
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Lossy Compression for Exascale Scientific Applications

Permalink
https://escholarship.org/uc/item/3bd194zt

Author
Zhao, Kai

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3bd194zt
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Lossy Compression for Exascale Scientific Applications

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Kai Zhao

June 2022

Dissertation Committee:

Dr. Zizhong Chen, Chairperson
Dr. Franck Cappello
Dr. Rajiv Gupta
Dr. Zhijia Zhao

Copyright by
Kai Zhao

2022

The Dissertation of Kai Zhao is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I am extremely grateful to my advisor, Dr. Zizhong Chen, for his encouragement, guidance,

and support through every stage of my Ph.D. Without him, I would not have been here to

complete my degree and to continue my academic career. Dr. Chen led me to the world

of research and allowed me to explore the directions I am interested in freely. Dr. Chen

has deep understanding in many fields and he always gave valuable advice on my research

topics. I learned the way to be a good researcher from him. Apart from academia work,

Dr. Chen cares about my work-and-life balance. I truly appreciate his efforts in solving my

two-body issue with my wife.

It is my honor to be mentored by Dr. Franck Cappello and Dr. Sheng Di during

my internship at Argonne National Laboratory. The invaluable spirits of academic rigor and

critical thinking of Dr. Cappello have guided my continual pursuit of excellence in research.

Dr. Di is always passionate and self-motivated, and I am deeply inspired by his research

enthusiasm. Dr. Di led me into the topic of lossy compression and provided tremendous

support for my research.

I would also like to thank Dr. Rajiv Gupta and Dr. Zhijia Zhao for being my

dissertation committee members. Not only did they provide many insightful comments on

my thesis, but also they provided great support for my career path.

I want to say thank you to my collaborators, Dr. Robert Underwood, Dr. Maxim

Dmitriev, Dr. Thierry-Laurent Tonellot, Dr. Xiaodong Yu, Dr. Danny Perez, Yuanjian

Liu, and Sian Jin. I am very lucky to be friends with many brilliant researchers, including

Dr. Dingwen Tao, Dr. Hongbo Li, Dr. Jieyang Chen, Dr. Xin Liang, Dr. Sihuan Li, Dr.

iv

Chengshuo Xu, Xiaolin Jiang, Dr. Kaiming Ouyang, Yuanlai Liu, Yujia Zhai, Quan Fan,

Elisabeth Giem, Jinyang Liu, Jiajun Huang, Ziyang Jia, Jiannan Tian, Yafan huang, and

Dr. Yuede Ji. I appreciate the help from all of them, and I would like to especially thank

Dr. Tao, Dr. Liang, Dr. Li, and Dr. Ji for their enthusiastic help for my research and

career.

Funding Acknowledgment I appreciate the funding supports from National

Science Foundation (under Grants No. 1305624, No. 1513201, and No. 1619253), from the

Exascale Computing Project 17-SC-20-SC (a collaborative effort of the U.S. Department of

Energy Office of Science and the National Nuclear Security Administration), and from the

U.S. Department of Energy Office of Science (under contract DE-AC02-06CH11357).

Publication Acknowledgment I acknowledge that part of the thesis has been

published or released on line previously.

• Chapter 2 [114] was published in the proceedings of the 29th International Symposium

on High-Performance Parallel and Distributed Computing, Stockholm, Sweden, June

23 - 26, 2020.

• Chapter 3 [112] was published in proceedings of the 37th IEEE International Confer-

ence on Data Engineering, Chania, Crete, Greece, Apr 19 - 22, 2021.

• Chapter 4 [115] was published in the proceedings of the 38th IEEE International

Conference on Data Engineering, Virtual Event, May 9 - 12, 2022.

v

To my wife, Qian Wang, and my parents for all the support.

vi

ABSTRACT OF THE DISSERTATION

Lossy Compression for Exascale Scientific Applications

by

Kai Zhao

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2022

Dr. Zizhong Chen, Chairperson

Today’s scientific simulations are producing vast volumes of data that cannot be

stored and transferred efficiently because of limited memory capacity, storage capacity, and

network bandwidth. The situation is getting worse over time because of the ever-increasing

gap between relatively slow data transfer speed and fast-growing computation power in

modern supercomputers. Error-bounded lossy compression is becoming one of the most

critical techniques for resolving the big scientific data issue, in that it can significantly

reduce the scientific data volume while guaranteeing that the reconstructed data is valid

for users because of its compression-error-bounding feature.

This thesis proposes three new lossy compressors for scientific applications across

different domains. The first compressor exploits effective strategies by using 2nd-order

regression and 2nd-order Lorenzo predictors to improve the prediction accuracy of SZ2

which is one of the best lossy compressors. It also contains an efficient approach to select

the best-fit parameter setting, by conducting a comprehensive priori compression quality

analysis and exploiting an efficient online controlling mechanism.

vii

The second compressor uses a dynamic spline interpolation approach with a series

of optimization strategies to further improve the compression quality. On the one hand,

cubic spline interpolation is included to represent high order data variation, which obtains

much higher prediction accuracy over linear regression for datasets with a high-order vari-

ation. On the other hand, we derive the constant coefficients in our interpolation approach

such that the coefficient storage overhead can be completely eliminated. We further pro-

pose a dynamic optimization strategy to select the best predictor between the interpolation

approach and the multilevel Lorenzo predictor to improve the overall compression quality.

The third compressor specifically targets molecular dynamics (MD) simulation

data. MD simulations can produce a large volume of data because they could involve

trillions of atoms for hundreds of millions of snapshots. Traditional lossy compressors are

not optimized for MD applications because of MD data’s trajectory type and irregular

shape. We propose the MDZ compressor which contains three methods to fully leverage the

data characteristics in both spatial and temporal domains. An adaptive solution is provided

to automatically select the best-fit method during runtime.

viii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Enhance SZ2 With Second-Order Prediction and Parameter Optimiza-
tion 4
2.1 Introduction . 4
2.2 Related Work . 6
2.3 Problem Formulation . 8
2.4 Design Overview . 10
2.5 Second-Order Data Prediction . 12

2.5.1 Second-Order Lorenzo Prediction . 12
2.5.2 Second-Order Regression-Based Prediction 14

2.6 Parameter Optimization . 18
2.6.1 Optimizing Compression Quality Estimation Over Sampled Dataset 21
2.6.2 Offline Parameter Optimization . 24
2.6.3 Online Parameter Optimization . 27

2.7 Performance Evaluation . 28
2.7.1 Experimental Settings . 28
2.7.2 Assessment of Second-Order Prediction 30
2.7.3 Assessment of Parameter Optimization 31
2.7.4 Overall Compression Quality . 32
2.7.5 I/O Performance Evaluation . 36

3 SZ3: Error-Bounded Lossy Compression for Scientific Data by Dynamic
Spline Interpolation 40
3.1 Introduction . 40
3.2 Related Work . 43
3.3 Problem Formulation . 45
3.4 Deeply Understanding the Pros and Cons of SZ 47

ix

3.4.1 Critical Features of SZ Compression Framework 47
3.4.2 Review of Linear Regression Predictor in SZ2.1 48
3.4.3 Serious Dilemma of Linear-Regression Predictor in SZ2.1 49

3.5 Error-Bounded Lossy Compression With a Dynamic Multidimensional Spline
Interpolation . 52
3.5.1 Introduction to Spline Interpolation 53
3.5.2 Spline Interpolation Designed for Scientific Data 55
3.5.3 Multilevel Multidimensional Spline Interpolation 59
3.5.4 Dynamic Optimization Strategies . 61

3.6 Experimental Evaluation . 62
3.6.1 Experimental Setup . 63
3.6.2 Evaluation Results and Analysis . 65

4 MDZ: An Efficient Error-Bounded Lossy Compressor for Molecular Dy-
namics 74
4.1 Introduction . 74
4.2 Related Work . 77
4.3 Research Background . 79

4.3.1 MD Simulations . 80
4.4 Problem Formulation . 81
4.5 Investigation of MD Datasets . 82

4.5.1 MD Simulations Used in Our Work 82
4.5.2 Characterization of Spatial Features 85
4.5.3 Characterization of Temporal Features 87

4.6 MDZ: An Adaptive Error-bounded Lossy Compressor for MD Datasets . . . 88
4.6.1 Vector-Quantization-Based Compression (VQ and VQT) 90
4.6.2 Multilevel Time-Based Compression (MT) 93
4.6.3 Linear-Scale Quantization Optimizations 95
4.6.4 Adaptive Selection of Best Compressor (ADP) 97

4.7 Experimental Evaluation . 98
4.7.1 Experimental Setting . 98
4.7.2 Evaluation Results and Analysis of Lossless Compressors 101
4.7.3 Evaluation Results and Analysis of Lossy Compressors 101
4.7.4 Integration with LAMMPS . 108
4.7.5 Generalizability of Our Solution Beyond MD Simulations 109

5 Conclusions 111

Bibliography 113

x

List of Figures

2.1 Design overview of our solution . 10
2.2 1st-order Lorenzo predictor vs. 2nd-order predictor 13
2.3 Frequency distribution of quantization bins between 1st- and 2nd-order Lorenzo

prediction . 14
2.4 Frequency distribution of quantization bins between 1st- and 2nd-order re-

gression prediction . 18
2.5 Change of compression ratios with block sizes 21
2.6 Change of compression ratios with various prediction dimensions 22
2.7 Change of compression ratios with numbers of quantization bins (Hurricane

(QCLOUDf48) and Scale (QI)) . 23
2.8 Comparison of estimation accuracy (sampling rate refers to the fraction of

sampled data to the full data; sampling rate = 100% refers to the full dataset) 24
2.9 Breakdown compression quality analysis . 31
2.10 Percentage breakdown of four predictors used in the blockwise compression 33
2.11 Overall evaluation . 34
2.12 Evaluation on multiple QMCPack dataset 35
2.13 Visualization of Hurricane (Uf48) . 37
2.14 Visualization of Miranda (velocityz) . 37
2.15 Parallel performance on Hurricane . 38
2.16 Parallel performance on Miranda . 39

3.1 Illustration of linear-regression-based prediction (2D dataset) 48
3.2 Overhead of linear regression coefficients . 50
3.3 Linear regression prediction hyperplane with different error bound settings

of coefficients . 51
3.4 Visualization of SZ decompressed data based on two applications: (1) QM-

CPack – PSNR=56.2, CR=196, and (2) RTM – PSNR=50.7, CR=316 . . . 52
3.5 Design overview of our solution . 54
3.6 Illustration of cubic spline interpolation . 56
3.7 Illustration of multilevel linear spline interpolation 59
3.8 Illustration of multidimensional linear spline interpolation 60
3.9 Compression error distribution of our solution 66

xi

3.10 Parallel performance evaluation of QMCPack simulation (SP(S+O) stands
for SP(SP+PO)) . 68

3.11 Our solution compared with interpolation and Lorenzo 69
3.12 Overall evaluation (lower Bit Rate / higher PSNR → better quality) 70
3.13 Visualization of decompressed snapshot data (RTM) 72
3.14 Compression ratio of RTM data for different time steps (with value-range-

based error bound 1.25E-3) . 73
3.15 Visualization of RTM image for one shot . 73

4.1 Illustration of classic MD simulation . 80
4.2 Demonstration of spatial correlations in atom position data 85
4.3 Demonstration of frequencies of atom position data 86
4.4 Demonstration of temporal correlations in atom position data (time is nor-

malized to 0-50) . 87
4.5 Design overview (VQ,VQT,and MT are described in Section 4.6.1 and 4.6.2) 89
4.6 Illustration of VQ-based prediction + quantization 92
4.7 Snapshots similarity with snapshots-0 (snapshots normalized to 0-100) . . . 94
4.8 Compressor performance affected by quantization scale on Helium-B dataset

(value-range-based error bound (ε) = 1E-3, BS = 10) 96
4.9 Illustration of smooth CR in short term and diverse CR in long term (BS=10).

ADP can pick up the best compressor throughout all the snapshots. 98
4.10 Our adaptive solution (ADP) has the highest compression ratio over VQ,

VQT, and MT under different datasets and buffer size (BS) settings, because
ADP can always select the best compression method accurately. 102

4.11 Our solution has the highest compression ratio on all datasets and under
different buffer size settings, HRTC and TNG fail to run on some datasets. 103

4.12 Rate-distortion graphs show our solution has the best compression quality.
Lower bit rate and higher PSNR indicate better compression quality. 104

4.13 Only our solution yields the correct radial distribution function (RDF) on
decompressed data (Copper-B, CR=10, BS=10) 106

4.14 Our solution is the only one that always has high compression/decompression
throughput (MB/s) on all datasets. As a comparison, ASN is slow on Pt and
Helium-B. TNG and HRTC fail to run on some datasets and LFZip is very
slow due its intermediate disk operations. 107

4.15 Our solution has the best compression ratios on HACC datasets 110

xii

List of Tables

2.1 SZ parameters . 19
2.2 Extended parameters in our solution . 20
2.3 Range of parameters . 25
2.4 Applications used in our experiments . 28
2.5 Lag one autocorrelation of compression error 36

3.1 Spline estimations . 56
3.2 Comparison of spline methods prediction error 59
3.3 Autocorrelation and prediction error of cubic spline interpolation with dif-

ferent sequences of dimension settings, ε=1E−3 61
3.4 Prediction error of multidimensional spline interpolation predictor (S), re-

gression predictor (R), and Lorenzo predictor (L) 62
3.5 Basic information about application datasets 64
3.6 Compression ratio comparison based on the same error bound 67
3.7 Compression/decompression speeds (MB/s) with ε=1E-3 67
3.8 Compression ratio comparison of lossless compressors 69

4.1 MD simulation dataset in our study . 83
4.2 Prediction errors for the first snapshot in buffer 95
4.3 Compression ratio (CR) of Helium-B dataset with difference sequence set-

tings, buffer size (BS) = 10 (method=MT) 96
4.4 Compression ratios of SZ in 1D and 2D modes (BS=10, ε=1E-3) 100
4.5 Compression ratio comparison of lossless compressors 101
4.6 MaxError and NRMSE of decompressed Copper-B dataset, CR=10, BS=10 107
4.7 Runtime breakdown of LJ simulation (F: Data saving frequency, Comp: com-

putation time, comm: communication time, output: data saving time includ-
ing compression) . 109

xiii

Chapter 1

Introduction

With the ever-increasing scale of today’s scientific simulations, vast amounts of

scientific data are produced at every simulation run. Climate simulation [47], for example,

can generate hundreds of terabytes of data in tens of seconds. A cosmology simulation, such

as Hardware/Hybrid Accelerated Cosmology (HACC) [37] can produce dozens of petabytes

of data when it performs an N-body simulation with up to several trillion particles. Such

a vast amount of scientific data needs to be stored for post hoc analysis, creating a huge

challenge to the scientific data management systems [5, 20, 34, 49, 55]. Many scientists also

need to share the large amounts of data across different sites (i.e., endpoints) through a

data-sharing web service (such as the Globus toolkit [31]) on the Internet. Thus, the ability

to significantly compress extremely large scientific datasets with controlled data distortion

is critical to today’s science work.

Compression techniques for scientific data have been studied for years. Lossless

compressors are not suitable for scientific data in that the scientific data are composed

1

mainly of floating-point values that involve disordered ending mantissa bits in their binary

representations, such that few repeated patterns could be found in the data streams. Error-

bounded lossy compression has been considered a promising solution because not only can

it significantly reduce the data size (by 10× or even 100×) but it can also strictly control

the data distortion based on user-specified error bounds [113]. In fact, error-bounded lossy

compressors have been broadly verified as helpful in saving storage space and improving

I/O performance for many production-level applications across different domains, such as

cosmology [46,74], molecular dynamics [28], climate [40,84], and quantum computing [50].

The SZ compression model has been recognized by independent assessments [70,

91,101] as the best-in-class error-bounded lossy compressor for scientific datasets, especially

because it has gone through many careful optimizations [25, 45, 58, 60, 91, 92, 98–100]. Our

research objective is to significantly improve the compression quality of the SZ compression

model for most of the datasets across from different domains. Such a research goal is

challenging. On the one hand, SZ has been developed for many years, so its design and

implementation have been tuned to a fairly optimized level, making further improvement

to the compression quality difficult. On the other, many parameter settings (such as block

size, dimension order, and regression order) are involved in the prediction-based compression

model, making it nontrivial to select the best-fit combination to get the optimal compression

quality, especially because of fairly diverse data characteristics in the datasets.

In this thesis, we leverage novel prediction methods and parameter optimization

techniques to improve the compression quality for the SZ model. Our contributions can be

summarized as follows.

2

• We propose novel prediction methods including 2nd-order Lorenzo, 2nd-order regres-

sion, and spline interpolation. On the one hand, cubic spline interpolation is included

in our novel approach to represent high order data variation, which obtains much

higher prediction accuracy over linear-regression for datasets with nonlinear data vari-

ation characteristics. On the other hand, we derive the constant coefficients in our

interpolation approach such that the coefficient storage overhead can be completely

eliminated. We further propose a dynamic optimization strategy to select the best

predictor from between the novel spline interpolation approach and the multilevel

Lorenzo predictor to improve the overall compression quality.

• We design an efficient approach selecting the best-fit parameter settings during the

compression. Specifically, we perform a comprehensive priori compression quality

analysis to filter out the inferior settings based on error bounds and data character-

istics, and we then exploit an efficient online controlling mechanism to determine the

best-fit setting at runtime.

• We carefully characterize a number of different MD simulation datasets and exploit

some of the key patterns identified in the MD data to significantly improve compres-

sion ratios. We design an adaptive error-bounded lossy compressor for MD datasets

which fully leverages the specific characteristics in both spatial and temporal dimen-

sions. We integrate our solution into the MD package LAMMPS. Evaluation shows

our solution has negligible time overhead in real-world MD simulations under different

scales and settings.

3

Chapter 2

Enhance SZ2 With Second-Order

Prediction and Parameter

Optimization

2.1 Introduction

Error-bounded lossy compression can be categorized into two models: prediction-

based or transform-based. In general, the former performs data prediction for each value

in the dataset and then converts the floating-point values to integer quantization codes,

followed by an entropy encoding [39] and dictionary coding [118]. SZ [25,60,91], FPZIP [66],

and ISABELA [52] are three typical examples adopting the prediction-based model. The

transform-based compression model performs orthogonal data transforms to convert the

original dataset to another data domain and then removes insignificant values [83] or adopts

4

embedded coding [64] to shrink the size. Typical examples are ZFP [64] and wavelet-based

compression [83]. Much prior work [10,25,65] has demonstrated that SZ2 and ZFP are the

two top error-bounded lossy compressors in most cases; however, none of them can always

exhibit the best compression quality on all datasets.

In this chapter, we successfully leverage adaptive parameter optimization tech-

niques with a series of optimization strategies on data prediction, which can significantly

improve the compression quality for SZ2 with the same level of data distortion. Our con-

tributions can be summarized as follows.

• We develop optimization strategies utilizing 2nd-order Lorenzo and 2nd-order regres-

sion prediction to improve the prediction accuracy significantly for SZ, such that the

overall compression quality can be improved prominently in many cases.

• We design an efficient approach selecting the best-fit parameter settings during the

compression. Specifically, we perform a comprehensive priori compression quality

analysis to filter out the inferior settings based on error bounds and data character-

istics, and we then exploit an efficient online controlling mechanism to determine the

best-fit setting at runtime.

• We evaluate the compression quality and performance by running our new compression

solution on a supercomputer with 4,096 cores, as compared with other state-of-the-art

error-bounded lossy compressors.

The rest of the chapter is organized as follows. In Section 2.2, we discuss related

work. In Section 2.3, we formulate the research problem. In Section 2.4, we provide an

5

overview of our design and implementation. Section 2.5 and Section 2.6 describe our ma-

jor solution (2nd-order prediction and parameter optimization) in detail. In Section 2.7,

we present the evaluation results from using multiple real-world simulation datasets on a

supercomputer.

2.2 Related Work

To mitigate the storage burden and I/O bottleneck presented by huge volumes of

data, researchers have developed many data compressors. Lossless compressors [7,15,24,39,

116,118] can guarantee that reconstructed data suffer from no data distortion; however, they

cannot significantly reduce the scientific data size because of the random ending mantissa

bits in the floating-point values. Their compression ratios are usually around 2 [65, 81, 88],

far from the desired level for large-scale scientific simulations running on modern HPC

systems [17,30].

In contrast, error-bounded lossy compressors have been effective in significantly

reducing the science data volume for extreme-scale simulations while being able to strictly

control the data distortion based on user requirements on pointwise compression errors.

Two state-of-the-art models exist for error-bounded lossy compression: prediction-based

[19,25,32,52,59,60,66,91] and transform-based [21,64,83,107]. SZ [25,60,91], ISABELA [52],

FPZIP [66], and NUMARCK [19] are typical prediction-based compressors. Prior work [60]

shows that SZ leads the compression quality among all the prediction-based compressors.

SZ includes four key steps: data prediction, linear-scaling quantization, customized variable-

length encoding, and dictionary encoding such as gzip [24] or zstd [118]. Vapor [21] and

6

ZFP [64] are typical transform-based compressors. They use different data transformation

methods (wavelet transform and a customized (non)orthogonal transform, respectively)

and different encoding algorithms. Recent research [64,91] indicates that ZFP is one of the

best error-controlled lossy compressors for scientific simulation datasets. ZFP compresses

the dataset block by block (blocksize: 4×4 for 2D data and 4×4×4 for 3D data). Each

block involves four steps: exponent alignment, fixed-point alignment, (non)orthogonal block

transform to decorrelate the values, and embedded encoding of the ordered coefficients one

“bit plane” at a time.

No existing error-bounded lossy compressor can always exhibit the best compres-

sion quality (or rate distortion) over all other compressors in most cases. Prior exper-

iments [93], for example, show that neither SZ nor ZFP consistently provides the best

compression results on the 13 fields of the Hurricane ISABEL dataset or on the 100+ fields

of the CESM-ATM climate simulation dataset.

To address this issue, some researchers studied how to improve the compression

quality by combining the two compression models intuitively. Lu et al. [70] concluded that

SZ and ZFP were the two best error-bounded lossy compressors. The authors also proposed

a solution to estimate the compression ratios for SZ and ZFP, respectively. In [93], they

explored an online approach that can select the better strategy between SZ and ZFP in terms

of peak signal-to-noise ratio (PSNR). This solution, however, [60] is subject to the existing

compression quality and performance of SZ and ZFP. Moreover, the two related works both

used the outdated version of SZ (SZ1.4), which exhibits much worse compression quality

than does the latest SZ version (SZ2.0) [60]. Liang et al. [58] proposed a compression method

7

that treats ZFP’s data transform as one predictor (called a transform-based predictor) in

the SZ compression model and selects the better one between SZ’s built-in predictor and

the transform-based predictor, which can prominently improve the compression quality

beyond SZ and ZFP. Compared with all these works, we develop an efficient approach that

can further improve the compression quality of SZ. Specifically, experiments with multiple

real-world HPC simulation datasets show that our approach can improve the compression

quality by 10%∼46% over the second-best approach in most cases.

2.3 Problem Formulation

Our objective is to significantly improve the compression quality for SZ. Similar

to related work [58, 60, 91], we focus on structured datasets (i.e., 1D, 2D, or 3D structured

mesh), because unstructured datasets (unable to be represented by a regular mesh grid)

either need particular compression strategies [4] or are treated as 1D datasets for simplicity.

The error-bounded lossy compression problem can be formulated as follows: Given

a structured mesh dataset (denoted by D = {d1, d2, · · · , dN}) with N floating-point data

values, how can the data be compressed to obtain a high compression quality, while the

reconstructed data (denoted D′) still strictly respect user-specified pointwise error bounds?

In the error-bounded lossy compression community, three ways have been formulated to

assess compression quality in general.

1. Checking the compression ratio (which is defined as the ratio of the original raw

data size to the compressed data size) based on the same error bound for different

compressors.

8

2. Using rate distortion, a common indicator in the visualization community. Rate dis-

tortion involves two metrics: bit rate and data distortion. Bit-rate distortion is the

average number of bits used to represent one data point after compression. The

smaller the bit rate, the higher the compression ratio. Distortion is usually evaluated

by using the peak signal-to-noise ratio, which is defined in Formula (2.1). In general,

the higher the PSNR, the better the compression result.

PSNR = 20 · log10 (max(di)−min(di))− 10 log10 (MSE(D,D′)) (2.1)

where MSE stands for mean-squared error between D and D′. Rate distortion is

arguably the most important indicator because some domain scientists care about the

overall statistical errors, especially for visualization purposes.

3. Checking the visual quality of the reconstructed data compared with the original raw

data, by aligning the compression ratios to the same level for different compressors.

This method is also widely used by existing error-bounded lossy compression devel-

opers [21,25,52,64,66,83,91] and HPC application users [37,50,74,84].

We use all three assessment metrics for comparing our solution with other state-

of-the-art lossy compressors such as SZ [25,91] and ZFP [64]. We will also evaluate the I/O

performance of these compressors on a supercomputer.

9

2.4 Design Overview

We adopt the SZ compression model because it exhibits the best compression

quality (rate distortion) from among the different compressors in literature and as confirmed

by our experiments. SZ adopts four stages in the compression: data prediction, linear-scale

quantization, Huffman encoding, and dictionary encoding (such as Zstd [118]). Here we

focus mainly on how to improve the data prediction accuracy with as little overhead as

possible and how to determine the best parameter settings for the overall compression. Our

work involves only the prediction and quantization steps because the other steps involve

lossless compression that already has optimized settings.

