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ABSTRACT
Profiling or evaluation of health care providers involves the applica-
tion of statistical models to compare each provider’s performance
with respect to a patient outcome, such as unplanned 30-day hos-
pital readmission, adjusted for patient case-mix characteristics. The
nationally adopted method is based on random effects (RE) hierarch-
ical logistic regression models. Although RE models are sensible for
modeling hierarchical data, novel high dimensional fixed effects (FE)
models have been proposed which may be well-suited for the
objective of identifying sub-standard performance. However, there
are limited comparative studies. Thus, we examine their relative per-
formance, including the impact of inadequate case-mix adjustment.
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1. Introduction

Unplanned hospital readmission is considered an indicator of the quality and efficiency
of patient care. Many hospital readmissions are potentially preventable and contribute
substantially to the cost of patient care with costs to Medicare estimated at more than
$17 billion annually (Jencks et al. 2009). In particular, the burden of hospitalization is
high for patients receiving dialysis, with an unadjusted rate of 30-day unplanned
readmission of approximately 30% (United States Renal Data System [USRDS] 2015).
Profiling or evaluation of health care providers, e.g., hospitals, nursing homes, dialysis
facilities, with respect to a patient outcome such as 30-day unplanned hospital readmis-
sion is important to ensure adequate and safe health care delivery to patients. Profiling
analyses serve several purposes, including 1) identifying providers with performance
below standard by government agencies for regulatory or payment purposes; 2) convey-
ing information to patients regarding the quality of care of providers; and 3) providing
feedback to providers for quality improvement among others. Although profiling dates
back to nearly a century (Codman 1916), more systematic reporting of patient outcomes
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among providers has only appeared directly to consumers in the last decade by the
Centers for Medicare & Medicaid Services (CMS). This includes condition-specific 30-
day mortality (e.g., acute myocardial infarction, heart failure, pneumonia) and 30-day
(all-cause) readmission rates; see Keenan et al. (2008), Krumholz et al. (2011),
Lindenauer et al. (2011), Horwitz et al. (2011) and Horwitz et al. (2014).
The specific inferential goal of profiling is to accurately report estimates of provider

effects relative to a reference, such as a national rate, and in the process, identify providers
that are exceptionally high/“worse,” low/“better” or “not different” relative to the reference.
Patient outcomes vary across providers due to variation in providers quality of care (pro-
vider effects) and variation in patient case-mix (patient-level factors including demograph-
ics, comorbidities, and types of index hospitalization). Because patients are nested within
providers, profiling models are hierarchical logistic regressions of the form outcome ¼ pro-
vider effects þ case-mix effects. In addition to the nested structure of the data, sparse out-
come data have naturally led to the adoption of modeling provider effects as random
effects (RE). In fact, RE model is an approach adopted by CMS for readmission (CMS
2017; Ash et al. 2012; Horwitz et al. 2011; Krumholz et al. 2011); see also Normand and
Shahian (2007) and Normand et al. (1997) for further motivation of the RE model.
Throughout this work, we refer to the terms “RE model” and “CMS model” interchange-
ably and they refer to the CMS adopted model with random intercepts for providers.
Subsequently, Kalbfleisch and Wolfe (2013) and He et al. (2013) have proposed mod-

eling provider effects as fixed effects (FE). The FE model of He et al. (2013) is a high-
dimensional parameter model with a unique fixed intercept for each provider. Based on
the high-dimensional FE methodology developments by the University of Michigan
Kidney Epidemiology and Cost Center (UM-KECC, Kalbfleisch and Wolfe 2013; He
et al. 2013) for CMS, a CMS dry-run of the FE model for hospital readmission for dia-
lysis facilities was conducted in 2014 and a report on SRR was submitted to CMS in
2014 and subsequently updated in 2017 (CMS/UM-KECC 2017). Because CMS had
already implemented RE profiling models for hospitals with respect to 30-day readmis-
sion (and in-hospital mortality as well), e.g. see Ash et al. (2012), the issue of whether
to adopt FE vs. RE for dialysis facilities is a pertinent consideration. Research from
UM-KECC and the recently updated CMS report on SRR for dialysis facilities (CMS/
UM-KECC 2017) suggest potential adoption of FE model for SRR for profiling dialysis
facilities. However, we note that the choice of FE vs. RE models is a relevant issue for
profiling other providers, such as hospitals (and not just dialysis facilities; Kalbfleisch
and Wolfe 2013), and warrants more systematic assessments because of the emerging
research on FE models. Thus, in this work, we considered simulation studies to com-
pare the performance (inferential procedure) of FE vs. RE/CMS profiling models.
Although RE models can provide stable provider effect estimates (through shrinkage),

