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Abstract

Designing from End-to-End and Learning Control Policies on the Edge with Data-driven
Optimization: Applications to Adaptive Plasma Medicine

by

Kimberly J. Chan

Doctor of Philosophy in Chemical Engineering

University of California, Berkeley

Associate Professor Ali Mesbah, Chair

Cold atmospheric plasmas (CAPs) are becoming a breakthrough technology in a variety of
materials processing and characterization applications, including in plasma medicine. CAP
jets (CAPJs) are a versatile tool in plasma medicine because they can be a low-cost, portable,
point-of-care solution for a variety of biomedical applications. However, selecting operational
parameters of CAPJs (or CAPs in general) remains an open challenge due to a variety of
factors, including variability in patients (i.e., target interface), variability in CAPJ operation,
sensitivity to disturbances and environmental conditions, and difficult-to-model dynamics
of CAPs resulting in uncertain predictions about CAP-interface interactions. Predictive
control has become the state-of-the-art in addressing aspects of the safety, reproducibility,
and efficacy of CAP treatments. This dissertation addresses two open aspects of CAP
control, specifically designing feasible embedded control systems for point-of-care CAPJs and
designing individualized CAP treatment regimens. Together, these two aspects represent the
overarching objective of this dissertation: enabling point-of-care devices for precision plasma
medicine.

CAPJs for biomedical applications are often touted for their portability and point-of-care
use. Additionally, medicine as a field is moving towards more targeted approaches to pa-
tient healthcare due to the influx of data from personal devices (e.g., smart wearables)
that track health trends and physical activity and due to the importance of considering
diverse patient profiles for equitable and efficacious medical treatments. This trend (part
of a tendency towards “edge computing”) combined with the nonlinear, multi-variable CAP
dynamics calls for embedded control policies that are capable of implementation on resource-
limited hardware. The first part of this dissertation provides a novel fusion of hardware and
software design (aka “hardware-software co-design”) of control policies to find optimal and
feasible embedded control policies on resource-limited hardware. In particular, key elements
of the end-to-end design pipeline include the digital control policy, the physical computing
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hardware, and the closed-loop performance measures of interest such as chemical/biologi-
cal effects of CAPs on target interfaces. We demonstrate that a data-driven optimization
framework based on Bayesian optimization (BO), which can simultaneously incorporate the
control policy design and hardware considerations when implementing the control policy, can
effectively design feasible embedded control policies that target multiple objectives. An esti-
mation of the Pareto frontier (i.e., trade-off curve) can be generated via hardware-in-the-loop
simulations and used to inform the design of real-time control policies.

Several applications in plasma medicine require repeated treatments to realize therapeuti-
cally effective treatment outcomes to avoid overdosing and/or to treat long-term conditions.
Prior works have illustrated predictive control strategies are capable of safely delivering CAP
treatments to patients, but these strategies generally rely on underlying assumptions of in-
dividual subject characteristics (i.e., empirical models based on population data). This con-
sideration necessitates adaptive treatments that are updated via observations of treatment
outcomes, which can be addressed through data-driven optimization. In simulations and ex-
periments, we demonstrated that deep learning-based control policies, which are amenable
to resource-limited hardware, can be updated directly using multi-objective BO. We demon-
strated how deep learning-based control policies can be updated to find the optimal trade-offs
in treatment objectives when characteristics of individual subjects may differ from the pop-
ulation. In a complementary direction, we developed a novel strategy to safely explore the
individualized objective space without compromising on performance improvements. We
demonstrated that our safe explorative BO strategy finds a balance between overly-cautious
exploration that may get stuck at local optima and overly-eager exploration that may violate
safety-critical constraints.

The primary focus of this dissertation was on the therapeutic benefits of CAPs. The final
contribution of this dissertation investigated a novel aspect of CAPs for biomedical use:
(biological) material characterization. We demonstrated that CAPs are uniquely capable of
producing minimally destructive effects during interactions with biological tissues that can
be used to identify and classify different tissue types. A key aspect of this finding is that
real-time chemical and electrical measurements of plasma-tissue interactions can be analyzed
in physics-informed ways and fed into machine learning strategies to predict the type of a
biological tissue. Results from this study can have significant implications in non-invasive
early skin cancer detection systems and/or in real-time surgical assistance.

To conclude, this dissertation presented results that illustrate an end-to-end journey from
the design of physical computing hardware to the design of digital control policies to the
design and characterization of (bio)chemical outcomes of plasma treatments in medicine.
This dissertation established that data-driven optimization is a versatile tool to regulate and
personalize the outcomes of CAP treatments. For medicine, BO mimics the doctor-patient
interaction, and thus provides a natural augmentation to the medical toolkit. Future work
may involve addressing additional challenges regarding connected devices and data-driven
strategies (i.e., (cyber)security, privacy, distributed deployment), fusion of physics-structured
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learning with data, and evaluation of such methods in preclinical and clinical studies. The
findings in this dissertation were grounded in plasma medicine, but can be broadly applicable
to other non-equilibrium plasma applications, e.g., semiconductor processing.
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1.1 Edge computing relies on communication between the cloud, edge servers, and
end devices to decentralize the computational needs of individual devices. Future
(plasma) medical technologies will depend on the edge computing architecture as
shown to enable adaptive and individualized treatments and treatment regimens. 2

1.2 Design elements of a (plasma) medical device at the edge. For devices at the
edge, the full pipeline of design should include information about the chemical
and biological outcomes, considerations about the physical computing hardware,
and considerations regarding the digital control policy (i.e., the embedded software). 4

1.3 Illustration of the doctor-patient interaction to determine and optimize an overall
treatment regimen. In plasma medicine, there exists an inner loop of feedback
control to ensure reliable and reproducible plasma treatments [1–3]. Then, over
some timescale separation, physicians and practitioners must take observations
of the biochemical outcomes of the plasma treatment to inform future decisions
regarding additional treatment(s) in an outer optimization loop. The focus of
this dissertation is on the outer optimization loop. . . . . . . . . . . . . . . . . . 6

1.4 Concept diagram of the interplay between digital (embedded control policy),
physical (computing hardware of a device), and biological (treatment outcomes)
design for cold atmospheric plasmas in medicine. Areas explored in this disserta-
tion are outlined in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Close-up image (left) and schematic (right) of the kHz-excited CAPJ in helium
(He). The manipulated inputs are denoted along the black dotted arrows, and
the controlled outputs are denoted in red. . . . . . . . . . . . . . . . . . . . . . 12