Block-wise Prediction Engine
Sampling engine

Offline

Opt.

Online

Opt.D P 2nd-order
Lorenzo

1st-order
Lorenzo

1st-order
Regression

2nd-order
Regression

Compression

quality

Optimizer

Parameter
Optimization

Linear-scale

Quantization

Huffman

encoding

Dictionary

encoding
D

On

Off

On

Off

On

Off

On

Off

0.12,

0.13,

0.22,

…

0100

1011

1110

…

D P Data flow
Parameter

Raw data
Optimized

Compre. quality optimization engine (main contributions) Quantization+coding

Raw data
Compressed data

parametersParameter Optimization flow

Figure 2.1: Design overview of our solution

We present the design overview of our method in Figure 2.1, in which we high-

light the main contributions by purple rectangles. Specifically, we develop a compression

quality optimizer that includes three key engines working systematically: sampling engine,

parameter optimization engine, and blockwise prediction engine.

10

• Sampling Engine. The sampling engine is designed for significantly reducing the over-

all overhead of our compression quality optimization solution. At the compression

runtime, our approach selects a small portion of the whole dataset by a uniform sam-

pling method, and the subsequent steps (i.e., parameter optimization and blockwise

selection) are performed on top of the sampled dataset.

• Parameter Optimization Engine. The parameter optimization engine addresses two

critical issues: (1) how to estimate the overall compression ratio as accurately as

possible based on the sampled dataset and (2) how to select the best-fit parameters

as efficiently as possible. As for the first issue, simply assembling a new dataset with

the uniformly sampled data blocks and performing lossy compression on top of it

would cause a large deviation of the estimation (demonstrated later). Accordingly,

we develop an effective method that can estimate the compression ratios accurately

for various parameter settings. As for the second issue, we design a two-stage (offline

and online) optimization strategy that can find the best-fit parameter setting with a

fairly low time complexity at runtime. Details are given in Section 2.6.

• Blockwise Prediction Engine. Blockwise prediction is the most important step in our

design. In addition to the traditional prediction method [25, 60, 91] (either 1st-order

Lorenzo or 1st-order regression), we introduce two new prediction methods, 2nd-order

Lorenzo and 2nd-order regression, which can improve the overall compression quality

significantly. Based on the optimized parameter settings selected by the parameter

optimization engine, the blockwise prediction engine checks the compression quality

for each data block and selects the best choice from among the four prediction methods

11

for each block. The 2nd-order prediction methods is detailed in Section 2.5, and how

to select the best-fit prediction method is described in Section 2.6.

2.5 Second-Order Data Prediction

In addition to the original 1st-order prediction methods, we propose to use 2nd-

order Lorenzo and 2nd-order regression prediction, which can significantly improve the

compression quality.

2.5.1 Second-Order Lorenzo Prediction

Second-order Lorenzo prediction was proposed by other researchers conceptually

in the literature. For instance, it was called two-layer prediction in [91]. However, no

compressors are using this idea in practice because of its limitations (detailed later). For

instance, the authors in [91] reported that they did not achieve higher prediction accuracy

in their experiments with 2nd-order Lorenzo prediction. In our work, we combine 2nd-

order Lorenzo prediction with other prediction methods to make it work effectively. In

what follows, we review the 1st-order and 2nd-order Lorenzo predictor and then discuss the

pros and cons of the two predictors and in what situations 2nd-order Lorenzo is better than

1st-order Lorenzo prediction.

We illustrate the 1st-order Lorenzo and 2nd-order Lorenzo prediction in Figure

2.2 (using a 2D dataset as an example). As shown in the figure, the 1st-order prediction

involves 3 data points per data prediction while the 2nd-order prediction requires 7 nearby

data points for predicting each value along the scanning order.

12

ii-1 i+1 i+2i-2

j-2

j

j-1

j+2
j+1

ii-1 i+1 i+2i-2

j-2

j

j-1

j+2
j+1

(a) 1st-order Lorenzo (b) 2nd-order Lorenzo

Current data point (i,j) The points used in prediction

Figure 2.2: 1st-order Lorenzo predictor vs. 2nd-order predictor

In general, the more data points used, the higher the prediction accuracy will

be. For example, the average prediction accuracy on the QMCPack dataset [50] is about

0.00197 and 0.00062 when using 1st-order and 2nd-order Lorenzo predictor, respectively.

On the other hand, we note that SZ needs to use the decompressed data with biased values

to do the prediction instead of the original data, in order to fully respect the preset error

bound during the decompression. In this sense, the more data points involved, the more

the compression errors impact the prediction accuracy, causing a lower prediction accuracy.

Tao et al. [91] demonstrated that 2nd-order Lorenzo prediction does not work as well as the

1st-order Lorenzo, so they adopted only the 1st-order Lorenzo in the released SZ compressor.

We note, however, that 2nd-order Lorenzo prediction may significantly improve the

compression ratio, especially when the error bound is required to be relatively low. Figure

2.3 demonstrates the frequency distribution of quantization bins generated by the 1st-order

and 2nd-order Lorenzo predictors with the same compression error bound for four example

datasets. In principle, the sharper the distribution is, the higher the compression ratio will

be. We observe that when the relative error bound1 is set to the order of 1E-6∼1E-8, the

1Relative error bound here refers to value-range-based error bound, which is defined as the ratio of
absolute error bound to the data value range.

13

2nd-order Lorenzo predictor turns out to be better than the 1st-order Lorenzo. The key

reason is discussed as follows. SZ has to perform the data prediction using decompressed

data each with certain errors, which may impact the prediction accuracy in turn. If the

error bound is small enough, the impact of decompressed data to the prediction accuracy

will be very small. This result is also verified by our evaluation of the percentage breakdown

of different predictors used in compression (discussed in Section 2.7).

(a) Hurricane (Wf48), reb=1E-6 (b) Hurricane (QICEf48), reb=1E-6

(c) QMCPack dataset 1, reb=1E-7 (d) Scale-LETKF (Pres), reb=1E-8

Figure 2.3: Frequency distribution of quantization bins between 1st- and 2nd-order Lorenzo
prediction

2.5.2 Second-Order Regression-Based Prediction

In this subsection, we describe how we design the 2nd-order regression predictor in

terms of the 2nd-order polynomial multivariate regression. The basic idea is constructing

14

a 2nd-order regression hyperplane based on the coordinates and the values of all data

in a specific data block and minimizing the mean squared error by derivation. In what

follows, we first discuss the generic formula and then extend it to fit the blockwise design

in compression.

The generic formula can be derived based on a m-dimensional dataset

(n1×n2×· · ·×nm). The independent variable vector of the m-dimensional dataset is de-

noted as x = (x1, x2, .., xm). Its corresponding dependent variable vector is fx. We use

f2r(x) to denote the prediction value of x by 2nd-order regression. β = (β0, β1, β2, ..βm2)

represents the coefficient vector in which β0 is the intercept coefficient. We denote the total

number of coefficients by m2 = m× (m+ 1)/2 +m+ 1.

f2r(x) = t(x)Tβ,

wheret(x) = (1, x1, x2, · · · , xm,

x21, x1x2, x1x3, · · · , x1xm,

x22, x2x3, · · · , x2xm,

· · · , xmxm),

(2.2)

The 2nd-order regression predictor uses f2r(x) to estimate the dependent variable

fx. The objective is to minimize the mean squared error between f2r(x) and fx, as shown

in Equation (2.3).

fobj = arg min
β

∑
∀x

(t(xT)β − f(x))2 (2.3)

15

This objective function is hard to solve with a closed-form solution because of

the unknown dimension m. Thus, we resolve it for each specific dimension separately. For

simplicity, we describe our solution using a 3D dataset case, which can be extended to other

dimensions easily without loss of generality.

For a 3D dataset, (x1, x2, x3) in Formula (2.2) can be replaced by coordinates

(i, j, k), where 0 ≤ i < n1, 0 ≤ j < n2, 0 ≤ k < n3. Then, the objective function can be

simplified to

fobj = arg min
β

∑n1−1
i=0

∑n2−1
j=0

∑n3−1
k=0 (β0 + β1i+ β2j + β3k

+β4i
2 + β5ij + β6ik + β7j

2 + β8jk + β9k
2 − fijk)2.

(2.4)

It can be solved by setting all partial derivatives to 0.

∑n1−1
i=0

∑n2−1
j=0

∑n3−1
k=0 Aβ

T = V T (2.5)

16

A =



1 i j k i2 ij ik j2 jk k2

i i2 ij ik i3 i2j i2k ij2 ijk ik2

j ij j2 jk i2j ij2 ijk j3 j2k jk2

k ik jk k2 i2k ijk ik2 j2k jk2 k3

i2 i3 i2j i2k i4 i3j i3k i2j2 i2jk i2k2

ij i2j ij2 ijk i3j i2j2 i2jk ij3 ij2k ijk2

ik i2k ijk ik2 i3k i2jk i2k2 ij2k ijk2 ik3

j2 ij2 j3 j2k i2j2 ij3 ij2k j4 j3k j2k2

jk ijk j2k jk2 i2jk ij2k ijk2 j3k j2k2 jk3

k2 ik2 jk2 k3 i2k2 ijk2 ik3 j2k2 jk3 k4



V = (V1, V2, .., V9), Vt =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

gijk(t) ∗ fijk, 0 ≤ t ≤ 9

gi,j,k(t) returns tth element from list [1, i, j, k, i2, ij, ik, j2, jk, k2]

Denote fAn1,n2,n3
=

∑n1−1
i=0

∑n2−1
j=0

∑n3−1
k=0 A. The solution β equals (fAi,j,k)

−1
V T .

Since fAn1,n2,n3
is fixed under given (n1, n2, n3), its inverse matrix can be calculated before-

hand. During the process of 2nd-order regression, we just need to compute V followed by a

matrix-vector multiplication to get the solution β with the optimized coefficients. Based on

the optimized coefficients, the prediction value for each data point (i, j, k) can be written

as f2r(i, j, k) = β0 + β1i+ β2j + β3k + β4i
2 + β5ij + β6ik + β7j

2 + β8jk + β9k
2.

Figure 2.4 demonstrates the frequency distribution of quantization bins generated

after the 1st-order regression predictor versus the 2nd-order regression predictor with the

same compression error bound for four example datasets. The 2nd-order regression exhibits

17

(a) Hurricane(TCf48), reb=1E-3 (b) Nyx(velocityz), reb=1E-3

(c) QMCPack dataset 1, reb=1E-4 (d) Scale-LETKF(W), reb=1E-3

Figure 2.4: Frequency distribution of quantization bins between 1st- and 2nd-order regres-
sion prediction

sharper distribution than does the 1st-order regression, which means that the 2nd-order

regression will likely obtain higher compression ratios in these cases.

Next we compress the 10 coefficients (β0∼β10) used to construct the hyperplane.

Specifically, we compress them using the SZ compressor, because this can lead to out-

standing compression ratios that other compressors such as FPZIP [66], ZFP [64], or bit-

truncation methods [33] cannot achieve.

2.6 Parameter Optimization

In this section, we describe another important contribution, which can further

improve the compression ratios prominently.

18

The key idea is to optimize the parameter settings involved in the whole compres-

sion. This is motivated by our observation that different parameter settings (such as block

size, number of quantization bins) may affect the compression quality.

Based on our new compression design supporting 2nd-order prediction, we sum-

marize a total of 12 critical parameters for the whole compression. Five of them are from SZ

(version 2.0), as shown in Table 2.1, and the other 7 parameters are based on the 2nd-order

prediction we designed, as shown in Table 2.2.

From among the 7 parameters related to the 2nd-order prediction, four of them

are of Boolean values used to control the four prediction methods (1st-order/2nd-order +

Lorenzo/regression). For example, if use lorenzo is set to false, the Lorenzo predictor will

be excluded in the whole process of blockwise prediction. The other three parameters are

used to control the compression of the coefficients for the 2nd-order regression.

Table 2.1: SZ parameters

Type Name Explanation

Input data Original data

Input dim The dimension of original data

Input reb Value range based relativity error bound

Param block size Block size used by predictors

Param pred dim
The dimension used by Lorenzo and
regression predictors, pred dim ≤ dim

Param quan bins Number of bins used in quantization algorithm

Param reg coef intercept
Error bound for compressing the intercept
coefficient of regression predictor

Param reg coef linear
Error bound for compressing the linear
coefficients of regression predictor

The 12 parameters are determined by our in-depth analysis of their impact on

the compression ratios based on experiments using 5 real-world simulation datasets each

19

Table 2.2: Extended parameters in our solution
Name Explanation

enable lorenzo Enable Lorenzo predictor or not

enable 2ndlorenzo Enable 2nd-order Lorenzo predictor or not

enable regression Enable regression predictor or not

enable 2ndregression Enable 2nd-order regression predictor or not

2ndreg coef intercept
Error bound for compressing the intercept
coefficient of 2nd-order regression predictor

2ndreg coef linear
Error bound for compressing the linear
coefficients of 2nd-order regression predictor

2ndreg coef poly
Error bound for compressing the polynomial
coefficients of 2nd-order regression predictor

with multiple time steps, involving about 100 fields and thousands of data files in total.

Different settings of these parameters may lead to largely different compression ratios. We

demonstrate three examples in Figure 2.5, Figure 2.6, and Figure 2.7. For instance, based

on Figure 2.5(a), SZ’s compression ratio is 180:1 and 100:1 on Hurricane(TCf48) with the

error bound 5E-3, when its block size is set to 5 and 11, respectively. In Figure 2.6, none

of pred dim = 2 or pred dim = 3 can always exhibit the best compression ratio when the

error bound is between 1E-3 and 1E-4. In Figure 2.7, 8192 is the best setting for quan bin

to compress the Hurricane dataset with a 1E-5 error bound. However, in order to compress

the same dataset with 1E-7 error bound, the best setting for quan bin is 1024.

In the following text, we describe the detailed optimization strategies, including

optimization of estimating compression quality by sampled datasets, offline parameter op-

timization, and online parameter optimization.

20

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 3 4 5 6 7 8 9 10
 11

 12

C
o
m

p
re

s
s
io

n
 R

a
ti
o

Block Size

5E-3
1E-3
1E-4

(a) Hurricane(TCf48)

 20

 40

 60

 80

 100

 120

 140

 160

 3 4 5 6 7 8 9 10
 11

 12

C
o
m

p
re

s
s
io

n
 R

a
ti
o

Block Size

1E-2
1E-3
1E-4

(b) Miranda(velocityx)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 3 4 5 6 7 8 9 10
 11

 12

C
o

m
p
re

s
s
io

n
 R

a
ti
o

Block Size

5E-3
1E-3
1E-4

(c) QMCPack dataset 1

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 3 4 5 6 7 8 9 10
 11

 12

C
o

m
p
re

s
s
io

n
 R

a
ti
o

Block Size

5E-4
1E-4
1E-5

(d) Scale-LETKF(QI)

Figure 2.5: Change of compression ratios with block sizes

2.6.1 Optimizing Compression Quality Estimation Over Sampled Dataset

Accurately estimating the compression quality based on the sampled dataset is

critical to selecting the best-fit parameter settings and predictors at runtime. To this end,

we design an approach that takes into account how the data will be predicted and quantized

for each block, in that the existing compression quality estimation methods are not suitable

for our case. Lu et al. [70], for example, proposed a sampling-based estimation method

based on the distribution of quantization bins, which can estimate the compression ratios

of SZ to a certain extent. Since this method can support only Huffman encoding but

not dictionary encoding (zstd), it cannot be applied to our estimation. Moreover, since

21

 0

 10

 20

 30

 40

 50

 60

5E-3
1E-3

5E-4
1E-4

5E-5
1E-5

1E-6

C
o
m

p
re

s
s
io

n
 R

a
ti
o

Error Bound

pred_dim = 2
pred_dim = 3

(a) Hurricane(Uf48)

 0

 20

 40

 60

 80

 100

 120

1E-2
5E-3

1E-3
5E-4

1E-4
5E-5

1E-5
1E-6

C
o
m

p
re

s
s
io

n
 R

a
ti
o

Error Bound

pred_dim = 2
pred_dim = 3

(b) Miranda(density)

 0

 10

 20

 30

 40

 50

 60

1E-3
5E-4

1E-4
5E-5

1E-5
1E-6

1E-7

C
o

m
p

re
s
s
io

n
 R

a
ti
o

Error Bound

pred_dim = 2
pred_dim = 3

(c) QMCPack dataset 1

 0

 5

 10

 15

 20

 25

 30

1E-3
5E-4

1E-4
5E-5

1E-5
1E-6

C
o

m
p

re
s
s
io

n
 R

a
ti
o

Error Bound

pred_dim = 2
pred_dim = 3

(d) Scale-LETKF(V)

Figure 2.6: Change of compression ratios with various prediction dimensions

it is designed based on SZ 1.4, which has no regression predictor, it cannot estimate the

compression ratios accurately for SZ2.

Another idea is adopting a black-box compression quality estimation method by

ignoring the detailed compression principles. In order to control the overhead, it needs to

estimate the real compression ratio for the overall dataset based on the sampled datasets.

That is, one can estimate the compression ratios by simply assembling a new dataset using

the sampled data blocks and compressing the assembled dataset by a particular compressor

such as SZ 2.0. Such a black-box estimation method, however, may easily cause biased

estimation of compression ratios because it totally ignores the compression principle.

22

 10

 20

 30

 40

 50

 60

 70

1024
2048

4096
8192

16384

32768

65536

131072

C
o
m

p
re

s
s
io

n
 R

a
ti
o

Number of Quantization Bins

Hurricane(1E-7)
Hurricane(1E-5)
Scale(1E-7)
Scale(1E-5)

Figure 2.7: Change of compression ratios with numbers of quantization bins (Hurricane
(QCLOUDf48) and Scale (QI))

Unlike the simple black-box estimation method, we take into account how the

data will be used in the compression steps. Specifically, we ensure that the sampled block

size is consistent with the block size to be used in the compression steps. Our estimation

method also leverages the data points from other adjacent blocks to estimate the prediction

accuracy in each compression block.

Figure 2.8 presents the significant improvement of our compression-principle-based

estimation method over the black-box estimation method. We can clearly see that even

under a small sampling rate 8%, the compression ratios can be estimated accurately, with

only about 5% estimation errors in most cases. Accordingly, we set the sampling rate to

8% in our experiments.

23

 5

 6

 7

 8

 9

 10

 11

100%
80%

50%
40%

20%
10%

8% 5% 2% 1% 0.5%

C
o
m

p
re

s
s
io

n
 R

a
ti
o

Sampling Rate

Our estimator
Black-box estimator

(a) Hurricane(Uf48), reb=1E-4

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

100%
80%

50%
40%

20%
10%

8% 5% 2% 1% 0.5%

C
o
m

p
re

s
s
io

n
 R

a
ti
o

Sampling Rate

Our estimator
Black-box estimator

(b) Hurricane(Uf48), reb=1E-6

 10

 12

 14

 16

 18

 20

 22

 24

 26

100%
80%

50%
40%

20%
10%

8% 5% 2% 1% 0.5%

C
o

m
p

re
s
s
io

n
 R

a
ti
o

Sampling Rate

Our estimator
Black-box estimator

(c) Miranda(velocityy), reb=1E-4

 6

 7

 8

 9

 10

 11

 12

100%
80%

50%
40%

20%
10%

8% 5% 2% 1% 0.5%

C
o

m
p

re
s
s
io

n
 R

a
ti
o

Sampling Rate

Our estimator
Black-box estimator

(d) Miranda(velocityy), reb=1E-5

Figure 2.8: Comparison of estimation accuracy (sampling rate refers to the fraction of
sampled data to the full data; sampling rate = 100% refers to the full dataset)

2.6.2 Offline Parameter Optimization

Finding the best parameter combination for a given dataset is a multivariable op-

timization problem. The objective is to find the maximum compression ratio using the same

compression function and original data. Gradient-based algorithms such as gradient descent

are difficult to apply for this problem since it is unclear whether the compression function

itself is a differentiable function; also, the derivative is hard to obtain even if this function

is differentiable. Derivative-free methods such as coordinate descent and (meta)heuristic

methods such as simulated annealing, genetic algorithm, and ant colony optimization could

be used to find the approximate global optimization in a large search space if the derivative is

24

Table 2.3: Range of parameters

Name Value Range Values to be Tested
Outstanding
Candidates

enable lorenzo [True,False] True, False True

enable 2ndlorenzo [True,False] True, False True, False

enable regression [True,False] True, False True

enable 2ndregression [True,False] True, False True, False

pred dim [1,2,3] 1,2,3 2,3

block size N 3,4,5,6,7,8,9,10,11,12,15,20,25,30 4,5,6,7,8

quan bins N s1, 4096, 8192, 16384, 32768, 65536, 131072 s1, 16384

reg coef intercept R+ 0.01, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 100 1

reg coef linear R+ 0.01, 0.1, 0.5, 1, 2, 5, b2, 10, 20, 50, 100 b2

2ndreg coef intercept R+ 0.01, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 100 0.1

2ndreg coef linear R+ 0.01, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 100 0.5

2ndreg coef poly R+ 0.01, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 100 2
1 s means use the estimation value provided by SZ
2 b means use block size as reg coef linear
Bold values in column 3 are used in the first step of manual parameter search.

unknown or nonexistent. However, those (meta)heuristic algorithms are all time-consuming

(generally requiring 20+ iterations to converge a near-global optimum solution [104]). By

contrast, we need to control the number of iterations to under 20 such that the analysis

overhead can be limited within 100% when the sampling rate is set to 8%. To this end, we

propose an offline + online parameter optimization method.

The offline algorithm manually searches for the best parameters by testing as many

parameter combinations as possible and analyzes the data generated by this process to get

the best candidates. We manually tested more than 30K combinations of parameters and

analyzed all the results to get the best candidate parameters. For parameters with discrete

numbers (such as pred dim), we evaluate all the possible values. For the parameters with

continuous numbers (such as block size or the error bounds of compressing regression coef-

ficients), we evaluate 10+ values for each parameter; those values are actually outstanding

settings based on our numerous experiments with many datasets. That is, the values outside

this range are unlikely to achieve a good compression quality, based on our experience.

25

The pseudocode of the manual parameter search algorithm is demonstrated in

Algorithm 1. In the first step (lines 2–6), the goal is to optimize the parameters with

priority on the 1st-/2nd-order Lorenzo predictor. Two value sets are used for regression-

related parameters, decided by our prior experience. In the second step (lines 7–9), the

goal is to optimize the parameters of the 1st-order regression predictor: reg coef intercept,

and reg coef linear. The third step (lines 10–12) is to optimize the parameters of the 2nd-

order regression predictor: 2ndreg coef intercept, 2ndreg coef linear, 2ndreg coef poly.

The final step (lines 13–15) is to optimize the quan bin since it is independent of predictors.

Algorithm 1 Manual parameter search
Input: raw data D, relative error bound reb
Output: list of parameter settings and its compression ratio

1: compressMode ← no sampling
2: for (enable lorenzo, enable 2ndlorenzo, enable 2ndregression, pred dim, block size) in (values from

Table 2.3) do
3: for (reg coef intercept, reg coef linear, 2ndreg coef intercept, 2ndreg coef linear, 2ndreg coef poly) in

(bold values from Table 2.3) do
4: Do compression, Record parameter settings and compression ratio
5: end for
6: end for
7: for (enable regression, block size, reg coef intercept, reg coef linear) in (values from Table 2.3) do
8: Do compression, Record parameter settings and compression ratio
9: end for

10: for (enable 2ndlorenzo, block size, 2ndreg coef intercept, 2ndreg coef linear, 2ndreg coef poly) in (val-
ues from Table 2.3) do

11: Do compression, Record parameter settings and compression ratio
12: end for
13: for quan bin in (Values from Table 2.3) do
14: Do compression, Record parameter settings and compression ratio
15: end for

We analyze the data generated by a manual parameter search to get the out-

standing candidates. The manual search was conducted offline; that is, it does not involve

runtime overhead for compression. The manual search results are maintained separately

26

based on data fields. For each field, we first identify the best compression ratio (denoted

as best ratio) and then collect good parameter settings whose compression ratios are larger

than 95% × best ratio. Having gleaned relatively good parameter combinations for each

field, we can choose any one parameter combination selected and use it to do compression,

which can achieve at least a 95% top compression ratio. Then we collect the outstanding

candidates for each individual parameter statistically based on a prior probability. Specif-

ically, if some parameter value appears frequently (larger than 85%), we put it in the

outstanding-candidate set. For instance, if the parameter block size=5 appears in the good

candidate parameter combinations for 86 fields from among 100 fields, we choose it as one

of the outstanding candidates. The final results are shown in the last column of Table 2.3.

By this selection method, we considerably reduce the number of parameter values to be

focused on during online parameter optimization.

2.6.3 Online Parameter Optimization

Our solution searches the best parameters based on the outstanding candidates

generated by the offline optimization. This auto parameter search process is an online

process, which means it will be executed every time when we run the compressor. The

subsets generated by sampling are used to find the best parameters. After that, the original

datasets will be compressed by our compressor using the best parameters.

Parameters with multiple outstanding candidates in Table 2.3 will be evaluated to

find the best setting. There are 5 parameters that need to be evaluated and we clarify them

to 3 groups: pred dim and enable 2ndlorenzo as group 1, block size and

enable 2ndregression as group 2, quan bins as group 3. The evaluation is performed group

27

by group since parameters between groups have little correlation in terms of the compres-

sion process. To find the best settings, Group 1, 2, and 3 require 4, 10, and 2 iterations

respectively, according to the number of outstanding candidates of each parameter in Ta-

ble 2.3. Thus, there are 16 iterations in total in our auto parameter search to choose the

best setting regarding the first 5 parameters. The remaining 7 parameters have only one

outstanding candidate each; thus, they do not need to be optimized during this step. Using

a heuristic algorithm such as simulated annealing or a derivative-free algorithm such as

coordinate descent is unnecessary for the auto parameter search because there are only 16

iterations in total which is already efficient.

