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AI-enabled Lorentz microscopy for
quantitative imaging of nanoscale
magnetic spin textures

Check for updates

Arthur R. C. McCray 1,2, Tao Zhou3, Saugat Kandel 4, Amanda Petford-Long1,5,
Mathew J. Cherukara 4 & Charudatta Phatak 1,5

The manipulation and control of nanoscale magnetic spin textures are of rising interest as they are
potential foundational units in next-generation computing paradigms. Achieving this requires a
quantitative understanding of the spin texture behavior under external stimuli using in situ
experiments. Lorentz transmission electron microscopy (LTEM) enables real-space imaging of spin
textures at the nanoscale, but quantitative characterization of in situ data is extremely challenging.
Here, we present an AI-enabled phase-retrievalmethod based on integrating a generative deep image
priorwith an image formation forwardmodel for LTEM.Our approach uses a single out-of-focus image
for phase retrieval and achieves significantly higher accuracy and robustness to noise compared to
existing methods. Furthermore, our method is capable of isolating sample heterogeneities from
magnetic contrast, as shownby application to simulated and experimental data. This approach allows
quantitative phase reconstruction of in situ data and can also enable near real-time quantitative
magnetic imaging.

Magnetic spin textures on the micro- and nano-scale are of continued
importance for both a fundamental understanding of their physical beha-
vior and for potential applications in novel computing paradigms1–3.
Topologically-protected spin textures, such as skyrmions, have been shown
to be highly mobile and stable4,5. This makes them appealing candidates for
information carriers, and their non-trivial topology, when interfaced with
other materials, gives rise to interesting physics including topological
superconductivity andMajorana bound states6–8.Magnetic skyrmion-based
neuromorphic and reservoir computing schemes have been developed, and
these motivate future studies of how to control individual and collective
skyrmion behavior under external stimuli such as temperature or magnetic
and electric fields9–12. Materials that are being explored for such phenomena
include ultra-thin multilayer structures such as Pt/Co/X as well as van der
Waals (vdW) ferromagnets such as Cr2Ge2Te6 (CGT), Fe3GeTe2, and
CrI3

13–16. For all of thesematerials, real-space imaging is critical for observing
both the structure of individual magnetic spin textures and also how they
respond to external stimuli.

Lorentz transmission electron microscopy (LTEM) is a powerful
technique for imaging magnetic spin textures in these materials and other
thin films, as it allows the simultaneous observation of magnetic domains
and microstructure17. Furthermore, LTEM can be used to perform a wide

range of in situ experiments that allow for imaging the behavior of spin
textures under stimuli such as variable temperature, appliedmagnetic field,
and electric current17,18. LTEM can also be used to obtain quantitative
information about the sample’s magnetic induction, which is related to the
sample magnetization, and is carried by the phase of the electron wave as
described by the Aharonov-Bohm equation19. In the Aharonov-Bohm fra-
mework, the total electron phase shift is comprised of two components,
ϕ = ϕe+ ϕm, where ϕe is the electrostatic component dependent on the
sample material, thickness, and local electrostatic potential, and ϕm is
dependent on themagnetic vector potential. If the total electron phase shift,
ϕ, can be separated to remove the electrostatic component, ϕe, and isolate
the magnetic phase shift, ϕm, the gradient of ϕm can be used to calculate the
in-plane component of the integrated magnetic induction, which is per-
pendicular to the electron beam direction.

Phase retrieval is commonly achieved by solving the transport of
intensity equation (TIE), which relates ϕ to a through-focal series (TFS) of
images20,21. The TIE approach is easy to implement but suffers from reduced
spatial and phase resolution compared to other techniques that give higher
resolution at the expense of additional experimental requirements22,23. For
example, off-axis holography requires an electron biprism and the ability to
obtain a reference electronwave,making it unsuitable formany samples24–26,
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and 4D-STEM requires long measurement times and pixelated detectors27.
Recently, amachine-learning-based approachwas developed to apply direct
automatic differentiation (AD) to a forward model, which has been shown
to reconstruct ϕ more accurately than the TIE method when using an
input TFS28.

All of these phase reconstruction techniques require either multiple
images, long acquisition times, or complicated experimental setups and are
therefore unsuitable for in situ experiments that study the time evolution of
magnetic spin textures. In many cases, a movie or a sequence of defocused
LTEM images are the only data that can be collected. There exists a useful
modification of the TIE, known as single image TIE (SITIE), that enables
phase reconstruction for some samples29,30. SITIE, however, is only accurate
in the small defocus limit and assumes that all contrast ismagnetic in origin.
Thismakes it very susceptible to noise and to the influence of non-magnetic
contrast such as diffraction contrast. In addition, real-world samples can
often contain non-magnetic regions, including focused ion beam damage,
ice that accumulates during cryogenic experiments, or surface con-
taminants. These all add contrast that will be incorrectly reconstructed as
magnetic domains. Despite these drawbacks, SITIE is frequently used for
mapping the integrated magnetic induction of thin films and 2D
materials31–33. In almost all cases it is used qualitatively, as techniques for
dealing with noise, including Tikhonov filtering or image pre-processing,
can make the resulting reconstructions non-quantitative34.