2.2 Illustration of the hierarchical control system for a cold atmospheric plasma jet
(CAPJ) used in this dissertation. The green arrows represent the manipulated
inputs of the CAPJ; the orange arrows represent the measured outputs of the
CAPJ; the blue dashed box identifies the basic power control loop; and the yellow
dashed box identifies the advanced predictive multi-output control loop. . . . . . 13
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2.3 Cross-section schematic (a) and images (b-d) of the plasma gun setup. (a) A
cross-section of the cold atmospheric plasma device that consists of a coaxial di-
electric barrier discharge configuration using helium as the working gas. High
voltage µs pulses (+7 kV peak amplitude with 600 Hz pulse repetition frequency
via a custom power supply) are applied to an enclosed brass electrode, and an
outer electrode surrounding the quartz capillary tube serves as a ground electrode.
The plasma is generated by ionizing the helium flow in the quartz capillary, and
the excited helium transfers energy to surrounding air constituents that make
up the plasma plume impinging the samples. We maintain a distance of 5 mm
between the tube end and the biological interface. A fiber optic cable pointed at
the plasma-tissue incidence point and connected to a spectrometer (not shown)
is used to collect optical emission spectra. A compensation circuit [4] is used to
mimic the electrical interactions with a non-human material to that of a human
interface. Electrical characteristics of this system were taken at the locations
marked by pentagons (A, B, and C) with voltage probes connected to an oscillo-
scope (not shown). In Chapter 6, we use a raw chicken leg model to test various
biological tissues, and the roast chicken in the schematic is for illustrative pur-
poses only. (b) An image of the data collection setup; the plasma is powered by
a custom power supply (large beige box on the left side of the image) and the
flow rate of the helium is controlled by a mass flow controller (sitting on top of
the power supply). (c,d) Images of the plasma interacting with the chicken leg
(bone, (c); muscle, (d)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Hierarchical control with data-driven optimization as an additional layer of con-
trol. Prior works [5, 6] focused on the basic control and predictive control levels;
this work focuses on the third level of control based on data-driven optimization.
A timescale separation determines the need for this form of hierarchical control.
The basic control layer operates at µ-second to millisecond timescales; the pre-
dictive control operates at millisecond to second timescales; and the data-driven
optimization operates run-to-run at the minutes (or larger) timescale. . . . . . . 19

3.2 Evolution of Bayesian optimization for a one-dimensional single objective prob-
lem. The top subplots illustrate the Gaussian process surrogate model and how it
evolves in time from left to right. As data is observed, the model more accurately
represents the truth, and the uncertainty around known data is reduced. The
bottom subplots show the acquisition function and how it evolves in time from
left to right. The value of searching in particular points is highlighted by the
acquistion function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
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4.1 Flow diagram of the standard control-on-a-chip design process. First, a high-level
representation of the control policy is selected and evaluated using approximate
models or limited closed-loop data. Then, a code generation strategy is selected
and evaluated based on its ability to be successfully implemented while matching
the performance of the high-level program. In general, several iterations may be
needed at each stage of the design process until an acceptable option is found. If
any stage fails, then one must return to a previous stage to repeat the process. 27

4.2 Flow diagram of the proposed control-on-a-chip (CoC) design process. As in
Fig. 4.1, CoC design is subdivided into two categories related to software (high-
level control program selection in light gray) and hardware implementation (in
dark gray). Our proposed workflow for CoC design is subdivided as follows:
Within the high-level control program selection, the first step is to select and eval-
uate a “physics-informed” control design. In the next step, a deep learning-based
policy is created in pursuit of hardware-compatibility. The final step involves the
hardware implementation and final evaluation. Note that the “Exhausted Op-
tions” decision marker is not present in this figure for simplicity, but still exists as
part of the design process. We define this design process as a framework for CoC
design that can be used to search over the joint software and hardware parameter
space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Diagram of the data-driven optimization framework. The optimization framework
consists in (i) an inner learning procedure that represents a templated workflow
to design a single CoC policy (black dashed box) and (ii) an outer optimization
stage that suggests new CoC designs via closed-loop evaluations (yellow dashed
box). The inner learning procedure (i) is similar to Fig. 4.2, but rather than
iteratively optimizing between steps as in Fig. 4.2, the outer optimization (ii)
allows us to select parameters from each step (λ, θA, γ) concurrently. . . . . . . 33

4.4 Distributions of the stage cost for three control policies used in the illustrative ex-
ample: implicit MPC, standard explicit MPC (EMPC), and DNN approximation
to MPC (DNN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Confusion matrix of the hardware feasibility classifier. Recall that 0 represents
an infeasible control-on-a-chip design, while 1 indicates a feasible design. . . . . 42

4.6 Observed closed-loop performance metrics of plasma treatments during five repli-
cates each of multi-objective Bayesian optimization (MOBO) and random search
via SOBOL sampling. Blue circles indicate the metrics observed during MOBO;
red squares indicate the metrics observed during random search. Dashed black
lines indicate “constraints” on the closed-loop performance metrics that are used
to guide parameter suggestions to the region-of-interest. The left figure shows all
data encountered in all optimization routines, while the right figure illustrates a
zoomed-in version (truncating the upper x-axis value at 120). Note that random
search has no notion of the objective threshold since no surrogate model is created
based on previously observed data. As such, random search explores significantly
more designs outside of the region-of-interest. . . . . . . . . . . . . . . . . . . . 43
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4.7 Hypervolume improvement of five replicates each of multi-objective Bayesian op-
timization (MOBO, blue) and random search via SOBOL sampling (red) for the
control-on-a-chip design for atmospheric pressure plasma jets. Solid lines indi-
cate the mean hypervolume and the shaded regions indicate one standard error.
MOBO on average reaches a higher hypervolume overall and earlier than random
sampling, which indicates that a meaningful Pareto frontier is realized in fewer
iterations of MOBO than of random sampling. . . . . . . . . . . . . . . . . . . . 45

4.8 Closed-loop trajectories of CEM (left column) and surface temperature (middle
column) at snapshots (at Iterations 5, 15, and 25) of one replicate of multi-
objective Bayesian optimization. Selected designs (colored stars) were determined
from the observed data (blue circles) in the metric space (right column). The
selected designs correspond to designs that an engineer may select based on the
needs of a particular application. The “utopia” point/design (solid green) is
selected on the basis of lowest combination (scaled summation) of the metric
values. The “control performance preferred” point (dot-dashed orange) is selected
on the basis of a weighted combination of the metric values where the thermal dose
metric is weighted three times more than the temperature constraint metric. The
“constraint satisfaction preferred” point (dotted brown) is selected on the basis
of a weighted combination of the metric values where the temperature constraint
metric is weighted three times more than the thermal dose metric. In the CEM
figures, the dashed black line represents the desired thermal dose. In the surface
temperature figures, the dashed red line represents the constraint. . . . . . . . . 46

