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Abstract of The Dissertation 

Cancer Risk Determination through Chromosomal Scale Length Variation of Germline DNA  

By 

Charmeine Shumeng Ko 

Doctor of Philosophy in Biomedical Engineering 

University of California, Irvine, 2023 

Professor James P. Brody, Chair 

 

 

Cancer is a complex disease with significant genetic components. Previous efforts to 

uncover the genetic basis of carcinogenesis tend to focus on linear combinations of single 

genetic mutations, ignoring the complex non-linear network of interactions that are known to 

regulate cellular processes. The goal of this line of research is the ability to predict whether a 

person will develop a specific cancer later in their life. 

This study evaluates how well machine learning classification algorithms trained with 

germline chromosomal scale length variation (CSLV) data from cancer patients can predict 

whether a person will develop cancer later in life. CSLVs were developed to condense pertinent 

copy number variation (CNV) information into a smaller number of parameters, allowing the 

usage of machine learning models. 

We investigated cancer risk prediction and diagnosis classification from germline CSLV 

data alone. Our findings indicate that CSLVs contribute to inherited cancer likelihood through a 



 xi 

complicated network interaction. We first tested 33 different types of cancer using the 11,000 

patients from the Cancer Genome Atlas (TCGA). Lung squamous cell carcinoma (AUC = 0.69), 

Glioblastoma multiforme (AUC = 0.78), colon adenocarcinoma (AUC = 0.67), and many others 

could be differentiated from other cancer types better than random chance. 

We also evaluated the method in a second dataset, the UK Biobank. Each cancer type 

dataset was paired with an age- and gender-matched randomized control set. 125 CSLVs were 

computed, 4 averages and 1 standard deviation from each of the 22 autosomes and 3 sex 

chromosomes (X, Y, and XY), to be used as features in the model. The AUC of lung cancer was 

found to be 0.597, the AUC of brain cancer was 0.567, and the AUC of colorectal cancer was 

0.565. These results were comparable to current published risk scores and demonstrate the 

viability of CSLVs as genetic risk scores for certain cancer types. 

Utilizing germline chromosomal scale length variation data from large public databases 

and machine learning models, we developed a novel and promising method to predict cancer 

diagnosis. This technique can be further improved and augmented for more clinical relevance, 

and it can be beneficial in personalized diagnostics and cancer preventive measures. 
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Introduction 

Cancer is a genetic disease, with a significant hereditary component in its development, 

as demonstrated by past research1. There has been accumulating evidence indicating that 

genetic variation accounts for a considerable portion of susceptibility to cancer2, the 

identifications of inherited genetic variations associated with the disease and understanding of 

how they contribute to cancer biology become a priority in elucidating etiology in cancers3. In 

recent years, the rapid progress in sequencing technologies allows for cheaper and more 

efficient comprehensive genome analysis, and thus many large genomic databases have been 

established. With an immense wealth of information available, it becomes increasingly 

important and complex to develop methods to analyze and utilize the data to draw meaningful 

conclusions. 

Genome-wide association studies (GWAS) are a common approach for investigating the 

genetic basis of complex diseases such as cancer and mainly focus on single nucleotide 

polymorphisms (SNPs). GWAS have identified many cancer risk loci locating at non-coding 

regions of the genome, generally through studies performed on somatic tissues4,5. As cancer is 

a multifactorial disease, it results from an interaction between hereditary and somatic factors. 

The utilization of somatic samples may introduce environmental factors acquired during the 

individual’s lifetime and complicate the homogeneity of inherited component in cancer 

pathogeny. Therefore, it is important to separate the two by focusing on the germline genetics.  

We are interested in chromosomal scale length variation of germline DNA, which 

condenses multiple copy number variations (CNVs). CNVs are extensive structural variants in 
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the human genome composed of repeats and deletions. CNVs have been shown to exhibit 

functional impact on gene expression and are a hallmark of cancer6. The discovery and mapping 

of these genetic variants owes in parts to the development of Next Generation Sequencing 

(NGS), which has greatly advanced the field of genomic research. The reduced cost and 

production needs allow for faster whole genome sequencing with greater accuracy and 

precision, for instance, the human genome can be sequenced within a day using NGS, while the 

same task performed with Sanger sequencing technology would require over a decade7. Many 

population genomic databases have therefore been built and become publicly available, 

proving to be tremendously valuable to researchers interested in uncovering the genetic basis 

of complex diseases, e.g. identification of the hereditary component in cancer development. 

This endeavor is further aided by the advent of computational technologies in the past 

decade. High-throughput sequencing outputs large quantities of data to be processed for 

further analysis. Cancer samples are complex and heterogeneous, for the disease mechanism 

involves a multitude of processes that encompass genomic to cellular functions. As the size and 

intricacy of cancer genomic datasets continue to growth, storing and querying terabytes or 

even petabytes of data can be immensely challenging to researchers without sufficient 

computational resources8. Therefore, the availability of scalable computing resources, i.e. the 

“cloud”, is crucial for facilitating rapid and cost-effective data analysis9.  

An important goal of cancer genomic data analysis methods is to transform the wealth 

of sequencing results into understanding of the relationship between various molecular 

characteristics of cells. The development of machine learning methods contributes to this effort 

for its ability to apply complex mathematical calculations to large, complex datasets in an 
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automated fashion to produce predictive models. Understanding the decision-making progress 

involved in model building would reveal potential biomarkers as therapeutic targets; translating 

and incorporating the results with clinical data would provide insight for physicians, patients, 

and researchers. Furthermore, the interaction between the hereditary component and other 

risk factors may be also studied in depth. 
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Objective and Specific Aims 

Genetic variation has been associated with many complex diseases, i.e. cancer, and copy 

number variations (CNV) account for considerable amount of variability in human genome. In 

addition to genetic features, many factors contribute to the complexity of cancer development, 

with age as a major element10. In this study, we hypothesize that the epistatic interactions 

between germline genetic variants create a network effect that contributes to hereditary 

cancer risks and cancer onset age. Machine learning models can thus be utilized to predict risks 

and determine the influence of germline CNVs on cancer incidence age. 

Objective 1 

The primary objective of the study is to utilize germline CNV information from large, 

public databases to predict cancer diagnosis. We developed a method to transform CNV data 

into Chromosomal Scale Length Variation (CSLV) values for dimensionality reduction while 

preserving the epistatic interaction between CNVs across the genome. 

Objective 2 

 The second objective is to study whether there is an inherited genetic risk in complex 

diseases such as cancer, and we aim to investigate if the CNVs across an individual’s genetic 

landscape contribute to such hereditary component in disease development.   

Objective 3 

The third objective is to develop machine learning techniques utilizing CSLV data to 

predict different cancer diagnoses. These models would predict whether an individual possess  

higher inherited risk for specific types of cancer. Our models would be built from genomic data 
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from large, public databases and address the non-linear and high-dimensional relationships 

between multitude of genetic variants. We would employ different machine learning 

algorithms to compare their performances and predictive powers and determine which option 

achieves the best results.  

Objective 4 

The fourth objective is to explore how CSLV features affect cancer prediction and 

optimize the predictive performance. We would compute different CSLV configurations and 

investigate the optimal dataset. 

Objective 5 

The next objective focuses on model interpretation. We would examine how the 

predictions are made, which variables carry substantial weights in the models, and the 

importance of different components. This would provide biological insight into the CNV regions 

that play the most significant role to a specific cancer type. 

Objective 6 

The final objective is to evaluate the performance of our CSLV predictive models 

through comparison to published risk scores for the specific cancer types that are computed in 

UK Biobank. 
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Background 

Next-Generation Sequencing 

The rapid development of different next-generation sequencing (NGS) platforms has 

revolutionized the biological sciences. In the field of genomics research, NGS reduces the high 

production needs and cost for the comprehensive analysis of genomes, transcriptomes, and 

interactomes, standardizing inexpensive and robust studies11. 

The advent of NGS allows for systematic study of cancer genomes, prompting various 

ongoing large-scale cancer genome projects around the world7. Some of the common goals that 

these projects aim to address are more precise cancer diagnosis and classification, increased 

prognosis accuracy, and identification of mutations for potential drug targets7, forming the 

basis for development of personalized cancer treatment.  

In comparison to previous sequencing technologies, NGS enables simultaneous 

identification of multiple modalities of genome alteration, i.e. copy number, mutation, due to 

deep coverage12. However, there exist several limitations of cancer genomics. Cancer genomes 

are characterized by high degrees of heterogeneity between cancer types and even individuals. 

Due to the incomplete penetrance of mutations, the identification of a pathogenic mutation in 

an individual does not necessarily implicate that other members in the subject’s family carrying 

the same mutation will develop cancer. The complication is amplified with NGS because of the 

larger number of genes and variants being identified13. In addition to modification to screening 

protocol, researchers would benefit from proper statistical tools to distinguish clinically 

significant features and draw correct conclusions on mutations that are indicative of certain 

cancer types. 
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Copy Number Variations 

There are many forms of genomic variability, including single nucleotide polymorphisms 

(SNPs), tandem repeats, transposable elements, structural alterations such as insertions, 

deletions, and inversions14. Copy number variants (CNVs) represents a copy number change 

involving a DNA fragment that is or greater than 1 kilobases in size15. CNVs account for a 

considerable amount of genetic variation in the human genome. 

Population-based surveys have identified thousands of CNVs, and their functional 

impact has been demonstrated to have dramatic phenotypic consequences from alterations of 

gene dosage, disruptions in coding sequences and long-range gene regulation16. Increased CNVs 

can be positively or negatively correlated with gene expression levels17, for instance, deletion of 

a transcriptional enhancer will repress gene expression. CNVs have also been shown to affect 

all classes of human disease with genetic basis, such as sporadic, Mendelian, complex and 

infectious18. Studies on CNVs and cancer risks typically focus on identification of single genes 

and their corresponding CNVs or rare single region CNVs, i.e. those with low population 

frequency19,20.  

It is important to distinguish somatic CNVs from germline CNVs (gCNVs) in human 

disease studies. Although both types contain inherited information pertaining to the pathogeny 

of interest, past research has shown the possibility of CNVs acquisition in somatic tissues 

through environmental factors21, which may compromise the homogeneity in somatic CNVs, 

leading to conclusions drawn from genetic features acquired later in life. Therefore, we focus 

on gCNVs to properly study the effect of hereditary genetic variations alone on cancer risks and 

incidence age.  
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The Cancer Genome Atlas  

The Cancer Genome Atlas (TCGA) was a cancer genomic program that molecularly 

characterized over 20000 primary cancer and matched normal samples from 11000 patients, 

spanning 33 cancer types. It started as a joint effort between the National Cancer Institute and 

the National Human Genome Research Institute in 2006, culminating in the creation of the Pan-

Cancer Atlas22. Many accompanying studies provide insights into cancer classification through 

molecular similarities and genetic differences23,24, and they further reveal the role of germline 

genetic variants and somatic mutations in cancer progression25. Though the project has ended 

after 12 years, the data remains publicly available, and the wealth of information has immense 

potential for new discovery in cancer research. 

The 2.5 petabytes of data contain information such as mRNA expression, somatic 

mutations, DNA methylation, and our target of interest: copy number variation. CNVs are 

typically measured as segment means, and TCGA defines segment mean as the value of 

𝑙𝑜𝑔!(
"#
!
), where CN is the copy number of a specific segment of the genome. Each segment 

mean has a unique genomic address consisting of the chromosome number, start base pair 

position, and end base pair position. To anonymize the data, the TCGA employs a masking 

process of omitting the Y chromosomes and calculating segment means of large portions of a 

genome, sometimes spanning an entire chromosome, resulting in two datasets: masked and 

unmasked. The challenge of navigating and managing the extensive datasets in TCGA is offset 

by its compatibility with Cloud Service providers such as Cancer Genomic Cloud and Google 

Cloud Platform. 
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The Cancer Genome Atlas Pipeline 

TCGA was primarily funded by the National Cancer Institute (NCI), and its genomic and 

clinical datasets were coordinated through NCI’s Center for Cancer Genomics (CCG). This 

project was implemented through a standardized workflow called the Genome Characterization 

Pipeline, consisting of four major steps: Tissue Collection, Genome Characterization, and 

Genomic Data Analysis26. 

CCG collected tumor tissues and matched normal blood samples from patient who 

voluntarily participated in clinical trials and community oncology groups. The majority of the 

samples were formalin-fixed and paraffin-embedded, and the rest frozen, then sent to CCG’s 

Biospecimen Core Resource (BCR). The Biospecimen Processing Center at Nationwide Children’s 

Hospital, the first component of BCR, curated the samples to meet the rigorous quality 

standards. The second component of BCR, the Clinical Data Center at Information Management 

Services, Inc. oversaw informed consents and anonymization of clinical data to safeguard 

patients’ privacy. 

The tissues were then sent to the Genome Characterization Centers (GCCs): The Broad 

Institute that specializes in DNA and performs whole genome and whole exome sequencing, 

the University of North Carolina that specializes in RNA and performs total RNA sequencing, MD 

Anderson Cancer Center that specializes in proteins and performs reverse phase protein arrays. 

CNV data was generated by the Broad Institute27. The GCCs generated and sent the outputs, 

including raw sequencing data, associated metadata, and other characterization data, to the 

Genomic Data Commons (GDC), which shared the data with the Genomic Data Analysis 

Network (GDAN). 
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The GDAN consisted of scientists from 13 institutions across North America. They 

examined the raw data and utilized genomic characterization techniques to produce novel 

analyses and publish results in scientific journals. The data generated by the CCG pipeline are 

publicly available in the GDC for researchers all around to the world. 

The CNV pipeline used Affymetrix Genome-Wide Human SNP Array 6.0 data to identify 

genomic repeats and infer the copy number of these regions based off of GRCh3828. It was built 

onto the TCGA data generated by Birdsuite, an open-source tool set created by the Broad 

Institute29. The data was processed through a circular binary segmentation analysis, which 

translated noisy intensity measurements into chromosomal regions of equal copy number, 

resulting in final output files that are segmented into genomic regions with the estimated copy 

number for each region30. These copy number values were further transformed into segment 

mean values (𝑙𝑜𝑔!(
"#
!
))31 . 

UK Biobank 

The UK Biobank is one of the most well-established genetic projects and serves a major 

internal health resource. It was founded by the Wellcome Trust medical charity, the UK Medical 

Research Council, the UK Department of Health & Social Care, the Scottish Government, the 

Northwest Regional Development Agency, with additional funding from the Welsh 

Government, British Heart Foundation, Cancer Research UK, and Diabetes UK32. The project is 

primarily supported by the UK National Health Services.  

The UK Biobank was started in 2006 by tracking longitudinally the health outcomes of 

500,000 volunteers between the ages of 40 to 69 years old over their lifetimes32. It aims to 

provide important biological samples and environmental exposure data, further constituting a 
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resource on the effects of genetic, environmental, and lifestyle factors on human morbidity, 

mortality, and health33. Genome-wide genotyping data are available for all 500,000 participants 

in the UK Biobank. The database went live in 2017, making 12 Petabytes of information such as 

genetic data, imaging and exercise data available to researchers worldwide. The health data of 

the participants is regularly updated. To date, approximately 89,000 cancer occurrences and 

20,000 deaths have been recorded34. 

UK Biobank Pipeline  

Blood samples were collected from participants at UK Biobank assessment center and 

were stored at the UK Biobank facility in Stockport, UK. After DNA extraction, the samples in 96-

well plates of 94×50-𝜇𝑙 aliquots were sent to Affymetrix Research Services Laboratory for 

genotyping35. During the automated sample retrieval process, special attention was paid to 

ensure that there was no systematic correlation between experimental units and baseline 

phenotypes such as age, sex, and ethnicity36. The UK Biobank Axiom array was used to 

genotype around 90% of the 500,000 UK Biobank participants, and the UK BiLEVE array was 

used to genotype the remaining 10%; the two arrays were very similar with over 95% common 

marker content35. Genomic assays of 820,967 SNPs were conducted, and genome-wide 

genotyping and imputation was performed by the Big Data Institute of Oxford University37. The 

resulting data are around 2 terabtyes in size and include information such as normal SNP 

genotyping data, calls, confidences, and intensities. 

A wide range of phenotypic information has been collected along with the biological 

samples. Participants were asked to provide their socio-demographic background, lifestyle, 

medical history, and physical measures such as blood pressure and arterial stiffness36. Physical 
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activity tracking data, monitored from 2013-2014, of 100,000 participants was also recorded. 

All participants were consented to provide health-related records that indicate death, cancer 

diagnoses, and hospitalizations. 

