)] 1/2 
0 ~B~¢ 

o - F (~~'H) F 
a A (s,~,H). 

-::.-- a . o.JB 
(D2) 

where F (~,H) is the midplane distribution function, f , of species a a a 

except for a constant normalization factor Fa(~,H) = 27r/ma
2

[ fa(vll,v
1

)] 

with vii= vii(~,H) and v1 = v1 (~). This functional is linear; and for 

any constant function Aa = Ca(s), 

oo en 

s(c) = ~ ca 1 d(~B) j d[2ma(H- ~B- ~¢)] 1/2Fa(~,H) 
a 0 0 

a 

C n , 
a a 

where we have simply integrated by parts. 
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To.ca:lculate dS(A)/ds, one must consider the s-dependence of 

(a) the factor B before the integral 

(b) the B and ¢ in the limit of integration 

(c) the Band ¢in the integrand, and 

(d) A in the integrand. 

The contribution of (b) is identically zero since the integrand is 

zero at the limit of integration. For dS(A)/ds we have then 

dS(A) 1 dB 1 dB I . ~B ) 
= - - S(A) - - - S ·l-· ---n---rl. A 

ds B ds 2B ds H - ~B - ~~ 

1 d¢ ( q¢ . 
- 2¢ ds S H - ~B - ~A) 

From quasineutrality, S(q) = 0; so with A = q we have from E~· (D3) 

d¢(s) 

dB(s) 

2 2 
= S(qv i /vii ) 

2 2 
2BB~q /mv

11 
) 

The functionals S(A) are dimensionally and qualitatively like an aver-

·age of A mult1plied b,y the density, summed over species: 

(D5) 

'and (D6) 

evaluated at s. Thus 
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evaluated at s • 

Crudely, v1
2

/vll
2 

"'T1(s)/TII(s). At the mirror, Till is very small 

since only the SF ions are creeping over the barrier. Tel/ is not so 

small if¢ continues to decrease in region II. So, using T1(s)/B(s) = 

T1(o)/B0, Eq. (Dl) becomes 

ed¢ Til 
·--~-

near the mirror. Til indicates}the usual midplane temperature. The 

right side is finite as dB/ds - o, so d¢/ds - 0 at the mirror. 

In region II we see that Eq. (Dl) predicts increasing, rather 

than decreasing, ¢; the right side does not change sign. But this 

equation is not correct in region II, as we now show. 

holds only when the region H > ~B + q¢ is filled with particles 

governed by F(~,H), as a look at the lower limit of the H integration 

in S shows. The more general lower limit to be used in the definition 

(D2) of S is 

H' =Sup [~B(s') + q ¢(s')] 
a s'<s s 

(D7) 

as in Eq. (5 ) of the main text, in the language of midplane veloci-

ties x and y. But with this change in the integration limit, it is 

1 
still not true that 2 S(l) = n, or S( q) = 0. Instead, 

00 

na = Sa(l)- BJ d~[2ma(H~- ~B- ~¢)] 1Y2Fa(~,H~) 
0 

(D8) 



where H' is the expression (D7), a function of 1-L but not s. (This a . 

new expression is obtained upon integrating (D2) by p3.rts with the new 

lower limit of H-integration. The subtraction represents the fact 

that the low-vll p3.rt of phase sp3.ce at s in region II is empty if 

there are only SF particles there.) So if 

Sup [1-LB(s') + q¢(s')] ~ 1-LB(s) + q¢(s), 
s·'<s · 

as in region II for the ions, then Eq. (D4) is incorrect, even though 

Eq. (D3) is still correct. The contribution (b) from the limit of 
' ' 

integration is again zero, but now for a different reaso~: the limit 

for the ion's i:s independent of s. 

~hermore, if d¢/ds < 0 at the mirror, instead of 0 as implied 

· by Eq •. (Dl), then for ions the maxim1..llll of 1-LB + q¢ occurs at 

s = M(IJ.) .:::: L. This means that even at s ~ L, the more general lower 

limitmust be used. Consequently, Eq. (Dl) also fails near the 

mirror, and there is no physical requirement that d¢/ds be zero there. 

From Eq. (D8) and quasineutrality we have S(q) = X(q) instead of 

S(q) = o, where 

<D 

X(A) = LBJ di-L[2ma(H~- 1-LB- ~¢)] 1/2Fa(1-L,H~)Aa(s,I-L,H~) (D9) 
a 0· 

with H' given by _Eq. (D7). H' is a -function of 1-L· ·a --. a 

If one plans to use Eq. (D3), there can now be special problems 

· evaluating the left hand side, if H' ~ 1-LB - g¢ ~ 0 over ~nly p3.rt of 

'" 
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the ~-integration range for species a. If it is zero for all ~ for 

both species, there is no problem because X(q) = 0. If it is nonzero 

for all ~· for both species,- .ve have 

_dS_(_q_) - .:._ dB X (' q --~-B __ + 2q) + .:._ d¢ X 

ds - 2B ds H' - ~B - q¢ 2¢ ds 
(DlO) 

But if for some~' H~ - ~B- ~¢I 0 for some ~ > ~0(s), but H~ -

~B - ~¢ = 0 for ~ < ~0(s), the coefficients of the X's in Eq. (D~O) 

cannot be factored out.. The terms of (DH>)) are serarately infinite, 

having nonintegrable singularities in the integrands because 

(H~ - ~B - ~¢ )
1

/
2 

derarts from zero linearly at ~ = ~0 ( s). The 

situation is analogous to 

00 I ~X- y 

0 ~ -v-;:c=~x=.==y=);:2 =+=h=(=~=) o=[=c ~=x===y::;:) 4:;:]:----

for an arbitrary function h(~), where, for x andy positive, one 

cannot write the expression as 

J(above) 

The proper nonsingular version of Eq. (D~~) 

I c1Gl:B d¢)-1-l/2 
~B - ~¢) \ ~ - + q - . 

\ ds ds 

l is too unwieldy to give a useful expression for (d¢/ds)(dB/ds)':"' ,., 
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when substituted into Eq. (D3). 

If d¢/ds 1 0 at s = L where dB/ds = o, then the maximum of ~B + ~ 

lies outside the mirror for electrons (for those ~ large enough that 

there is a maximum) and inside the mirror for the ions. Thus X. gies 
J. 

problems for at least some range of s < L and X gives problems for a 
e -

certain distance beyond L. If for some s, ~B + q¢ ~ Sup(~B + q¢) 

for all ~, or if one simply ignores the electron density at the larg-

est value of~ for which ~B- e¢ = Sup(~B- e¢), then one can get a 

useful expression. For s > L, the first condition is satisfied by the 

ions. Ignoring large-~ electrons then, we have, from Eqs. (D3) and 

(DW) 

(Dll) 

in region II, where 

is the minimmn 

by Eq. (D7). 

parallel kientic energy of species a at s. H' is given a 
2 

F i is zero when 6ll < 0. Fa is an average of Fa on the 

forward and backward velocity sheets. Like s, X is always non-negative. 

