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Abstract 

Latent Problem Solving Analysis is applied to model the 
decision processes of expert instructors judging professional 
pilots’ landing technique in a B747 flying simulator, showing 
that that a memory-based model can do well in the absence of 
more conscious, logical processes. 
  

Introduction 
In previous work, Latent Problem Solving analysis has been 
applied to laboratory tasks (e.g., Quesada, Kintsch, & 
Gomez, 2002). This paper extends this idea to a different 
domain: landing technique evaluation. There is currently no 
methodology to automatically assess landing technique in a 
commercial aircraft or a flying simulator. Instructors are an 
important cost for training and evaluation of pilots, and their 
use also incorporates a subjective component that may vary 
from pilot to pilot. In this application of LPSA to landing 
technique evaluation, we assume that an expert uses his past 
knowledge to emit landing ratings by comparing the current 
situation to the past ones, and generates an expanded 
representation of the environment by composing the past 
situations that are most similar to the current one. 
 
 Selecting the set of variables that should be used to train the 
model is not a trivial task. Is the visual information to be 
considered? Which variables are relevant? Our approach 
was to develop a methodology based on two key ideas: (1) 
Expert triangulation: while an expert was able to monitor 
almost every single variable relevant (complete information 
expert) another one was limited to watching a real-time plot 
of a very limited set of variables chosen by him (reduced 
information expert). If the judgments of these two experts 
are highly correlated, the variables selected by the reduced 
information expert have sufficient explanatory power to 
perform the evaluation. (2) Modeling of the landing 
evaluation task using Latent Problem Solving Analysis  
(LPSA, e.g.,  Quesada et al., 2002) on the variables selected 
by the reduced information expert. The resulting system was 
able to evaluate landing performance automatically. We 
work under the assumption that an expert trusts her past 
knowledge to emit landing ratings in a significant way. As 
pointed by Landauer (2002), most people use conscious 
logic only to narrow realms where they also possess large 
volumes of hidden intuitive knowledge. Experts are 
supposed to be attuned to the constraints of their 
environments (e.g., Ericsson & Lehmann, 1996; Vicente & 

Wang, 1998) in a way that presumes automaticity. Our 
proposal does not deny that the expert is also employing 
some other, more analytical method. However, we would 
like to point out that a memory-based model can do well in 
the absence of more conscious, logical processes. 

The landing task 
The variation in the requirements of the landing task is 
immense with landing conditions such as wind, gust, and 
visibility. However, our data collection experiment was 
designed to be very simple with the idea of minimizing the 
variability due to uncontrolled factors. The manufacturer of 
the aircraft normally provides charts with the preferred 
value of a variable (e.g., Glideslope) given some possible 
values of other variables (e.g., the air speed). In other cases, 
it is the Government who provides the charts.  The landing 
is usually divided into approach, flare, and touchdown. A 
graphical, simplified description of these three concepts can 
be viewed in Figure 1: 

 
Figure 1: Basic scheme of a landing. (1) Glideslope. (2) 
Flare initiation height. (3) Pitch rate (4) Glideslope 
predicted intercept point. (5) Touchdown point. (6) Reversal 
in the direction of the vertical acceleration at touchdown 
point. 
 
To evaluate the landing technique, we selected a set of five 
criteria consulting several landing technique instructors and 
simulator specialists. The list included: (1) Flare initiation 
height: The flare has to be initiated at a particular height; 
this height is not rigid as lower flares can be compensated 
by a higher pitch rate for example. Three levels (too high, 
correct, and too slow) were used. (2) Thrust Reduction: The 
reduction should be progressive, and it has to be started in a 
particular moment in time. It was judged using three levels: 
(too fast, correct, and too slow). (3) Pitch rate. The pitch 
was evaluated using five discrete levels, from too high to 
too low. (4)  Overall landing score. This is a general rating 
that expressed how good the landing was, from one to five. 
In a sense, it is not a summary of the former measures, as it 
adds new information. Some landings can have, for 
example, an incorrect Flare initiation height, but end up 
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getting a five out of five, because it was compensated with 
other means. The possible ways in which these different 
grades can be observed and their interaction enables a 
complex set of data to model.  