Machine Learning  

Machine learning is one of the major branches of artificial intelligence, for the ability to 

learn is a basic requirement for any intelligent being. Its history can be traced back as far as 

1950s, during which the experimental and theoretical works were inspired by 

neurophysiological, biological, and psychological research38. The development of practical 

algorithms started to take roots in 1970s, and many were designed to analyze medical 

datasets39. 

 From the early history of machine learning, three major branches emerged from the 

early development, as outlined in classical works in symbolic learning by Hunt et al40., in 

statistical methods by Nilsson41, and in neural networks by Rosenblatt42. They later gave rise to 

advanced methods, respectively43: inductive learning of symbolic rules such as top down 

induction of decision trees, pattern recognition methods such as k-nearest neighbors, and 

artificial neural networks such as multilayered feedforward neural network. 

Machine learning methods are split into two types: supervised and unsupervised 

learning. The main difference is that we have prior knowledge of the outcomes for the samples 

used for supervised learning to learn a function that best approximates the correct output 

values based on the inputs44. Unsupervised learning interprets the natural structure present in 

the data, without labeled outputs. Therefore, supervised learning is often employed for 

classification and regression tasks. A standard protocol involves splitting the data into training 
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set and testing set; the former is used for model building, and the latter is used for model 

evaluation. Since the “correct” output is determined solely from the training data, incorrect or 

noisy data labels will impact model effectiveness. 

Machine Learning Algorithms 

Generalized Linear Model 

 Generalized Linear Models (GLMs) estimate regression models whose outcomes are 

assumed to follow exponential distributions, which include the Gaussian, Poisson, binomial, and 

gamma distributions. GLM can be used for regression or classification, depending on the 

distribution and link function. The H2O suite includes Gaussian regression, Poisson regression, 

binomial regression/classification, fractional binomial regression, quasibinomial regression, 

multinomial classification, Gamma regression, ordinal regression, negative binomial regression, 

and Tweedie distribution45. GLM does not require data to be sorted or special handling with 

imbalanced data.  

 Regularization is employed in GLM by introducing penalties to prevent overfitting, to 

reduce variance of the prediction error, and to handle collinearity. Some common techniques 

are ridge regression and least absolute shrinkage and selection operator (LASSO)46.  The 

regularization process involves finding the optimal regularization parameters 𝛼 and 𝜆, and this 

is achieved by performing a grid search over 𝛼 and “lambda search”, a specific type of grid 

search, over 𝜆. The 𝛼 parameter handles the distribution between the LASSO and ridge 

regression penalties, with a value of 1.0 representing LASSO whereas a value of 0.0 

representing ridge regression. The 𝜆 parameter controls the amount of regularization employed 

in the model, with a 𝜆 of 0.0 denoting that no regularization is applied at all. 
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Distributed Random Forest 

 Random forests are an ensemble of independently trained decision trees, and the 

results of the individual trees are averaged to obtain a more optimized prediction. The training 

of random forests follows the general techniques of bootstrap aggregation: each tree is built 

with random sample with replacement. At each terminal node of the tree, a random subset of 

features is selected to prevent each learner from fixating on the apparently predictive features 

of the training set and becoming tuned too much to the noises. The resulting trees will be as 

uncorrelated from each other as possible, increasing generalization of the model. Random 

forests can contain hundreds or even thousands of trees, and they work well on noisy data. The 

fundamental principle of random forests is that a large number of uncorrelated trees operating 

as an ensemble will outperform any of the individual constituent model. 

Gradient Boosting Machines 

In the field of supervised learning, Gradient Boosted Decision Trees (GBDTs), or Gradient 

Boosting Machines (GBMs), have been shown to perform exceptionally and have rapidly gained 

popularity in the data science community47,48. The general paradigm of gradient boosting is 

aggregating weak classifiers to form a strong learner, as such some parameter tuning might be 

necessary to achieve good results. A training set of known inputs and corresponding outputs is 

used to find an approximator, built from the sum of weak learners, that minimizes some loss 

function to gradually step towards best fit49. In comparison to Random Forest, another popular 

tree-based algorithm, GBMs build the decision trees sequentially instead of in a parallel fashion, 

which results in a large number of trees that may be slow in real-time prediction. The algorithm 

utilizes the error of prior trees in the creation of subsequent tree; in mathematical terms, the 
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residuals of a given model act as negative gradients to optimize the loss function. The iterative 

nature of GBMs proves advantageous over other methods, such as Artificial Neural Networks, 

in handling imbalanced datasets by amplifying the impact of the positive class. 

The major limitation of GBM is its tendency for overfitting, that is, the model is tuned 

too much to the noise instead of the signal and thus performs significantly better in the training 

set than in the testing set. Therefore, k-fold cross validation is often implemented for the 

models. The sample is divided into k parts, one of which will be used for testing while the rest 

for training. The procedure is repeated k times, rotating the testing set. An expected 

performance metric will be selected to evaluate the results across iterations.  

XGBoost 

 XGBoost is an implementation of gradient boosted decision trees designed to heighten 

performance and efficiency. It has become one of the most popular machine learning 

algorithms in recent years. Some features include penalization of trees, a proportional shrinking 

of leaf nodes, extra randomization parameter, and Newton Boosting, which uses curvature 

information, i.e. the second derivative, to take a more direct route than gradient descent to 

minimize a function. 

Deep Learning 

Deep learning is a subfield of machine learning algorithms based on artificial neural 

networks that are inspired by the function and structure of brain. When larger neural networks 

are constructed and trained with more data, their performance continuously increases, as 

opposed to reaching a plateau like some other machine learning algorithms. In addition to the 

scalability, another benefit of deep learning is feature learning, the ability of extracting features 
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automatically from raw data. It detects the unknown structure in the input distribution to 

discover good representations at multiple levels, with high-level learned features defined in 

terms of low-level features.  

 The most common implementation of deep learning is a feedforward artificial neural 

network. It is trained with stochastic gradient descent using back-propagation. The network 

typically consists of many perceptrons organized into many hidden layers. Each perceptron has 

a rectifier, tanh, or some max-out activation function. It is typically important to shuffle training 

data when implementing deep learning because the rows are processed sequentially during 

training. The input layer is scaled to the number of columns, and this is typically an indication of 

the complexity of the model. After sample training, backpropagation and loss function 

assessment are performed. The algorithm will go through the complete training set a number 

of times as defined by the user, and this hyperparameter is called epoch. The epoch value is key 

to finding the model that represents that sample with less error.  

 Deep learning has become one of the more widely used machine learning algorithms in 

recent years, however, several shortcomings are present when applying deep learning to 

disease data. First, it is difficult to interpret how the model arrives at its predictions and infer 

biological insight behind the disease development. Next, deep learning does not perform much 

better than other machine learning algorithms unless the dataset is complete, with little to no 

sparsity, unlabeled, and contains hundreds of thousands, if not more, observations. Since the 

dataset we use consist of prelabeled diagnoses, deep learning might not achieve top predictive 

performance in our study. 
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Stacked Ensembles 

 Ensemble machine learning methods combine multiple machine learning algorithms to 

obtain better predictive performance than the result from any of the constituent models. Many 

popular machine learning algorithms such as Random Forest and Gradient Boosting Machines 

utilize the ensemble method. Stacked Ensemble employs Stacking, also called Super Learning 

and Stacked Regression, which trains a second-level meta-learner to find the optimal 

combinations of the base learners.  

 To train a stacked ensemble, a list of base algorithms is chosen with a specific set of 

model parameters, followed by a second-tier learner, which uses the predictions of the base 

models as features. The second-tier algorithm may be the same as one of the base learner. 

Next, each base algorithm is trained on the training set, and a k-fold cross validation is 

performed on each of these learners. The cross-validated prediction values from the base 

algorithms are combined and used to train the meta-learning algorithm. The resulted model, 

combined with the base learners, forms the ensemble model to generate predictions on the 

new data. 
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Research Design and Methods 

Data Acquisition 

The Cancer Genome Atlas 

The CNV data and corresponding clinical information are stored in Google BigQueryTM, 

for which the data is accessible through Standard Query Language (SQL), and these TCGA Big 

Query tables are publicly available. Cloud computing allows more efficient data storage and 

bulk data manipulation without straining the computing power of local machines. Data analysis 

was performed in the statistical programming language R. The “bigrquery” package was used to 

download the required data subsets from the cloud storage for further manipulation to be 

trained in GBM models.  

UK Biobank 

 Researchers need to apply for approval to access UK Biobank data through the data 

showcase platform for a $500 application fee. Once the application is approved, another £2000 

was required in user fees. The initial process took several months until the data became 

available for access.  

We specified the exact data categories needed in our research when applying for access; 

for instance, we wanted to look at cancer diagnosis, and patient clinical data such as gender 

and age, we then chose the corresponding categories listed on the data showcase: 

https://biobank.ndph.ox.ac.uk/showcase/browse.cgi. 

Once access was granted, we were sent a key through email to download and decrypt 

the data. The key was then stored as a file called “integers.key”, where the integers correspond 
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to our application number, in the working directory and made readable through the command 

“chmod 755 integers.key”. We were also given another encrypted file named ukbintegers.enc 

(same numbers as the key). This file contains approximately 500k lines, where each line consists 

of individual patient IDs and their respective parameters chosen in the application, e.g. sex, 

cancer type, etc.  

The first step was to retrieve all the necessary tools to download the UK Biobank data. 

The instructions are available here: 

https://biobank.ndph.ox.ac.uk/showcase/download.cgi 

 To decrypt the downloaded file, we ran the following command: 

 

 

which produced the file ukbintegers.enc_ukb. 

The following commands were used to extract the decrypted data into useful formats: 

 

 

 

docs produced an html file that contains the documentation of the variables in the 

dataset, and r produced a tab delimited file and an R script for labeling the variables. 

We have previously downloaded the l2r genetic data, but a new version was made 

available in early 2021, so we re-downloaded the data following the instruction listed here: 

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/ukbgene_instruct.html 

$ ./ukb_unpack ukbintegers.enc kintegers.key 

 

$ ./ukb_conv ukbintegers.enc_ukb docs 

$ ./ukb_conv ukbintegers.enc_ukb r 
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ukbgene is a Linux executable, and we had to first use the following command to 

download a small file that contained a list of patient IDs: 

 

 

This file was renamed as “patientIDSall.fam”. The -c1 argument specifies chromosome 1, 

but other chromosomes would also suffice since we only needed the patient ID information, 

which was the same across all chromosomes. The patientIDSall.fam file contains one patient ID 

per row, and the row order is important because it matches the column headers for the l2r 

genetic data.  

To download the l2r genetic data, we wrote a shell script that executed the following: 

 

 

where N is an integer ranged from 1 to 22, representing the chromosome number, and 

each file was saved as “ukb22431_l2r_cN_b0_v2” (22431 was our application number). We 

needed to download each chromosome individually, and it was a timely process to download 

2.3 terabytes of data while performing error checking. It took around a week or two, and we 

needed to check on it every day to make sure that ukbgene didn’t fail and had to be restarted. 

The largest file was chromosome 1, 195GB, and the smallest file was chromosome 21, 34GB. 

All the l2r data were plain text files, with numbers separated by spaces and no headers. 

They were formatted such that every column consisted of one sample, i.e. a single patient, with 

their ID given by the patientIDSall.fam file. Every row was the SNP location that the log2 ratio 

value was measured in the array.  

$ ukbgene l2r -cN 

 

$ ./ukbgene l2r -c1 -m 
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Data Processing 

The Cancer Genome Atlas 

The dataset was formatted such that every row contained one observation, i.e. a single 

patient, which was denoted by case-barcode, a unique identifier. Every column was defined by 

the genomic address of a gene segment, consisting of chromosomal location, start and end 

base pair positions. Each cell then contained the segment mean for the gene segment defined 

by its column for the patient recorded in that particular row. The value could be blank if the 

CNV was normal and no information was available. For example, the unmasked data with 50 

top CNVs had 50 columns, one for each of the CNVs. Lastly, the cancer types that the patients 

had been diagnosed with were recorded in another column. Additional information such as age, 

gender, and ethnicity may be incorporated, though the diagnosis classification models only 

included CNVs data. 

UK Biobank 

The l2r data was converted into the Chromosomal Scale Length Variation data through 

shell script to directly handle the large files, since the file size that could be processed in IDEs 

such as R Studio is limited by RAM size. Chromosomal Scale Length Variation is the average l2r 

value of large CNV segments across a chromosome, evenly split into desired numbers of pieces. 

The mathematical formula is as follows: 

∑ 𝑙𝑜𝑔!
𝐶𝑁$
2

%
$&'

𝑛  

Where CN is the copy number value, normalized first by division of two for each allele then 

taken the base 2 log, resulting in a single l2r value. For instance, to calculate the average values 
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of 4 splits of chromosome 22, which has 11342 lines, two splits would contain 2835 sequential 

lines, and the other two would contain 2836 sequential lines. Each column in all four splits 

would be averaged. 

Server Specifications 

The hardware specifications of the server are as follows: AMD Ryzen 9 5950X 3.4 GHz 

16-core AM4 processor (upgraded from Intel Xeon E5-2960 2.90 GHz CPU in 2021), 32GB of 

DDR4 3600 MHz RAM (upgraded from DDR3 2133 MHz RAM in 2021), GeForce GT 710 GPU 

(2GB GDDR3), and 10 TB HDD. In addition, We created a 64 GB swap for additional memory on 

the hard disk. We set up our computer server to run Linux Ubuntu 20.04 (64-bit) LTS for its 

operating system.  

R Statistical Programming Language Specifications 

The initial work with TCGA data was conducted in R v3.6.3, and the UK Biobank portion 

was done in R v4.0.3. Detailed instructions to install different versions of R in the Linux 

environment are available here: https://cran.r-project.org/bin/linux/ubuntu/ 

H2O Machine Learning 

We trained, tested, and validated our Gradient Boosting Machine (GBM) models using 

H2O, the leading, open-source machine learning platform. The distributed systems and in-

memory computing of H2O accelerated machine learning with massive datasets, and its 

accessibility for many programming languages, e.g. R, python, allowed us to seamlessly deploy 

models while maintaining reproducibility of the data analysis in R. The software also utilizes 

many popular machine learning algorithms, both supervised and unsupervised, such as GBM, 

XGBoost, Random Forest, Deep Learning, etc., and this facilitates the process of algorithm 
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comparison to determine the most suitable one. Each algorithm is equipped with extensive 

parameters for fine-tuning to improve model performance and handle issues such as 

overfitting.  

H2O Generalized Linear Models 

 H2O follows the authoritative text by P. McCullagh and J.A. Nelder50 on the 

generalization of linear models to non-linear distributions of the response variable Y by fitting 

GBLM models based on the maximum likelihood estimation via iteratively reweighed least 

squares45,46.  

Let 𝑦(, … , 𝑦% be n observations of the independent, random response variable 𝑌$. Assume that 

the observations are distributed according to a function from the exponential family and have a 

probability density function of the form:  

𝑓(𝑦$) = exp 6
𝑦$𝜃$ − 𝑏(𝜃$)

𝛼$(𝜙)
; + 𝑐(𝑦$; 𝜙) 

where 𝜃 and 𝜙 are location and scale parameters, and𝛼$(𝜙), 𝑏(𝜃$), and 𝑐(𝑦$; 𝜙) are known 

functions.  

𝛼$  is of the form 𝛼$ =
)
*!

 where 𝑝$  is a known prior weight. 

When 𝑌 has a probability distribution function from the exponential family:  

𝐸(𝑌$) = 𝜇$ = 𝑏+𝑣𝑎𝑟(𝑌$) = 𝜎$! = 𝑏++(𝜃$)𝛼$(𝜙) 

Let 𝑔(𝜇$) = 𝜂$  be a monotonic, differentiable transformation of the expected value of 𝑦$. The 

function 𝜂$  is the link function and follows a linear model: 

𝑔(𝜇$) = 𝜂$ = 𝒙𝒊+𝛽 

When inverted: 𝜇 = 𝑔-((𝒙𝒊+𝛽) 
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Maximum Likelihood Estimation 

For an initial rough estimate of the parameters 𝛽H , use the estimate to generate fitted values:  

𝜇 = 𝑔-((�̂�$) 

Let 𝑧 be a working dependent variable such that 𝑧$ = �̂�$ + (𝑦 − �̂�$)
./!
.0!

 , where ./!
.0!

 is the 

derivative of the link function evaluated at the trial estimate.  

Calculate the iterative weights: 𝑤$ =
*!

[2""(4!)(
#$!
#%!

)&]
 , where 𝑏++ is the second derivative of 𝑏(𝜃$) 

evaluated at the trial estimate. 