In this work, we present the development and demonstration of Single
Image Phase Reconstruction via Automatic Differentiation (SIPRAD): a
method for reconstructing the magnetic phase shift, ϕm, from a single
defocusedLTEM image. SIPRAD is shown to be quantitatively accurate and
robust to high levels of noise across a wide defocus range. It is also able to
isolate ϕm in samples with amplitude and ϕe variations that are present
because of artifacts or sample heterogeneity. These characteristics make
SIPRAD ideally suited for performing phase reconstructions from in situ
experiments.

Results
Single image phase retrieval
Figure 1 depicts a schematic of the SIPRAD algorithm that uses AD to
reconstruct ϕm. In previous work, AD was applied directly to an image
formationmodel in order to reconstruct the total phase shiftϕ fromaTFSof
images28. With only a single, often noisy, image, applying this same tech-
nique leads the algorithm either to over-fit to noise or diverge. To avoid this,
a key feature of our algorithm is that it uses up to two deep-image-priors
(DIPs) in place of other regularization techniques. By doing sowe are able to
perform accurate phase reconstructions from a single noisy image.

As described in Ulyanov et al., a DIP is a generative convolutional
neural network (CNN) that is trained to create a desired image35. The DIP
relies upon the CNN architecture to generate images with lower patch-wise
entropy, and DIPs have been successfully applied for tasks including image
de-noising, segmentation, and tomographic reconstructions35–38. We find
that using a DIP both stabilizes the algorithm and provides superior noise
robustness compared to other techniques such as total-variance

regularization, with the additional benefit of eliminating user-optimized
parameters. Therefore, a key distinction in our algorithm frompreviousAD
phase retrieval approaches is that, rather than attempting to learn the phase
shift directly, a DIP is trained to generate the reconstructed phase shift.

We will begin by considering a case where the amplitude and ϕe are
both uniform across a sample, such as for a uniformly thick flake of vdW
material or amorphous film. The branch of the algorithm that reconstructs
variations in the electronwave amplitude, whichwill be discussed further, is
therefore turned off. In all cases, the algorithmbeginswith anuntrainedDIP
that is given an approximate phase input and which iteratively learns to
output an improved ϕm. In many previous applications of DIPs, random
noise is used as the input35–38. We have found that using an approximate
phase shift, obtained with the SITIE method, as an input for the DIP, can
allow the algorithm to convergemore quickly. The output phase shift of the
DIP, ϕm, is used as the input of an image-formation forward model with
microscope parameters set by the user to match experimental values. The
mean-squared error (MSE) loss is calculated between this resulting simu-
lated LTEM image and the input experimental image. Gradients are cal-
culated by back-propagating the loss through the algorithm and are then
used to update the weights of the DIP, iteratively improving the accuracy of
its output phase.

The image formation forwardmodel begins bywriting the electron exit
wavefunction at the sample as ψ r?

� � ¼ a r?
� �

eiϕ r?ð Þ, where a r?
� �

is the
amplitude function of the electron wave that depends on the sample shape
function and composition, ϕ the total phase shift imparted by the sample,
and r⊥ is a radial vector perpendicular to the electron beamdirection, which
is taken to be z. This wavefunction is then convolved with the microscope
transfer function, which consists of an aperture function, phase transfer
function, and damping envelope. This linear image formation model has
been shown to work well for LTEM, as the deflection angle due to the
Lorentz force is very small compared to that of the diffracted beams28,29,33.
Additional details regarding the forward model are given in the “Methods”
section.

Our goal is to reconstructϕm and, for sampleswith uniform amplitude
and uniform ϕe, a single DIP is sufficient because ϕ ~ ϕm except for a
uniform offset. The SIPRADmethod also provides a way to simultaneously
reconstruct ϕm and separate it from the non-uniform amplitude function
and ϕe that arise from sample heterogeneity and contamination. For the
examples in this work, we assume that the origin of a non-uniform electron
wave amplitude are particles on the sample surface which also contribute to
an electrostatic phase shift. This is a situation that frequently arises when
performing cryogenic LTEM. For these cases, the optional amplitude
reconstruction branch can be enabled. A second DIP is then trained to
output an amplitude map that corresponds to surface contaminants, which
is both input directly into the forwardmodel and also scaled to generate the
ϕe inducedby the contaminants.Thismethodworks because anon-uniform
amplitude is required to accurately reproduce the very low image intensity
that occurs at the location of surface contaminants, and from this amplitude
map, we can also approximate ϕe, which is added to ϕm to give the total
phase shift that is input to the forward model. The amplitude DIP thus

Fig. 1 | Overview of the SIPRAD magnetic phase
retrieval algorithm. A single defocused LTEM
image and microscope parameters are given as
input, and a deep image prior (DIP) is trained to
output ϕm. If the amplitude reconstruction branch is
activated, a second DIP will be trained to output an
amplitude map which will also be scaled according
to material parameters and used as the electrostatic
phase shift ϕe.
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learns to generate the image contrast from the contaminantswhile the phase
DIP learns to output the phase shift corresponding to themagnetic contrast.
We have chosen to focus on the case of surface contaminants that generate
both a non-uniform amplitude and a contribution to ϕe, but we believe this
method could be adapted and extended to account for sources that generate
only a non-uniform ϕe, such as variations in local electrostatic potential in
multiferroics, or only a non-uniform amplitude, for example bend contours
that generate strong amplitude contrast but do not contribute to the
Aharonov-Bohm phase shift.

