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Abstract of The Dissertation

Cancer Risk Determination through Chromosomal Scale Length Variation of Germline DNA
By
Charmeine Shumeng Ko
Doctor of Philosophy in Biomedical Engineering
University of California, Irvine, 2023

Professor James P. Brody, Chair

Cancer is a complex disease with significant genetic components. Previous efforts to
uncover the genetic basis of carcinogenesis tend to focus on linear combinations of single
genetic mutations, ignoring the complex non-linear network of interactions that are known to
regulate cellular processes. The goal of this line of research is the ability to predict whether a
person will develop a specific cancer later in their life.

This study evaluates how well machine learning classification algorithms trained with
germline chromosomal scale length variation (CSLV) data from cancer patients can predict
whether a person will develop cancer later in life. CSLVs were developed to condense pertinent
copy number variation (CNV) information into a smaller number of parameters, allowing the
usage of machine learning models.

We investigated cancer risk prediction and diagnosis classification from germline CSLV

data alone. Our findings indicate that CSLVs contribute to inherited cancer likelihood through a



complicated network interaction. We first tested 33 different types of cancer using the 11,000
patients from the Cancer Genome Atlas (TCGA). Lung squamous cell carcinoma (AUC = 0.69),
Glioblastoma multiforme (AUC = 0.78), colon adenocarcinoma (AUC = 0.67), and many others
could be differentiated from other cancer types better than random chance.

We also evaluated the method in a second dataset, the UK Biobank. Each cancer type
dataset was paired with an age- and gender-matched randomized control set. 125 CSLVs were
computed, 4 averages and 1 standard deviation from each of the 22 autosomes and 3 sex
chromosomes (X, Y, and XY), to be used as features in the model. The AUC of lung cancer was
found to be 0.597, the AUC of brain cancer was 0.567, and the AUC of colorectal cancer was
0.565. These results were comparable to current published risk scores and demonstrate the
viability of CSLVs as genetic risk scores for certain cancer types.

Utilizing germline chromosomal scale length variation data from large public databases
and machine learning models, we developed a novel and promising method to predict cancer
diagnosis. This technique can be further improved and augmented for more clinical relevance,

and it can be beneficial in personalized diagnostics and cancer preventive measures.

Xi



Introduction

Cancer is a genetic disease, with a significant hereditary component in its development,
as demonstrated by past research®. There has been accumulating evidence indicating that
genetic variation accounts for a considerable portion of susceptibility to cancer?, the
identifications of inherited genetic variations associated with the disease and understanding of
how they contribute to cancer biology become a priority in elucidating etiology in cancers3. In
recent years, the rapid progress in sequencing technologies allows for cheaper and more
efficient comprehensive genome analysis, and thus many large genomic databases have been
established. With an immense wealth of information available, it becomes increasingly
important and complex to develop methods to analyze and utilize the data to draw meaningful
conclusions.

Genome-wide association studies (GWAS) are a common approach for investigating the
genetic basis of complex diseases such as cancer and mainly focus on single nucleotide
polymorphisms (SNPs). GWAS have identified many cancer risk loci locating at non-coding
regions of the genome, generally through studies performed on somatic tissues*>. As cancer is
a multifactorial disease, it results from an interaction between hereditary and somatic factors.
The utilization of somatic samples may introduce environmental factors acquired during the
individual’s lifetime and complicate the homogeneity of inherited component in cancer
pathogeny. Therefore, it is important to separate the two by focusing on the germline genetics.

We are interested in chromosomal scale length variation of germline DNA, which

condenses multiple copy number variations (CNVs). CNVs are extensive structural variants in



the human genome composed of repeats and deletions. CNVs have been shown to exhibit
functional impact on gene expression and are a hallmark of cancer®. The discovery and mapping
of these genetic variants owes in parts to the development of Next Generation Sequencing
(NGS), which has greatly advanced the field of genomic research. The reduced cost and
production needs allow for faster whole genome sequencing with greater accuracy and
precision, for instance, the human genome can be sequenced within a day using NGS, while the
same task performed with Sanger sequencing technology would require over a decade’. Many
population genomic databases have therefore been built and become publicly available,
proving to be tremendously valuable to researchers interested in uncovering the genetic basis
of complex diseases, e.g. identification of the hereditary component in cancer development.

This endeavor is further aided by the advent of computational technologies in the past
decade. High-throughput sequencing outputs large quantities of data to be processed for
further analysis. Cancer samples are complex and heterogeneous, for the disease mechanism
involves a multitude of processes that encompass genomic to cellular functions. As the size and
intricacy of cancer genomic datasets continue to growth, storing and querying terabytes or
even petabytes of data can be immensely challenging to researchers without sufficient
computational resources®. Therefore, the availability of scalable computing resources, i.e. the
“cloud”, is crucial for facilitating rapid and cost-effective data analysis®.

An important goal of cancer genomic data analysis methods is to transform the wealth
of sequencing results into understanding of the relationship between various molecular
characteristics of cells. The development of machine learning methods contributes to this effort

for its ability to apply complex mathematical calculations to large, complex datasets in an



automated fashion to produce predictive models. Understanding the decision-making progress
involved in model building would reveal potential biomarkers as therapeutic targets; translating
and incorporating the results with clinical data would provide insight for physicians, patients,
and researchers. Furthermore, the interaction between the hereditary component and other

risk factors may be also studied in depth.



Objective and Specific Aims

Genetic variation has been associated with many complex diseases, i.e. cancer, and copy
number variations (CNV) account for considerable amount of variability in human genome. In
addition to genetic features, many factors contribute to the complexity of cancer development,
with age as a major element!®, In this study, we hypothesize that the epistatic interactions
between germline genetic variants create a network effect that contributes to hereditary
cancer risks and cancer onset age. Machine learning models can thus be utilized to predict risks

and determine the influence of germline CNVs on cancer incidence age.

Objective 1

The primary objective of the study is to utilize germline CNV information from large,
public databases to predict cancer diagnosis. We developed a method to transform CNV data
into Chromosomal Scale Length Variation (CSLV) values for dimensionality reduction while
preserving the epistatic interaction between CNVs across the genome.
Objective 2

The second objective is to study whether there is an inherited genetic risk in complex
diseases such as cancer, and we aim to investigate if the CNVs across an individual’s genetic
landscape contribute to such hereditary component in disease development.
Objective 3

The third objective is to develop machine learning techniques utilizing CSLV data to
predict different cancer diagnoses. These models would predict whether an individual possess

higher inherited risk for specific types of cancer. Our models would be built from genomic data



from large, public databases and address the non-linear and high-dimensional relationships
between multitude of genetic variants. We would employ different machine learning
algorithms to compare their performances and predictive powers and determine which option

achieves the best results.
Objective 4
The fourth objective is to explore how CSLV features affect cancer prediction and

optimize the predictive performance. We would compute different CSLV configurations and

investigate the optimal dataset.
Objective 5

The next objective focuses on model interpretation. We would examine how the
predictions are made, which variables carry substantial weights in the models, and the
importance of different components. This would provide biological insight into the CNV regions
that play the most significant role to a specific cancer type.
Objective 6

The final objective is to evaluate the performance of our CSLV predictive models

through comparison to published risk scores for the specific cancer types that are computed in

UK Biobank.



Background

Next-Generation Sequencing

The rapid development of different next-generation sequencing (NGS) platforms has
revolutionized the biological sciences. In the field of genomics research, NGS reduces the high
production needs and cost for the comprehensive analysis of genomes, transcriptomes, and
interactomes, standardizing inexpensive and robust studies!®.

The advent of NGS allows for systematic study of cancer genomes, prompting various
ongoing large-scale cancer genome projects around the world’. Some of the common goals that
these projects aim to address are more precise cancer diagnosis and classification, increased
prognosis accuracy, and identification of mutations for potential drug targets’, forming the
basis for development of personalized cancer treatment.

In comparison to previous sequencing technologies, NGS enables simultaneous
identification of multiple modalities of genome alteration, i.e. copy number, mutation, due to
deep coverage!?. However, there exist several limitations of cancer genomics. Cancer genomes
are characterized by high degrees of heterogeneity between cancer types and even individuals.
Due to the incomplete penetrance of mutations, the identification of a pathogenic mutation in
an individual does not necessarily implicate that other members in the subject’s family carrying
the same mutation will develop cancer. The complication is amplified with NGS because of the
larger number of genes and variants being identified!3. In addition to modification to screening
protocol, researchers would benefit from proper statistical tools to distinguish clinically
significant features and draw correct conclusions on mutations that are indicative of certain

cancer types.



Copy Number Variations

There are many forms of genomic variability, including single nucleotide polymorphisms
(SNPs), tandem repeats, transposable elements, structural alterations such as insertions,
deletions, and inversions!4. Copy number variants (CNVs) represents a copy humber change
involving a DNA fragment that is or greater than 1 kilobases in size'®>. CNVs account for a
considerable amount of genetic variation in the human genome.

Population-based surveys have identified thousands of CNVs, and their functional
impact has been demonstrated to have dramatic phenotypic consequences from alterations of
gene dosage, disruptions in coding sequences and long-range gene regulation?®. Increased CNVs
can be positively or negatively correlated with gene expression levels!’, for instance, deletion of
a transcriptional enhancer will repress gene expression. CNVs have also been shown to affect
all classes of human disease with genetic basis, such as sporadic, Mendelian, complex and
infectious!®. Studies on CNVs and cancer risks typically focus on identification of single genes
and their corresponding CNVs or rare single region CNVs, i.e. those with low population
frequency®>%,

It is important to distinguish somatic CNVs from germline CNVs (gCNVs) in human
disease studies. Although both types contain inherited information pertaining to the pathogeny
of interest, past research has shown the possibility of CNVs acquisition in somatic tissues
through environmental factors?!, which may compromise the homogeneity in somatic CNVs,
leading to conclusions drawn from genetic features acquired later in life. Therefore, we focus
on gCNVs to properly study the effect of hereditary genetic variations alone on cancer risks and

incidence age.



The Cancer Genome Atlas

The Cancer Genome Atlas (TCGA) was a cancer genomic program that molecularly
characterized over 20000 primary cancer and matched normal samples from 11000 patients,
spanning 33 cancer types. It started as a joint effort between the National Cancer Institute and
the National Human Genome Research Institute in 2006, culminating in the creation of the Pan-
Cancer Atlas?2. Many accompanying studies provide insights into cancer classification through
molecular similarities and genetic differences?®?*, and they further reveal the role of germline
genetic variants and somatic mutations in cancer progression®°. Though the project has ended
after 12 years, the data remains publicly available, and the wealth of information has immense
potential for new discovery in cancer research.

The 2.5 petabytes of data contain information such as mRNA expression, somatic
mutations, DNA methylation, and our target of interest: copy number variation. CNVs are

typically measured as segment means, and TCGA defines segment mean as the value of
logz(%N), where CN is the copy number of a specific segment of the genome. Each segment

mean has a unique genomic address consisting of the chromosome number, start base pair
position, and end base pair position. To anonymize the data, the TCGA employs a masking
process of omitting the Y chromosomes and calculating segment means of large portions of a
genome, sometimes spanning an entire chromosome, resulting in two datasets: masked and
unmasked. The challenge of navigating and managing the extensive datasets in TCGA is offset
by its compatibility with Cloud Service providers such as Cancer Genomic Cloud and Google

Cloud Platform.



The Cancer Genome Atlas Pipeline

TCGA was primarily funded by the National Cancer Institute (NCI), and its genomic and
clinical datasets were coordinated through NCI’s Center for Cancer Genomics (CCG). This
project was implemented through a standardized workflow called the Genome Characterization
Pipeline, consisting of four major steps: Tissue Collection, Genome Characterization, and
Genomic Data Analysis?®.

CCG collected tumor tissues and matched normal blood samples from patient who
voluntarily participated in clinical trials and community oncology groups. The majority of the
samples were formalin-fixed and paraffin-embedded, and the rest frozen, then sent to CCG’s
Biospecimen Core Resource (BCR). The Biospecimen Processing Center at Nationwide Children’s
Hospital, the first component of BCR, curated the samples to meet the rigorous quality
standards. The second component of BCR, the Clinical Data Center at Information Management
Services, Inc. oversaw informed consents and anonymization of clinical data to safeguard
patients’ privacy.

The tissues were then sent to the Genome Characterization Centers (GCCs): The Broad
Institute that specializes in DNA and performs whole genome and whole exome sequencing,
the University of North Carolina that specializes in RNA and performs total RNA sequencing, MD
Anderson Cancer Center that specializes in proteins and performs reverse phase protein arrays.
CNV data was generated by the Broad Institute?’. The GCCs generated and sent the outputs,
including raw sequencing data, associated metadata, and other characterization data, to the
Genomic Data Commons (GDC), which shared the data with the Genomic Data Analysis

Network (GDAN).



The GDAN consisted of scientists from 13 institutions across North America. They
examined the raw data and utilized genomic characterization techniques to produce novel
analyses and publish results in scientific journals. The data generated by the CCG pipeline are
publicly available in the GDC for researchers all around to the world.

The CNV pipeline used Affymetrix Genome-Wide Human SNP Array 6.0 data to identify
genomic repeats and infer the copy number of these regions based off of GRCh382. It was built
onto the TCGA data generated by Birdsuite, an open-source tool set created by the Broad
Institute?®. The data was processed through a circular binary segmentation analysis, which
translated noisy intensity measurements into chromosomal regions of equal copy number,
resulting in final output files that are segmented into genomic regions with the estimated copy

number for each region3°. These copy number values were further transformed into segment

mean values (log, (C?N))?'1 .

UK Biobank

The UK Biobank is one of the most well-established genetic projects and serves a major
internal health resource. It was founded by the Wellcome Trust medical charity, the UK Medical
Research Council, the UK Department of Health & Social Care, the Scottish Government, the
Northwest Regional Development Agency, with additional funding from the Welsh
Government, British Heart Foundation, Cancer Research UK, and Diabetes UK32. The project is
primarily supported by the UK National Health Services.

The UK Biobank was started in 2006 by tracking longitudinally the health outcomes of
500,000 volunteers between the ages of 40 to 69 years old over their lifetimes2. It aims to

provide important biological samples and environmental exposure data, further constituting a
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resource on the effects of genetic, environmental, and lifestyle factors on human morbidity,
mortality, and health33. Genome-wide genotyping data are available for all 500,000 participants
in the UK Biobank. The database went live in 2017, making 12 Petabytes of information such as
genetic data, imaging and exercise data available to researchers worldwide. The health data of
the participants is regularly updated. To date, approximately 89,000 cancer occurrences and
20,000 deaths have been recorded?*.
UK Biobank Pipeline

Blood samples were collected from participants at UK Biobank assessment center and
were stored at the UK Biobank facility in Stockport, UK. After DNA extraction, the samples in 96-
well plates of 94x50-ul aliquots were sent to Affymetrix Research Services Laboratory for
genotyping®. During the automated sample retrieval process, special attention was paid to
ensure that there was no systematic correlation between experimental units and baseline
phenotypes such as age, sex, and ethnicity3®. The UK Biobank Axiom array was used to
genotype around 90% of the 500,000 UK Biobank participants, and the UK BiLEVE array was
used to genotype the remaining 10%; the two arrays were very similar with over 95% common
marker content3®. Genomic assays of 820,967 SNPs were conducted, and genome-wide
genotyping and imputation was performed by the Big Data Institute of Oxford University®’. The
resulting data are around 2 terabtyes in size and include information such as normal SNP
genotyping data, calls, confidences, and intensities.

A wide range of phenotypic information has been collected along with the biological
samples. Participants were asked to provide their socio-demographic background, lifestyle,

medical history, and physical measures such as blood pressure and arterial stiffness3®. Physical
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activity tracking data, monitored from 2013-2014, of 100,000 participants was also recorded.
All participants were consented to provide health-related records that indicate death, cancer
diagnoses, and hospitalizations.

Machine Learning

Machine learning is one of the major branches of artificial intelligence, for the ability to
learn is a basic requirement for any intelligent being. Its history can be traced back as far as
1950s, during which the experimental and theoretical works were inspired by
neurophysiological, biological, and psychological research3?. The development of practical
algorithms started to take roots in 1970s, and many were designed to analyze medical
datasets®®.

From the early history of machine learning, three major branches emerged from the
early development, as outlined in classical works in symbolic learning by Hunt et al*°,, in
statistical methods by Nilsson*!, and in neural networks by Rosenblatt*?. They later gave rise to
advanced methods, respectively®3: inductive learning of symbolic rules such as top down
induction of decision trees, pattern recognition methods such as k-nearest neighbors, and
artificial neural networks such as multilayered feedforward neural network.