The problem of variable selection and 
complexity reduction 

In some circumstances, the modeler has to be very 
knowledgeable about the task to be able to create a 
successful model (for example, chess modelers tend to be 
good chess players). Although this point may seem 
redundant and obvious, it is very important, since it is not 
always the case that the modeler can invest the long time 
required to master the task to model. The alternative 
approach to task modeling is to ask the experts what 
information they use, and what procedures they have 
developed to perform the task. In this line, expert 
knowledge elicitation techniques have been developed to try 
to ‘extract’ the knowledge from human experts and ‘insert’ 
it into the system. Thus, most expert systems are rule-based 
systems. The approach that we have taken here is different. 
A basic idea is that experts are able to confront very 
complex tasks because they have managed to reduce the 
dimensionality of the respective problem spaces of their 
jobs thanks to massive amounts of experience. There is a 
need to translate this dimensionality reduction to the system 
that is going to perform in their same environment.  
 
Two reductions in the dimensionality of the task are 
performed to represent the variability in the environment in 
an efficient way: (1) The one suggested by the expert 
selection, using the triangulation methodology, and  (2) the 
one performed by LPSA’s SVD when the lower-
dimensional corpus is created. They are explained in the 
following two sections. 

The triangulation of expert judgments  
In this section, we present a possible solution to the problem 
of variable selection. It uses a configuration of two experts, 
who perform the task in two very different conditions. 
 
The question is: How do we know which variables a model 
should pay attention to? It is hard to imagine that our 
information processing system keep track of every 
dimension that could possibly be registered. For example, a 
high fidelity flying simulator can log up to 10000 variables, 
each with a precision (sampling ratio) of 1/100 seconds. 
Since it is recorded in the log files, we can assume that this 
amount of information is available to the pilot and copilot in 
the commercial aircraft simulated. Of course, in a particular 
temporal moment t, the human components of the system 
(pilots and ATCs), are aware of a very small proportion of 
these variables, and the focus of attention is changing from 
t1 to t2… to tn. It is computationally unfeasible for a 
cognitive system (either human or artificial) to work in such 
a high dimensional space.  
 
As a step towards solving this problem, we present the 
expert triangulation method. It is very simple and 

susceptible to be applied in a variety of expertise domains. 
The basic idea is that if we cannot model an expertise field 
because of its complexity we can use two experts with 
different access to the information available to discriminate 
the importance of each variable in the task they perform. A 
first approach, quite used in modeling work, is the effort to 
model directly the expert behavior using as many as 
possible of the variables he can access in his normal, daily 
performance. Let us call this expert ‘the complete 
information expert’. However, when the task is complex, 
trying to model the whole situation often proves itself to be 
an excessively difficult task. Some theories do propose ways 
of selecting the relevant parts to model. This selection is a 
priori, that is, the assertion ‘The expert is using variable X 
but not Y’ is part of the theory.  What we propose is to use a 
second expert to do the variable selection in a non-theory-
driven way. The second expert will have limited access to 
the variables in the system (for example, he can only plot a 
limited number). For that reason, this second expert is called 
‘the reduced information expert’, and is forced to select a 
small set of variables. The model will be created to 
reproduce the behavior of this expert, and this is often a key 
step since the modeling task can change from being 
intractable to being tractable. Note that the theory does not 
have a priori assumptions about what are the task’s most 
important variables: the expert does (see Figure 2).  

 

Figure 2: The triangulation technique 

Construction of the reduced-dimensional space 
The second way of reducing the complexity of the problem 
is performing dimension reduction. The dimension-
reduction step and its properties to explain learning and 
generalization are important in several cognitive theories 
(e.g., Edelman & Intrator, 1997; Rumelhart, Smolensky, 
McClelland, & Hinton, 1986). The algorithm used in LPSA 
is the singular value decomposition (SVD) of the frequency 
matrix of states by landings, and the reduction in the number 
of singular values. As a result, we obtain a representation of 
both states and landings in the same space. Any new landing 
that is not in the space can be represented as a linear 
combination of the vectors of its states. We can predict the 
ratings of any new landing by averaging the ratings of the k 
known nearest neighbors of the vector representing the 
landing in this space ( see e.g., Duda & Hart, 1973 p.103; 

C: Modeling 
of the expert 
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restricted 
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Accessible 

B: Selection 
(part of the 
theory) 
 

Expert with complete 
access to any variable 
in the system 

Expert with partial access to the 
variables (having to make a 
selection) 

MODEL 

A: Modeling of 
the whole 
situation:   
Inaccessible 
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Hastie, Tibshirani, & Friedman, 2001, p. 415 for a 
description of nearest neighbors algorithms). To construct 
the space we used the variables that the reduced information 
expert was using, as suggested by the triangulation 
technique.  