Demonstration of SIPRAD with simulated data
We first compare the phase retrieval accuracy of SIPRAD and SITIE for
stripe domains in a simulated, uniformly thick CGT sample. Figure 2a
shows the in-planemagnetization component that has been simulatedusing
theMumax3micromagnetics package39. The calculated electron phase shift
(without the uniform electrostatic offset) is shown in Fig. 2b and the inte-
grated in-plane magnetic induction map, B⊥, from the boxed region in b is
shown in Fig. 2c. Figure 2e shows a simulated LTEM image for the phase
shift shown in b, with Δz =− 1mm, and the corresponding phase recon-
structions and integrated induction maps are shown in Fig. 2f–i using the
SIPRAD (f, g) and SITIE (h, i) techniques respectively. The accuracy of each
reconstruction is quantified as the correlation between the reconstruction
and the ground truth and is printed in brackets. For the integrated in-plane
magnetic induction, the accuracy of the x and y components is calculated
individually and then averaged.

The SIPRAD approach reconstructs the phase with slightly higher
accuracy than the SITIE approach, but both techniques perform well. The
integrated induction map, however, is much more accurate for SIPRAD
than for SITIE, and this is confirmed in Fig. 2d, which shows a line profile of
the y component of the in-plane integrated magnetic induction across two
domainwalls. The SIPRADprofilematcheswell to the ground truth both in
terms of domainwall location andwidth, although the true peak intensity is
not reached. The SITIE reconstruction, by contrast, shows a domain wall
that is bothwider than the truewall and centered in thewrong location. The
inaccurate placement of domain walls when using the SITIE method is due
to an assumption that ignores the unequal intensities of converging and
diverging domain walls, and is a known issue with the technique29.

Wenext demonstrate the application of the SIPRADmethod to amore
experimentally-relevant, noisy input image. Figure 2j shows the sameLTEM
image with the addition of 50% Gaussian noise, and the corresponding
phase reconstructions and integrated magnetic induction maps are shown

in Fig. 2k–n. The accuracies of both the phase and the integrated induction
remain high for the SIPRAD method, showing only a slight decrease with
the addition of noise. The phase accuracy for the SITIE method decreases
sharply, and the accuracy of the in-plane integrated magnetic induction is
low for both the noise-free and noisy images. The accuracy of the SITIE-
reconstructed integrated induction does not significantly decrease because
the additional noise manifests in longer-range variations in the phase shift.
These are not reflected in the in-plane magnetic induction, which is
obtained by taking a gradient of the phase shift.

For this simple example, SIPRAD outperforms SITIE with respect to
the accuracy of both the phase shift and the integrated magnetic induction
maps for all cases. The SIPRAD technique accurately determines the loca-
tion and width of the domain walls, which can be important when trying to
use domain information to calculate magnetic material parameters such as
the micromagnetic exchange stiffness40–42.

Increased robustness against noise
To better compare the accuracy of the SIPRAD and SITIE techniques, we
compute the accuracy of both the reconstructed phase and the in-plane
integratedmagnetic induction for a wide range of defocus and noise values.
There are several noise sources that contribute to LTEM images, including
Poisson, Gaussian, and salt & pepper noise. We have found that SIPRAD
performs similarly well when given input with equal amounts of either pure
Gaussian noise or a mix of noise types, while SITIE performs slightly better
for pure Gaussian noise (see Supplementary Fig. 1). Gaussian noise was
therefore used in the following accuracy measurements as it is easier to
quantify. The level of Gaussian noise refers to the standard deviation of the
noise distribution relative to the mean image intensity.

Figure 3 shows the accuracy of the SIPRAD and SITIE techniques
applied to an input image simulated fromthe truephase inFig. 2, for defocus
values ranging from−0.1mmto−8mm, andnoise values ranging from0%
to 300%. The SIPRAD phase reconstruction is very accurate across a large
portion of the parameter space (yellow region), while at high defocus values
the accuracy of the in-plane integrated magnetic induction reduces some-
what. This is caused by the extreme blurring that occurs in images with very
high defocus. The SITIE reconstructions, by contrast, are only accurate
within a narrow region of low defocus and low noise.