Machine learning methods are split into two types: supervised and unsupervised
learning. The main difference is that we have prior knowledge of the outcomes for the samples
used for supervised learning to learn a function that best approximates the correct output
values based on the inputs*. Unsupervised learning interprets the natural structure present in
the data, without labeled outputs. Therefore, supervised learning is often employed for

classification and regression tasks. A standard protocol involves splitting the data into training
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set and testing set; the former is used for model building, and the latter is used for model
evaluation. Since the “correct” output is determined solely from the training data, incorrect or

noisy data labels will impact model effectiveness.
Machine Learning Algorithms

Generalized Linear Model

Generalized Linear Models (GLMs) estimate regression models whose outcomes are
assumed to follow exponential distributions, which include the Gaussian, Poisson, binomial, and
gamma distributions. GLM can be used for regression or classification, depending on the
distribution and link function. The H20 suite includes Gaussian regression, Poisson regression,
binomial regression/classification, fractional binomial regression, quasibinomial regression,
multinomial classification, Gamma regression, ordinal regression, negative binomial regression,
and Tweedie distribution?*. GLM does not require data to be sorted or special handling with
imbalanced data.

Regularization is employed in GLM by introducing penalties to prevent overfitting, to
reduce variance of the prediction error, and to handle collinearity. Some common techniques
are ridge regression and least absolute shrinkage and selection operator (LASSO)*. The
regularization process involves finding the optimal regularization parameters a and A, and this
is achieved by performing a grid search over @ and “lambda search”, a specific type of grid
search, over A. The a parameter handles the distribution between the LASSO and ridge
regression penalties, with a value of 1.0 representing LASSO whereas a value of 0.0
representing ridge regression. The A parameter controls the amount of regularization employed

in the model, with a A of 0.0 denoting that no regularization is applied at all.
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Distributed Random Forest

Random forests are an ensemble of independently trained decision trees, and the
results of the individual trees are averaged to obtain a more optimized prediction. The training
of random forests follows the general techniques of bootstrap aggregation: each tree is built
with random sample with replacement. At each terminal node of the tree, a random subset of
features is selected to prevent each learner from fixating on the apparently predictive features
of the training set and becoming tuned too much to the noises. The resulting trees will be as
uncorrelated from each other as possible, increasing generalization of the model. Random
forests can contain hundreds or even thousands of trees, and they work well on noisy data. The
fundamental principle of random forests is that a large number of uncorrelated trees operating
as an ensemble will outperform any of the individual constituent model.
Gradient Boosting Machines

In the field of supervised learning, Gradient Boosted Decision Trees (GBDTs), or Gradient
Boosting Machines (GBMs), have been shown to perform exceptionally and have rapidly gained
popularity in the data science community*”*8, The general paradigm of gradient boosting is
aggregating weak classifiers to form a strong learner, as such some parameter tuning might be
necessary to achieve good results. A training set of known inputs and corresponding outputs is
used to find an approximator, built from the sum of weak learners, that minimizes some loss
function to gradually step towards best fit*. In comparison to Random Forest, another popular
tree-based algorithm, GBMs build the decision trees sequentially instead of in a parallel fashion,
which results in a large number of trees that may be slow in real-time prediction. The algorithm

utilizes the error of prior trees in the creation of subsequent tree; in mathematical terms, the
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residuals of a given model act as negative gradients to optimize the loss function. The iterative
nature of GBMs proves advantageous over other methods, such as Artificial Neural Networks,
in handling imbalanced datasets by amplifying the impact of the positive class.

The major limitation of GBM is its tendency for overfitting, that is, the model is tuned
too much to the noise instead of the signal and thus performs significantly better in the training
set than in the testing set. Therefore, k-fold cross validation is often implemented for the
models. The sample is divided into k parts, one of which will be used for testing while the rest
for training. The procedure is repeated k times, rotating the testing set. An expected
performance metric will be selected to evaluate the results across iterations.

XGBoost

XGBoost is an implementation of gradient boosted decision trees designed to heighten
performance and efficiency. It has become one of the most popular machine learning
algorithms in recent years. Some features include penalization of trees, a proportional shrinking
of leaf nodes, extra randomization parameter, and Newton Boosting, which uses curvature
information, i.e. the second derivative, to take a more direct route than gradient descent to
minimize a function.

Deep Learning

Deep learning is a subfield of machine learning algorithms based on artificial neural
networks that are inspired by the function and structure of brain. When larger neural networks
are constructed and trained with more data, their performance continuously increases, as
opposed to reaching a plateau like some other machine learning algorithms. In addition to the

scalability, another benefit of deep learning is feature learning, the ability of extracting features
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automatically from raw data. It detects the unknown structure in the input distribution to
discover good representations at multiple levels, with high-level learned features defined in
terms of low-level features.

The most common implementation of deep learning is a feedforward artificial neural
network. It is trained with stochastic gradient descent using back-propagation. The network
typically consists of many perceptrons organized into many hidden layers. Each perceptron has
a rectifier, tanh, or some max-out activation function. It is typically important to shuffle training
data when implementing deep learning because the rows are processed sequentially during
training. The input layer is scaled to the number of columns, and this is typically an indication of
the complexity of the model. After sample training, backpropagation and loss function
assessment are performed. The algorithm will go through the complete training set a number
of times as defined by the user, and this hyperparameter is called epoch. The epoch value is key
to finding the model that represents that sample with less error.

Deep learning has become one of the more widely used machine learning algorithms in
recent years, however, several shortcomings are present when applying deep learning to
disease data. First, it is difficult to interpret how the model arrives at its predictions and infer
biological insight behind the disease development. Next, deep learning does not perform much
better than other machine learning algorithms unless the dataset is complete, with little to no
sparsity, unlabeled, and contains hundreds of thousands, if not more, observations. Since the
dataset we use consist of prelabeled diagnoses, deep learning might not achieve top predictive

performance in our study.
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Stacked Ensembles

Ensemble machine learning methods combine multiple machine learning algorithms to
obtain better predictive performance than the result from any of the constituent models. Many
popular machine learning algorithms such as Random Forest and Gradient Boosting Machines
utilize the ensemble method. Stacked Ensemble employs Stacking, also called Super Learning
and Stacked Regression, which trains a second-level meta-learner to find the optimal
combinations of the base learners.

To train a stacked ensemble, a list of base algorithms is chosen with a specific set of
model parameters, followed by a second-tier learner, which uses the predictions of the base
models as features. The second-tier algorithm may be the same as one of the base learner.
Next, each base algorithm is trained on the training set, and a k-fold cross validation is
performed on each of these learners. The cross-validated prediction values from the base
algorithms are combined and used to train the meta-learning algorithm. The resulted model,
combined with the base learners, forms the ensemble model to generate predictions on the

new data.
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Research Design and Methods

Data Acquisition

The Cancer Genome Atlas

The CNV data and corresponding clinical information are stored in Google BigQuery™,
for which the data is accessible through Standard Query Language (SQL), and these TCGA Big
Query tables are publicly available. Cloud computing allows more efficient data storage and
bulk data manipulation without straining the computing power of local machines. Data analysis
was performed in the statistical programming language R. The “bigrquery” package was used to
download the required data subsets from the cloud storage for further manipulation to be

trained in GBM models.

UK Biobank

Researchers need to apply for approval to access UK Biobank data through the data
showcase platform for a $500 application fee. Once the application is approved, another £2000
was required in user fees. The initial process took several months until the data became
available for access.

We specified the exact data categories needed in our research when applying for access;
for instance, we wanted to look at cancer diagnosis, and patient clinical data such as gender
and age, we then chose the corresponding categories listed on the data showcase:

https://biobank.ndph.ox.ac.uk/showcase/browse.cgi.

Once access was granted, we were sent a key through email to download and decrypt

the data. The key was then stored as a file called “integers.key”, where the integers correspond
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to our application number, in the working directory and made readable through the command
“chmod 755 integers.key”. We were also given another encrypted file named ukbintegers.enc
(same numbers as the key). This file contains approximately 500k lines, where each line consists
of individual patient IDs and their respective parameters chosen in the application, e.g. sex,
cancer type, etc.

The first step was to retrieve all the necessary tools to download the UK Biobank data.
The instructions are available here:

https://biobank.ndph.ox.ac.uk/showcase/download.cgi

To decrypt the downloaded file, we ran the following command:

$ ./ukb_unpack ukbintegers.enc kintegers.key

which produced the file ukbintegers.enc_ukb.

The following commands were used to extract the decrypted data into useful formats:

$ ./ukb_conv ukbintegers.enc_ukb docs

$ ./ukb_conv ukbintegers.enc_ukb r

docs produced an html file that contains the documentation of the variables in the
dataset, and r produced a tab delimited file and an R script for labeling the variables.

We have previously downloaded the 12r genetic data, but a new version was made
available in early 2021, so we re-downloaded the data following the instruction listed here:

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/ukbgene instruct.html
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ukbgene is a Linux executable, and we had to first use the following command to

download a small file that contained a list of patient IDs:

$ ./ukbgene 12r —-cl -m

This file was renamed as “patientIDSall.fam”. The -c1 argument specifies chromosome 1,
but other chromosomes would also suffice since we only needed the patient ID information,
which was the same across all chromosomes. The patientIDSall.fam file contains one patient ID
per row, and the row order is important because it matches the column headers for the 12r
genetic data.

To download the 12r genetic data, we wrote a shell script that executed the following:

$ ukbgene 12r —cN

where N is an integer ranged from 1 to 22, representing the chromosome number, and
each file was saved as “ukb22431_12r_cN_b0_v2” (22431 was our application number). We
needed to download each chromosome individually, and it was a timely process to download
2.3 terabytes of data while performing error checking. It took around a week or two, and we
needed to check on it every day to make sure that ukbgene didn’t fail and had to be restarted.
The largest file was chromosome 1, 195GB, and the smallest file was chromosome 21, 34GB.

All the I2r data were plain text files, with numbers separated by spaces and no headers.
They were formatted such that every column consisted of one sample, i.e. a single patient, with
their ID given by the patientIDSall.fam file. Every row was the SNP location that the log2 ratio

value was measured in the array.

20



Data Processing

The Cancer Genome Atlas

The dataset was formatted such that every row contained one observation, i.e. a single
patient, which was denoted by case-barcode, a unique identifier. Every column was defined by
the genomic address of a gene segment, consisting of chromosomal location, start and end
base pair positions. Each cell then contained the segment mean for the gene segment defined
by its column for the patient recorded in that particular row. The value could be blank if the
CNV was normal and no information was available. For example, the unmasked data with 50
top CNVs had 50 columns, one for each of the CNVs. Lastly, the cancer types that the patients
had been diagnosed with were recorded in another column. Additional information such as age,
gender, and ethnicity may be incorporated, though the diagnosis classification models only
included CNVs data.
UK Biobank

The |12r data was converted into the Chromosomal Scale Length Variation data through
shell script to directly handle the large files, since the file size that could be processed in IDEs
such as R Studio is limited by RAM size. Chromosomal Scale Length Variation is the average I2r
value of large CNV segments across a chromosome, evenly split into desired numbers of pieces.

The mathematical formula is as follows:
CN;
=0 log, Tl
n

Where CN is the copy number value, normalized first by division of two for each allele then

taken the base 2 log, resulting in a single 12r value. For instance, to calculate the average values
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of 4 splits of chromosome 22, which has 11342 lines, two splits would contain 2835 sequential
lines, and the other two would contain 2836 sequential lines. Each column in all four splits
would be averaged.
Server Specifications

The hardware specifications of the server are as follows: AMD Ryzen 9 5950X 3.4 GHz
16-core AM4 processor (upgraded from Intel Xeon E5-2960 2.90 GHz CPU in 2021), 32GB of
DDR4 3600 MHz RAM (upgraded from DDR3 2133 MHz RAM in 2021), GeForce GT 710 GPU
(2GB GDDR3), and 10 TB HDD. In addition, We created a 64 GB swap for additional memory on
the hard disk. We set up our computer server to run Linux Ubuntu 20.04 (64-bit) LTS for its
operating system.
R Statistical Programming Language Specifications

The initial work with TCGA data was conducted in R v3.6.3, and the UK Biobank portion
was done in R v4.0.3. Detailed instructions to install different versions of R in the Linux

environment are available here: https://cran.r-project.org/bin/linux/ubuntu/

H20 Machine Learning

We trained, tested, and validated our Gradient Boosting Machine (GBM) models using
H20, the leading, open-source machine learning platform. The distributed systems and in-
memory computing of H20 accelerated machine learning with massive datasets, and its
accessibility for many programming languages, e.g. R, python, allowed us to seamlessly deploy
models while maintaining reproducibility of the data analysis in R. The software also utilizes
many popular machine learning algorithms, both supervised and unsupervised, such as GBM,

XGBoost, Random Forest, Deep Learning, etc., and this facilitates the process of algorithm
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comparison to determine the most suitable one. Each algorithm is equipped with extensive
parameters for fine-tuning to improve model performance and handle issues such as
overfitting.
H20 Generalized Linear Models

H20 follows the authoritative text by P. McCullagh and J.A. Nelder®® on the
generalization of linear models to non-linear distributions of the response variable Y by fitting
GBLM models based on the maximum likelihood estimation via iteratively reweighed least
squares*6,
Let y4, ..., ¥ be n observations of the independent, random response variable Y;. Assume that
the observations are distributed according to a function from the exponential family and have a

probability density function of the form:

yi6; — b(6;)

ai(¢) l +C(yi;¢)

f@J=W4

where 8 and ¢ are location and scale parameters, anda;(¢), b(8;), and c(y;; ¢) are known

functions.

¢

a; is of the form a; = — where p; is a known prior weight.
i

When Y has a probability distribution function from the exponential family:
E(Y) = = b'var(Y;) = o7 = b" (6)a:(¢))
Let g(u;) = n; be a monotonic, differentiable transformation of the expected value of y;. The
function 7; is the link function and follows a linear model:
g =n: = x;B

When inverted: u = g~*(x}B)
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Maximum Likelihood Estimation
For an initial rough estimate of the parameters B, use the estimate to generate fitted values:
n=g"1M)

Let z be a working dependent variable such that z; = %; + (y — 1;) Z—Z‘: , Where Z—Zi is the
i i

derivative of the link function evaluated at the trial estimate.

Di
0" (0 Gy

dui

Calculate the iterative weights: w; = where b is the second derivative of b(6;)

evaluated at the trial estimate.

Assume a;(¢) is of the form a; = ;i. The weight w; is inversely proportional to the variance of
i

the working dependent variable z; for current parameter estimates and proportionality factor
¢. Regress z; on the predictors x; using the weights w; to obtain new estimates of :
g =XWX)1X'Wz

where X is the model matrix, W is a diagonal matrix of w;, and z is a vector of the working
response variable z;.
The process is repeated until the estimates ﬁ change by less than the specified amount.
H20 Distributed Random Forest

Distributed random forest (DRF) is one of the powerful classification and regression
tools available in H20. The algorithm generates a set of classification or regression trees instead
of a single tree, and each tree is a weak learner built from a subset of rows and columns from
the given dataset, with the addition of more trees reducing the variance®!. The final prediction
is computed from the average prediction of all the trees in the model. Tree building and growth

is stopped randomly by several stopping metrics, such as tree depth, number of leaves or

24



nodes>*. Random forest shares some similarities with gradient boosting machines, however, the
former builds the weak learners and trees independently without input from the other trees in

the model.
H20 Gradient Boosting Machines

GBM involves three major elements: a loss function to be optimized, a weak learner to
make predictions, and an additive model to add weak learners to minimize the loss function.
The loss function depends on the problem type; for instance, it may be squared error for
regression and logarithmic for classification. Decision trees are used as the weak learner, as
they output real values for splits. The trees are constructed in a greedy manner to minimize the
loss function. Lastly, the trees are added sequentially, and a gradient descent procedure is
employed to minimize the loss function. After the loss is calculated, a decision tree is added to
the model that follows the gradient and thus reduces the loss. The tree is parameterized, and
its parameters modified to move in the right direction by reducing the residual loss2. The
output of the new tree is added to that of the existing sequence of trees to correct the final
output of the model.