Method 
10 pilots performed 40 landing each. We manipulated wind 
direction and intensity at 6 levels, using incomplete 
counterbalanced design to control for order effects. The 
levels selected were 30, 20, 10, 0, and -10 (tail wind) knots.  
Since wind conditions influence the landing procedure, the 
ideal experimental design would be to select a 
representative sample of all the possible wind directions 
during landing. However, with the limited number of 
participants and simulator time assigned we preferred to 
control the presentation order effect by means of a 
counterbalancing design. Another important factor is gusts. 
We only used front and tail wind and no gust, again to 
simplify the experimental conditions and maximize 
comparability. 
 
 The two experts used a set of criteria to rate the landings, 
described in ‘the landing task’ section. Both experts rated all 
landings. The reduced information expert was allowed to 
select and plot as many variables as he wanted, with the 
limitation that they should fit in his 20” computer screen. 
He plotted only the following five variables: Vertical 
acceleration, Radio altitude, Pitch rate, Rate of descent, 
Pitch angle. There was still some space left, which implies 
that the expert considered that he did not need to plot any 
more variables. It turned out that rate of descent and pitch 
angle were barely used, as they were never referred to when 
the expert explained his ratings to the experimenters. Thus, 
rate of descent and pitch angle were omitted from the 
analysis. The expert in the copilot seat (complete 
information expert) used a huge array of information, since 
he was exposed to the same environment as the pilot, being 
able to see the runway approach and feel the movements of 
the aircraft when the wheels touched the ground, for 
example. The basic idea was to calculate the agreement 
between the two human graders (reduced and complete 
information experts). If the agreement was very low, the 
judgments are too subjective, and a possible automated 
method of assessing landing technique is hard to validate. 
Then, the same agreement would be calculated for each 
human expert and LPSA. 
 
To do the model selection part where we tried to find the 
right parameter set, the criterion used was the average 
correlation between the model and the human ratings of 
both human graders. 

Corpus creation 
The states in each landing were stripped off of all the 
variables except for the reduced information that the expert 
was actually using: flare initiation height, thrust reduction 

and pitch rate. Since the average duration of a landing when 
the starting point is 500 feet was about 15 seconds, and the 
sampling ratio was 10 samples a second, the average 
number of states per landing was 150.  
 
The flare initiation height, expressed as feet, was 
transformed (rounded) to be multiples of ten (e.g., 112 feet 
would be 110, 89 would be 90, etc) and the vertical 
acceleration and thrust reduction were rounded to the 
nearest integer (e.g., a vertical acceleration of -9.8 would be 
-10, and a thrust value of 3.2 would be 3). This rounding is 
necessary because LPSA assumes that a landing is a 
sequence of states, and the continuous flow of these values 
has to be discretized. Since decimal values are not relevant, 
and humans would consider that, for example, an altitude of 
45 feet is the same as 46 or 47 feet for most purposes, we 
applied the rounding in our model.  
 
The original sampling ratio was 10 times a second. That 
made a total number of 569 unique states in 400 landings. 
Although LSA has been applied to text corpora with the 
same number of types, and even several orders of magnitude 
more, the limited number of landings imposes a severe 
restriction. Most known learning mechanisms, including 
LSA, need several repetitions of the units to learn them. 
That is, LPSA learns better when a good proportion of the 
states can be found in more than one context. The 
transformations and rounding that we performed were 
serving the purpose of decreasing the number of different 
states in the corpus. When the states are described using 
continuous variables, and these variables are sampled at a 
fast rate, an non-rounded corpus would have as many 
unique states as the total number of states (that is, each state 
would appear in the corpus only once, leaving little room for 
learning). The variables were joined with underscores to 
make them a single token, and use space as token separator. 
This way, a state in the system was represented as a token as 
follows: “flare initiation height_thrust Reduction_pitch 
rate”. This token is the equivalent to a word in standard 
LSA. The matrix of states by landings was created, and an 
SVD was performed on it. After the decomposition, the 
biggest N (where N is a free parameter) dimensions were 
kept. The parameter manipulation is explained in the results 
section (model selection). A web interface to the 400 
landings graphs (mimicking reduced information expert’s 
display), experimental conditions and ratings used in this 
paper can be visited at http://lsa.colorado.edu/ 
~quesadaj/adriVisor.cgi. The complete corpus is also 
available upon request. 

