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Abstract

We examined the relation between the number of (TG) repeats at the (IVS8)-(TG)m(T)5 locus of the CFTR gene with neonatal serum immu-
noreactive trypsinogen (IRT) and sweat chloride (SC) concentrations in hypertrypsinogenemic infants with genotype ΔF508-9T/5T identified by
California cystic fibrosis newborn screening. SC and IRT distributions increased with increasing (TG) repeats.
© 2011 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Cystic fibrosis (CF) is an autosomal recessive disorder caused
by mutations in the Cystic Fibrosis Transmembrane Conductance
Regulator (CFTR) gene [1–3]. While over 1800 CFTR mutations
have been identified [4], few are well-described as disease-
causing. Two polymorphic tracts ((TG)m(T)n) in intron 8 (IVS8)
have been shown to affect exon 9 splicing efficiency. Lower num-
bers of (T) (5 vs. 7 or 9) and higher numbers of (TG) (13 or 12
vs. 11) repeats result in fewer copies of the full transcript and
decreased synthesis of functional CFTR protein [5,6]. CF [7],
CFTR-related disorders [7], and CFTR-related metabolic syn-
drome (CRMS) [8] are reportedly more common among those
carrying 5T with (TG)13 or (TG)12 compared to (TG)11.
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Few have investigated the relation of these haplotypes with
CF diagnostic (sweat chloride (SC)) [9,10] and newborn screen-
ing (CFNBS) (immunoreactive trypsinogen (IRT)) [9,11–14]
tests. We sought to determine the relation of number of (TG)
repeats at the (TG)m(T)5 locus of CFNBS-identified hypertryp-
sinogenemic (HT) infants with genotypeΔF508-9T/5T (ΔF508
in trans with only a 5T allele and no other CFTR mutation) with
IRT and SC. We also explored the relation of IRT levels with
(T) length in trans with ΔF508-9T.

2. Methods

Subjects were identified during the first 2.5 years of Califor-
nia (CA) CFNBS by the CA 4-Step method: Step 1: IRT quan-
tified by AutoDELFIA® Neonatal IRT L (PerkinElmer) in all
newborn blood spot specimens. Step 2: CFTR mutation analy-
sis (29–40 mutations; Asuragen Signature® CF 2.0 ASR) on
specimens with IRT≥62 ng/mL (highest 1.5%). Step 3:
CFTR full gene sequence analysis utilizing scanning–sequenc-
ing technology (Ambry Test®:CF) [15] for specimens with
only one mutation detected in Step 2. Exon 9 is sequenced for
all specimens, allowing for analysis of IVS8 (T) and (TG) [2].
Step 4: SC testing, per national guidelines [16], and follow up
by Elsevier B.V. All rights reserved.
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by CF Care Centers for infants with two or more mutations, in-
cluding 5T. When SC results were available from both arms,
the higher SC value was recorded. Multiple SC tests were per-
formed over time per CRMS follow-up guidelines [8].

Subjects were included in the ΔF508-9T/5T cohort if they
had one copy of ΔF508 detected during Step 2 and only the
IVS8 9T/5T genotype identified during Step 3. Because
ΔF508 is almost always in cis with 9T [17], ΔF508 was con-
sidered to be in trans with 5T and 7T alleles.

The distributions of IRT, initial SC (occurring at age
(days), median: 57, range 35–159), and highest SC were ana-
lyzed by (TG) tract length among those in the ΔF508-9T/5T
cohort. In a separate analysis, we compared IRT among HT
infants with genotypes ΔF508-9T/5T, ΔF508-9T/7T and
ΔF508-9T/9T.

Univariate statistics, box plots, and scatter plots were gener-
ated using SAS version 9.1 (Cary, NC). Differences in distribu-
tions of IRT and SC were tested using the Kruskal–Wallis and
Mann–Whitney U tests.
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Fig. 1. Initial and highest SC (mmol/L) measurements among subjects with genotyp
initial and highest SC (mmol/L) measurements of study subjects with genotypes ΔF
and upper “whiskers” represent the lowest and highest values, respectively, within t
edge, midline, and upper edge of the boxes represent the 25th, 50th, and 75th per
IQR are shown as boxes.] The values for the mean, median, minimum and maximu
in SC measurements with age at sweat test for groups (TG)11-5T, (TG)12-5T, and (T
subject with ≥2 SC results.
3. Results

Among HT infants identified between 7/16/2007 and 1/15/
2010, 75 met the inclusion criteria for the ΔF508-9T/5T cohort.
(TG)11 was the most common allele (54%; n=41), followed
by (TG)12 (31%; n=23), and (TG)13 (15%; n=11). Twelve
(16%) subjects did not have SC results available due to: death
unrelated to CF (n=1), insufficient quantity (n=5), and missed
appointment (n=6). Among subjects with SC results, 49%
(n=31) had one, 43% (n=27) had two, 6% (n=4) had three,
and 2% (n=1) had four successfully completed tests.