H20’s GBM algorithms follow the algorithm specified by Hastie et al*. The goal is to
minimize the residuals 7y, which are the gradient values for each of the K bins. The iterative
construction of regression trees, denoted as i, allows for the results and errors of the
previous tree to be incorporated into the creation of subsequent trees. The specific algorithm
used by H20 is as followed>3:

Initialize fio = 0,k =1,2,...,K

Form =1to M:
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Sk
1. Set pk(X) = W,k = 1,2, ,K

2. Fork=1toK:
a. Compute i = Vik — P (x),i=1,2,...,N
b. Fit a regression tree to the targets 1ym, i = 1, 2, ..., N, giving the terminal regions

Rjimrj = 1, 2, ']m

K—-1 inER (Tikm)

K ineR

jkm
ITikem | (A1=1Tikem|)

c. Compute Yjxm = J=12,....)m

jkm
d. Update fim(®) = fim-1() + X ¥iemI (%; € Rjjem)
Output f, () = finr (), k =1,2, ..., K
H20 Deep Learning Neural Networks
H20’s deep learning implementation is based on a multi-layer feedforward artificial
neural network (ANN) trained with stochastic gradient descent using back propagation. The
ANN model is also known as deep neural network (DNN), and it is the most common type of
deep learning that works well with tabular data. The network contains a large number of layers
consisting of neurons with tanh, rectifier, maxout activation functions. While the number and
size of hidden layers can be customized by the user, the minimum is at least one hidden layer.
High predictive accuracy is achieved through advanced features such as adaptive learning rate,
rate annealing, momentum training, dropout, L1 or L2 regularization, checkpointing, and grid
search>*. H20 asynchronous trains multiple copies of the global model parameters on the local
data at each compute node, and individual performance is periodically fed to the global model

through model averaging across the network.
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The default setting of deep learning in H20 sets two hidden layers of size 200 each and a
stopping metric of log loss for classification. It is recommended to shuffle the training set
because the training is done in order. The input layer automatically scales to the number of
input features or columns for the given dataset; therefore, any complexity reduction would
need to be done prior to feeding the training data into the neural network.

H20 Stacked Ensembles

Ensemble machine learning methods utilize multiple learning algorithms to achieve
better predictive performance than the result obtained from the individual algorithms. H20’s
Stacked Ensemble method employs a specific process called stacking to find the optimal
combination of a collection of prediction algorithms. Stacking involves training a second-level
metalearner to find the optimal combination of the base learners, its goal being to ensemble
strong, diverse sets of learners together.

The steps below outline the procedure of training and testing a super learner ensemble.
H20 automates most of the process for efficient model building on the platform>.

1. Setup the ensemble.
a. Specify a list of L base algorithms, with a specific set of model parameters.
b. Specify a metalearning algorithms.
2. Train the ensemble.
a. Train each of the L base algorithms on the training set.
b. Perform k-fold cross-validation on each of these learners and collect the cross-

validated predicted values from each of the L algorithms.
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c. The N cross-validated predicted values from each of the L algorithms can be
combined to form a new N x L matrix. This matrix, along with the original
response vector, is called the “level-one” data.

d. Train the metalearning algorithm on the level-one data. The “ensemble model”
consists of the L base learning models and the metalearning model, which can
then be used to generate predictions on a test set.

3. Predict on new data.

a. To generate ensemble predicts, first generate predictions from the base
learners.

b. Feed those predictions into the metalearner to generate the ensemble
prediction

For cross validation, all base models need to have the same number of folds, and our
experiment used 10-fold cross validation for all the models. The cross-validated prediction
results have to be saved to train the metalearner. In addition, base models are trained on the

same training data, with a minimum of two base learners required.
Additional R Packages

All the R packages can be found on CRAN: https://cran.r-

project.org/web/packages/available packages by name.html

ukbtools
This R toolset is used to visualize primary dataset from UK Biobank data files and query
ICD Diagnoses, retrieve genetic metadata, read and write standard formats of genetic

analyses®®.
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tidyverse
The ‘tidyverse’ is a collection of open source R packages that are very useful in the field
of data science. It is designed to simplify the process of loading multiple ‘tidyverse’ packages in
a single step, since they all share the common data representations and APl design®’.
dplyr
This is one of the core packages of the ‘tidyverse’, and it contains many functions that
enable dataframe manipulation in an intuitive and user-friendly fashion>®.
tidyr
As the name implies, this R toolset helps transform messy data into tidy data, which
follows these principles:
1. Every column is a variable.
2. Everyrow is an observation.
3. Every cell is a single value.
It pairs nicely with ‘dplyr’ in data wrangling and manipulation tasks>.
geplot2
One of the most popular R packages, ‘ggplot2’ was developed based on the “Grammar
of Graphics”, which employs a data visualization scheme that breaks up graphs into semantic
components such as layers and scales. It is a system for ‘declaratively’ creating graphics,
allowing for versatile manipulation of data visualization that could replace the base graphics in

R®0, It is also a part of the ‘tidyverse’ collection.
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ggthemes

This package provides additional themes, geoms, and scales for ‘ggplot2’ and allows for
more customization and aesthetics for data visualization. Some examples are Stata graph
schemes, range frame, Tufte’s box plot, ‘The Economist’ color scheme, ‘Wall Street Journal’

theme, etc®.
Training GBMs on TCGA Unmasked Germline CNV Data for Diagnosis Classification

Germline CNVs from unmasked TCGA studies were used for GBM model training. Only
the genomic information from normal blood sample was included; therefore, cancers derived
from hematopoietic cells, i.e. Acute Myeloid Leukemia (LAML) and Chronic Myelogenous
Leukemia (LCML), were excluded to prevent their results from skewing other models. When
building model for each cancer, samples of the target type retained their cancer labels, e.g. OV,
BRCA, PCPG, while the rest of the samples were labeled as “Normal”. The models were trained
with 100 trees and balanced classes, with no max depth specified, and the training was
followed by ten-fold cross validation to avoid overfitting and obtain the AUC values for each
model. The procedure was repeated five times for each cancer type, and the results were
averaged for model performance evaluation.

Training GBMs on TCGA Germline CNV Data for Incidence Age Prediction

Similarly, only germline CNV data from normal blood sample was used in this analysis,
and LAML and LCML were thus excluded. However, samples from both masked and unmasked
TCGA studies were combined. In addition to gCNVs, factors such as gender, race, ethnicity, and
their combinations were taken into consideration. During model training, the data was divided

into subsets by cancer type, such that only samples of a single cancer type were included for
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each model. To better evaluate whether the prediction was better than random guess, control
sets were constructed with a simple random sampling without replacement method. To
generate randomized dataset for each cancer type, the ages of the patients were scrambled,
while the CNVs and other parameters were kept the same. Models were then built for the
controls, simulating results from random chances.
Training Machine Learning Algorithms on UK Biobank Germline L2R Data for Diagnosis
Classification

To verify whether our results were database-specific, i.e. highly influenced by artifacts
found in the TCGA, we validated our methods and models on the data from UK Biobank, which
has the additional advantage of containing data from healthy individuals. After acquisition of
the germline I2r data and associating clinical data and transformation into CSLV values, the UK

Biobank data were first separated into normal-patient group and cancer-patient groups.
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Results

The Cancer Genome Atlas (TCGA)

Prediction and Classification of Cancer Diagnosis

The initial results show that it is possible to predict cancer types with unmasked
germline copy number variation (CNV) data from The Cancer Genome Atlas (TCGA). There exist
inherent genetic differences between patients diagnosed with different cancer types to make
germline chromosomal scale length variation-based classification feasible.

For each of the 32 cancer types from TCGA database, 10 gradient boosting tree models
were built. However, the two blood-related cancers, Chronic Myelogenous Leukemia (LCML)
and Acute Myloid Leukemia (LAML), were omitted because the data was collected from normal
blood samples.

To select the number of CNVs for the model building, the segments were first sorted by
their corresponding measurement counts in descending order. The analysis utilized top 30 CNV
segments, and each CNV carries an individual segment mean. The value is normalized average
of copy number of specific regions of the genome. In comparison to the masked data, the
unmasked data includes Y chromosomes and calculates segment means for small genomic
segments, instead of large portions that account for almost the entire chromosome in some

cases, providing a more precise measurement.
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Chromosome

1 3
2 7
3 8
q 13
5 5
6 Y
7 6
8 7
9 4
10 5
11 3
12 2
13 1
14 4
15 9
16 7
17 20
18 5
19 6
20 13
21 16
22 4
23

24 5
25 8
26 12
27 1
28

29 19
30 8

Table 1: Top 30 CNVs Ranked by Count in TCGA

Start
68697108
54318812
39378084
71903417
58030200
2782397
103290101
70958264
172067997
104524672
193160173
146106836
109690352
114254167
23363117
154601461
80664
46271828
149661
37497899
55764310
9459504
177800550
181006225
40920333
9481274
152789447
645892
51639099
111282050

End
68698262
54318824
39529446
71906418
58037706
56872112
103314186
70961155
172068382
104524903
193165114
146109366
109697556
114261019
23373486
154607903
1580353
46273400
254283
37510620
55764867
9477699
177805604
181363319
40920952
9575696
152796224
645908
51644944
111283031

Length
1154
12
151362
3001
7506
54089715
24085
2891
385
231
4941
2530
7204
6852
10369
6442
1499689
1572
104622
12721
557
18195
5054
357094
619
94422
6777
16
5845
981

Count
3508
2956
2830
2815
2707
2664
2601
2523
2471
2361
2275
2096
2085
2083
2030
2020
1982
1950
1938
1918
1900
1810
1784
1776
1735
1694
1682
1645
1643
1628

Mean
-0.52
-0.46
-0.68
-1.40
1.36
-1.00
-0.37
-1.87
-0.70
-0.13
-0.25
-0.62
0.04
-0.57
-0.84
-1.20
0.01
-1.46
0.02
-0.58
2.54
0.33
2.20
0.02
-1.90
-0.32
-0.46
2.77
-1.02
0.23

SD
1.32
1.86
1.49
1.83
0.86
0.28
1.00
1.55
1.24
1.62
131
1.32
1.39
1.09
1.65
1.43
0.02
1.74
0.06
1.40
0.92
1.33
0.97
0.06
0.85
1.34
1.01
2.55
1.22
1.32

We selected CNVs based on the number of patients in which they appeared. These CNVs were identified as part of

the TCGA bioinformatics pipeline. This table shows the top 30 CNVs ranked by count. The location of the CNV is
characterized by its chromosome number, start, and end points in HG38 coordinates. The length of each CNV, its
respective count, i.e. the number of patients out of 8859 who had this CNV, the mean and standard deviation of

different listed values for that CNV.
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A common error of model building is overfitting. This phenomenon occurs when the
model is tuned too preferentially to the noise, instead of the targeted signal, so it performs
exceptionally well with the training set but poorly with the testing set. Therefore, a 10-fold
cross validation was implemented for each cancer type. Receiver operating characteristic (ROC)
curves were plotted for the cross-validation results of individual models, in respect to ROC
curve with an area-under-curve (AUC) of 0.5 that represents a model formed by chance. The
corresponding AUCs were averaged to evaluate individual model performance, as shown in

Table 1.
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Cancer Type Average Standard

AUC Deviation
Uterine Corpus Endometrial Carcinoma 0.632 0.008
Bladder Urothelial Carcinoma 0.682 0.004
Prostate Adenocarcinoma 0.639 0.008
Breast Invasive Carcinoma 0.696 0.002
Ovarian Serous Cystadenocarcinoma 0.819 0.004
Sarcoma 0.607 0.013
Glioblastoma Multiforme 0.782 0.002
Skin Cutaneous Melanoma 0.659 0.004
Head and Neck Squamous Cell Carcinoma 0.690 0.010
Pancreatic Adenocarcinoma 0.556 0.017
Lung Squamous Cell Carcinoma 0.698 0.003
Kidney Renal Papillary Cell Carcinoma 0.676 0.005
Brain Lower Grade Glioma 0.626 0.004
Lung Adenocarcinoma 0.618 0.005
Stomach Adenocarcinoma 0.688 0.006
Thyroid Carcinoma 0.685 0.006
Liver Hepatocellular Carcinoma 0.750 0.007
Colon Adenocarcinoma 0.667 0.009
Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma 0.644 0.008
Pheochromocytoma and Paraganglioma 0.836 0.009
Mesothelioma 0.790 0.013
Esophageal Carcinoma 0.779 0.013
Rectum Adenocarcinoma 0.621 0.008
Testicular Germ Cell Tumors 0.728 0.012
Kidney Renal Clear Cell Carcinoma 0.649 0.008
Thymoma 0.784 0.022
Uveal Melanoma 0.780 0.015
Adrenocortical Carcinoma 0.745 0.018
Uterine Carcinosarcoma 0.709 0.020
Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 0.598 0.017
Cholangiocarcinoma 0.679 0.044
Kidney Chromophobe 0.406 0.136

Table 2: Average Performance of GBM Models
The average Area-Under-Curves (AUCs) of GBM models trained on top 30 germline CNVs indicate performance
better than chance for most cancer types.
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Cancer types such as Ovarian Cancer (OV), Pheochromocytoma and Paraganglioma
(PCPG) and Glioblastoma Multiforme (GBM) performed notably well, with AUC values over 0.75
in analysis using only top 30 gCNVs (Fig. 1). Kidney Chromophobe (KICH) has poor performance
likely due to the insufficient sample size (n = 9), as it is a rare, genetic disorder. The results
indicate that the modeling technique was able to classify cancer diagnosis using gCNVs from

unmasked data, and its performance was better than random guessing.
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Figure 1: Receiver Operating Characteristic (ROC) Curves of Germline CNV Cross-Validation Models

Selection of ROC curves for cross-validation metrics of gradient-boosted machine classification models on germline
CNVs. Six models are shown: Colon adenocarcinoma (COAD), Esophageal Carcinoma (ESCA), Glioblastoma
Multiforme (GBM), Lung Squamous Cell Carcinoma (LUSC), Ovarian Serous Cystadenocarcinoma (OV), and
Pheochromocytoma and Paraganglioma (PCPG), with PCPG in lead (AUC = 0.84).

36



AUC Comparison of Models Utilizing Different Numbers of Top CNV

As noted earlier, the unmasked data contains fewer samples, raising the question
whether the same number of top gCNVs used in analysis for unmasked data should be used for
masked data. Therefore, we conducted an analysis to investigate the effect of increasing gCNVs
on AUCs and the point where the incremental change in performance tapers off by building
cancer diagnosis classification model with different numbers of top gCNVs: 30 (used with
masked data), 50, 75, 100, 150, and 200.

The following results indicate that the respective AUC value of the model built for a
cancer type increases with the number of top CNV used (Fig. 2). Although using every CNV in
the unmasked models could potentially optimize the predictive powers, it would be too
computationally exhaustive and might even result in diminishing return, as the great number of
parameters provide too much interference. The model performance plateaued at top 75 CNVs
for many cancer types (Fig. 3), suggesting top 75 to be a suitable cutoff for efficient and

accurate cancer prediction from unmasked germline CNVs.
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Figure 2: Area-Under-Curve Values of Germline CNV Models utilizing different numbers of top CNVs
Selection of Area-Under-Curve (AUC) values vs. numbers of top CNVs for gradient-boosted machine classification
models on germline CNVs. The six models show discernable trend of proportionality between top CNVs and AUC.
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Figure 3: ROC Curves of Germline CNV Models utilizing different numbers of top CNVs
Selection of ROC curves of top CNVs for gradient-boosted machine classification models on
germline CNVs. The six models show discernable trend of proportionality between top CNVs and
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Cancer Incidence Age Prediction

In addition to cancer classification, we were interested in whether chromosomal scale
length variation of DNA play a role in cancer incidence age. Though the accuracy of cancer
onset age prediction using chromosomal scale length variation alone from combined unmasked
and masked TCGA data is dubious, the results suggest that the prediction models performed
better than chance for some cancers.

To determine whether the age prediction was more accurate than chance, we first
constructed control datasets with a simple random sampling without replacement method. For
each cancer type, the ages of the patients were scrambled, while the CNVs were kept the same,
to generate a randomized dataset. Gradient Boosting regression model was then built from the
control, simulating results from random guessing.

This analysis used top 50 CNV segments. For each type of cancer, 10 gradient boosting
regression models with gCNVs as predictors and Age as predicted variable were built per set:
the original and control datasets. The models were subsequently cross validated 10 times, and
correlation coefficients between the predicted and observed ages and the root mean square
errors (RMSEs) of each model were obtained as evaluation metrics. To determine whether the
differences in correlation coefficients and RMSEs of between the original and control datasets
were statistically significant, one-sided Welch'’s t-tests were conducted, as it was hypothesized
that the correlation coefficients of the original datasets would be higher than control, while the

RMSEs of the original datasets would be lower.