X(A) is dimensionally and qualitatively like an average over ~ of 

Mil times a mean valu~ of F at the loss boundary. Since the ion 

spread in parallel energ;y for a given ~ :is small in region II, the Xi's 

nearly cancel the S .. 's. The result is 
J. 
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const. > 0, 

for s sufficiently far from L in region II. 

\ 

,,, 
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E. ATYPICAL SPECIAL CASES 

1. Simplification when B( s) Has No M:Lximmn Inside the Device 

In the case W < L (or L undefined) there is no region II outside 

the confinement region. Density at the wall can be evaluated from the 

loss 'rate just as n.(L) was evaluated previously. The loss boundary 
J.. 

in midplane energy sp3.ce becomes simply 

In some short-mirror experiments, for example DCX 1.5'J'75 this is the 

geometry. The meaningful "mirror ratio" for such devices is just Rw· 
Theorem 3 remains valid, so that there cannot be a denser external 

plasma without strong two-stream instability. 

The magnetosphere is another mirror-confinement situation with 

no local maxima of B in the region accessible to pLrticles. At the 

ionosphere (the "ends": s = W) it also differs from the situation 

assumed thus far, in that the gravitational field produces an upward-

directed ambipolar electric field there (i.e., d¢/ds ~ 0), and this 

allows the plasma density there to be greater than in the rest of the 

magnetosphere. (The second premise of theorem 3 is violated.) But 

because the ionosphere layer is thin compLred with the magnetosphere 

dimensions, this dense, collision-dominated layer can be considered :-:: 

part of the "wall", i.e., to be at s = w+, with a suitable reformula-

tion of conditions at the "sheath". (Because the ionosphere is free 

to emit electrons, it can have little if any sheath drop.) Only the 

region outside the plasmapause76 has electron temperature high enough 

to give significant plasma potential.77 As with some ion-injection 
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experiments19, it is not clear that t:p.e equilibrium source rates of 

ions and electrons are equal; and· because Rw is large (of order 100), 

the ion loss times are much longer than corresponding 90 deg scatter­

ing times.· But in any case, if the ring current belt 78 has an equa­

torial density of order 1 cm-3 and Debye length of order 20 meters 

( . -6 ) '''19 -1/2 3 x 10 earth radii;· then because Au.varies only as n , there 

is no doubt that the plasma condition is satisfied at ali s. Hence 

the ring current belt is not isolated from the ionosphere, in the sense 

of section IIA. 

2. Hot-Electron Plasma 

~en Te >> Ti, the dimensionless plasma potential ~O = e¢0/Te 

is reduced because scattering rates are smaller at higher temperatures, 

and ~O is dete~ned by equating electron and ion loss rates. For 

T /Ti ,..., (m./m )l/3, the value of cp
0 

necessary to maintain equal loss e ~ e 

fluxes becomes very small, as mentioned in section IB. In this case 

one cannot generally have nearly-isotropic electrons, and the "damped· 

· Maxwellian" model of section IIIB is no longer a good one; the elec-

tron loss region reaches nearly to the origin in velocity space. 

80 
Typically in hot-electron laboratory .plasmas, Tel » Tell because of 

electron heating by gyroresonance, and this is consistent with good 
.-.: 

to fe near v = 0. 'As a further difference, often the ions in such 

experiments are mostly untrapped (SF), maintaining quasineutrality by 

virtue of their low T. and thus long transit times. Since usually no 
~ 

attempt is made to heat the ions, they f[RY be collisional, i.e., 

viL/ci >> 1. Electron scattering may be primar~ly due to neutral 

I i 
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. 1/'!1 . 82 
When T /T. > (m./m ) , ¢0 is negative and scales with T., e l l e l 

so that the shapes of the loss regions and distributions for ions and 

electrons.are just interchanged from the usual case with T. >> T. 
l e 

Fokker-Planck calculations, both initial value problems and steady 

state ones, have been reported by Lieberman81 for typical hot-electron 

plasma, ignoring the plasma potential and external regions. 

To see what happens in the external region when ¢
0 

is negative, 

consider as an example the case where the ions are collisional, i.e., 

the ion loss region in midplane velocity space is filled by the Maxwell 

tail as if there were no loss boundary. The ion density at s = L is 

then 

with 

-a!WIJ J1lT . 2] - e dt eat 

0 
(El) 

'*'! co -t2·J + e dt e 

v'liT 

where w0 = e¢0/Ti, W = e¢L/Ti' and a= aL = ~(~ - Rw)-1
• These 

equations are taken over directly from Eq. (Cl4) for electrons, and it 

is assumeq that rgion II is collisionless so that no SF ions return to 

region I. The electron density at s = L is 

n (L) = n SF(L) + n c(L), e e e 
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with 

SF Hn l/4 I 3/4 ne (L) ""' n0 ~P (Lv ce ) 

and ne c(L) ""'. Foc~[(2/me)(¢L- ¢o)J-l/~. (E2) 

as given in Eqs. ~(19) and (21) for ions; P and v now refer to electrons 

[vis the lops rate and P = (cfl 2/c12 )(~- l)-1]; F0c is the effective 

source fl~ of cold electrons. The electrons, however, are quickly 

accelerated out from s = L because of their low mass and their magnetic 

moment, so that the density ne SF ( s) decreases rapidly with s for s > Lo 

In order that the ion density may decrease similarly, ~(s) increases 

rather sharply with s to its maximum value, at 

If this maximum is reached at some 

which n.sT = 0 and 
l. 

sl < W and ne~F continues 

SF · 
to decrease rapidly beyond s1 , n. may not be able to decrease corre-

SF l 
1 

-!~o! . 
spondingly (note that ni ""' 2 n

0
e when '1/r = 0) unless the gradient 

of ¢ reverses, accelerating out ions and (more importantly) making a 

trapping well for cold electrons entirely in region II. The situation 

is somewhat like that discussed at the end of section v. If cold 

electrons can collect in this new depression in -~ (Fig. E-1), it need 

not be very deep because now 

SF c 
n = n + n e e e 

TII + n e 

where TII refers to cold particles trapped entirely within region II 

(superscript c refers to particles without magnetic moment, streaming 

through region II). The new contribution n TII can be quite large for 
e 

a given depth of the potential depression, since. the escape time of 

cold particles from such a depression scales with the energy-scattering 

It 
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Fig. E-1. Potential energy, -t, for low-magnetie~oment ions in a hot- electron plasma. 

Hypothetical -w vs ~~ showing possible trapping of cold ,ions in region II. 
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time. 

If the electrons trapped in this depression have temperature 

TW << Ti' and if sufficient backgroU:hd gas is available to supply 

such electrons, then ¢ stays within a few times TW of its maximum 

value, ¢
1

, as s increases. Thus ¢w ~ ¢
1

; the availability of very 

cold electrons "clamps"¢ at roughly its maximum value for all.s out-

board of the maximum. But if the ions are so cold that Ti ~ TW' then 

the scale of ¢(s) is of order TW and the depression is not a negligible 

feature. And since the maximum of ¢ in this case is no longer at the 

wall as assumed in referring to potentials in Eq. (El) to the wall, 

one must change j7/f0 j to jw0 - w1 j and 17/J'LI to 17/J'L - 7/f1 1 in Eq. (El), 

if the wall is still defined as the zero of potential. (7/f
1 

is the 

dimensionless potential e¢/Ti at s
1

, i.e. the maximum value of w.) 