For both reconstruction methods, noise is more impactful at low
defocus values. This is because the intensity of the magnetic contrast
increases with increased defocus. AtΔz =− 100 μm, even small amounts of
noise can completely obscure the magnetic contrast in the image, which is

Fig. 2 | Demonstration of SIPRAD and SITIE
reconstruction approaches for simulated data.
a In-plane component of the simulatedmagnetization
for stripe domains in CGT. b Ground-truth phase
shift corresponding to a. c Ground truth in-plane
integrated magnetic induction map corresponding to
the red boxed region in b. dComparison between line
profiles of the y component of the integrated induc-
tion across the lines shown in c, g and i. Dashed lines
show domain wall centers. e Simulated LTEM image
for Δz =− 500 μm. f Phase image reconstructed from
e using SIPRAD. g Integrated in-plane magnetic
induction map reconstructed using SIPRAD (of red
boxed region). h, i SITIE-reconstructed phase and in-
plane integratedmagnetic inductionmapusing e as an
input image. j LTEM image of same area as shown in
e but with 50% Gaussian noise added. Phase recon-
structions of the noised image carried out using (k)
SIPRAD and (m) SITIE, with corresponding in-plane
integratedmagnetic inductionmaps ((l) and (n)). For
all images, the number in bracket denotes accuracy
compared to the ground truth.
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why real-world LTEM imaging is normally performed at relatively high
defocus values, outside the small defocus limit within which the SITIE
approach is accurate.TheSIPRADtechnique, by contrast, showsan increase
in accuracy up to, and beyond, a defocus of -1 mm, meaning that it is most
accurate for real-world imaging conditions. Likewise, the SIPRAD techni-
que maintains a high accuracy in both the reconstructed phase images and
the in-plane integrated magnetic induction maps up to noise values
approaching 100%. Both of these trends are also reflected when measuring
accuracy using the structural similarity index measure (SSIM), as shown in
Supplementary Fig. 2.

The SIPRAD method is accurate when reconstructing the phase shift
from images takenathighdefocus, and it can thereforebe applied to samples
that induce only a small magnetic phase shift. Due to the high noise toler-
ance, shorter acquisition times can be used whichmakes SIPRAD viable for
imaging highly beam-sensitive samples and for imagingwith increased time
resolution.

Phase reconstruction with amplitude variation
The most important development enabled by our SIPRAD approach is not
the increased accuracy or robustness to noise, but the ability to perform
magnetic phase reconstructions on samples across which the amplitude and
electrostatic phase shift of the exit wave are varying. All of the previously-
introduced phase retrieval techniques, including the TIE approach and off-
axis holography, reconstruct the total electron phase shift ϕ of the sample. If
the electrostatic phase shift, ϕe, is uniform across the sample, then the gra-
dients of ϕ and ϕm are equal and B⊥ can be obtained. However, if the mean
inner potential or the sample thickness is not uniform, then the amplitude of
the electron wave and ϕe are not constant and a single phase reconstruction
cannot be used to calculate B⊥. There are methods for separating ϕe and ϕm,
such as performing a second phase reconstruction with the sample inverted
in the microscope43, but this is not often applicable during in situ experi-
ments as this requires the sample to be fully removed from themicroscope44.

The distinction between ϕ and ϕm is especially important when con-
sidering SITIE reconstructions. A major assumption for the SITIE

technique is that all contrast in the defocused image arises from magnetic
contributions in the sample. This requires samples that do not display
diffraction or amplitude contrast in the images, and that are perfectly clean
and of uniform thickness. These conditions are frequently not met. It is
especially difficult to ensure these conditions when imaging single-crystal
samples that generate strong diffraction contrast, or when performing
cryogenic in situ experiments that can easily lead to sample surface con-
tamination. Contamination that collects on the sample is particularly pro-
blematic, as it can create variations in both the amplitude and the
electrostatic phase shift. While diffraction contrast can frequently be avoi-
ded by adjusting sample tilt and imaging conditions, contrast from con-
tamination cannot be removed once the sample is in the microscope.
Especially troubling is that surface contamination can lead to phase
reconstructions and to integrated magnetic induction maps with features
that appear similar to viable magnetic features, but which are actually non-
magnetic in origin.

Performing the amplitude reconstruction poses an additional com-
putational problem, namely that an amplitude map can be created that
generates contrast that matches magnetic contrast. The reconstruction
algorithm is therefore less stable when performing amplitude and ϕe
reconstructions and will often diverge or generate non-physical amplitude
maps. We remedy this by adding the additional constraint that the ampli-
tude should be dual-valued, i.e. uniform except in finite regions that cor-
respond to the surface contamination (which is visible in the bright-field, in-
focus image), and this sufficiently constrains the model such that recon-
structions can be performed in many cases. The general workflow of the
algorithmdoesnot changewhenperformingamplitude reconstructions, but
the additional branch shown in Fig. 1 is included. The input into the
amplitude DIP is a thresholded version of the input image. This is created
with a manually-chosen threshold value that approximately isolates the
contaminants. The output of the amplitude DIP is then used directly as the
amplitude in the forward model. This output amplitude is scaled according
to user-input material parameters to convert it to ϕe (for cases where both
amplitude and ϕe are locally modified), which is added to the value of ϕm

Fig. 3 | Comparison of accuracy between SIPRAD
and SITIE. a, b Phase accuracy for the SIPRAD and
SITIE approaches, plotted on a color scale as a
function of % noise and defocus of the input image.
c, d Accuracy of the in-plane integrated magnetic
induction displayed in the same way as for a and b.
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from the phase DIP to give the total phase shift input to the forwardmodel.
When backpropagating, both DIPs are optimized with every iteration.
Other training methods, including alternating between optimizing the
phase and amplitude DIPs, made the algorithm less accurate and stable.