39



The overall low correlation coefficients, i.e. less than 0.1, suggested that age prediction
based on gCNVs alone was not entirely feasible. Head and Neck Squamous Cell Carcinoma
(HNSC) resulted in the highest average correlation coefficient of 0.1021 (Fig. 4). The t-test
outputs showed that the prediction models were better than random guessing for slightly less
than half of the cancer types (Fig. 5), as 13 out of 28 cancers indicated statistically significant
results. For RMSE, the t-test outputs likewise demonstrated that age prediction based on gCNVs
was better than chance for some cancer types: 10 out of 28 cancers had statistically significance

differences (Table 3).
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Figure 4: Performance of Multifactorial Age Prediction Models
Head and Neck Squamous Cell Carcinoma results in the best performance, with a correlation coefficient of 0.1021.
The actual fit showed a stronger correlation between observed and predicted age than control. The 95%
confidence intervals of the linear fit are indicated by the grey-shaded areas
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Figure 5: Performance of CNV Age Prediction Models

Selection of age prediction models with statistically significant differences in performance. A) and B) compare
correlation coefficients between predicted and observed age of actual and control datasets. C) and D) compare
cross-validation RMSEs of actual and control datasets.

Next, we were interested in whether the addition of other phenotypic factors, i.e.
gender, race, and ethnicity, would increase the predictive power. These elements were
incorporated into the previously constructed CNV models stepwise, i.e. in different
combinations such as CNV+gender, CNV+race+ethnicity. For the models utilizing all parameters,
15 out of the 28 cancer types exhibited significant differences in correlation coefficients and
RMSEs between original and control datasets (Table 3). In addition, the overall correlation
coefficients increased, with decrease in RMSE observed in many cancer types (Fig. 6, 7). The
results suggest that the inclusion of gender, race, and ethnicity in the CNV models improves the

predictive power, and the difference in performance in respect to chance is more evident.
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Number of Significant Cancers (out of 28)
Model Correlation Coefficient | RMSE
CNV Only 13 10
CNV+Ethnicity 15 12
CNV+Race 16 10
CNV+Gender 14 10
CNV+Race+Ethnicity 16 11
CNV+Gender+Ethnicity 15 12
CNV+Gender+Race 15 12
All 15 15

Table 3: Number of Significant Cancers of Different Multifactorial Age Prediction Models

The eight multifactorial age prediction models were evaluated using Correlation Coefficient and RMSE as criteria. t-

tests were performed between actual and control datasets to determine whether the differences in correlation
coefficients or RMSE were significant. The addition of more phenotypic factors results in greater contrasts in age
prediction performance.
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Figure 6: Performance of Multifactorial Age Prediction Models

Selection of age prediction models with statistically significant differences in performance. Models were built from
CNVs, gender, race, and ethnicity. A) and B) compare correlation coefficients between predicted and observed age
of actual and control datasets. C) and D) compare cross-validation RMSEs of actual and control datasets.
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Figure 7: Performance of Different Multifactorial Age Prediction Models
Selection of age prediction models with statistically significant differences in performance. Models were built from
eight combinations of CNVs, gender, race, and ethnicity: CNV only, CNV+Gender, CNV+Ethnicity, CNV+Race,

CNV+Gender+Ethnicity, CNV+Gender+Race, CNV+Race+Ethnicity, and all. A) and B) compare correlation
coefficients between predicted and observed age of actual and control datasets. C) and D) compare cross-
validation RMSEs of actual and control datasets.
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GBM Algorithm Library Comparisons

There are different implementations of the gradient boosting method available in H20:
the aforementioned GBM, XGBoost, and LightGBM, the latter two building and improving upon
the traditional GBM. XGBoost employs a regularization function to control overfitting®?, and
LightGBM incorporates two techniques to improve performance: one is gradient-based one-
side sampling that emphasizes the most informative samples, and the other is exclusive feature
bundling that groups similar features to reduce complexity®3.

Cancer diagnosis classification was implemented with the three algorithm libraries, with
comparison performed across all the top CNVs. All three libraries followed the trend of
increasing AUCs with the number of CNVs used in the models, and their performances were
generally comparable. However, for some cancer types, XGBoost and LightGBM resulted in
greater AUCs than the base GBM library, especially at higher numbers of CNVs (Fig. 8). The
most exceptional case would be KICH, which was the only cancer scoring an AUC below 0.5 with
top 30 CNVs in the GBM model, likely due to its small sample size. Its XGBoost- and LightGBM-
implemented models were able to consistently achieve AUCs greater than 0.5 across all the top
CNVs. In addition to their faster running time, the improved GBM library implementations

should be taken into consideration for future studies.
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Figure 8: Cancer Classification Performance Comparison of Different GBM Algorithm Libraries

Selection of AUC values vs. numbers of top CNVs for three implementations of gradient-boosted machine classification
models on germline CNVs. THYM, OV, and PCPG show significant differences in performance between base GBM
library and the improved GBM libraries: XGBoost and LightGBM. KICH, the only cancer for which the prediction was
worse than random chance, was able to consistently achieve AUC values greater than 0.5 across all top CNVs in
XGBoost- and LightGBM- implemented models.
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Genetic Risk Score for Glioblastoma Multiforme based on Copy Number Variation

Glioblastoma multiforme (GBM) is the most common form of brain cancer®*. It is an
aggressive form of cancer, with the median survival time measured in months. In 2008, patients
diagnosed in the US had a median survival time ranging from 31.9 months to 5.6 months,
depending on their age®. Several lines of evidence suggest that glioblastoma multiforme has a
genetic basis. First, multiple cases of this rare disease have been reported to occur within single
families®®. Second, the only environmental factor associated with glioblastoma multiforme,
high doses of ionizing radiation, is rare and not present for the vast majority of people
diagnosed with this disease®’. Most importantly, GWASs have identified several SNP alleles that

are present significantly more in glioblastoma multiforme patients than expected®®.

The maximum accuracy of a genetic test is a function of the heritability and prevalence
of a disease®. The heritability of glioblastoma multiforme in a Northern European population is
about 26% (95% confidence interval: 17%-35%’°. Based on this number and the prevalence of
glioblastoma multiforme in a similar population (about 2-3 per 100,000 persons), the maximum
accuracy of a genetic test measured by the area under the receiver operating characteristic
curve (AUC) should exceed 0.95%°. Tests based on SNPs do not come close to this AUC value.
We set out to determine how well a glioblastoma multiform predictive DNA test based on copy
number variations could perform.

We have previously found that the gradient boosting algorithm performs the best with
this particular dataset and thus employed this algorithm to compute genetic risk score for
glioblastoma multiforme. We wanted to investigate how the performance of classification

changed with the number of distinct CNVs included in the model by examining how well these
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overlapping sets of CNVs could predict whether an individual would develop glioblastoma
multiforme. Figure 9 shows that the predictive ability, quantified by AUC, of the gradient
boosting classification models varies with the number of different top ranked CNVs included in
the model. We also discovered that the classification performance improved with more

features. The respective receiver operating characteristic curves are displayed in Figure 10.
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Figure 9: Area-Under-Curve Values of Glioblastoma Multiforme Classification
Models utilizing different numbers of top CNVs

Area-Under-Curve (AUC) values vs. numbers of top CNVs for glioblastoma
multiforme classification models on germline CNVs. The six models show
discernable trend of proportionality between top CNVs and AUC.
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Figure 10: ROC Curves of Glioblastoma Multiforme Classification Models
utilizing different numbers of top germline CNVs

ROC curves of top CNVs for glioblastoma multiforme gradient-boosted
machine classification models on germline CNVs. The six models show
discernable trend of proportionality between top CNVs and AUC.

Next, we characterized how well the classification model would work as a genetic risk
score. Five-fold cross validation was used on the gradient boosting model with 200 top CNVs to
obtain genetic risk scores for each of the 8726 patients in the dataset, and these individuals
were ranked by their respective scores and assigned a percentile. Table 4 shows the results in
tabular form, in which the samples were grouped into quintiles, each consisting of 20 percentile

points.
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Quintile | Normal GBM Total Odds Ratio 95% Confidence
Interval

1 1738 8 1746 0.07770379 0.04-0.15

2 1718 27 1745 0.26530325 0.18-0.39

3 1699 46 1745 0.45705285 0.34-0.62

4 1651 94 1745 0.96113136 0.77-1.20

5 1432 313 1745 3.68980390 3.17-4.30

Table 4: Odds Ratio Quintile of Glioblastoma Multiforme Prediction

From the five-fold cross validation, each individual in the dataset was assigned a genetic risk score from the
gradient boosting classification model. The samples were ranked from lowest to highest then separated into
quintiles. The table presents the number of patients with and without glioblastoma multiforme in each quintile
along with the odds ratio (relative to the entire group) and the 95% confidence interval for the odds ratio.

Figure 11 presents a graph of odds ratio, relative to the entire dataset, of the patients in
the given percentile having glioblastoma multiforme. The 8726 individuals are binned into 50

equal groups, each consisting of two percentile points.
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Figure 11: Odds Ratio Graph of Glioblastoma Multiforme Prediction

Patients ranked higher by the gradient boosting classification model are significantly more likely to have
glioblastoma multiforme. The predictive model ranked all the people in the dataset based on their likelihood of
having glioblastoma multiforme. This ranking was then grouped into 50 equal partitions. The plot shows the odds
ratio of each of the 50 equal partitions along with the 95% confidence intervals.

49



To examine the feature contribution, we split the dataset of 8726 patients into training
set (80%) and testing set (20%) then trained a gradient boosting machine to predict whether an
individual had glioblastoma multiforme. Figure 12 presents the SHAP contribution plot that

shows which CNVs play the most significant role in gradient boosting predictive model.
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Figure 12: SHAP Contribution Plot of Predictive Model of Glioblastoma Multiforme Prediction

This plot ranks the importance to the predictive model of each CNV. Each individual is represented by a dot.
The color of the dot represents the normalized chromosome length, and the position of the dot on the x-axis
represents the impact of that CNV on the model prediction result for that respective patient. The plot indicates
that Y_12378462_13482643 is more important than X12_45510655_45515754 in predicting Glioblastoma
Multiforme.
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Recent genome wide association studies have shown that glioblastoma multiforme is
distinct from other forms of glioma, and these studies have identified a few regions of the germ
line genome that are significantly different in people who develop glioblastoma multiforme®s.
The three SNPs with the highest levels of significance are: rs10069690 at 5p15.33, rs634537 at
9p21.3 and rs2297440 at 20gq13.33. We checked whether our copy number variation data
overlaps with these three SNPs. None of the three overlap with our data. The closest is the
SNP rs634537, which still lies about 1.3 megabases away from the #15 copy number variation in
our dataset shown in Table 1. This distance indicates the two are not related. This finding
suggests that the copy number variation data is complementary to the SNP data provided by
GWAS studies. The overall predictive accuracy of a germline test should increase by combining

copy number variation data with SNP data.

Initial work by the TCGA project on glioblastoma multiforme focused on genome
differences between normal germ line DNA and the somatic DNA found in glioblastoma
tumors’t72, That work identified specific mutations and complex rearrangements that most
glioblastoma tumors shared. Other work on the TCGA dataset related to glioblastoma
multiforme identified prognostic indicators, somatic alterations in the tumor’s DNA that could
predict survival’>74. In contrast, we examined only germ line DNA copy number variation to
measure how well these germ line DNA alterations can predict whether a person will develop

glioblastoma multiforme.

Other work on using germ line DNA copy number variation to predict development of a
disease also exists. Our group used chromosomal-scale length variations, a large scale version

of copy number variation, to predict whether a person will develop ovarian cancer’ and other

51



forms of cancer’® using TCGA data. Another group used a GWAS-type analysis employing
logistic regression with copy number variation data collected from about 1800 ovarian cancer
cases and 1800 controls to demonstrate that some germ line DNA copy number variations
occur more frequently in women who develop epithelial ovarian cancer than in those who

don’t develop that form of cancer””.

Genetic risk scores have been developed for several other forms of cancer. A large
prostate cancer study of 1370 cases and 1239 controls found that a polygenic risk score built
from 65 SNPs could predict prostate cancer with an AUC of 0.677%. Breast cancer can also be
predicted by genetic risk scores. A recent study used a genetic risk score based on 287 SNPs in
a European population and found an AUC of about 0.63. They also found that this same genetic
risk score is applicable to a Chinese population, where it had an AUC of about 0.617°. One
genetic risk score to predict breast cancer risk is commercially available and has been validated
in several large cohorts with over 100,000 women. Women scoring in the top 1% of this
commercially available genetic risk score have an odds ratio of about 2.0 of developing breast

cancer compared to women scoring in the 40-60 percentile®°.

Our study has several limitations. We performed a reanalysis of existing data that was
not collected for this purpose. It would be better to design a prospective study where samples
could be collected ahead of time from a diverse, but well defined, group of people. Since we
used a non-linear machine learning algorithm rather than logistic regression, we could not

correct for population substructure, as is typically done in GWAS studies®!.

Our analysis is based on TCGA, a single dataset. Although TCGA was designed to be

inclusive and it included a wide selection of people with different racial and ethnic
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backgrounds, it is not clear how well these results will generalize to any specific population.
Future studies should be done to validate these findings by applying these predictions to

different populations and testing how well they perform in a new population.

Finally, our control population consists of people who have been diagnosed with many
different types of cancer patients, but not glioblastoma multiforme. This is an unfortunate
aspect of using the TCGA dataset. It would be better to draw the control population from the
general population instead of limiting it to only those who have been diagnosed with other

forms of cancer.

Genetic Risk Score for Colorectal Cancer based on Copy Number Variation

Colorectal cancer (CRC) is the second leading cause of cancer-related death and the
third most common cancer worldwide®2. In 2018, it accounts for approximately 1.8 million new
cancer diagnoses and more than 880,000 deaths®. The age-standardized incidence rates of CRC
vary greatly across continents®*#, with the highest present in Australia and New Zealand, and
the lowest in Africa and South-Central Asia. These differences could be attributed to hereditary
susceptibility, socioeconomic status, diet, lifestyle, and screening practices®®, as CRC
encompasses a heterogenous cancer group, influenced by both exogenous and endogenous
factors.

CRC is most often diagnosed in elderly individuals; however, in recent years there has
been a rise of incidence rate of early on-set CRC, which is generally defined as CRC diagnosed in
individuals under 50 years of age, worldwide, and the reason behind such phenomenon is
poorly understood®’:28, Patients with early-onset CRC are more likely to be diagnosed with

advanced-stage disease than individuals with late-onset CRC. A lack of awareness, recognition
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of symptoms, and screening of the disease might contribute to delayed diagnosis and
prevalence of advanced-stage disease at the time of diagnosis.

There have been a number of studies on the CRC predisposition. One study examined 53
SNPs for CRC and constructed genetic risk score. It found that those in the highest decile of
genetic risk score were 3-fold more likely to have colorectal cancer compared to the lowest
decile®. Other studies have also found that colorectal cancers can be predicted from genetics
with similar effectiveness’?°, A better understanding of the underlying genetic basis of the
disease could help guide prevention, early detection, and treatment strategies.

We aimed to develop a strategy based on structural variation rather than SNPs to
compute genetic risk scores for CRC. We employed machine learning algorithms to account for
the non-linear effects between CNVs, instead of linear combinations.

From the TCGA dataset, we constructed a case-control study to test the genetic risk
score built from CNV data. 504 patients had been diagnosed CRC, and 8222 individuals had not

been diagnosed with any form of CRC. The TCGA group statistics is shown in Table 5.
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Diagnosed with CRC Not Diagnosed with CRC

% Women 239/504 = 47.4% 4397/8222 =53.5%

% Men 265/504 = 52.6% 3825/8222=46.5%

% Black 62/504 =12.3% 708/8222 = 8.6%

% White 273/504 =54.2% 6104/8222=74.2%

% Asian 11/504 = 2.2% 573/8222=7.0%

Mean Age 66.4 58.7

Total 504 8222

Table 5: TCGA Group Statistics of CRC Patients

From the TCGA dataset, we constructed two groups. One consisted of all individuals who had been diagnosed with
CRC. The other contained patients that had not been diagnosed with CRC. This table compares characteristics of
the two groups.