4.9 Observed performance metrics during three replicates of multi-objective Bayesian
optimization for control-on-a-chip design based on design parameters chosen for
the experimental case study. Modifying different design parameters still shows a
similar trade-off between the two closed-loop performance metrics. . . . . . . . . 47

4.10 Comparison of measured APPJ outputs and the model used in sMPC (4.23). A
new model was learned from new experimental data, since the configuration of
the APPJ had changed since the data collection for (4.21) and (4.22). . . . . . . 49

5.1 (a) Hypervolume improvement (mean ± two standard errors) and (b) observed
Pareto frontier over five replicate runs of MOBO. The hypervolume improvement
(a) demonstrates that MOBO reaches some optimal representation of the Pareto
frontier. The Pareto frontier (b) demonstrates the trade-off between the compet-
ing performance measures (dose delivery: reducing treatment time; temperature
constraint: satisfying patient comfort and safety). . . . . . . . . . . . . . . . . . 60
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5.2 State and input profiles of closed-loop experiments at various iterations of MOBO.
Each iteration of MOBO consisted of triplicate experiments. The CEM profile
(upper left) shows the median value (solid line) along with the min/max range
(shaded region). The surface temperature profile (upper right) shows the mean
value (solid line) and two standard errors (shaded region). For the manipulated
inputs (power and flow rate), only the mean value is plotted. The selected profiles
shown are designated as the trajectories that correspond to the “incumbent best”
policy parameterizations. The incumbent best is deemed as the initial policy, if a
Pareto frontier cannot be established (i.e., in the first few iterations) or the policy
parameterization on the Pareto frontier with the lowest temperature constraint
measure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Observed performance measures from the MOBO exploration. A total of 15 it-
erations of MOBO were performed. Each individual point represents the mean
performance measure values from triplicate real-time experiments at each itera-
tion. The red boxes identify the estimated Pareto optimal points. . . . . . . . . 63

5.4 Exemplary feasible set using safe Bayesian optimization (BO) (in orange) versus
a relaxed problem (in green). The true feasible set is in red, while the initial
feasible point is in blue. The true optimum is denoted with a cyan “x”, and a
local optimum is denoted with a magenta “x”. Contours of the objective are in
gray-scale with more optimal spaces in white. . . . . . . . . . . . . . . . . . . . 66

5.5 Comparison of observed closed-loop profiles between three strategies: (a) SEBO,
(b) safe BO, and (c) the relaxed formulation of safe BO. The top figures repre-
sent the evolution of CEM over a treatment period of 120 s. The bottom figures
represent the evolution of temperature over the same treatment period. The col-
ors/gradient of the profiles indicate the evolution of the profiles over 30 iterations
of BO. The first two profiles in dotted pink indicate the initial data provided to
BO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6 Comparison of revealed feasible sets of SEBO, safe BO, and the relaxed formu-
lation of safe BO at iteration 30; the feasible set is denoted by F̂30. Blue stars
indicate F̂30 of SEBO; orange circles indicate F̂30 of standard safe BO; and green
triangles indicate F̂30 of the relaxed safe BO. While 5 parameters were included
in the design space of BO, i.e., x ∈ R5, we show the revealed set for 3 of the
parameters A11, A22, and K since they are deemed the most influential to the
objective and constraints. Values of the parameters are normalized. . . . . . . . 74
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6.1 Information flow of our proposed tissue diagnostic workflow. We start with an
automatic data acquisition setup using the plasma gun setup as described in
Figure 2.3. The raw data that is collected is in the form of optical emission spectra
(OES) from the spectrometer and electric waveforms from different locations and
recorded by an oscilloscope. The data is transformed and reduced in dimension
in physics-informed ways: the OES are manually reduced to important peaks
and the electric waveforms are converted to Lissajous figures. A classification
technique for biological tissue detection and identification is trained using labeled
data and is tested on unseen data. . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Exemplary optical emission spectra of helium plasma impinging upon skin, mus-
cle, bone, and fat tissue of a chicken leg model. OES are collected over 50 seconds
at 0.5-second sampling intervals and averaged. OES are normalized with respect
to the He706 peak. Here, the spectra show distinct characteristics between peak
heights that can be exploited in classification and/or clustering techniques. . . . 81

6.3 Exemplary charge-voltage figures of helium plasma impinging upon skin, muscle,
bone, and fat tissue of a chicken leg model. Electrical waveforms are collected
over 50 seconds at 0.5-second sampling intervals and averaged. The left figure
illustrates the charge collected at the ground electrode versus the applied power
over 50 seconds, and the right figure illustrates the charge collected at the target
subject versus the applied voltage. The left figure shows overlapping electrical
characteristics and illustrates that the generated plasma is of consistent quality.
The right figure illustrates the different shapes of these electrical characteristics
between different tissue types, which can be exploited in differentiating or iden-
tifying biological tissues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.4 Confusion matrices of a decision tree and a neural network trained different
datasets (electrical data only, chemical data only, and a combination of chem-
ical and electrical data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.5 Selected biologically-relevant peaks [7, 8] from the optical emission spectra (nor-
malized against the He706 peak) of cold-atmospheric plasma-treated chicken mod-
els. ⋆Elastin represents elastin cross-links, and collagenase and pepsin represent
collagenase-digestible and pepsin-digestible collagen cross-links. +Further, the
pepsin-digestible collagen peak is likely heavily overlapping with the excited ni-
trogen peak (380.5 nm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
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Chapter 1

Introduction

This chapter motivates and introduces the necessary background to explore the
frontier of predictive control on the edge for cold atmospheric plasma in medicine.
This background includes a description of the transition from segregated design
to end-to-end design, a brief review of plasma medicine and control for plasma
medicine, and an introduction to the framework that this dissertation uses to
address challenges in control on the edge for plasma medicine.

1.1 Background and Motivation

The Fourth Industrial Revolution marks the (current) time period where digital technology is
woven into the fabric of daily human life [9,10]. This period has been vaguely defined by the
emergence of technological breakthroughs grounded in digital systems, e.g., cyberphysical
systems (CPS), internet of things (IoT), artificial intelligence (AI), etc. One important
aspect of these innovations is the hardware components that make up portable devices and
the control programs that lie within them. This dissertation explores strategies to bridge
the gaps in computing on the edge and advanced control for nonlinear, constrained, multi-
variable, and/or uncertain systems. Namely, advances in the realm of machine learning
(ML) and optimal control have enabled a form of learning-based predictive control to update
control policies in a data-driven manner [11–13]. Extensive exploration of the fourth state
of matter, plasma, has created a new field of research, plasma medicine, with the goal to
exploit plasma’s complex chemical, electrical, thermal properties in innovative biomedical
applications [14–17]. In plasma medicine, beneficial impacts of learning-based predictive
control include a mathematically-backed strategy to identify new treatment protocols, the
ability to personalize medicine, and the ability to bring updated predictive control to the
point-of-use [18, 19]. This dissertation proposes that learning-based predictive control is
crucial to address the needs of adaptive and individualized plasma medicine at the edge.