they are biased toward the overall provider average and the bias is larger for smaller
facilities and in the presence of confounding between patient risk factors and provider
effects (Kalbfleisch and Wolfe 2013). Also, as reported in Kalbfleisch and Wolfe (2013),
the overall average error in estimation of provider effects is smaller since mean square
error is minimized over the full set of provider effects in the RE approach; however, the
FE estimates have smaller error for outlier ‘providers whose effects are exceptionally
large or small’.
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Despite these intriguing results, no study to our knowledge has been conducted to
provide a direct comparison of the CMS/RE model and the high-dimensional FE model,
utilizing the precise inferential procedures in the current practice for profiling providers.
Thus, in this work we conduct extensive simulation experiments to further elucidate the
inferential performances of the RE (CMS) model and the FE model. As part of this
study we examine how low provider volume affects the relative performance of the two
methods. We also consider the impact of inadequate case-mix adjustment on the ability
of the RE and FE method to identify truly under-performing (and over-performing pro-
viders). Our study here aims to provide insights into these important practical issues.
We note that our comparative simulation studies here differs from those in Kalbfleisch
and Wolfe (2013) which focused on estimation accuracy and the inherent estimation
bias from the RE model using simple linear regression models.
We provide a historical note here that there is another use of the term “fixed effects”

models in the profiling literature, where a FE model refers to a standard logistic regres-
sion model (with one overall intercept) which has been used for 30-day mortality fol-
lowing admission for acute myocardial infarction and mortality following coronary
artery bypass (e.g, see Austin, Alter and Tu 2003). This is different from the high-
dimensional FE model with a unique fixed intercept for each provider. Other studies
have also considered variations in the provider-specific measures (e.g., see Yang et al.
2014) and inference under more flexible hierarchical Bayesian (RE) models (e.g., see
Paddock et al. 2006), which is not the objective of our study. None of these prior stud-
ies considered the CMS model specifically nor compared the RE model to the high-
dimensional FE model of He et al. (2013). Also, we note that our paper focuses on the
currently implemented RE/CMS model. However, extensions to the current RE/CMS
model have been proposed (e.g., Silber et al. 2016; George et al. 2017), which incorpo-
rates providers characteristics, including volume, infrastructure (e.g. technology) and
staffing to improve prediction. The idea of potentially extending the RE/CMS model to
incorporate provider characteristics was suggested earlier by Ash et al. (2012).

2. Methods

2.1. RE and FE models

The RE model implemented by CMS for (30-day unplanned) all-cause or condition-spe-
cific hospital readmission (Horwitz et al. 2011; Ash et al. 2012) is the following RE
logistic regression model,

g lijð Þ ¼ ci þ bTZij; ci �N c0; r
2

� �
; (1)

where lij ¼ pij ¼ PrðYij ¼ 1 j b; ci;ZijÞ is the expected readmission for patient index dis-
charge j ¼ 1; 2; :::; ni in provider i ¼ 1; 2; :::; F; and gðpijÞ ¼ log fpij=ð1�pijÞg is the logit
function. In Eq. (1) bT ¼ ðb1; :::; brÞ adjusts for case-mix effects where the patient case-
mix (baseline and admission characteristics) is denoted by the vector of r covari-
ates Zij ¼ ðZij1;Zij2; :::;ZijrÞ:
In contrast, in the context of providers as dialysis facilities, Kalbfleisch and Wolfe

(2013) and He et al. (2013) proposed modeling providers’ effects with fixed effects
ðc1; :::; cFÞ in the FE model
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g lijð Þ ¼ ci þ bTZij; i ¼ 1; :::; F: (2)

For clarity, we emphasize that the FE model (2) is a single simultaneous model for all
F facilities/providers with a high-dimensional parameter space (where F is several thou-
sands) and not a separate logistic regression model for each provider. Furthermore, it is
also not a single logistic regression with an overall intercept term which is often
referred to as a fixed effects model in early literature on profiling. Note that when F is
large as in model (2), e.g. with F¼ 6, 000 dialysis facilities across the U.S. and 30 case-
mix parameters, the dimension of the parameter space is 6,030 and standard software
fails. To be able fit such a model with that many parameters, the novel alternating one-
step Newton-Raphson alogirithm proposed by He et al. (2013) is used.
We further note that the RE model (1) may be generalized, such as inclusion of pro-

vider-level characteristics (Ash et al. 2012), although our focus here is on the nationally
implemented relevant RE model (1). For the FE model (2) in the context of perform-
ance assessment of dialysis facilities, further adjustment through inclusion of a hospital
RE was considered in He et al. (2013), although it was found that the contribution of
the hospital effect was small. In order to compare RE and FE models and for the results
to be more applicable to different provider settings, we consider the FE model in
Equation (2).
Given the provider and case-mix effect estimates, denoted by ĉi and b̂; respectively,

the estimated standardized readmission ratio (SRR) for provider i is

SRRi ¼
Pni

j¼1 p̂ijPni
j¼1 p̂M;ij

; (3)

where p̂ij ¼ g�1ðĉi þ b̂
T
ZijÞ is the estimated probability of readmission for patient j in

provider i and p̂M;ij ¼ g�1ðĉM þ b̂
T
ZijÞ: For the FE model, ĉM in the denominator is

taken to be the median of the fĉigFi¼1 and for the RE model it is the estimated mean of
the distribution of ci (namely ĉ0). The numerator of SRRi is the expected total number
of readmissions for facility i and the denominator is the expected total number of read-
missions for an “average” facility (taken over the population of all facilities), adjusted
for the particular case-mix of the same patients in facility i. Note that SRRi estimates
the true/theoretical quantity ~SRRi ¼