We carried out a preliminary investigation on the classification performance and

number of different top ranked CNVs. We wanted to examine how well these overlapping sets

of CNVs could predict whether an individual would develop CRC. Figure 13 shows that the

predictive ability, quantified by AUC, of the gradient boosting classification models varies with

the number of different top ranked CNVs included in the model. We discovered that the

classification performance improved with more features, but it appeared to reach a plateau at

150 top CNVs. The respective receiver operating characteristic curves are displayed in Figure

14.
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Figure 13: Area-Under-Curve Values of CRC Classification Models utilizing different numbers of top CNVs
AUC values vs. numbers of top CNVs for six different classification models, each utilizing different number of
CNVs. The performance generally increases with the number of CNVs but appears to plateau at 150 top CNVs.
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Figure 14: ROC Curves of CRC Classification Models utilizing different numbers of top germline CNVs
ROC curves of top CNVs CRC gradient-boosted machine classification models on germline CNVs. The
six models show discernable trend of proportionality between top CNVs and AUC.
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Next, we evaluated the predictive performance of different machine learning
algorithms. Using 150 top CNVs, we measured how well these algorithms could identify
whether a patient had been diagnosed with CRC or not. Each model building and classification
was repeated five times. The performance metric we employed was the area-under-curve
(AUC) value of the receiver operating characteristic (ROC) curve. The outcomes of these models
are shown in tabular form in Table 6, and the graphical results, including AUC comparison and
corresponding ROC curves are presented in Figure 15 and 16. The Gradient Boosting Machine is
shown to achieve the highest AUC; however, this is not a conclusive result, since it might be
possible to fine tune a deep learning network to attain superior performance. The gradient
boosting machine has the advantages of faster running time and easier model tuning and
manipulation. Others have found that gradient boosting machine does perform well on many

different types of datasets.

Algorithm Average AUC
Gradient Boosting Machine 0.76
XGBoost 0.75
Extremely Randomized Trees 0.71
Distributed Random Forest 0.69
Deep Learning 0.68
Generalized Linear Model 0.68

Table 6: Comparison of Machine Learning Algorithms for CRC Classification

We evaluated six popular and powerful machine learning algorithms from the H20 package in R for predicting CRC
classification from CNV data. The algorithms are ranked by the best average AUC from five-fold cross validation,
repeated five times.
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Figure 15: Area-Under-Curve Values of CRC Classification Models utilizing different algorithms
AUC values of six different CRC classification models, each employing different machine learning
algorithm. Tree-based algorithms, specifically GBM and XGBoost, achieved the best performance.
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Figure 16: ROC Curves of CRC Classification Models utilizing different algorithms
ROC curves of CRC classification models employing different machine learning algorithms. The
AUC for the best model, i.e. the gradient boosting machine model, was 0.76.
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Table 6 indicates the effectiveness of Gradient boosting machine, thus we used this
algorithm for the rest of the analysis in this study. For the following step, we aimed to classify
the 8726 patients in the dataset. A ten-fold cross validation was carried out, randomly
partitioning the dataset into ten equal groups. The first nine groups were used to train the
model to assign individuals as CRC or non-CRC, and the last group was held out to be used as
the test set. The model gave each patient in the test set a numerical score to quantify the
likelihood of that particular individual belong to the CRC class. The process was repeated ten
times, with different hold-out group each round, resulting in a numerical score for every single

individual of the 8726 patients.

Decile Number of Number of | Total Number Odds | 95% Confidence
Patients Patients of patients Ratio Interval

without CRC with CRC
1 871 2 873 0.04 0.01-0.12
2 864 9 873 0.17 0.09 -0.32
3 859 14 873 0.27 0.16 -0.45
4 846 27 873 0.52 0.35-0.77
5 837 36 873 0.70 0.50-0.99
6 825 48 873 0.95 0.70-1.28
7 823 49 872 0.97 0.72-1.31
8 813 59 872 1.18 0.90-1.56
9 776 96 872 2.02 1.60-2.54
10 708 164 872 3.78 3.12-4.58

Table 7: Odds Ratio Deciles of CRC

Using 10-fold cross validation, each individual in the dataset was assigned a score from the CRC
classification model. The patients were ranked from lowest to highest, then segmented into ten deciles.
This table shows the number of individuals with and without CRC in each decile, the respective odds ratio
relative to the entire group, and the 95% confidence interval for the odds ratio.
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The predicted results were compared to the known CRC status of the patients, who

were first ranked by their scores, from the least likely to have CRC to the most likely to be from

the CRC class. We could evaluate the classification performance of the model through the

comparison of the ranking with the “correct” CRC status of the patients. The relative risk of the

samples split into ten different groups is shown in tabular form in Table 7. Similar information is

presented in Figure 17, except the samples were split into 50 groups.

..u..lelhulml MN H\ \ ‘

Figure 17: Odds Ratio Graph of CRC Prediction

Patients ranked higher by the gradient boosting classification model are significantly more likely to have CRC.
The predictive model ranked all the people in the dataset based on their likelihood of having glioblastoma
multiforme. This ranking was then grouped into 50 equal partitions. The plot shows the odds ratio of each of
the 50 equal partitions along with the 95% confidence intervals.
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Figure 18 shows the SHAP contribution plot of the gradient boosting machine model
utilizing 150 top CNVs. It helps explain how the model arrives at its predictive results and the

importance and weight of the features.
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Figure 18: SHAP Contribution Plot of Predictive Model of CRC Prediction

This plot ranks the importance to the predictive model of each CNV. Each individual is represented by a dot. The
color of the dot represents the normalized chromosome length, and the position of the dot on the x-axis
represents the impact of that CNV on the model prediction result for that respective patient. The plot indicates
that 7_70958264_70961155 is more important than 11_80256504_80256520 in predicting CRC.

The study yields promising results. A previous study found that the patients in the top
10% of genetic risk score had a 3-fold increase than those in the 10%. As shown in Table 7, the
top 10% in our results were 90 times more likely to have colorectal cancer than the individuals
scores in the bottom 10%.

One disadvantage of this approach is the difficulty in understanding and extracting

biological meaning, in comparison to the more traditional SNP-based genetic risk scores. There
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is a fundamental difference between statistical methods for prediction and those attribution.
The method we presented here focuses on prediction, while SNP-based risk scores are
developed from GWAS studies, which were designed to identify specific genes responsible for

diseases.
UK Biobank

Prediction and Classification of Cancer Diagnosis

We aimed to verify whether our cancer diagnosis prediction results were database-
specific, so we validated our methods and models on UK Biobank, which has an additional
advantage of containing data from healthy individuals. UK Biobank has the copy number
variation data in the raw log2 ratio format, which needs to be transformed for dimensionality
reduction to be usable in machine learning models. Therefore, the I2r data was converted into
Chromosomal Scale Length Variation values by splitting each chromosome into four segments
and computing the average of each segment. We followed Data-Field 41270, which contains
summary ICD 10 Diagnoses for 440,019 participants, for the cancer diagnosis information. This
study examines the more prevalent cancer types, listed in Table 8, along with their respective

incidence counts.
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Malignant Neoplasm Type Incidence Count
Lung 5353
Brain 1051
Colorectal 8917
Kidney 2138
Esophagus 1627
Pancreas 1651
Bladder 4129
Stomach 1257
Prostate 13090
Ovary 2138
Breast 16496
Uterine 1795

Table 8: Incidence Count of Common Types of Malignant Neoplasm In UK Biobank
The table shows the malignant neoplasm types with the highest incidence counts, i.e. at least over 1000 individuals
with 12r data available.

For each cancer type, the dataset consisted of diseased samples paired with age- and
gender-matched cancer-free individuals. This control served to limit the heterogeneity
originating from non-genetic sources, for some cancers exhibit higher incidence rates in one
gender over the other, or certain cancer risks scale with age.

Figures 19-30 present the performance of different machine learning algorithms for
each type of cancer. We found that the stacked ensemble models consistently performed best,
and there are slight differences between algorithms and their performances. Gradient Boosting
Machine and XGBoost was often among the top performing algorithms. For most cancers,
except stomach cancer, all algorithms could predict cancer diagnosis significantly better than
chance, represented by an AUC of 0.50, as shown in Figures 19-30. However, This indicates that
a patient’s germline genetics, specifically the chromosomal-scale length variation values,

demonstrate inherited predisposition to many cancer types.
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Comparison of Lung Cancer Prediction AUCs by Different Models
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Figure 19: Comparison of Lung Cancer Prediction AUCs by Different Models

The predictive performance, represented by the metric AUC, of different machine learning algorithms. The
dataset consists of lung-cancer patients with age- and gender-matched non-cancer individuals from the UK
Biobank population as control. H20 was used to carry out a grid search for the best algorithms, and the top-
performing models were selected and evaluated with AUCs. The algorithms tested were Deep Learning,
Distributed Random Forests (DRF), Gradient Boosting Machine (GBM), General Linear Model (GLM),
XGBoost, Extreme Randomized Tree (XRT), and Stacked Ensemble (combination of all the different models).

The average area-under-curve (AUC) value of the receiver operating characteristic
curves (ROCs) for all machine learning models was 0.557, with a standard deviation of 0.020
and 95% confidence interval of (0.554, 0.560). The AUC differs from 0.5, which is equivalent to
an AUC of random chance. Excluding the less optimal models, i.e. the deep learning models, the
average AUC is 0.561, with a standard deviation of 0.015 and 95% confidence interval of (0.559,

0.564). Both AUCs are significantly different from 0.5, with p<0.00001.
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Comparison of Brain Cancer Prediction AUCs by Different Models
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Figure 20: Comparison of Brain Cancer Prediction AUCs by Different Models

The predictive performance, represented by the metric AUC, of different machine learning algorithms. The
dataset consists of brain-cancer patients with age- and gender-matched non-cancer individuals from the UK
Biobank population as control. H20 was used to carry out a grid search for the best algorithms, and the top-
performing models were selected and evaluated with AUCs. The algorithms tested were Deep Learning,
Distributed Random Forests (DRF), Gradient Boosting Machine (GBM), General Linear Model (GLM), XGBoost,
Extreme Randomized Tree (XRT), and Stacked Ensemble (combination of all the different models).

The AUC value of the ROCs for all machine learning models was 0.513, with a standard
deviation of 0.016 and 95% confidence interval of (0.511, 0.515). The AUC differs from 0.5,
which is equivalent to an AUC of random chance. Excluding the less optimal models, i.e. the
deep learning and GLM models, the average AUC is 0.523, with a standard deviation of 0.012

and 95% confidence interval of (0.521, 0.526). Both AUCs are significantly different from 0.5,

with p<0.00001.
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Comparison of Colorectal Cancer Prediction AUCs by Different Models
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Figure 21: Comparison of Colorectal Cancer Prediction AUCs by Different Models

The predictive performance, represented by the metric AUC, of different machine learning algorithms. The
dataset consists of colorectal-cancer patients with age- and gender-matched non-cancer individuals from the
UK Biobank population as control. H20 was used to carry out a grid search for the best algorithms, and the
top-performing models were selected and evaluated with AUCs. The algorithms tested were Deep Learning,
Distributed Random Forests (DRF), Gradient Boosting Machine (GBM), General Linear Model (GLM), XGBoost,
Extreme Randomized Tree (XRT), and Stacked Ensemble (combination of all the different models).

The AUC value of the ROCs for all machine learning models was 0.525, with a standard
deviation of 0.022 and 95% confidence interval of (0.521, 0.529). The AUC differs from 0.5,
which is equivalent to an AUC of random chance. Excluding the less optimal models, i.e. the
deep learning models, the average AUC is 0.544 with a standard deviation of 0.017 and 95%
confidence interval of (0.539, 0.548). Both AUCs are significantly different from 0.5, with

p<0.00001.
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Comparison of Kidney Cancer Prediction AUCs by Different Models
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Figure 22: Comparison of Kidney Cancer Prediction AUCs by Different Models

The predictive performance, represented by the metric AUC, of different machine learning algorithms. The
dataset consists of kidney-cancer patients with age- and gender-matched non-cancer individuals from the UK
Biobank population as control. H20 was used to carry out a grid search for the best algorithms, and the top-
performing models were selected and evaluated with AUCs. The algorithms tested were Deep Learning,
Distributed Random Forests (DRF), Gradient Boosting Machine (GBM), General Linear Model (GLM), XGBoost,
Extreme Randomized Tree (XRT), and Stacked Ensemble (combination of all the different models).

The AUC value of the ROCs for all machine learning models was 0.509, with a standard
deviation of 0.012 and 95% confidence interval of (0.507, 0.510). The AUC differs from 0.5,
which is equivalent to an AUC of random chance. Excluding the less optimal models, i.e. the
deep learning, distributed random forest, and extreme randomized tree models, the average
AUC is 0.510, with a standard deviation of 0.009 and 95% confidence interval of (0.508, 0.512).

Both AUCs are significantly different from 0.5, with p<0.00001.
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Comparison of Esophageal Cancer Prediction AUCs by Different Models
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Figure 23: Comparison of Esophageal Cancer Prediction AUCs by Different Models

The predictive performance, represented by the metric AUC, of different machine learning algorithms. The
dataset consists of esophageal-cancer patients with age- and gender-matched non-cancer individuals from the
UK Biobank population as control. H20 was used to carry out a grid search for the best algorithms, and the top-
performing models were selected and evaluated with AUCs. The algorithms tested were Deep Learning,
Distributed Random Forests (DRF), Gradient Boosting Machine (GBM), General Linear Model (GLM), XGBoost,
Extreme Randomized Tree (XRT), and Stacked Ensemble (combination of all the different models).

The AUC value of the ROCs for all machine learning models was 0.516, with a standard
deviation of 0.012 and 95% confidence interval of (0.514, 0.518). The AUC differs from 0.5,

which is equivalent to an AUC of random chance, with p<0.00001.
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Comparison of Pancreatic Cancer Prediction AUCs by Different Models
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Figure 24: Comparison of Pancreatic Cancer Prediction AUCs by Different Models

The predictive performance, represented by the metric AUC, of different machine learning algorithms. The
dataset consists of pancreatic-cancer patients with age- and gender-matched non-cancer individuals from the
UK Biobank population as control. H20 was used to carry out a grid search for the best algorithms, and the top-
performing models were selected and evaluated with AUCs. The algorithms tested were Deep Learning,
Distributed Random Forests (DRF), Gradient Boosting Machine (GBM), General Linear Model (GLM), XGBoost,
Extreme Randomized Tree (XRT), and Stacked Ensemble (combination of all the different models).

The AUC value of the ROCs for all machine learning models was 0.507, with a standard
deviation of 0.010 and 95% confidence interval of (0.505, 0.508). The AUC differs from 0.5,
which is equivalent to an AUC of random chance. Excluding the less optimal models, i.e. the
deep learning, models, the average AUC is 0.508, with a standard deviation of 0.010 and 95%
confidence interval of (0.506, 0.510). Both AUCs are significantly different from 0.5, with

p<0.00001.
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Comparison of Bladder Cancer Prediction AUCs by Different Models
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Figure 25: Comparison of Bladder Cancer Prediction AUCs by Different Models

The predictive performance, represented by the metric AUC, of different machine learning algorithms. The
dataset consists of bladder-cancer patients with age- and gender-matched non-cancer individuals from the UK
Biobank population as control. H20 was used to carry out a grid search for the best algorithms, and the top-
performing models were selected and evaluated with AUCs. The algorithms tested were Deep Learning,
Distributed Random Forests (DRF), Gradient Boosting Machine (GBM), General Linear Model (GLM), XGBoost,
Extreme Randomized Tree (XRT), and Stacked Ensemble (combination of all the different models).

The AUC value of the ROCs for all machine learning models was 0.507, with a standard
deviation of 0.010 and 95% confidence interval of (0.505, 0.508). The AUC differs from 0.5,

which is equivalent to an AUC of random chance, with p<0.00001.
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Comparison of Stomach Cancer Prediction AUCs by Different Models
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Figure 26: Comparison of Stomach Cancer Prediction AUCs by Different Models
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The predictive performance, represented by the metric AUC, of different machine learning algorithms. The
dataset consists of prostate-cancer patients with age- and gender-matched non-cancer individuals from the UK
Biobank population as control. H20 was used to carry out a grid search for the best algorithms, and the top-
performing models were selected and evaluated with AUCs. The algorithms tested were Deep Learning,
Distributed Random Forests (DRF), Gradient Boosting Machine (GBM), General Linear Model (GLM), XGBoost,

Extreme Randomized Tree (XRT), and Stacked Ensemble (combination of all the different models).