Apparatus 
The Netherlands’ National Aerospace Laboratory (NLR) 
National Simulation Facility (NSF) simulator was used. A 
Boeing 747 cockpit was installed consisting on a side-by-
side full glass airliner cockpit with a layout equipped with 
six programmable CRTs. The airport selected was San 
Francisco airport, because it is situated at sea level; this 
feature is desirable because the radio altitude and the 
barometric altitude tend to be the same. 
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Results 
Significance tests. The polychoric correlation was selected 
because of its suitability for analyzing judgment data on 
ordinal scale. To test the hypothesis of the correlation being 
significantly different from zero, we used resampling 
methods, concretely a randomization test. That is, we used a 
Monte Carlo approach to estimate the probability of our 
results (correlations) being obtained due to a bias in the 
computation. For example, imagine that both the expert and 
the model say simply ‘correct’ all the time. The bias is ‘say 
always correct’. The correlation human-model would be 1. 
As well, if we randomly rearrange the values of the model 
or the expert, so that they do not line up with each other (for 
example, the model rating for landing 1 would be matched 
to the expert judgment for landing 67, and so on), the 
correlation would still be one. In this extreme case of bias, 
having a high correlation between the model and the expert 
does not mean any merit for the model, since any random 
rearrangement of the data would obtain the same 
correlation. The randomization tests performed were 
conducted resampling 500 times.  
 
Model selection. We created several corpora modifying the 
number of dimensions (100, 150, 200, 250, 300, 350, and 
maximum dimensionality, 400) and the number of nearest 
neighbors used to estimate the landing ratings (from 1 to 
10). Another manipulation was the inclusion or exclusion of 
a time tag, and the type of weighting scheme used (log 
entropy vs. none). This way, the possible combinations of 
levels were (7 x 10 x 2 x 2) = 240. For each of these 
combinations of levels, we used leave-one-out to calculate 
the ratings for the landing excluded. The estimated ratings 
for each of the 400 landings were then correlated with the 
real ratings. The combination of levels that best correlated 
with both humans was selected, and that was: Corpus with 
200 dimensions, 5 Nearest Neighbors, no weighting, no 
time tagging). 

Model fitness 
The first thing to observe is that the average agreement 
between human experts was not very high (polychoric 
correlation .48, see boxed bars in Figure 3). To our 
knowledge, there are no studies that report statistics on 
specifically landing technique experts, so we will use 
general expertise for comparison. Shanteau (2001, p. 237, 
table 13.2), presents data on consensus (agreement) between 
experts in different domains. The landing technique experts 
reported in this study had an inter-rater reliability in line 
with Clinical Psychologists (.40), Stockbrokers (<.32), 
polygraphers (.32) and Livestock Judges (.50).  Their 
agreement is   lower than the ones reported for Weather 
forecasters (.95), Pathologists (.55), Auditors (.76) and 
Grain Inspectors (.60). 
 
The average correlation between the model, and the reduced 
information expert was about the same as the correlation 
between the two humans (.48 vs. .46, boxed bars in Figure 
3). Note that the ceiling for the model is the correlation 

between two humans doing the task; a model that correlates 
with one human better than two humans correlate with each 
other is under suspicion. It seems that the judgment on 
thrust reduction is particularly difficult for the two experts 
to agree (human-human correlation of only .27).  
 
One of the LPSA assumptions is that experts perform 
dimension reduction to represent their environments. The 
equivalent model (5 nearest neighbors, no weighting, no 
time stamping) without performing dimension reduction 
(that is, using 400 dimensions, which is the shortest 
dimension of the matrix) correlates with humans (on 
average for all criteria) only .26, which can be interpreted as 
evidence for dimension reduction in the representation.  
 