Assume 𝛼$(𝜙) is of the form 𝛼$ =
)
*!

. The weight 𝑤$  is inversely proportional to the variance of 

the working dependent variable 𝑧$  for current parameter estimates and proportionality factor 

𝜙. Regress 𝑧$  on the predictors 𝑥$  using the weights 𝑤$  to obtain new estimates of 𝛽: 

𝛽H = (𝑋′𝑊𝑋)-(𝑋′𝑊𝑧 

where 𝑋 is the model matrix, 𝑊 is a diagonal matrix of 𝑤$, and 𝑧 is a vector of the working 

response variable 𝑧$. 

The process is repeated until the estimates 𝛽H  change by less than the specified amount. 

H2O Distributed Random Forest 

 Distributed random forest (DRF) is one of the powerful classification and regression 

tools available in H2O. The algorithm generates a set of classification or regression trees instead 

of a single tree, and each tree is a weak learner built from a subset of rows and columns from 

the given dataset, with the addition of more trees reducing the variance51. The final prediction 

is computed from the average prediction of all the trees in the model. Tree building and growth 

is stopped randomly by several stopping metrics, such as tree depth, number of leaves or 
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nodes54. Random forest shares some similarities with gradient boosting machines, however, the 

former builds the weak learners and trees independently without input from the other trees in 

the model. 

H2O Gradient Boosting Machines 

GBM involves three major elements: a loss function to be optimized, a weak learner to 

make predictions, and an additive model to add weak learners to minimize the loss function. 

The loss function depends on the problem type; for instance, it may be squared error for 

regression and logarithmic for classification. Decision trees are used as the weak learner, as 

they output real values for splits. The trees are constructed in a greedy manner to minimize the 

loss function. Lastly, the trees are added sequentially, and a gradient descent procedure is 

employed to minimize the loss function. After the loss is calculated, a decision tree is added to 

the model that follows the gradient and thus reduces the loss. The tree is parameterized, and 

its parameters modified to move in the right direction by reducing the residual loss52. The 

output of the new tree is added to that of the existing sequence of trees to correct the final 

output of the model. 

H2O’s GBM algorithms follow the algorithm specified by Hastie et al49. The goal is to 

minimize the residuals 𝑟$78, which are the gradient values for each of the 𝐾 bins. The iterative 

construction of regression trees, denoted as 𝛾978, allows for the results and errors of the 

previous tree to be incorporated into the creation of subsequent trees. The specific algorithm 

used by H2O is as followed53: 

Initialize 𝑓7' = 0, 𝑘 = 1,2, … , 𝐾 

For 𝑚 = 1 to 𝑀: 
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1. Set 𝑝7(𝑥) =
:'((*)

∑ :'((*)(
,-.

, 𝑘 = 1,2, … , 𝐾 

2. For 𝑘 = 1 to 𝐾: 

a. Compute 𝑟!"# = 𝑦!" − 𝑝"(𝑥!), 𝑖 = 1, 2, … ,𝑁 

b. Fit a regression tree to the targets 𝑟!"#, 𝑖 = 1, 2, … ,𝑁, giving the terminal regions 

𝑅$!#, 𝑗 = 1, 2, … , 𝐽# 

c. Compute  𝛾$"# = %&'
%

∑ (*!"#)$!∈&'"#
∑ |*!"#|('&|*!"#|)$!∈&'"#

, 𝑗 = 1, 2, … , 𝐽# 

d. Update 𝑓"#(𝑥) = 𝑓",#&'(𝑥) + ∑ 𝛾$"#𝐼(
.#
$/' 𝑥! ∈ 𝑅$"#) 

Output 𝑓H7(𝑥) = 𝑓7<(𝑥), 𝑘 = 1,2, … , 𝐾 

H2O Deep Learning Neural Networks 

 H2O’s deep learning implementation is based on a multi-layer feedforward artificial 

neural network (ANN) trained with stochastic gradient descent using back propagation. The 

ANN model is also known as deep neural network (DNN), and it is the most common type of 

deep learning that works well with tabular data. The network contains a large number of layers 

consisting of neurons with tanh, rectifier, maxout activation functions. While the number and 

size of hidden layers can be customized by the user, the minimum is at least one hidden layer. 

High predictive accuracy is achieved through advanced features such as adaptive learning rate, 

rate annealing, momentum training, dropout, L1 or L2 regularization, checkpointing, and grid 

search54. H2O asynchronous trains multiple copies of the global model parameters on the local 

data at each compute node, and individual performance is periodically fed to the global model 

through model averaging across the network. 
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 The default setting of deep learning in H2O sets two hidden layers of size 200 each and a 

stopping metric of log loss for classification. It is recommended to shuffle the training set 

because the training is done in order. The input layer automatically scales to the number of 

input features or columns for the given dataset; therefore, any complexity reduction would 

need to be done prior to feeding the training data into the neural network. 

H2O Stacked Ensembles 

 Ensemble machine learning methods utilize multiple learning algorithms to achieve 

better predictive performance than the result obtained from the individual algorithms. H2O’s 

Stacked Ensemble method employs a specific process called stacking to find the optimal 

combination of a collection of prediction algorithms. Stacking involves training a second-level 

metalearner to find the optimal combination of the base learners, its goal being to ensemble 

strong, diverse sets of learners together. 

 The steps below outline the procedure of training and testing a super learner ensemble. 

H2O automates most of the process for efficient model building on the platform55. 

1. Set up the ensemble. 

a. Specify a list of L base algorithms, with a specific set of model parameters. 

b. Specify a metalearning algorithms. 

2. Train the ensemble. 

a. Train each of the L base algorithms on the training set. 

b. Perform k-fold cross-validation on each of these learners and collect the cross-

validated predicted values from each of the L algorithms. 
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c. The N cross-validated predicted values from each of the L algorithms can be 

combined to form a new N x L matrix. This matrix, along with the original 

response vector, is called the “level-one” data. 

d. Train the metalearning algorithm on the level-one data. The “ensemble model” 

consists of the L base learning models and the metalearning model, which can 

then be used to generate predictions on a test set. 

3. Predict on new data. 

a. To generate ensemble predicts, first generate predictions from the base 

learners. 

b. Feed those predictions into the metalearner to generate the ensemble 

prediction 

For cross validation, all base models need to have the same number of folds, and our 

experiment used 10-fold cross validation for all the models. The cross-validated prediction 

results have to be saved to train the metalearner. In addition, base models are trained on the 

same training data, with a minimum of two base learners required.  

Additional R Packages  

All the R packages can be found on CRAN: https://cran.r-

project.org/web/packages/available_packages_by_name.html 

ukbtools 

This R toolset is used to visualize primary dataset from UK Biobank data files and query 

ICD Diagnoses, retrieve genetic metadata, read and write standard formats of genetic 

analyses56. 
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tidyverse 

The ‘tidyverse’ is a collection of open source R packages that are very useful in the field 

of data science. It is designed to simplify the process of loading multiple ‘tidyverse’ packages in 

a single step, since they all share the common data representations and API design57. 

dplyr 

This is one of the core packages of the ‘tidyverse’, and it contains many functions that 

enable dataframe manipulation in an intuitive and user-friendly fashion58.   

tidyr 

As the name implies, this R toolset helps transform messy data into tidy data, which 

follows these principles: 

1. Every column is a variable. 

2. Every row is an observation. 

3. Every cell is a single value. 

It pairs nicely with ‘dplyr’ in data wrangling and manipulation tasks59. 

ggplot2 

One of the most popular R packages, ‘ggplot2’ was developed based on the “Grammar 

of Graphics”, which employs a data visualization scheme that breaks up graphs into semantic 

components such as layers and scales. It is a system for ‘declaratively’ creating graphics, 

allowing for versatile manipulation of data visualization that could replace the base graphics in 

R60. It is also a part of the ‘tidyverse’ collection. 
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ggthemes 

This package provides additional themes, geoms, and scales for ‘ggplot2’ and allows for 

more customization and aesthetics for data visualization. Some examples are Stata graph 

schemes, range frame, Tufte’s box plot, ‘The Economist’ color scheme, ‘Wall Street Journal’ 

theme, etc61. 

Training GBMs on TCGA Unmasked Germline CNV Data for Diagnosis Classification 

Germline CNVs from unmasked TCGA studies were used for GBM model training. Only 

the genomic information from normal blood sample was included; therefore, cancers derived 

from hematopoietic cells, i.e. Acute Myeloid Leukemia (LAML) and Chronic Myelogenous 

Leukemia (LCML), were excluded to prevent their results from skewing other models. When 

building model for each cancer, samples of the target type retained their cancer labels, e.g. OV, 

BRCA, PCPG, while the rest of the samples were labeled as “Normal”. The models were trained 

with 100 trees and balanced classes, with no max depth specified, and the training was 

followed by ten-fold cross validation to avoid overfitting and obtain the AUC values for each 

model. The procedure was repeated five times for each cancer type, and the results were 

averaged for model performance evaluation. 

Training GBMs on TCGA Germline CNV Data for Incidence Age Prediction 

Similarly, only germline CNV data from normal blood sample was used in this analysis, 

and LAML and LCML were thus excluded. However, samples from both masked and unmasked 

TCGA studies were combined. In addition to gCNVs, factors such as gender, race, ethnicity, and 

their combinations were taken into consideration. During model training, the data was divided 

into subsets by cancer type, such that only samples of a single cancer type were included for 
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each model. To better evaluate whether the prediction was better than random guess, control 

sets were constructed with a simple random sampling without replacement method. To 

generate randomized dataset for each cancer type, the ages of the patients were scrambled, 

while the CNVs and other parameters were kept the same. Models were then built for the 

controls, simulating results from random chances. 

Training Machine Learning Algorithms on UK Biobank Germline L2R Data for Diagnosis 

Classification 

To verify whether our results were database-specific, i.e. highly influenced by artifacts 

found in the TCGA, we validated our methods and models on the data from UK Biobank, which 

has the additional advantage of containing data from healthy individuals. After acquisition of 

the germline l2r data and associating clinical data and transformation into CSLV values, the UK 

Biobank data were first separated into normal-patient group and cancer-patient groups.  
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Results 

The Cancer Genome Atlas (TCGA) 

Prediction and Classification of Cancer Diagnosis  

The initial results show that it is possible to predict cancer types with unmasked 

germline copy number variation (CNV) data from The Cancer Genome Atlas (TCGA). There exist 

inherent genetic differences between patients diagnosed with different cancer types to make 

germline chromosomal scale length variation-based classification feasible.  

For each of the 32 cancer types from TCGA database, 10 gradient boosting tree models 

were built. However, the two blood-related cancers, Chronic Myelogenous Leukemia (LCML) 

and Acute Myloid Leukemia (LAML), were omitted because the data was collected from normal 

blood samples. 

To select the number of CNVs for the model building, the segments were first sorted by 

their corresponding measurement counts in descending order. The analysis utilized top 30 CNV 

segments, and each CNV carries an individual segment mean. The value is normalized average 

of copy number of specific regions of the genome. In comparison to the masked data, the 

unmasked data includes Y chromosomes and calculates segment means for small genomic 

segments, instead of large portions that account for almost the entire chromosome in some 

cases, providing a more precise measurement.   
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Chromosome Start End Length Count Mean SD 

1 3 68697108 68698262 1154 3508 -0.52 1.32 
2 7 54318812 54318824 12 2956 -0.46 1.86 
3 8 39378084 39529446 151362 2830 -0.68 1.49 
4 13 71903417 71906418 3001 2815 -1.40 1.83 
5 5 58030200 58037706 7506 2707 1.36 0.86 
6 Y 2782397 56872112 54089715 2664 -1.00 0.28 
7 6 103290101 103314186 24085 2601 -0.37 1.00 
8 7 70958264 70961155 2891 2523 -1.87 1.55 
9 4 172067997 172068382 385 2471 -0.70 1.24 

10 5 104524672 104524903 231 2361 -0.13 1.62 
11 3 193160173 193165114 4941 2275 -0.25 1.31 
12 2 146106836 146109366 2530 2096 -0.62 1.32 
13 1 109690352 109697556 7204 2085 0.04 1.39 
14 4 114254167 114261019 6852 2083 -0.57 1.09 
15 9 23363117 23373486 10369 2030 -0.84 1.65 
16 7 154601461 154607903 6442 2020 -1.20 1.43 
17 20 80664 1580353 1499689 1982 0.01 0.02 
18 5 46271828 46273400 1572 1950 -1.46 1.74 
19 6 149661 254283 104622 1938 0.02 0.06 
20 13 37497899 37510620 12721 1918 -0.58 1.40 
21 16 55764310 55764867 557 1900 2.54 0.92 
22 4 9459504 9477699 18195 1810 0.33 1.33 
23 5 177800550 177805604 5054 1784 2.20 0.97 
24 5 181006225 181363319 357094 1776 0.02 0.06 
25 8 40920333 40920952 619 1735 -1.90 0.85 
26 12 9481274 9575696 94422 1694 -0.32 1.34 
27 1 152789447 152796224 6777 1682 -0.46 1.01 
28 8 645892 645908 16 1645 2.77 2.55 
29 19 51639099 51644944 5845 1643 -1.02 1.22 
30 8 111282050 111283031 981 1628 0.23 1.32 

 
Table 1: Top 30 CNVs Ranked by Count in TCGA 
We selected CNVs based on the number of patients in which they appeared. These CNVs were identified as part of 
the TCGA bioinformatics pipeline. This table shows the top 30 CNVs ranked by count. The location of the CNV is 
characterized by its chromosome number, start, and end points in HG38 coordinates. The length of each CNV, its 
respective count, i.e. the number of patients out of 8859 who had this CNV, the mean and standard deviation of 
different listed values for that CNV. 
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A common error of model building is overfitting. This phenomenon occurs when the 

model is tuned too preferentially to the noise, instead of the targeted signal, so it performs 

exceptionally well with the training set but poorly with the testing set. Therefore, a 10-fold 

cross validation was implemented for each cancer type. Receiver operating characteristic (ROC) 

curves were plotted for the cross-validation results of individual models, in respect to ROC 

curve with an area-under-curve (AUC) of 0.5 that represents a model formed by chance. The 

corresponding AUCs were averaged to evaluate individual model performance, as shown in 

Table 1.  
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Cancer Type Average 
AUC 

Standard 
Deviation 

Uterine Corpus Endometrial Carcinoma 0.632 0.008 

Bladder Urothelial Carcinoma 0.682 0.004 

Prostate Adenocarcinoma 0.639 0.008 

Breast Invasive Carcinoma 0.696 0.002 

Ovarian Serous Cystadenocarcinoma 0.819 0.004 

Sarcoma 0.607 0.013 

Glioblastoma Multiforme 0.782 0.002 

Skin Cutaneous Melanoma 0.659 0.004 

Head and Neck Squamous Cell Carcinoma 0.690 0.010 

Pancreatic Adenocarcinoma 0.556 0.017 

Lung Squamous Cell Carcinoma 0.698 0.003 

Kidney Renal Papillary Cell Carcinoma 0.676 0.005 

Brain Lower Grade Glioma 0.626 0.004 

Lung Adenocarcinoma 0.618 0.005 

Stomach Adenocarcinoma 0.688 0.006 

Thyroid Carcinoma 0.685 0.006 

Liver Hepatocellular Carcinoma 0.750 0.007 

Colon Adenocarcinoma 0.667 0.009 

Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma 0.644 0.008 

Pheochromocytoma and Paraganglioma 0.836 0.009 

Mesothelioma 0.790 0.013 

Esophageal Carcinoma 0.779 0.013 

Rectum Adenocarcinoma 0.621 0.008 

Testicular Germ Cell Tumors 0.728 0.012 

Kidney Renal Clear Cell Carcinoma 0.649 0.008 

Thymoma 0.784 0.022 

Uveal Melanoma 0.780 0.015 

Adrenocortical Carcinoma 0.745 0.018 

Uterine Carcinosarcoma 0.709 0.020 

Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 0.598 0.017 

Cholangiocarcinoma 0.679 0.044 

Kidney Chromophobe 0.406 0.136 

Table 2: Average Performance of GBM Models 
The average Area-Under-Curves (AUCs) of GBM models trained on top 30 germline CNVs indicate performance 
better than chance for most cancer types. 
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Cancer types such as Ovarian Cancer (OV), Pheochromocytoma and Paraganglioma 

(PCPG) and Glioblastoma Multiforme (GBM) performed notably well, with AUC values over 0.75 

in analysis using only top 30 gCNVs (Fig. 1). Kidney Chromophobe (KICH) has poor performance 

likely due to the insufficient sample size (n = 9), as it is a rare, genetic disorder. The results 

indicate that the modeling technique was able to classify cancer diagnosis using gCNVs from 

unmasked data, and its performance was better than random guessing. 