The AUC value of the ROCs for all machine learning models was 0.495, with a standard

deviation of 0.011 and 95% confidence interval of (0.490, 0.497). The AUC does not differ from

0.5 significantly.
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Comparison of Prostate Cancer Prediction AUCs by Different Models

0.5
L)
0.54
.
]
0.534 — Model
0.53 e
. ®| Deep Learning
* L2
[TTTreeeT
L ® DRF
e N
g T POy (@] cem
< 0.52 e esseose (& GLm
. . ﬁ‘._] Stacked Ensemble
e ®| XGBoost
000000
ey o0 & XRT
051 e “eeesesene
Lo .
L)
P L
0.5 Ll 1] "
L
L]
Deep Learning DRF GBM GLM Stacked Ensemble XGBoost XRT
Model

Figure 27: Comparison of Prostate Cancer Prediction AUCs by Different Models

The predictive performance, represented by the metric AUC, of different machine learning algorithms. The
dataset consists of prostate-cancer patients with age- and gender-matched non-cancer individuals from the UK
Biobank population as control. H20 was used to carry out a grid search for the best algorithms, and the top-
performing models were selected and evaluated with AUCs. The algorithms tested were Deep Learning,
Distributed Random Forests (DRF), Gradient Boosting Machine (GBM), General Linear Model (GLM), XGBoost,
Extreme Randomized Tree (XRT), and Stacked Ensemble (combination of all the different models).

The AUC value of the ROCs for all machine learning models was 0.514, with a standard
deviation of 0.009 and 95% confidence interval of (0.512, 0.515). The AUC differs from 0.5,
which is equivalent to an AUC of random chance. Excluding the less optimal models, i.e. the
deep learning and generalized linear models, the average AUC is 0.520, with a standard
deviation of 0.008 and 95% confidence interval of (0.518, 0.521). Both AUCs are significantly

different from 0.5, with p<0.00001.
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Figure 28: Comparison of Ovarian Cancer Prediction AUC by Different Models

The predictive performance, represented by the metric AUC, of different machine learning algorithms. The
dataset consists of ovarian-cancer patients with age- and gender-matched non-cancer individuals from the
UK Biobank population as control. H20 was used to carry out a grid search for the best algorithms, and the
top-performing models were selected and evaluated with AUCs. The algorithms tested were Deep Learning,
Distributed Random Forests (DRF), Gradient Boosting Machine (GBM), General Linear Model (GLM),
XGBoost, Extreme Randomized Tree (XRT), and Stacked Ensemble (combination of all the different models).

The AUC value of the ROCs for all machine learning models was 0.518, with a standard
deviation of 0.014 and 95% confidence interval of (0.515, 0.520). The AUC is significantly

different from 0.5, with p<0.00001.
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Figure 29: Comparison of Breast Cancer Prediction AUCs by Different Models

The predictive performance, represented by the metric AUC, of different machine learning algorithms. The
dataset consists of breast-cancer patients with age- and gender-matched non-cancer individuals from the UK
Biobank population as control. H20 was used to carry out a grid search for the best algorithms, and the top-
performing models were selected and evaluated with AUCs. The algorithms tested were Deep Learning,
Distributed Random Forests (DRF), Gradient Boosting Machine (GBM), General Linear Model (GLM),
XGBoost, Extreme Randomized Tree (XRT), and Stacked Ensemble (combination of all the different models).

The AUC value of the ROCs for all machine learning models was 0.512, with a standard
deviation of 0.010 and 95% confidence interval of (0.510, 0.514). The AUC differs from 0.5,

which is equivalent to an AUC of random chance, with p<0.00001.
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Figure 30: Comparison of Uterine Cancer Prediction AUCs by Different Models

The predictive performance, represented by the metric AUC, of different machine learning algorithms. The dataset
consists of uterine-cancer patients with age- and gender-matched non-cancer individuals from the UK Biobank
population as control. H20 was used to carry out a grid search for the best algorithms, and the top-performing
models were selected and evaluated with AUCs. The algorithms tested were Deep Learning, Distributed Random
Forests (DRF), Gradient Boosting Machine (GBM), General Linear Model (GLM), XGBoost, Extreme Randomized
Tree (XRT), and Stacked Ensemble (combination of all the different models).

The AUC value of the ROCs for all machine learning models was 0.510, with a standard
deviation of 0.014 and 95% confidence interval of (0.507, 0.512). The AUC differs from 0.5,

which is equivalent to an AUC of random chance, with p<0.00001.
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We also tested whether there was a proportionality between the number of CSLV splits
and features and model performance. Five datasets were constructed: 4 splits, 4splits with
standard deviation, 8 splits, 8 splits with standard deviation, and TCGA unmasked top 100
CNVs. The 4-splits dataset contains the average |2r value across a quarter of the entire
chromosomes (chromosome 1-22, X, Y, and XY, which contains the pseudoautosomal region),
resulting in a total of 100 numbers. The 4-splits-with-standard-deviation dataset consists of the
4-splits dataset and the standard deviations of the 12r values of the entire chromosomes,
resulting in a total of 125 numbers. The 8-splits dataset contains the average of an eighth of the
I2r values of the chromosome, resulting in a total of 200 numbers. The 8-splits-with-standard-
deviation dataset consists of the 8-split dataset and the standard deviations of the 12r values of
the entire chromosomes, resulting in a total of 225 numbers. The TCGA-unmasked-top-100-
CNVs dataset was constructed by mapping the chromosomal location of the top 100 most
common CNVs identified in the unmasked data from TCGA to UK Biobank I2r data, then
computing the average of each segment. The first four datasets would be referred to as the
CSLV sets, and the last dataset would be the CNV set, since it is based on CNVs called in TCGA.
We focused on the gradient boosting machine, XGBoost, and stacked ensemble models due to

their consistent performances.
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Figure 31: Comparison of Lung Cancer Prediction AUCs by Different Models and by Split

We tested whether the number of splits and features of each chromosome affect predictive performance and how
CSLV sets compare to CNV set. We built five datasets by splitting each chromosome into four or eight segments and
combining with the standard deviation, and mapping TCGA CNVs to UK Biobank I2r data. The dataset was used to
predict whether an individual had lung cancer. The prediction was evaluated by the metric AUC. The plot presents the
differences in predictive performance between models and chromosomal scale length variation combinations. The
Stacked Ensemble model on the 4-splits-with-standard-deviation dataset performed the best.

Figure 31 demonstrates how these models compare on the five different datasets. The
stacked ensemble achieved the best performance. The addition of standard deviation to the
split sets improved predictability, but there does not appear to be a proportionality between
the number of splits and lung cancer prediction. This still holds true for all models, as shown in
Figure 32. We tested whether the performance of the CSLV sets differs significantly from the
TCGA-CNV set, and the p-values are recorded in Table 9. The differences in performance were
all significant, showing that the CSLV sets outperformed the TCGA-CNV set, and the best

dataset was 4-splits-with-standard-deviation.
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Figure 32: Comparison of Lung Cancer Prediction AUCs of All Models by Split
The average performance of all models for each combination of CSLV features.

Split Numbers | Mean Standard | 95% Confidence p-value vs. TCGA-CNV
AUC Deviation | Interval

4 Splits 0.557 0.020 (0.554, 0.561) 1.344 x 10V

4 Splits with 0.565 0.020 (0.562, 0.568) 5.149 x 1028

Standard

Deviation

8 Splits 0.544 0.016 (0.541, 0.547) 0.018

8 Splits with 0.556 0.017 (0.553, 0.559) 1.713 x 10%°

Standard

Deviation

Table 9: Lung-Cancer Prediction AUCs by Split

The mean, standard deviation, and p-values of the cross-validated AUCs of 4-splits, 4-splits-with-standard-
deviation, 8-splits, 8-splits-with-standard-deviation datasets.
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Figure 33: Comparison of Brain Cancer Prediction AUCs by Different Models and by Split

We tested whether the numbers of splits and features of each chromosome affect predictive performance and how
CSLV sets compare to CNV set. We built five datasets by splitting each chromosome into four or eight segments and
combining with the standard deviation, and mapping TCGA CNVs to UK Biobank I2r data. The dataset was used to
predict whether an individual had brain cancer. The prediction was evaluated by the metric AUC. The plot presents the
differences in predictive performance between models and chromosomal scale length variation combinations. The
Stacked Ensemble model on the 4-splits-with-standard-deviation dataset performed the best.

Figure 33 demonstrates how these models compare on the five different datasets. The
stacked ensemble achieved marginally better performance than the other models. The increase
in the number of splits leads to greater predictability. The addition of standard deviation to the
split sets only improved predictability for the 4-splits set, with 4-splits-with-standard-deviation
performing the best. This still holds true for all models, as shown in Figure 34. We tested
whether the performance of the CSLV sets differs significantly from the TCGA-CNV set, and the
p-values are recorded in Table 10. The differences in performance were all significant, showing

that the CSLV sets outperformed the TCGA-CNV set, and the best dataset was 4-splits-with-

standard-deviation.
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Figure 34: Comparison of Brain Cancer Prediction AUCs of All Models by Split
The average performance of all models for each combination of CSLV features.

Split Numbers | Mean Standard | 95% Confidence p-value vs. TCGA-CNV
AUC Deviation | Interval

4 Splits 0.513 0.016 (0.511, 0.515) 2.382 x 1038

4 Splits with 0.532 0.022 (0.529, 0.535) 2.524 x 1048
Standard

Deviation

8 Splits 0.520 0.021 (0.517,0.524) 3.644 x 103

8 Splits with 0.506 0.016 (0.504, 0.508) 1.112 x 1013
Standard

Deviation

Table 10: Brain-Cancer Prediction AUCs by Split
The mean, standard deviation, and p-values of the cross-validated AUCs of 4-splits, 4-splits-with-standard-
deviation, 8-splits, 8-splits-with-standard-deviation datasets.
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Figure 35: Comparison of Colorectal Cancer Prediction AUCs by Different Models and by Split

We tested whether the numbers of splits and features of each chromosome affect predictive performance and how CSLV
sets compare to CNV set. We built five datasets by splitting each chromosome into four or eight segments and combining
with the standard deviation, and mapping TCGA CNVs to UK Biobank I12r data. The dataset was used to predict whether
an individual had colorectal cancer. The prediction was evaluated by the metric AUC. The plot presents the differences in
predictive performance between models and chromosomal scale length variation combinations. The Stacked Ensemble
model performed the best, but there was no difference between performances of CSLV- and CNV- sets.

Figure 35 demonstrates how these models compare on the five different datasets. The
stacked ensemble achieved better performance than the other models. The increase in the
number of splits or the addition of standard deviation did not improve predictability. This still
holds true for all models, as shown in Figure 36. We tested whether the performance of the
CSLV sets differs significantly from the TCGA-CNV set, and the p-values are recorded in Table
11. The differences in performance were not significant, showing that the CSLV sets performed

as well as the TCGA-CNV set.
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Figure 36: Comparison of Colorectal Cancer Prediction AUCs of All Models by Split
The average performance of all models for each combination of CSLV features.

Split Numbers | Mean Standard | 95% Confidence p-value vs. TCGA-CNV
AUC Deviation | Interval

4 Splits 0.525 0.022 (0.521, 0.529) 0.901

4 Splits with 0.525 0.021 (0.521, 0.528) 0.933

Standard

Deviation

8 Splits 0.527 0.018 (0.523, 0.530) 0.710

8 Splits with 0.528 0.019 (0.524, 0.531) 0.450

Standard

Deviation

Table 11: Colorectal-Cancer Prediction AUCs by Split
The mean, standard deviation, and p-values of the cross-validated AUCs of 4-splits, 4-splits-with-standard-
deviation, 8-splits, 8-splits-with-standard-deviation datasets.
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Figure 37: Comparison of Kidney Cancer Prediction AUCs by Different Models and by Split

We tested whether the numbers of splits and features of each chromosome affect predictive performance and how
CSLV sets compare to CNV set. We built five datasets by splitting each chromosome into four or eight segments and
combining with the standard deviation, and mapping TCGA CNVs to UK Biobank I2r data. The dataset was used to
predict whether an individual had kidney cancer. The prediction was evaluated by the metric AUC. The plot presents
the differences in predictive performance between models and chromosomal scale length variation combinations.
The Stacked Ensemble model on the 8-splits dataset performed the best.

Figure 37 demonstrates how these models compare on the five different datasets. There
was no difference between model performance. The increase in the number of splits or the
addition of standard deviation did not consistently improve predictability. The 4-splits model
performed marginally better than the other datasets. Figure 38 shows the differences for all
models for the four datasets. We tested whether the performance of the CSLV sets differs
significantly from the TCGA-CNV set, and the p-values are recorded in Table 12. The differences
in performance were significant, showing that the CSLV sets performed better than the TCGA-

CNV set.
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Figure 38: Comparison of Kidney Cancer Prediction AUCs of All Models by Split
The average performance of all models for each combination of CSLV features.

Split

® 4Splits

@] 4Splits with SD

@ 8Splits

i 8Splits with SD

®| TCGA Unmasked Top100

Split Numbers Mean Standard 95% Confidence p-value vs. TCGA-CNV
AUC Deviation Interval

4 Splits 0.509 0.012 (0.507, 0.510) 2.280 x 103

4 Splits with 0.506 0.010 (0.505, 0.508) 1.299 x 10%®
Standard

Deviation

8 Splits 0.508 0.010 (0.507, 0.510) 2.411 x 1030

8 Splits with 0.507 0.012 (0.505, 0.509) 4.746 x 10°%°
Standard

Deviation

Table 12: Kidney Cancer Prediction AUCs by Split
The mean, standard deviation, and p-values of the cross-validated AUCs of 4-splits, 4-splits-with-standard-
deviation, 8-splits, 8-splits-with-standard-deviation datasets.
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Figure 39: Comparison of Esophageal Cancer Prediction AUCs by Different Models and by Split

We tested whether the numbers of splits and features of each chromosome affect predictive performance and how
CSLV sets compare to CNV set. We built five datasets by splitting each chromosome into four or eight segments and
combining with the standard deviation, and mapping TCGA CNVs to UK Biobank I2r data. The prediction was evaluated
by the metric AUC. The plot presents the differences in predictive performance between models and chromosomal
scale length variation combinations. The Stacked Ensemble model on the 4-splits-with-standard-deviation dataset
performed the best.

Figure 39 demonstrates how these models compare on the five different datasets. The
stacked ensemble achieved marginally better performance than the other models. The increase
in the number of splits did not improve predictability. The addition of standard deviation to the
split sets improved predictability for the 4-splits model. This still holds true for all models, as
shown in Figure 40. We tested whether the performance of the CSLV sets differs significantly
from the TCGA-CNV set, and the p-values are recorded in Table 13. The differences in
performance were significant for all datasets except 8-splits-with-SD set, showing that most of

the CSLV sets performed better than the TCGA-CNV set.
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Figure 40: Comparison of Esophageal Cancer Prediction AUCs of All Models by Split
The average performance of all models for each combination of CSLV features.

Split Numbers Mean Standard 95% Confidence | p-value vs. TCGA-CNV
AUC Deviation Interval

4 Splits 0.515 0.012 (0.513,0.517) 4.600 x 10%*

4 Splits with 0.519 0.015 (0.517,0.522) 7.937 x 10°%°

Standard

Deviation

8 Splits 0.508 0.012 (0.506, 0.509) 0.004

8 Splits with 0.506 0.012 (0.504, 0.507) 0.246

Standard

Deviation

TCGA Unmasked | 0.505 0.010 (0.504, 0.506)

Top 100

Table 13: Esophageal Cancer Prediction AUCs by Split

The mean, standard deviation, and p-values of the cross-validated AUCs of 4-splits, 4-splits-with-standard-
deviation, 8-splits, 8-splits-with-standard-deviation, and TCGA-unmasked-top-100 datasets.
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Comparison of Pancreatic Cancer Prediction AUCs of All Models by Split
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Figure 41: Comparison of Pancreatic Cancer Prediction AUCs by Different Models and by Split

We tested whether the numbers of splits and features of each chromosome affect predictive performance and how
CSLV sets compare to CNV set. We built five datasets by splitting each chromosome into four or eight segments and
combining with the standard deviation, and mapping TCGA CNVs to UK Biobank I2r data. The dataset was used to
predict whether an individual had pancreatic cancer. The prediction was evaluated by the metric AUC. The plot
presents the differences in predictive performance between models and chromosomal scale length variation
combinations. The Stacked Ensemble model on the 4-splits-with-standard-deviation dataset performed the best.