3. Small Mirror Ratio 

Decreasing temperature and decreasing mirror ratio both increase 

the particle loss rate (except in the case where the loss rate is 

governed by transit time). Let v be the loss rate of that species 

which scatters slowest. (When discussing both species at once, we will 

use "<'' to refer to this species and ">" to refer to the faster-scatter-

ing species.) When~- 1 ~ 1, v is of order v0/ln ~' where v0 is 

the cumulative 90-degree scattering rate, and transit times are assumed 

much faster than ln ~/v0 • But as ~ - l - o, v increases to the in­

verse transit time, vll/L. By contrast, the faster-scattered species 

is contained largely by the plasma potential and its loss rate is 

sensitive to ~ only through the dependence of ¢0 on ~ (except, of 

course, when ¢0 becomes very small)o In order that the loss rates 

'" ,,, 
I 
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always be equal, 1¢0 1 must decrease(and then increase, if ¢
0 

begins 

at some negative value for moderate 1\ - 1), as 1\ - 1-+ o, until the 

situation is just that of plasma in a box (dB/ds = 0), where most of 

the potential ¢
0 

appears at the sheath and n(s) ~ n
0 

for all s < w-. 

Then 

independent of scattering rates (and almost always positive) instead of 

as in the case of moderate mirror ratios17 and short bounce times. 

·( -8,;,.;-3 ) In the mirror-For nonrelativistic Coulomb scattering, v
0 

« m v • 

free limit, the time required to scatter into the velocity-space loss 

region is zero, and the loss time is just the transit time. In this 

limit the collisionless model is not a very good one; the distribution 

of the slower scattering species is all "tail." (In.the notation of 

-1 
section IIIG,k = T.) The isotropy factor Pin Eqs. (28) through (31) 

becomes large, as discussed at the end of Appendix B. In the hot-

electron plasma, if one assumes that electron lifetime is given by 

-1 -1 ;-
v< = v0 e ln 1\ + L v~ll' 

while ion lifetime, for zero plasma potential, is 

Then, if ions fill the Maxwell tail, ¢
0 

increases to zero v1hen 1\ 
decreases to 

"' 
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~ "'exp 

.' (The exponential argument is usually small if Te/Ti is very large.) 

For smaller RL' ¢0 is positive and scales with Te' just as if the 

electron scattering rate w~re largesto 

' i 



-175-

F. FORTRAN PROGRAMS 

A relatively trivial FORTRAN program, XTRNL, was run to calculate 

the relative ion density n.(s)/n.(L) vs R and ~L - ~s' and the rela-
l. ]. s 

tive electron density ne(s)/ne(L) (ST + SF electrons) vs Rs and ~L - ~s' 

for typical parameters, and to compare the two functions to find 

~L - ~ · vs R from quasineutrali ty. In the same program but independ­
s s 

ent of this calculation, the model ion velocity distribution function, 

Eq. (Bl6), was tabulated. This was contour-plotted by CALCOMP, as was 

the relative ion density. Trivial subroutines IONPLOT and FIPLOT (not 

shown here) invoked the University of California Graphical Display 

System (GDS) to drive the CALCOMP. The program was run on a CDC-6400 

and took 4.4 sec to compile and 11.9 sec to execute. Since the plot 

routines are not instructive, we list the grid size and contour spacing 

here: 

IONPLOT [Plotting ni(s)/n1(L)] 

Grid size in both rand ~L-~: 0.05 

Contour interval: 0.05 

n.(s)/n.(L) from 1.0 (at s 
]. l 

L and ~ ~ ~L) down to about 0.18 (for 

R ~ Rw • 2 and ~ ~ 1) 

FIPLOT [Plotting Eq. (Bl6)] 

Gnd size in both x = v
11
/c1 andy== v./c1 : 0.05 

Contours: 7, given by (0.85 FIMAX)(N/6 + 0.01), N ~ 0, 1, •• · 6. 

(FIMAX is the maximum height of the function.) 

The results of IONPLOT are shown in Fig. B-7, rage 137; those .::OY 

FIPLOT, in Fig. B-1, page 114. A plot of the computed potential ~L - ~s 
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vs R is shown in Fig. F-1, and illus~rates the approach to linear 

dependence of the rarallel electric field on B as discussed in Appendix 

B (on p. :t-66) and on p •. 29 of the main text. Values. of the density 

along the curve cpL - cps vs R are used in Fig. 9 to compare with a 

simple approximate fOrmula Eq. (20) • 

.h 
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Fig. F-1. Potential vs R outside the mirror (computer result for Rw = 2, RL = 3). ~ = e¢0/Te 
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RU~ F1RTRAN COMPILER VERSION 2.3 B.l 