Initial and highest SC increased with (TG) tract length
(Fig. 1). For both initial and highest SC, differences in distribu-
tions between all (TG) subgroups reached statistical signifi-
cance at the α=0.05 level and, when combined together, the
difference in SC between groups (TG)12 and (TG)13 compared
to group (TG)11 was even less likely due to chance alone
(pb0.001). Among subjects with (TG)11, none had the highest
SC≥40 mmol/L. Among subjects with (TG)12, 5% (n=1) had
(TG)13-5T(TG)12-5T
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e ΔF508-9T/5T by 5T-(TG) group. Fig. 1 displays box and whisker plots of the
508-9T/5T-(TG)11, ΔF508-9T/5T-(TG)12 and ΔF508-9T/5T-(TG)13. [Lower
he lower and upper fences (1.5 times the interquartile range (IQR)). The lower
centiles and the plus sign designates the mean. Outliers beyond 1.5 times the
m SC are presented in the accompanying table. Inset graphs display the change
G)13-5T, respectively. Solid lines connect repeated SC measurements for each
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the highest SC≥40 mmol/L. Among subjects with (TG)13,
30% (n=3) had the highest SC≥40 mmol/L (one subject had
SC=60 mmol/L).

SC concentration remained relatively constant with age in
the (TG)11 group while the (TG)12 group showed more vari-
ability (Fig. 1 inset). All but one (TG)13 subject with multiple
SC results demonstrated an increase over time (most
increasing to ≥40 mmol/L).

IRT increased with decreasing (T) length. Among subjects
with 5T, IRT increased with increasing (TG) length
(Fig. 2).The distribution of IRT did not differ significantly be-
tween the 9T and 7T groups. Subjects with the 5T allele, as a
group, had higher IRT values (median=80.5 ng/mL) than the
group of subjects with the 9T or 7T allele (p=0.01). Among
those with 5T, the trend of increasing IRT levels with increas-
ing number of (TG) repeats did not reach statistical significance
(p=0.18).

4. Discussion

This is the first study to prospectively assess IRT and SC by
(TG) number in a relatively large cohort of HT ΔF508-9T/5T
infants systematically identified by CFNBS. Thorough geno-
typing was performed on all subjects, minimizing the likeli-
hood that IRT and SC results were confounded by undetected
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Fig. 2. Distribution of neonatal IRT (ng/mL) among subjects with genotypes ΔF5
whisker plots and summary statistics of the distribution of neonatal IRT (ng/mL) in
ΔF508-9T/5T-(TG)12, and ΔF508-9T/5T-(TG)13. [Lower and upper “whiskers” re
fences (1.5 times the IQR). The lower edge, midline, and upper edge of the boxes
mean. Outliers beyond 1.5 times the IQR are shown as boxes.] Fourteen outliers ab
in the accompanying table: one with 9T, nine with 7T, three with (TG)11-5T, and o
IRT are presented in the accompanying table.
CFTR mutations. While this study was restricted to individuals
with 5T in trans with ΔF508, we believe these results are
generalizable to other disease-causing CF mutations in trans
with 5T.

The observed increased SC in association with more (TG)
repeats supports the hypothesis that the 5T allele phenotype
can be modified by (TG) tract length [7]. In addition, the signif-
icant proportion of infants with SC in the indeterminate or
abnormal range (>40 mmol/L) suggests that (TG)12-5T and
(TG)13-5T may act as CF disease-causing mutations. This hy-
pothesis is supported by reports of children and adults with
(TG)12-5T or (TG)13-5T trans to a known CF disease-
causing mutation who have elevated SC and symptoms consis-
tent with CF [18–20]. SC increases during the first year after
birth in genotype ΔF508/(TG)13-5T. Therefore, CFNBS algo-
rithms relying on a single SC measurement to confirm a
positive CFNBS result may improperly rule out CF in infants
with this genotype.

Previous studies relating IRT to (T) length have found a
higher prevalence of the 5T allele among newborns with elevat-
ed neonatal IRT [9,12]. In a large Massachusetts CFNBS
cohort, a 3-fold increase in 5T allele frequency was seen in in-
fants with IRT above the 90th percentile relative to below it
[13]. Our data indicate that even among infants with very ele-
vated IRT (≥98.5th percentile), IRT increases with decreasing
)11-5T (TG)12-5T (TG)13-5T
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present the lowest and highest values, respectively, within the lower and upper
represent the 25th, 50th, and 75th percentiles and the plus sign designates the
ove 140 ng/mL were excluded from the drawing of the box plots but included
ne with (TG)13-5T. The values for the mean, median, minimum and maximum
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(T) length. Our data also indicate that IRT may increase with
increasing (TG) length. As a result, studies of the association
between IRT and the 5T allele should account for (TG) length
in cis with 5T.

As previous studies have shown, the 5T allele can be a CF
disease-causing mutation. In order to better understand the
significance of a 5T allele, the length of the accompanying
(TG) tract must be determined. When evaluating an infant
with a positive CFNBS result for whom a CF diagnosis is
unclear, it is important to fully assess the (TG)m(T)n loci.
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