Figure 41 demonstrates how these models compare on the five different datasets. The
stacked ensemble achieved marginally better performance than the other models. The increase
in the number of splits did not improve predictability, but the addition of standard deviation to
the split sets did. This holds true for all models, as shown in Figure 42. We tested whether the
performance of the CSLV sets differs significantly from the TCGA-CNV set, and the p-values are
recorded in Table 14. The differences in performance were significant for all datasets except 8-
splits-with-SD set, showing that most of the CSLV sets performed better than the TCGA-CNV

set.
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Figure 42: Comparison of Pancreatic Cancer Prediction AUCs of All Models by Split
The average performance of all models for each combination of CSLV features.

Split Numbers Mean Standard 95% Confidence p-value vs. TCGA-CNV
AUC Deviation Interval

4 Splits 0.507 0.010 (0.505, 0.508) 1.301 x 1032

4 Splits with 0.511 0.011 (0.510, 0.513) 2.853 x 1044

Standard

Deviation

8 Splits 0.508 0.012 (0.506, 0.510) 1.129 x 10%°

8 Splits with 0.507 0.013 (0.505, 0.509) 1.923 x 10?7

Standard

Deviation

TCGA Unmasked | 0.496 0.009 (0.494, 0.497)

Top 100

Table 14: Pancreatic Cancer Prediction AUCs by Split

The mean, standard deviation, and p-values of the cross-validated AUCs of 4-splits, 4-splits-with-standard-
deviation, 8-splits, 8-splits-with-standard-deviation, and TCGA-unmasked-top-100 datasets.
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Figure 43: Comparison of Bladder Cancer Prediction AUCs by Different Models and by Split

We tested whether the numbers of splits and features of each chromosome affect predictive performance and how
CSLV sets compare to CNV set. We built five datasets by splitting each chromosome into four or eight segments and
combining with the standard deviation, and mapping TCGA CNVs to UK Biobank I2r data. The dataset was used to
predict whether an individual had bladder cancer. The prediction was evaluated by the metric AUC. The plot
presents the differences in predictive performance between models and chromosomal scale length variation
combinations. The Stacked Ensemble model on the 4-splits-with-standard-deviation dataset performed the best.

Figure 43 demonstrates how these models compare on the five different datasets. The
stacked ensemble achieved marginally better performance with certain datasets. The increase
in the number of splits and the addition of standard deviation did not improve predictability
consistently. Figure 44 shows the differences in performance of all models for the five datasets.
We tested whether the performance of the CSLV sets differs significantly from the TCGA-CNV
set, and the p-values are recorded in Table 15. The differences in performance were significant
for all datasets except 8-splits-with-SD set, showing that most of the CSLV sets performed

better than the TCGA-CNV set.
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Figure 44: Comparison of Bladder Cancer Prediction AUCs of All Models by Split
The average performance of all models for each combination of CSLV features.

Split Numbers Mean Standard 95% Confidence p-value vs. TCGA-CNV
AUC Deviation Interval

4 Splits 0.510 0.009 (0.509, 0.511) 0.030

4 Splits with 0.512 0.008 (0.511, 0.513) 5.858 x 10”7

Standard

Deviation

8 Splits 0.511 0.009 (0.510, 0.513) 1.269 x 104

8 Splits with 0.506 0.008 (0.504, 0.507) 1

Standard

Deviation

TCGA Unmasked | 0.509 0.008 (0.507, 0.510)

Top 100

Table 15: Bladder Cancer Prediction AUCs by Split
The mean, standard deviation, and p-values of the cross-validated AUCs of 4-splits, 4-splits-with-standard-
deviation, 8-splits, 8-splits-with-standard-deviation, and TCGA-unmasked-top-100 datasets.
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Figure 45: Comparison of Stomach Cancer Prediction AUCs by Different Models and by Split

We tested whether the numbers of splits and features of each chromosome affect predictive performance and how
CSLV sets compare to CNV set. We built five datasets by splitting each chromosome into four or eight segments and
combining with the standard deviation, and mapping TCGA CNVs to UK Biobank I2r data. The dataset was used to
predict whether an individual had stomach cancer. The prediction was evaluated by the metric AUC. The plot
presents the differences in predictive performance between models and chromosomal scale length variation
combinations. The CNV dataset performed the best, regardless of machine learning algorithms.

Figure 45 demonstrates how these models compare on the five different datasets. The
performances of the selected models were comparable between all datasets. The increase in
the number of splits improved predictability consistently, but the TCGA-CNV set appeared to
outperform the CSLV sets. Figure 46 shows the differences in performance of all models for the
five datasets. We tested whether the performance of the CSLV sets differs significantly from the
TCGA-CNV set, and the p-values are recorded in Table 16. The differences in performance are
significant for all datasets, showing that the CSLV sets were outperformed by the TCGA-CNV

set.
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Figure 46: Comparison of Stomach Cancer Prediction AUCs of All Models by Split
The average performance of all models for each combination of CSLV features.

Split Numbers Mean Standard 95% Confidence p-value vs. TCGA-CNV
AUC Deviation Interval

4 Splits 0.495 0.011 (0.494, 0.497) 1.264 x 10°%*

4 Splits with 0.488 0.015 (0.486, 0.491) 6.387 x 10~/

Standard

Deviation

8 Splits 0.508 0.014 (0.506, 0.510) 1.635 x 1010

8 Splits with 0.507 0.015 (0.505, 0.508) 1.274x 10716

Standard

Deviation

TCGA Unmasked | 0.515 0.012 (0.513,0.517)

Top 100

Table 16: Stomach Cancer Prediction AUCs by Split
The mean, standard deviation, and p-values of the cross-validated AUCs of 4-splits, 4-splits-with-standard-
deviation, 8-splits, 8-splits-with-standard-deviation, and TCGA-unmasked-top-100 datasets.
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Figure 47: Comparison of Prostate Cancer Prediction AUCs by Different Models and by Split

We tested whether the numbers of splits and features of each chromosome affect predictive performance and how
CSLV sets compare to CNV set. We built five datasets by splitting each chromosome into four or eight segments and
combining with the standard deviation, and mapping TCGA CNVs to UK Biobank I2r data. The dataset was used to predict
whether an individual had prostate cancer. The prediction was evaluated by the metric AUC. The plot presents the
differences in predictive performance between models and chromosomal scale length variation combinations. The
Stacked Ensemble model performed the best, while the CSLV and CNV sets achieved similar performance.

Figure 47 demonstrates how these models compare on the five different datasets. The
stacked ensemble achieved the best performance. The increase in the number of splits and the
addition of standard deviation did not consistently improve predictability. Figure 48 shows the
differences in performance of all models for the five datasets. We tested whether the
performance of the CSLV sets differs significantly from the TCGA-CNV set, and the p-values are
recorded in Table 17. The differences in performance are not significant for all datasets,

showing that the CSLV sets performed as well as the TCGA-CNV set.
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Figure 48: Comparison of Prostate Cancer Prediction AUCs of All Models by Split
The average performance of all models for each combination of CSLV features.

Split

® 4Splits

@] 4Splits with SD

@ 8Splits

—_i] 8Splits with SD

® TCGA Unmasked Top100

Split Numbers Mean Standard 95% Confidence | p-value vs. TCGA-CNV
AUC Deviation Interval

4 Splits 0.514 0.009 (0.513, 0.516) 0.343

4 Splits with 0.513 0.008 (0.511, 0.514) 0.957

Standard

Deviation

8 Splits 0.512 0.009 (0.511, 0.513) 0.993

8 Splits with 0.513 0.010 (0.511, 0.515) 0.894

Standard

Deviation

TCGA Unmasked 0.514 0.008 (0.512, 0.516)

Top 100

Table 17: Prostate Cancer Prediction AUCs by Split
The mean, standard deviation, and p-values of the cross-validated AUCs of 4-splits, 4-splits-with-standard-

deviation, 8-splits, 8-splits-with-standard-deviation, TCGA-unmasked-top-100 datasets.
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Figure 49: Comparison of Ovarian Cancer Prediction AUCs by Different Models and by Split

We tested whether the numbers of splits and features of each chromosome affect predictive performance and how
CSLV sets compare to CNV set. We built five datasets by splitting each chromosome into four or eight segments and
combining with the standard deviation, and mapping TCGA CNVs to UK Biobank I2r data. The dataset was used to
predict whether an individual had ovarian cancer. The prediction was evaluated by the metric AUC. The plot presents
the differences in predictive performance between models and chromosomal scale length variation combinations. The

4-splits dataset performed the best.

Figure 49 demonstrates how these models compare on the five different datasets. There
is no significant difference between models. The increase in the number of splits and the
addition of standard deviation impacted predictability. Figure 50 shows the differences in
performance of all models for the five datasets. We tested whether the performance of the
CSLV sets differs significantly from the TCGA-CNV set, and the p-values are recorded in Table
18. The differences in performance are not significant for all datasets, showing that the CSLV

sets performed as well as the TCGA-CNV set.
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Figure 50: Comparison of Ovarian Cancer Prediction AUCs of All Models by Split
The average performance of all models for each combination of CSLV features.

Split Numbers Mean Standard | 95% Confidence | p-value vs. TCGA-CNV
AUC Deviation | Interval

4 Splits 0.518 0.014 (0.515, 0.520) 9.399 x 10%?

4 Splits with 0.512 0.012 (0.510, 0.514) 1.671 x 1013

Standard

Deviation

8 Splits 0.508 0.010 (0.506, 0.510) 6.551 x 10

8 Splits with 0.514 0.015 (0.512,0.517) 8.061 x 10°%¢

Standard

Deviation

TCGA Unmasked | 0.505 0.009 (0.504, 0.506)

Top 100

Table 18: Ovarian Cancer Prediction AUCs by Split
The mean, standard deviation, and p-values of the cross-validated AUCs of 4-splits, 4-splits-with-standard-
deviation, 8-splits, 8-splits-with-standard-deviation, and TCGA-unmasked-top-100 datasets.
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Figure 51: Comparison of Breast Cancer Prediction AUCs by Different Models and by Split

We tested whether the numbers of splits and features of each chromosome affect predictive performance and how
CSLV sets compare to CNV set. We built five datasets by splitting each chromosome into four or eight segments and
combining with the standard deviation, and mapping TCGA CNVs to UK Biobank I2r data. The dataset was used to
predict whether an individual had breast cancer. The prediction was evaluated by the metric AUC. The plot presents
the differences in predictive performance between models and chromosomal scale length variation combinations. The
Stacked Ensemble model on the 4-splits-with-standard-deviation dataset performed the best.

Figure 51 demonstrates how these models compare on the five different datasets. The
stacked ensemble achieved the best performance. The increase in the number of splits and the
addition of standard deviation impact predictability. Figure 52 shows the differences in
performance of all models for the five datasets. We tested whether the performance of the
CSLV sets differs significantly from the TCGA-CNV set, and the p-values are recorded in Table
19. The differences in performance are significant for 4-splits-with-standard-deviation and 8-

splits datasets, showing that half of the CSLV sets performed as well as the TCGA-CNV set.
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Figure 52: Comparison of Breast Cancer Prediction AUCs of All Models by Split
The average performance of all models for each combination of CSLV features.

4Splits

4Splits with SD

8Splits

8Splits with SD

TCGA Unmasked Top100

Split Numbers Mean Standard | 95% Confidence | p-value
AUC Deviation | Interval

4 Splits 0.512 0.010 (0.510, 0.514) 0.087

4 Splits with 0.514 0.010 (0.512, 0.515) 0.003

Standard Deviation

8 Splits 0.513 0.009 (0.512, 0.515) 0.004

8 Splits with 0.511 0.007 (0.510, 0.512) 0.580

Standard Deviation

TCGA Unmasked 0.511 0.008 (0.509, 0.513)

Top 100

Table 19: Breast Cancer Prediction AUCs by Split
The mean, standard deviation, and p-values of the cross-validated AUCs of 4-splits, 4-splits-with-standard-
deviation, 8-splits, 8-splits-with-standard-deviation, TCGA-unmasked-top-100 datasets.
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Figure 53: Comparison of Uterine Cancer Prediction AUCs by Different Models and by Split

We tested whether the numbers of splits and features of each chromosome affect predictive performance and how
CSLV sets compare to CNV set. We built five datasets by splitting each chromosome into four or eight segments and
combining with the standard deviation, and mapping TCGA CNVs to UK Biobank I2r data. The prediction was
evaluated by the metric AUC. The plot presents the differences in predictive performance between models and
chromosomal scale length variation combinations. The Stacked Ensemble model on the 4-splits-with-standard-
deviation dataset performed the best.

Figure 53 demonstrates how these models compare on the five different datasets. There
is no difference between model performance. The addition of standard deviation impacts
predictability. Figure 54 shows the differences in performance of all models for the four
datasets. We tested whether the performance of the CSLV sets differs significantly from the
TCGA-CNV set, and the p-values are recorded in Table 20. The differences in performance were
significant for all datasets except 8-splits-with-SD set, showing that most of the CSLV sets

performed better than the TCGA-CNV set.
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Figure 54: Comparison Uterine Cancer Prediction AUCs of All Models by Split
The average performance of all models for each combination of CSLV features.

4Splits

4Splits with SD

8Splits

8Splits with SD

TCGA Unmasked Top100

Split Numbers Mean Standard | 95% Confidence | p-value vs. TCGA-CNV
AUC Deviation | Interval

4 Splits 0.510 0.014 (0.507,0.512) 1.325 x 1023

4 Splits with 0.504 0.009 (0.503, 0.506) 2.555 x 1020

Standard

Deviation

8 Splits 0.508 0.011 (0.506, 0.510) 1.246 x 10%°

8 Splits with 0.505 0.011 (0.503, 0.506) 2.423 x 1022

Standard

Deviation

TCGA Unmasked 0.496 0.007 (0.495, 0.498)

Top 100

Table 20: Uterine Cancer Prediction AUCs by Split
The mean, standard deviation, and p-values of the cross-validated AUCs of 4-splits, 4-splits-with-standard-
deviation, 8-splits, 8-splits-with-standard-deviation, and TCGA-unmasked-top-100 datasets.
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There was no definitive consensus on which dataset and model achieved the best
performance. Finer split does not significantly improve the predictability, though the addition of
standard deviation impacts predictive performance more consistently, with stacked ensemble
model on 4-splits-with-standard-deviation dataset most often outperforming other models. For
most types of cancer, the CSLV sets performed better than the TCGA-CNV set.

We decided to further investigate a number of cancers with higher predictability more
comprehensively to better understand the relative risk distribution and how the models arrive
at their conclusions through H20’s explainability framework.

We first examined lung cancer. The predicted results were compared to the known lung-
cancer status of the patients, who were first ranked by their scores, from the least likely to
most likely to have lung cancer. As shown in Table 21, there was increasing risk of lung cancer
by decile, and the highest decile has an approximately 2.6-fold of relative risk in comparison to

the individuals in the lowest decile.

Decile Number of Number of | Total Number Odds Ratio 95%
Patients without | Patients with of Patients Confidence
Lung Cancer Lung Cancer Interval

1 472 352 824 0.74 0.64 -0.86
2 462 362 824 0.78 0.68-0.90
3 439 385 824 0.87 0.76 - 1.00
4 456 367 823 0.80 0.69-0.93
5 413 410 823 0.99 0.86-1.14
6 425 398 823 0.93 0.81-1.08
7 424 399 823 0.94 0.81-1.08
8 375 448 823 1.19 1.03-1.37
9 360 463 823 1.28 1.11-1.48
10 281 542 823 1.92 1.65-2.23

Table 21: Odds Ratio of Lung Cancer Risk by Decile
The odds ratio between deciles of predicted results from the cross validation. The top 10% is 2.6 times as likely to
be classified as lung cancer as the lowest decile.
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A heatmap was created to present variable importance across all the generated models
in Figure 55. Some of the most significant features were standard deviations and segments of
chromosome 6, 7, 9, 13, X, and XY. This was then confirmed with a Shapley Additive explanation
(SHAP) plot, as shown in Figure 56.

Second, we examined brain cancer. The odds ratio was calculated from the cross-
validation predictions and recorded in Table 22. The risk of brain cancer increases by decile, and
the top 10% has an approximately 2.4-fold of relative risk in comparison to the individuals in

the lowest decile.