Pni
j¼1 pij=

Pni
j¼1 pM;ij; where pij ¼ g�1ðci þ bTZijÞ

and pM;ij ¼ g�1ðcM þ bTZijÞ:

2.2. Estimation, inference and available software

The RE model is a standard generalized linear mixed effects model and available soft-
ware, including SAS PROC GLIMMIX or R library lme4 function glmer, can be used to
fit it. The CMS implementation uses SAS PROC GLIMMIX (Ross et al. 2010; Horwitz
et al. 2011; Ash et al. 2012). A bootstrap resampling of facilities with replacement (500
samples) is used to obtain a 95% confidence interval (CI) for each ~SRRi: The random
effects sampled from the posterior distribution of ci are used to estimate ~SRRi in each
bootstrap sample. (Details are provided in the Supplemental Appendix Section.)
Provider i is flagged as performing worse than expected relative to the national refer-
ence if the lower confidence limit is above 1; and similarly, a provider is identified as
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performing better than the national reference when the upper confidence limit is below
1. Facilities with CI for SRRi containing 1 are considered not different compared to the
national reference.
For the FE model estimation, He et al. (2013) proposed an iterative algorithm that

alternates between estimation of fcig given b and estimation of b given fcig using one-

step Newton–Raphson updates. Iteration terminates when maxjjpð‘þ1Þ
ij �pð‘Þij jj< 10�6 on

successive steps ‘: (See He et al. (2013) and the Appendix section for details.) Inference

for ~SRRi; accounting for the high-dimensional FE parameters, is based on testing the

null hypothesis H0 : ci ¼ cM (i.e., ~SRRi ¼ 1). A method based on resampling under the
null hypothesis is used to evaluate the p-value, the “probability that a given provider
would experience a number of readmission as least as extreme as that observed if the
null hypothesis is true, accounting for the provider’s patient case-mix”.
We implemented the RE (CMS) model in SAS PROC GLIMMIX and R, and the

results coincide. R codes for both RE and FE models are provided as supplemental
materials. These are publicly available along with documentation on a step-by-step

Figure 1. (a) Distribution of provider effects, ci, for simulation setting 1 (Sec. 3.1); gray indicates truly
better and worse providers. (b) Distribution of observed correlations among case-mix variables based
on USRDS data (gray) and correlations in simulated data (white). (c) Distribution of provider effects
from simulated data, ci, informed by characteristics of USRDS dialysis facility data (Sec. 3.2). (d)
Distribution of case-mix effect estimates (b̂1; :::; b̂30) from USRDS dialysis facilities data used to inform
simulation study.
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tutorial for implementation using a sample dataset with 1,000 providers. See supplemen-
tal materials for R codes and http://www.faculity.sites.uci.edu/nguyen/supplement/ for
details. In this work, references to ‘RE’ and ‘FE’ methods refer specifically the models
described by Eqs. (1) and (2) together with the estimation and inference procedures
described in the Supplemental Appendix section.

3. Simulation studies

We designed the simulation studies to address the three specific aims: A1) assess the
overall relative inferential performance of RE and FE in identifying “extremely” under-
(or over-) performing providers; A2) examine how the inferential performance of the
methods depends on (i) patient case-mix complexity (correlation/dependence structure),
(ii) provider volume, the number of patients within a provider, (iii) baseline readmis-
sion rate (BRR), and (iv) the relative provider signal (i.e. effect size, P-EF) relative to
the patient case-mix effect size (CM-ES). A3) determine the impact of inadequate case-
mix adjustment on profiling performance. We note that in the context of the current
models, the baseline readmission rate is essentially the effective sample size or outcome
sparsity level, which generally affects estimation and inference. (The selected range of
BRR of 14%–40% was chosen to be broad, but still capture realistic baseline hospitaliza-
tion rates in the dialysis population.) Also, for the simulation models below, we
expanded the simulation model from He et al. (2013) to allow for correlation among
case-mix variables and incorporated USRDS data/case-mix characteristics.

3.1. Simulation setting 1 – General set-up

The basic data generating model we considered was

g lijð Þ ¼ ci þ c0 þ b1Zij1 þ � � � b15Zij15 (4)

with i ¼ 1; :::; F ¼ 1; 000 providers. Among the providers, 2.5% were under-performers
and 2.5% were over-performers whose effects were generated as ci �Uniformð0:4; 1:5Þ
and ci ��Uniformð0:4; 1:5Þ; respectively. The remaining 95% of providers, with effects
not different from the national reference, were generated from a Nð0; r2Þ distribution
with r2 ¼ 0:22: Figure 1a displays the distribution of provider effects for one dataset
(1,000 providers). Baseline rates of readmission (BRR) considered were 14.3%, 27.3%,
and 41.7% (referred to as low, medium and high) corresponding to c0 ¼
log ð1=6Þ; log ð3=8Þ; and log ð5=7Þ; respectively.
The patient case-mix vector, Zij; was generated from a multivariate normal distribu-