 

Figure 1: Receiver Operating Characteristic (ROC) Curves of Germline CNV Cross-Validation Models 
Selection of ROC curves for cross-validation metrics of gradient-boosted machine classification models on germline 
CNVs. Six models are shown: Colon adenocarcinoma (COAD), Esophageal Carcinoma (ESCA), Glioblastoma 
Multiforme (GBM), Lung Squamous Cell Carcinoma (LUSC), Ovarian Serous Cystadenocarcinoma (OV),  and 
Pheochromocytoma and Paraganglioma (PCPG), with PCPG in lead (AUC = 0.84). 
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AUC Comparison of Models Utilizing Different Numbers of Top CNV 

As noted earlier, the unmasked data contains fewer samples, raising the question 

whether the same number of top gCNVs used in analysis for unmasked data should be used for 

masked data. Therefore, we conducted an analysis to investigate the effect of increasing gCNVs 

on AUCs and the point where the incremental change in performance tapers off by building 

cancer diagnosis classification model with different numbers of top gCNVs: 30 (used with 

masked data), 50, 75, 100, 150, and 200. 

The following results indicate that the respective AUC value of the model built for a 

cancer type increases with the number of top CNV used (Fig. 2). Although using every CNV in 

the unmasked models could potentially optimize the predictive powers, it would be too 

computationally exhaustive and might even result in diminishing return, as the great number of 

parameters provide too much interference. The model performance plateaued at top 75 CNVs 

for many cancer types (Fig. 3), suggesting top 75 to be a suitable cutoff for efficient and 

accurate cancer prediction from unmasked germline CNVs. 
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Figure 2: Area-Under-Curve Values of Germline CNV Models utilizing different numbers of top CNVs 
Selection of Area-Under-Curve (AUC) values vs. numbers of top CNVs for gradient-boosted machine classification 
models on germline CNVs. The six models show discernable trend of proportionality between top CNVs and AUC. 

Figure 3: ROC Curves of Germline CNV Models utilizing different numbers of top CNVs 
Selection of ROC curves of top CNVs for gradient-boosted machine classification models on 
germline CNVs. The six models show discernable trend of proportionality between top CNVs and 
AUC. 
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Cancer Incidence Age Prediction 

In addition to cancer classification, we were interested in whether chromosomal scale 

length variation of DNA play a role in cancer incidence age. Though the accuracy of cancer 

onset age prediction using chromosomal scale length variation alone from combined unmasked 

and masked TCGA data is dubious, the results suggest that the prediction models performed 

better than chance for some cancers. 

To determine whether the age prediction was more accurate than chance, we first 

constructed control datasets with a simple random sampling without replacement method. For 

each cancer type, the ages of the patients were scrambled, while the CNVs were kept the same, 

to generate a randomized dataset. Gradient Boosting regression model was then built from the 

control, simulating results from random guessing. 

This analysis used top 50 CNV segments. For each type of cancer, 10 gradient boosting 

regression models with gCNVs as predictors and Age as predicted variable were built per set: 

the original and control datasets. The models were subsequently cross validated 10 times, and 

correlation coefficients between the predicted and observed ages and the root mean square 

errors (RMSEs) of each model were obtained as evaluation metrics. To determine whether the 

differences in correlation coefficients and RMSEs of between the original and control datasets 

were statistically significant, one-sided Welch’s t-tests were conducted, as it was hypothesized 

that the correlation coefficients of the original datasets would be higher than control, while the 

RMSEs of the original datasets would be lower. 
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The overall low correlation coefficients, i.e. less than 0.1, suggested that age prediction 

based on gCNVs alone was not entirely feasible. Head and Neck Squamous Cell Carcinoma 

(HNSC) resulted in the highest average correlation coefficient of 0.1021 (Fig. 4). The t-test 

outputs showed that the prediction models were better than random guessing for slightly less 

than half of the cancer types (Fig. 5), as 13 out of 28 cancers indicated statistically significant 

results. For RMSE, the t-test outputs likewise demonstrated that age prediction based on gCNVs 

was better than chance for some cancer types: 10 out of 28 cancers had statistically significance 

differences (Table 3).  

 

 

 

 

Figure 4: Performance of Multifactorial Age Prediction Models  
Head and Neck Squamous Cell Carcinoma results in the best performance, with a correlation coefficient of 0.1021. 
The actual fit showed a stronger correlation between observed and predicted age than control. The 95% 
confidence intervals of the linear fit are indicated by the grey-shaded areas 
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Next, we were interested in whether the addition of other phenotypic factors, i.e. 

gender, race, and ethnicity, would increase the predictive power. These elements were 

incorporated into the previously constructed CNV models stepwise, i.e. in different 

combinations such as CNV+gender, CNV+race+ethnicity. For the models utilizing all parameters, 

15 out of the 28 cancer types exhibited significant differences in correlation coefficients and 

RMSEs between original and control datasets (Table 3). In addition, the overall correlation 

coefficients increased, with decrease in RMSE observed in many cancer types (Fig. 6, 7). The 

results suggest that the inclusion of gender, race, and ethnicity in the CNV models improves the 

predictive power, and the difference in performance in respect to chance is more evident. 

Figure 5: Performance of CNV Age Prediction Models 
Selection of age prediction models with statistically significant differences in performance. A) and B) compare 
correlation coefficients between predicted and observed age of actual and control datasets. C) and D) compare 
cross-validation RMSEs of actual and control datasets. 
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 Number of Significant Cancers (out of 28) 
Model Correlation Coefficient RMSE 
CNV Only 13 10 
CNV+Ethnicity 15 12 
CNV+Race 16 10 
CNV+Gender 14 10 
CNV+Race+Ethnicity 16 11 
CNV+Gender+Ethnicity 15 12 
CNV+Gender+Race 15 12 
All 15 15 

Table 3: Number of Significant Cancers of Different Multifactorial Age Prediction Models 
The eight multifactorial age prediction models were evaluated using Correlation Coefficient and RMSE as criteria. t-
tests were performed between actual and control datasets to determine whether the differences in correlation 
coefficients or RMSE were significant. The addition of more phenotypic factors results in greater contrasts in age 
prediction performance. 

Figure 6: Performance of Multifactorial Age Prediction Models 
Selection of age prediction models with statistically significant differences in performance. Models were built from 
CNVs, gender, race, and ethnicity. A) and B) compare correlation coefficients between predicted and observed age 
of actual and control datasets. C) and D) compare cross-validation RMSEs of actual and control datasets. 
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Figure 7: Performance of Different Multifactorial Age Prediction Models 
Selection of age prediction models with statistically significant differences in performance. Models were built from 
eight combinations of CNVs, gender, race, and ethnicity: CNV only, CNV+Gender, CNV+Ethnicity, CNV+Race, 
CNV+Gender+Ethnicity, CNV+Gender+Race, CNV+Race+Ethnicity, and all. A) and B) compare correlation 
coefficients between predicted and observed age of actual and control datasets. C) and D) compare cross-
validation RMSEs of actual and control datasets.  
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GBM Algorithm Library Comparisons 

There are different implementations of the gradient boosting method available in H2O: 

the aforementioned GBM, XGBoost, and LightGBM, the latter two building and improving upon 

the traditional GBM. XGBoost employs a regularization function to control overfitting62, and 

LightGBM incorporates two techniques to improve performance: one is gradient-based one-

side sampling that emphasizes the most informative samples, and the other is exclusive feature 

bundling that groups similar features to reduce complexity63. 

Cancer diagnosis classification was implemented with the three algorithm libraries, with 

comparison performed across all the top CNVs. All three libraries followed the trend of 

increasing AUCs with the number of CNVs used in the models, and their performances were 

generally comparable. However, for some cancer types, XGBoost and LightGBM resulted in 

greater AUCs than the base GBM library, especially at higher numbers of CNVs (Fig. 8). The 

most exceptional case would be KICH, which was the only cancer scoring an AUC below 0.5 with 

top 30 CNVs in the GBM model, likely due to its small sample size. Its XGBoost- and LightGBM-

implemented models were able to consistently achieve AUCs greater than 0.5 across all the top 

CNVs. In addition to their faster running time, the improved GBM library implementations 

should be taken into consideration for future studies. 
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Figure 8: Cancer Classification Performance Comparison of Different GBM Algorithm Libraries 
Selection of AUC values vs. numbers of top CNVs for three implementations of gradient-boosted machine classification 
models on germline CNVs. THYM, OV, and PCPG show significant differences in performance between base GBM 
library and the improved GBM libraries: XGBoost and LightGBM. KICH, the only cancer for which the prediction was 
worse than random chance, was able to consistently achieve AUC values greater than 0.5 across all top CNVs in 
XGBoost- and LightGBM- implemented models.  
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Genetic Risk Score for Glioblastoma Multiforme based on Copy Number Variation 

Glioblastoma multiforme (GBM) is the most common form of brain cancer64. It is an 

aggressive form of cancer, with the median survival time measured in months. In 2008, patients 

diagnosed in the US had a median survival time ranging from 31.9 months to 5.6 months, 

depending on their age65.  Several lines of evidence suggest that glioblastoma multiforme has a 

genetic basis. First, multiple cases of this rare disease have been reported to occur within single 

families66.  Second, the only environmental factor associated with glioblastoma multiforme, 

high doses of ionizing radiation, is rare and not present for the vast majority of people 

diagnosed with this disease67. Most importantly, GWASs have identified several SNP alleles that 

are present significantly more in glioblastoma multiforme patients than expected68. 

The maximum accuracy of a genetic test is a function of the heritability and prevalence 

of a disease69.  The heritability of glioblastoma multiforme in a Northern European population is 

about 26% (95% confidence interval: 17%-35%70.  Based on this number and the prevalence of 

glioblastoma multiforme in a similar population (about 2-3 per 100,000 persons), the maximum 

accuracy of a genetic test measured by the area under the receiver operating characteristic 

curve (AUC) should exceed 0.9569.  Tests based on SNPs do not come close to this AUC value.  

We set out to determine how well a glioblastoma multiform predictive DNA test based on copy 

number variations could perform. 

We have previously found that the gradient boosting algorithm performs the best with 

this particular dataset and thus employed this algorithm to compute genetic risk score for 

glioblastoma multiforme. We wanted to investigate how the performance of classification 

changed with the number of distinct CNVs included in the model by examining how well these 
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overlapping sets of CNVs could predict whether an individual would develop glioblastoma 

multiforme. Figure 9 shows that the predictive ability, quantified by AUC, of the gradient 

boosting classification models varies with the number of different top ranked CNVs included in 

the model. We also discovered that the classification performance improved with more 

features. The respective receiver operating characteristic curves are displayed in Figure 10. 

 

 

  

 

 

 

 

 

 

 
 Figure 9: Area-Under-Curve Values of Glioblastoma Multiforme Classification 

Models utilizing different numbers of top CNVs 
Area-Under-Curve (AUC) values vs. numbers of top CNVs for glioblastoma 
multiforme classification models on germline CNVs. The six models show 
discernable trend of proportionality between top CNVs and AUC. 
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Next, we characterized how well the classification model would work as a genetic risk 

score. Five-fold cross validation was used on the gradient boosting model with 200 top CNVs to 

obtain genetic risk scores for each of the 8726 patients in the dataset, and these individuals 

were ranked by their respective scores and assigned a percentile. Table 4 shows the results in 

tabular form, in which the samples were grouped into quintiles, each consisting of 20 percentile 

points. 

 

 

 

 

Figure 10: ROC Curves of Glioblastoma Multiforme Classification Models 
utilizing different numbers of top germline CNVs 
ROC curves of top CNVs for glioblastoma multiforme gradient-boosted 
machine classification models on germline CNVs. The six models show 
discernable trend of proportionality between top CNVs and AUC. 
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Quintile Normal GBM Total Odds Ratio 95% Confidence 
Interval 

1 1738 8 1746 0.07770379 0.04-0.15 
2 1718 27 1745 0.26530325 0.18-0.39 
3 1699 46 1745 0.45705285 0.34-0.62 
4 1651 94 1745 0.96113136 0.77-1.20 
5 1432 313 1745 3.68980390 3.17-4.30 

Table 4: Odds Ratio Quintile of Glioblastoma Multiforme Prediction 
From the five-fold cross validation, each individual in the dataset was assigned a genetic risk score from the 
gradient boosting classification model. The samples were ranked from lowest to highest then separated into 
quintiles. The table presents the number of patients with and without glioblastoma multiforme in each quintile 
along with the odds ratio (relative to the entire group) and the 95% confidence interval for the odds ratio. 
 
  

Figure 11 presents a graph of odds ratio, relative to the entire dataset, of the patients in 

the given percentile having glioblastoma multiforme. The 8726 individuals are binned into 50 

equal groups, each consisting of two percentile points. 

 

 

 

 

 

 

 

 

 

Figure 11: Odds Ratio Graph of Glioblastoma Multiforme Prediction 
Patients ranked higher by the gradient boosting classification model are significantly more likely to have 
glioblastoma multiforme. The predictive model ranked all the people in the dataset based on their likelihood of 
having glioblastoma multiforme. This ranking was then grouped into 50 equal partitions. The plot shows the odds 
ratio of each of the 50 equal partitions along with the 95% confidence intervals. 
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To examine the feature contribution, we split the dataset of 8726 patients into training 

set (80%) and testing set (20%) then trained a gradient boosting machine to predict whether an 

individual had glioblastoma multiforme. Figure 12 presents the SHAP contribution plot that 

shows which CNVs play the most significant role in gradient boosting predictive model. 

 

 

 

 

 

Figure 12: SHAP Contribution Plot of Predictive Model of Glioblastoma Multiforme Prediction 
This plot ranks the importance to the predictive model of each CNV. Each individual is represented by a dot. 
The color of the dot represents the normalized chromosome length, and the position of the dot on the x-axis 
represents the impact of that CNV on the model prediction result for that respective patient. The plot indicates 
that Y_12378462_13482643 is more important than X12_45510655_45515754 in predicting Glioblastoma 
Multiforme. 
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Recent genome wide association studies have shown that glioblastoma multiforme is 

distinct from other forms of glioma, and these studies have identified a few regions of the germ 

line genome that are significantly different in people who develop glioblastoma multiforme68.  

The three SNPs with the highest levels of significance are: rs10069690 at 5p15.33, rs634537 at 

9p21.3 and rs2297440 at 20q13.33.  We checked whether our copy number variation data 

overlaps with these three SNPs.  None of the three overlap with our data.  The closest is the 

SNP rs634537, which still lies about 1.3 megabases away from the #15 copy number variation in 

our dataset shown in Table 1.  This distance indicates the two are not related.  This finding 

suggests that the copy number variation data is complementary to the SNP data provided by 

GWAS studies.  The overall predictive accuracy of a germline test should increase by combining 

copy number variation data with SNP data. 

Initial work by the TCGA project on glioblastoma multiforme focused on genome 

differences between normal germ line DNA and the somatic DNA found in glioblastoma 

tumors71,72.  That work identified specific mutations and complex rearrangements that most 

glioblastoma tumors shared. Other work on the TCGA dataset related to glioblastoma 

multiforme identified prognostic indicators, somatic alterations in the tumor’s DNA that could 

predict survival73,74.  In contrast, we examined only germ line DNA copy number variation to 

measure how well these germ line DNA alterations can predict whether a person will develop 

glioblastoma multiforme. 

Other work on using germ line DNA copy number variation to predict development of a 

disease also exists.  Our group used chromosomal-scale length variations, a large scale version 

of copy number variation, to predict whether a person will develop ovarian cancer75 and other 
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forms of cancer76 using TCGA data. Another group used a GWAS-type analysis employing 

logistic regression with copy number variation data collected from about 1800 ovarian cancer 

cases and 1800 controls to demonstrate that some germ line DNA copy number variations 

occur more frequently in women who develop epithelial ovarian cancer than in those who 

don’t develop that form of cancer77. 

Genetic risk scores have been developed for several other forms of cancer. A large 

prostate cancer study of 1370 cases and 1239 controls found that a polygenic risk score built 

from 65 SNPs could predict prostate cancer with an AUC of 0.6778.  Breast cancer can also be 

predicted by genetic risk scores.  A recent study used a genetic risk score based on 287 SNPs in 

a European population and found an AUC of about 0.63.  They also found that this same genetic 

risk score is applicable to a Chinese population, where it had an AUC of about 0.6179. One 

genetic risk score to predict breast cancer risk is commercially available and has been validated 

in several large cohorts with over 100,000 women. Women scoring in the top 1% of this 

commercially available genetic risk score have an odds ratio of about 2.0 of developing breast 

cancer compared to women scoring in the 40-60 percentile80. 