The following sections of this chapter will provide the necessary background to explore
the frontier of control on the edge for cold plasma devices in medicine. First, we elaborate on
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Figure 1.1: Edge computing relies on communication between the cloud, edge servers, and
end devices to decentralize the computational needs of individual devices. Future (plasma)
medical technologies will depend on the edge computing architecture as shown to enable
adaptive and individualized treatments and treatment regimens.

the unique challenges that stem from the end-to-end design of control at the edge. Next, we
provide a brief overview of cold atmospheric plasma’s potential in medicine and motivate the
key challenge to making its future viable: optimal control. Then, we describe the central idea
of this dissertation, which involves casting the control of a plasma system as an optimization
problem that is solved in a data-driven manner. Finally, we discuss the contributions and
organization of this dissertation.

1.2 End-to-end Control Design: From System

Specifications to Hardware Design to Software

Design

Scientific computing entails the use of advanced computational methods to solve scientific
and engineering problems, and edge computing is becoming more relevant with the emergence
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of many CPS and IoT devices. The core idea of edge computing lies in bringing as much
computation as possible to “the edge,” or near the endpoint, where the data or end-user
is located, as illustrated in Figure 1.1. The shift towards edge computing is necessary as
more and more devices are connected wirelessly and the need for computational resources
to support those devices grow exponentially. This means that individual devices at the user
interface must increasingly take on computational tasks themselves. Advanced control and
automation are leading contributors to the push towards edge computing. Smart devices and
autonomous vehicles are examples of the ubiquitous computing that are available to users
in the modern era; these devices rely on distributed sensing and scientific computations to
interact with the complex environments they are in. However, the need to take on more
scientific computations can often be at odds with the low computational capabilities of the
hardware at the edge. As such, a new paradigm of design is essential to enabling advanced
technologies at the end-user level.

Medicine is one field in which edge computing is hoping to gain traction [20–23]. The
promise of personalized and adaptive treatments bodes well for patients, as individualized
treatments lead to better overall health outcomes [24–26]. However, designing (edge) devices
that exist at the human-health interface involves a set of challenges revolving around safety,
reproducibility, efficacy, and privacy [21]. In doing so, it is imperative to make decisions
based on the full pipeline of design. As illustrated in Figure 1.2, this includes considerations
of the chemical/biological, computing hardware, and digital sides, which make the design
process inherently interwoven and practically difficult to model and challenging to interpret.
Advances have been made individually in each category: on the digital side, complex control
policies, such as model predictive control (MPC) [27–29], can handle a variety of multi-input,
multi-output nonlinear and complex systems; on the computing hardware side, graphics pro-
cessing units (GPUs) [30], field programmable gate arrays (FPGAs) [31,32] and others have
enabled faster real-time computations; and on the chemical/biological side, where studies
show progress in characterizing the complex interactions of plasma and (bio)interfaces using
real-time available measurements [33,34].

This dissertation aims to address parts of each dimension towards individualized and
adaptive plasma medicine, and while medicine remains the focus of this dissertation, ele-
ments of this design paradigm can be applied various other applications involving plasma
interactions.

1.3 Application to Cold Atmospheric Plasmas in

Medicine

Plasmas are the “fourth fundamental state of matter” characterized by its composition of
neutral species, radicals, ions, and electrons. Non-equilibrium plasmas are weakly ionized
gases whose mean kinetic energy of the electrons (Te) is much greater than that of the
heavy particles (Tg, i.e., Te ≫ Tg) [35, 36]. In particular, cold atmospheric plasmas (CAPs)
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Figure 1.2: Design elements of a (plasma) medical device at the edge. For devices at the
edge, the full pipeline of design should include information about the chemical and biolog-
ical outcomes, considerations about the physical computing hardware, and considerations
regarding the digital control policy (i.e., the embedded software).

are a non-equilibrium plasma that exists at atmospheric pressure conditions [37]. CAPs are
uniquely capable of locally generating reactive chemical species, ions, electric fields, photons,
and thermal effects, which can be delivered to heat- and pressure-sensitive targets [36, 37].
Plasma medicine is an innovative field at the intersection of plasma physics and clinical
medicine and has inspired a significant increase in the research studies on their effectiveness
as an alternative or complementary therapy [14–17]. Plasma medicine established its roots
in the 1990s and continues to advance clinically. Table 1.1 lists a few recent advances in the
plasma medicine research community.

Despite the latest progress, an open challenge in plasma medicine still lies in determin-
ing the proper conditions in which to use and operate plasma, i.e., designing treatment
protocols based on real-time observations of plasma characteristics and treatment efficacy.
In plasma medicine, the main form of control problem lies in what is called the “dose de-
livery” problem, wherein some variable amount of plasma effects (be it thermal, chemical,
electrical, or radiative) are delivered to an interface. While this can be a simple problem
when handling chemical medications, a plasma dose is poorly defined due to the multi-
variable plasma-interface interactions [58, 59]. Further, operational conditions of plasma
devices (e.g., translation across an interface, interface/subject variability) pose additional
challenges to overcome when applying plasma treatments [14, 60]. Efforts to address the
dose delivery problem have been investigated with promising results [1, 2, 61–65]. The chal-
lenges highlighted in these works that continue to play a major role in adaptation of plasma
treatment protocols in this work include:

1. CAP systems are difficult to model in that physical models have high computational
complexity (presents a challenge in embedded, real-time control) and/or are incomplete
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Category Contributions Reference(s)

Disinfection and
Sterilization

Commercial sterilization system for
pharmaceuticals

[38]

Hand sanitation [39], [40]
Pathogenic molecule (e.g., bacteria,
viruses, prions) inactivation

[41], [42], [43],
[44], [45]

Wound Healing Treatment of chronic venous ulcers [46]
Post-surgery treatment of
infected/disturbed wounds (acute wound
healing)

[47], [48]

Combination with conventional
antiseptics

[49]

Plasma Oncology Selective cancer cell targeting [50], [51]
Assistance in inducing immunogenic cell
death

[52], [53]

Surgical aide [54], [55]

Safety CAP effects on proteins [56]
Minimally-destructive against ocular
tissues

[57]

Table 1.1: A non-exhaustive list of recent advances in plasma medicine.

descriptions of the physical system (presents a challenge in accurate control, which has
consequences in terms of efficacy and safety).