PROGRAM XTRNLCOtiTPUT,TAPE99) 
000003 CALL SECONDCX) 
000005 PRINT 5,X 
000013 CALL IONS 
{f()0014 CA(T--SErDNll(X) 
000016 PRINT 5,X 
000~24 CAll FION 
000025 CAll SECONDCX' 
000,27 PRtNT·5,X 
0000~5 CALL ELF.CTRN 

~~~0~1~0036 CALL SECn~O(XJ 

I 0 I) 0 ~ 4 0 p p ItH 5 ' X 
01)0046 CALL POTNTL 
000047 CAll SEC~NO(X) 
0000Sl PRINT 5.,X 
01)00~7 5 FORMAT(* TIME USED IS*Fl0.3) 

--~0~0~0057 ST~P 

OOOOhl FND 

.. 
_ __, ___ ------ -- -----------··· 

-~· 
.) 

I 
1-' 
-...J 
()) 
I 
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FUNCTIOl\1 ERF(X) 
ER?OR FUNCTION 

• ,,, 

CJ BKY* ERF 

C ~RF=2/SQ~T(PI)*I~TEGRAL OF EXP(-T~Tt FROM 0 T~ K. 
c-----l.lSTl\1~ A~ APORJX[ MA T1 ~N DUE TO HASTl~GS .-ABSOLUTE ERRJR A-fffi(JT-Jr-'7 
c 

DIMENSION A H,) 
DATA A/.D00043063B,.0002765672 1 .0001520143,.00927l5272,.0422823123 
1,.~705230784 I 

Y = AI3S(X) 
T --=--A-fTT*Y 
DO 10 1=2,6 
T = (T + ACU)*Y 

10 CONTINUE 
T=l./(T+l.J 
ERF=l.-T**l6 
t F\X~li-'01--E RF , = ~F 
RETURN 
END-

I 
t-' 
-...:] 
\.0 

I 



'F't"~TRAf\J c0'-4PILER VERSION 2.3 R•l 
·-------· -.-·---~-----:--------·-

RfAL Fu~rT!ON £(Q) 
EPJF(I{):(1.1(5QPT(3.·1415Q0 1~)) )~SlP·IN 

IF (Ql·r,,~.4 
4 !I="(Q~ 8.)r;,9,9 

---· ··.-7····· 

__ _;___S.t:=EXP. ("(~pqy;-;.;ERf.(SQPJCO)T) ------------------ --·-···· --·· -·-··· __ ,. _______ ·- --···--·-

.c 
GO T0-1 0 
GET TO 7 IF Q NEG~TIV~ 

1 E~l. 
· (H)> TO 1 0 · 

9 Gn-ro Jlt., 
---·3Tflr0P'·J=l·;----------.-· ·----------··-·-··· ··-- ---·---·---··· ------···· 

R()T~~= 1 • 
. su:-1~J: 1. 
oo 317 N~t,lo 
TOPW=<2.oN-l.)OTOPN 
BOTN:-?.. n&OTr-.ra-Q 

'----.__,...__,._ N=T r-, PN7rHlTN-----·--·---------- ·- ··-

SUH~J:o;C::lJ~N+ T"J 
~) 7 CONTP!UE 

E~ETNF(Q) 
}n RETdRN 

END 
·---------------· --·-------· ------------··-···---

~ ~ 

I 
1--' 
()) 
0 

'· 
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REAL FUNCTION DAWSON(A,IJ) 
C0'4M1N/ACO~/f\COM 

EXTERNAL EXPAT2 
AU=A.:.u 
IF(U)319,319,310 

310 IF(AV-10.0l311,31l,314 
311 N=O 

ACOM=A 
CALL QUAD(O.O,SQRT(U),AREAl,AREA2,RELERR,N,EXPAT2) 

·i-. ~ 

C QU~D IS A Bl~Aqy DECK WHICH INTEGRATES EXPAT2 FRO~ 0. TO SQRT(U)( 
t-----GIVING AREA2 AS VALUE OF INTEGRAL. 
C EXPAT2 MUST BE GIVEN BY A REAL FUNCTIO~ SUBROUTINE OF ON~ VARIABLE 

DAWSON:(2./SQRT(3.14l~))*EXP(-AU)*AREA2 

GO TO 319 
314 IF(A)311,315,316 
315 DAWSON=(2.0/SQRT(3.1416l)*SQRT(U) 

GTIIO-TI-cJ 
316 T OPN= 1. 

BOTN=1. 
SUMN=l. 
DO 317 N=1,10 
TOPN=(2.*N-1.)*TOPN 
BOTN=2.~AU*BOTN 

TN=TOPN/BOTN 
SUMN=SUMN+TN 

317 CONTINUE 
SERIES=SUMN 
DAWSQN=(2.0/SQRT(3.1416))*(.5/(A*SQRT(Ul))*SE~lES 
Go- TfJ-31~ 

318 DAWSON =0.0 
319 RETURN 

END 

I 
I-' 
CP 
I-' 
I 

~ 



· -':oatRAN COMPILER VERSION 2.3 8.1 . . ...... . ·--.. . . --~---..,.._-.,..,;. .. ~···~.~-.... ~ ·-- ··~··- -~-·--· --~· ...... '··~· .. -~--·· .. --.--... 

SUBROUTINE IONS 
COMMON/F/F(21~21) 
·tOMMON/RI~L,RW,OELT 
B~_4_LN~ 0-~~.X ...... __ . . .. .... .. . . . . . . .. .. 

C CONSTS.RL tRW'e WI DTH,DEL T,OEl TAL, P, TEMP=TE/TJ PARALlEL 
t R IS lNDEP, VSL, 'RW .• LT. R .LT. Rl . 
t Y IS DEP V8l Of XTRNL PROB., Y ~GT• 0.0, USUALlY .LT. 1.0 
C Y= MAX POTl ·- POTtfiO 
C IF OELTAI..=OElTt MAX POTL IS POTL(RLt 

----'-·--· .. - FOR THIS~_tRJ).Q_teM_, .:'! .. l.S 1'-H_Y.(l_L-PtiY_tS), ~J:Ht.~O.ELT~l =P!=LT 
C PHY =~sMALL SCRIPT PHY IN APPENDI'X 8• PHJsCAPITAL PHI. 
C P ·IS C'L(~d ETA~SAR IN APPENDIX 8 
C IN ·THESI$ NOTATION, S2=fPSI(0)-PSitl) )/_(Rl~l)*KAPPA,-IETA BARt:· 
t rPS!~TE/TltP.ARAllELJ *PHY . . 
C tP~I.SCALEO ro· Tit PHY SCALED TO TEt 

-·---~------~.f.i_b~·H J.$:: __ R_~\.A!lV.~ ... lO.ttJ)..E~S. AL .. eJlUH. R,, YJ .. PEFl~.eo 
C 8¥ R:RL-.05*(1-i.I*(RL-RW) . 
C AND YJ=.05*1J~l~a . 
C ·ARITHMETIC STATEMENT FUNCTIONS FOllOW 

DECAY lZ ,PHI, Sl ,S2' S31 ::::fZ/ U .-zt t* ( ECZ*PHIJ/SQRT ( l) -E( PHI I 
++E~PC-S2t*Cf·(PHl+S2)-Sl*EIS3))) . -

_____ L...:_ . .::~BE~!U~g· SZ __ tS:.~~-~-B..Gf,_ ... !!4JL~Q.NI;~NV.~~J:J~ J,,JNj~ JS ~~-~"- HH"-t.e .. 
C· ·tAN SHOW Z=l'. lMP'LIES Sl==l. AND PtU+S2=S3. · . 

1 

· ... NEOECAY tz, PHI ;S h 52,53 )=( Z/( l.+z)) *IE ( Z*PtH )/ SQRTfZ l+DAWSON(G.ffiMJ) 
+-EXPC•S2 f*C OAWSOtHG,PHI-S2 t+Sl*El S3 H t .. 

C BECAUSE S'2' lS LARGE, THE CONTIN·UATION LINE IS NEGL JGI8LE 
C G STANDS FOR 1~0 

OECA'Y U.Z ,PH It=C O. 5-PHI a *E CPHI) +SQRT (PHI/3 .1416) 
---------.----~~OECA\'LGfz;>ptill= file r~-::z j f*i c·t.'/SQRT (·z, j •efi*'PHI t-e (PHI ) , 

\· « ., 

I 
f-' 
CD 
1'\) 
I 