Decile Number of Number of | Total Number | Odds Ratio | 95% Confidence
Patients without | Patients with of Patients Interval
Brain Cancer | Brain Cancer
1 127 78 205 0.61 0.46 -0.82
2 114 91 205 0.80 0.60-1.06
3 110 95 205 0.86 0.65-1.15
4 104 101 205 0.97 0.73-1.29
5 104 100 204 0.96 0.72-1.28
6 106 98 204 0.92 0.69-1.23
7 92 112 204 1.22 0.91-1.62
8 96 108 204 1.13 0.84-1.50
9 87 117 204 1.34 1.01-1.80
10 82 122 204 1.49 1.11-1.99

Table 22: Odds Ratio of Brain Cancer Risk by Decile
The odds ratio between deciles of predicted results from the cross validation. The top 10% is 2.4 times as likely to
be classified as brain cancer as the lowest decile.
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Variable Importance
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Figure 55: Variable Importance Heatmap of 4-Splits-with-SD Lung Cancer CSLV Models
The variables most influential to the predictive performance of the specified models. A value of 1.0 indicates the highest importance.
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Figure 56: SHAP Plot of Top-Performing 4-Splits-with-SD Lung Cancer CSLV Model
The features with the highest contribution to the lung cancer prediction in the leading model. Some features
identified in the plot originate from chromosome 6, 7, 9, 13, X, and XY,

A heatmap was created to present variable importance across all the generated models
in Figure 57. Some of the most significant features were standard deviations and segments of

chromosome 10, 12, 15, and X. This was then confirmed with a SHAP plot in Figure 58.

104



Variable Importance

Chr.16.5plit.3
Chr.X.Split.2
Che.14 StcDer
Chr.13.8plit4
Chr.18.8plit4
Chr.X.Split.3
Che.staDev
Chaspita
cnrraspina
Chrsspita
chrtospitz ]
Chr.11.8plit.3
Chr.9.Split.1
ChrxY StDev
Chr.8.Split2
Chr.1.Split.3
195100 |
Chr.2.8plit2
Chr.15.Split4
Chr.3.5plit4
Chr.22.8plit.3
Chr.16 StcDev
G stavev
Chr.17.Split3
Chr.7.8plit.1
Chrs.spit
Chrs.spita
Ches Stadev
Chvs.spit
Chr.9.Split4
Chey SidDe
Chr.XY.Split.1
Chr.17.8plit.1
Chr.10.Split.2
Chr.18.Split.1
Chr.Y.Spiit.3
Chr.14.Split4
Chr2t St
Chr.13.8plit.1
Chex sidDev
Chr.7.8plit.2
Chr.12.8plit.1
Chr.2.8plit.1
Chrspits
Chsspita
e 11 Spis
Chr.22.Split4
Chr.X.Split4
Ches Stadov
Chr.Y.Split.1
Chr20SidDer
Chr.14.Split.3
Chr.5.Split4
Chr.XY.Split.2
Chr.15.Split.1
Chr.1.8plit.1
Chr.21.8plit4
Chr.21.8plit.3
Chr.17.8plit2
ChexY.spits
r.
Chox Spis
cvtaspus 000
G 19 Spi1 002
Chr.13.8plit.2 0.01
CheX Spit1 . 000
Chr.21.Split.1
Chr.4.Split4
Chr.20.Split.2
Chr.6.Split4
Chr.11.8plit.1
Chr.2.Split4
Chr.10 St6Dev
Chr.16.8Split.1
Chrz2 st
Che17 st00ev
Chr.1.8plit4
Chr.20.8piit.3
Chr.2.8piit3
Ches stdev
Che 759l
Chr.12.Split4
Chr.10.Split.3
Che13 St
Chr.21.Split2
Chr.5.Split.2
ChrasiDev
Chr.12.5t6Der
Chr.3.8plit.2
Chr.Y.Split4
Chr.17.8Split4
Chr.6.8Split.1
Chr.15.8plit.3
Chr.4.8plit3
Chr.20.5plit4
11 Sicdev
Ch.1 Do
Chr 14 Spit2
Chv 45pit 1
Chr.16.Split4
Chr.4.Split2
Chr.3.5plit.3
Chr.1.Split2
Chr.22.8plit.2
Ches sidev
Chr.14.8plit.1
Chr.16.Split.2
Chr.22.8plit.1
Che.18 Stc0ev
Chr.20.8plit.1
Chr.10.8plit.1
Chr.18.8plit.2
Chr.3.Split.1
15 spitz
Ches Staev
Ghe 11 8pit2
Chr.19.Split4
Chr.19.Split.3
Chr.18.Split.3
Chr.9.Split2
Chr.6.Split2
Chr.Y.Split2
Chr.12.8plit.3
Chr.12.8plit.2
Chr.8.Split4

Feature

NAN SNSRI CEN SRRV S SR B SN S N I
R R R A +e"°;~f’:¢°’\,«"\,«°’@~f&ff“°N,«*’\,"U«f\f“"’f
& @ & @@ @ 0 T A SN 0 A A A A
& AV v D &¢ 37 &N @7 é"} &7 2 A v,
cc < e "&“"’P‘\ Edard &"’y+f&““§°&"”+‘f&°"§

Figure 57: Variable Importance Heatmap of 4-Splits-with-SD Brain Cancer CSLV Models
The variables most influential to the predictive performance of the specified models. A value of 1.0 indicates the highest importance.

105



Summary Plot
for "XGBoost_model_R_1650140838403_30429"

Chr.15.Split.3 1
Chr.10.Split.4 -
Chr.X.Split.3 4
Chr.12.Split.2 4
Chr.X.Split.2 -
Chr.12.Split.1 A
Chr.X.Split.4
Chr.12.Split.4 A
Chr.21.StdDev -
Chr.Y.StdDev -
Chr.8.Split.1 4
Chr.7.Split.1 4
Chr.Y.Split.3 -
Chr.9.Split.3
Chr.X.Split.1 4
Chr.3.StdDev
Chr.5.Split.3 A
Chr.2.Split.1 A
Chr.13.Split.4 4
Chr.13.Split.3 A
Chr.2.Split44 @

normalized_value
1.00

0.75

0.50

Feature

x ! 60 6 @ 0.25

0.00

1 2
SHAP Contribution

Figure 58: SHAP Plot of Top-Performing 4-Splits-with-SD Brain Cancer CSLV Model
The features with the highest contribution to the lung cancer prediction in the leading model. Some features
identified in the plot originate from chromosome 10, 12, 15, and X.

We then examined colorectal cancer. The odds ratio was calculated from the cross-
validation predictions and recorded in Table 23. The risk of colorectal cancer increases by
decile, and the top 10% has an approximately 1.8-fold of relative risk in comparison to the

individuals in the lowest decile.
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Decile | Number of Number of Total Number | Odds 95% Confidence
Patients without | Patients with of Patients Ratio Interval
Brain Cancer Brain Cancer
1 1009 722 1731 0.72 0.65-0.79
2 887 844 1731 0.95 0.86—-1.05
3 892 838 1730 0.94 0.85-1.04
4 854 876 1730 1.03 0.93-1.13
5 873 857 1730 0.98 0.89-1.08
6 855 875 1730 1.02 0.93-1.13
7 862 868 1730 1.02 091-1.11
8 812 918 1730 1.13 1.02-1.25
9 841 889 1730 1.06 0.96-1.17
10 766 964 1730 1.26 1.14-1.39

Table 23: Odds Ratio of Colorectal Cancer Risk by Decile
The odds ratio between deciles of predicted results from the cross validation. The top 10% is 1.8 times as likely to
be classified as colorectal cancer as the lowest decile.

A heatmap was created to present variable importance across all the generated models
in Figure 59. Some of the most significant features were segments of chromosome 5, 19, and X.

This was then confirmed with a SHAP plot in Figure 60.
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Figure 59: Variable Importance Heatmap of 4-Splits-with-SD Colorectal Cancer CSLV Models
The variables most influential to the predictive performance of the specified models. A value of 1.0
indicates the highest importance.

108



Summary Plot
for "GBM_model_R_1650608319052_8219"

Chr.Split.1 m_‘, -

ChrX.Split N - .-._*. e cesamos
Chr.2.Split.1 o socn @

Chr.5.Split.1 e — > oo .
Chr.Split3 oo - _,_"___.,

Chr.11.Split.4 B8 O G

Chr.1.Split4 o \

- we
Chr.14.Split2 L - ..*ﬂ.u

Chr22.5plit3 -e - o . )
P .~‘" normalized_value
1.00
chr.1.Split2 o ooo oem 000
0.75

Chr.14.Split.1 so® .u..--—*. .

; 050
ChrX.Split4 :-n‘---——*—w- ® om o 025
chr8.Split.1 o o --+.-u 0.00

Chr2.Split.2 -
Chr.X.Split.3 we ® ame > @ GMOB O 00 WENNO® ®O> © OB © W@ e

Chr.Y.Split.4 e s R -__—’— om
Chr.19.5piit2 o ®e oommam ..0—...,,._, oo -
Chr.14.Split4 ° * @ o-.—‘* ccasmn ®0 0 ®® © © ©

Chr.8.Split.2 -

1
chr7.Split2 oo @ -+-. 2
Chr.1.Split.1 o - o we e uul*. - ™~ ® o

-0.50 -0.25 0.00 0.25
SHAP Contribution

Feature

Figure 60: SHAP Plot of Top-Performing 4-Splits Colorectal Cancer CSLV Model
The features with the highest contribution to the lung cancer prediction in the leading model. Some features
identified in the plot originate from chromosome 5, 19, and X.

These results demonstrate that germline genetic variations contribute to risk
determination of various cancer types. Utilizing the structural difference across the genetic
landscape alone provides sufficient information to predict whether an individual would have
certain cancer better than random chance. The datasets were constructed with age- and
gender-matched control to the diseased set to limit the variability derived from the phenotypic
differences. Our analysis also revealed standard deviations of I2r values across chromosomes to

be important factors in predicting cancer types. Currently, there are numerous studies
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dedicated to develop polygenic risk scores for many types of cancer®?, and our method may
offer alternative means in such effort.

This study has several limitations. First, Chromosomal Scale Length Variation was
developed for dimensionality reduction by averaging the 12r values across large segments of
chromosomes, and the standard deviation feature was constructed to provide more
information, i.e. the spread, of the dataset. The variable importance was explored with the
SHAP analysis, but it does not provide an explanation for the underlying mechanism. Second,
the UK Biobank suffers from a lack of diversity. Its population is primarily Caucasian in the
United Kingdom. Lastly, it is uncertain that the non-cancer individuals in the database would
remain so in the future, such that the “healthy” individuals might not actually belong in the
control set after all.

We were able to build machine learning models based solely on germline chromosomal
scale length variation for cancer risk determination, resulting in various levels of predictability.
Lung cancer achieving the top performance, with an average AUC of 0.565. Although the AUC
values obtained from these models would not be clinically useful at the current stage of
development, they all significantly differ from chance and indicate the existence of a difference
in structural genomics of the cancer patients in UK Biobank and the general UK Biobank
population. The SHAP analysis performed on lung, brain cancers revealed potential regions and

novel features, i.e. standard deviations of chromosomes, of importance.
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Summary

The rapid advent in sequencing and computational technologies have advanced cancer
research in recent years; however, much of the specific mechanism for cancer development
remain uncertain. As cancer is a multifactorial disease, it results from interaction between
genetic and environmental factors. It is important to first set apart hereditary genetic features
from environment-induced mutations, an endeavor aided by the study of germline DNA, which
solely comprise of inherited factors.

Currently, most genome-wide association study (GWAS) methods focus on somatic
single nucleotide polymorphism (SNP) instead of interactions between more than two SNPs.
Therefore, it is difficult to determine whether the SNPs are the sole cause or part of a group of
genetic contributors. The exact role of SNPs in cancer development process often remains
unclear. We utilized chromosomal scale length variants (CSLVs) of germline DNA to study the
epistatic interactions between genes and the degrees hereditary factors contribute to specific
cancers.

This study has shown that there is likely an epigenetic network effect of CNVs within an
individual’s genome, and such effect, once quantified, can be used to determine cancer risks.
We developed Chromosomal Scale Length Variation to utilize germline CNVs in an efficient
fashion while maintaining pertinent information. We have demonstrated that this germline
genetic information can be used to distinguish between certain types of cancer and between
healthy and cancer patients. This finding may serve as potential biomarkers for blood-based
cancer diagnostics, and it provides another means to construct genetic risk scores for specific

cancers.
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The awareness of a hereditary predisposition to certain types of cancer is valuable, for
screening increases the chance of early cancer detection, when it is more likely to be curable.
For instance, the incidence rate of early-onset colorectal cancer is on the rise, and the cancer is
often at the advanced stage of development when discovered, those with higher likelihood of
colorectal cancer would benefit greatly with early screening. For other cancer types with
environmental or lifestyle influences, e.g. lung cancer, those with high inherited cancer risks will
be more likely to recognize and practice caution to avoid those harmful factors.

To evaluate the applicability of our findings, we compared the results to current
published genetic risk scores, following the ICD 10 Cancer Code and validated in UK Biobank, for
common cancers. The two metrics commonly used for reporting risk scores are the area-under-
curve (AUC) value of the receiver operating characteristic curve and odds ratios between top
and bottom percentage of the sample groups. Table 24 shows that the CSLV-based predictive
models achieve comparable performance to previously reported risk scores for lung cancer and
brain cancer. This establishes CSLV as a promising factor in studying the interaction between

cancer germline genomics and inherited risk determination.

Cancer Type CSLV AUC | CSLV OR; Top 10% | Reported AUC Reported OR; Top 10%
Lung Cancer 0.598 2.594 0.51°192 1.36%%°2

Brain Cancer 0.567 2.443 0.546°%93 1.889193

Colorectal 0.565 1.759 0.5459192 1.691,92

Cancer

Table 24: Comparison of Cancer Risk Scores
Comparison between CSLV-based risk scores and reported risk scores built and validated using UK Biobank GWAS
and ICD 10 Cancer Code for Lung Cancer, Brain Cancer, and Colorectal Cancer.
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We examined a large selection of the most common and top performing machine
learning algorithms, such as tree-based methods like gradient boosting machines and XGBoost,
but there are still many other techniques to be explored. For instance, more specific
hyperparameter tuning may further improve our results.

CSLV also has some potential for improvement, concerning better feature selection,
though CSLV-models performed better than models based on CNV segments called in TCGA for
most cancer types. Currently, CSLVs are calculated from simple average of 12r values and
standard deviation across an entire genome. This average may instead be constructed based on
genomic location or the frequency of SNP probes, and the standard deviation may be computed
from smaller chromosomal segments.

The Cancer Genome Atlas and the UK Biobank are incredibly valuable resources for our
analysis; however, they suffer from a lack of diseased sample sets, with many cancer types
numbering well below 5000 individuals and the control set considerably larger than the cancer
data. The UK Biobank also lacks diversity, since its population is primarily Caucasian in the
United Kingdom. This issue may be remedied in near future, as other countries begin to collect
their own samples, and these large-scale databases will further grow in scope and size.

Our study demonstrates the promising results of applying machine learning methods on
copy number variations, in the form of chromosomal scale length variations, in cancer diagnosis
prediction and the potential of uncovering influential factors in the genomic landscape that
contribute to hereditary cancer risk. This information may aid physicians in determining more
personalized diagnostics and even employing relevant preventive measures based on individual

susceptibility to specific cancer.
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Appendix

Study Abbreviation Study Name

LAML Acute Myeloid Leukemia

ACC Adrenocortical carcinoma

BLCA Bladder Urothelial Carcinoma

LGG Brain Lower Grade Glioma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma
CHOL Cholangiocarcinoma

LCML Chronic Myelogenous Leukemia
COAD Colon adenocarcinoma

CNTL Controls

ESCA Esophageal carcinoma

FPPP FFPE Pilot Phase 11

GBM Glioblastoma multiforme

HNSC Head and Neck squamous cell carcinoma
KICH Kidney Chromophobe

KIRC Kidney renal clear cell carcinoma
KIRP Kidney renal papillary cell carcinoma
LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
MESO Mesothelioma

MISC Miscellaneous

ov Ovarian serous cystadenocarcinoma
PAAD Pancreatic adenocarcinoma

PCPG Pheochromocytoma and Paraganglioma
PRAD Prostate adenocarcinoma

READ Rectum adenocarcinoma

SARC Sarcoma

SKCM Skin Cutaneous Melanoma

STAD Stomach adenocarcinoma

TGCT Testicular Germ Cell Tumors

THYM Thymoma

THCA Thyroid carcinoma

UCS Uterine Carcinosarcoma

UCEC Uterine Corpus Endometrial Carcinoma
UVM Uveal Melanoma

Appendix: Table of TCGA study names and corresponding abbreviations
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