2. CAPs and biomedical systems are sensitive to environmental factors and individual
subjects. CAPs have run-to-run variations even under nearly-identical operating con-
ditions [60] and exhibit steep gradients in temperature and reactive species concentra-
tions [58]. Furthermore, the nature of biological systems results in stochastic outcomes,
and the lack of diversity in historical medical studies poses a need establish patient-
centric healthcare [66].

3. Real-time and non-interfering sensing of CAP treatment efficacy is limited. CAPs and
its effects on biological materials require characterization tools that are high-speed and
expensive, whereas quantifying and evaluating the effect of CAPs on biological systems
occurs over a much longer timescale, which has posed a challenge in understanding the
relation between CAP operation and biological outcomes.

Prior work focused on the algorithmic complexities of control policies that are necessary to
operate CAPs under the challenges listed above. Instead, this dissertation aims to explore
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Figure 1.3: Illustration of the doctor-patient interaction to determine and optimize an overall
treatment regimen. In plasma medicine, there exists an inner loop of feedback control
to ensure reliable and reproducible plasma treatments [1–3]. Then, over some timescale
separation, physicians and practitioners must take observations of the biochemical outcomes
of the plasma treatment to inform future decisions regarding additional treatment(s) in an
outer optimization loop. The focus of this dissertation is on the outer optimization loop.

an iterative framework that adds a layer of optimization-based treatment adaptation on the
biological or therapeutic outcomes.

1.4 Data-driven Optimization for Adaptation of

Predictive Control Policies

For multi-treatment protocols in general medicine, it is typical for patients and physicians to
have regular check-ups to adjust/modify the treatment regimen as necessary. This can pro-
ceed as illustrated in Figure 1.3. For plasma medicine, prior works have shown that plasma
treatment must incorporate some form of advanced feedback control policy to ensure reliable
and reproducible plasma treatments [1–3]. This feedback control policy must be on the order
of millisecond to second time scales due to the fast dynamics of ion and electron interac-
tions and plasma-interface chemistry, while the biological effects are determined minutes to
hours to days after the plasma application [34]. This dissertation proposes a data-driven
means to supplement or inform a physician’s strategy for plasma treatment regimens due to
the additional layer of feedback control and the lack of understanding in plasma-biological
interactions and outcomes.

Consider an optimization problem in the context of plasma medicine: a constrained
minimization problem in which the objective(s) and constraint(s) are black-box due to the
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lack of knowledge about the plasma-interface interactions

min
θ

{
{Ji(θ)}mi=1 subject to {cj(θ)}pj=1 ≥ 0

}
, (1.1)

where θ ∈ Θ is a set of adjustable parameters of a plasma treatment, whether that be plasma
operating parameters or control policy parameters, {Ji : Θ → R}mi=1 are a set of m objec-
tives/treatment outcomes, and {cj : Θ→ R}pj=1 are a set of p safety-critical constraints that
describe whether a trajectory/plasma treatment is safe (≥ 0) or unsafe (< 0).The optimiza-
tion problem (1.1) cannot be solved by standard gradient-based optimization methods (e.g.,
gradient descent) due to the following features of Ji (and cj):

1. The mathematical structure of Ji may not be known in closed-form, especially if Ji is
a result of a plasma treatment under an optimization-based control policy (i.e., one
that may involve the implicit solution of another optimization problem, e.g., model
predictive control).

2. The dynamics of a plasma treatment and the effects of CAPs on biological interfaces
(aka “dose”) are not known exactly; thus the gradients of Ji cannot be computed.

To address these challenges, derivative-free optimization (DFO) is one avenue of explo-
ration since DFO methods are general and make little-to-no assumptions regarding the objec-
tive(s) and constraint(s) [67,68]. However, most DFO methods still require many evaluations
on the true system (i.e., plasma treatments) [69]. Bayesian optimization (BO) is a class of
DFO methods that were specifically designed to tackle noisy and expensive-to-evaluate ob-
jective(s) [70]. BO recasts the optimization problem (1.1) as a sequential learning problem,
similar to the doctor-patient interaction to evaluate the efficacy and safety of a treatment
regimen. The BO algorithm consists of two main components: i) a predictive probabilis-
tic surrogate model representing the objective(s) and constraint(s) and ii) an “acquisition
function” that quantifies the benefit of querying the posterior objective(s) and constraint(s).
Further details about BO will be given in the ensuing chapters; here, we highlight a few key
ways that BO can be used to address open questions in plasma medicine as investigated in
this dissertation. BO can be used to

1. modify parameters θ of arbitrary control policies, be it MPC or deep learning policies
that are amenable to embedded implementations for edge devices,

2. modify arbitrary design parameters of the embedded control or hardware implementa-
tion, meaning that the digital aspect can be designed in conjunction with the computing
hardware aspect of a plasma-biology system,

3. solve a multi-objective and/or constrained problem, which is common to medical prac-
tice when there are various considerations involving efficacy of treatment, patient com-
fort, patient safety, and/or device capability, and
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Figure 1.4: Concept diagram of the interplay between digital (embedded control policy),
physical (computing hardware of a device), and biological (treatment outcomes) design for
cold atmospheric plasmas in medicine. Areas explored in this dissertation are outlined in
red.

4. adapt control policies in a safe, explorative manner, where safety is guaranteed with
high probability without loss in performance gains.

Additionally, preference learning BO has recently been investigated for personalized plasma
medicine and demonstrates how patient feedback can be incorporated into a data-driven
framework to more effectively guide the control policy search based on user-centric prefer-
ences [71].

1.5 Contributions

The overarching objective of this dissertation is to investigate the end-to-end design
of embedded control systems on point-of-care devices that enable individual-
ized plasma treatment regimens in plasma medicine. To tackle this overarching goal,
we use BO as a framework to inform treatment regimens through (i) optimal co-design of
computing hardware and digital control policy for embedded control and (ii) safe and multi-
objective adaptation of plasma treatment regimens for optimized and individualized control
over timescale-separated biochemical outcomes, and (iii) we investigate advancements in the
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characterization of plasma effects on biological materials. Figure 1.4 provides a conceptual
diagram to illustrate the concepts and methods investigated in this thesis. Aim (i) involves
the fusion of embedded control and hardware-software co-design, and when necessary, replace
complex control (such as robust formulations) with approximate control. Aim (ii) connects
aspects of the application (e.g., safety-critical constraints, embedded control architectures)
with control policy adaptation and highlights how data-driven control optimization can be
used to efficiently explore plasma operating conditions that lead to desired biochemical out-
comes. Finally, Aim (iii) presents a novel perspective to evaluate biological materials using
CAPs, which poses a unique opportunity to use the same CAP device (under different oper-
ational modes) for not only medical therapies but also for diagnostics. Table 1.2 summarizes
the contributions that led to the culmination of this thesis. Works highlighted in bold point
out the specific contributions that were adapted for chapters of this dissertation.