Although the online auto parameter search performs on top of the outstanding

candidates generated by an offline parameter optimization, this solution is also efficient on

new datasets, as we verify in Section 2.7.4.

2.7 Performance Evaluation

In this section, we present the evaluation results based on the datasets produced

by five real-world scientific simulations from different domains.

2.7.1 Experimental Settings

Table 2.4: Applications used in our experiments

Name Domain # Fields Size Per Snapshot

Hurricane [40] Weather 13 1.3 GB (= 13× 96MB)

Miranda [73] Hydrodynamics 7 1 GB (= 7 × 144MB))

QMCPack [50] Atom/Molecules 4 ∼17 GB (=0.6 + 3.4 +13) GB

Scale-LETKF [84] Weather 12 6.4 GB (=12×539MB)

NYX [74] Cosmology 6 3.1 GB (=6×512MB)

28

Table 2.4 describes the five applications, which all require compression techniques

to store big science data [37,50,74,84]. In particular, QMCPack here involves three datasets

that are stored in three scales—288×115×69×69 (1 field), 816×115×69×69 (2 fields), and

6192×115×69×69 (1 field)—corresponding to 0.6 GB, 3.4 GB, and 13 GB, respectively. We

call them QMCPack dataset 1, QMCPack dataset 2, and QMCPack dataset 3, respectively.

Since our experiments involve parallel processes each with several gigabytes, the de facto

total data size is up to 10+ terabytes for one application in our experiments, when the

execution scale is 4,096 cores.

We conducted our experiments on the Bebop supercomputer [12] at Argonne Na-

tional Laboratory using up to 4,096 cores. Specifically, the experiments involve 64∼128

nodes, and each node is equipped with 128 GB memory and two Intel Xeon E5-2695 v4

processors (each with 16 cores). Its storage system adopts a General Parallel File System

(GPFS) equipped with 2 I/O nodes, and the I/O system is a typical high-end supercom-

puter facility. We perform data writing/reading by a file-per-process method with POSIX

I/O [109] in parallel.1

We compare our solution with three state-of-the-art lossy compression methods:

SZ2.1.8 [60], ZFP0.5.5 [64], and a hybrid model [58], which have been confirmed as the

best in class [58, 70]. The hybrid model merges the SZ2.0 and ZFP0.3.1 to get the best

compression quality, while suffering from 200% time overhead [58].

In what follows, we first present the compression quality results based on second-

order prediction and parameter optimization and then present the overall compression qual-

1Another researcher [103] verified that POSIX I/O has comparable performance with parallel I/O, such
as MPI-IO [95] when reading/writing thousands of files simultaneously on GPFS. We also further verified
that the read/write performance difference of POSIX IO and MPI-IO is within ±10% on this supercomputer,
when the execution scales between 2k cores and 8k cores.

29

ity in terms of the indicators defined in our problem formulation (Section 2.3). We also

evaluate the I/O performance gain by running a series of parallel experiments on a su-

percomputer with up to 4,096 cores, and compare the results with those of other existing

state-of-the-art compressors.

2.7.2 Assessment of Second-Order Prediction

In Figure 2.9, we present the rate distortion improvement obtained with the

second-order prediction (shown as blue curves in the figure) over the original design in

SZ 2.0 (called Base(SZ) and shown as black curves in the figure) that uses the 1st-order

prediction. As mentioned in Section 2.3, the higher the PSNR, the better the compression

quality; and the lower the bit rate, the higher the compression ratio. We can clearly see

that using 2nd-order prediction (see Section 2.5) can significantly improve the compression

quality over the original SZ with 1st-order prediction in many cases, especially with rela-

tively high bit rates or relatively high precision. For instance, the compression ratios can

be improved by about 50% when the PSNR is greater than 120 dB for the Miranda and

QMCPack simulation. The main reason is the high-order nature of the datasets. However,

we can also see that at some bit rates, the original SZ with 1st-order prediction outperforms

the one with 2nd-order prediction. As shown in Figure 2.9, for instance, 1st-order predic-

tion is much better than 2nd-order prediction when the bit rate is in the range of [1.5,5] for

the Scale-LETKF(Pres) field. This result provides motivation for adopting both 1st- and

2nd-order predictions in the compression.

30

 50

 100

 150

 200

 0 2 4 6 8 10 12 14

P
S

N
R

(d
B

)

Bit Rate

Base (SZ)
2nd order Pred

1&2 order Pred + Par-Opt

(a) Hurricane

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 2 4 6 8 10
 12

 14
 16

 18

P
S

N
R

(d
B

)

Bit Rate

Base (SZ)
2nd order Pred

1&2 order Pred + Par-Opt

(b) Hurricane(Pf48)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 1 2 3 4 5 6 7 8 9 10

P
S

N
R

(d
B

)

Bit Rate

Base (SZ)
2nd order Pred

1&2 order Pred + Par-Opt

(c) Miranda

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3 4 5 6

P
S

N
R

(d
B

)

Bit Rate

Base (SZ)
2nd order Pred

1&2 order Pred + Par-Opt

(d) Miranda(density)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 2 4 6 8 10
 12

 14
 16

P
S

N
R

(d
B

)

Bit Rate

Base (SZ)
2nd order Pred

1&2 order Pred + Par-Opt

(e) QMCPack - dataset 1

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 2 4 6 8 10
 12

 14
 16

P
S

N
R

(d
B

)

Bit Rate

Base (SZ)
2nd order Pred

1&2 order Pred + Par-Opt

(f) QMCPack - dataset 2

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 2 4 6 8 10
 12

 14
 16

P
S

N
R

(d
B

)

Bit Rate

Base (SZ)
2nd order Pred

1&2 order Pred + Par-Opt

(g) Scale-LETKF

 40

 60

 80

 100

 120

 140

 160

 180

 0 1 2 3 4 5 6 7 8 9

P
S

N
R

(d
B

)

Bit Rate

Base (SZ)
2nd order Pred

1&2 order Pred + Par-Opt

(h) Scale-LETKF(Pres)

Figure 2.9: Breakdown compression quality analysis

2.7.3 Assessment of Parameter Optimization

In Figure 2.9, we also demonstrate the further compression quality improvement

(see the red curves versus the blue curves) when using parameter optimization strategies

on top of 2nd-order prediction. In absolute terms, the rate distortion can be improved

by 4%∼50% in most cases, depending on the bit rates. Such a significant improvement is

attributed to our design of integrating both 1st-order prediction and 2nd-order prediction

(four predictors in total) and an efficient online parameter optimization strategy selecting

the best-fit parameter setting at runtime in fine granularity (as per block) (for details, see

31

Section 2.6.1 and Section 2.6). The variation in the rate distortion improvement shows that

the default parameter settings of the original SZ is nearly optimal for some datasets while

it is far from the optimal level for some other datasets. This confirms the significance of

our parameter optimization in order to achieve the optimal results for all datasets.

To demonstrate the effect of our parameter optimization engine, in Figure 2.10

we illustrate the percentage breakdown of the four different prediction methods used in the

compression of different applications or fields. We clearly observe an interesting distribution

pattern of the four prediction methods in terms of different error bounds. Specifically, when

the error bound is relatively large (such as 1E-2), the regression-based predictor would take

a major role, since the Lorenzo predictor may suffer from huge prediction errors in this

situation because of the impact of decompressed data (keep in mind that Lorenzo prediction

has to be performed by using decompressed data during the compression stage). When the

error bound is relatively small, the Lorenzo prediction would outperform the regression-

based prediction. In particular, when the error bound is extremely small, our optimization

engine selects the 2nd-order Lorenzo predictor in most blocks. This action is consistent with

our analysis in Section 2.5.1: many of the application datasets actually exhibit high-order

smoothness, such that the 2nd-order Lorenzo predictor is more accurate for data prediction,

especially with small compression error bounds.

2.7.4 Overall Compression Quality

In Figure 2.11 we present the overall compression quality (rate distortion) based

on five real-world scientific simulation datasets, and we demonstrate the result of one exam-

32

(a) Hurricane(Wf48) (b) Miranda(velocity)

(c) QMCPack dataset 1 (d) Scale-LETKF(W)

Figure 2.10: Percentage breakdown of four predictors used in the blockwise compression

ple field for Hufficane ISABEL, Miranda, and Scale-LETKF, respectively. The blue curve

(called optimum) refers to the ideal level obtained by our offline parameter searching (MS)

for optimal parameters. As highlighted in the figures, our compression solution can improve

the compression ratios over SZ (see red curve versus black curve) by 20+% for Hurricane,

by ∼40+% for Miranda, and by ∼30+% for QMCPack, respectively, with the same PSNR.

Our solution also exhibits the best compression quality from among all existing compressors

on the three applications. Specifically, with the same PSNR, its overall compression ratio

is higher than that of the second best compressor generally by 20∼25% and by 5∼10% and

20∼30% for the three applications, respectively. For some specific fields, the improvement

33

can be up to 46%, as shown in Figure 2.11(b). As for the simulation Scale-LETKF and

NYX, our solution still leads to the best compression quality from among all the compres-

sors, although it has no prominent improvement over the second-best compressor, probably

because the default parameter setting of the original SZ is also (or nearly) the best choice

in those cases.

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 2 4 6 8 10
 12

 14

P
S

N
R

(d
B

)

Bit Rate

Compr. ratio improved by 19%,24%,23%
over SZ under the same PSNR

SZ
ZFP
Hybrid Model
Optimum (MS)
OurSol (AS)

(a) Hurricane (overall)

 50

 100

 150

 200

 250

 0 5 10
 15

 20
 25

P
S

N
R

(d
B

)

Bit Rate

Compr. ratio improved by 32%,36%,46%
over SZ under the same PSNR

SZ
ZFP
Hybrid Model
Optimum (MS)
OurSol (AS)

(b) Hurricane (Wf48)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 1 2 3 4 5 6 7 8 9 10

P
S

N
R

(d
B

)

Bit Rate

Compr. ratio improved by 44%,50%,36%
over SZ under the same PSNR

SZ
ZFP
Hybrid Model
Optimum (MS)
OurSol (AS)

(c) Miranda (overall)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 2 4 6 8 10
 12

 14

P
S

N
R

(d
B

)

Bit Rate

Compr. ratio improved by 53%,46%,47%
over SZ under the same PSNR

SZ
ZFP
Hybrid Model
Optimum (MS)
OurSol (AS)

(d) Miranda (velocityx)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 2 4 6 8 10
 12

 14
 16

P
S

N
R

(d
B

)

Bit Rate

SZ
ZFP
Hybrid Model
Optimum (MS)
OurSol (AS)

(e) Scale-LETKF (overall)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 2 4 6 8 10

P
S

N
R

(d
B

)

Bit Rate

Compr. ratio improved by 28%,33%,33%
over SZ under the same PSNR

SZ
ZFP
Hybrid Model
Optimum (MS)
OurSol (AS)

(f) Scale-LETKF (Pres)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 2 4 6 8 10
 12

 14
 16

P
S

N
R

(d
B

)

Bit Rate

Compr. ratio improved by 28%,53%,46%
over SZ under the same PSNR

SZ
ZFP
Hybrid Model
Optimum (MS)
OurSol (AS)

(g) QMCPack dataset 1 (overall)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2 4 6 8 10
 12

 14

P
S

N
R

(d
B

)

Bit Rate

SZ
ZFP
Hybrid Model
Optimum (MS)
OurSol (AS)

(h) NYX (overall)

Figure 2.11: Overall evaluation

Figure 2.12 presents the compression quality of the QMCPack dataset 2 and

dataset 3 compared with the QMCPack dataset 1 shown in Figure 2.11(g). Note that our

offline parameter optimization was performed not based on these two QMCPack datasets,

34

which are largely different from the QMCPack dataset 1 in scale. Based on the figure,

we clearly see that for both datasets our solution can still get much better compression

quality than the others can. This means that our optimization method can also be applied

effectively on new simulation datasets that were not included in our offline optimization

analysis.

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 2 4 6 8 10
 12

 14
 16

P
S

N
R

(d
B

)

Bit Rate

Compr. ratio improved by 30%,54%,48%
over SZ under the same PSNR

SZ
ZFP
Hybrid Model
OurSol (AS)

(a) QMCPack - dataset 2

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 2 4 6 8 10
 12

 14
 16

P
S

N
R

(d
B

)

Bit Rate

Compr. ratio improved by 29%,51%,44%
over SZ under the same PSNR

SZ
ZFP
Hybrid Model
OurSol (AS)

(b) QMCPack - dataset 3

Figure 2.12: Evaluation on multiple QMCPack dataset

We also evaluate the autocorrelation metric of the compression errors (as shown in

Table 2.5), in order to check the randomness of the compression errors. The users generally

expect to see close-to-zero autocorrelation results, because this introduces less bias to their

post-analysis. Table 2.5 shows that our solution achieves comparable autocorrelation values

of compression errors compared with SZ, indicating the same randomness of compression

errors.

35

Table 2.5: Lag one autocorrelation of compression error

Dataset Error Bound (reb)
Autocorrelation (lag=1)

SZ ZFP Our Solution

Hurricane (Uf48)
1E-3 0.040711 0.151458 0.053633
1E-5 0.001358 0.115680 0.001687

Miranda (velocityz)
1E-3 0.211425 0.343711 0.216588
1E-5 0.071940 0.266735 0.059465

QMCPack (dataset 1)
1E-3 0.211425 0.374731 0.241557
1E-5 0.022431 0.217974 0.028725

2.7.5 I/O Performance Evaluation

In this subsection, we present the parallel I/O evaluation results based on two

scientific simulations (Hurricane and Miranda) on the Bebop supercomputer [12]. The

value-range-based relative error bounds are set to 1E-6 and 1E-5 respectively. We first

show that the lossy compression with these two error bounds leads to fairly high precision

of the reconstructed data compared with the original raw data. We then show the parallel

I/O performance when using different compressors.

The reconstructed data under lossy compression with these error bounds are of

fairly high precision. On the one hand, some domain scientists [9] recommend keeping

the structural similarity index measure (SSIM) [108] no less than 0.99995, based on their

postanalysis using existing lossy compressors. The reconstructed data in our experiments

here can get an overall SSIM up to 0.99999+, so the data are supposed to be acceptable to

users w.r.t. SSIM. On the other hand, to confirm that the error bounds in our evaluation

lead to high precision of the reconstructed data, we demonstrate the visual quality of the

reconstructed data for the two applications in Figure 2.13 and Figure 2.14. We zoom in on

a small region to 625× for each image.

36

(a) original data (b) dec data(reb=1e-6)

Figure 2.13: Visualization of Hurricane (Uf48)

(a) original data (b) dec data(reb=1e-5)

Figure 2.14: Visualization of Miranda (velocityz)

We present the parallel I/O performance evaluation results in Figure 2.15 and

Figure 2.16. Without any compression techniques, it took 6,141 s and 4,881 s to store the

original data and 7,274 s and 5,891 s to read the original data (using 4,096 processes) because

of limited I/O bandwidth. The figures clearly show that the parallel I/O performance with

compression techniques is always less than 1,800 seconds. In particular, our solution has the

least overall elapsed times, which are 20%∼40% less than the times when using the second-

best lossy compressor (SZ). This is due to the significantly reduced data sizes achieved by

37

our compressor. Such a performance gain can benefit the applications significantly. On the

one hand, for the applications suffering a bottleneck in I/O cost, the overall runtime can

be reduced significantly. On the other hand, the storage requirement would be decreased

for each application, enabling more applications to run on supercomputers.

(a) Data dumping performance (b) Data loading performance

Figure 2.15: Parallel performance on Hurricane

38

(a) Data dumping performance (b) Data loading performance

Figure 2.16: Parallel performance on Miranda

39

Chapter 3

SZ3: Error-Bounded Lossy

Compression for Scientific Data by

Dynamic Spline Interpolation

3.1 Introduction

In the scientific research domain, the users often adopt scientific data libraries

such as NetCDF [82] and HDF5 [38] to manage the scientific data due to their performance

advantage and better support of multidimensional objects over traditional database man-

agement systems. Those scientific data libraries have database features including metadata,

data indexing, data manipulation, and data visualization tools [3, 22]. In particular, due

to the vast amount of data to deal with, these data management libraries also support

integrating different data compressors. For example, HDF5 offers a filter mechanism [96]

40

to allow users to call various compressors (including SZ [25], ZFP [64], Zlib [117], etc.)

transparently when storing scientific data.

Error-bounded lossy compression techniques [56, 60, 91] have been developed for

several years, and they have been widely recognized as an optimal solution to reduce the

storage demand of scientific data management systems. For example, Liang et al. [61]

showed that an error-bounded lossy compressor can improve the overall I/O performance

by 60X, with no degradation of visual quality on the reconstructed data. Kukreja et al. [51]

showed that using error-bounded lossy compression can get high compression ratios without

affecting the convergence or final solution of the full waveform inversion solver clearly.

In this chapter, we significantly improve the error-bounded lossy compression qual-

ity for scientific datasets, by designing a dynamic best-prediction-selection strategy and

proposing a novel, spline interpolation based prediction approach with a series of optimiza-

tions. This predictor completely eliminates the serious storage overhead compared with the

linear-regression predictor used in SZ. Our contribution is threefold.

• We provide an in-depth analysis of the latest version of SZ and identify significant

drawbacks of its prediction method; the analysis also sheds light on our new design.

The critical challenge in the current design of SZ comes from its linear-regression pre-

diction method, which has two significant drawbacks. On the one hand, it suffers from

limited accuracy in predicting nonlinear varied datasets. Many scientific simulations

(such as seismic wave simulation [48] and quantum chemistry research [32]) , however,

may produce a vast amount of data with nonlinear features, such that SZ cannot work

very effectively on them. On the other hand, the linear-regression-based prediction

41

needs to store several coefficients (e.g., four coefficients per block for 3D compression)

in each block of data, introducing significant overhead especially when a relatively

high compression ratio is required.

• We propose a novel prediction method that can significantly improve the compression

ratio compared with the linear-regression prediction method. On the one hand, cubic

spline interpolation is included in our novel approach to represent high order data

variation, which obtains much higher prediction accuracy over linear-regression for

datasets with nonlinear data variation characteristics. On the other hand, we derive

the constant coefficients in our interpolation approach such that the coefficient storage

overhead can be completely eliminated. We further propose a dynamic optimization

strategy to select the best predictor from between the spline interpolation approach

and the multilevel Lorenzo predictor to improve the overall compression quality.

• We perform a comprehensive assessment of our solution versus five state-of-the-art

lossy compressors, using multiple real-world simulation datasets across different sci-

entific domains. Experiments show that our solution improves the compression ratio

by 20%∼460% over the second-best compressor with the same error bound and expe-

riences no degradation in the post-analysis accuracy.

The rest of the chapter is organized as follows. In Section 3.2 we discuss the related

work. In Section 3.3 we formulate the research problem. In Section 3.4 we offer an in-depth

analysis of the pros and cons of SZ In Section 3.5 we describe our solution and detailed

optimization strategies. In Section 3.6 we present the evaluation results compared with five

other state-of-the-art lossy compressors using real-world applications.

42

3.2 Related Work

Data compression is becoming a critical technique for database management sys-

tems. For time series databases, Gorilla [76] is proposed to improve query performance

using lossless compression techniques including XOR and variable-length encoding. AM-

MMO [111] utilizes machine learning to select the best lossless compression scheme for

each data point in time series databases. SciDB [23] is a science-oriented database sys-

tem that supports several lossless algorithms including run-length encoding and adaptive

huffman encoding. Snappy [87] is a high-speed lossless compression framework used by

many databases such as InfluxDB [42]. Zlib [117] and Zstandard [118] are another two

state-of-the-art lossless compressors.

Although lossless compression techniques are widely used in database management

systems, they are not suitable for scientific data. Lossless compressors suffer from very

limited compression ratios (generally ∼2 or even less) on scientific data [113] since they

rely on repeated byte-stream patterns whereas scientific data is often composed of diverse

floating-point numbers. Thus, scientific lossy compression has been studied for years.

Unlike traditional lossy compression techniques (such as JPEG [107]) that were de-

signed mainly for image data, the error-bounded lossy compression can not only get a fairly

high compression ratio (several dozens, hundreds, or even higher) but also guarantee that

the reconstructed data is valid for scientific post-analysis in terms of the user-defined com-

pression error bound. Error-bounded lossy compression can be categorized as higher-order

singular value decomposition (HOSVD)-based models such as TTHRESH [11], transform-

based models such as ZFP [64], and prediction-based models including SZ [25,91].

43

There are also some machine learning (ML) based lossy compressors such as LFZIP

[18]. ML compressors have two drawbacks in terms of scientific data prediction. First, the

ML models have non-negligible size and ML models need to be retrained for data in different

scientific domains. As a result, the model weights should be stored together with compressed

data and this brings significant storage overhead. Second, ML compressors involves the

ML inference process which has much higher computational cost than traditional methods

including interpolation based predictors that are linear time complexity.

In our work, we choose the prediction-based model because SZ has been recognized

as the leading compressor in the scientific data compression community. In fact, how to

leverage SZ to improve compression quality has been studied for more than two years. Tao

et al. [93] developed a strategy that can combine SZ and ZFP to optimize the compression

ratios based on a more significant metric, peak signal-to-noise ratio (PSNR). Liang et al. [58]

further analyzed the principles of SZ and ZFP and developed a method integrating ZFP

into the SZ compression model, which can further improve the compression quality. Zhao

et al. [114] proposed to adopt second-order Lorenzo+regression in the prediction methods

and developed an autotuning method to optimize the parameters of SZ. Liang et al. [62]

accelerated the performance of MultiGrid Adaptive Reduction of Data (MGARD) [4] and

used SZ to compress the nodal points generated by the MGARD framework [4], which can

improve the compression ratios significantly.

All these existing SZ-related solutions have to rely on the linear regression predic-

tion to a certain extent. This is a critical restriction to the compression quality improvement,

which will be analyzed deeply in Section 3.4.

44

3.3 Problem Formulation

In this section we describe the research problem formulation. Given a scientific

dataset (denoted by D) composed of N floating-point values (either single precision or

double precision) and a user-specified absolute error bound (e), the objective is to develop

an error-bounded lossy compressor that can always meet the error-bounding constraint

at each data point with optimized compression quality and comparable performance (i.e.,

speed).

Rate distortion is arguably the metric most commonly used by the lossy com-

pression community to assess compression quality. It can be converted to the commonly

used statistical data distortion metric known as normalized root mean squared error, and

it is a good indicator of visual quality. Rate distortion involves two critical metrics: peak

signal-to-noise ratio (PSNR) 2.1 and bit rate .

Bit rate is used to evaluate the compression ratio (the ratio of the original data size

to the compressed size). Specifically, bit rate is defined as the average number of bits used

per data point in the compressed data. For example, suppose a single-precision original

dataset has 100 million data points; its original data size is 100,000,000×4 bytes (i.e., about

400 MB). If the compressed data size is 4,000,000 bytes (i.e., a compression ratio of 100:1),

then the bit rate can be calculated as 32/100 = 0.32 (one single-precision number takes 32

bits). Obviously, smaller bit rate means higher compression ratio.

Two other important compression assessment metrics are compression speed (de-

noted by sc) and decompression speed (denoted by sd). They are defined as the amount of

data processed per time unit (MB/s).

45

In our research, we focus on the optimization of compression quality (i.e., rate

distortion) with high performance, which can be formulated as follows:

Optimizerate-distortion

subjectto |di − d′i| ≤ e

sc(newsol.) ≈ sc(sz)

sd(newsol.) ≈ sd(sz),

(3.1)

where di and d′i are referred to the value of the ith data point in the original dataset D and

the decompressed dataset D′ by the new compression solution, respectively. The notations

sc(newsol.) and sd(newsol.) represent the compression speed and decompression speed of

the new solution, respectively, and sc(sz) and sd(sz) represent the compression speed and

decompression speed of the original SZ compressor, respectively. That is, we are trying

to increase the compression ratio with the same level of data distortion and comparable

compression/decompression performance compared with SZ as a baseline (because SZ has

been confirmed as a fairly fast lossy compressor in many existing studies [61,62]),

In our evaluation in Section 3.6, not only do we present the rate distortion results

for many different datasets at different bit-rate ranges, but we also assess the impact of our

lossy compressor on the results of decompressed-data-based post-analysis on one production-

level seismic simulation research.

46

3.4 Deeply Understanding the Pros and Cons of SZ

In this section, we first give a review of the current SZ design and then provide an

in-depth analysis of a serious problem in the latest version of the SZ compressor (SZ2.1) [60].

Understanding this problem is fundamental to understanding why our new solution can

significantly improve the compression ratio.

3.4.1 Critical Features of SZ Compression Framework

First, SZ is a very flexible compression framework, in which the data prediction

is the most critical step. More accurate data prediction will result in more quantization

numbers being close to zero which leads to a better compression ratio during the encoding

and lossless compression steps. Thus we have explored other more efficient predictors in

the past two years (from version 0.1 through the latest released version 2.1, as well as a few

recent prototypes [58,63,68]). Accordingly, we are still focused only on the data prediction

stage in this chapter.