tion with means 0, variances 1, and correlation qrr0 � qðZijr;Zijr0 Þ; 1 � r; r0 � 15: To
assess how case-mix complexity affects the performance of RE and FE methods, we con-
sidered five case-mix dependence settings: uncorrelated case-mix with qrr0 ¼ 0 and vari-
ous levels of correlated case-mix with qrr0 ¼ 0:2; 0:5; and 0.8. For the fifth setting that
mimics correlations between the USRDS case-mix, case-mix variables with more general
dependence were generated in three blocks with different correlation structures: 0:01 �
qrr0 � 0:05 in block 1 for variables Z1 to Z5; 0:05 � qrr0 � 0:1 in block 2 for variables Z6
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to Z10; 0:1 � qrr0 � 0:25 in block 3 for variables Z11 to Z15; correlations of variables
across blocks were also correlated in the range of 0:01 � qrr0 � 0:25:
To examine the impact of the provider effect size (P-ES), relative to the patient case-

mix effect size (CM-ES), we considered two P-ES and two CM-ES settings: (P-ES 1):
ci �Uniformð0:4; 1:5Þ; ci ��Uniformð0:4; 1:5Þ; and Nð0; 0:22Þ for facilities under-per-
forming, over-performing, and not different from the national reference, respectively;
(P-ES 2): ci �Uniformð0:6; 1:5Þ; ci ��Uniformð0:6; 1:5Þ; and Nð0; 0:22Þ for facilities
under-performing, over-performing and not different from the national reference,
respectively, where provider signals have been increased. For patient case-mix effect size
(CM-ES) we considered the following two settings: (CM-ES 1) bA � ðb1; :::; b15ÞT such
that b1 ¼ � � � ¼ b10 ¼ 0:5 and b11 ¼ � � � ¼ b15 ¼ 1; (CM-ES 2) bB is increased to 2�
bA: More specifically, we considered the following three combinations of settings: (i) P-
ES 1 (“smaller”) with CM-ES 1 (“smaller”); (ii) P-ES 1 (“smaller”) with CM-ES 2
(“larger”); and (iii) P-ES 2 (“larger”) with CM-ES 1 (“smaller”). Comparison of (i) vs.
(ii) allows assessment of the impact of larger patient case-mix signal relative to a given
(fixed) provider signal. For instance, in the case where patient case-mix contributes pre-
dominantly to the risk of readmission compared to providers’ contribution to patient
readmission, the efficacy of all methods to identify extreme providers should be dimin-
ished. On the other hand, comparison of (i) vs. (iii) will assess the basic principle that
for a fixed patient case-mix contribution to readmission, increasing the providers’ con-
tribution to patient readmission should result in improved profiling performance.
Also, the generated data consisted of provider volume ranging from 42 to 210

patients on average. More specifically, the number of patients were generated from a
truncated Poisson distribution following He et al. (2013), where the number of patients
was taken to be ni ¼

P1000
h¼1 mih1fmih � 7g with mih �Poissonð15Þ: This process mimics

the sparse data structure of hospital h and dialysis facility (provider) i in practice. We
defined small, medium and large sized providers by tertile (small: 42–103; medium:
104–126: large: 127–210 patients on average). Two hundred datasets, each with 1,000
providers, were generated for each simulation study scenario, defined by a) provider
effect size (ci distribution), b) patient case-mix effect size (b); c) case-mix complexity;
and d) baseline readmission rates as summarized in Supplemental Table S1.
To study the impact of inadequate case-mix adjustment, the following nested

sequence of models were fitted to each simulated dataset: (1) M0 : intercept only (no
case-mix adjustment); (2) M1 : adjustment for {Z1, Z2}; (3) M2 : adjustment for
{Z1; :::;Z10g; (4) M3 : adjustment for fZ11; :::;Z15g; and (5) Mf : full model with com-
plete case-mix adjustment. The full model provides a useful benchmark to evaluate how
the performance deteriorates with increasing inadequate case-mix adjustment.

3.2. Simulation setting 2 – USRDS data characteristics

We also considered a simulation study more tailored to the assessment of dialysis facili-
ties (providers). Paralleling works for profiling all-cause readmission for hospitals (CMS
2017; Horwitz et al. 2011), assessment of dialysis facilities included the following 30
patient case-mix covariates: age, body mass index (BMI), length of index hospitalization
(days), time on dialysis (years), high risk index hospitalization, diabetes as the cause of
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ESRD, sex and 23 past-year comorbidities: amputation status; chronic obstructive pulmon-
ary disease; cardiorespiratory failure/shock; coagulation defects and other specified hemato-
logical disorders; drug and alcohol disorders; endstage liver disease; fibrosis of lung or other
chronic lung disorders; hemiplegia, paraplegia, paralysis; hip fracture/dislocation; major
organ transplants; metastatic cancer; other hematological disorders; other infectious disease
and pneumonias; other major cancers; pancreatic disease; psychiatric comorbidity; respirator
dependence; rheumatoid arthritis and inflammatory connective tissue disease; seizure disor-
ders; septicemia/shock; severe cancer; severe infection; and ulcers (CMS 2017).
Using the USRDS data, the observed 30� 30 correlation matrix and sample variances