Our study has several limitations. We performed a reanalysis of existing data that was 

not collected for this purpose.  It would be better to design a prospective study where samples 

could be collected ahead of time from a diverse, but well defined, group of people. Since we 

used a non-linear machine learning algorithm rather than logistic regression, we could not 

correct for population substructure, as is typically done in GWAS studies81.  

Our analysis is based on TCGA, a single dataset.  Although TCGA was designed to be 

inclusive and it included a wide selection of people with different racial and ethnic 
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backgrounds, it is not clear how well these results will generalize to any specific population.  

Future studies should be done to validate these findings by applying these predictions to 

different populations and testing how well they perform in a new population. 

Finally, our control population consists of people who have been diagnosed with many 

different types of cancer patients, but not glioblastoma multiforme.  This is an unfortunate 

aspect of using the TCGA dataset.  It would be better to draw the control population from the 

general population instead of limiting it to only those who have been diagnosed with other 

forms of cancer. 

Genetic Risk Score for Colorectal Cancer based on Copy Number Variation 

 Colorectal cancer (CRC) is the second leading cause of cancer-related death and the 

third most common cancer worldwide82. In 2018, it accounts for approximately 1.8 million new 

cancer diagnoses and more than 880,000 deaths83. The age-standardized incidence rates of CRC 

vary greatly across continents84,85, with the highest present in Australia and New Zealand, and 

the lowest in Africa and South-Central Asia. These differences could be attributed to hereditary 

susceptibility, socioeconomic status, diet, lifestyle, and screening practices86, as CRC 

encompasses a heterogenous cancer group, influenced by both exogenous and endogenous 

factors.  

CRC is most often diagnosed in elderly individuals; however, in recent years there has 

been a rise of incidence rate of early on-set CRC, which is generally defined as CRC diagnosed in 

individuals under 50 years of age, worldwide, and the reason behind such phenomenon is 

poorly understood87,88. Patients with early-onset CRC are more likely to be diagnosed with 

advanced-stage disease than individuals with late-onset CRC.  A lack of awareness, recognition 
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of symptoms, and screening of the disease might contribute to delayed diagnosis and 

prevalence of advanced-stage disease at the time of diagnosis. 

There have been a number of studies on the CRC predisposition. One study examined 53 

SNPs for CRC and constructed genetic risk score. It found that those in the highest decile of 

genetic risk score were 3-fold more likely to have colorectal cancer compared to the lowest 

decile89. Other studies have also found that colorectal cancers can be predicted from genetics 

with similar effectiveness72,90. A better understanding of the underlying genetic basis of the 

disease could help guide prevention, early detection, and treatment strategies. 

We aimed to develop a strategy based on structural variation rather than SNPs to 

compute genetic risk scores for CRC. We employed machine learning algorithms to account for 

the non-linear effects between CNVs, instead of linear combinations.  

 From the TCGA dataset, we constructed a case-control study to test the genetic risk 

score built from CNV data. 504 patients had been diagnosed CRC, and 8222 individuals had not 

been diagnosed with any form of CRC. The TCGA group statistics is shown in Table 5.  
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Table 5: TCGA Group Statistics of CRC Patients 
From the TCGA dataset, we constructed two groups. One consisted of all individuals who had been diagnosed with 
CRC. The other contained patients that had not been diagnosed with CRC. This table compares characteristics of 
the two groups. 
 

 We carried out a preliminary investigation on the classification performance and 

number of different top ranked CNVs. We wanted to examine how well these overlapping sets 

of CNVs could predict whether an individual would develop CRC. Figure 13 shows that the 

predictive ability, quantified by AUC, of the gradient boosting classification models varies with 

the number of different top ranked CNVs included in the model. We discovered that the 

classification performance improved with more features, but it appeared to reach a plateau at 

150 top CNVs. The respective receiver operating characteristic curves are displayed in Figure 

14. 

  

 

 

 Diagnosed with CRC Not Diagnosed with CRC 

% Women 239/504 = 47.4% 4397/8222 = 53.5% 

% Men 265/504 = 52.6% 3825/8222= 46.5% 

% Black 62/504 = 12.3% 708/8222 = 8.6% 

% White 273/504 = 54.2% 6104/8222= 74.2% 

% Asian 11/504 = 2.2%  573/8222= 7.0% 

Mean Age 66.4 58.7 

Total 504 8222 
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Figure 13: Area-Under-Curve Values of CRC Classification Models utilizing different numbers of top CNVs 
AUC values vs. numbers of top CNVs for six different classification models, each utilizing different number of 
CNVs. The performance generally increases with the number of CNVs but appears to plateau at 150 top CNVs. 
 
 
 

Figure 14: ROC Curves of CRC Classification Models utilizing different numbers of top germline CNVs 
ROC curves of top CNVs CRC gradient-boosted machine classification models on germline CNVs. The 
six models show discernable trend of proportionality between top CNVs and AUC. 
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Next, we evaluated the predictive performance of different machine learning 

algorithms. Using 150 top CNVs, we measured how well these algorithms could identify 

whether a patient had been diagnosed with CRC or not. Each model building and classification 

was repeated five times. The performance metric we employed was the area-under-curve 

(AUC) value of the receiver operating characteristic (ROC) curve. The outcomes of these models 

are shown in tabular form in Table 6, and the graphical results, including AUC comparison and 

corresponding ROC curves are presented in Figure 15 and 16. The Gradient Boosting Machine is 

shown to achieve the highest AUC; however, this is not a conclusive result, since it might be 

possible to fine tune a deep learning network to attain superior performance. The gradient 

boosting machine has the advantages of faster running time and easier model tuning and 

manipulation. Others have found that gradient boosting machine does  perform well on many 

different types of datasets. 

Algorithm Average AUC 

Gradient Boosting Machine 0.76 

XGBoost 0.75 

Extremely Randomized Trees 0.71 

Distributed Random Forest 0.69 

Deep Learning 0.68 

Generalized Linear Model 0.68 

Table 6: Comparison of Machine Learning Algorithms for CRC Classification 
We evaluated six popular and powerful machine learning algorithms from the H2O package in R for predicting CRC 
classification from CNV data. The algorithms are ranked by the best average AUC from five-fold cross validation, 
repeated five times. 
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Figure 15: Area-Under-Curve Values of CRC Classification Models utilizing different algorithms 
AUC values of six different CRC classification models, each employing different machine learning 
algorithm. Tree-based algorithms, specifically GBM and XGBoost, achieved the best performance. 

Figure 16: ROC Curves of CRC Classification Models utilizing different algorithms 
ROC curves of CRC classification models employing different machine learning algorithms. The 
AUC for the best model, i.e. the gradient boosting machine model, was 0.76. 
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Table 6 indicates the effectiveness of Gradient boosting machine, thus we used this 

algorithm for the rest of the analysis in this study. For the following step, we aimed to classify 

the 8726 patients in the dataset. A ten-fold cross validation was carried out, randomly 

partitioning the dataset into ten equal groups. The first nine groups were used to train the 

model to assign individuals as CRC or non-CRC, and the last group was held out to be used as 

the test set. The model gave each patient in the test set a numerical score to quantify the 

likelihood of that particular individual belong to the CRC class. The process was repeated ten 

times, with different hold-out group each round, resulting in a numerical score for every single 

individual of the 8726 patients. 

 

 

Decile Number of 
Patients 

without CRC 

Number of 
Patients 

with CRC 

Total Number 
of patients 

Odds 
Ratio 

95% Confidence 
Interval 

1 871 2 873 0.04 0.01 - 0.12 
2 864 9 873 0.17 0.09 - 0.32 
3 859 14 873 0.27 0.16 - 0.45 
4 846 27 873 0.52 0.35 - 0.77 
5 837 36 873 0.70 0.50 - 0.99 
6 825 48 873 0.95 0.70 - 1.28 
7 823 49 872 0.97 0.72 - 1.31 
8 813 59 872 1.18 0.90 - 1.56 
9 776 96 872 2.02 1.60 - 2.54 

10 708 164 872 3.78 3.12 - 4.58 

Table 7: Odds Ratio Deciles of CRC 
Using 10-fold cross validation, each individual in the dataset was assigned a score from the CRC 
classification model. The patients were ranked from lowest to highest, then segmented into ten deciles. 
This table shows the number of individuals with and without CRC in each decile, the respective odds ratio 
relative to the entire group, and the 95% confidence interval for the odds ratio. 
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The predicted results were compared to the known CRC status of the patients, who 

were first ranked by their scores, from the least likely to have CRC to the most likely to be from 

the CRC class. We could evaluate the classification performance of the model through the 

comparison of the ranking with the “correct” CRC status of the patients. The relative risk of the 

samples split into ten different groups is shown in tabular form in Table 7. Similar information is 

presented in Figure 17, except the samples were split into 50 groups. 

 

 

 

Figure 17: Odds Ratio Graph of CRC Prediction 
Patients ranked higher by the gradient boosting classification model are significantly more likely to have CRC. 
The predictive model ranked all the people in the dataset based on their likelihood of having glioblastoma 
multiforme. This ranking was then grouped into 50 equal partitions. The plot shows the odds ratio of each of 
the 50 equal partitions along with the 95% confidence intervals. 
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 Figure 18 shows the SHAP contribution plot of the gradient boosting machine model 

utilizing 150 top CNVs. It helps explain how the model arrives at its predictive results and the 

importance and weight of the features.  

 

The study yields promising results. A previous study found that the patients in the top 

10% of genetic risk score had a 3-fold increase than those in the 10%. As shown in Table 7, the 

top 10% in our results were 90 times more likely to have colorectal cancer than the individuals 

scores in the bottom 10%.  

 One disadvantage of this approach is the difficulty in understanding and extracting 

biological meaning, in comparison to the more traditional SNP-based genetic risk scores. There 

Figure 18: SHAP Contribution Plot of Predictive Model of CRC Prediction 
This plot ranks the importance to the predictive model of each CNV. Each individual is represented by a dot. The 
color of the dot represents the normalized chromosome length, and the position of the dot on the x-axis 
represents the impact of that CNV on the model prediction result for that respective patient. The plot indicates 
that 7_70958264_70961155 is more important than 11_80256504_80256520 in predicting CRC. 
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is a fundamental difference between statistical methods for prediction and those attribution. 

The method we presented here focuses on prediction, while SNP-based risk scores are 

developed from GWAS studies, which were designed to identify specific genes responsible for 

diseases. 

UK Biobank 

Prediction and Classification of Cancer Diagnosis  

 We aimed to verify whether our cancer diagnosis prediction results were database-

specific, so we validated our methods and models on UK Biobank, which has an additional 

advantage of containing data from healthy individuals. UK Biobank has the copy number 

variation data in the raw log2 ratio format, which needs to be transformed for dimensionality 

reduction to be usable in machine learning models. Therefore, the l2r data was converted into 

Chromosomal Scale Length Variation values by splitting each chromosome into four segments 

and computing the average of each segment. We followed Data-Field 41270, which contains 

summary ICD 10 Diagnoses for 440,019 participants, for the cancer diagnosis information. This 

study examines the more prevalent cancer types, listed in Table 8, along with their respective 

incidence counts. 
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Malignant Neoplasm Type Incidence Count 
Lung 5353 
Brain 1051 
Colorectal 8917 
Kidney 2138 
Esophagus 1627 
Pancreas 1651 
Bladder 4129 
Stomach 1257 
Prostate 13090 
Ovary 2138 
Breast 16496 
Uterine 1795 

Table 8: Incidence Count of Common Types of Malignant Neoplasm In UK Biobank  
The table shows the malignant neoplasm types with the highest incidence counts, i.e. at least over 1000 individuals 
with l2r data available. 
 
 
 For each cancer type, the dataset consisted of diseased samples paired with age- and 

gender-matched cancer-free individuals. This control served to limit the heterogeneity 

originating from non-genetic sources, for some cancers exhibit higher incidence rates in one 

gender over the other, or certain cancer risks scale with age.  

Figures 19-30 present the performance of different machine learning algorithms for 

each type of cancer. We found that the stacked ensemble models consistently performed best, 

and there are slight differences between algorithms and their performances. Gradient Boosting 

Machine and XGBoost was often among the top performing algorithms. For most cancers, 

except stomach cancer, all algorithms could predict cancer diagnosis significantly better than 

chance, represented by an AUC of 0.50, as shown in Figures 19-30. However, This indicates that 

a patient’s germline genetics, specifically the chromosomal-scale length variation values, 

demonstrate inherited predisposition to many cancer types. 
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The average area-under-curve (AUC) value of the receiver operating characteristic 

curves (ROCs) for all machine learning models was 0.557, with a standard deviation of 0.020 

and 95% confidence interval of (0.554, 0.560). The AUC differs from 0.5, which is equivalent to 

an AUC of random chance. Excluding the less optimal models, i.e. the deep learning models, the 

average AUC is 0.561, with a standard deviation of 0.015 and 95% confidence interval of (0.559, 

0.564). Both AUCs are significantly different from 0.5, with p<0.00001. 

 

 

Figure 19: Comparison of Lung Cancer Prediction AUCs by Different Models 
The predictive performance, represented by the metric AUC, of different machine learning algorithms. The 
dataset consists of lung-cancer patients with age- and gender-matched non-cancer individuals from the UK 
Biobank population as control. H2O was used to carry out a grid search for the best algorithms, and the top-
performing models were selected and evaluated with AUCs. The algorithms tested were Deep Learning, 
Distributed Random Forests (DRF), Gradient Boosting Machine (GBM), General Linear Model (GLM), 
XGBoost, Extreme Randomized Tree (XRT), and Stacked Ensemble (combination of all the different models). 
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The AUC value of the ROCs for all machine learning models was 0.513, with a standard 

deviation of 0.016 and 95% confidence interval of (0.511, 0.515). The AUC differs from 0.5, 

which is equivalent to an AUC of random chance. Excluding the less optimal models, i.e. the 

deep learning and GLM models, the average AUC is 0.523, with a standard deviation of 0.012 

and 95% confidence interval of (0.521, 0.526). Both AUCs are significantly different from 0.5, 

with p<0.00001. 

Figure 20: Comparison of Brain Cancer Prediction AUCs by Different Models 
The predictive performance, represented by the metric AUC, of different machine learning algorithms. The 
dataset consists of brain-cancer patients with age- and gender-matched non-cancer individuals from the UK 
Biobank population as control. H2O was used to carry out a grid search for the best algorithms, and the top-
performing models were selected and evaluated with AUCs. The algorithms tested were Deep Learning, 
Distributed Random Forests (DRF), Gradient Boosting Machine (GBM), General Linear Model (GLM), XGBoost, 
Extreme Randomized Tree (XRT), and Stacked Ensemble (combination of all the different models). 
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The AUC value of the ROCs for all machine learning models was 0.525, with a standard 

deviation of 0.022 and 95% confidence interval of (0.521, 0.529). The AUC differs from 0.5, 

which is equivalent to an AUC of random chance. Excluding the less optimal models, i.e. the 

deep learning models, the average AUC is 0.544 with a standard deviation of 0.017 and 95% 

confidence interval of (0.539, 0.548). Both AUCs are significantly different from 0.5, with 

p<0.00001. 

 

Figure 21: Comparison of Colorectal Cancer Prediction AUCs by Different Models 
The predictive performance, represented by the metric AUC, of different machine learning algorithms. The 
dataset consists of colorectal-cancer patients with age- and gender-matched non-cancer individuals from the 
UK Biobank population as control. H2O was used to carry out a grid search for the best algorithms, and the 
top-performing models were selected and evaluated with AUCs. The algorithms tested were Deep Learning, 
Distributed Random Forests (DRF), Gradient Boosting Machine (GBM), General Linear Model (GLM), XGBoost, 
Extreme Randomized Tree (XRT), and Stacked Ensemble (combination of all the different models). 
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The AUC value of the ROCs for all machine learning models was 0.509, with a standard 

deviation of 0.012 and 95% confidence interval of (0.507, 0.510). The AUC differs from 0.5, 

which is equivalent to an AUC of random chance. Excluding the less optimal models, i.e. the 

deep learning, distributed random forest, and extreme randomized tree models, the average 

AUC is 0.510, with a standard deviation of 0.009 and 95% confidence interval of (0.508, 0.512). 

Both AUCs are significantly different from 0.5, with p<0.00001. 