Second, SZ has to follow a necessary condition, in order to guarantee that the

compression errors are always within the user-predefined error bound. For the same data

point, its predicted value during the compression stage has to be exactly the same as

the one predicted in the decompression stage. Otherwise, the compression errors would

be accumulated easily during the decompression, causing totally uncontrolled compression

errors. Thus, in the compression stage, SZ has to predict each data point by its nearby lossy

decompressed values instead of the original values, which will in turn degrade the prediction

accuracy (as exemplified in our prior work [91]). We proposed the linear-regression predictor

47

in SZ2.1 [60], which can mitigate this issue to a certain extent. Such a predictor, however,

has a significant drawback and may substantially inhibit the compressor from obtaining a

high compression ratio in many cases. We analyze this drawback in detail in the following

text.

3.4.2 Review of Linear Regression Predictor in SZ2.1

In what follows, we describe the linear regression predictor used in SZ2.1 and its

serious drawback.

In SZ2.1, the whole dataset is split into equal-sized blocks (e.g., 6×6×6 for a 3D

dataset) and performs a linear-regression-based prediction when the data inside the block

is relatively smooth or the error bound is relatively high. The basic idea is to use linear

regression to construct a hyperplane in each block, such that the data inside the block can

be approximated by the hyperplane with minimized min squared error (MSE), as illustrated

in Fig. 3.1. The details can be found in our prior work [60].

f(x,y)=β0 +β1 x + β2 y

x
y

Figure 3.1: Illustration of linear-regression-based prediction (2D dataset)

48

3.4.3 Serious Dilemma of Linear-Regression Predictor in SZ2.1

In order to get a high compression quality (i.e., a very good rate-distortion result),

the four coefficients need to be compressed based on a certain error bound, which may

introduce a serious dilemma: a higher error bound used on coefficient compression will

decrease the overhead of storing the coefficients (to be demonstrated in Fig. 3.2) but

also decrease the regression accuracy of the constructed hyperplane (to be demonstrated

in Fig. 3.3). We confirm this issue by four real-world scientific simulations (QMCPack

[50], RTM [48], Hurricane [40], and NYX [74]), which are commonly used by scientists in

quantum structure research, seismic imaging for oil and gas exploration, climate research,

and cosmology research, respectively. More details about these applications are given in

Section 3.6. We exemplify the results using specific fields (e.g., time step 1500 of RTM data,

the W field of Hurriane, and velocity z in NYX) because of the space limits and similar

results in other fields.

Fig. 3.2 shows that the overhead always increases with decreasing error bounds

used on the compression of coefficients. Specifically, we observe that when the error bound

decreases from 0.1 to 0.01, the coefficient overhead in the compressed data increases from

55% to 68%, from 25% to 37%, from 40% to 53%, and from 60% to 70%, for the four test

cases, respectively. The compression ratios (the red curve) thus degrade from 179 to 128,

from 102 to 86, from 114 to 90, and from 152 to 118, respectively.

We present a slice segment of the four application datasets in Fig. 3.3 to illustrate

that the error bounds of the coefficient compression would significantly affect the prediction

accuracy of the constructed linear-regression hyperplane. For instance, when the coeffi-

49

0.1 0.01 0.005 0.002 0.001
Regression Coeff Error Bound

0

20

40

60

80

100

Re
gr

es
sio

n
Co

ef
f %

 in
 C

om
pr

es
se

d
Da

ta
55%

68% 70% 73% 76%

0

25

50

75

100

125

150

175

200

Co
m

pr
es

sio
n

Ra
tio

(a) QMCPack

10 1 0.1 0.05 0.01
Regression Coeff Error Bound

0

10

20

30

40

Re
gr

es
sio

n
Co

ef
f %

 in
 C

om
pr

es
se

d
Da

ta

3%

13%

25%
29%

37%

80

85

90

95

100

105

110

115

120

Co
m

pr
es

sio
n

Ra
tio

(b) RTM (time step 1500)

10 1 0.5 0.1 0.01
Regression Coeff Error Bound

0

10

20

30

40

50

60

Re
gr

es
sio

n
Co

ef
f %

 in
 C

om
pr

es
se

d
Da

ta

1%

21%
27%

40%

53%

80

90

100

110

120

130

140

Co
m

pr
es

sio
n

Ra
tio

(c) Hurricane(W)

10 3 1 0.1 0.01
Regression Coeff Error Bound

0

10

20

30

40

50

60

70

80

Re
gr

es
sio

n
Co

ef
f %

 in
 C

om
pr

es
se

d
Da

ta

2%
10%

41%

60%

70%

50

75

100

125

150

175

200

225

Co
m

pr
es

sio
n

Ra
tio

(d) NYX(velocityz)

Figure 3.2: Overhead of linear regression coefficients

cients’ compression error bound is set to 0.001 for QMCPack and 0.01 for RTM (time step

1500), the constructed hyperplane (the yellow curve) can fit the real data (the red curve)

well, but the fitting will be much worse with increasing error bounds. In the case with a

relatively large error bound (e.g., 0.1 in QMAPack), the hyperplane will downgrade to a

simple horizontal line (see blue lines in the figures), because simply using the neighbor data

value is “accurate” enough for the large error-bounded compression of the coefficients. This

will definitely result in large prediction errors (the difference between predicted value and

raw value) significantly degrading the final compression ratios.

50

0 5 10 15 20 25 30 35 40
Index

−2.5
−2.0
−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0

Va
lu
e

1e−3

Orignal
0.1
0.01

0.005
0.002
0.001

(a) QMCPack

0 5 10 15 20 25 30 35 40
Index

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

Va
lu
e

1e−4

Orignal
10
1

0.1
0.05
0.01

(b) RTM (time step 1500)

0 5 10 15 20 25 30 35 40
Index

−6

−4

−2

0

2

4

6

Va
lu
e

1e−2

Orignal
10
1

0.5
0.1
0.01

(c) Hurricane(W)

0 5 10 15 20 25 30 35 40
Index

−4.2

−4.0

−3.8

−3.6

−3.4

−3.2
Va

lu
e

1e6

Orignal
10
3

1
0.1
0.01

(d) NYX(velocityz)

Figure 3.3: Linear regression prediction hyperplane with different error bound settings of
coefficients

In Fig. 3.4, we demonstrate that the latest version of SZ (v2.1) may cause signifi-

cant loss of the data visualization, especially when the compression ratio (CR) is relatively

high (e.g., 196 and 568 for the two test cases). We observe that SZ suffers from a significant

undesired block texture artifact, resulting from its blockwise linear-regression design.

To address the serious issue of the linear regression predictor, we developed a novel

efficient predictor based on a dynamic spline interpolation, such that compression quality

51

(a) Original data (QMCPack) (b) Decompressed data (QMC-
Pack)

(c) Original data (RTM) (d) Decompressed data (RTM)

Figure 3.4: Visualization of SZ decompressed data based on two applications: (1) QMCPack
– PSNR=56.2, CR=196, and (2) RTM – PSNR=50.7, CR=316

(rate distortion) can be significantly improved for almost all application datasets, with little

performance overhead.

3.5 Error-Bounded Lossy Compression With a Dynamic Mul-

tidimensional Spline Interpolation

We present the design overview in Fig. 3.5, with yellow rectangles indicating

the differences between our design and the classic SZ compressor and with highlighted

rectangles indicating the critical steps. The fundamental idea is to develop a dynamic

52

multidimensional spline interpolation-based predictor (i.e., solution P2 shown in Fig.

3.5) to replace the linear-regression-based predictor such that the coefficient overhead can

be completely eliminated while still keeping a fairly high prediction accuracy. Our newly

designed interpolation-based predictor starts with one data point and performs interpolation

and linear-scale quantization alternatively along each dimension recursively until all data

points are processed. Two alternative approaches can be used to perform the interpolation

in the multidimensional space. We can build a multidimensional curve to fit all the already-

processed data points, or we can build multiple 1D curves to do the interpolation. We

choose the latter because the former is much more expensive.

In what follows, we introduce the background of spline interpolation (Section

3.5.1), followed by our design of dynamic multidimensional spline interpolation based pre-

dictor (Sections 3.5.2, 3.5.3, and 3.5.4).

3.5.1 Introduction to Spline Interpolation

Interpolation is widely used in the field of engineering and science to construct new

data points with a set of known data points. Interpolation techniques attempt to build a

curve that goes through all the known data points. It differs from regression analysis, which

usually seeks a curve that most closely fits the known data points according to a specific

mathematical criterion such as mean squared error. The curve generated by regression may

not go through all known points.

The most popular interpolation methods can be categorized into three types: piece-

wise constant interpolation, polynomial interpolation, and spline interpolation. Piecewise

53

Sampling

Optimize P1' Optimize P2

ATrial run BTrial run

Input raw data:

1.2, 1.3, 2.1, 2, …

Select

Run P1' Run P2

Linear-scale Quantization

Entropy & dictionary encoding

Output compressed data: 0101010010…

Linear-scale Quantization

Entropy & dictionary encoding

Output compressed data: 0100011010…

Input raw data:

1.2, 1.3, 2.1, 2, …

Split data to many small blocks

Block-wise hybrid prediction

for each block

Run P1

Select

Run P3

Key different design modules in our solution compared to SZ

Our solution

(interpolation-based lossy compression)

Traditional approach

(SZ2.1)

Key contribution of our solution Traditional design modules in SZ

P1 P21st-order Lorenzo prediction Adaptive multi-dimensional spline interpolation

P1' P31st+2nd order Lorenzo prediction Linear-regression based predictor

Figure 3.5: Design overview of our solution

constant interpolation always uses the nearest known data points to estimate the new data

point, so it has a simple implementation and fast speed. However, its ability to estimate

complex curves is limited because it does not consider the surrounding data points. Poly-

nomial interpolation is designed to find a polynomial with the lowest possible degree that

passes through all the known data points. If the number of known data points is large, the

polynomial may suffer highly inaccurate oscillation between the data points. This issue is

well known as Runge’s phenomenon and could be mitigated by spline interpolation. Spline

interpolation uses piecewise polynomials to define the estimation curve. If the degree of the

polynomials is 1, the spline interpolation turns to linear interpolation. If the degree of

54

polynomials is 3, it is known as cubic spline interpolation. Cubic spline polynomials

have different restrictions. In this chapter, we use not-a-knot restriction for cubic spline

interpolation.

3.5.2 Spline Interpolation Designed for Scientific Data

In this sub-section, we introduce a basic interpolation method and derive closed-

form formulas with the optimal coefficients, which is a fundamental work to the development

of our following multi-dimensional interpolation predictor.

We propose a light-weight cubic interpolation based prediction method for each

unknown data point by only using its four surrounding data values, to address the drawbacks

of the conventional interpolation methods. The accuracy of polynomial interpolation could

be affected significantly by Runge’s phenomenon when interpolating across multiple regions

with different locality features. Cubic spline interpolation can prevent large oscillation,

but it has high computational cost as it needs to solve a huge linear system. To avoid high

computation cost, we precompute a closed-form interpolation formula based on four specific

neighbor data points (e.g., using the data points i−3, i−1, i+1 and i+3 to predict data point

i as shown in Figure 3.6). In what follows, we mainly use a 1D example to illustrate how

we derive the interpolation formula, but the formula can be extended to multidimensional

cases easily.

Lemma 1 Denote the dataset as d = (d1, d2, ..., dn) with n as the total number of elements.

The prediction values are denoted as p=(p1, p2, ..., pn). We consider all elements in odd-

index positions as preknown and use them to predict the elements in even-index positions.

55

The prediction formulas of linear and cubic spline interpolation are shown in Table 3.1.

Table 3.1: Spline estimations
Spline method Prediction Value pi
Linear spline pi = 1

2
di−1 + 1

2
di+1

Cubic spline pi = − 1
16
di−3 + 9

16
di−1 + 9

16
di+1 − 1

16
di+3

The linear formula is easy to derive, so we prove only the cubic spline formulas

as follows. In our designed cubic spline interpolation, the known data points di−3,di−1,di+1

and di+3 are used to predict the data point pi. Three spline curves correspond to the known

data points:

f1(x) f2(x) f3(x)

di–3

di–1
di+1

di+3

pi

i–3 i–1 i+1 i+3i

value

index

Known points

Unknown points

Interpolation

Figure 3.6: Illustration of cubic spline interpolation

f1(x) = a1(x− (i− 3))3 + b1(x− (i− 3))2 + c1(x− (i− 3)) + δ1

f2(x) = a2(x− (i− 1))3 + b2(x− (i− 1))2 + c2(x− (i− 1)) + δ2

f3(x) = a3(x− (i+ 1))3 + b3(x− (i+ 1))2 + c3(x− (i+ 1)) + δ3

(3.2)

The scope of f1, f2, and f3 is [i−3,i−1], [i−1,i+1], and [i+1,i+3] (as shown in Fig. 3.6).

The spline curves should pass through the known data points.

56

f1(i− 3) = di−3; f1(i− 1) = di−1

f2(i− 1) = di−1; f2(i+ 1) = di+1

f3(i+ 1) = di+1; f3(i+ 3) = di+3

(3.3)

The first derivatives of f1(x) is f
′
1(x) = 3a1(x− (i− 3))2 + 2b1(x− (i− 3)) + c1. The second

derivative is f
′′
1 (x) = 6a1(x−(i−3))+2b1. The third derivative is f

′′′
1 (x) = 6a1. Derivatives

of f2 and f3 are similar with f1.

To have a smooth curve, we should let the adjacent spline functions have the same

first derivatives and the same second derivatives on the joint data points.

f
′
1(i− 1) = f

′
2(i− 1); f

′
2(i+ 1) = f

′
3(i+ 1)

f
′′
1 (i− 1) = f

′′
2 (i− 1); f

′′
2 (i+ 1) = f

′′
3 (i+ 1)

(3.4)

The not-a-knot restriction requires the third derivative of f to be equal on locations

i− 1 and i+ 1.

f
′′′
1 (i− 1) = f

′′′
2 (i− 1); f

′′′
2 (i+ 1) = f

′′′
3 (i+ 1) (3.5)

Using the system of Equations (3.3), (3.4), and (3.5), we can derive

a2 = − 1
48di−3 + 1

16di−1 −
1
16di+1 + 1

48di+3

b2 = 1
8di−3 −

1
4di−1 + 1

8di+1

c2 = −1
6di−3 −

1
4di−1 + 1

2di+1 − 1
12di+3

δ2 = di−1.

(3.6)

57

Thus the prediction value of pi will be

pi = f2(i) = − 1
16di−3 + 9

16di−1 + 9
16di+1 − 1

16di+3. (3.7)

Equation (3.7) is the cubic formula in Table 3.1.

We discuss why we adopt only four known data points in our interpolation instead

of six or more data points. If we use six data points di−5, di−3, di−1, di+1, di+3, and di+5

to predict pi, the formula by not-a-knot spline turns out to be

pi = di−5

80 −
di−3

10 + 47
80di−1 + 47

80di+1 − di+3

10 + di+5

80 .
(3.8)

Compared with Equation (3.7), Equation (3.8) involves two additional data points

di−5 and di+5, but the weight of the two data points is only 1/80, which means a very

limited effect on the prediction. Moreover, it has 50% higher computation cost compared

with Equation (3.7). Hence, we choose to use four data points for prediction, as shown in

Table 3.1.

In addition, we note that the linear spline interpolation may exhibit better pre-

diction accuracy than the cubic spline does when setting a relatively large error bound (as

shown in Table 3.2). The reason is that our interpolation method relies on the reconstructed

data values generated after a linear-scale quantization step, so that the reconstructed data

is lossy to a certain extent. When the error bound is relatively large, the loss of these

reconstructed data would degrade the prediction accuracy, and the more data points used

in the interpolation, the higher the impact on the accuracy. Since linear spline adopts fewer

58

data points, it could be superior to cubic spline especially when the error bound is rela-

tively large. This possibility motivated us to design a dynamic method selecting the better

interpolation type (linear or cubic) in practice.

Table 3.2: Comparison of spline methods prediction error

Dataset
ε = 1E − 2 ε = 1E − 4

Linear Spline Cubic Spline Linear Spline Cubic Spline

RTM (time step 1500) 1.20E-4 1.27E-4 2.0E-5 8.3E-6

Miranda (velocityz) 0.0026 0.0025 0.0061 0.0020

QMCPACK 0.05 0.06 0.008 0.004

SCALE (QS) 0.076 0.078 0.040 0.041

NYX (velocityz) 123486 134820 22453 19978

Hurricane (W) 0.04 0.05 0.023 0.022

3.5.3 Multilevel Multidimensional Spline Interpolation

The previous derivation works in the 1D case with 50% of preknown data points,

based on which we predict the other 50%. In this section, we extend this interpolation

method to support data prediction on the entire multidimensional dataset.

Level 0

Level 1

Level 2

Level 3

Level 4

d1 d2 d3 d4 d5 d6 d7 d8 d9

Known data points Unknown data points (to be predicted)

Use 0 to predict d1

Use d1' to predict d9

Use d1' and d9' to predict d5

di' di Original raw data Reconstructed data

Use d1', d5', and d9' to

predict d3 and d7

Use d1', d3', d5', d7', and d9'

to predict d2, d4, d6, d8# of levels = ⌈log2(n)⌉ +1

Figure 3.7: Illustration of multilevel linear spline interpolation

We use Fig. 3.7 to demonstrate the multilevel solution with linear interpolation;

cubic interpolation has the same multilevel design. Suppose the dataset has n elements

59

in one dimension. The number of levels required to cover all elements in this dimension is

l = 1+dlog2ne. At level 0, we use 0 to predict d1, followed by the error-bounded linear-scale

quantization. We perform a series of interpolations from level 1 to level l−1 recursively, as

shown in Fig. 3.7. At each level, we use error-bounded linear-scale quantization to process

the predicted value such that the corresponding reconstructed data must be within the error

bound. We denote the reconstructed data as d′1, d
′
2, ..d

′
n, as shown in the figure.

Level 1 Level 2

Level 3

dim0

d
im

1

dim0
d

im
1

dim0

d
im

1
dim0

d
im

1
dim0

d
im

1

dim0

d
im

1

Dim0 interpolation

Dim1 interpolation

Dim1 interpolation

Dim1 interpolation Dim0 interpolation

Dim0 interpolation

Known data points Unknown data points (to be predicted) interpolation

Figure 3.8: Illustration of multidimensional linear spline interpolation

Such a multilevel interpolation is applied on a multidimensional dataset, illustrated

in Fig. 3.8 with a 2D dataset as an example. We perform interpolation separately along all

dimensions at each level, with a fixed sequence of dimensions. A 2D dataset, for example,

has two possible sequences: dim0→dim1 and dim1→dim0. A 3D dataset has 6 possible

sequences. In our solution, we propose to check only two sequences, dim0→dim1→dim2

(sequence 1) and dim2→dim1→ dim0 (sequence 2) instead of all 6 possible combinations.

60

On the one hand, the last interpolation dimension involves about 50% of the data points

(much more than other dimensions), so which dimension to be put in the end of the sequence

determines the overall prediction accuracy. On the other hand, we note that either the

highest or lowest dimension in scientific datasets tends to be smoother than other dimensions

without loss of generality, as confirmed by the first three columns of Table 3.3 (with all 6

applications), which presents the autocorrelation (AC) of each dimension (higher AC means

smoother data). Accordingly, putting either dim0 or dim2 in the end of the sequence at

each level will get lower overall prediction errors, as validated in Table 3.3. Hence, we also

develop a dynamic strategy to select the best-fit sequence of dimensions from among the

two candidates, as detailed in the next subsection.

Table 3.3: Autocorrelation and prediction error of cubic spline interpolation with different
sequences of dimension settings, ε=1E−3

Dataset
Autocorrelation (Lag=4) Prediction Error
dim2 dim1 dim0 0→1→2 0→2→1 2→1→0

RTM (time step 1500) 0.88 0.58 0.45 2.17E-5 2.32E-5 2.51E-5

Miranda (velocityz) 0.84 0.82 0.96 0.004 0.004 0.003

QMCPACK 0.83 0.83 0.75 0.010 0.010 0.013

SCALE (QS) 0.987 0.986 0.872 0.0447 0.0448 0.10

NYX (velocityz) 0.9818 0.99 0.99 31668 29903 28975

Hurricane (W) 0.19 0.027 0.86 0.024 0.025 0.016

3.5.4 Dynamic Optimization Strategies

In this section we propose a dynamic design with two adaptive strategies: (1)

automatically optimizing the spline interpolation predictor (Trial run B in Fig. 3.5) by

selecting the best-fit interpolation type (either linear or cubic) and optimizing the sequence

of interpolation dimensions and (2) automatically selecting the better predictor between

61

the Lorenzo-based predictor (Trial run A in Fig. 3.5) and the interpolation predictor.

We use a uniform sampling method to determine the best interpolation settings for

the input dataset. There are two settings to optimize for the multidimensional interpolation

predictor: the interpolation type and the dimension sequence. We adopt a uniform sampling

method with only 3% total data points to select the better interpolation type with the higher

compression ratio.

We note that the spline interpolation predictor does not work as effectively as the

multilayer Lorenzo predictor [91,114] on the relatively nonsmooth dataset, especially when

the user’s error bound is relatively small (as shown in Table 3.4). As a result, our final

solution is selecting the better predictor from our spline interpolation method and Lorenzo

method.

Table 3.4: Prediction error of multidimensional spline interpolation predictor (S), regression
predictor (R), and Lorenzo predictor (L)

Dataset
ε = 1E − 2 ε = 1E − 7

S R L S R L

RTM (time step 1500) 1.2E-4 1.3E-4 2.0E-4 6.9E-6 1.0E-4 1.8E-7

Miranda (velocityz) 0.02 0.03 0.05 0.001 0.02 6E-5

QMCPACK 0.05 0.06 0.13 0.004 0.03 6E-4

SCALE (QS) 0.07 0.16 0.11 0.04 0.15 0.01

NYX (velocityz) 121436 132071 410083 15237 51963 16965

Hurricane (W) 0.04 0.05 0.06 0.01 0.04 0.004

3.6 Experimental Evaluation

In this section we present the experimental setup and discuss the evaluation results

and our analysis.

62

3.6.1 Experimental Setup

Execution Environment

We perform the experiments on the Argonne Bebop supercomputer. Each node in

Bebop is driven by two Intel Xeon E5-2695 v4 processors with 128 GB of DRAM.

Applications

We perform the evaluation using six real-world scientific applications from different

domains:

• QMCPack: An open source ab initio quantum Monte Carlo package for the electronic

structure of atoms, molecules, and solids [50].

• RTM: Reverse time migration code for seismic imaging in areas with complex geolog-

ical structures [48].

• NYX: An adaptive mesh, cosmological hydrodynamics simulation code.

• Hurricane: A simulation of a hurricane from the National Center for Atmospheric

Research in the United States.

• Scale-LETKF: Local Ensemble Transform Kalman Filter (LETKF) data assimilation

package for the SCALE-RM weather model.

• Miranda: A radiation hydrodynamics code designed for large-eddy simulation of mul-

ticomponent flows with turbulent mixing.

63

Detailed information about the datasets (all using single precision) is presented in Table 3.5.

Some data fields are transformed to their logarithmic domain before compression for better

visualization, as suggested by domain scientists.

Table 3.5: Basic information about application datasets

App. # files Dimensions Total Size Domain

RTM 3600 449×449×235 635GB Seismic Wave

Miranda 7 256×384×384 1GB Turbulence

QMCPACK 1 288×115×69×69 612MB Quantum Structure

Scale-LETKF 13 98×1200×1200 6.4GB Climate

NYX 6 512×512×512 3.1GB Cosmology

Hurricane 48×13 100×500×500 58GB Weather

State-of-the-Art Lossy Compressors in Our Evaluation

In our experiment we compare our new compressor with five other state-of-the-art

error-bounded lossy compressors (SZ2.1 [60], ZFP0.5.5 [64], SZ(Hybrid) [58], SZ(SP+PO)1

[114] and MGARDx [62]), which have been recognized as the best in class (validated by

different researchers [60,70]).

State-of-the-Art Lossless Compressors in Our Evaluation

We also evaluate six lossless compressors including Google Brotli [6], Google

Snappy [87], Facebook Zstandard [118], LZMA [1], Zlib [117], and Fpzip [66] as a compari-

son with lossy compressors. Brotli, Snappy and Zstandard are deployed in many industrial

data management systems. LZMA is the default compression method of 7-Zip. Zlib [117]

is one of the most widely used compressor in operating systems. Fpzip [66] is a compressor

targeted at floating-point data.

1SZ(SP+PO) represents the SZ compression model in chapter 2.

64

Evaluation Metrics

We evaluate the six lossy compressors based on five critical metrics, as described

below.

• Compression ratio (CR) based on the same error bound: The descriptions of CR

and absolute error bound are defined in Section 3.3. Without loss of generality, we

adopt value-range-based error bound (denoted as ε), which takes the same effect with

absolute error bound (denoted e) because e = ε(max(D)−min(D)).

• Compression speed and decompression speed: originalsize
compressiontime (MB/s) and reconstructedsize

decompressiontime

(MB/s).

• Rate-distortion: The detailed description is in Section 3.3.

• Visualization with the same CR: Compare the visual quality of the reconstructed data

based on the same CR.

• Precision of final execution results of RTM data with lossy compression.

3.6.2 Evaluation Results and Analysis

First, we verified the maximum compression errors for all six lossy compressors

based on all the application datasets with different error bounds. Experiments confirm that

they all respect the error bound constraint very well. Fig. 3.9 shows the distribution of

compression errors of our solution on two error bounds (ε=1E-3 and ε=1E-4, in other words,

e=0.033&0.0033 for QMCPACK and e=8.2E-5&8.2E-6 for RTM). We can clearly see that

the compression errors are 100% within the absolute error bound (e) for all data points.