Work Contribution(s) Figure 1.4 Concept
Vertex/Vertices

[72] Deep learning for approximate offset-free
nonlinear MPC in embedded applications

digital, physical

[73] Data-driven adaptation of control policies
under model uncertainty

digital

[74] Robust MPC with embedded adaptive scenario
trees using Bayesian neural networks

digital

[75] Extension of [74] with robust Bayesian neural
networks

digital

[76] Personalized medicine via adaptation of deep
learning-based approximate MPC

digital, physical

[77] Safe exploration for adaptation of (robust)
MPC policies

digital

[78] End-to-end hardware-software co-design for
embedded control policies in plasma medicine

digital, physical

[79] Identification and characterization of biological
tissues using CAPs

biological

To be
Submitted

Tunable biochemical outcomes in plasma
activated water using multi-objective BO

digital, biological

Table 1.2: Summary of contributions of this thesis. The “Concept Vertex/Vertices” column
relates back to Figure 1.4 and highlights the broad element(s) of design that each contribution
falls under.
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1.6 Organization

The remainder of this dissertation is organized as follows. Chapter 2 describes the CAP
jets (CAPJs) used in this dissertation. Chapter 3 describes general problem formulations
that are encountered throughout this dissertation. Chapter 4 describes a multi-objective
approach to the hardware-software design problem for CAPJs, particularly in exploring the
connection between the digital and physical components of the control design process. Chap-
ter 5 discusses applications and extensions of Bayesian optimization to personalize plasma
treatments and make control policy exploration safe without significant loss in performance
gains. Chapter 6 shifts the focus to the biological side and demonstrates how CAPs can
be used to characterize biological materials. Chapter 7 concludes this dissertation.
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Chapter 2

Cold Atmospheric Plasma Jets

This chapter describes the cold atmospheric plasma jets used as experimental
testbeds for prototypical applications in plasma medicine and/or plasma (bio)-
processing. These testbeds were used to generate data to learn data-driven models
used in in silico closed-loop simulations and to demonstrate our Bayesian opti-
mization framework in real-time experiments.

2.1 Introduction

Cold atmospheric plasma jets (CAPJs) are a class of CAP-generating devices that are clas-
sified based on their electrode geometry and arrangement, the excitation frequency of the
applied voltage, and the flow field configuration and composition of the working gas [80,81].
This dissertation focuses on dielectric barrier discharge (DBD) jets and DBD-like jets, of
which have several configurations that are illustrated in Figures 2 and 3 of [80]. DBD jets
operate with kHz-frequency alternating current (AC) or pulsed direct current (DC) applied
voltages applied to a noble working gas such as helium. DBD jets offer several advantages
for plasma medicine [80]:

• The gas temperature remains close to room temperature (∼ 30◦C) due to the low
power density delivered to the plasma.

• The use of the dielectric ensures that there is no risk of arcing regardless of the tip-to-
surface distance.

• The plasma plume and its effects can reach several centimeters beyond the tip of the
plasma tube [82], which makes the operation of the plasma jet flexible and physically
easy to manipulate.

DBD-like jets have similar advantages, but can operate in a non-DBD manner when the
treated surface is conductive. Doing so increases the chance that an arc may occur, but can
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Figure 2.1: Close-up image (left) and schematic (right) of the kHz-excited CAPJ in helium
(He). The manipulated inputs are denoted along the black dotted arrows, and the controlled
outputs are denoted in red.

increase the overall power delivery to the plasma, which can create more rich chemistry. In
plasma medicine, DBD-like jets would have to consider this particular trade-off.

This dissertation primarily uses a DBD jet in the configuration illustrated in Figure 2(b)
of [80] with the exception of the final line of work described in Chapter 6, which uses a
DBD-like configuration illustrated in Figure 3(a) of [80]. The following subsections give the
details of the CAPJ testbeds.

2.2 Ring-Electrode kHz-excited Dielectric-Barrier

Glow Discharge

The CAPJ testbed used in this dissertation for Chapters 4 and 5 was a part of prior lines of
work in predictive control for CAPs [5, 6]. It is a DBD jet configuration that consists of a
copper ring electrode wrapped around a quartz tube, which serves as a dielectric barrier and
the gas flow channel. Ultra-pure helium is used as the working gas. An image and schematic
of the CAPJ is shown in Fig. 2.1. Plasma ignition is achieved by applying a kHz-frequency,
AC voltage to the copper electrode. The generated plasma is directed out of the tube onto
a grounded, glass-covered metal plate at a distance of 4 mm below the tip of the tube. The
applied voltage signal is created by generating a sinusoidal waveform at a specified frequency
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Figure 2.2: Illustration of the hierarchical control system for a cold atmospheric plasma jet
(CAPJ) used in this dissertation. The green arrows represent the manipulated inputs of the
CAPJ; the orange arrows represent the measured outputs of the CAPJ; the blue dashed box
identifies the basic power control loop; and the yellow dashed box identifies the advanced
predictive multi-output control loop.

using a function generator (integrated circuit, XR-2602CP). This signal is amplified using
an amplifier (TREK 10/40A-HS) before being sent to the copper electrode. The flow rate
of the working gas is manipulated by a UNIT Instruments UFC-1660 mass flow controller.

2.2.1 Control-oriented Testbed Setup

Automated data acquisition and actuation are necessary for the study of control systems.
The CAPJ testbed by Gidon [5] used in this dissertation was the first of its kind to develop
an automated sensing and actuation system for CAPJs. At the base level, the CAPJ has
two manipulated inputs: the applied voltage waveform and the working gas flow rate. The
applied voltage waveform can be further decomposed into characteristics of the wave (e.g.,
amplitude, frequency, type). Note that the composition of the working gas can also be
manipulated, but is not the focus of this work. Then, a variety of thermal, electrical,
and chemical sensing equipment can be used to take measurements of the CAP and of its
interactions with surfaces.