 

 

Figure 22: Comparison of Kidney Cancer Prediction AUCs by Different Models 
The predictive performance, represented by the metric AUC, of different machine learning algorithms. The 
dataset consists of kidney-cancer patients with age- and gender-matched non-cancer individuals from the UK 
Biobank population as control. H2O was used to carry out a grid search for the best algorithms, and the top-
performing models were selected and evaluated with AUCs. The algorithms tested were Deep Learning, 
Distributed Random Forests (DRF), Gradient Boosting Machine (GBM), General Linear Model (GLM), XGBoost, 
Extreme Randomized Tree (XRT), and Stacked Ensemble (combination of all the different models). 
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The AUC value of the ROCs for all machine learning models was 0.516, with a standard 

deviation of 0.012 and 95% confidence interval of (0.514, 0.518). The AUC differs from 0.5, 

which is equivalent to an AUC of random chance, with p<0.00001. 

 

 

 

 

Figure 23: Comparison of Esophageal Cancer Prediction AUCs by Different Models 
The predictive performance, represented by the metric AUC, of different machine learning algorithms. The 
dataset consists of esophageal-cancer patients with age- and gender-matched non-cancer individuals from the 
UK Biobank population as control. H2O was used to carry out a grid search for the best algorithms, and the top-
performing models were selected and evaluated with AUCs. The algorithms tested were Deep Learning, 
Distributed Random Forests (DRF), Gradient Boosting Machine (GBM), General Linear Model (GLM), XGBoost, 
Extreme Randomized Tree (XRT), and Stacked Ensemble (combination of all the different models). 
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The AUC value of the ROCs for all machine learning models was 0.507, with a standard 

deviation of 0.010 and 95% confidence interval of (0.505, 0.508). The AUC differs from 0.5, 

which is equivalent to an AUC of random chance. Excluding the less optimal models, i.e. the 

deep learning, models, the average AUC is 0.508, with a standard deviation of 0.010 and 95% 

confidence interval of (0.506, 0.510). Both AUCs are significantly different from 0.5, with 

p<0.00001. 

 

 

Figure 24: Comparison of Pancreatic Cancer Prediction AUCs by Different Models 
The predictive performance, represented by the metric AUC, of different machine learning algorithms. The 
dataset consists of pancreatic-cancer patients with age- and gender-matched non-cancer individuals from the 
UK Biobank population as control. H2O was used to carry out a grid search for the best algorithms, and the top-
performing models were selected and evaluated with AUCs. The algorithms tested were Deep Learning, 
Distributed Random Forests (DRF), Gradient Boosting Machine (GBM), General Linear Model (GLM), XGBoost, 
Extreme Randomized Tree (XRT), and Stacked Ensemble (combination of all the different models). 
 

 

 



 70 

 

 

The AUC value of the ROCs for all machine learning models was 0.507, with a standard 

deviation of 0.010 and 95% confidence interval of (0.505, 0.508). The AUC differs from 0.5, 

which is equivalent to an AUC of random chance, with p<0.00001. 

 

 

 

 

 

Figure 25: Comparison of Bladder Cancer Prediction AUCs by Different Models 
The predictive performance, represented by the metric AUC, of different machine learning algorithms. The 
dataset consists of bladder-cancer patients with age- and gender-matched non-cancer individuals from the UK 
Biobank population as control. H2O was used to carry out a grid search for the best algorithms, and the top-
performing models were selected and evaluated with AUCs. The algorithms tested were Deep Learning, 
Distributed Random Forests (DRF), Gradient Boosting Machine (GBM), General Linear Model (GLM), XGBoost, 
Extreme Randomized Tree (XRT), and Stacked Ensemble (combination of all the different models). 
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The AUC value of the ROCs for all machine learning models was 0.495, with a standard 

deviation of 0.011 and 95% confidence interval of (0.490, 0.497). The AUC does not differ from 

0.5 significantly. 

 

Figure 26: Comparison of Stomach Cancer Prediction AUCs by Different Models 
The predictive performance, represented by the metric AUC, of different machine learning algorithms. The 
dataset consists of prostate-cancer patients with age- and gender-matched non-cancer individuals from the UK 
Biobank population as control. H2O was used to carry out a grid search for the best algorithms, and the top-
performing models were selected and evaluated with AUCs. The algorithms tested were Deep Learning, 
Distributed Random Forests (DRF), Gradient Boosting Machine (GBM), General Linear Model (GLM), XGBoost, 
Extreme Randomized Tree (XRT), and Stacked Ensemble (combination of all the different models). 
 



 72 

 

The AUC value of the ROCs for all machine learning models was 0.514, with a standard 

deviation of 0.009 and 95% confidence interval of (0.512, 0.515). The AUC differs from 0.5, 

which is equivalent to an AUC of random chance. Excluding the less optimal models, i.e. the 

deep learning and generalized linear models, the average AUC is 0.520, with a standard 

deviation of 0.008 and 95% confidence interval of (0.518, 0.521). Both AUCs are significantly 

different from 0.5, with p<0.00001. 

 

Figure 27: Comparison of Prostate Cancer Prediction AUCs by Different Models 
The predictive performance, represented by the metric AUC, of different machine learning algorithms. The 
dataset consists of prostate-cancer patients with age- and gender-matched non-cancer individuals from the UK 
Biobank population as control. H2O was used to carry out a grid search for the best algorithms, and the top-
performing models were selected and evaluated with AUCs. The algorithms tested were Deep Learning, 
Distributed Random Forests (DRF), Gradient Boosting Machine (GBM), General Linear Model (GLM), XGBoost, 
Extreme Randomized Tree (XRT), and Stacked Ensemble (combination of all the different models). 
 



 73 

 

 

The AUC value of the ROCs for all machine learning models was 0.518, with a standard 

deviation of 0.014 and 95% confidence interval of (0.515, 0.520). The AUC is significantly 

different from 0.5, with p<0.00001. 

 

 

 

 

Figure 28: Comparison of Ovarian Cancer Prediction AUC by Different Models 
The predictive performance, represented by the metric AUC, of different machine learning algorithms. The 
dataset consists of ovarian-cancer patients with age- and gender-matched non-cancer individuals from the 
UK Biobank population as control. H2O was used to carry out a grid search for the best algorithms, and the 
top-performing models were selected and evaluated with AUCs. The algorithms tested were Deep Learning, 
Distributed Random Forests (DRF), Gradient Boosting Machine (GBM), General Linear Model (GLM), 
XGBoost, Extreme Randomized Tree (XRT), and Stacked Ensemble (combination of all the different models). 
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The AUC value of the ROCs for all machine learning models was 0.512, with a standard 

deviation of 0.010 and 95% confidence interval of (0.510, 0.514). The AUC differs from 0.5, 

which is equivalent to an AUC of random chance, with p<0.00001. 

 

 

 

 

Figure 29: Comparison of Breast Cancer Prediction AUCs by Different Models 
The predictive performance, represented by the metric AUC, of different machine learning algorithms. The 
dataset consists of breast-cancer patients with age- and gender-matched non-cancer individuals from the UK 
Biobank population as control. H2O was used to carry out a grid search for the best algorithms, and the top-
performing models were selected and evaluated with AUCs. The algorithms tested were Deep Learning, 
Distributed Random Forests (DRF), Gradient Boosting Machine (GBM), General Linear Model (GLM), 
XGBoost, Extreme Randomized Tree (XRT), and Stacked Ensemble (combination of all the different models). 
 
s 
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The AUC value of the ROCs for all machine learning models was 0.510, with a standard 

deviation of 0.014 and 95% confidence interval of (0.507, 0.512). The AUC differs from 0.5, 

which is equivalent to an AUC of random chance, with p<0.00001. 

 

 

 

 

Figure 30: Comparison of Uterine Cancer Prediction AUCs by Different Models 
The predictive performance, represented by the metric AUC, of different machine learning algorithms. The dataset 
consists of uterine-cancer patients with age- and gender-matched non-cancer individuals from the UK Biobank 
population as control. H2O was used to carry out a grid search for the best algorithms, and the top-performing 
models were selected and evaluated with AUCs. The algorithms tested were Deep Learning, Distributed Random 
Forests (DRF), Gradient Boosting Machine (GBM), General Linear Model (GLM), XGBoost, Extreme Randomized 
Tree (XRT), and Stacked Ensemble (combination of all the different models). 
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 We also tested whether there was a proportionality between the number of CSLV splits 

and features and model performance. Five datasets were constructed: 4 splits, 4splits with 

standard deviation, 8 splits, 8 splits with standard deviation, and TCGA unmasked top 100 

CNVs. The 4-splits dataset contains the average l2r value across a quarter of the entire 

chromosomes (chromosome 1-22, X, Y, and XY, which contains the pseudoautosomal region), 

resulting in a total of 100 numbers. The 4-splits-with-standard-deviation dataset consists of the 

4-splits dataset and the standard deviations of the l2r values of the entire chromosomes, 

resulting in a total of 125 numbers. The 8-splits dataset contains the average of an eighth of the 

l2r values of the chromosome, resulting in a total of 200 numbers. The 8-splits-with-standard-

deviation dataset consists of the 8-split dataset and the standard deviations of the l2r values of 

the entire chromosomes, resulting in a total of 225 numbers. The TCGA-unmasked-top-100-

CNVs dataset was constructed by mapping the chromosomal location of the top 100 most 

common CNVs identified in the unmasked data from TCGA to UK Biobank l2r data, then 

computing the average of each segment. The first four datasets would be referred to as the 

CSLV sets, and the last dataset would be the CNV set, since it is based on CNVs called in TCGA. 

We focused on the gradient boosting machine, XGBoost, and stacked ensemble models due to 

their consistent performances.  
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Figure 31 demonstrates how these models compare on the five different datasets. The 

stacked ensemble achieved the best performance. The addition of standard deviation to the 

split sets improved predictability, but there does not appear to be a proportionality between 

the number of splits and lung cancer prediction. This still holds true for all models, as shown in 

Figure 32. We tested whether the performance of the CSLV sets differs significantly from the 

TCGA-CNV set, and the p-values are recorded in Table 9. The differences in performance were 

all significant, showing that the CSLV sets outperformed the TCGA-CNV set, and the best 

dataset was 4-splits-with-standard-deviation. 

Figure 31: Comparison of Lung Cancer Prediction AUCs by Different Models and by Split 
We tested whether the number of splits and features of each chromosome affect predictive performance and how 
CSLV sets compare to CNV set. We built five datasets by splitting each chromosome into four or eight segments and 
combining with the standard deviation, and mapping TCGA CNVs to UK Biobank l2r data. The dataset was used to 
predict whether an individual had lung cancer. The prediction was evaluated by the metric AUC. The plot presents the 
differences in predictive performance between models and chromosomal scale length variation combinations. The 
Stacked Ensemble model on the 4-splits-with-standard-deviation dataset performed the best.  
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Split Numbers  Mean 
AUC 

Standard 
Deviation 

95% Confidence 
Interval 

p-value vs. TCGA-CNV  

4 Splits 0.557 0.020 (0.554, 0.561) 1.344 ´ 10-17 
4 Splits with 
Standard 
Deviation 

0.565 0.020 (0.562, 0.568) 5.149 ´ 10-28 
 

8 Splits 0.544 0.016 (0.541, 0.547) 0.018 
8 Splits with 
Standard 
Deviation 

0.556 0.017 (0.553, 0.559) 1.713 ´ 10-20 

Figure 32: Comparison of Lung Cancer Prediction AUCs of All Models by Split 
The average performance of all models for each combination of CSLV features. 

Table 9: Lung-Cancer Prediction AUCs by Split 
The mean, standard deviation, and p-values of the cross-validated AUCs of 4-splits, 4-splits-with-standard-
deviation, 8-splits, 8-splits-with-standard-deviation datasets. 
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Figure 33 demonstrates how these models compare on the five different datasets. The 

stacked ensemble achieved marginally better performance than the other models. The increase 

in the number of splits leads to greater predictability. The addition of standard deviation to the 

split sets only improved predictability for the 4-splits set, with 4-splits-with-standard-deviation 

performing the best. This still holds true for all models, as shown in Figure 34. We tested 

whether the performance of the CSLV sets differs significantly from the TCGA-CNV set, and the 

p-values are recorded in Table 10. The differences in performance were all significant, showing 

that the CSLV sets outperformed the TCGA-CNV set, and the best dataset was 4-splits-with-

standard-deviation. 

 

Figure 33: Comparison of Brain Cancer Prediction AUCs by Different Models and by Split 
We tested whether the numbers of splits and features of each chromosome affect predictive performance and how 
CSLV sets compare to CNV set. We built five datasets by splitting each chromosome into four or eight segments and 
combining with the standard deviation, and mapping TCGA CNVs to UK Biobank l2r data. The dataset was used to 
predict whether an individual had brain cancer. The prediction was evaluated by the metric AUC. The plot presents the 
differences in predictive performance between models and chromosomal scale length variation combinations. The 
Stacked Ensemble model on the 4-splits-with-standard-deviation dataset performed the best.  
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Table 10: Brain-Cancer Prediction AUCs by Split 
The mean, standard deviation, and p-values of the cross-validated AUCs of 4-splits, 4-splits-with-standard-
deviation, 8-splits, 8-splits-with-standard-deviation datasets. 

Split Numbers  Mean 
AUC 

Standard 
Deviation 

95% Confidence 
Interval 

p-value vs. TCGA-CNV 

4 Splits 0.513 0.016 (0.511, 0.515) 2.382 ´ 10-38 
4 Splits with 
Standard 
Deviation 

0.532 0.022 (0.529, 0.535) 2.524 ´ 10-48 
 

8 Splits 0.520 0.021 (0.517, 0.524) 3.644 ´ 10-30 
8 Splits with 
Standard 
Deviation 

0.506 0.016 (0.504, 0.508) 1.112 ´ 10-13 

Figure 34: Comparison of Brain Cancer Prediction AUCs of All Models by Split 
The average performance of all models for each combination of CSLV features. 



 81 

 

 

Figure 35 demonstrates how these models compare on the five different datasets. The 

stacked ensemble achieved better performance than the other models. The increase in the 

number of splits or the addition of standard deviation did not improve predictability. This still 

holds true for all models, as shown in Figure 36. We tested whether the performance of the 

CSLV sets differs significantly from the TCGA-CNV set, and the p-values are recorded in Table 

11. The differences in performance were not significant, showing that the CSLV sets performed 

as well as the TCGA-CNV set. 

 

 

Figure 35: Comparison of Colorectal Cancer Prediction AUCs by Different Models and by Split 
We tested whether the numbers of splits and features of each chromosome affect predictive performance and how CSLV 
sets compare to CNV set. We built five datasets by splitting each chromosome into four or eight segments and combining 
with the standard deviation, and mapping TCGA CNVs to UK Biobank l2r data. The dataset was used to predict whether 
an individual had colorectal cancer. The prediction was evaluated by the metric AUC. The plot presents the differences in 
predictive performance between models and chromosomal scale length variation combinations. The Stacked Ensemble 
model performed the best, but there was no difference between performances of CSLV- and CNV- sets.  
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Table 11: Colorectal-Cancer Prediction AUCs by Split 
The mean, standard deviation, and p-values of the cross-validated AUCs of 4-splits, 4-splits-with-standard-
deviation, 8-splits, 8-splits-with-standard-deviation datasets. 
 

 

 

Split Numbers  Mean 
AUC 

Standard 
Deviation 

95% Confidence 
Interval 

p-value vs. TCGA-CNV 

4 Splits 0.525 0.022 (0.521, 0.529) 0.901 
4 Splits with 
Standard 
Deviation 

0.525 0.021 (0.521, 0.528) 0.933 

8 Splits 0.527 0.018 (0.523, 0.530) 0.710 
8 Splits with 
Standard 
Deviation 

0.528 0.019 (0.524, 0.531) 0.450 

Figure 36: Comparison of Colorectal Cancer Prediction AUCs of All Models by Split 
The average performance of all models for each combination of CSLV features. 
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Figure 37 demonstrates how these models compare on the five different datasets. There 

was no difference between model performance. The increase in the number of splits or the 

addition of standard deviation did not consistently improve predictability. The 4-splits model 

performed marginally better than the other datasets. Figure 38 shows the differences for all 

models for the four datasets. We tested whether the performance of the CSLV sets differs 

significantly from the TCGA-CNV set, and the p-values are recorded in Table 12. The differences 

in performance were significant, showing that the CSLV sets performed better than the TCGA-

CNV set. 