65

0.033

0.0033

(a) QMCPack

8.2E-5
8.2E-6

(b) RTM (time step 1500)

Figure 3.9: Compression error distribution of our solution

Table 3.6 presents the compression ratios of the six lossy compressors based on

the six real-world applications with the same error bounds. We can clearly observe that

our solution always exhibits the highest compression ratio in all cases. In particular, the

compression ratio of our solution is higher than other compressors by 20%∼460% in most

cases. For example, when setting the error bound to 1E-3 for compressing RTM data,

the second-best compressor ((SZ(SP+PO)) gets a compression ratio of 114.4, while our

compressing ratio reaches up to 397.6 (with a 247.5% improvement). The key reason our

solution can get a significantly higher compression ratio is twofold: (1) we significantly

improve the prediction accuracy by a dynamic spline interpolation, and (2) some other

compressors such as ZFP and MGARDx suffer from the precision-overpreservation issue

(i.e., the actual maximum errors are smaller than the required error bound, as verified by

prior works [25,62,91].

Table 3.7 compares the compression/decompression speed among all six lossy com-

pressors for all six applications. It clearly shows that our solution exhibits compression

performance similar to that of SZ2.1 and MGARDx, and its decompression performance is

66

Table 3.6: Compression ratio comparison based on the same error bound

Dataset ε
SZ SZ SZ

ZFP MGARDx OurSol
OurSol

2.1 (Hybrid) (SP+PO) Improve %

RTM
1E-2 271.7 195.7 358.1 111.0 229.7 1997.5 457%
1E-3 109.8 101.4 114.4 59.3 78.1 397.6 247%
1E-4 57.3 44.4 63.0 34.9 38.3 116.3 84%

Miranda
1E-2 125.6 130.4 188.4 46.6 113.7 582.1 209%
1E-3 59.9 55.4 58.4 25.6 38.0 160.7 168%
1E-4 30.6 23.4 33.9 14.5 20.0 47.1 39%

QMCPack
1E-2 196.2 144.8 174.5 39.4 159.8 675.5 244%
1E-3 51.1 53.4 68.0 21.2 47.1 204.3 200%
1E-4 18.9 24.9 23.6 10.4 14.9 63.7 155%

SCALE
1E-2 84.3 94.2 108.2 14.5 52.8 157.0 45%
1E-3 26.6 27.1 31.8 7.8 20.2 40.5 27%
1E-4 14.0 13.2 14.1 4.6 10.4 14.9 5%

NYX
1E-2 43.6 33.2 48.7 12.0 24.7 59.4 22%
1E-3 16.8 16.3 17.4 6.0 11.2 21.1 21%
1E-4 7.6 8.0 8.1 3.7 5.5 9.1 12%

Hurricane
1E-2 49.4 44.6 65.4 11.3 28.1 69.3 6%
1E-3 17.6 17.9 19.8 6.7 12.7 22.5 14%
1E-4 9.8 10.1 10.5 4.3 7.4 10.8 3%

also comparable to that of SZ2.1 and is about 30% higher than that of MGARDx.

Table 3.7: Compression/decompression speeds (MB/s) with ε=1E-3

Type Dataset
SZ SZ SZ

ZFP MGARDx OurSol
2.1 (Hybrid) (SP+PO)

C
o
m

p
re

ss
io

n

RTM 207 76 97 549 128 149
Miranda 125 73 91 201 140 128

QMCPack 146 63 78 158 136 133
SCALE 145 59 75 101 122 128
NYX 123 81 86 131 117 110

Hurricane 115 63 78 115 122 131

D
ec

o
m

p
re

ss
io

n RTM 385 299 298 984 173 276
Miranda 285 221 206 531 177 232

QMCPack 327 232 282 367 168 241
SCALE 271 184 192 295 164 215
NYX 222 172 215 244 145 136

Hurricane 222 186 200 257 163 193

Data smoothness and error bound settings are two key factors that affect the

compression ratio and speed. In the SZ framework, datasets with better local smoothness

or with larger error bound settings will result in smaller quantization data value range

and more close-to-zero quantized data values. In general, this will get higher compression

ratios and speed because such quantized data turns much easier to be compressed by the

67

succeeding encoding steps. This analysis also applies to other lossy compressors such as

ZFP and MGARDx that utilize the coding stage.

(a) Data dumping performance (b) Data loading performance

Figure 3.10: Parallel performance evaluation of QMCPack simulation (SP(S+O) stands for
SP(SP+PO))

We evaluate the data dumping and loading performance of the QMCPack simu-

lation when using lossy compressors to demonstrate the performance impact of lossy com-

pressors on scientific simulations. SZ2.1, SZ(SP+PO), ZFP, and our solution are assessed

under the same level of data distortion (PSNR fixed to 70). The evaluation uses up to 4096

cores and each core processes 3.4GB of data. Fig. 3.10 shows that our solution leads to

the highest data dumping and loading performance. In the scale of 4096 cores, QMCPACK

simulation needs more than 3 hours to dump the data to disk without the help of lossy

compressors. Our solution reduces the elapsed time to less than 100 seconds and it is 1.7X

faster than the second-best one.

Table 3.8 demonstrates the compression ratios of the six lossless compressors. It

confirms our statement in Section 3.2 that lossless compressors have limited compression

68

ratios on scientific datasets. Lossy compressors, on the other hand, can achieve much higher

compression ratio as shown in Table 3.6.

Table 3.8: Compression ratio comparison of lossless compressors
Dataset Brotli Zstd Snappy Fpzip Zlib LZMA

RTM 2.04 2.02 1.87 2.62 2.04 2.18

Miranda 1.21 1.21 1.11 1.86 1.21 1.30

QMCPack 1.19 1.19 1.01 1.75 1.20 1.51

SCALE 1.45 1.39 1.17 2.60 1.39 1.80

NYX 1.19 1.11 1.00 1.37 1.11 1.25

Hurricane 1.52 1.49 1.26 2.28 1.49 1.78

0 2 4 6 8 10
Bit Rate

50
75

100
125
150
175
200
225

PS
NR

 (d
B)

Interp(Linear)
Interp(Cubic)

Lorenzo
OurSol

0.5 1.0 1.5 2.0

80

100

(a) RTM (time step 1500)

0 2 4 6 8 10 12
Bit Rate

40

60

80

100

120

140

160

PS
NR

 (d
B)

Interp(Linear)
Interp(Cubic)

Lorenzo
OurSol

0.5 1.0 1.5 2.0
60

70

80

(b) NYX (field velocityz)

0 1 2 3 4 5 6 7 8
Bit Rate

40
60
80

100
120
140
160
180
200

PS
NR

 (d
B)

Interp(Linear)
Interp(Cubic)

Lorenzo
OurSol

0.5 1.0 1.5 2.0

80

100

(c) Miranda (field velocityz)

0 2 4 6 8 10 12 14
Bit Rate

40
60
80

100
120
140
160
180

PS
NR

 (d
B)

Interp(Linear)
Interp(Cubic)

Lorenzo
OurSol

0.25 0.50 0.75 1.00
40

50

60

(d) Scale-LETKF (field QS)

0 2 4 6 8 10 12
Bit Rate

50
75

100
125
150
175
200
225

PS
NR

 (d
B)

Interp(Linear)
Interp(Cubic)

Lorenzo
OurSol

0.5 1.0 1.5 2.0
60

80

100

(e) QMCPack

0 2 4 6 8 10
Bit Rate

40

60

80

100

120

140

160

PS
NR

 (d
B)

Interp(Linear)
Interp(Cubic)

Lorenzo
OurSol

0.5 1.0 1.5 2.0
50

60

70

(f) Hurricane(field W)

Figure 3.11: Our solution compared with interpolation and Lorenzo

As discussed in Section 3.5.4, we designed a dynamic strategy to optimize the

compression quality throughout the entire bit-rate range. Fig. 3.11 demonstrates that the

69

dynamic strategy has a critical effect in the compression quality improvement. For instance,

as shown in Fig. 3.11 (a), our solution always exhibits the best compression quality when the

bit rate is lower than 2.5 because it adopts a dynamic interpolation method with optimized

dimension sequences on a multilevel interpolation, whereas both linear interpolation and

tricubic interpolation (shown in the figure) use a fixed sequence. (z→y→x). On the other

hand, Fig. 3.11 (a) shows that our solution also keeps the best rate-distortion level when

the bit rate is higher than 2.5, a result that is attributed to our accurate predictor selection

algorithm (selecting a better predictor between interpolation and Lorenzo at runtime).

Compr. ratio

improved by 133%

over the second best

 under the same PSNR

(a) RTM

0 2 4 6 8 10
Bit Rate

40

60

80

100

120

140

PS
NR

 (d
B)

SZ2.1
SZ(Hybrid)
SZ(SP+PO)

ZFP
MGARDx
OurSol

0.0 0.5 1.0 1.5 2.0
40

50

60

70

(b) NYX

Compr. ratio

improved by 85%

over the second best

 under the same PSNR

(c) Miranda

0 2 4 6 8 10
Bit Rate

40

60

80

100

120

140

160

PS
NR

 (d
B)

SZ2.1
SZ(Hybrid)
SZ(SP+PO)

ZFP
MGARDx
OurSol

0.5 1.0 1.5

60

80

(d) Scale-LETKF

Compr. ratio

improved by 91%

over the second best

 under the same PSNR

(e) QMCPack

0 2 4 6 8 10
Bit Rate

40

60

80

100

120

140

160

PS
NR

 (d
B)

SZ2.1
SZ(Hybrid)
SZ(SP+PO)

ZFP
MGARDx
OurSol

0.5 1.0 1.5 2.0

40

60

(f) Hurricane

Figure 3.12: Overall evaluation (lower Bit Rate / higher PSNR → better quality)

70

Fig. 3.12 presents the overall compression quality (i.e., rate distortion). One

can see that our solution is the best in class from among all the related works for all

six applications. In particular, with the same data-distortion level (PSNR), the compressed

data size under our solution is about 50% of the compressed data size under the second-best

compressor in most of the cases for RTM, Miranda, and QMCPack.

We demonstrate the visual quality of the decompressed data of four error-bounded

lossy compressors in Fig. 3.13, using one slice image (slice 340) in the RTM dataset. The

original visualization is shown in Fig. 3.4. The figure clearly shows that our solution keeps

an excellent visual quality in the decompressed data with a compression ratio even up to

315. In contrast, other compressors suffer from prominent degradation in visual quality to

different extents with the same compression ratios. In particular, SZ and ZFP suffer from

undesired blockwise texture artifacts.

We show in Fig. 3.14 and Fig. 3.15 that the final RTM image for a single shot is not

degraded at all using our lossy compressor with very high compression ratios (about 2∼4×

higher than that of other compressors). We use value-range-based error bound 1.25E-3 in

our solution for each time step. The RTM application requires propagating waves generated

by a source signal, in a given subsurface model. At the beginning of the propagation the

compression ratios are very high (10k+) when the waves are close to the source locations.

Over time, the waves are propagating further in the model, resulting in more complex

images and compression ratios dropping to about 70. The overall compression ratio is 274

because the compression ratio at most time steps can reach 300+ (e.g., CR=315 at time

step 1500 as shown in Fig. 3.13 (a)). In this simulation we used one shot to generate the

71

(a) OurSol (PSNR:69.3,CR:315) (b) SZ (PSNR:50.7,CR:315)

(c) ZFP (PSNR:51.7,CR:258) (d) MGARDx (PSNR:62.5,CR:310)

Figure 3.13: Visualization of decompressed snapshot data (RTM)

final image in Fig. 3.15. One can see a very good preservation of amplitudes and main

structures of the lossy-compression-based final result, which is acceptable for post-analysis

as confirmed by the seismic researchers. Our lossy compressor dramatically decreases the

size of the RTM snapshots while not increasing the computation time compared with SZ

2.1. This can significantly lower the I/O throughput requirements and enable either faster

turnaround or higher-fidelity simulations for production-level seismic imaging.

72

 0

 50000

 100000

 150000

 200000

 250000

 0 500 1000 1500 2000 2500 3000 3500C
o

m
p

re
s
s
io

n
 R

a
ti
o

Time Steps

SZ2.1
ZFP
SZ(Hybrid)
MGARDx
SZ(SP+PO)
OutSol 0

 20
 40
 60
 80

 3400 3420 3440 3460 3480 3500 3520 3540 3560 3580 3600

Figure 3.14: Compression ratio of RTM data for different time steps (with value-range-
based error bound 1.25E-3)

(a) Original Final Result (b) Compression-based Final Re-
sult

Figure 3.15: Visualization of RTM image for one shot

73

Chapter 4

MDZ: An Efficient Error-Bounded

Lossy Compressor for Molecular

Dynamics

4.1 Introduction

Molecular dynamics simulations have become one of the most commonly-used

methods to study the physical movements of atoms and molecules. For instance, MD

simulations are often used to refine 3D structures of proteins and macro-molecules in terms

of experimental constraints in X-ray crystallography or nuclear magnetic resonance (NMR)

spectroscopy. In physics, MD simulations can be used to study the dynamics of atomic-

level phenomena, such as thin-film growth and ion implantation (the atomic-scale details of

which are very difficult to observe directly) or to investigate physical properties of nanoscale

74

devices. In biophysics and structural biology, MD simulations are often applied to examine

the motions of macromolecules (e.g., proteins and nucleic acids), for interpreting the results

of some biophysical experiments and modeling interactions between molecules.

Generally speaking, scientific data can be categorized into three distinct types, in-

cluding particle data (e.g., locations of atoms), structured mesh (regular multidimensional

grid in space), and unstructured mesh (irregular mesh such as triangular grid). MD simu-

lation is one of the most significant/typical particle-based research in the community. As

the computational scales at which MD simulations are carried out rapidly increases [94], so

does the volume of data generated during the simulations. For example, an atomistic model

of the SGLT membrane protein may consist of 240 million frames each with 90k particles,

producing a total of ∼260 TB of raw trajectory data over a 480 ns simulation [41]. The most

recent MD simulations [94] are able to simulate 20 trillion particles in a long trajectory,

generating 10 PB of data if there are hundreds of frames to store.

The explosive growth of data volume has brought major challenges to the storage

systems designed for saving and managing scientific datasets [20, 34, 49]. For scientific

applications, the vast amount of data are generally stored in the form of files [5], for the

purpose of convenient post hoc analysis, management, and transfer. How to efficiently

store and transfer the large amount of data becomes a serious concern. In fact, for today’s

supercomputers, a research project generally is allocated only dozens of terabytes of storage

space (e.g., 50 TB by default on ORNL Summit [89]) or a few hundreds of terabytes upon

requests. Obviously, efficiently reducing the volume of generated data can substantially

lower the burden on storage, management and transfer.

75

In this chapter, we aim at designing an efficient error-bounded lossy compressor for

MD datasets, which presents a series of challenges. (1) In MD simulations, each snapshot

may contain a large number of particles, so that only a limited number of snapshots can

be held in memory and the compression should be done in batches. Therefore, compres-

sors that rely on the time series patterns [54, 71, 110] will have sub-optimal performance,

and a practical and effective compressor for MD data should involve both efficient time-

based compression and efficient snapshot-based compression. (2) It is very challenging to

develop an efficient snapshot-based compression method because the adjacent data values

in a snapshot may not be smooth (shown in Section 4.5.2), while existing state-of-the-art

lossy compressors substantially depend on the high smoothness of the data in space. (3)

Unlike some existing compressors [54] optimized for cosmological N-body simulations, MD

compressors could not exploit velocities to help compress position data in most cases, be-

cause MD particle often quickly vibrate around their equilibrium positions and velocities

are only predictive of future positions for a few femtoseconds in the future (a fraction of a

typical vibrational period).

With all the above challenges in mind, we propose a novel error-bounded lossy

compressor that is particularly efficient for MD simulations. The key contributions are

listed as follows:

• We carefully characterize a variety of MD simulation datasets and exploit some of the

key patterns identified in the MD data to significantly improve compression ratios.

• We design an adaptive error-bounded lossy compressor for MD datasets which fully

leverages the specific characteristics in both spatial and temporal dimensions.

76

• We evaluate our solution with six state-of-the-art related works. Experiments show

that MDZ can always lead to the best compression quality in various execution pat-

terns. In absolute terms, our solution obtains up to 233% higher compression ratios

than does the second best error-bounded lossy compressor.

• We integrate our solution into the MD package LAMMPS. Evaluation shows our

solution has negligible time overhead in real-world MD simulations under different

scales and settings.

• We discuss the generalizability of our solution and demonstrate MDZ has the best

compression quality on datasets beyond MD simulations.

The rest of the chapter is organized as follows. In Section 4.2, we discuss the

related work. In Section 4.3, we describe the research background. In Section 4.4, we

formulate the research problem. In Section 4.5, we present an in-depth characterization of

several MD simulation datasets, which motivates our design and optimization. In Section

4.6, we describe in details our developed MD data compressor - MDZ. In Section 4.7, we

present and discuss the evaluation results.

4.2 Related Work

The compression of MD datasets is critical to the cost-effective data processing of

MD simulations.

In general, compression techniques can be divided into two categories - lossless

compression and lossy compression. Lossless compressors have been deployed in many fields.

77

For example, Google Brotli [6] and Facebook Zstandard [118] are widely used in industrial

data management systems. Gorilla [76] and AMMMO [111] bring lossless methods to time

series databases. However, lossless compressors suffer from very low compression ratios

in the scientific domain, as demonstrated in Section 4.7.2. The reason is that scientific

datasets are mainly composed of floating-point numbers each of which has very random

ending mantissa bits so that it is very hard for lossless compressors to catch the repeated

patterns during the encoding.

Lossy compression, unlike lossless compression, can reach a higher compression

ratio with some information loss. Lossy compression has been adopted in some database

systems. For example, ModelarDB [43, 44] is a time series management system with lossy

compression built-in. It has three compression algorithms, including the PMC-mean [53],

the linear Swing model [27], and the lossless method in Gorilla [76]. ModelarDB uses a

window-based approach to find the best algorithm for each data segment. SummaryStore

[2] is an approximate time-series store which merges the old data when the space limit

is reached. Besides time series databases, there are also some lossy compression studies

[16,29,57,69] for GPS trajectory data systems.

Lossy compressors in database systems are not suitable for MD datasets for the

following reasons. First, time series databases such as ModelarDB use simple data estima-

tion methods and they do not have quantization or entropy coding process, thus they suffer

from low compression ratios on MD datasets (demonstrated in Section 4.7.3). Second, GPS

trajectory compressors are not suitable for MD datasets either because MD data is much

more unconstrained than the GPS data (note that GPS devices follow direct lines while

78

MD particles move rather randomly). Third, many database systems such as SummaryS-

tore do not have an error-bounded design such that they cannot guarantee the quality of

the decompressed data would satisfy the users’ requirements.

Even general lossy compressors for scientific applications such as ZFP [64] and

SZ-Interp [112] exhibit sub-optimal results on MD datasets [54], because they are designed

and optimized for three-dimensional data. While MD datasets are two-dimensional and are

split into batches for compression.

Due to the above limitations, researchers are investigating lossy compressors that

are specifically designed for MD datasets. HRTC [41] adopts a piecewise linear represen-

tation of trajectories, followed by an error-controlled quantization and a variable length

integer representation. Li et al. [54] improved the compression ratio by employing velocity

fields to assist the prediction of spatial coordinates. Note that, as mentioned in Section 4.1,

this strategy may not be efficiently applied to MD datasets. PMC [26] utilizes information

on atomic bonds in a molecule to predict atomic positions in each frame. This method,

however, is not suitable for simulations with non-bonded interactions, where connectivity

between neighboring atoms can dynamically change during the simulation.

4.3 Research Background

The background of MD simulation is important to the development of our novel

error-bounded lossy compressor for MD simulation datasets.

79

4.3.1 MD Simulations

MD is a type of N-body simulations which is widely used to explore the behavior

of materials at the nanoscale. As illustrated in Figure 4.1, a single MD simulation generally

involves many time steps, in each of which the new position and velocity of each particle

are predicted based on sophisticated calculations of interatomic forces. Force calculation

typically consumes the overwhelming majority of the computing time. After adjusting

atomic positions based on the calculated forces (shown as the highlighted arrow), boundary

conditions are applied and coordinates or physical quantities of interest care calculated and

written out.

Initialize atoms’

positions r
(i=0)

,

velocities v
(i=0)

Predict next

atom positions

Move atoms:

r
p
 = r

(i)
+v

(i)
t+…

Get forces:

F = - V(r
p
)

Adjust atoms’

positions

Update velocities:

v
p
 = v

(i)
+a t+…

Move time and

iteration forward

Figure 4.1: Illustration of classic MD simulation

A typical MD output is dominated by the storage of coordinate information along

the trajectory. Each particle’s position is composed of three axes (x, y, z). This is why most

of the existing lossy trajectory compressors [26,41,72,86] focus on the positions rather than

velocities. As such, in the following, the targets for compression are the particles’ positions

(x, y, z) alone.

80

4.4 Problem Formulation

In this section, we formulate the research problem by classifying the input and

output of error-bounded lossy compressors in the context of MD simulation datasets.

The research problem can be formulated as follows. Suppose an MD simulation

dataset (denoted by D) is composed of M snapshots each containing N particles. Atomic

positions (represented as three axes values {x, y, z}) need to be stored during the simulation.

In general, compression time should be negligible compared with the time to ex-

ecute hundreds to thousands of timesteps. In most MD simulations, the stiffness of the

equations of motion entails very short timesteps on the order of femtoseconds, which is

a small fraction of the vibration period of the fastest modes in the system. Hence, by

construction, very little structural changes occur between neighboring timesteps. As transi-

tions that change the topology are typically thermally-activated, simulation data need to be

saved only occasionally (i.e., thousands to tens of thousands of timesteps). For applications

to estimate systems with fast relaxation processes, e.g., to estimate the viscosity of liquids,

or the vibrational properties of solids, a higher frequency might be required (e.g., hundreds

of timesteps).

Accordingly, our research target can be summarized as maximizing the compres-

sion ratio while keeping the compression and decompression speed fast enough for the MD

simulations, and processing the M snapshots in batches instead of compressing the entire

dataset D at once.

Based on the above problem definition, traditional pure trajectory compression

methods [41,54,86] are not suitable, since they need to collect a large number of snapshots

81

for the compression, and decompressing any one snapshots needs to decompress all its

preceding snapshots as well. Moreover, single-snapshot based compression [75, 90] is not

an ideal solution either, in that it will suffer from low compression ratios because of the

non-smooth nature of the spatial particle data. To address these issues, we propose MDZ

which makes full use of the characteristics of MD datasets in both spatial and temporal

dimensions to significantly improve compression ratios.

4.5 Investigation of MD Datasets

In this section, we identify key characteristics and patterns from a number of MD

datasets. Specifically, we first analyze the spatial patterns present in MD datasets and then

investigate their temporal features.

4.5.1 MD Simulations Used in Our Work

Table 4.1 summarizes the eight MD simulation datasets. For Copper and Helium

datasets, we include two broad execution modes, noted A and B. In mode A, each snapshot

involves a relatively large number of atoms (generally more than 100K atoms). These are

typical of conventional large-scale MD simulations. In mode B, each simulation involves a

large number of timesteps and a relatively small number of atoms (such as 1k atoms). This

mode is more typical of long-timescale simulations, e.g., using methods such as Parallel

Trajectory Splicing [77]. The eight datasets are described as follows.

Copper (Mode A&B): The data comes from the study of the influence of strong

electric fields on copper in the context of particle accelerators. The mode A sample contains

82

Table 4.1: MD simulation dataset in our study
Application State Code Snapshots Atoms

Copper-A Solid LAMMPS 83 1077290

Copper-B Solid LAMMPS 5423 3137

Helium-A Plasma LAMMPS 2338 106711

Helium-B Plasma EXAALT 7852 1037

ADK Protein CHARMM 4187 3341

IFABP Protein CHARMM 500 12445

Pt Solid LAMMPS 300 2371092

LJ Liquid LAMMPS 50 6912000

1077290 atoms and the mode B sample has 3137 atoms. The time evolution was obtained

by molecular dynamics method using the LAMMPS code [79] in the canonical ensemble

at a temperature of 800K. The simulation was run on up to 30 nodes (1024 cores) of the

Grizzly [35] supercomputer at Los Alamos National Laboratory (LANL).

Helium (Mode A): This dataset contains simulations of the growth of helium

bubbles embedded in a body-centred cubic tungsten matrix. The simulation cell contains

106711 atoms. Helium atoms are gradually inserted in the bubble as the simulation proceed,

mimicking the agglomeration of helium atoms incoming from the plasma into the first wall

of a fusion reactor. The simulations were carried out with the Parallel Replica Dynamics

method [106] using the LAMMPS code [79]. Simulations were carried out on up to 1000

nodes of the Trinity supercomputer [102] at LANL.

Helium (Mode B): This dataset contains simulations of small vacancy/helium

clusters in a body-centred cubic tungsten matrix. The simulation cells contain 1037 atoms.

Long-time simulations were carried out with the Parallel Trajectory Splicing methods [77]

to investigate the mobility of these defects formed by helium atoms incoming through the

plasma in contact with the first wall of fusion reactors [78]. These simulations were carried

out on up to 2000 nodes of the Trinity supercomputer at LANL.

83

ADK: This dataset is from the simulation of adenylate kinase (ADK) which is

the critical enzyme controlling the energy balance in cells. According to Seyler [85], ADK

was simulated with explicit water and ions in isothermal–isobaric ensemble settings with

temperature being 300 K and pressure being 1 bar. The experiment was conducted on the

Anton supercomputer [8] at Pittsburgh Supercomputing Center. The snapshots contains

3341 atoms and were saved every 240 picoseconds for a total runtime of 1.004 µs.