In Chapters 4 and 5, we consider the CAPJ as a part of a hierarchical control system
as illustrated in Figure 2.2. In this control configuration, there exist two feedback control
loops: a basic proportional-integral (PI) control loop (dashed blue box) and an advanced
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model predictive control (MPC) loop (dashed yellow box). The basic control of this CAPJ
setup involves the control of the applied power Papp to the plasma by manipulating the
peak-to-peak amplitude of the voltage (Vp2p) waveform. Measurements of the voltage and
current were taken using AD536A AC-to-RMS converters [5]. Basic control in the form
of PI control is a powerful tool to create reproducible and reliable CAP effects, but cannot
effectively address the multi-variable nature of the CAPJ operation [1]. A hierarchical control
system involving a supervisory predictive control strategy was added to address the multi-
variable operation of the CAPJ. This strategy was effective in controlling multiple outputs
of the CAPJ relating to the chemical (via optical emission spectra (OES), I(λoes)) and
thermal effects (surface temperature, Ts) of CAP-surface interactions [61] by manipulating
the applied power setpoint P and working gas flow rate q. Optical emission spectra were
recorded using an Ocean Optics USB 2000+ spectrometer, and thermal data were recorded
using FLIR Lepton 3 thermal infrared (IR) camera. For the majority of this dissertation,
the basic control loop is fixed, and we consider the CAPJ system as a two-input, two-output
system, with the applied power setpoint (P ) and helium (working gas) flow rate (q) as the
manipulated inputs and the surface temperature (Ts) and OES (I(λoes)) as the controlled
outputs.

2.2.2 Control-oriented Data-driven Modeling

A critical challenge in the development of model-based optimal control policies lies in the
modeling of the CAP and its interactions with the target surface. CAPs are notoriously
difficult to model since they exhibit nonlinear dynamics that are distributed over multiple
length and time scales. Modeling difficulty is further exacerbated by the intrinsic variability
in the plasma and sensitivity of the CAPJ to exogenous disturbances. Moreover, use of
theoretical models [3,83,84] is ill-suited for real-time control of plasma effects that occur on
the millisecond to second timescale. Instead, a common solution is to resort to data-driven
modeling of the CAPJ [65,85].

Commonly throughout this dissertation, we identify a linear, time-invariant (LTI) model
using the n4sid function in MATLAB using input-output data of the CAPJ. Input-output
data were gathered by performing multiple step tests in the inputs u = [P, q]⊤ and recording
the outputs y = [Ts, aI]⊤, where a is a scaling factor to scale the total optical intensity to
the same order of magnitude as surface temperature. Furthermore, the data were centered
around nominal operating conditions [P s, qs]⊤ and [T s, Is]⊤, where the superscript s denotes
the nominal condition. The model follows the discrete-time state-space form

xk+1 = Axk +Buk, (2.1a)

yk = Cxk +Duk, (2.1b)

where k ≥ 0 is the discrete time step, x ∈ Rnx is the vector of states, u ∈ Rnu is the
vector of manipulated inputs, y ∈ Rny is the vector of measured outputs, and A,B,C,D
are the state-space matrices identified using subspace identification [86]. The state-space
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model is defined in terms of deviation variables around the nominal operating condition,
i.e., y = [(T − T s), (aI − Is)]⊤ and u = [(P − P s), (q − qs)]⊤. In this case, we assume an
observable canonical form of (2.1), where C = I and D = 0 (e.g., see Appendix 4.8.1 for
a description of exemplary model matrices). In the closed-loop simulation studies, the true
system model of the CAPJ is treated as having a white noise term added to (2.1)

f(xk, uk, wk) = xk+1 = Axk +Buk + wk, (2.2)

where wk is generated from a uniform distribution with all elements bounded in [−1, 1].
Plasma treatment not only depends on the current state of the plasma itself, but also on

quantification of the delivered plasma effects to a surface. While quantification of plasma
effects is generally cumbersome and application dependent [1], this dissertation takes inspi-
ration from hypothermia treatments to quantify the delivery of a desired thermal effect (aka
a thermal dose) [87]. A thermal dose metric is quantified in terms of cumulative equivalent
minutes (CEM), which describes the accumulation of thermal effects on a target with respect
to a reference temperature. The CEM is described by

CEMk+1 = CEMk +K(Tref−Ts,k)δt, (2.3)

where K = 0.5 is an exponential base dependent on physical properties of the substrate,
Tref = 43◦C is the reference temperature, and δt is the sampling time. This definition of
the thermal dose is cumulative, in that plasma effects delivered cannot be removed, and
nonlinear due to the exponential dependence on temperature. Commonly throughout this
dissertation, the control objective is to deliver a desired “dose” of thermal effects given by a
target CEM value.

2.3 Coaxial Dielectric-Barrier Glow Discharge

In a collaborative effort, Chapter 6 uses a DBD-like CAPJ produced by the GREMI research
group at the Université d’Orléans. Figure 2.3 shows a schematic and images of the CAP
device and data acquisition setup used in Chapter 6. The CAP device configuration, known
as the “Plasma Gun,” is a coaxial dielectric barrier discharge jet using helium as the working
gas. High voltage µs pulses (+7 kV peak amplitude with 600 Hz pulse repetition frequency
using a custom power supply) are applied to an enclosed brass electrode, and an outer
electrode surrounding the quartz capillary tube serves as a ground electrode. Once the high
voltage pulse is applied, helium flowing (maintained at 0.5 SLM via a Bronkhorst EL-FLOW
Prestige FG-201 CV) through the quartz capillary tube is ionized. The ionization front
propagates outside the tube partially ionizing the surrounding ambient air. We maintained
a distance of 5 mm between the tip of tube and the biological interface.

While control was not a focus of this subset of this chapter, an automatic data collection
protocol was created for this setup in order to create data-driven characterization. As such,
chemical and electrical data were collected via an Ocean Optics Maya 2000 Pro spectrometer
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and Picoscope 2406B oscilloscope, respectively, are connected to a computer to automatically
obtain and record data at 0.5-second sampling intervals. A fiber optic cable, 45◦ from the
tube axes and pointed at the plasma-tissue incidence point, is connected to the spectrometer
and used to collect optical emission spectra. A compensation circuit [4] is used to mimic the
electrical interactions with a non-human material to that of a human interface. Electrical
characteristics of this system were taken at the locations marked by pentagons (A, B, and C)
with voltage probes connected to the oscilloscope. Specifically, the applied high voltage was
taken at location A using a Tektronix P6015A high voltage probe, and the voltage probes
used at the ground electrode (location B) and after the compensation circuit (location C)
are TA375 100 MHz probes and were connected across 200 pF capacitors in series to the
ground.