Figure 4 shows an application of amplitude learning to a simulated
sample of CGT containing bubble domains and with added surface con-
tamination. Figure 4a and b show the truemagnetic phase shift, ϕm, and the
corresponding in-plane integratedmagnetic inductionmap. Two regions of
surface contamination are then added that contribute to a non-uniform
electrostatic phase shift, ϕe, and the corresponding amplitudemap is shown
in Fig. 4c. An LTEM image, simulated with Δz =− 500 μm and 30% added
noise, is shown in Fig. 4d; the surface contamination is clearly visible. Figure
4e–g show the SIPRAD-reconstructed map of ϕm, the in-plane integrated
magnetic induction map, and the amplitude map, respectively. The
amplitude matches the ground truth well, and the phase map is accurate
except in regions obscured by the surface particles. There are some artifacts
in the magnetic induction map near the edge of the surface particles, but
there is otherwise a very good match to the ground truth.

By contrast, the SITIE approach does not produce an accurate
reconstruction of either ϕm or B⊥ from the LTEM image shown in d. Figure
4h and i show the SITIE-reconstructed phase shift (h) and integrated
magnetic inductionmap (i) from the same input image (d). The scale of the
phase shift is very inaccurate due to the additional contrast from the
amplitude and ϕe introduced by the surface particles. The particles also
dominate the integratedmagnetic inductionmaps, and the actual magnetic
domains are not visible. One can improve the quality of the SITIE recon-
struction by applying a Tikhonov filter, as shown in Fig. 4j for a manually-
optimized Tikhonov frequency of qc = 0.003 nm−1. The Tikhonov filter
makes the magnetic components of the phase shift more visible, but the
image is still both quantitatively and qualitatively inaccurate. The magnetic
information in the in-plane integrated induction map shown in Fig. 4k is
also improved, but the false contrast from the surface particles still dom-
inates, and in this case could be easily mistaken for a magnetic bubble with
opposite chirality to that of the other magnetic bubbles.

Application to experimental data
We now apply the SIPRAD reconstruction technique to an experimental
LTEM image of an exfoliated CGT flake, shown in Fig. 5a. The sample was

field cooled through the Curie temperature to 23 K in a 500 Oe field to
stabilize magnetic bubble domains, and was then imaged using a defocus of
Δz =− 700 μm.The experimental image shows clear bubble domains along
with additional contrast due to surface contamination. The image is very
noisy, and the SIPRAD algorithm will often diverge when trying simulta-
neously to reconstruct both the amplitude and phase for this image. The
contrast from the contaminants can still be taken into account, however, by
using a fixed, non-uniform amplitude map and corresponding electrostatic
phase shift, ϕe. We first approximate the amplitude map by manually
thresholding the input image to create the binary image shown in Fig. 5b,
which is used to obtain the amplitude function and scaled to createϕe. These
components of the wave function contribute to the forward model but
remain fixed during the reconstruction process that optimizes themagnetic
phase shift, ϕm. The training process is thus stable while still taking into
account local contributions to the amplitude and to ϕe, which allows the
reconstruction of ϕm isolated from the total phase shift, ϕ. Figure 5c and d
show the SIPRAD-reconstructedmaps of ϕm and of the in-plane integrated
magnetic induction, respectively. The reconstructed map of ϕm matches
well to the simulated phase map of bubble domains shown in Fig. 4a. The
reconstruction shows inaccuracies around the areas of surface contamina-
tion, where the magnetic information is lost. Errors are also observed near
the edge of the image due to periodic boundary conditions enforced by the
forward model. Performing the same reconstruction with a uniform
amplitude map leads to a significantly worse reconstruction with visible
artifacts from the surface particles (Supplementary Fig. 3).