IFABP: The data comes from an MD simulation with 12445 atoms of intestinal

fatty acid-binding protein in water. Fatty acid-binding proteins affect the transfer of fatty

acids between cell membranes while their mechanism are largely unknown. The simulation

data is valuable for studying protein dynamics, protein-ion, and protein-water interactions

[13]. The experiment was running for 500 picoseconds using CHARMM [14]. The timestep

is set to 2 femtoseconds and the snapshots are saved every 1 picosecond.

Pt: The data corresponds to an MD simulation of surface diffusion and adatom

clustering on a platinum surface. The model had 2371092 atoms and was run for 32M

timesteps using the local hyperdynamics methodology. More details on the method and

simulation analysis are given in [80]. The simulation was run on 64 KNL nodes (4096 cores)

of the Theta supercomputer at ALCF [97].

LJ: This simulation dataset was generated by the Lennard-Jones liquid benchmark

[67]. The Lennard-Jones potential estimates the potential between particles based on the

particle distance. LAMMPS includes the Lennard-Jones potential as one of the simulation

benchmarks. The simulation cell contains 6912000 atoms. The simulation was run on up

to 500 cores of the Bebop supercomputer [12] at Argonne National Laboratory.

84

4.5.2 Characterization of Spatial Features

0 20 40 60 80 100
Atom ID

1

2

3

4

5

6

At
om

 P
os

iti
on

(a) Copper-B

0 20 40 60 80 100
Atom ID

−4
−2

0
2
4
6
8

At
om

 P
os

iti
on

(b) ADK

0 20 40 60 80 100
Atom ID

−55

−50

−45

−40

−35

At
om

 P
os

iti
on

(c) Helium-A

0 20 40 60 80 100
Atom ID

0

5

10

15

20

25

At
om

 P
os

iti
on

(d) Helium-B

0 20 40 60 80 100
Atom ID

238
239
240
241
242
243
244

At
om

 P
os

iti
on

(e) Pt

0 20 40 60 80 100
Atom ID

0
25
50
75

100
125
150
175
200

At
om

 P
os

iti
on

(f) LJ

Figure 4.2: Demonstration of spatial correlations in atom position data

Takeaway 1: Our first critical observation is that in many cases, the MD datasets

exhibit various patterns in the spatial domain. Due to the space limit, we give six typical

examples (including Copper-B, ADK, Helium-A, Helium-B, Pt and LJ) to demonstrate the

diverse spatial patterns in Figure 4.2. As illustrated in the figure, the dataset may exhibit

a stable zigzag pattern (Figure 4.2 (a) (d)), an erratic zigzag pattern (Figure 4.2 (c) (f)), a

stair-wise pattern (Figure 4.2 (e)), or a random pattern (Figure 4.2 (b)).

Takeaway 2: We also observe from Figure 4.2 (a) (c) (d) that in many cases, the

data are clustering into several equal-distant discrete levels in the whole value range. In

fact, for all the data points that are clustering at a specific level, their positions actually

vibrate in a small range and are not strictly constant. These regular patterns emerge from

85

0 10 20 30 40
Atom Position

0

1

2

3

4

5

Fr
eq

ue
nc

y
of

 A
to

m
 P

os
iti

on

1e5

(a) Copper-B

−40 −30 −20 −10 0 10 20 30 40
Atom Position

0.0

0.5

1.0

1.5

2.0

Fr
eq

ue
nc

y
of

 A
to

m
 P

os
iti

on

1e5

(b) ADK

−60 −40 −20 0 20 40 60
Atom Position

0

1

2

3

4

5

Fr
eq

ue
nc

y
of

 A
to

m
 P

os
iti

on

1e6

(c) Helium-A

0 5 10 15 20 25
Atom Position

0

1

2

3

4

5

Fr
eq

ue
nc

y
of

 A
to

m
 P

os
iti

on

1e5

(d) Helium-B

0 200 400 600 800 1000
1200

1400
Atom Position

0

1

2

3

4

5

Fr
eq

ue
nc

y
of

 A
to

m
 P

os
iti

on

1e6

(e) Pt

0 25 50 75 100 125 150 175 200
Atom Position

0.0

0.5

1.0

1.5

2.0

Fr
eq

ue
nc

y
of

 A
to

m
 P

os
iti

on

1e6

(f) LJ

Figure 4.3: Demonstration of frequencies of atom position data

the crystalline structure of the underlying materials. The observed zig-zag patterns are also

typical of how crystalline samples are usually created. Such patterns can change with time,

as the structure of the materials evolve.

Takeaway 3: Based on Figure 4.2, we also learn that the atom’s coordinate

may jump from one discrete level to another nearby level, point by point throughout the

whole dataset. Since many prediction-based compressors such as SZ simply predict each

data point based on its preceding data points without explicitly using the discrete levels, it

would definitely suffer from relatively low prediction accuracy in this situation, leading to

low compression ratios (as discussed in Section 4.3).

As mentioned above, we observe that the data values often cluster and vibrate

around a number of different discrete levels, which can be verified by the distribution of

the data (as presented in Figure 4.3). As shown in the figure, the distribution of any MD

86

0 10 20 30 40 50
Time (Normalized)

0
10
20
30
40

At
om

 P
os

iti
on

(a) Copper-B

0 10 20 30 40 50
Time (Normalized)

−20
−10

0
10
20
30

At
om

 P
os

iti
on

(b) ADK

0 10 20 30 40 50
Time (Normalized)

0
5

10
15
20
25

At
om

 P
os

iti
on

(c) Helium-A

0 10 20 30 40 50
Time (Normalized)

−60
−40
−20

0
20
40
60

At
om

 P
os

iti
on

(d) Helium-B

0 10 20 30 40 50
Time (Normalized)

0
200
400
600
800

1000
1200
1400

At
om

 P
os

iti
on

(e) Pt

0 10 20 30 40 50
Time (Normalized)

0
25
50
75

100
125
150
175
200

At
om

 P
os

iti
on

(f) LJ

Figure 4.4: Demonstration of temporal correlations in atom position data (time is normal-
ized to 0-50)

dataset can be split into two categories - multiple-peak-dominated distribution (see Figure

4.3 (a) (c) (d)) and rather uniform distribution (see Figure 4.3 (b) (e) (f)). The former

clearly indicates the strong clustering feature of the data in many cases, which is consistent

with our analysis based on Figure 4.2.

4.5.3 Characterization of Temporal Features

Datasets which have no prominent spatial patterns often exhibit particular tem-

poral correlations that can be used to achieve very high compression ratios. Figure 4.4

presents the position data in the time dimension (i.e., trajectories of atomic positions) for

six datasets. It is clearly observed that the data value always exhibit more or less corre-

lations in the time dimension. Basically, there are two correlation levels as summarized

below. (1) The data may change relatively largely and frequently for some datasets (such

87

as Copper-B, ADK, and Helium-B). (2) The data may change slightly in some situations

(such as Helium-A, Pt, and LJ).

Takeaway 4: One very useful observation is that for the datasets which exhibit

low spatial patterns, for example Pt and LJ, they often have extremely strong data smooth-

ness in the time dimension and a large majority of the data are extremely close in the time

dimension throughout the whole simulation.

Based on the four important takeaways explored in our characterization, we de-

velop an adaptive error-bounded lossy compressor for the diverse MD datasets which can

significantly improve the compression ratios over the existing state-of-the-art MD compres-

sors.

4.6 MDZ: An Adaptive Error-bounded Lossy Compressor

for MD Datasets

The basic design idea is selecting the best method from among three compressors

best suited to diverse data features in both the spatial and temporal dimension.

Figure 4.5 summarizes the design of MDZ. Basically, the datasets are generated

by the data source such as the MD simulation, as illustrated in Figure 4.1. As mentioned in

Section 4.1 and Section 4.4, the MD applications need to perform the compression operation

periodically in order to avoid out-of-memory issue. The snapshots to be compressed are

stored in a buffer and the buffer size (BS) is defined as the maximum number of snapshots

to be kept in the buffer. Finally, the compressed data will be stored into the parallel file

systems (PFS).

88

As illustrated in Figure 4.5, the entire compression pipeline involves four critical

steps: prediction, optimized quantization, encoding and Zstd, following the classic SZ com-

pression framework [25, 91]. Our key contribution involves improvements to the prediction

and quantization stages.

Data

source
Buffer MDZ

Disk

(PFS)

Prediction Optimized

Quantization
Encoding Zstd

OurSol. VQ:

OurSol. VQT:

OurSol. MT:

VQ VQ VQ VQ VQ
Do VQ on

each snapshot

VQ T T T T
Do VQ on 1st,

T on remaining

S
e
le

c
t
b
e
s
t
o
p

ti
o
n

(T) T T T T
Do (T) on 1st,

T on remaining

Compression Stage Our main contributions

Data flow in MD Sim One snapshot Dependency

Figure 4.5: Design overview (VQ,VQT,and MT are described in Section 4.6.1 and 4.6.2)

Specifically, we design three efficient MD data prediction strategies to adapt to

diverse data patterns in the MD datasets:

• Vector-quantization-based compressor (abbreviated as VQ): The VQ compressor pre-

dicts the data values totally based on the spatial information, thus the data prediction

for any one snapshot has no dependencies on any other snapshots, such that any snap-

shot data can be decompressed very quickly without a need in decompressing other

snapshots. This is particularly effective on the datasets with very low smoothness in

time dimension (see Figure 4.4 (a) (b)).

89

• Vector-quantization-time-based compressor (abbreviated as VQT): The VQT com-

pressor adopts the VQ predictor on the first snapshot in the buffer, and adopts a

time-based predictor (i.e., predict each data point using the corresponding data val-

ues in the previous snapshot) for all the remaining snapshots in the buffer. This

method is designed particularly for datasets that have smooth time dimension and

also have strong multi-peak-distribution patterns in space (see Figure 4.4 (c) and (d)).

• Multi-level-time-based compressor (abbreviated as MT): The MT compressor adopts

a particular data prediction method - called initial-time-based prediction (shown as

the notation (T) in Figure 4.5)), and applies the ordinary time-based predictor on all

other remaining snapshots in the buffer. This method is particularly effective on the

datasets with very high smoothness in the time dimension (see Figure 4.4 (e) (f)).

We describe in detail the compressors with optimized prediction and quantization

methods in the following subsections.

4.6.1 Vector-Quantization-Based Compression (VQ and VQT)

The basic idea of the VQ algorithm is to leverage the spatial patterns characterized

in Section 4.5.2 (i.e., takeaway 2 and takeaway 3). Takeaway 2 indicates that the data are

clustering into different roughly equal-distant discrete levels (as shown in Figure 4.2 and

Figure 4.3), which motivates us to use the centroid (a.k.a., center) of each cluster to predict

all the data values within this cluster.

We present the pseudo-code of the VQ algorithm in Algorithm 2. The first step is

computing the level distance λ and the initial level value µ (line 1), based on which every

90

level value can be retrieved easily. Line 2∼8 is is the main compression procedure, including

data prediction (line 4∼5), computation of level index (line 6) and quantization (line 7).

Algorithm 2 Vector-quantization-based compression (VQ)

Input: raw MD data D (single snapshot)
Output: compressed data (byte stream)

1: Compute the level distance λ and the initial level value µ by the sampling-based KMeans;
2: Store do as it is;
3: for di∈D, where i=1, 2, · · · , N do
4: Li ← Round(di−µ

λ
); /*Compute level*/

5: Vi ← µ + λ·Li; /*Get the level’s centroid value - VQ based predictor*/
6: ji ← Li − Li−1; /*Compute relative level index*/
7: bi ← (di−Vi

e
+ 1)/2; /*linear-scale quantization, where e is error bound*/

8: end for
9: B̂ ← Huffmanbi∈B(B); /*Huffman encoding on quantization codes*/

10: Ĵ ← Huffmanji∈J(J); /*Huffman encoding on level index codes*/
11: Zstd(B̂ + Ĵ); /*Compress Huffman output by Zstd [118]*/

We illustrate the key steps (data prediction and quantization) of the VQ com-

pression algorithm in Figure 4.6. The figure shows a snippet of the dataset (i=10 → 26).

As we mentioned previously, the data values are clustered at different levels with a small

vibration, so we use the corresponding level’s centroid value to predict each data point. As

such, the quantization bin (see the red number 3 in the figure) is calculated based on the

prediction error (i.e., di − Vi). The vector B is used to hold the quantization bins, and J

is used to hold the relative index numbers. Both of them will be compressed by Huffman

encoding later on (line 9-10 in Algorithm 2).

As mentioned above, we develop an efficient sampling-based 1D K-means clustering

algorithm to identify the level distance and initial level value. In what follows, we first

describe the basic K-means algorithm and then discuss how we boost its performance in

the context of compression.

91

L
e
v
e

l
c
e
n
tr

o
id

s

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0
1
2
3

-1
-2
-3

Level

B

J

0 1-3 20 10 30 0-1 00 11

11 1-1 11 10 00 -11 10

…

… -1

…

…

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0

1

2

3

4

5

6

di

Vi

Index in a

snapshot

Figure 4.6: Illustration of VQ-based prediction + quantization

Unlike the time-consuming 2D K-means problem, optimally partitioning N sorted

1-dimensional data points to K groups has polynomial time complexity solutions. Define

the sorted data points as d1, d2, .., dN , and the cost of clustering as the summation of the

distance between the data points and their centroid points. In Formula (4.1), we define

Cost(l, r) as the optimal cost of clustering dl, .., dr to one group, F (n, k) as the optimal cost

of clustering d1, .., dn to k groups, and H(n, k) as the argument that minimizes F .

Cost(l, r) =
∑r

i=l(di −
∑r
j=l dj

r−l+1)

F (n, k) = min(F (i− 1, k − 1) + Cost(i, n),∀0 < i <= n)

H(n, k) = arg min(F (i− 1, k − 1) + Cost(i, n), ∀0 < i <= n)

(4.1)

The boundaries of clusters can be restored from H iteratively. The näıve implementation to

solve F (N,K) has O(KN2) time complexity, and we adopt a solution [36] that optimizes

the computational cost to O(KN).

92

In our case, the number of clusters K is unknown and the data points are unsorted.

To boost the performance, on the one hand, we compute F only once during the whole

simulation, and we compute it on a sampled dataset that has 10% data points from the

first single snapshot. We observe the snapshots have unchanged level patterns during the

simulation thus the result on the first snapshot is applicable for the following snapshots.

On the other hand, note that the value of F (N, 1), F (N, 2), .., F (N,K) are computed in

order when computing F (N,K). Let G(k) = F (N,k)
F (N,k−1) ; we stop the computation of F at κ

if G(κ) decreases significantly than G(κ − 1). The maximum test value of K is set to 150

as a higher number of clusters will harm the compression ratio of the vector quantization

indexes. The level distance λ and initial level value µ are computed using the boundaries

obtained from H.

For the VQ compression method, we adopt the VQ algorithm on each snapshot,

as illustrated in Figure 4.5. By comparison, the VQT compression method applies the VQ

algorithm only on the first snapshot in each buffer, and all other snapshots in the buffer

will be compressed by the classic time-based compression. Specifically, each subsequent

data point will be predicted using the corresponding data value in the previous timestep.

This may significantly improve the compression ratio especially in situations with relatively

smooth data in the time dimension (see Figure 4.4 (c)-(f)).

4.6.2 Multilevel Time-Based Compression (MT)

We propose an additional error-bounded compression method - called multi-level-

time-based compression (MT), which is particularly effective for the datasets with extremely

high smoothness in the time dimension.

93

The MT compression algorithm also adopts the prediction-based compression

model. The particular design of MT is that the first snapshot in the buffer will be pre-

dicted based on the initial snapshot of the whole dataset, which is motivated by the very

strong correlation between all the simulation snapshots and the initial snapshot in some

datasets. Figure 4.7 shows the similarity of all the snapshots compared with the initial

snapshot (i.e., snapshot 0). The similarity is defined in Formula (4.2).

Similarity(τ, i) =
Count(|Si[j]−S0[j]

Si[j]
|<τ,∀j)

Count(Si)
(4.2)

where τ refers to a threshold, Si refers to snapshot i, Si[j] refers to the jth data point in

the snapshot Si. The similarity formula calculates the percentage of the “unchanged” data

points based on threshold τ . The figure demonstrates that succeeding snapshots in some

datasets such as Copper-A and Pt are always extremely similar to the initial snapshot.

0 20 40 60 80100
Snapshot (Normalized)

0.0

0.2

0.4

0.6

0.8

1.0

Si
m
ila
rit
y

Copper-A
Copper-B
LJ
Pt
ADK
IFABP
Helium-A
Helium-B

(a) Threshold = 10%

0 20 40 60 80100
Snapshot (Normalized)

0.0

0.2

0.4

0.6

0.8

1.0

Si
m
ila
rit
y

Copper-A
Copper-B
LJ
Pt
ADK
IFABP
Helium-A
Helium-B

(b) Threshold = 1%

Figure 4.7: Snapshots similarity with snapshots-0 (snapshots normalized to 0-100)

Using the snapshot-0-based prediction, the prediction error could be much lower

than using the Lorenzo predictor, as presented in Table 4.2.

94

Table 4.2: Prediction errors for the first snapshot in buffer

Method
Pt LJ Helium-B

x y z x y z x y z

Lorenzo+Regression 3.46 5.50 3.88 5.87 3.87 3.75 5.83 1.14 0.83

MT(Snapshot-0-based) 0.13 0.13 0.01 1.37 1.37 1.38 0.08 0.07 0.09

4.6.3 Linear-Scale Quantization Optimizations

In this section, we optimize the linear-scale quantization step by tuning two quan-

tization settings to further improve the overall compression performance and quality.

Optimization of Quantization Scale

The quantization scale controls the value-range of the quantized integers. The

data points that are out-of-scope will be marked with reserved integer value and stored sep-

arately. A smaller scale will increase the number of out-of-scope data points which impacts

the compression ratio, while a larger quantization scale leads to a bigger Huffman tree such

that the Huffman coding will be slower. In Figure 4.8, we illustrate the compression/decom-

pression speed with different quantization scale settings. The compression speeds of VQ,

VQT, and MT decrease from 95MB/s, 109MB/s, 119MB/s to 19MB/s, 20MB/s, 32MB/s

respectively when the quantization scale changes from 64 to 65536. As such, in our solution,

we set the optimal quantization scale to 1024, which can always keep a high compression

performance while preserving a high compression ratio.

Optimization of Quantization Sequence

The quantization sequence controls how the integers from multiple snapshots are

stored together as 1D array for the Huffman coding and dictionary coding. We denote Seq-

95

4 16 64 2561024
4096

16384
65536

262144
Quantization Scale

20
40
60
80

100
120
140

Co
m

pr
es

sio
n

Sp
ee

d
(M

B/
s)

OurSol-VQ
OurSol-VQT
OurSol-MT

(a) Compression

4 16 64 2561024
4096

16384
65536

262144
Quantization Scale

50
100
150
200
250
300

De
co

m
pr

es
sio

n
Sp

ee
d

(M
B/

s)

OurSol-VQ
OurSol-VQT
OurSol-MT

(b) Decompression

Figure 4.8: Compressor performance affected by quantization scale on Helium-B dataset
(value-range-based error bound (ε) = 1E-3, BS = 10)

1 as storing one snapshot first, then storing the following snapshots. Seq-2 is denoted as

storing one particle in all snapshots first, then storing the following particles. We observe

that Seq-2 is better than Seq-1 in terms of compression ratio, especially when the data

is stable in time (as shown in Figure 4.4 (c) (e) (f)). When many data points remain

unchanged in the time dimension and if they are put together as required by Seq-2, the

dictionary coder will have better compression results. Table 4.3 demonstrates compression

ratios of the two sequences on Helium-B dataset. The second row of the table is the value-

range-based error bound (ε), and the corresponding absolute error bound is value range×ε.

The table shows Seq-2 improves the compression ratio by 37.8%, 37.6%, and 39.7% over

Seq-1 on axis x, y, and z respectively. As a result, we adopt Seq-2 in our solution.

Table 4.3: Compression ratio (CR) of Helium-B dataset with difference sequence settings,
buffer size (BS) = 10 (method=MT)

Axis X Y Z

ε 1E-1 5E-2 1E-2 1E-1 5E-2 1E-2 1E-1 5E-2 1E-2

Seq-1 156 97 46 176 101 47 146 97 46

Seq-2 215 132 53 236 139 54 204 133 53

96

4.6.4 Adaptive Selection of Best Compressor (ADP)

In this section, we propose our adaptive solution (ADP) that can select the best

compressor (VQ, VQT or MT) dynamically at runtime. MDZ uses ADP by default to

simplify the compression configuration, while manually choosing VQ, VQT, or MT as the

compressor is also supported in MDZ.

We notice that during the simulation, the data patterns stay the same in a short

term and the patterns (either spatial or temporal) may change prominently in the long

term. Furthermore, the best compressor keeps its advantage across some snapshots, but

it may not be the best one on all the snapshots. As illustrated in Figure 4.9 (a), MT has

the highest compression ratio before snapshot 400 and VQT becomes the best compressor

after that snapshot. As a result, we propose to evaluate the three compressors (VQ, VQT,

and MT) periodically by using them to compress the same data batch independently and

selecting the one with the best compression ratio for the following snapshots. The evaluation

will be invoked every 50 compression operations. This time interval ensures that the best

compressor is updated in time, while keeping the updating overhead low (less than 6% of

the total compression time). Figure 4.9 confirms the effectiveness of our adaptive solution

(ADP). All other datasets exhibit similar results (i.e., our ADP algorithm can always select

the best solution accurately).

97

0 500 1000
1500

2000
Snapshot

0
20
40
60
80

100
120
140

Co
m

pr
es

sio
n

Ra
tio VQ

VQT
MT
ADP

(a) Helium-A, ε=1E-3

0 1000
2000

3000
4000

5000
6000

7000
Snapshot

0
5

10
15
20
25
30

Co
m

pr
es

sio
n

Ra
tio VQ

VQT
MT
ADP

(b) Helium-B, ε=1E-3

Figure 4.9: Illustration of smooth CR in short term and diverse CR in long term (BS=10).
ADP can pick up the best compressor throughout all the snapshots.

4.7 Experimental Evaluation

In this section, we present the experimental settings and the evaluation results of

our solution on eight MD simulation datasets.

4.7.1 Experimental Setting

Execution Environment

The experiments are executed on the Bebop supercomputer [12] at Argonne Na-

tional Laboratory with up to 216 cores. Each node in Bebop is equipped with two Intel

Xeon E5-2695 v4 processors and 128GB memory.

Datasets

The experiments are evaluated on eight real-world MD simulation datasets. The

detailed information about the datasets is presented in Section 4.5.1 and Table 4.1.

98

State-of-the-Art Lossless Compressors in Our Evaluation

We evaluate six lossless compressors as a comparison with lossy compressors. We

include Zstd, Brotli, and Zlib which are widely used in databases and file systems. We also

include ZFP, Fpzip, and FPC which specifically target the floating-point data format and

are the state-of-the-art lossless compressors for scientific datasets.

State-of-the-Art Lossy Compressors In our Evaluation

We compare our solution with two MD data compressors, two widely used scientific

data compressors, as well as two state-of-the-art time series compressors.

• TNG [71]: a MD compressor that uses quantization, delta coding, and a set of integer

compressors to compress the trajectory data. TNG is supported by the MD simulation

package GROMACS [105].

• HRTC [41]: a lossy compressor targets on MD trajectory compression. HRTC relies

on piecewise linear function to approximate data points.

• ASN [54]: a scientific compressor designed for N-body simulation that utilizes the

time dimension for prediction.

• SZ2 [59]: a prediction based error-bounded lossy compressor. SZ is widely used in

many scientific domains.

• MDB: a full C++ implementation of ModelarDB’s compression solution. ModelarDB

is described in Section 4.3. ModelarDB tightly couples its compressor with many

99

database features which are useless for scientific data and introduce extra overhead.

As such, we eliminate the overhead caused by those features for a fair comparison.

• LFZip [18]: a lossy compressor designed for multivariate floating-point time series

data. LFZip is a prediction-based lossy compressor. We evaluate LFZip with its

normalized least mean square (NLMS) predictor and skip its neural network (NN)

predictor because the NN predictor requires training and is 2000X slower than the

NLMS predictor according to the authors [18].

SZ supports both 1D mode and 2D mode. Table 4.4 presents the compression ratios of SZ

in the two modes. We can observe from the table that the 2D mode has up to 200% higher

compression ratios than 1D, because 2D mode can utilize the data continuity in the space

and time dimension at the same time. In our experiments, we use 2D mode for SZ.

Table 4.4: Compression ratios of SZ in 1D and 2D modes (BS=10, ε=1E-3)

Method Mode
Pt LJ Helium-A

x y z x y z x y z

SZ2
1D 150.5 139.6 38.9 6.35 6.45 6.53 7.18 7.28 6.36
2D 356.5 371.6 32.1 12.26 12.40 12.44 11.11 12.03 11.58

Excluded Cases

HRTC has runtime exceptions on Copper-A, Helium-A, Pt, and LJ datasets. TNG

has runtime exceptions on Pt and LJ datasets. A possible reason is the number of atoms

is larger than their upper limit. As a result, no HRTC or TNG results are shown on those

datasets.