were used to generate Wij �N30ðlW ;RWÞ; with RW ¼ ðrr;r0 Þ and lW ¼ ðl1; :::; l30Þ
chosen to be the observed means or prevalences for binary covariates based on USRDS
data. Letting Wijr denote the underlying continuous latent variables, the observed binary
covariates Zijr were generated through the process: Zijr ¼ 1fWijr < zrrr;r þ lrg; where
1fAg is the indicator function for event A, zr ¼ U�1ðlrÞ and U�1ðÞ is the standard nor-
mal inverse CDF. Note that this process generates binary covariates with prevalences
equal to the observed prevalences in the USRDS data (lW). The distribution of the cor-
relations among case-mix variables were similar to the observed distribution of correl-
ation values in the USRDS data (Figure 1b). The distribution of facility effect sizes
(distribution of ci) was modeled as ci �Nð0; 0:22Þ for facilities not different from the
reference and outlying facilities were generated as 6Uniformð0:6; 3Þ (Figure 1c). The
patient case-mix effects, bT ¼ ðb1; :::; b30Þ were set to be proportional to the estimates
based on the USRDS data (Figure 1d).
We simulated 200 datasets, each with 1,000 facilities. Similar to the first simulation

study above, for each dataset, we fitted the sequence of models: (1) M�
0 : intercept only

Figure 2. Overall performance of the full (benchmark) RE and FE models: (Left) overall sensitivity for
identifying truly under-performing (worse) providers and (Right) specificity, i.e., providers with standar-
dized readmission rate not different from the reference rate.
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(no case-mix adjustment); (2) M�
1 : adjustment for fZ1; :::;Z5g; (3) M�

2 : adjustment
for fZ1; :::;Z15g; (4) M�

3 : adjustment for fZ1; :::;Z25g; and (5) M�
f : full model with

complete case-mix adjustment.

4. Results

4.1. Overall performance and effect of Case-Mix complexity

The overall performance of FE and RE models are described in terms of sensitivity
(SEN) to correctly identify providers that under-perform (W: “worse”), over-perform

Figure 3. Overall performance of the full (benchmark) RE and FE models by provider volume/size:
Small, medium and large providers defined by tertiles: (Left) Sensitivity, (Right) Specificity.
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(B: “better”) relative to the reference standard (e.g., national reference), and specificity.
Specificity (SPEC) refers to the correct identification/flagging of providers that do not
differ compared to the reference standard (ND: “not different”). Because provider
assessment policies focus on identifying under-performing providers, we focus on the
results for SEN-W and SPEC-ND (although the performance of SEN-B are similar to
SEN-W in our studies due to symmetry).
To assess the overall performance of FE and RE models, we first describe the results

for the full model where covariates/case-mix variables were correctly/fully specified in
the models. Figure 2 summarizes the performance of FE vs. RE for identifying providers
that performed worse than the reference (SEN-W) and providers with performance not
different from the reference (SPEC-ND) for the case of readmission rate of 27%. Several
salient and informative patterns of model performance are clear from Figure 2. First,
the overall SEN-W across all providers was substantially higher for FE compared to RE
models for all settings of case-mix complexity/correlation (e.g., mean 76.6% vs. 66.8% at
q¼ 0). Second, the ability of both FE and RE models to flag extreme under-performing
providers declined with increasing case-mix complexity; and the performance of RE
models deteriorated rapidly as case-mix complexity increased. For example, at q ¼ 0:8
the SEN-W for RE deteriorated to an average of only 13.3% compared to 44.6% for FE.
Thus, the performance (sensitivity) for the RE model (for the case-mix q ¼ 0:8 setting)
declined by 80.3% from the uncorrelated case-mix setting, while the FE model dropped
by only 41.8%.
The specificity (SPEC-ND), i.e., rate of correctly identifying the providers that do not

differ from the reference standard, increased slightly with increasing case-mix complex-
ity; e.g., 92.7% to 96.5% for q¼ 0 to q ¼ 0:8; respectively, for the FE model. As
expected, the SPEC-ND is higher for the RE model (95.9% to 99.8% for q¼ 0 to q ¼
0:8; respectively). The extreme conservatism of the RE model to not flag providers as
under-performing resulted in high SPEC-ND rates, because the majority
(190; 000 ¼ 200� 1000� 0:95) of providers are truly ND relative the reference stand-
ard. In fact, under any setting that may resemble real data (q> 0) the SPEC-ND for the
RE model is >98% because the vast majority of the 5,000 truly under-performing pro-
viders were categorized as ND. In short, it poorly discriminated truly under-performing
providers and classified nearly all providers as ND.