-·. -·----- ~ --- - -·- . --- ·---· -------. --· --- . -··-·-----·--·-------·--- -·-··--·---~-----
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C DEFINITION •• ~ 
C OAWSONCA,UJ=2/SQRT(Plt*EXPC-AUt*INTEGRAL(O,SQRT(U)) EXP(A*T*TlOT 
C COMPARE OAWSON(l,Ql WITH E(Q) ••• 
C ECQt~2/SORTtPI.*EXP(Q)*INTEGRALCSQRT(QJ,INFl OF EXPC-T*TtDT 

~ _ _£ __ _Qg_~.! .. J.~-~.S-~Jl __ ~ti~N _J J~~J>QS1IlV~ ~-~--l~R~j:R Tt;!AN UNITY)_ 
C NE·D't5CAY IS USED WHEN l IS NEGATIVE fR SMALLER THAN UNITY) 
C NEITHER IS USED WHEN R=l., SINCE BOTH ARE ZERO BUT COEF B2=INFi 
C DECAYl IS USED WHEN Z=1., BECAUSE DECAY IS PECULIAR THERE 
C DECAYLG IS USED WHEN Z IS LARGE, JUST TO AVOID WORK. 
C SPECIFY CONSTS NOW 

Rl=3.0 -
--------------·---iiw;;z~o ---- · 

WIOTH'=O.l 
OELT=~.O 

DEL TAL=4.0 
P•0·•2 
'fEMP=0•5 

----,-----------W1Ttf'~THES_E_C_ONSTS, AS R GOES FROM 3 TO z,zi 
C GOES FROM lNF TO 0.2 AND PHI FROM 0.2 TO Cl5.2 WHEN YJ=1 ) 

G=l.O 
A=WIDTH*C Rl>-1. t 
S 1-l •1./ SQR T ( 1. +At 
SZ=TEMP*DELT/A-P 

---- ------------::S3l"iTf:+T:7i l *oei r* T-EMP 
S4=1.+1./A 
XNORM=l./(E(P)-EXP(-S2)*CECP+S2)-Sll*ECS3L))) 
PRINT 86,XNOiV1 

86 FORMATtlX,*XNORM= *tE10.4) 
C . ·WI·TH. TH.YJL.Y..~~~l~ __ Q_f ___ c;O~~TS,. __ !~.!>2 r. $J~•.9._( ~P_f!~O~l.t S2=_9!_8,S3!~l:lt 
C ' - 'ANO Slta6. . - . 
C WITH THESE CONSTS, THE EXPC-S2)*••• PART OF XNORM IS SMALL. 
C APPROXIMATELVt XNORM =t./E(.2t=l.4 
C P+S2:::tTEMP*Ot:L T/A -· .· 

I 
1--' co 
\..N 

I 



C. · ·BEGJN:·CA(CUl~ltCN 'Of FlR·,Y) 
:-~-""io-::-~oo::-stY'· ; . .t:=fi~·z-=t· ~:-::-:"':-~·~- . -. ---:··· ..... ·- -.. , . 

. . ,.R~t~~O~it:fl~·t)•tRC~RWJ.~ 
lFfABS C;R(~R ):.... ·.OOOt':)~l5 ~ '1S' 13 

13 IFCASS(R-:t• )-: .001 )25,25,14 
14 IFCR~t.ll5~2S,20 
20 B2=(R/Rl)*SQRTHRL-l. tlABSfR-1.) )*XNORM 

---·-zT--fl~w~TbiH/iT;TfR::f:T~i·:/·tRt-1·~·; i -~ ·--
c ·-ll·lS INFINIT-E WHEN R=RL Cl5), AND ZERO WHEN R=l. (25) 
C ·· ll lS KE(;ATIVE FOR R 'eGT·.· ~l OR R .Lt. 1. 

lF(Zt .. &:.T.COc.·o·t•ANO~R.GE~(l.t tGC T0·55 · 
30 '':ff'hliast"tt~f'~~o·J~<;;oc) t"t4:5~~~~o·· , "···· c_,.,, "'' .;, .,,., 
40 · Zl=·A·es ( ztl · -·-------ft=Tri.Eo.o:olt;n·ro·-2-s--·--... --~------··· -..... -·· · · 

Sl:'SQRTllRt:"""l·. )lABS (R-1.1 J*Sll. 
PRINT 96,R~ll•PHI ;·82, 

'' "!' ... 

'·1 •. 

-~ ·::; ·.: ) ~\ :': 

96 ·FOR~AT llX'-t*R:*, F6 .2 t*Z l=*~El0.4,16tPtH=*•E 10 •. 4, * · ·. . 82=··~10.41.' 

C FROM HERE~ TO STATEMENT 79 = CALCULA-TION OF F(R,Y) IN OROI'NARY CASE ---· -"50 ·00·79· :r;=f,2l-·--~--.~-~~--,. ........ :'""" ... ·---.. -- ··=-- .. ·-·7 -·· .. _ ... ____ .,... .... ·"''-·-- .. ·~· ,c•-.·~- ... ···• .• , .. :;:·· 

y J= ( J-1 ) .•• 0 5 
·S3= U ,..+t.lA J•tO:EtT+YJ) *TEKP· 
TH ~(l./WtOTHJ*CCOELT+YJt/C~-l.J-DELTAL/(RL-l~•)*TEMP 

C TK IS·NEGATIV£ WHEN-~ .LT. 1., AND INFINI~E. WHEN R~l. . 
t . TH•· I$·; ZElU)': ·Wff:Ett' R'~Rl 'ANQ·;VJ=iOELTAL--OElT • AND · . . . . . . · 
c . . · ~ ·~~rf=.i4'0!t'i''i£:~tf!f~1" t1£'f'i1 Y.d· -;Mt;s"T""B e" '"Nes:iiYvE'·'·io .. G ef"' ~'N~·~"or H"eft•:.J :· · ,.,;. , .. :r.~::,r.:' 
c · ietto or:· ttf:~OR ·R ·.-a:. r. RL• · · · 

PHl=ABS (l.H+·PJ · 
10 ··Ft·•h·JJ•=B2*0ECAY( Zl; PHI ,Sl ,S2, S3) ·. 

lf(l.GT.2tGO TO 7~ 
E TEST=E fPHI I 

--~---.,.it~INT'. --z6;-er e·sr -~it, .., .. .i · ·· 
26 ·FORMATflX,·*ETEST *El0.4 1 * R •,F5.2,• YJ *F4.2) 
79 CONTINUE . 

·GO TO 80 

• ·.; 

'· 
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___ k ______ CA_b~~-l:__AT lO~ ___ Qf.El~-' Y) JN. PE.CUL I AR <;ASES Z= I NF, 1, o, NE:G 
C FIRST CASE. R NEAR MIRROR. R=RL) 

15 l 1=9999. 
82=(R/Rl l*SQRT( tRL-1.) I { R-1.)) IE C P) 
00 19 J=1~21 . 
YJ= ( J-1 )*•05 
PHI=ll./WIOTH)*(10ELT+YJ)/(R-l.)-0ELTAL/(Rl-l.))*TEMP +P ---- --- -Tif_F_cT,-n·,;;a-z-·oec·A"vt..Gi·z 1, PHY, · ·· · · · · - - -- -

19 CONTINUE 
C END OF FIRST CASE 

GO TO 80 

~--~----SEC_Q~tL~A$__~-~-l.l::J.~. _ !L.JS _Nf::A.R.L.E.HJJ !\fOr 4T.t ... Rt.. 
45 oo-49 J=l,Zl 

YJ=tJ-1 t•.os 
PHI=tl./WlOTHt*C(OELT+Y~)/CR-1.)-DELTAL/CRL-l.))*TEMP +P 
PHI'*ABS C PHI I 
FCl,J)=82*DECAYl(ZitPHI) 

-~--'t9 CONTINUE ___ ---------______ . _________ __ 
c END Of SECOND CASE 

·GO -·TO 80 

55 PRINT 56,Rrll 
C ll IS NEGATIVE, R EXCEEDS RL 

.... 

----~--_2-~ ____ f:_OR.~A ''Lt!JtL l. J S NEG~ T I VEt R= tf ¢. ~, 5 tj Zl =, E 1 0_. 3 I 
ZI=O•O 

C THIRD CASE. ZI•O. (R=l.t 
25 00 29 J=l,21 

y J= ' J-1 t •• 0 5 

'f· 

C Sl IS NOT USED SINCE IT IS SINGULAR. DITTO 82. S2 IS IN CONSTS. 

·~ 