Figure 5e and f showmaps of the SITIE-reconstructed total phase shift
and of the in-plane integrated magnetic induction from the same experi-
mental image (shown in a) with an optimized value of the Tikhonov filter
frequency, qc. The phase map is dominated by the contribution from the
surface particles, which lead to artifacts in the induction map, such as
varying intensities for different bubbles and an apparent bubble with
opposite chirality to the others. We also performed a TIE reconstruction of
the same region using a TFS of three images taken at defocus values of
Δz = ± 700 μm and Δz = 0 μm. Note that the underfocus image from the
TFS is what was used for the SIPRAD and SITIE reconstructions. The full
TFS is shown in Supplementary Fig. 4 and surface contaminants are clearly
visible in the in-focus image. An optimal value of qc was determined
manually as for theSITIE reconstruction.TheTIE-reconstructedphase shift

Fig. 4 | Application of phase reconstruction to
samples with surface contamination. a True
magnetic phase shift and b integrated magnetic
induction map showing simulated bubble domains
in CGT. c True amplitude map including two pieces
of surface contamination that impart both ampli-
tude variation and electrostatic phase shift.
d Resulting LTEM image with 30% noise added.
e SIPRAD-reconstructed magnetic phase shift and
f corresponding integratedmagnetic inductionmap.
g SIPRAD-reconstructed amplitude map. SITIE-
reconstructed maps of h the total phase shift, and
i the in-plane magnetic induction for the same input
image. j, k SITIE-reconstructed maps of the total
phase shift and of the magnetic induction with a
manually-optimized Tikhonov filter applied.
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map is significantly improved compared to the map obtained for the SITIE
reconstruction, primarily because the amplitude contrast from the surface
particles is present in all images in the TFS and is thus accounted for, but the
contribution from ϕe is still evident.

Even though the SIPRAD approach uses only one image, rather
than a TFS of three images, the SIPRAD-reconstructed maps of the
phase shift and integratedmagnetic induction both appear qualitatively
to better represent the true domain structure than those produced by
the TIE reconstruction. This is further supported by comparing the
domain wall profiles in the reconstructed magnetic induction maps to
the true profile of a simulated bubble, which is shown in Supplementary

Fig. 5. The SIPRAD reconstruction with a fixed, dual-valued amplitude
map, therefore, appears to enable the magnetic phase shift to be
quantitatively and qualitatively determined from the experimental data
shown in Fig. 5.

We next show the application of SIPRAD to experimental in situ
LTEM cooling data. This is an example of a situation in which acquiring a
TFS of images is not feasible. Figure 6a–e show a series of LTEM images of a
CGTflake recorded duringfield-cooling of the sample fromabove theCurie
temperature to 24K.As the temperature is reduced, the sample expands due
tomagnetostrictive effects; this leads to the formation of bend contours that
can obscure the magnetic contrast, as can be seen in Fig. 6e45.

Fig. 5 | Application of SIPRAD to experimental data. aExperimental LTEM image
of bubble domains in CGT recorded with Δz =− 700 μm and at 23 K. b Amplitude
map obtained from thresholding the input image to separate out the surface particles
visible in a. SIPRAD-reconstructed maps of c the magnetic phase shift, and d the in-

plane integrated magnetic induction. e, f SITIE-reconstructed maps of the total
phase shift and inductionmap from a. g,hTIE-reconstructedmaps of the total phase
shift and the integrated magnetic induction using a TFS with Δz = ± 700 μm.

Fig. 6 | Application of SIPRAD to an in situ field-cooling experiment.
a–e Experimental LTEM images of CGT during field cooling in a 500 Oe field,
recorded with Δz =− 700 μm. Temperatures are shown above each image.
f–j Magnetic phase reconstructions performed with the SIPRAD method of the

images shown in a–e. Red boxes highlight an area where a bubble has disappeared
between 39K and 35K. k–o Integratedmagnetic inductionmaps generated from the
magnetic phase reconstructions shown in f–j.
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Figure 6f–j shows the SIPRAD-reconstructed phase shift maps. The
corresponding integrated inductionmaps are shown inFig. 6k–o.Thephase
and induction maps allow easy visualization of how the magnetic bubbles
rearrange when cooling, and show that some bubbles are driven out of the
sample, as highlighted by the red boxes in Fig. 6g and h. Between each
temperature step, themagnetic bubble lattice shifts and distorts due to both
the disappearance of bubbles and Brownian motion46,47. The SIPRAD
method enables quantitative analysis of the bubble-lattice time evolution,
because phase reconstruction allows accurate tracking of bubbles between
sequential images and gives further insight into local changes of the mag-
netic domain structure.