100

4.7.2 Evaluation Results and Analysis of Lossless Compressors

We first evaluate the six state-of-the-art lossless compressors. Table 4.5 shows

the compression ratios of the lossless compressors on four of the MD datasets (results are

similar on other datasets). It is clear that all the lossless compressors have extremely low

compression ratios (around 1∼2). The results confirms our statement in Section 4.2 that

lossless compressors are not suitable for scientific applications.

Table 4.5: Compression ratio comparison of lossless compressors
Dataset Zstd Zlib Brotli Fpzip FPC ZFP

Copper-A 1.13 1.15 1.14 1.41 1.18 1.47

Helium-B 1.38 1.33 1.37 1.29 1.22 1.30

ADK 1.08 1.07 1.08 1.26 1.09 1.21

LJ 1.23 1.31 1.24 1.44 1.16 1.39

4.7.3 Evaluation Results and Analysis of Lossy Compressors

The evaluation involves two aspects - the compression quality and performance.

On the one hand, the evaluations of compression error, compression ratio, and rate-distortion

demonstrate that our solution has superior compression quality over other state-of-the-art

lossy compressors. On the other hand, the performance evaluation reveals that our solution

has near the top compression and decompression throughput.

Compression Ratio

Figure 4.10 demonstrates the compression ratio of our solutions. We can observe

that ADP has the highest compression ratio among our solutions under different datasets

and buffer size settings. It further confirms our claim in Section 4.6.4 that ADP can always

101

25 50 75 100 125 150 175 200
Buffer Size

0
10
20
30
40
50
60
70

Co
m
pr
es

sio
n
Ra

tio

OurSol-VQ
OurSol-VQT

OurSol-MT
OurSol-ADP

(a) Copper-B, ε=1E-2

25 50 75 100 125 150 175 200
Buffer Size

0
25
50
75

100
125
150
175

Co
m
pr
es

sio
n
Ra

tio

OurSol-VQ
OurSol-VQT

OurSol-MT
OurSol-ADP

(b) Helium-B, ε=1E-2

Figure 4.10: Our adaptive solution (ADP) has the highest compression ratio over VQ, VQT,
and MT under different datasets and buffer size (BS) settings, because ADP can always
select the best compression method accurately.

select the best compressor from VQ, VQT and MT accurately during runtime. As such, we

focus on ADP in the following evaluation section.

Figure 4.11 compares the compression ratio of the lossy compressors in different

buffer size settings. It clearly shows that our solution always has the highest compression

ratio on all the eight datasets with any buffer settings. In particular, when buffer size

is 100, our solution has 31%, 114%, 38%, 84%, 6%, 27%, 96%, 233% compression ratio

improvements over the second-best on Copper-A, Copper-B, Helium-A, Helium-B, ADK,

IFABP, Pt, and LJ datasets respectively. MDB has extremely low compression ratios (1∼6)

on all the datasets, as shown in Figure 4.11. The result confirms our statement in Section

4.3 that simple data estimation methods and the lack of quantization and entropy coding

make ModelarDB suffer from low compression ratios on MD datasets. As a comparison,

LFZip, which is also a time series compressor, has comparable results with other lossy

compressors, because LFZip has the adaptive linear predictor as well as quantization and

entropy coding steps. However, LFZip is still not as good as our solution. The key reason

102

0 25 50 75 100125150175200
Buffer Size

0

10

20

30

40

50

Co
m
pr
es
sio

n
Ra

tio

SZ2
TNG
LFZip
OurSol-ADP

ASN
HRTC
MDB

(a) Copper-A (ε=5e-4)

0 25 50 75 100125150175200
Buffer Size

0
10
20
30
40
50
60

Co
m
pr
es
sio

n
Ra

tio

SZ2
TNG
LFZip
OurSol-ADP

ASN
HRTC
MDB

(b) Copper-B (ε=1e-2)

0 25 50 75 100125150175200
Buffer Size

0
20
40
60
80

100
120

Co
m
pr
es
sio

n
Ra

tio

SZ2
TNG
LFZip
OurSol-ADP

ASN
HRTC
MDB

(c) Helium-A (ε=1e-3)

0 25 50 75 100125150175200
Buffer Size

0

20

40

60

80

100

Co
m
pr
es
sio

n
Ra

tio

SZ2
TNG
LFZip
OurSol-ADP

ASN
HRTC
MDB

(d) Helium-B (ε=5e-3)

0 25 50 75 100125150175200
Buffer Size

0

5

10

15

20

25

Co
m

pr
es

sio
n

Ra
tio

SZ2
TNG
LFZip
OurSol-ADP

ASN
HRTC
MDB

(e) ADK (ε=5e-3)

0 25 50 75 100125150175200
Buffer Size

0

20

40

60

80

100

Co
m
pr
es
sio

n
Ra

tio

SZ2
TNG
LFZip
OurSol-ADP

ASN
HRTC
MDB

(f) IFABP (ε=1e-1)

0 25 50 75 100125150175200
Buffer Size

0
100
200
300
400
500
600
700
800

Co
m
pr
es
sio
n
Ra
tio

SZ2
TNG
LFZip
OurSol-ADP

ASN
HRTC
MDB

(g) Pt (ε=1e-6)

0 25 50 75 100125150175200
Buffer Size

0

100

200

300

400

Co
m
pr
es
sio

n
Ra

tio

SZ2
TNG
LFZip
OurSol-ADP

ASN
HRTC
MDB

(h) LJ (ε=1e-2)

Figure 4.11: Our solution has the highest compression ratio on all datasets and under
different buffer size settings, HRTC and TNG fail to run on some datasets.

103

why our solution has such a high compression ratio is that we investigate and utilize the

MD data features in both spatial and temporal dimensions (as shown in Figure 4.2, Figure

4.3, Figure 4.4, and Table 4.2).

Rate-Distortion

0 2 4 6 8 10 12
Bit Rate

20
40
60
80

100
120
140
160
180

PS
NR

 (d
B)

SZ2
TNG
LFZip
OurSol-ADP

ASN
HRTC
MDB

(a) Copper-A

0 2 4 6 8 10 12
Bit Rate

20
40
60
80

100
120
140
160
180

PS
NR

 (d
B)

SZ2
TNG
LFZip
OurSol-ADP

ASN
HRTC
MDB

(b) Copper-B

0 2 4 6 8 10 12
Bit Rate

20
40
60
80

100
120
140

PS
NR

 (d
B)

SZ2
TNG
LFZip
OurSol-ADP

ASN
HRTC
MDB

(c) Helium-B

0 2 4 6 8 10 12 14
Bit Rate

20
40
60
80

100
120
140
160
180

PS
NR

 (d
B)

SZ2
TNG
LFZip
OurSol-ADP

ASN
HRTC
MDB

(d) Pt

Figure 4.12: Rate-distortion graphs show our solution has the best compression quality.
Lower bit rate and higher PSNR indicate better compression quality.

Rate-distortion graph is one of the main assessment metrics of lossy compression

quality. Rate-distortion involves bit rate and PSNR. The bit rate is defined as the average

bits per data point of the compressed data. PSNR is the peak-signal-to-noise ratio and

it is inversely proportional to mean squared error. Lower bit rate or higher PSNR indicts

104

better compression quality. Figure 4.12 presents the rate-distortion results of all the lossy

compressors. It is clear that our solution has the best PSNR given the same bit rate (about

20dB improvement in most cases), and also has the lowest bit rate given the same PSNR

(about 50% reduction in size in most cases).

Compression Error

In the domain of lossy compression, compression error is defined as the differences

between the decompressed data and the original data. The maximum of the compression

error (MaxError) and the normalized root-mean-square error (NRMSE) are two key metrics

to evaluate the compression quality of lossy compressors. As an example, we present in

Table 4.6 the two error metrics for all the lossy compressors (excluding MDB) based on

the Copper-B dataset. Other datasets exhibit the similar results. MDB is excluded from

this section because it could not achieve a compression ratio of 10. In this example, the

MaxError of ADP always matches the lowest one from VO, VQT, and MT because VQ is

always the best on x/y-axis, and MT is always better than the others on z-axis. Thus ADP

chooses VQ for x/y-axis and MT for z-axis all the time. In other cases when no compressor

is always better than the others, ADP will have even lower MaxError and NRMSE than any

of the three compressors. We can observe from Table 4.6 that our solution has the lowest

MaxError and NRMSE on all axes. Specifically, the MaxError of our solution is 87%, 87%,

60% lower than the second-best compressor on x, y, and z axis, respectively.

To further demonstrate that our solution upholds the physical characteristics of

the data after compression, we present the radial distribution functions (RDFs) of the

105

(a) Original Data (b) SZ2 (c) TNG

(d) HRTC (e) ASN (f) LFZip

(g) Oursol-ADP

Figure 4.13: Only our solution yields the correct radial distribution function (RDF) on
decompressed data (Copper-B, CR=10, BS=10)

original data and decompressed data in Figure 4.13. RDF, denoted as g(r), is a critical

analysis metric, which represents the possibility of finding a particle from the base particle

at distance r. RDF is proportional to the local density of the particle systems. Figure 4.13

reveals that only our solution could yield the correct RDF on Cooper-B dataset under the

same compression ratio. Therefore, only our solution delivers the decompressed data with

unaltered local density to downstream applications. In order to get the same RDF as ours,

106

other compressors need to significantly reduce their compression ratios. In summary, the

RDF result proves that, with suitable compression ratio, our solution maintains the physical

characteristics of the data accurately.

Table 4.6: MaxError and NRMSE of decompressed Copper-B dataset, CR=10, BS=10

Type Axis SZ2 ASN TNG HRTC LFZip
OurSol

VQ VQT MT ADP

Max
Error

X 0.37 0.23 0.44 2.06 0.35 0.03 0.10 0.10 0.03
Y 0.32 0.23 0.44 1.94 0.35 0.03 0.10 0.09 0.03
Z 0.16 0.10 0.44 1.13 0.17 0.11 0.05 0.04 0.04

NRMSE
(×1E-4)

X 45.5 27.4 61.8 133 43.2 3.10 9.00 11.9 3.10
Y 40.0 28.5 61.9 128 43.3 3.10 8.92 10.0 3.10
Z 20.6 9.41 45.2 74.1 21.4 15.3 8.18 5.32 5.32

Compression/Decompression Throughput

Copper-A Copper-B LJ Pt ADK IFABP Fiber Helium-A Helium-B
Dataset

0
50

100
150
200
250
300
350

Th
ro
ug

hp
ut

SZ2 ASN TNG HRTC LFZip OurSol-ADP

(a) Compression throughput

Copper-A Copper-B LJ Pt ADK IFABP Fiber Helium-A Helium-B
Dataset

0
200
400
600
800

Th
ro
ug

hp
ut

SZ2 ASN TNG HRTC LFZip OurSol-ADP

(b) Decompression throughput

Figure 4.14: Our solution is the only one that always has high compression/decompression
throughput (MB/s) on all datasets. As a comparison, ASN is slow on Pt and Helium-B.
TNG and HRTC fail to run on some datasets and LFZip is very slow due its intermediate
disk operations.

We present the throughput comparison among all lossy compressors in Figure

4.14. It is clear that our solution is one of the fastest among all the lossy compressors on

107

all datasets. As a comparison, ASN is slower than some compressors on Pt and Helium-B

datasets. There are no results for TNG and HRTC on datasets such as Pt due to runtime

exceptions, as explained in Section 4.7.1. The results of LFZip are barely visible in this figure

because LFZip has intermediate disk operations which bring significant runtime overhead.

The excellent performance of our solution is attributed to both effective prediction methods

and our optimized quantization settings (see Section 4.6.3 for details).

4.7.4 Integration with LAMMPS

We integrate MDZ into the MD simulation software LAMMPS. To enable MDZ,

LAMMPS users only need to adjust the data dumping option in the configuration file.

We executed the Lennard-Jones benchmark in LAMMPS with different settings

to evaluate the overhead of our solution in real-world MD systems. The simulation lasts 1

million timesteps and is executed in three different scales, with the number of atoms ranging

from 64K to 4096K. We choose data saving frequencies of 1 per 100 timesteps and 1 per

5000 timesteps, which is the range of the typical data saving frequency of MD simulations,

as discussed in Section 4.4. The runtime breakdown is shown in Table 4.7. It is clear that

enabling MDZ does not affect the output portion of the runtime or the total runtime. MDZ

even improves the output performance when the data saving frequency is 100 because the

I/O time is significantly reduced due to the reduced file size by MDZ. In general, MDZ has

negligible overhead to the MD simulation, and it can improve the simulation performance

if a large mount of data needs to be saved and the I/O speed is the bottleneck.

108

Table 4.7: Runtime breakdown of LJ simulation (F: Data saving frequency, Comp: compu-
tation time, comm: communication time, output: data saving time including compression)

F # Atoms Option
Duration Runtime Breakdown
(minutes) Comp Comm Output

100

64K
w/o MDZ 329 96.4% 1.4% 2.2%
w MDZ 322 98.3% 1.4% 0.3%

512K
w/o MDZ 428 93.9% 3.5% 2.6%
w MDZ 418 95.5% 3.6% 0.9%

4096K
w/o MDZ 516 82.7% 12.8% 4.5%
w MDZ 513 83.0% 12.7% 4.3%

5000

64K
w/o MDZ 322 97.0% 2.9% 0.06%
w MDZ 312 98.5% 1.5% 0.01%

512K
w/o MDZ 415 96.2% 3.7% 0.07%
w MDZ 425 93.7% 6.2% 0.03%

4096K
w/o MDZ 474 90.0% 9.8% 0.14%
w MDZ 480 88.9% 10.9% 0.16%

4.7.5 Generalizability of Our Solution Beyond MD Simulations

In this section, we discuss the generalizability of our solution beyond MD simula-

tion datasets. As we mentioned in Section 4.1, scientific data can be categorized into particle

data, structured mesh, and unstructured mesh. In order to reach as high compression qual-

ity as possible, developers need to design specific solutions for each of the three categories

of data. For example, our previous work [112] proposes a customized interpolation-based

compressor for structured mesh data (the second category). In comparison, our solution

leverages both spatial and temporal data characteristics that exist in many domains. It can

be applied to the first category of datasets (all kinds of particle data instead of only MD

simulation data).

We present the compression ratio evaluation on the Hardware/Hybrid Accelerated

Cosmology Code (HACC) datasets in Figure 4.15 to demonstrate the effectiveness of our

solution in domains other than MD simulation. HACC is an extreme-scale cosmological

simulation code that studies the structure formation in the Universe. HACC saves the

positions and velocities of the particles periodically. We include two HACC datasets in this

109

evaluation (HACC-1: 30 snapshots × 15767098 atoms, HACC-2: 80 snapshots × 13131491

atoms). It is clear that our solution is the best among all the compressors on both of the

datasets, and it has 30%∼56% higher compression ratios than the second-best compressor.

0 25 50 75 100125150175200
Buffer Size

0
10
20
30
40
50
60
70

Co
m
pr
es
sio

n
Ra

tio

SZ2
TNG
LFZip
OurSol-ADP

ASN
HRTC
MDB

(a) HACC-1 position (ε=1e-4)

0 25 50 75 100125150175200
Buffer Size

0

10

20

30

40

50

Co
m
pr
es
sio

n
Ra

tio

SZ2
TNG
LFZip
OurSol-ADP

ASN
HRTC
MDB

(b) HACC-1 velocity (ε=1e-3)

0 25 50 75 100125150175200
Buffer Size

0

20

40

60

80

Co
m
pr
es
sio

n
Ra

tio

SZ2
TNG
LFZip
OurSol-ADP

ASN
HRTC
MDB

(c) HACC-2 position (ε=5e-4)

0 25 50 75 100125150175200
Buffer Size

0

5

10

15

20

25

Co
m

pr
es

sio
n

Ra
tio

SZ2
TNG
LFZip
OurSol-ADP

ASN
HRTC
MDB

(d) HACC-2 velocity (ε=5e-4)

Figure 4.15: Our solution has the best compression ratios on HACC datasets

110

Chapter 5

Conclusions

In this thesis, we present three efficient error-bounded lossy compressors for scien-

tific applications. The key findings are summarized below.

• We extend the SZ2 lossy compressor by adding 2nd-order prediction methods based on

Lorenzo prediction and regression prediction. We also develop an efficient algorithm

that can select the best-fit predictors and optimized parameter settings at runtime.

Experiments with 5 real-world scientific simulations show that the 2nd-order predic-

tion can improve the compression ratio by 50+% and the parameter optimization can

further improve the compression by 4%∼50% in most cases. Moreover, our solution

has the least overall elapsed I/O times, which are 20%∼40% less than the times when

using the second-best lossy compressor.

• We propose a dynamic spline interpolation based compressor with adaptive optimiza-

tion strategies to replace SZ2. Our analysis shows that the linear regression predictor

in SZ2 has a significant problem because its coefficient overhead is non-negligible

111

(25%∼70% in compressed data). Our dynamic spline interpolation solution can im-

prove the compression ratio by 457%, 244%, and 209% compared with the second-best

compressor on RTM, QMCPACK, and Miranda datasets, respectively. Our solution

keeps an extremely high visual quality in the decompressed data, whereas other lossy

compressors suffer from prominent degradation in visualization with the same com-

pression ratios.

• we develop an error-bounded lossy compressor MDZ for molecular dynamics simula-

tion applications. The key idea is to improve the prediction accuracy based on the

regularities and correlations of the data in both spatial and temporal dimensions.

MDZ contains vector-quantization-based compressor VQ and VQT, and multilevel-

time-based compressor MT. MDZ is also equipped with our adaptive solution ADP

which can select the best compressor (VQ, VQT, or MT) dynamically at runtime.

MDZ improves the compression ratio by up to 233% compared with the second-best

compressor on eight real-world MD datasets. We integrate MDZ to the MD soft-

ware LAMMPS. MDZ shows negligible overhead in real-world MD simulations under

different scales and settings.

112

Bibliography

[1] 7-Zip. https://www.7-zip.org, 2022. Online.

[2] Nitin Agrawal and Ashish Vulimiri. Low-latency analytics on colossal data streams
with summarystore. In Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, page 647–664, 2017.

[3] Anastasia Ailamaki, Verena Kantere, and Debabrata Dash. Managing scientific data.
Commun. ACM, 53(6):68–78, June 2010.

[4] Mark Ainsworth, Ozan Tugluk, Ben Whitney, and Scott Klasky. Multilevel techniques
for compression and reduction of scientific data—the univariate case. Computing and
Visualization in Science, 19(5):65–76, Dec 2018.

[5] Ioannis Alagiannis, Renata Borovica, Miguel Branco, Stratos Idreos, and Anastasia
Ailamaki. Nodb: Efficient query execution on raw data files. In Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data, SIGMOD
’12, page 241–252, 2012.

[6] Jyrki Alakuijala, Andrea Farruggia, Paolo Ferragina, Eugene Kliuchnikov, Robert
Obryk, Zoltan Szabadka, and Lode Vandevenne. Brotli: A general-purpose data
compressor. ACM Trans. Inf. Syst., 37(1), December 2018.

[7] Francesc Alted. Blosc, an extremely fast, multi-threaded, meta-compressor library.
https://www.blosc.org/, 2022.

[8] Anton supercomputer. https://www.psc.edu/resources/anton, 2022. Online.

[9] Allison Baker, Dorit Hammerling, Sheri Mickelson, Haiying Xu, Martin Stolpe,
Phillipe Naveau, Ben Sanderson, Imme Ebert-Uphoff, Savini Samarasinghe, Francesco
De Simone, Francesco Carbone, Christian Gencarelli, John Dennis, Jennifer Kay, and
Peter Lindstrom. Evaluating lossy data compression on climate simulation data within
a large ensemble. Geoscientific Model Development, 9(12):4381–4403, 2016.

[10] Allison Baker, Haiying Xu, Dorit Hammerling, Shaomeng Li, and John Clyne. Toward
a multi-method approach: Lossy data compression for climate simulation data. In
High Performance Computing, pages 30–42, 2017.

113

https://www.7-zip.org
https://www.blosc.org/
 https://www.psc.edu/resources/anton

[11] Rafael Ballester-Ripoll, Peter Lindstrom, and Renato Pajarola. TTHRESH: Tensor
compression for multidimensional visual data. IEEE Transactions on Visualization &
Computer Graphics, 26(09):2891–2903, sep 2020.

[12] Bebop supercomputer. https://www.lcrc.anl.gov/systems/resources/bebop,
2019. Online.

[13] Oliver Beckstein. Molecular dynamics trajectory of I-FABP for testing and bench-
marking solvent dynamics analysis. https://figshare.com/articles/dataset/

Molecular_dynamics_trajectory_of_I-FABP_for_testing_and_benchmarking_

solvent_dynamics_analysis/7058030, 9 2018.

[14] Bernard R. Brooks, Charles L. Brooks, Alexander D. MacKerell, Lennart Nils-
son, Robert J. Petrella, Benoit Roux, Youngdo Won, Georgios Archontis, Christian
Bartels, Stefan Boresch, Amedeo Caflisch, Leo Simon Dominic Caves, Qiang Cui,
Aaron R. Dinner, Michael Feig, Stefan Fischer, Jiali Gao, Milan Hodoscek, Wonpil Im,
Krzysztof Kuczera, Themis Lazaridis, Jianpeng Ma, Victor Ovchinnikov, Emanuele
Paci, Richard W. Pastor, Carol Beth Post, Jingzhi Pu, Michael Schaefer, Bruce Tidor,
Richard M. Venable, Henry L. Woodcock, Xiongwu Wu, Wei Yang, Darrin M. York,
and Martin Karplus. Charmm: The biomolecular simulation program. Journal of
Computational Chemistry, 30, 2009.

[15] Martin Burtscher and Paruj Ratanaworabhan. FPC: A high-speed compressor for
double-precision floating-point data. IEEE Transactions on Computers, 58(1):18–31,
Jan 2009.

[16] Hu Cao, Ouri Wolfson, and Goce Trajcevski. Spatio-temporal data reduction with
deterministic error bounds. The VLDB Journal, 15:211–228, 01 2006.

[17] Franck Cappello, Sheng Di, Sihuan Li, Xin Liang, Ali Murat Gok, Dingwen Tao,
Chun Hong Yoon, Xin-Chuan Wu, Yuri Alexeev, and Frederic T Chong. Use cases
of lossy compression for floating-point data in scientific data sets. The International
Journal of High Performance Computing Applications, 33(6):1201–1220, 2019.

[18] Shubham Chandak, Kedar Tatwawadi, Chengtao Wen, Lingyun Wang, Juan Aparicio,
and Tsachy Weissman. LFZip: Lossy compression of multivariate floating-point time
series data via improved prediction. In 2020 Data Compression Conference (DCC),
pages 342–351, 2020.

[19] Zhengzhang Chen, Seung Woo Son, William Hendrix, Ankit Agrawal, Wei-keng Liao,
and Alok Choudhary. NUMARCK: machine learning algorithm for resiliency and
checkpointing. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 733–744, 2014.

[20] Yu Cheng and Florin Rusu. Parallel in-situ data processing with speculative loading.
In Proceedings of the 2014 ACM SIGMOD International Conference on Management
of Data, page 1287–1298, 2014.

114

 https://www.lcrc.anl.gov/systems/resources/bebop
https://figshare.com/articles/dataset/Molecular_dynamics_trajectory_of_I-FABP_for_testing_and_benchmarking_solvent_dynamics_analysis/7058030
https://figshare.com/articles/dataset/Molecular_dynamics_trajectory_of_I-FABP_for_testing_and_benchmarking_solvent_dynamics_analysis/7058030
https://figshare.com/articles/dataset/Molecular_dynamics_trajectory_of_I-FABP_for_testing_and_benchmarking_solvent_dynamics_analysis/7058030

[21] John Clyne, Pablo Mininni, Alan Norton, and Mark Rast. Interactive desktop analysis
of high resolution simulations: application to turbulent plume dynamics and current
sheet formation. New Journal of Physics, 9(301):1–29, 2007.

[22] Shirley Cohen, Patrick Hurley, Karl W. Schulz, William L. Barth, and Brad Benton.
Scientific formats for object-relational database systems: A study of suitability and
performance. SIGMOD Rec., 35(2):10–15, June 2006.

[23] Philippe Cudre-Mauroux, Hideaki Kimura, Kian-Tat Lim, Jennie Rogers, Roman
Simakov, Emad Soroush, Pavel Velikhov, Daniel Wang, Magdalena Balazinska, Jacek
Becla, David DeWitt, Bobbi Heath, David Maier, Samuel Madden, Jignesh Patel,
Michael Stonebraker, and Stan Zdonik. A demonstration of SciDB: A science-oriented
DBMS. Proc. VLDB Endow., 2(2):1534–1537, August 2009.

[24] L Peter Deutsch. GZIP file format specification version 4.3. https://datatracker.
ietf.org/doc/html/rfc1952, 1996.

[25] Sheng Di and Franck Cappello. Fast error-bounded lossy HPC data compression with
SZ. In IEEE International Parallel and Distributed Processing Symposium, pages
730–739, 2016.

[26] Jan Dvořák, Martin Maňák, and Libor Váša. Predictive compression of molecular
dynamics trajectories. Journal of Molecular Graphics and Modelling, 96:107531, 2020.

[27] Hazem Elmeleegy, Ahmed K. Elmagarmid, Emmanuel Cecchet, Walid G. Aref, and
Willy Zwaenepoel. Online piece-wise linear approximation of numerical streams with
precision guarantees. Proc. VLDB Endow., 2(1):145–156, August 2009.

[28] EXAALT. https://www.exascaleproject.org/research-project/exaalt/, 2022.
Online.