C.---_ - __ S.~Jl.~+:l.!1~~ t~ CP~.t. T+ V.,JJ *TEMP_ 
F(I,J)=(E(CDELT+YJ)*TEMP)-EXPC-S2)*ECS3t/SORT(S4))*XNORM*SORTCAt• 

+(R/RL) 
29 CONTINUE 

C END OF TKIRO CASE 
GO TO 80 

I 
1-' 
CX> 
\J1 

I 



·--,-~-----··-·;:ouRtti"cise. R .ct. 1., sur Nor roo NEAR 1. 
35 Sl=SQ·RT HRl~l. )lABS (R-1. t )*Sll 

C S2 IS OEFtNEO IN CONSTS. 
B2=(R/Rl)*SC~f((RL-l.)/ABS(R-l.t)*XNOR~ 
ZI=WlDTH/(1./(R-l.)•l./fRL-1.)) ' 

·--~.L:: .. ~~~ c_~ I_ l. 
DO 39 J=l,ll 
YJ=:(·J-1)*.0.5 

· S3.=·ct.•l./At*:(DELT+YJ)*TU4P · -· .·· . . 
TH ·=( 1-./WlOTH J*C (DEL T+YJ) /( R-1. ).,DEL TAll( Rl-1 .-J ) *.TEMP 
PI.,U=ABS (TH'+P) 
FU, J)z82*NEOECAY(Z I ,PHI, 51 ,S2 ,S3 J 

-----39~toNffN"lJe-·-· -------·.. ._ .. ____ .. __ " ·----- ------ .. ~ · .. · · 
t ENO:OF FOURTH CASE 

80 CONTINUE 

81 PRINT 76~(K,K=l,21,2),(J,(f(I,J),J:i:l,2l,2),1=1,21J 
76 FORMA·T (60X;*A-RRAY F*/1 t·x, O'COl*tllll:l//llX,*R*, I 2, llfll.4 U 

--------- --· -PRfifT ... f6 ~tif;i<-:;2~2o, 2f;11 ;c"Fl I ,J J.,·J~i-,20, 2 J, 1=1, 2U . 
16 F'ORMAT( 60-X; *ARRAY F*/llX, *COl*t lOll'l/1( 1X, *R*; I 2, lOF11.4 t l 

C J GOES: ACROSS t l GOES DOWN . - . 
CALL l_ONPLOT 

100 RETURN ,, 
END 

;...._,;,_.-·-·--·~---:'"-~--.-~-~--· .. ··~ ..... -:-:-~:":""~"··.-:·. "-'~ ., ... ~.,. , .. ~- ~-·.:-::"""·:·····-·.-<-

··;. 

• . 

. ' .. 

' ... 

~ ... 

I 
1-' 
(X), 

0'\ 
I 



f ~ 

E.9 .. B.I~~tL~9MPILER YE_RS_ION 2.3 8.1 

SUBROUTINE ELECTRN 
COMMON/RlRL,RW,OELT 
COMMON/ELECIELECC21,21) 
DIMENSION STC21,2lt,SFC21,21) 

-------c--- ----~ARiftf~·srAtEMENT" -FlfNtrfoNs· FoiTow 

f' 

ESTCA,U):EXPCUt*ERFCSQRTCU)) - DAWSONtA,Ut 
+- ( 1.-XEE )* ( 1. +A·)/ ( A-8) * CDAWSONfB.,U) -DAWSON( A, U) ) 

-~-

E SF (A ,U)=XEE* ( ( l.+A) I C CK+A t•. 5*C DAWSON (A, U) +E CCK*U J *• 5/SQRT (CIU: t 
++0.5*((CK-l.)/(CK+A))*SQRTC1./CK)*EXPC-A*U)t 

. SSTtA,U)=fXPCUt*ERFC$0RTfU)t -OAWSON(A,U) 
-------------..-c·f~xeETi-n~:-+At····roiw·sa"N(a"',·-ur.:.o.4wsoNc A- ;o1 ,u, ,. 1oo .·o 

t NOTATION ••• ESHA,UJ IS EST(PHY,A.,B,XEE) IN THESIS 
t 1 A=A, U=PHY. CORDER OF FIR'ST 2 VARIABLES INTERCHANGED.) 
t SST IS SPECIAL VALUE OF EST FOR CASE A=B 
C SEE SUBROUTINE IONS FOR DEFINITION OF DAWSON 
C CK IS CAllED K IN APPENDIX C. ----c .. -----sPEC'IFv--·c·aN's·r-s·-·Fa·R· et.:et1RoNs·- .. 

6=0.0 
XEEaO.l 
CK=lO.O 
PHY0=4.7 
BNORM=l.O 

---- -·------Ai;"Rw7iRL.::rh~-; 

PHYOFL= PHYO-OEL T 
PRINT 4036 

~ I 

~· 

I 
1-' 
(X) 
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I 



c CA·LC'ULATION OF ELECll;J) IN ORDINARY CASES 
D.O 400 I=l;.2:t· 

·. R=RL-.O!>!J'ft.:..t J*lRl-RWt -----··-····----- -··- fF(-R.:RwT3.35 ;·345 ;33o ·····- .... 
335 R=RW 
345 A I= 999·9. 

GO TO 350 
330 AI=R~/(R-RWJ 

lF' AI-8 )350t355' 350 
··-··· ·-- .. .. -- --- '":····-···-·~-·-·-~-----··-- -··--······-· 
350 00 399 J=l;2.l" . 

YJ= .os•cJ-i't·· 
UJ=PHYOFL .... VJ 
I FC·UJ )365· ;3659360 

365 UJ=O.O 
360 lf(Rl-R)31St375~380 

-- ---3eo-TIPR;;t.r.:;::.:-v.J•ci=i1n7t~ti..:iff-~--·-

c 

tFcu~R,37s~3ts~39o 
390 CORRS T=EXP~t-RW*YJ/ ( Rl•R) t 
391 CORRSF=CORRST" 

ST( t,·J) =EST (A t.UJ t-CORRST*ES T (A f,UPR) 
SF( I, JP=ESF (AI,UJ)-CORRS.F*ESFC At UPR t --·-· ---·--····-· ·---------~------- -------· ..... ,----------. ----~-- -· .... ·- -· --' ., ..• 
ST,SF ARE THE ST,~F ELEClRN DENSITIES EXCEPT FOR FACTOR 
ElfC CIt J)=8NORM!Ct(ST U, J )+Sf fl, J) 1/ (STU, 1) +Sf U, U) 
GO TO· 399 · . .. . .. 

37.5 R=Rl 
395 GO TO 385 

__ .. 1~2 t!~!t:=J>.O __ . 
CORRST=O.O 

. GO. TO 391 
399 •. coNrnwe 

GO TO 400 

'~ -#! 

E XP·( -PHYO) 

~ -
~.r 

I 
I-' co co 
I 
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· C NOW THE CAS£ Al=B 
_____ . .l52_J)_Q ___ 9..99,_J~l.i 21 .. : . "' . 

YJ=.05*(J-l) 
UJ=PHYOFL-YJ 
IF(UJ)965,960,960 

·965 UJ=O. 0 
960 IF(Rl-R)975,~75i980 

-- ___ 9..~Q.~~f:'Ji=J4J::'(J!JR::-.l!;llll~ 1.,-R) 
IF{UPRJ995,995,990 

990 CORRST=EXP(•RW*VJ/(RL-R)J 
GO T"O 991 

C If UPR tS ·NEGATIVE OR ZERO NOW 
, 995 GO TO 985 

. __ ... _ __j_l5._:J~-~RJ,. ·-'- .. __ . .. _ .. _ _ . _ 

c 

985 UPR=O.O 
CORRST=O.O 

991 CORRSF=CORRST 
ST(J,J):SSTCAI,UJJ-CORRST*SST(AI,UPR) 

· SFCI~J)=ESf(AI,UJJ-CORRSF*ESFCAI,UPRt 
.. --"'~--~k~J:JJ,.~)_::z8~()RM*( Sl: (I,~) +Sf (_I, J)) I ( ST ( l, 1) +SF ( 1, 1) ) 
999 CONTINUE 

END OF THE CASE AI=B 
400 CONTINUE 

4000 PRINT 4006, CK ,K=l ,21,2) ,(I, ( ST( I, Jt ,J=l,21 ,2J, 1=1,21 J 
4006 FORMAT(60X•*ARRAY ST*//1X,*COL*tlllll//(1X,*R* 9 12,11Ell.4/Jt 

OENSL=STfl•lt+SF(1,1) . 