4.2. Effect of provider volume

For large providers with 127–210 patients (defined as the third tertile), the relative per-
formance patterns for RE vs. FE models were similar to the overall pattern across all
providers, except with nominal SEN-W and SPEC-ND rates higher for both methods
(Figure 3).
Of particular interest in practice is understanding the performance characteristics of

RE and FE methods for small providers with low patient volume. For the purpose of
this study, small providers were defined as those with 23–103 patients (the first tertile).
Although small providers in practice actually have lower numbers of patients, our defin-
ition of small providers in these simulation studies is adequate to illustrate the relative
performance characteristics for RE and FE models for smaller providers. As expected,
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the nominal SEN-W rates were lower for both models across case-mix complexity/cor-
relation settings. However, the already rapidly deteriorating SEN-W rate for the RE
described above was further accelerated for small volume providers. More specifically,
the average SEN-W was 54.0% for q¼ 0 and 5.3% for q ¼ 0:8; which is a 90.1% decline
in sensitivity. The relative SEN-W rate (e.g., q ¼ 0:8 relative to q¼ 0) for the FE model
also further declined for small providers, although the average decline was lower for the
FE model compared to the RE model.

4.3. Relative effect of patient case-mix contribution

Two competing factors that affect the ability of methods to accurately identify truly
under performing providers are the 1) magnitude of the providers’ contributions and 2)
magnitude of the patient case-mix effect on the risk of readmission (magnitude of fcig
and b; respectively). We fixed the magnitude (and distribution) of the providers’ effect
size (P-ES) for contribution to patient readmission and considered two patient case-mix
effect sizes (CM-ES): bA ¼ b vs. bB ¼ 2� b (CM-ES 1 vs. CM-ES 2). Because the larger
patient case-mix effect, namely bB; reduces the relative signal attributable to the pro-
viders’ contribution to patient readmission in the regression model, it is expected that
the ability to detect under-performing providers would be diminished. This is illustrated
in Table 1, comparing (a) CM-ES 1 (b) to (b) CM-ES 2 (2� b) for baseline readmission
of 27%. Under higher signal attributable to patient case-mix, the ability to detect under-
performing providers was decreased for both models. However, the RE model was rela-
tively ineffective at detecting the under-performing providers, even for large providers.
It clearly failed to detect under-performing providers across all reasonable case-mix

Table 1. (a) vs. (b): Impact of low and higher patient case-mix effect size (CM-ES 1: b vs. CMS-ES 2:
2� b) on performance of the full (benchmark) RE and FE models across provider volume (large,
medium, small). (a) vs. (c): Impact of low and higher provider effect size (P-ES 1 vs. P-ES 2) on per-
formance at a fixed patient case-mix effect size (b). Presented are results for the case of baseline
readmission rates of 27%). Simulation settings, design parameters, and models.

q

(a) P-ES 1 & CM-ES 1 (b) P-ES 1 & CM-ES 2 (c) P-ES 2 & CM-ES 1

FE RE FE RE FE RE

Overall
0 69.9 49.4 61.5 37.0 86.2 78.9
0.2 62.3 41.2 39.0 8.7 71.2 49.5
0.5 51.2 23.2 30.7 2.4 60.0 28.9
0.8 44.6 13.2 25.4 1.3 51.9 18.5

Large
0 82.7 77.5 55.2 24.9 92.3 89.2
0.2 70.8 56.7 47.7 16.0 79.4 65.7
0.5 60.9 36.7 38.2 5.7 69.9 44.4
0.8 52.1 22.1 31.6 2.9 61.9 32.1

Medium
0 77.7 68.8 44.5 13.6 87.0 80.9
0.2 64.0 43.2 40.8 7.1 71.5 51.5
0.5 51.3 22.4 29.9 <1.0 61.6 29.7
0.8 45.5 12.7 26.8 <1.0 52.2 16.9

Small
0 69.3 54.0 36.3 5.5 79.4 66.9
0.2 52.5 24.4 29.4 3.1 63.4 32.7
0.5 41.7 11.0 24.6 <1.0 49.2 13.6
0.8 36.7 5.3 18.2 <1.0 41.9 7.0
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scenarios for small providers as well as medium volume providers, where SEN-W rates
were less than 1.0% for q 	 0:5 and for q ¼ 0:2 SEN-W rates were 7.1% and 3.1% for
medium and small providers, respectively,
Finally, as a basic verification that if P-ES increases, for a fixed level of CM-ES (i.e.,

low P-ES 1 vs. higher P-ES 2), the ability to detect truly under-performing providers
should improve because the provider signal level is increasing. As expected, the

Figure 4. Impact of inadequate case-mix (CM) adjustment levels (Int: Iintercept only,
Z1�Z2; Z1�Z10; Z11�Z15; Full: Full model) on sensitivities of RE and FE models. Given are sensitivities
to detect under-performing providers for CM correlation q ¼ 0:2 across low, medium, and high base-
line readmission rates (BRR). Results are presented across all providers (overall) and stratified by pro-
vider volume (large, medium, small).
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simulation results confirmed this (Table 1, compare (a) vs. (c)). For example, at q ¼
0:2; the average overall SEN-W’s for the FE model for low vs. higher P-ES were 62.3%
vs. 71.2%; for the RE model the SEN-W’s were 41.2% vs. 49.5% for low vs. higher P-ES.