Discussion
In this work, we have demonstrated that we can reconstruct the magnetic
phase shift, and thus the integratedmagnetic induction, from a single input
LTEM image, using a DIP-enabled automatic differentiation method. We
applied the SIPRAD approach to reconstructing images of Bloch type
magnetic bubbles and stripe domains in CGT, though the technique would
work equally well applied to images of other spin textures. The SIPRAD
algorithm is shown to be significantly more accurate than existing techni-
ques over a wide range of input conditions, including moderate to large
defocus values and noisy inputs that best represent experimental data. The
use of a large defocus is often required when performing experimental
LTEM, as the increased phase sensitivity at large defocus allows magnetic
contrast to be more easily distinguished from noise and other contrast
contributions. Other phase reconstructionmethods, such as those based on
solving the TIE, are only accurate in the small defocus limit and lose both
spatial and phase resolution when experimentally-relevant defocus values
are used.TheSIPRADmethod, by contrast, is basedona forwardmodel that
retains high accuracy of the reconstructedphase to defocus values as large as
−6 mm, and accuracy of the in-plane integrated magnetic induction to
defocus values as large as−3 mm. The robustness of the approach against
high noise levels is primarily due to the implementation of aDIP.DIPs have
been shown to be an effective way of regularizing noisy input data without
relying on manually-chosen parameters, and this work further reinforces
these findings. The downside of using a DIP in AD-based phase recon-
struction is that computationally it is much slower than inference by a
conventional machine-learning model, though with the benefit of not
needing to train such a model in the first place. Reconstructing each image
requires optimizing a new CNN, but we find that the ~ 5000 iterations
required to converge themodel for a 512 x 512 image takes only 35 seconds
on an NVIDIA A100 GPU. Although this is not fast enough for real-time
image processing, it is more than sufficient for integration into other data
processing pipelines. We are able to achieve this reconstruction time by
inputting an estimated phase shift calculated with the SITIEmethod, which
reduces the total number of iterations required. By demonstrating the high
accuracy at both large defocus and low signal-to-noise levels, wehave shown
that SIPRAD is an excellent technique for reconstructing LTEM images in
these experimental conditions, such as would occur when imaging weakly
magnetic or beam-sensitive samples.

Although the increased accuracy and robustness towards noise is
promising, the most important aspect of the SIPRAD approach is that it
allows ϕm to be reconstructed even in the presence of image contrast arising
from variations in amplitude and ϕe. Real-world samples inevitably contain
heterogeneities that can make magnetic phase reconstruction challenging.
This is especially truewhen imaging spin textures across a large field of view.
We have demonstrated that the SIPRAD approach enables simultaneous
reconstruction of both the amplitude and ϕm, but we find that to optimize
both components from a single image can be difficult andwill often lead the
algorithm to diverge at high noise levels. Even in these cases, however, the
magnetic phase can still be effectively isolated and reconstructed after
creating a thresholded binary amplitudemap (or otherwise determining the
amplitude distribution), as demonstrated in Fig. 5. This allows for recon-
structing phase maps and in-plane integrated magnetic induction maps
from images for which the TIE method and a single TFS do not work. This

also provides an example of the adaptability of the SIPRADmethod.Known
information about the sample, such as topographical data for patterned
nanostructures, could be additionally included into the forward model and
used to constrain the reconstruction and improve the isolation of ϕm.

The fact that SIPRAD can accommodate large defocus values, high
noise levels, and heterogeneous samples or those with surface particulates
demonstrates that it is most useful when given noisy images recorded in
conditions that donot allow for the sample to be inverted or even aTFS to be
recorded. This makes the technique especially appealing for application to
in situ experiments.Whenstudying the time evolutionofmagnetic domains
it is frequently impossible to collect a TFS at eachpoint of interest–normally
a movie of a series of defocused images will be the only data available.
SIPRAD is a viable technique able to perform both quantitatively- and
qualitatively-accurate reconstructions of ϕm and of the integrated magnetic
induction fromsinglemovie frames. In addition, in these scenarios it is often
paramount to study the evolution of one particular region over time, and
SIPRAD is able to isolate ϕm even for changes in the imaging conditions, or
additional surface features, that develop during the experiment. We,
therefore, hope that SIPRAD can be broadly applied to future LTEM in situ
experiments and studies of difficult-to-observe magnetic spin textures.

Methods
Single image phase reconstruction via automatic differentiation
SIPRAD is implemented in PyTorch using the Adam optimizer. The DIPs
are convolutional autoencoders as depicted in Supplementary Fig. 6. The
input for the phase DIP is a SITIE phase reconstruction of the input image,
and the input for the amplitude DIP is a thresholded version of the input
image with the threshold value manually set to isolate features such as
surface contamination. Similar to other implementations, we augment our
input image by adding small amounts of noise in each iteration35. Each DIP
is pre-trained for 200 iterations to produce its input image before the full
algorithm is run with the forward model. The final reconstructed ϕm is
smoothed by a Gaussian filter with σ = 2 pixels.

When quantifying the accuracy for Fig. 3, 10 randomly-noised images
(with the same noise level) were created for each defocus value and used for
the phase reconstructions. The average accuracyof the 10 reconstructions of
the phasemaps and the integratedmagnetic inductionmaps is displayed for
both SIPRAD and SITIE.

When training with amplitude reconstruction, the dual-valued con-
straint is implemented every 100 iterations of the reconstruction as well as
after the final iteration. The high and low values are determined from the
mode andminimumof all pixels, and the threshold value is chosen as 3/4 of
the mode. Early stopping is sometimes necessary, especially when per-
forming amplitude reconstruction, to prevent over-fitting. The amplitude
map that we are reconstructing is based on the thickness and mean inner
potential of the material, as described in the forward model section.

Experimental dataset
Experimental cryo-LTEM imaging of CGTwas performed on a JEOL JEM-
2100F TEM instrument using a Gatan double-tilt liquid helium holder.
TEM samples were created by dry-exfoliating flakes from a bulk crystal,
which were then placed on a silicon nitride TEMmembrane. The thickness
of the flake was measured with atomic force microscopy to be 150 nm. The
sample was field-cooled in the microscope in a 500 Oe out-of-plane mag-
netic field to 23 K in order to nucleate and stabilize magnetic bubbles.