. ·4oTcf -PRINT 46I6,oeNSL_____ -·. 

4016 FORMAT(lX,*OENSITY AT l*,4X,El2.4/t 
PRINT 4036 

4020 PRINT 4026,(K,K=5,15),(1,(Sf(I,J),J=5,15l,I=l,21) 
4026 FORMATC60X,*ARRAY Sf*//1X,*COL.,lllll//(1X,*R*,I2,11Ell.4/)) 

..... ___ $)~~ INT 4036 

~ 
., 

I 
1-' 
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\0 

I 
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DO 4030 M~l,3 . _ 
lFC M-2 t·4021.,402294023, 

4022 AOUt~o;l . 
GO TO 4024 

4023 AOUT=0.3 
4()'24 DO 4029 N~l ,z l 

UN=•l*{N-1) 
TEST=ESTiAOUT,UN) 
PRINT 4ll6,UN,TEST 

4116 FORMATe lX, *UN*, SX, 2Ell.4) 
4029 CONTINUE 

·------·-·--:Ga:-··ra·~~4o3cf · · ·· 
4021 Aour:.o. o 

00 4032 N=l,21 
UN=.l*f trU 
TEST=SSTtAOUT,UNt 
PRINT 4lt6,UN~TEST 

--·--·4o3z -carifi'NTie ______ -- · · ·--- ·· 
· 4030 CONTINUE 

. PRINt 4036 
4036:. FORMAT ( lHl) 

RETURN . 
• END 
=-----'·-·-·-·-..·~• .. ·'-~·-- ... ~ .. - ........ ~-·· 

(\ •.J "- . ., 

I 
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SliHRr1(JT TNE I'OTNTL 
r !l\1 MtlN/ R/Rl, ~W, OEL T 
Cn~MO~/F/F(21,21) 

c SEE SliBKOUTINF IONS 
-----Cc=---0=-. \4,.,-,~ 1 J~TFL EC /fLEC ( 21 ,21J 

c 

.. 

,. 
w 

SFE SUARnUTJNE ELECTRN 
OTMENSION CHARGEC21,2lt 
P~Ir-.:T 406 

40b FO~M~T(lXr*Y OF R*/) 
qnuTINE TJ FIND J, GTVEN J, SUCH THST F(l,J)=FLEC(J,Jt 

4Jl DO 500 1=1,21 
R=RL-.05~(1-l)*(RL-RWt 

f1C'l 4qq J=l,Zl 
VJ=.0'5*fJ-l) 
C~AR:,E(J,J)=F(I,Jl-ELEC(f,J) 

IF{J-l)49q,499r410 
430 SIGNO=(CHA~GFCI,J))*CCAARGE(I,J-l)t 

fF(SlGND)460,499,499 
4~0 pqJNT 4h6,R,YJ,~(J,J),f(I,J-l) 
466 FORMAT(lX,F7.1,F7.3,El2.4,El2.4) 

SIGN OF CH~~GF HAS CHANGED ON CHAN~ING J. THIS MEANS A ROOT. 
GO TO 4Q9 

4<)9 C f'N TJ NUE 
15':!0 CCNTI"JUE 

:;u TO 501 
501 RETURt~ 

FND 

-·--·-·---~· --·-·-·------------

.,;, 
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SUBR~liTINE Flt1N 

C CJ\LC 1JLATES tHE ION DISTRIBUTION ~F EQUATION B-16 
C ~LL VELOCITIES SCJ\LE~ TO SQRT OF 2*fi(PERP)/M 

DJ~E~SIUN FJ(41,41) 
COMMON/FIMAX/FIMAX 
~l=3. " 

. DEL T=2.6' 
DAT~ CPAR21.3333/ 
D~TA tRATID/.125/ 

C CPAR2 IS TJ(P;\R)/TJ(PERPt 
C · TRATIO IS ~UTI (PERP) 

Z=CPAR2/(Rl-l.) 
710 DO 780 i=lt41 

YI=.05*(I~l) 
XL2=CRL-l.)*YI~YI-(DELT*TRATIO) 
lP(Xl2)725,725,720 

7~0 DO 779 J=l•4l 
XJ=.05*(J-lt 
B~'CKET=EXP(-XJ*XJ/CPAR2)-EXP(-Xl2/CPAR21 
IF(BRACKET)735,730,730 

730 FJ(I,JI=BRACKET*EXP(-YI*Y'I) 
GO TO 77q 

7 3 .~ ITTtlT=1Y;1J 
77Q CONTTNUF 

Gn T.O 780 
7?5 DO 72q J=l,41 

XJ=.05*(J-l) 
FI(J,J)=O.O 

72CITOT'fTTNUE 
730 CJ'HINUE 
781 P~TNT 7A6,(K,K=l,21,2),(1,(FJ(I,J),J=l,21,2}~T=li41) 
786 FJRMAT(l~l,*ARRAY FIO~*//lX,~J ~,11111//(tX,*I t,I2,11Ell~~1t 

f('-1 A X= 1 ./ ( 1 • +l ):!f ( 1. + 1 .ll) * * ( -z ) *f X P ( -DEl T * TR AT l 0 /( R L -1 • ) ) 
pqH!T 796,FI'-1AX 

796 UFDIU1A TuX' *F I MAX~£c;Ell. 4, Ill 
7QO CALL FI PUJT (f I) 

Pi=;TU~N 

END 

(" cl "· "'' 

., 
j 

I 
f-' 
\0 
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A 

b 

J3 

c 

c 
e 

sub c 

sub ex 

C(x) 

D 

e 

sub e 
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Gi SYMBOLS USED IN THE MAIN TEXT 

= Rw/(R - Rw), function of position at which R = :B/B0 is 

evaluated. (Generalized form for anisotropy, p. 145.) 

ion gyroradius in Sec. IIB. 

atomic weight, Sec. IIA. 

K - 1 measures extent to which the electron loss erodes 

the trapped electron distribution just inside trapping 

region. 

= function derived from BenDaniel calculations, typically 

magnetic field strength. 

~ thermal speed (2T/m) 1/ 2 at midplane. Exact value of c 

is defined as a parameter in the analytic form of g~jyJ. 

c is subscripted as follows: 

parameters for species being considered. 

electron pa.rameter, when cell = eel.· 

= "cold", I'eferring to cold particles. 

"charge exchange" 

= height of the ion distribution g(x,y) at the loss 

boundary y = yL(x). 

= velocity spa.ce diffusivity, averaged over velocity space 

near the loss boundary 

= magnltude of electron charge. 

= referring to electrons 
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EST(cp,a,b,s) =function giving dimen,sionless electron density vs .. cp. 

b and s ~re p:trameters of the "damping" of g (x:,y). e 

f 

f(s;v
11
,v

1
) 

F(s) 

F 

g 

g(X',y) 

G(x,y) 

. H 

H(x,y) 

sub i 

= energy in waves due to saturated instability. 

usual distribution function f(v). 

same thing, at sp:ttial point s~ 

flux of escaping :rarticles, per unit area normal to 