 

Figure 37: Comparison of Kidney Cancer Prediction AUCs by Different Models and by Split 
We tested whether the numbers of splits and features of each chromosome affect predictive performance and how 
CSLV sets compare to CNV set. We built five datasets by splitting each chromosome into four or eight segments and 
combining with the standard deviation, and mapping TCGA CNVs to UK Biobank l2r data. The dataset was used to 
predict whether an individual had kidney cancer. The prediction was evaluated by the metric AUC. The plot presents 
the differences in predictive performance between models and chromosomal scale length variation combinations. 
The Stacked Ensemble model on the 8-splits dataset performed the best.  
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Table 12: Kidney Cancer Prediction AUCs by Split 
The mean, standard deviation, and p-values of the cross-validated AUCs of 4-splits, 4-splits-with-standard-
deviation, 8-splits, 8-splits-with-standard-deviation datasets. 
 

 

 

Split Numbers  Mean 
AUC 

Standard 
Deviation 

95% Confidence 
Interval 

p-value vs. TCGA-CNV 

4 Splits 0.509 0.012 (0.507, 0.510) 2.280 ´ 10-30 
4 Splits with 
Standard 
Deviation 

0.506 0.010 (0.505, 0.508) 1.299 ´ 10-26 

8 Splits 0.508 0.010 (0.507, 0.510) 2.411 ´ 10-30 
8 Splits with 
Standard 
Deviation 

0.507 0.012 (0.505, 0.509) 4.746 ´ 10-29 

Figure 38: Comparison of Kidney Cancer Prediction AUCs of All Models by Split 
The average performance of all models for each combination of CSLV features. 
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Figure 39 demonstrates how these models compare on the five different datasets. The 

stacked ensemble achieved marginally better performance than the other models. The increase 

in the number of splits did not improve predictability. The addition of standard deviation to the 

split sets improved predictability for the 4-splits model. This still holds true for all models, as 

shown in Figure 40. We tested whether the performance of the CSLV sets differs significantly 

from the TCGA-CNV set, and the p-values are recorded in Table 13. The differences in 

performance were significant for all datasets except 8-splits-with-SD set, showing that most of 

the CSLV sets performed better than the TCGA-CNV set. 

Figure 39: Comparison of Esophageal Cancer Prediction AUCs by Different Models and by Split 
We tested whether the numbers of splits and features of each chromosome affect predictive performance and how 
CSLV sets compare to CNV set. We built five datasets by splitting each chromosome into four or eight segments and 
combining with the standard deviation, and mapping TCGA CNVs to UK Biobank l2r data. The prediction was evaluated 
by the metric AUC. The plot presents the differences in predictive performance between models and chromosomal  
scale length variation combinations. The Stacked Ensemble model on the 4-splits-with-standard-deviation dataset 
performed the best.  
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Split Numbers  Mean 
AUC 

Standard 
Deviation 

95% Confidence 
Interval 

p-value vs. TCGA-CNV 

4 Splits 0.515 0.012 (0.513, 0.517) 4.600 ´ 10-21 
4 Splits with 
Standard 
Deviation 

0.519 0.015 (0.517, 0.522) 7.937 ´ 10-26 
 

8 Splits 0.508 0.012 (0.506, 0.509) 0.004 
8 Splits with 
Standard 
Deviation 

0.506 0.012 (0.504, 0.507) 0.246 

TCGA Unmasked 
Top 100 

0.505 0.010 (0.504, 0.506)  

Table 13: Esophageal Cancer Prediction AUCs by Split 
The mean, standard deviation, and p-values of the cross-validated AUCs of 4-splits, 4-splits-with-standard-
deviation, 8-splits, 8-splits-with-standard-deviation, and TCGA-unmasked-top-100 datasets. 
 

Figure 40: Comparison of Esophageal Cancer Prediction AUCs of All Models by Split 
The average performance of all models for each combination of CSLV features. 
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Figure 41 demonstrates how these models compare on the five different datasets. The 

stacked ensemble achieved marginally better performance than the other models. The increase 

in the number of splits did not improve predictability, but the addition of standard deviation to 

the split sets did. This holds true for all models, as shown in Figure 42. We tested whether the 

performance of the CSLV sets differs significantly from the TCGA-CNV set, and the p-values are 

recorded in Table 14. The differences in performance were significant for all datasets except 8-

splits-with-SD set, showing that most of the CSLV sets performed better than the TCGA-CNV 

set. 

 

Figure 41: Comparison of Pancreatic Cancer Prediction AUCs by Different Models and by Split 
We tested whether the numbers of splits and features of each chromosome affect predictive performance and how 
CSLV sets compare to CNV set. We built five datasets by splitting each chromosome into four or eight segments and 
combining with the standard deviation, and mapping TCGA CNVs to UK Biobank l2r data. The dataset was used to 
predict whether an individual had pancreatic cancer. The prediction was evaluated by the metric AUC. The plot 
presents the differences in predictive performance between models and chromosomal scale length variation 
combinations. The Stacked Ensemble model on the 4-splits-with-standard-deviation dataset performed the best.  
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Split Numbers  Mean 
AUC 

Standard 
Deviation 

95% Confidence 
Interval 

p-value vs. TCGA-CNV 

4 Splits 0.507 0.010 (0.505, 0.508) 1.301 ´ 10-32 
4 Splits with 
Standard 
Deviation 

0.511 0.011 (0.510, 0.513) 2.853 ´ 10-44 

 

8 Splits 0.508 0.012 (0.506, 0.510) 1.129 ´ 10-25 

8 Splits with 
Standard 
Deviation 

0.507 0.013 (0.505, 0.509) 1.923 ´ 10-27 

TCGA Unmasked 
Top 100 

0.496 0.009 (0.494, 0.497)  

Table 14: Pancreatic Cancer Prediction AUCs by Split 
The mean, standard deviation, and p-values of the cross-validated AUCs of 4-splits, 4-splits-with-standard-
deviation, 8-splits, 8-splits-with-standard-deviation, and TCGA-unmasked-top-100 datasets. 
 

Figure 42: Comparison of Pancreatic Cancer Prediction AUCs of All Models by Split 
The average performance of all models for each combination of CSLV features. 
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Figure 43 demonstrates how these models compare on the five different datasets. The 

stacked ensemble achieved marginally better performance with certain datasets. The increase 

in the number of splits and the addition of standard deviation did not improve predictability 

consistently. Figure 44 shows the differences in performance of all models for the five datasets. 

We tested whether the performance of the CSLV sets differs significantly from the TCGA-CNV 

set, and the p-values are recorded in Table 15. The differences in performance were significant 

for all datasets except 8-splits-with-SD set, showing that most of the CSLV sets performed 

better than the TCGA-CNV set. 

 

Figure 43: Comparison of Bladder Cancer Prediction AUCs by Different Models and by Split 
We tested whether the numbers of splits and features of each chromosome affect predictive performance and how 
CSLV sets compare to CNV set. We built five datasets by splitting each chromosome into four or eight segments and 
combining with the standard deviation, and mapping TCGA CNVs to UK Biobank l2r data. The dataset was used to 
predict whether an individual had bladder cancer. The prediction was evaluated by the metric AUC. The plot 
presents the differences in predictive performance between models and chromosomal scale length variation 
combinations. The Stacked Ensemble model on the 4-splits-with-standard-deviation dataset performed the best.  
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Split Numbers  Mean 
AUC 

Standard 
Deviation 

95% Confidence 
Interval 

p-value vs. TCGA-CNV 

4 Splits 0.510 0.009 (0.509, 0.511) 0.030 
4 Splits with 
Standard 
Deviation 

0.512 0.008 (0.511, 0.513) 5.858 ´ 10-7 

8 Splits 0.511 0.009 (0.510, 0.513) 1.269 ´ 10-4 
8 Splits with 
Standard 
Deviation 

0.506 0.008 (0.504, 0.507) 1 

TCGA Unmasked 
Top 100 

0.509 0.008 (0.507, 0.510)  

Table 15: Bladder Cancer Prediction AUCs by Split 
The mean, standard deviation, and p-values of the cross-validated AUCs of 4-splits, 4-splits-with-standard-
deviation, 8-splits, 8-splits-with-standard-deviation, and TCGA-unmasked-top-100 datasets. 
 

Figure 44: Comparison of Bladder Cancer Prediction AUCs of All Models by Split 
The average performance of all models for each combination of CSLV features. 
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Figure 45 demonstrates how these models compare on the five different datasets. The 

performances of the selected models were comparable between all datasets. The increase in 

the number of splits improved predictability consistently, but the TCGA-CNV set appeared to 

outperform the CSLV sets. Figure 46 shows the differences in performance of all models for the 

five datasets. We tested whether the performance of the CSLV sets differs significantly from the 

TCGA-CNV set, and the p-values are recorded in Table 16. The differences in performance are 

significant for all datasets, showing that the CSLV sets were outperformed by the TCGA-CNV 

set. 

 
  

Figure 45: Comparison of Stomach Cancer Prediction AUCs by Different Models and by Split 
We tested whether the numbers of splits and features of each chromosome affect predictive performance and how 
CSLV sets compare to CNV set. We built five datasets by splitting each chromosome into four or eight segments and 
combining with the standard deviation, and mapping TCGA CNVs to UK Biobank l2r data. The dataset was used to 
predict whether an individual had stomach cancer. The prediction was evaluated by the metric AUC. The plot 
presents the differences in predictive performance between models and chromosomal scale length variation 
combinations. The CNV dataset performed the best, regardless of machine learning algorithms. 
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Figure 46: Comparison of Stomach Cancer Prediction AUCs of All Models by Split 
The average performance of all models for each combination of CSLV features. 
 

 

  

Split Numbers  Mean 
AUC 

Standard 
Deviation 

95% Confidence 
Interval 

p-value vs. TCGA-CNV 

4 Splits 0.495 0.011 (0.494, 0.497) 1.264 ´ 10-64 
4 Splits with 
Standard 
Deviation 

0.488 0.015 (0.486, 0.491) 6.387 ´ 10-57 

8 Splits 0.508 0.014 (0.506, 0.510) 1.635 ´ 10-10 
8 Splits with 
Standard 
Deviation 

0.507 0.015 (0.505, 0.508) 1.274´ 10-16 

TCGA Unmasked 
Top 100 

0.515 0.012 (0.513, 0.517)  

Table 16: Stomach Cancer Prediction AUCs by Split 
The mean, standard deviation, and p-values of the cross-validated AUCs of 4-splits, 4-splits-with-standard-
deviation, 8-splits, 8-splits-with-standard-deviation, and TCGA-unmasked-top-100 datasets. 
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Figure 47 demonstrates how these models compare on the five different datasets. The 

stacked ensemble achieved the best performance. The increase in the number of splits and the 

addition of standard deviation did not consistently improve predictability. Figure 48 shows the 

differences in performance of all models for the five datasets. We tested whether the 

performance of the CSLV sets differs significantly from the TCGA-CNV set, and the p-values are 

recorded in Table 17. The differences in performance are not significant for all datasets, 

showing that the CSLV sets performed as well as the TCGA-CNV set. 

Figure 47: Comparison of Prostate Cancer Prediction AUCs by Different Models and by Split 
We tested whether the numbers of splits and features of each chromosome affect predictive performance and how 
CSLV sets compare to CNV set. We built five datasets by splitting each chromosome into four or eight segments and 
combining with the standard deviation, and mapping TCGA CNVs to UK Biobank l2r data. The dataset was used to predict 
whether an individual had prostate cancer. The prediction was evaluated by the metric AUC. The plot presents the 
differences in predictive performance between models and chromosomal scale length variation combinations. The 
Stacked Ensemble model performed the best, while the CSLV and CNV sets achieved similar performance. 
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Split Numbers  Mean 

AUC 
Standard 
Deviation 

95% Confidence 
Interval 

p-value vs. TCGA-CNV 

4 Splits 0.514 0.009 (0.513, 0.516) 0.343 
4 Splits with 
Standard 
Deviation 

0.513 0.008 (0.511, 0.514) 0.957 

8 Splits 0.512 0.009 (0.511, 0.513) 0.993 
8 Splits with 
Standard 
Deviation 

0.513 0.010 (0.511, 0.515) 0.894 

TCGA Unmasked 
Top 100 

0.514 0.008 (0.512, 0.516)  

Table 17: Prostate Cancer Prediction AUCs by Split 
The mean, standard deviation, and p-values of the cross-validated AUCs of 4-splits, 4-splits-with-standard-
deviation, 8-splits, 8-splits-with-standard-deviation, TCGA-unmasked-top-100 datasets. 
 

 

Figure 48: Comparison of Prostate Cancer Prediction AUCs of All Models by Split 
The average performance of all models for each combination of CSLV features. 
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Figure 49 demonstrates how these models compare on the five different datasets. There 

is no significant difference between models. The increase in the number of splits and the 

addition of standard deviation impacted predictability. Figure 50 shows the differences in 

performance of all models for the five datasets. We tested whether the performance of the 

CSLV sets differs significantly from the TCGA-CNV set, and the p-values are recorded in Table 

18. The differences in performance are not significant for all datasets, showing that the CSLV 

sets performed as well as the TCGA-CNV set. 

 

Figure 49: Comparison of Ovarian Cancer Prediction AUCs by Different Models and by Split 
We tested whether the numbers of splits and features of each chromosome affect predictive performance and how 
CSLV sets compare to CNV set. We built five datasets by splitting each chromosome into four or eight segments and 
combining with the standard deviation, and mapping TCGA CNVs to UK Biobank l2r data. The dataset was used to 
predict whether an individual had ovarian cancer. The prediction was evaluated by the metric AUC. The plot presents 
the differences in predictive performance between models and chromosomal scale length variation combinations. The 
4-splits dataset performed the best.  
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Split Numbers  Mean 
AUC 

Standard 
Deviation 

95% Confidence 
Interval 

p-value vs. TCGA-CNV 

4 Splits 0.518 0.014 (0.515, 0.520) 9.399 ´ 10-22 
4 Splits with 
Standard 
Deviation 

0.512 0.012 (0.510, 0.514) 1.671 ´ 10-13 

8 Splits 0.508 0.010 (0.506, 0.510) 6.551 ´ 10-5 
8 Splits with 
Standard 
Deviation 

0.514 0.015 (0.512, 0.517) 8.061 ´ 10-16 

TCGA Unmasked 
Top 100 

0.505 0.009 (0.504, 0.506)  

Table 18: Ovarian Cancer Prediction AUCs by Split 
The mean, standard deviation, and p-values of the cross-validated AUCs of 4-splits, 4-splits-with-standard-
deviation, 8-splits, 8-splits-with-standard-deviation, and TCGA-unmasked-top-100 datasets. 
  

Figure 50: Comparison of Ovarian Cancer Prediction AUCs of All Models by Split 
The average performance of all models for each combination of CSLV features. 
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Figure 51 demonstrates how these models compare on the five different datasets. The 

stacked ensemble achieved the best performance. The increase in the number of splits and the 

addition of standard deviation impact predictability. Figure 52 shows the differences in 

performance of all models for the five datasets. We tested whether the performance of the 

CSLV sets differs significantly from the TCGA-CNV set, and the p-values are recorded in Table 

19. The differences in performance are significant for 4-splits-with-standard-deviation and 8-

splits datasets, showing that half of the CSLV sets performed as well as the TCGA-CNV set. 

 

 

Figure 51: Comparison of Breast Cancer Prediction AUCs by Different Models and by Split 
We tested whether the numbers of splits and features of each chromosome affect predictive performance and how 
CSLV sets compare to CNV set. We built five datasets by splitting each chromosome into four or eight segments and 
combining with the standard deviation, and mapping TCGA CNVs to UK Biobank l2r data. The dataset was used to 
predict whether an individual had breast cancer. The prediction was evaluated by the metric AUC. The plot presents 
the differences in predictive performance between models and chromosomal scale length variation combinations. The 
Stacked Ensemble model on the 4-splits-with-standard-deviation dataset performed the best.  
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Split Numbers  Mean 
AUC 

Standard 
Deviation 

95% Confidence 
Interval 

p-value  

4 Splits 0.512 0.010 (0.510, 0.514) 0.087 
4 Splits with 
Standard Deviation 

0.514 0.010 (0.512, 0.515) 0.003 

8 Splits 0.513 0.009 (0.512, 0.515) 0.004 
8 Splits with 
Standard Deviation 

0.511 0.007 (0.510, 0.512) 0.580 

TCGA Unmasked 
Top 100 

0.511 0.008 (0.509, 0.513)  

Table 19: Breast Cancer Prediction AUCs by Split 
The mean, standard deviation, and p-values of the cross-validated AUCs of 4-splits, 4-splits-with-standard-
deviation, 8-splits, 8-splits-with-standard-deviation, TCGA-unmasked-top-100 datasets. 
 