The randomization test for the different criteria showed that 
all of the agreements between human judges were highly 
significant: Flare initiation height (.52, p = .0021), thrust 
reduction (0.27, p .002), pitch rate (.46, p= .002) and overall 
landing performance (.61, p = .002).  
 
The equivalent model without dimensionality reduction 
(400 dimensions, 5 neighbors, no weighting, no timestamp) 
produced .37, .08, .57, .50 correlations for the above used 
criteria respectively. 
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Figure 3: Agreement between the model and the reduced 
information expert for each of the rating criteria 
 
In our design, we tried to mimic the reduced information 
expert (the one that had access to only a few selected 
variables) since the model used the variables this expert 
utilized.  However, having a good correlation with the 
complete information expert (located in the copilot seat) is 
desirable too, so in the process of finding the right 
parameters, the models were selected for their correlation 
with both humans. Figure 3 presents the correlations 
obtained for the complete information expert. Note that the 
only criterion where the model correlates with any of the 
experts more than they correlate to each other is thrust 
reduction. Thrust reduction seems to be a very difficult 
feature to judge, since the agreement between human 
experts is the lowest (.27) and also it is the one in which the 

                                                           
1 A p value of .002 indicates that none of the polychoric 
correlations for the randomizations was higher than the observed 
one, being the proportion 1/501 = .002 
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reduced information expert obtains the lowest test-retest 
reliability (0.538, see test-retest measures). 
 
All the polychoric correlations between the reduced 
information expert and the model were significant (p = 
.002). So were the correlations between complete 
information expert and model.   

Test – retest measures 
One common method to assess how accurate human raters 
are is the test-retest correlation. It simply consists in having 
the same expert grade twice the same item in two different 
temporal moments, preferably distant in time. It is well 
known that humans have imperfect test-retest reliability. In 
our study, we asked the reduced information expert to 
reevaluate a random sample of 100 plots displayed in the 
same way he experienced during the experiment. The plot 
contained wind information, but all other information that 
could identify the landing (pilot name, landing number, 
ratings etc.) was removed from the graph. The reassessment 
took place about one 8 months after the end of the 
experiment. The reliabilities were .64, .53, .84, and .72 for 
flare, thrust, pitch and overall score respectively. 
 
To our knowledge, there are no studies that report statistics 
on specifically landing technique experts, so we will use 
other domains of expertise to figure out how our reduced 
information expert stands. The average test-retest reliability 
(0.69) is better than some other studies of reliability of 
expert judgments reviewed in Shanteau (2001, p. 237, table 
13.3), concretely better than for Clinical Psychologists (.41), 
Stockbrokers (<.40), Grain Inspectors (.62) and Pathologists 
(.50).  His test-retest reliability is however lower than the 
one reported in the same work for Weather forecasters (.98), 
Livestock Judges (.96), Auditors (.90) and polygraphers 
(.91). It is worth noticing that a computational model such 
as LPSA has a test-retest reliability of 1, and that could be 
viewed by the trainees as a good feature. 

Application of the model in a non-structured 
corpus 
A cognitive system (human or machine) exposed to expert-
level amounts of experience in a non-structured 
environment will show a very poor performance, similar to 
those of novices. Product theories of expertise (e.g., Vicente 
& Wang, 1998) propose that the amount of environment 
structure is the main explanatory factor for the expertise 
advantage, and LPSA should be able to reflect this fact. To 
test this hypothesis we run exactly the same simulations on 
an artificial corpus with 400 landings where the states for 
each landing were randomly sampled from the original 
corpus. This random corpus contained landings where all 
the variables changed randomly for the (average) 15 
seconds that a landing lasts. In the hypothetical case of 
having a human exposed to a domain similar to such a non-
structured environment, the amount of learning obtained by 
the human after the long-term experience would be very 
little. This poor learning would be reflected by a poor ability 

to predict future states, and the landing rating case, a poor 
rating skill, and the LPSA model reflects that in Figure 4. 
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Figure 4: Agreement between the model and the reduced 
information expert for each of the rating criteria when the model 
has been trained on a corpus where the environment changes 
randomly. 