fieJd; lin~, evaluated at point s. 

value of 1· 27r ydy xdx g(x,y) at midplane which would 

give the observed F(s) at large s if the dynamics were 

collisionless. 

= en~rgy loss flux 

modified midplane distribution function, see Sec. IIB. 

same. 

= Maxwelli~n in midplane velocity space x,y. 

= total energy (Sec. IIB) • 

= damping factor multiplying Maxwellian. 

= referring· 'to ions 

I (Roman numeral) refers to spatial region between mirrors. II refers 

j 

J 

k 

k 

to region outside mirrors. 

integer 

action integral 

= inverse decay width of g (x,y), as in Appendix C• 
e 

k = K + 1 [~=decay width of H(x,y)J. 

= wave vector, in Ch. IVBo 

ill 



'• 

L 

m 

n 

N 

p 

q 

Q 

r 

R 

s 

Sup 
s'<s 

ST 

SF 

T 

T(s) 

u 

u 

v 
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= distance along field line fr~m midplane to mirror. 

particle mass. 

- distance from mldplane to point of highest 

potential energy, for a given magnetic moment ~· Under-

stood to depend on species. For most ~, M(~) ~ 1. 

= number density, particles/cm3. 

= normalization of distribution function 

= (cll 2!c/)(~- 1)-1, referring usually to ions. 

particle charge 

coefficient in ni(W) = Q(Lv/cill)' Sec. IIA. 

coordinate(s) normal to s. 

any s, 

RL = BL/BO' 

B ::::: B(s). 
B 

For 

arclength coordinate along field line, measured from 

midplane. 

maximum value, over the range of s' consistent with 

s '<s. 

referring to particles streaming through region I but 

trapped within the device. 

referring to particles streaming through region I and 

not trapped within the device. 

= temperature at midplane, in energy units (subscripted as 

necessary with e, i, II, 1). 

= effective temperature at spatial point s. 

d~. integration variable. 

U( s,~) = J!B + qjJ, potential for parallel motion. 

velocity. 



v 

w 

sub W 

sub x 

X 

y 

a 

a 

·f3 

f3 

-196-

Vlasov trans~ormation,of velocity distribution at point 

s into velocity distribution at s ~ 0. 

= value of s at the end wall (midplane-wall distance). 

= evaluated at wall. 

-evaluated about a Debye length· from the wall (~ = ~~ , 

but¢ and n vary rapidly in the sheath). 

referring to electrons born in region II or at the end 

walls. such electrons are called x-elect:rons. 

parallel ve,locity at'midplane~ 

perpendicular velocity at midplane. 

parameter in- Sec. IVA de.sc:ribing extent to which "x" 

electrons from the wall are trapped and thermalized for 

long times in.the device. 

magnetic f,ield coordinate in Ch. V. 

= magnetic field coordinate in Ch. v. 

= fraction of "x" electrons trapped for longer than one 

transit time through the device. 

dimensionless constant of order unity in Sec., IVA. 

ov/1, ov 1, OE II, OE 1 = width of. some peak feature on the 

velocity distribution. 

b. (operator) = change in parameters from the case where "x" electrons 

€ 

.,, 

are absent. 

kinetic energy at midplane. €/1 = energy of p3.rallel 

motion. E 
1 

= 1-lB =,energy of gyromotion (drift motion 

ignored). 

,,, 

·' 



K 

v 

rr 

p 

a 

(' 

cp 
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= decay constant in velocity sp:~.ce for the "damping" 

function H(x,y) outside the loss boundary. K' = decay 

constant for H(x,y) inside the loss boundary. 

k = K + 1; b = K1 
- 1, 

= wavelength. 

Debye length. 

plasma p:~.rameter 4m~3 • 

magnetic moment. 

loss rate. v - collision rate (for cumulative 90-degree 0 -

scattering). v = loss rate due to charge exchange. ex 

= loss rate of "p" (main plasma) electrons; v = loss 
X 

rate of "x" electrons. v esc escape time of cold par-

* ticles from a simple potential well. v = ionizatlon 

rate. 

= height of electron mock-distribution g (x,y) at the loss 
e 

boundary, divided by height of the corresponding 

Maxwellian there. 

= phase-space density (f/B) in a~sv space (ch. V). 

= cross section (Ch. v). 

bounc time 

electrostatic potential. Subscript indicates where 

evaluated, e.g. ¢1 = ¢(L), ¢s = ¢(s), ¢w = ¢(w-}. 

e¢/T , dimensionless potential. Similarly subscripted. e 

= see list of simbols at end of Appendix B. 



~\ 
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e¢/T. for, e.g., hot electron p~asma, where ¢ scales 
l 

with T .• 
l 

wave frequency (angular), Sec. rv:s. 

'' 
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