4.4. Varying baseline readmission rate

We briefly note that the overall patterns of performance (SEN-W and SPEC-ND) across
providers and by facility volume were similar for the low, medium and higher baseline
readmission rates (results not shown). This also holds under different levels of facility
contribution to patient readmission (fcig settings P-ES 1 and P-ES 2) and the two levels
of patient case-mix effect (b settings CM-ES 1 and CM-ES 2).

4.5. Impact of inadequate case-mix adjustment

We next examine the impact of inadequately adjusting for patient case-mix. Recall that
b1 ¼ � � � ¼ b10 ¼ 0:5 and b11 ¼ � � � ¼ b15 ¼ 1 so that the case-mix variables Z11�Z15

have larger effects on patient readmission than Z1 - Z10. The different levels of inad-
equate case-mix adjustment include: (i) no adjustment, i.e., intercept only model; (ii)
inclusion of Z1 and Z2; (iii) inclusion of Z1�Z10; and (iv) inclusion of Z11�Z15: The full
FE and RE models that include all variables represent the benchmarks.
We will describe the impact of inadequate case-mix adjustment using the overall sen-

sitivity for medium baseline rate (Figure 4, middle column), although the relative pat-
terns of results were similar for other cases. Sub-optimal case-mix adjustment degraded
both methods’ abilities to accurately identify under-performing providers as expected.
This overall characteristic is well-known and was confirmed (see Figure 4). However,
several informative novel results can be gleaned from Figure 4. First, it is clear that,
nominally, the impact of inadequate case-mix on RE model is substantial. With no adjust-
ment (intercept only model), the RE and FE model sensitivity rates were 1.1% and 25.9%
(baseline), respectively; and the benchmark rates were 41.2% and 62.3%. Second, with
higher inadequate case-mix adjustments (i.e., models (ii) and (iii)), the impact of the model
choice (RE vs. FE) is on the same order as the impact of inadequate case-mix adjustment.
For example, the average difference in sensitivity between methods (FE – RE) is 28.6%,
while the average difference in sensitivity between benchmark and minimal adjustment
using only fZ1;Z2g were 37.9% and 30.4% for the RE and FE models, respectively.
Similarly, the average sensitivity difference between benchmark and expanded case-mix
adjustment with fZ1; :::;Z10g were 38.0% and 30.4% for the RE and FE models, respect-
ively; the average difference between the two models (with fZ1; :::;Z10g) was of similar
order at 36.8%. We note that the conservative specificity for the RE models with inadequate
case-mix adjustment (Figure S1) was similar to the full model.

4.6. More general dependence/correlation structure

The patterns of results were similar for the more general correlation structure within
and across blocks with unequal correlation among patient case-mix variables
(0:01 � qrr0 � 0:25) selected to be similar to USRDS data described in Sec. 3.1. Nominal
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SEN-W and SPEC-ND rates were similar to the case with equal correlation of q ¼ 0:2:
For example, results for the case of medium baseline readmission rate of � 27%
are provided in Figure S2. Also, the pattern of results for inadequate case-mix adjust-
ment on performance was similar under this more general dependence structure
(Figure S3).

Figure 5. Comparison of overall flagging performance based on (gray) empirical null distribution/
adjustment vs. (white) nominal p-values (unadjusted) for FE models. Given are sensitivity and specifi-
city by provider volume (small, medium, and large) and for varying baseline readmission rates (BRR,
low, medium and high).
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4.7. Simulation studies based on USRDS data

Results for simulated data modeled after USRDS data in terms of the observed distribu-
tion of the effect of patient-level case-mix (absolute magnitude of b), correlation struc-
ture among case-mix risk variables and approximate distribution of ci’s (see Figure
1b–d) are summarized in Figure S4 across the different levels of baseline readmission
rates. Even though differences in performance between FE and RE were expectedly
smaller under the larger provider effect size (distribution of ci’s); the overall pattern
that FE is better able to flag under performing providers also holds in this simulation
study. Similarly, the impact of inadequate case-mix adjustment described earlier also
holds (see Figure S5).