Phase retrieval using the transport of intensity equation
The transport of intensity equation can be written as

∇ � I0∇ϕ
� � ¼ � 2π

λ

∂I
∂z

; ð1Þ

where I0 is the in-focus image, λ the electronwavelength, ∂I/∂z the through-
focal image intensity derivative, with z being the electron propagation
direction. Under the single-image TIE approximation, the equation
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becomes

∇2ϕ ¼ 2π
λΔz

1� IΔz
I0

� �
; ð2Þ

where Δz is the defocus and the in-focus image I0 is approximated as a
uniform image with the mean intensity of the defocused image IΔz

29.
The TIE and SITIEmethods were implemented for both the simulated

and experimental data using the open-source PyLorentz software33,48.

LTEM image formation model
Here we show how the LTEM images are calculated. We begin with the
Aharonov-Bohm equation19, which describes how electrons that pass
through the sample are subject to a phase shift induced by the electrostatic
potential (V) and magnetic vector potential (A),

ϕ ¼ ϕe þ ϕm;

¼ π
λE

R
Vdl� π

φ0

R
A � dl; ð3Þ

where ϕ is the total phase shift, ϕe and ϕm the electrostatic and magnetic
components of the phase shift respectively, λ is the electron wavelength, E
the relativistic electron energy, l the electron propagation direction, and
φ0 = h/2e the magnetic flux quantum. The in-plane component of the
integrated magnetic induction can be obtained from ϕm,

Bx;By

� �
¼ φ0

π
� ∂ϕm

∂y
;
∂ϕm
∂x

� �
: ð4Þ

The total phase shift is used to write the electron wave function at the exit
surface of the sample as

ψðr?Þ ¼ aðr?Þeiϕðr?Þ; ð5Þ

where a(r⊥) is an amplitude function and ϕ is the total electron phase shift.
We do not include detailed electron scattering when calculating the
amplitude function, but only the absorption of the electrons, which is given
by

aðr?Þ ¼ e�t?=ξ0 ; ð6Þ

where t⊥ is the sample thickness shape function, and ξ0 is the absorption
coefficient for the sample material.

In order to calculate the resulting image intensity, we propagate this
wave function to the exit plane by convolving it with the transfer function of
the microscope in the back focal plane and determining the intensity of the
wave function,

Iðr?Þ ¼ ∣ψðr?Þ � T ðr?Þ∣2; ð7Þ

where � is a convolution operation, and T ðr?Þ is the microscope transfer
function. This operation is written here in real space but is computed in
Fourier space. The LTEM transfer function is composed of three parts49:

T ðk?Þ ¼ Aðk?Þe�iχðk?Þe�gðk?Þ; ð8Þ

where A(k⊥) is the objective aperture function, e�iχðk?Þ the phase
transfer function, e�gðk?Þ the damping envelope, and k⊥ the reciprocal
space wave vector perpendicular to the beam direction. The aperture is
a binary function (1 inside and 0 outside) centered in reciprocal space
for the Fresnel imaging mode. We can define the phase transfer
function as

χðk?Þ ¼ πλ Δz þ Ca cos 2ϕa
� �� 	

∣k∣2 þ π

2
Csλ

3∣k∣4; ð9Þ

whereΔz is the defocus,Ca and ϕa are themagnitude and orientation of the
two-fold astigmatism, and Cs is the spherical aberration coefficient.

The damping envelope can be written as

gðk?Þ ¼
π2θ2c
λ2 u

Csλ
3∣k∣3 � Δzλ∣k∣

� �2 þ πλΔð Þ2
2u

∣k∣4; ð10Þ

where u ¼ 1þ 2 πθcΔ
� �2∣k∣2, θc is the beam divergence angle, and Δ is the

defocus spread50. LTEM image simulations are performed using the
PyLorentz software33,48.

Simulated datasets
Micromagnetic simulations of CGT were performed with Mumax339. The
following parameters were used: cell size 4 nm× 4 nm× 10 nmð Þ, grid size
512× 512× 10ð Þ, Ms = 2 × 105 Am−1, Aex = 1.2 × 10−12 Jm−1, Ku = 2 × 104

Jm−3, Bext = 0.08 T along the z direction. For simulations of magnetic bub-
bles, a random starting magnetization of Bloch type domains and bubbles
wasplacedand thenrelaxed.ThePyLorentz softwarewasused to calculating
the total electron phase shift of the simulated samples33,48. Gaussian noise
was added to the images after they are created. The level of Gaussian noise
refers to the standard deviation of the distribution divided by the mean
intensity of the image.

Data availability
Simulated and experimental data used in this study are available at https://
doi.org/10.5281/zenodo.10901581.

Code availability
The codes and simulated data developed in this study are available in a
public Github repository at https://github.com/Art-MC/SIPRAD_demo.
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