[29] Ziquan Fang, Yuntao Du, Lu Chen, Yujia Hu, Yunjun Gao, and Gang Chen. E2dtc:
An end to end deep trajectory clustering framework via self-training. In 2021 IEEE
37th International Conference on Data Engineering (ICDE), pages 696–707, 2021.

[30] Ian Foster, Mark Ainsworth, Bryce Allen, Bessac Julie, Franck Cappello, Jong Youl
Choi, Emil Constantinescu, Philip Davis, Sheng Di, Wendy Di, Hanqi Guo, Scott
Klasky, Kerstin Dam, Tahsin Kurc, Qing Liu, Abid Malik, Kshitij Mehta, Klaus
Mueller, Todd Munson, and Shinjae Yoo. Computing just what you need: online
data analysis and reduction at extreme scales. In European Conference on Parallel
Processing, pages 3–19, 2017.

[31] Globus. https://www.globus.org, 2022. Online.

[32] Ali Murat Gok, Sheng Di, Yuri Alexeev, Dingwen Tao, Vladimir Mironov, Xin Liang,
and Franck Cappello. PaSTRI: A novel data compression algorithm for two-electron
integrals in quantum chemistry. In IEEE International Conference on Cluster Com-
puting (CLUSTER), pages 1–11, 2018.

115

https://datatracker.ietf.org/doc/html/rfc1952
https://datatracker.ietf.org/doc/html/rfc1952
https://www.exascaleproject.org/research-project/exaalt/
https://www.globus.org

[33] Leonardo A. Bautista Gomez and Franck Cappello. Improving floating point com-
pression through binary masks. In 2013 IEEE International Conference on Big Data,
pages 326–331, Oct 2013.

[34] Jim Gray, David T. Liu, Maria Nieto-Santisteban, Alex Szalay, David J. DeWitt,
and Gerd Heber. Scientific data management in the coming decade. SIGMOD Rec.,
34(4):34–41, December 2005.

[35] Grizzly supercomputer. https://www.lanl.gov/org/ddste/aldsc/hpc/index.php,
2021. Online.

[36] Allan Grønlund, Kasper Green Larsen, Alexander Mathiasen, and Jesper Sindahl
Nielsen. Fast exact k-means, k-medians and bregman divergence clustering in 1d.
https://arxiv.org/abs/1701.07204, 2017. Online.

[37] Salman Habib, Vitali Morozov, Nicholas Frontiere, Hal Finkel, Adrian Pope, and Ka-
trin Heitmann. HACC: extreme scaling and performance across diverse architectures.
Communications of the ACM, 60(1):97–104, 2016.

[38] HDF5. http://www.hdfgroup.org/HDF5, 2022. Online.

[39] David A Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098–1101, 1952.

[40] Hurricane ISABEL simulation data. https://www.earthsystemgrid.org/dataset/
isabeldata.html, 2022. Online.

[41] Jan Huwald, Stephan Richter, Bashar Ibrahim, and Peter Dittrich. Compressing
molecular dynamics trajectories: Breaking the one-bit-per-sample barrier. Journal of
Computational Chemistry, 37(20):1897–1906, 2016.

[42] InfluxDB. https://github.com/influxdata/influxdb, 2022. Online.

[43] Soren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. Modelardb:
Modular model-based time series management with spark and cassandra. Proc. VLDB
Endow., 11(11):1688–1701, July 2018.

[44] Soren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. Scalable model-
based management of correlated dimensional time series in modelardb+. In 2021 IEEE
37th International Conference on Data Engineering (ICDE), pages 1380–1391, 2021.

[45] Sian Jin, Sheng Di, Xin Liang, Jiannan Tian, Dingwen Tao, and Franck Cappello.
DeepSZ: A novel framework to compress deep neural networks by using error-bounded
lossy compression. In Proceedings of the 28th International Symposium on High-
Performance Parallel and Distributed Computing, HPDC ’19, pages 159–170, 2019.

[46] Sian Jin, Pascal Grosset, Christopher M. Biwer, Jesus Pulido, Jiannan Tian, Dingwen
Tao, and James Ahrens. Understanding gpu-based lossy compression for extreme-
scale cosmological simulations. In 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 105–115, 2020.

116

https://www.lanl.gov/org/ddste/aldsc/hpc/index.php
https://arxiv.org/abs/1701.07204
http://www.hdfgroup.org/HDF5
https://www.earthsystemgrid.org/dataset/isabeldata.html
https://www.earthsystemgrid.org/dataset/isabeldata.html
https://github.com/influxdata/influxdb

[47] Jennifer Kay, C. Deser, A Phillips, A Mai, Cecile Hannay, G. Strand, J. Arblaster, Su-
san Bates, G. Danabasoglu, James Edwards, M. Holland, Paul Kushner, Jean-François
Lamarque, D. Lawrence, Keith Lindsay, A Middleton, Ernesto Munoz, R. Neale, Keith
Oleson, and Mariana Vertenstein. The community earth system model (CESM), large
ensemble project: A community resource for studying climate change in the pres-
ence of internal climate variability. Bulletin of the American Meteorological Society,
96(8):1333–1349, 2015.

[48] Suha Kayum, Thierry Tonellot, Vincent Etienne, Ali Momin, Ghada Sindi, Maxim
Dmitriev, and Hussain Salim. GeoDRIVE - a high performance computing flexible
platform for seismic applications. First Break, 38(2):97–100, 2020.

[49] Martin L. Kersten, Stratos Idreos, Stefan Manegold, and Erietta Liarou. The re-
searcher’s guide to the data deluge: Querying a scientific database in just a few
seconds. Proc. VLDB Endow., 4(12):1474–1477, August 2011.

[50] Jeongnim Kim, Andrew Baczewski, Todd Beaudet, Anouar Benali, Michael Ben-
nett, Mark Berrill, Nick Blunt, Michele Casula, David Ceperley, Simone Chiesa,
Bryan Clark, III Clay, Kris Delaney, Mark Dewing, Kenneth Esler, Hongxia Hao,
Olle Heinonen, Paul Kent, Jaron Krogel, and Luning Zhao. QMCPACK: an open
source ab initio quantum monte carlo package for the electronic structure of atoms,
molecules and solids. Journal of Physics: Condensed Matter, 30(19):195901, 2018.

[51] Navjot Kukreja, Jan H uuckelheim, Mathias Louboutin, John Washbourne, Paul H.J.
Kelly, and Gerard J. Gorman. Lossy checkpoint compression in full waveform in-
version: a case study with zfpv0.5.5 and the overthrust model. Geoscientific Model
Development, 15(9):3815–3829, 2022.

[52] Sriram Lakshminarasimhan, Neil Shah, Stephane Ethier, Seung-Hoe Ku, Choong-
Seock Chang, Scott Klasky, Rob Latham, Rob Ross, and Nagiza F Samatova. Isabela
for effective in situ compression of scientific data. Concurrency and Computation:
Practice and Experience, 25(4):524–540, 2013.

[53] Iosif Lazaridis and Sharad Mehrotra. Capturing sensor-generated time series with
quality guarantees. In Proceedings 19th International Conference on Data Engineering
(ICDE), pages 429–440, 2003.

[54] Sihuan Li, Sheng Di, Xin Liang, Zizhong Chen, and Franck Cappello. Optimizing
lossy compression with adjacent snapshots for n-body simulation data. In 2018 IEEE
International Conference on Big Data (Big Data), pages 428–437, 2018.

[55] Sihuan Li, Sheng Di, Kai Zhao, Xin Liang, Zizhong Chen, and Franck Cappello. To-
wards End-to-end SDC detection for HPC applications equipped with lossy compres-
sion. In 2020 IEEE International Conference on Cluster Computing, pages 326–336,
2020.

[56] Sihuan Li, Sheng Di, Kai Zhao, Xin Liang, Zizhong Chen, and Franck Cappello.
Resilient error-bounded lossy compressor for data transfer. In Proceedings of the

117

International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’21, pages 1–14, 2021.

[57] Xiucheng Li, Kaiqi Zhao, Gao Cong, Christian S. Jensen, and Wei Wei. Deep represen-
tation learning for trajectory similarity computation. In 2018 IEEE 34th International
Conference on Data Engineering (ICDE), pages 617–628, 2018.

[58] Xin Liang, Sheng Di, Sihuan Li, Dingwen Tao, Bogdan Nicolae, and Franck Cappello.
Significantly improving lossy compression quality based on an optimized hybrid pre-
diction model. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–26, 2019.

[59] Xin Liang, Sheng Di, Dingwen Tao, Zizhong Chen, and Franck Cappello. An effi-
cient transformation scheme for lossy data compression with point-wise relative error
bound. In IEEE International Conference on Cluster Computing (CLUSTER), pages
179–189, 2018.

[60] Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Shaomeng Li, Hanqi Guo, Zizhong
Chen, and Franck Cappello. Error-controlled lossy compression optimized for high
compression ratios of scientific datasets. In 2018 IEEE International Conference on
Big Data, pages 438–447, 2018.

[61] Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Bogdan Nicolae, Zizhong Chen, and
Franck Cappello. Improving performance of data dumping with lossy compression for
scientific simulation. In 2019 IEEE International Conference on Cluster Computing,
pages 1–11, 2019.

[62] Xin Liang, Ben Whitney, Jieyang Chen, Lipeng Wan, Qing Liu, Dingwen Tao,
James Kress, David Pugmire, Matthew Wolf, Norbert Podhorszki, and Scott Klasky.
Mgard+: Optimizing multilevel methods for error-bounded scientific data reduction.
IEEE Transactions on Computers, PP(01):1–1, jul 5555.

[63] Xin Liang, Kai Zhao, Sheng Di, Sihuan Li, Robert Underwood, Ali M. Gok, Jian-
nan Tian, Junjing Deng, Jon C. Calhoun, Dingwen Tao, Zizhong Chen, and Franck
Cappello. SZ3: A modular framework for composing prediction-based error-bounded
lossy compressors. https://arxiv.org/abs/2111.02925, 2021. Online.

[64] Peter Lindstrom. Fixed-rate compressed floating-point arrays. IEEE Transactions on
Visualization and Computer Graphics, 20(12):2674–2683, 2014.

[65] Peter Lindstrom. Error distributions of lossy floating-point compressors. Joint Sta-
tistical Meetings, 1(1):2574–2589, 2017.

[66] Peter Lindstrom and Martin Isenburg. Fast and efficient compression of floating-point
data. IEEE Transactions on Visualization and Computer Graphics, 12(5):1245–1250,
2006.

[67] Lennard-Jones liquid benchmark on LAMMPS. https://lammps.sandia.gov/

bench.html#lj, 2022. Online.

118

https://arxiv.org/abs/2111.02925
https://lammps.sandia.gov/bench.html#lj
https://lammps.sandia.gov/bench.html#lj

[68] Jinyang Liu, Sheng Di, Kai Zhao, Sian Jin, Dingwen Tao, Xin Liang, Zizhong Chen,
and Franck Cappello. Exploring autoencoder-based error-bounded compression for
scientific data. In 2021 IEEE International Conference on Cluster Computing (CLUS-
TER), pages 294–306, 2021.

[69] Cheng Long, Raymond Wong, and H.V. Jagadish. Trajectory simplification: On
minimizing the directionbased error. Proceedings of the VLDB Endowment, 8:49–60,
01 2014.

[70] Tao Lu, Qing Liu, Xubin He, Huizhang Luo, Eric Suchyta, Jong Choi, Norbert Pod-
horszki, Scott Klasky, Mathew Wolf, Tong Liu, and Zhenbo Qiao. Understanding and
modeling lossy compression schemes on HPC scientific data. In 2018 IEEE Interna-
tional Parallel and Distributed Processing Symposium, pages 348–357, 2018.

[71] Magnus Lundborg, Rossen Apostolov, Daniel Spangberg, Anders Gardenas, David
van der Spoel, and Erik Lindahl. An efficient and extensible format, library, and
api for binary trajectory data from molecular simulations. Journal of computational
chemistry, 35, 01 2014.

[72] Patrick Marais, Julian Kenwood, Keegan Carruthers Smith, Michelle M. Kuttel, and
James Gain. Efficient compression of molecular dynamics trajectory files. Journal of
Computational Chemistry, 33(27):2131–2141, 2012.

[73] Miranda. https://wci.llnl.gov/simulation/computer-codes/miranda/papers,
2019. Online.

[74] NYX. https://amrex-astro.github.io/Nyx, 2019. Online.

[75] Andrey Omeltchenko, Timothy J. Campbell, Rajiv K. Kalia, Xinlian Liu, Aiichiro
Nakano, and Priya Vashishta. Scalable I/O of large-scale molecular dynamics simula-
tions: A data-compression algorithm. Computer Physics Communications, 131(1):78–
85, 2000.

[76] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin
Meza, and Kaushik Veeraraghavan. Gorilla: A fast, scalable, in-memory time series
database. Proc. VLDB Endow., 8(12):1816–1827, August 2015.

[77] Danny Perez, Ekin D. Cubuk, Amos Waterland, Efthimios Kaxiras, and Arthur F.
Voter. Long-time dynamics through parallel trajectory splicing. Journal of Chemical
Theory and Computation, 12(1):18–28, 2016.

[78] Danny Perez, Luis Sandoval, Sophie Blondel, Brian Wirth, Blas Uberuaga, and Arthur
Voter. The mobility of small vacancy/helium complexes in tungsten and its impact
on retention in fusion-relevant conditions. Scientific Reports, 7, 05 2017.

[79] Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal
of Computational Physics, 117(1):1–19, 1995.

119

https://wci.llnl.gov/simulation/computer-codes/miranda/papers
https://amrex-astro.github.io/Nyx

[80] Steven Plimpton, Danny Perez, and Arthur Voter. Parallel algorithms for hyperdy-
namics and local hyperdynamics. The Journal of Chemical Physics, 153(5):054116,
2020.

[81] Paruj Ratanaworabhan, Jian Ke, and Martin Burtscher. Fast lossless compression
of scientific floating-point data. In Data Compression Conference (DCC’06), pages
133–142, 2006.

[82] Russell Rew and Glenn Davis. NetCDF: an interface for scientific data access. IEEE
Computer Graphics and Applications, 10:76–82, 1990.

[83] Naoto Sasaki, Kento Sato, Toshio Endo, and Satoshi Matsuoka. Exploration of lossy
compression for application-level checkpoint/restart. In Proceedings of the 2015 IEEE
International Parallel and Distributed Processing Symposium, IPDPS ’15, pages 914–
922, 2015.

[84] SCALE-LETKF weather model. https://github.com/gylien/scale-letkf, 2019.
Online.

[85] Sean Seyler and Oliver Beckstein. Molecular dynamics trajectory for benchmarking
MDAnalysis. https://figshare.com/articles/dataset/molecular_dynamics_

trajectory_for_benchmarking_MDAnalysis/5108170, 6 2017. Online.

[86] Ardita Shkurti, Ramon Goni, Pau Andrio, Elena Breitmoser, Iain Bethune, Modesto
Orozco, and Charles A. Laughton. pypcazip: A pca-based toolkit for compression
and analysis of molecular simulation data. SoftwareX, 5:44–50, 2016.

[87] Snappy. https://google.github.io/snappy, 2022. Online.

[88] Seung Woo Son, Zhengzhang Chen, William Hendrix, Ankit Agrawal, Wei-keng Liao,
and Alok Choudhary. Data compression for the exascale computing era-survey. Su-
percomputing Frontiers and Innovations, 1(2):76–88, 2014.

[89] Summit supercomputer. https://www.olcf.ornl.gov/summit/, 2019. Online.

[90] Dingwen Tao, Sheng Di, Zizhong Chen, and Franck Cappello. In-depth exploration of
single-snapshot lossy compression techniques for N-body simulations. In 2017 IEEE
International Conference on Big Data (Big Data), pages 486–493, 2017.

[91] Dingwen Tao, Sheng Di, Zizhong Chen, and Franck Cappello. Significantly improving
lossy compression for scientific data sets based on multidimensional prediction and
error-controlled quantization. In 2017 IEEE International Parallel and Distributed
Processing Symposium, pages 1129–1139, 2017.

[92] Dingwen Tao, Sheng Di, Hanqi Guo, and Franck Cappello. Z-checker: A framework
for assessing lossy compression of scientific data. The International Journal of High
Performance Computing Applications, 33, 06 2017.

120

https://github.com/gylien/scale-letkf
https://figshare.com/articles/dataset/molecular_dynamics_trajectory_for_benchmarking_MDAnalysis/5108170
https://figshare.com/articles/dataset/molecular_dynamics_trajectory_for_benchmarking_MDAnalysis/5108170
https://google.github.io/snappy
https://www.olcf.ornl.gov/summit/

[93] Dingwen Tao, Sheng Di, Xin Liang, Zizhong Chen, and Franck Cappello. Optimizing
lossy compression rate-distortion from automatic online selection between SZ and
ZFP. IEEE Transactions on Parallel and Distributed Systems, 30(8):1857–1871, 2019.

[94] Nikola Tchipev, Steffen Seckler, Matthias Heinen, Jadran Vrabec, Fabio Gratl, Mar-
tin Horsch, Martin Bernreuther, Colin Glass, Christoph Niethammer, Nicolay Ham-
mer, Bernd Krischok, Michael Resch, Dieter Kranzlmüller, Hans Hasse, Hans-Joachim
Bungartz, and Philipp Neumann. Twetris: Twenty trillion-atom simulation. The
International Journal of High Performance Computing Applications, 33(5):838–854,
2019.

[95] Rajeev Thakur, William Gropp, and Ewing Lusk. On implementing MPI-IO portably
and with high performance. In Proceedings of the Sixth Workshop on I/O in Parallel
and Distributed Systems, IOPADS ’99, pages 23–32, 1999.

[96] The HDF Group. H5Z: Filter and Compression Interface. https://support.

hdfgroup.org/HDF5/doc1.8/RM/RM_H5Z.html, 2017. Online.

[97] Theta supercomputer. https://www.alcf.anl.gov/theta, 2019. Online.

[98] Jiannan Tian, Sheng Di, Xiaodong Yu, Cody Rivera, Kai Zhao, Sian Jin, Yunhe
Feng, Xin Liang, Dingwen Tao, and Franck Cappello. Optimizing error-bounded lossy
compression for scientific data on GPUs. In 2021 IEEE International Conference on
Cluster Computing (CLUSTER), pages 283–293, 09 2021.

[99] Jiannan Tian, Sheng Di, Chengming Zhang, Xin Liang, Sian Jin, Dazhao Cheng,
Dingwen Tao, and Franck Cappello. waveSZ: A hardware-algorithm co-design of effi-
cient lossy compression for scientific data. In Proceedings of the 25th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 74–88, 2020.

[100] Jiannan Tian, Sheng Di, Kai Zhao, Cody Rivera, Megan Fulp, Robert Underwood,
Sian Jin, Xin Liang, Jon Calhoun, Dingwen Tao, and Franck Cappello. CuSZ: An
efficient gpu-based error-bounded lossy compression framework for scientific data.
In Proceedings of the ACM International Conference on Parallel Architectures and
Compilation Techniques, PACT ’20, page 3–15, 2020.

[101] Jiannan Tian, Cody Rivera, Sheng Di, Jieyang Chen, Xin Liang, Dingwen Tao, and
Franck Cappello. Revisiting huffman coding: Toward extreme performance on modern
gpu architectures. In 2021 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 881–891, 2021.

[102] Trinity supercomputer. https://www.lanl.gov/projects/trinity/, 2021. Online.

[103] Andy Turner. Parallel I/O performance. https://www.archer.ac.uk/training/

virtual/2017-02-08-Parallel-IO/2017_02_ParallelIO_ARCHERWebinar.pdf,
2019. Online.

121

https://support.hdfgroup.org/HDF5/doc1.8/RM/RM_H5Z.html
https://support.hdfgroup.org/HDF5/doc1.8/RM/RM_H5Z.html
https://www.alcf.anl.gov/theta
https://www.lanl.gov/projects/trinity/
https://www.archer.ac.uk/training/virtual/2017-02-08-Parallel-IO/2017_02_ParallelIO_ARCHERWebinar.pdf
https://www.archer.ac.uk/training/virtual/2017-02-08-Parallel-IO/2017_02_ParallelIO_ARCHERWebinar.pdf

[104] Robert Underwood, Sheng Di, Jon Calhoun, and Franck Cappello. Fraz: A generic
high-fidelity fixed-ratio lossy compression framework for scientific floating-point data.
In 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 567–577, 05 2020.

[105] David Van Der Spoel, Erik Lindahl, Berk Hess, Gerrit Groenhof, Alan E Mark, and
Herman JC Berendsen. Gromacs: fast, flexible, and free. Journal of computational
chemistry, 26(16):1701–1718, 2005.

[106] Arthur F. Voter. Parallel replica method for dynamics of infrequent events. Physical
Review B, 57, 1998.

[107] Gregory K Wallace. The JPEG still picture compression standard. IEEE Transactions
on Consumer Electronics, 38(1):xviii–xxxiv, 1992.

[108] Zhou Wang, Alan Bovik, Hamid Sheikh, and Eero Simoncelli. Image quality assess-
ment: from error visibility to structural similarity. IEEE Transactions on Image
Processing, 13(4):600–612, April 2004.

[109] Brent Welch. POSIX io extensions for HPC. In 4th USENIX Conference on File and
Storage Technologies (FAST05), page 1, 2005.

[110] Dow Yung Yang, Ananth Grama, and Vivek Sarin. Bounded-error compression of
particle data from hierarchical approximate methods. In Proceedings of the 1999
ACM/IEEE Conference on Supercomputing, SC ’99, page 32–es, 1999.

[111] Xinyang Yu, Yanqing Peng, Feifei Li, Sheng Wang, Xiaowei Shen, Huijun Mai, and
Yue Xie. Two-level data compression using machine learning in time series database.
In 36th IEEE International Conference on Data Engineering, pages 1333–1344, 2020.

[112] Kai Zhao, Sheng Di, Maxim Dmitriev, Thierry-Laurent D. Tonellot, Zizhong Chen,
and Franck Cappello. Optimizing error-bounded lossy compression for scientific data
by dynamic spline interpolation. In 2021 IEEE 37th International Conference on
Data Engineering (ICDE), pages 1643–1654, 2021.

[113] Kai Zhao, Sheng Di, Xin Lian, Sihuan Li, Dingwen Tao, Bessac Julie, and Franck
Cappello. SDRBench: Scientific data reduction benchmark for lossy compressors. In
2020 IEEE International Conference on Big Data (Big Data), pages 2716–2724, 2021.
Online.

[114] Kai Zhao, Sheng Di, Xin Liang, Sihuan Li, Dingwen Tao, Zizhong Chen, and Franck
Cappello. Significantly improving lossy compression for HPC datasets with second-
order prediction and parameter optimization. In Proceedings of the 29th International
Symposium on High-Performance Parallel and Distributed Computing, HPDC ’20,
pages 89–100, 2020.

[115] Kai Zhao, Sheng Di, Danny Perez, Xin Liang, Zizhong Chen, and Franck Cappello.
Mdz: An efficient error-bounded lossy compressor for molecular dynamics. In 2022
IEEE 38th International Conference on Data Engineering (ICDE), pages 27–40, 2022.

122

[116] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compres-
sion. IEEE Transactions on information theory, 23(3):337–343, 1977.

[117] Zlib. http://www.zlib.net/. Online.

[118] Zstandard. https://github.com/facebook/zstd, 2021. Online.

123

http://www.zlib.net/
https://github.com/facebook/zstd

	List of Figures
	List of Tables
	Introduction
	Enhance SZ2 With Second-Order Prediction and Parameter Optimization
	Introduction
	Related Work
	Problem Formulation
	Design Overview
	Second-Order Data Prediction
	Second-Order Lorenzo Prediction
	Second-Order Regression-Based Prediction

	Parameter Optimization
	Optimizing Compression Quality Estimation Over Sampled Dataset
	Offline Parameter Optimization
	Online Parameter Optimization

	Performance Evaluation
	Experimental Settings
	Assessment of Second-Order Prediction
	Assessment of Parameter Optimization
	Overall Compression Quality
	I/O Performance Evaluation

	SZ3: Error-Bounded Lossy Compression for Scientific Data by Dynamic Spline Interpolation
	Introduction
	Related Work
	Problem Formulation
	Deeply Understanding the Pros and Cons of SZ
	Critical Features of SZ Compression Framework
	Review of Linear Regression Predictor in SZ2.1
	Serious Dilemma of Linear-Regression Predictor in SZ2.1

	Error-Bounded Lossy Compression With a Dynamic Multidimensional Spline Interpolation
	Introduction to Spline Interpolation
	Spline Interpolation Designed for Scientific Data
	Multilevel Multidimensional Spline Interpolation
	Dynamic Optimization Strategies

	Experimental Evaluation
	Experimental Setup
	Evaluation Results and Analysis

	MDZ: An Efficient Error-Bounded Lossy Compressor for Molecular Dynamics
	Introduction
	Related Work
	Research Background
	MD Simulations

	Problem Formulation
	Investigation of MD Datasets
	MD Simulations Used in Our Work
	Characterization of Spatial Features
	Characterization of Temporal Features

	MDZ: An Adaptive Error-bounded Lossy Compressor for MD Datasets
	Vector-Quantization-Based Compression (VQ and VQT)
	Multilevel Time-Based Compression (MT)
	Linear-Scale Quantization Optimizations
	Adaptive Selection of Best Compressor (ADP)

	Experimental Evaluation
	Experimental Setting
	Evaluation Results and Analysis of Lossless Compressors
	Evaluation Results and Analysis of Lossy Compressors
	Integration with LAMMPS
	Generalizability of Our Solution Beyond MD Simulations

	Conclusions
	Bibliography