4.8. Empirical null adjustment for overdispersion

In the RE model, natural variation among facilities is model through a Nð0; r2Þ; how-
ever, the FE model does not allow for potential overdispersion. As illustrated by
Kalbfleisch and Wolfe (2013), the distribution of the test-statistics (Z-scores) deviate
from the theoretical null N(0, 1) distribution, and, when conditioned on the facility size,
increased variance was observed with increasing facility size. To address this overdisper-
sion, the use of the empirical null distribution was proposed for FE inference, where a
robust M-estimation method was fitted to the distribution of Z-scores to obtain variance
estimates. The issue was also recently examined in the context of longitudinal monitor-
ing of dialysis facilities (Estes et al. 2018). In this empirical null adjustment approach,
each p-value in the FE model is converted into a Z-score. The means and variances of
the distributions of the Z-score, stratified by facility volume, are estimated using a
robust M-estimation method (implemented using the rlm R function in the MASS
library). The empirical null distribution is used to assess a targeted percent of outlier
providers, stratified by provider volume. We applied the empirical null adjustment to
flag 2.5% of under performing providers. Sensitivity for flagging under-performing pro-
viders and specificity for identifying ND providers are summarized in Figure 5 for the
case of q ¼ 0:2 case-mix correlation (results for other scenarios were similar). With the
empirical null adjustment, SEN-W was lower and with an improvement in SPEC-ND
compared to flagging based on nominal p-values (unadjusted), as expected. Overall per-
formances of these flagging procedures for the FE model were better than the RE model
(e.g., compare to Figure 3 at q ¼ 0:2). For example, under the setting q ¼ 0:2; the SEN-
W for RE and FE based on nominal p-values (Figure 3 – medium) was 62.3% vs. 41.2%
(FE-nominal vs. RE) and SPEC-ND was 94.6% vs. 98.9%, respectively. With FE flagging
based on the empirical null distribution (Figure 5 – medium), the SEN-W was 50.7%
and SPEC-ND was 97.9%. Thus, the SPEC-ND improved (97.9% vs. 98.9% for FE-
empirical vs. RE), but the SEN-W for FE-empirical was still substantially better than the
RE model (50.7% vs. 41.2%).
We note that the empirical null adjustment is applied at the correct percent of

under-performing providers in the above comparison. Hence, the results obtained from
the empirical null adjustment may be optimistic. In addition, multiple testing adjust-
ments could potentially improve flagging results of RE models as well, however the
empirical null adjustment cannot directly be applied to the CMS inference of RE in the
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above comparison, since the inference is not a hypotheses testing procedure that
involves a p-value, and is rather based on bootstrap confidence intervals. However, we
note that empirical null adjustment is useful when targeting fixed percentage of pro-
viders in practice (e.g., 1% or 5%).

5. Discussion

Our works here present the first direct comparison of RE and FE models, specifically
comparing the CMS implementation with inference based on bootstrap CI for SRR and
the hypothesis testing approach of the high-dimensional FE. The results showed that
the RE models were relatively ineffective at identifying under-performing providers and
that the choice between the RE and FE models contributed a large influence on the sen-
sitivity to flag truly under-performing providers, similarly to the impact of extremely
inadequate case-mix adjustment. This conclusion applies across provider volumes and
various baseline rates of readmission examined. We note that although our focus is on
SRR, the same models are applicable to SMR (standardized mortality ratio), SIR (stand-
ardized infection ratio) or other condition-specific hospital readmission ratio.
Although one of the conceptual merits of the RE approach is its ability to handle

sparse outcome data or providers with very few patients (through shrinkage), the results
here suggested that RE models were relatively ineffective at identifying under-perform-
ing providers with lower volume. Even in the case of high frequency of readmissions
(e.g., baseline readmission rate of � 42%) and for providers with large volume, RE
models were found to be less effective at identifying under-performing providers for all
levels of case-mix complexity/correlation. These results underscore the findings of
Kalbfleisch and Wolfe (2013) that although RE models have lower overall estimation
error (mean square error, as a result of Stein estimation and empirical Bayes; Efron and
Morris 1973), this average gain does not necessarily translate into improvement in
power to identify under-performing (“exceptional”) providers. As noted by Kalbfleisch
and Wolfe (2013), the gain in precision for RE models is achieved in the center of the
distribution of outcomes, while FE models have smaller error for “exceptional” pro-
viders, which is a main focus of profiling analysis.
We also note that the RE models assume that the provider effects are independent

from patient case-mix (risk factors). This may not hold in practice such as when the
risk factors may have unbalanced distribution across providers which induces correl-
ation with provider effects. This leads to biased estimates as have been examined in
some details in Kalbfleisch and Wolfe (2013). The FE models are not contrained by this
assumption. We also note that the computational burden of the RE model, via boot-
strapping, is substantial (orders of magnitude higher compared to FE models) and is a
relative disadvantage in practice.
Although we have conducted a fairly extensive study, it is certainly not exhaustive in

addressing the myriad of issues in profiling analysis. With respect to issues of modeling,
estimation and inference, we hope the work here encourages additional studies to fur-
ther examine the merits and limitations of both the RE and FE approaches in order to
improve guidance for practitioners and to develop novel improvements to the methods.
We also note that our study here of the impact of inadequate case-mix adjustment on
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inference (flagging extreme facilities) is limited in scope. The process of case-mix
adjustment in practice is complex and often incorporates inputs from diverse stakehold-
ers (e.g., patients, dialysis providers, government regulatory agencies etc.) and policy
objectives. For the interested readers, an introductory to the importance of case-mix
adjustment in practice can be found in Ash et al. (2012), and for the dialysis population,
see CMS/UM-KECC (2017) and Estes et al. (2018b) and references therein.
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