Discussion and conclusions: theoretical and 
practical implications 

Theoretical implications 
The evaluation of landing technique is a complex task. It 
takes several years to learn the basics to be able to land a 
plane, and even longer to be able to evaluate the quality of a 
landing in a consistent way and give advice on how to 
improve it. Complex tasks are usually explained in 
cognitive science referring to constructs as problem solving, 
mental models, or reasoning. LPSA shows that simple ideas 
such as similarity-based processing and pattern matching 
could have a role even in cognitively complex tasks. LPSA 
is a very simple computational model based on the analysis 
of massive amounts of knowledge. It assumes that 
representation takes place in a representational space that 
has fewer dimensions than the external (distal stimuli) space 
represented. It also assumes that humans retrieve the most 
similar past experiences to the current one automatically. 
The response to the current situation (in this case, the 
grading of a landing) occurs partially because the ratings of 
past landings which are similar to this one ‘come to mind’, 
and the response is a composite of those ratings.  
 
LPSA requires a lot of experience before it can do this 
retrieval-based rating, as do humans, and this experience is 
useless when the environment has no constraints. An 
important critic can be raised in that we are not giving the 
model the same amount of practice as the expert has, since 
we used only 400 landings in a very limited set of 
environmental conditions (6 different wind strengths, no 
changes in direction) in only one runway. Ideally, the 
system would be trained with the particular circumstances 
of relevance (several runways, wind conditions, aircrafts, 
etc.). The model has strictly 400 landings of practice in very 
limited wind conditions, and then, it cannot be really 
considered comparable to an expert instructor, who has 
experience in a much more varied environment. In this 
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sense, we do not want to argue that the current data and 
results presented are a complete model of landing technique 
evaluation, or that it can substitute instructors in their task. 
It must be demonstrated that the model as it is developed 
here can render similar performance in a wider set of 
conditions. However, there are reasons to believe that the 
system can scale up reasonably well. LPSA has been 
applied to corpora far bigger than the one used here. In the 
context of control of dynamic systems, the corpus used 
contained the equivalent of three years of daily practice. 
When the same ideas on knowledge representation are 
applied to semantics and text comprehension, the corpus 
used represents the exposure to printed text that an average 
human may have by the time she reaches college level, and 
this is several years of practice.   

Practical implications 
One important practical conclusion that we want to draw is 
that it is possible to construct systems that grade landing 
technique automatically as well as humans, if we consider 
that the limit of performance for such a model is the human-
human agreement. The correlation human-human was low 
(0.46) but in the range of some other areas reported 
(Shanteau, 2001). Some authors are extremely critical with 
the efficiency of human experts doing their tasks: ‘Expert 
did better [than the actuarial model] in only a handful of [the 
tasks reviewed], mostly medical tasks in which well-
developed theory outpredicted limited statistical experience’ 
(Camerer & Johnson, 1991, p. 197). 
 
The advantages of automatic landing technique evaluation 
are many: (1) Reduced cost of the evaluation. (2) Increased 
objectivity in the evaluation, making comparisons between 
different pilots more reliable. Although all the instructors try 
to emit an accurate judgment, different experts have 
different subjective criteria for the evaluation. (3) Decrease 
the influence of the instructor. Lintern and collaborators 
(Lintern, 1990) pointed out that “Although probably a slight 
exaggeration, it is frequently asserted that the flight 
instructor is the greatest source of variance in the pilot 
training equation” (p. 326). Pilots might be more confident 
in their own recently acquired skills if they know that they 
evaluation has been done automatically and is equal for each 
one of them. (4) Perfect Test-retest reliability. (5) The 
model is not exposed to factor such as psychological or 
physical strain. (6) It is always available and can be 
triggered by the trainee at will. (7) The model can rate as 
many landings as time enables, etc. In a large-scale 
application of the model (for a training and evaluation 
department, for example), we can imagine that 500 pilots 
need to be evaluated. In that situation only a small 
proportion of randomly sampled landings (that can be kept 
from previous sessions) must be evaluated by humans; the 
rest is performed by the system. Since the model has 
different landing criteria, it could emit recommendations 
such as: ‘In this landing, you initiated the flare too high, and 
reduced the thrust too late. Try to take it into account for the 
next one’.  
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