Figure 52: Comparison of Breast Cancer Prediction AUCs of All Models by Split 
The average performance of all models for each combination of CSLV features. 
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Figure 53 demonstrates how these models compare on the five different datasets. There 

is no difference between model performance. The addition of standard deviation impacts 

predictability. Figure 54 shows the differences in performance of all models for the four 

datasets. We tested whether the performance of the CSLV sets differs significantly from the 

TCGA-CNV set, and the p-values are recorded in Table 20. The differences in performance were 

significant for all datasets except 8-splits-with-SD set, showing that most of the CSLV sets 

performed better than the TCGA-CNV set. 

 

Figure 53: Comparison of Uterine Cancer Prediction AUCs by Different Models and by Split 
We tested whether the numbers of splits and features of each chromosome affect predictive performance and how 
CSLV sets compare to CNV set. We built five datasets by splitting each chromosome into four or eight segments and 
combining with the standard deviation, and mapping TCGA CNVs to UK Biobank l2r data. The prediction was 
evaluated by the metric AUC. The plot presents the differences in predictive performance between models and 
chromosomal scale length variation combinations. The Stacked Ensemble model on the 4-splits-with-standard-
deviation dataset performed the best.  
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Split Numbers  Mean 
AUC 

Standard 
Deviation 

95% Confidence 
Interval 

p-value vs. TCGA-CNV 

4 Splits 0.510 0.014 (0.507, 0.512) 1.325 ´ 10-23 
4 Splits with 
Standard 
Deviation 

0.504 0.009 (0.503, 0.506) 2.555 ´ 10-20 

8 Splits 0.508 0.011 (0.506, 0.510) 1.246 ´ 10-25 
8 Splits with 
Standard 
Deviation 

0.505 0.011 (0.503, 0.506) 2.423 ´ 10-22 
 

TCGA Unmasked 
Top 100 

0.496 0.007 (0.495, 0.498)  

Table 20: Uterine Cancer Prediction AUCs by Split 
The mean, standard deviation, and p-values of the cross-validated AUCs of 4-splits, 4-splits-with-standard-
deviation, 8-splits, 8-splits-with-standard-deviation, and TCGA-unmasked-top-100 datasets. 
 

Figure 54: Comparison Uterine Cancer Prediction AUCs of All Models by Split 
The average performance of all models for each combination of CSLV features. 
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 There was no definitive consensus on which dataset and model achieved the best 

performance. Finer split does not significantly improve the predictability, though the addition of 

standard deviation impacts predictive performance more consistently, with stacked ensemble 

model on 4-splits-with-standard-deviation dataset most often outperforming other models. For 

most types of cancer, the CSLV sets performed better than the TCGA-CNV set. 

We decided to further investigate a number of cancers with higher predictability more 

comprehensively to better understand the relative risk distribution and how the models arrive 

at their conclusions through H2O’s explainability framework.  

We first examined lung cancer. The predicted results were compared to the known lung-

cancer status of the patients, who were first ranked by their scores, from the least likely to 

most likely to have lung cancer. As shown in Table 21, there was increasing risk of lung cancer 

by decile, and the highest decile has an approximately 2.6-fold of relative risk in comparison to 

the individuals in the lowest decile.  

Decile Number of 
Patients without 

Lung Cancer  

Number of 
Patients with 

Lung Cancer 

Total Number 
of Patients 

Odds Ratio 95% 
Confidence 

Interval 

1 472 352 824 0.74 0.64 – 0.86 
2 462 362 824 0.78 0.68 – 0.90 
3 439 385 824 0.87 0.76 – 1.00 
4 456 367 823 0.80 0.69 – 0.93 
5 413 410 823 0.99 0.86 – 1.14 
6 425 398 823 0.93 0.81 – 1.08 
7 424 399 823 0.94 0.81 – 1.08 
8 375 448 823 1.19 1.03 – 1.37 
9 360 463 823 1.28 1.11 – 1.48 

10 281 542 823 1.92 1.65 – 2.23 
Table 21: Odds Ratio of Lung Cancer Risk by Decile 
The odds ratio between deciles of predicted results from the cross validation. The top 10% is 2.6 times as likely to 
be classified as lung cancer as the lowest decile. 
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A heatmap was created to present variable importance across all the generated models 

in Figure 55. Some of the most significant features were standard deviations and segments of 

chromosome 6, 7, 9, 13, X, and XY. This was then confirmed with a Shapley Additive explanation 

(SHAP) plot, as shown in Figure 56. 

Second, we examined brain cancer. The odds ratio was calculated from the cross-

validation predictions and recorded in Table 22. The risk of brain cancer increases by decile, and 

the top 10% has an approximately 2.4-fold of relative risk in comparison to the individuals in 

the lowest decile. 

 

 

 

 

Decile Number of 
Patients without 

Brain Cancer  

Number of 
Patients with 
Brain Cancer 

Total Number 
of Patients 

Odds Ratio 95% Confidence 
Interval 

1 127 78 205 0.61 0.46 – 0.82 
2 114 91 205 0.80 0.60 – 1.06 
3 110 95 205 0.86 0.65 – 1.15 
4 104 101 205 0.97 0.73 – 1.29 
5 104 100 204 0.96 0.72 – 1.28 
6 106 98 204 0.92 0.69 – 1.23 
7 92 112 204 1.22 0.91 – 1.62 
8 96 108 204 1.13 0.84 – 1.50 
9 87 117 204 1.34 1.01 – 1.80 

10 82 122 204 1.49 1.11 – 1.99 

Table 22: Odds Ratio of Brain Cancer Risk by Decile 
The odds ratio between deciles of predicted results from the cross validation. The top 10% is 2.4 times as likely to 
be classified as brain cancer as the lowest decile. 
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Figure 55: Variable Importance Heatmap of 4-Splits-with-SD Lung Cancer CSLV Models 
The variables most influential to the predictive performance of the specified models. A value of 1.0 indicates the highest importance. 
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A heatmap was created to present variable importance across all the generated models 

in Figure 57. Some of the most significant features were standard deviations and segments of 

chromosome 10, 12, 15, and X. This was then confirmed with a SHAP plot in Figure 58. 

 

 

 

 

Figure 56: SHAP Plot of Top-Performing 4-Splits-with-SD Lung Cancer CSLV Model 
The features with the highest contribution to the lung cancer prediction in the leading model. Some features 
identified in the plot originate from chromosome 6, 7, 9, 13, X, and XY,   
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Figure 57: Variable Importance Heatmap of 4-Splits-with-SD Brain Cancer CSLV Models 
The variables most influential to the predictive performance of the specified models. A value of 1.0 indicates the highest importance. 
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We then examined colorectal cancer. The odds ratio was calculated from the cross-

validation predictions and recorded in Table 23. The risk of colorectal cancer increases by 

decile, and the top 10% has an approximately 1.8-fold of relative risk in comparison to the 

individuals in the lowest decile. 

 

 

 

 

Figure 58: SHAP Plot of Top-Performing 4-Splits-with-SD Brain Cancer CSLV Model 
The features with the highest contribution to the lung cancer prediction in the leading model. Some features 
identified in the plot originate from chromosome 10, 12, 15, and X. 
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A heatmap was created to present variable importance across all the generated models 

in Figure 59. Some of the most significant features were segments of chromosome 5, 19, and X. 

This was then confirmed with a SHAP plot in Figure 60. 

 

 

 

 

 
 
 
 
 
 
 
 
 
  

Decile Number of 
Patients without 
Brain Cancer  

Number of 
Patients with 
Brain Cancer 

Total Number 
of Patients 

Odds 
Ratio 

95% Confidence 
Interval 

1 1009 722 1731 0.72 0.65 – 0.79 
2 887 844 1731 0.95 0.86 – 1.05 
3 892 838 1730 0.94 0.85 – 1.04 
4 854 876 1730 1.03 0.93 – 1.13 
5 873 857 1730 0.98 0.89 – 1.08 
6 855 875 1730 1.02 0.93 – 1.13 
7 862 868 1730 1.02 0.91 – 1.11  
8 812 918 1730 1.13 1.02 – 1.25 
9 841 889 1730 1.06 0.96 – 1.17 

10 766 964 1730 1.26 1.14 – 1.39 
Table 23: Odds Ratio of Colorectal Cancer Risk by Decile 
The odds ratio between deciles of predicted results from the cross validation. The top 10% is 1.8 times as likely to 
be classified as colorectal cancer as the lowest decile. 
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Figure 59: Variable Importance Heatmap of 4-Splits-with-SD Colorectal Cancer CSLV Models 
The variables most influential to the predictive performance of the specified models. A value of 1.0 
indicates the highest importance. 
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These results demonstrate that germline genetic variations contribute to risk 

determination of various cancer types. Utilizing the structural difference across the genetic 

landscape alone provides sufficient information to predict whether an individual would have 

certain cancer better than random chance. The datasets were constructed with age- and 

gender-matched control to the diseased set to limit the variability derived from the phenotypic 

differences. Our analysis also revealed standard deviations of l2r values across chromosomes to 

be important factors in predicting cancer types. Currently, there are numerous studies 

Figure 60: SHAP Plot of Top-Performing 4-Splits Colorectal Cancer CSLV Model 
The features with the highest contribution to the lung cancer prediction in the leading model. Some features 
identified in the plot originate from chromosome 5, 19, and X. 
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dedicated to develop polygenic risk scores for many types of cancer91, and our method may 

offer alternative means in such effort.  

This study has several limitations. First, Chromosomal Scale Length Variation was 

developed for dimensionality reduction by averaging the l2r values across large segments of 

chromosomes, and the standard deviation feature was constructed to provide more 

information, i.e. the spread, of the dataset. The variable importance was explored with the 

SHAP analysis, but it does not provide an explanation for the underlying mechanism. Second, 

the UK Biobank suffers from a lack of diversity. Its population is primarily Caucasian in the 

United Kingdom. Lastly, it is uncertain that the non-cancer individuals in the database would 

remain so in the future, such that the “healthy” individuals might not actually belong in the 

control set after all.  

We were able to build machine learning models based solely on germline chromosomal 

scale length variation for cancer risk determination, resulting in various levels of predictability. 

Lung cancer achieving the top performance, with an average AUC of 0.565. Although the AUC 

values obtained from these models would not be clinically useful at the current stage of 

development, they all significantly differ from chance and indicate the existence of a difference 

in structural genomics of the cancer patients in UK Biobank and the general UK Biobank 

population. The SHAP analysis performed on lung, brain cancers revealed potential regions and 

novel features, i.e. standard deviations of chromosomes, of importance. 
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Summary  

The rapid advent in sequencing and computational technologies have advanced cancer 

research in recent years; however, much of the specific mechanism for cancer development 

remain uncertain. As cancer is a multifactorial disease, it results from interaction between 

genetic and environmental factors. It is important to first set apart hereditary genetic features 

from environment-induced mutations, an endeavor aided by the study of germline DNA, which 

solely comprise of inherited factors.  

Currently, most genome-wide association study (GWAS) methods focus on somatic 

single nucleotide polymorphism (SNP) instead of interactions between more than two SNPs. 

Therefore, it is difficult to determine whether the SNPs are the sole cause or part of a group of 

genetic contributors. The exact role of SNPs in cancer development process often remains 

unclear. We utilized chromosomal scale length variants (CSLVs) of germline DNA to study the 

epistatic interactions between genes and the degrees hereditary factors contribute to specific 

cancers.   

 This study has shown that there is likely an epigenetic network effect of CNVs within an 

individual’s genome, and such effect, once quantified, can be used to determine cancer risks. 

We developed Chromosomal Scale Length Variation to utilize germline CNVs in an efficient 

fashion while maintaining pertinent information. We have demonstrated that this germline 

genetic information can be used to distinguish between certain types of cancer and between 

healthy and cancer patients. This finding may serve as potential biomarkers for blood-based 

cancer diagnostics, and it provides another means to construct genetic risk scores for specific 

cancers. 
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 The awareness of a hereditary predisposition to certain types of cancer is valuable, for 

screening increases the chance of early cancer detection, when it is more likely to be curable. 

For instance, the incidence rate of early-onset colorectal cancer is on the rise, and the cancer is 

often at the advanced stage of development when discovered, those with higher likelihood of 

colorectal cancer would benefit greatly with early screening. For other cancer types with 

environmental or lifestyle influences, e.g. lung cancer, those with high inherited cancer risks will 

be more likely to recognize and practice caution to avoid those harmful factors. 

 To evaluate the applicability of our findings, we compared the results to current 

published genetic risk scores, following the ICD 10 Cancer Code and validated in UK Biobank, for 

common cancers. The two metrics commonly used for reporting risk scores are the area-under-

curve (AUC) value of the receiver operating characteristic curve and odds ratios between top 

and bottom percentage of the sample groups. Table 24 shows that the CSLV-based predictive 

models achieve comparable performance to previously reported risk scores for lung cancer and 

brain cancer. This establishes CSLV as a promising factor in studying the interaction between 

cancer germline genomics and inherited risk determination. 

 

Cancer Type CSLV AUC CSLV OR; Top 10% Reported AUC Reported OR; Top 10% 

Lung Cancer 0.598 2.594 0.5191,92 1.3691,92 

Brain Cancer 0.567 2.443 0.54691,93 1.8891,93 

Colorectal 
Cancer 

0.565 1.759 0.54591,92 1.691,92 

Table 24: Comparison of Cancer Risk Scores 
Comparison between CSLV-based risk scores and reported risk scores built and validated using UK Biobank GWAS 
and ICD 10 Cancer Code for Lung Cancer, Brain Cancer, and Colorectal Cancer.  
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We examined a large selection of the most common and top performing machine 

learning algorithms, such as tree-based methods like gradient boosting machines and XGBoost, 

but there are still many other techniques to be explored. For instance, more specific 

hyperparameter tuning may further improve our results.  

CSLV also has some potential for improvement, concerning better feature selection, 

though CSLV-models performed better than models based on CNV segments called in TCGA for 

most cancer types. Currently, CSLVs are calculated from simple average of l2r values and 

standard deviation across an entire genome. This average may instead be constructed based on 

genomic location or the frequency of SNP probes, and the standard deviation may be computed 

from smaller chromosomal segments. 

The Cancer Genome Atlas and the UK Biobank are incredibly valuable resources for our 

analysis; however, they suffer from a lack of diseased sample sets, with many cancer types 

numbering well below 5000 individuals and the control set considerably larger than the cancer 

data. The UK Biobank also lacks diversity, since its population is primarily Caucasian in the 

United Kingdom. This issue may be remedied in near future, as other countries begin to collect 

their own samples, and these large-scale databases will further grow in scope and size. 

Our study demonstrates the promising results of applying machine learning methods on 

copy number variations, in the form of chromosomal scale length variations, in cancer diagnosis 

prediction and the potential of uncovering influential factors in the genomic landscape that 

contribute to hereditary cancer risk. This information may aid physicians in determining more 

personalized diagnostics and even employing relevant preventive measures based on individual 

susceptibility to specific cancer. 
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Appendix 

 

 

Study Abbreviation Study Name 
LAML Acute Myeloid Leukemia 
ACC Adrenocortical carcinoma 
BLCA Bladder Urothelial Carcinoma 
LGG Brain Lower Grade Glioma 
BRCA Breast invasive carcinoma 
CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 
CHOL Cholangiocarcinoma 
LCML Chronic Myelogenous Leukemia 
COAD Colon adenocarcinoma 
CNTL Controls 
ESCA Esophageal carcinoma 
FPPP FFPE Pilot Phase II 
GBM Glioblastoma multiforme 
HNSC Head and Neck squamous cell carcinoma 
KICH Kidney Chromophobe 
KIRC Kidney renal clear cell carcinoma 
KIRP Kidney renal papillary cell carcinoma 
LIHC Liver hepatocellular carcinoma 
LUAD Lung adenocarcinoma 
LUSC Lung squamous cell carcinoma 
DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 
MESO Mesothelioma 
MISC Miscellaneous 
OV Ovarian serous cystadenocarcinoma 
PAAD Pancreatic adenocarcinoma 
PCPG Pheochromocytoma and Paraganglioma 
PRAD Prostate adenocarcinoma 
READ Rectum adenocarcinoma 
SARC Sarcoma 
SKCM Skin Cutaneous Melanoma 
STAD Stomach adenocarcinoma 
TGCT Testicular Germ Cell Tumors 
THYM Thymoma 
THCA Thyroid carcinoma 
UCS Uterine Carcinosarcoma 
UCEC Uterine Corpus Endometrial Carcinoma 
UVM Uveal Melanoma 

Appendix: Table of TCGA study names and corresponding abbreviations 