The use of this CAPJ setup involved interactions with biological materials (specifically,
raw chicken legs); the roast chicken in the schematic is for illustrative purposes only. Chicken
legs were acquired the same day or the day before the testing and conserved at 4◦C up to
the moment of use. The top right image shows the data collection setup. The bottom right
images illustrate the plasma interacting with the chicken leg (bone, left; muscle, right) during
data collection.
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Figure 2.3: Cross-section schematic (a) and images (b-d) of the plasma gun setup. (a) A
cross-section of the cold atmospheric plasma device that consists of a coaxial dielectric barrier
discharge configuration using helium as the working gas. High voltage µs pulses (+7 kV peak
amplitude with 600 Hz pulse repetition frequency via a custom power supply) are applied
to an enclosed brass electrode, and an outer electrode surrounding the quartz capillary tube
serves as a ground electrode. The plasma is generated by ionizing the helium flow in the
quartz capillary, and the excited helium transfers energy to surrounding air constituents
that make up the plasma plume impinging the samples. We maintain a distance of 5 mm
between the tube end and the biological interface. A fiber optic cable pointed at the plasma-
tissue incidence point and connected to a spectrometer (not shown) is used to collect optical
emission spectra. A compensation circuit [4] is used to mimic the electrical interactions
with a non-human material to that of a human interface. Electrical characteristics of this
system were taken at the locations marked by pentagons (A, B, and C) with voltage probes
connected to an oscilloscope (not shown). In Chapter 6, we use a raw chicken leg model
to test various biological tissues, and the roast chicken in the schematic is for illustrative
purposes only. (b) An image of the data collection setup; the plasma is powered by a custom
power supply (large beige box on the left side of the image) and the flow rate of the helium
is controlled by a mass flow controller (sitting on top of the power supply). (c,d) Images of
the plasma interacting with the chicken leg (bone, (c); muscle, (d)).
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Chapter 3

Optimal Control Formulations for
Run-to-Run Plasma Treatment
Regimens

This chapter describes the basic mathematical formulation of the control problems
considered throughout this dissertation. This chapter aims to define the control
problem(s) in a broad context as they relate to plasma treatments in medicine.
Additional details/specific problems addressed are described in subsequent chap-
ters.

3.1 Formulation of a Plasma Treatment

Consider a plasma treatment as the evolution some physical dynamics defined by:

xt+1 = f(xt, ut, wt), (3.1)

yt = h(xt, ut, vt), (3.2)

where xt, ut, and yt are the states, inputs, and outputs of the system at time t, wt is some
process noise at t, vt is some measurement noise at t, f : Rnx×Rnu×Rnw → Rnx is the state
evolution, and h : Rnx × Rnx → Rny is the output equation. For a predetermined treatment
time T , the trajectories can be collected as a sequence of the state, input, process noise,
output, and measurement noise realizations denoted as

X = (x0, x1, . . . , xT ), (3.3)

U = (u0, u1, . . . , uT−1), (3.4)

W = (w0, w1, . . . , wT−1), (3.5)

Y = (y0, y1, . . . , yT ), (3.6)

V = (v0, v1, . . . , vT ), (3.7)
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Figure 3.1: Hierarchical control with data-driven optimization as an additional layer of
control. Prior works [5, 6] focused on the basic control and predictive control levels; this
work focuses on the third level of control based on data-driven optimization. A timescale
separation determines the need for this form of hierarchical control. The basic control layer
operates at µ-second to millisecond timescales; the predictive control operates at millisecond
to second timescales; and the data-driven optimization operates run-to-run at the minutes
(or larger) timescale.

and the effect of a plasma treatment can be considered a function ψ of the trajectories

ψ(Y ), (3.8)

where Y is uniquely determined by X,U,W, V . For a controlled plasma treatment, ut is
determined by some parameterized control policy π(xt; θ), where θ are the parameters that
define the control policy and π : Rnx → Rnu represents a state-dependent feedback control
policy. Combining a control policy π with the dynamics (3.1) creates trajectories that can be
considered as random variables whose distributions depend on the choice of control policy
parameters θ. Therefore, the effects of the plasma treatment should be evaluated as the
expected value

J = E {ψ(Y (θ))} . (3.9)

3.2 Predictive Control Policies

This section aims to formulate a generic structure for a broad class of predictive control
strategies that exist for controlled plasma treatments, i.e., formulate π(xt; θ). This level of
control exists to reliably deliver multi-variable effects over the period of one plasma treatment
as justified in prior work [5].

In this dissertation, we are interested in a particular subset of optimization-based control
policies called model predictive control (MPC) [27,28]. MPC and its variants are commonly
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used in multi-variable, complex systems to provide an interpretable or understandable set of
equations for a control system, since its formulation relies on the specification of a control
objective/cost and a set of physical constraints [69]. A generic MPC formulation may follow

π(xt; θ) = arg min
u0|t

Np−1∑
k=0

V (xk|t, uk|t, ŵk|t) + Vf (xNp|t), (3.10a)

subject to xk+1|t = f(xk|t, uk|t, ŵk|t), (3.10b)

x0|t = xt, (3.10c)

xk|t ∈ X , k = 0, . . . , Np, (3.10d)

uk|t ∈ U , k = 0, . . . , Np − 1, (3.10e)

where Np ≥ 1 is the prediction horizon; xk|t, uk|t, and ŵk|t are the predicted states, inputs,
and disturbances, respectively, k steps ahead of the current time t; X and U are the sets of
state and input constraints, respectively; and V : Rnx ×Rnu ×Rnw → R and VNp : Rnx → R
are the stage and terminal costs, respectively. Note that the optimization problem includes
the decision variables x0|t, . . . , xNp|t and u0|t, . . . , uNp−1|t, but the control policy is defined
with respect to the arg min over u0|t since MPC only applies the first optimal input.

This dissertation used existing formulations of MPC for the predictive control layer of
hierarchical control, since the focus of this work lies in the data-driven optimization frame-
work. Importantly, the data-driven optimization framework will rely on the update of pa-
rameters θ to tailor the outcomes of plasma treatment J . The purpose of defining the MPC
structure here allows us to provide examples of control policy parameters θ based on MPC
policies. Parameters of MPC policies that may be modified in a data-driven manner include
{Np, f, V, VNp ,X ,U , ŵ0|t, . . . , ŵNp−1|t}. We note that a variant of robust MPC was explored
in the context of probabilistic safety guarantees during a plasma treatment in [74] and [75].

3.3 Data-driven Optimization to Design Plasma

Treatment Regimens

This section aims to describe the algorithmic details of Bayesian optimization (BO). Recall
the optimization problem introduced in Chapter 1.4

min
θ

{
{Ji(θ)}mi=1 subject to {cj(θ)}pj=1 ≥ 0

}
, (1.1 revisited)

where Ji are defined as the effects of a plasma treatment (3.9) and the constraints cj can be
defined similarly. As mentioned in Chapter 1.4, (1.1) cannot be solved with standard opti-
mization strategies (i.e., gradient descent) due to the black-box nature of Ji and cj. Instead,
we use BO, which is a derivative-free optimization method with low resource utilization. BO
recasts an optimization problem into a sequential learning problem and consists of two main
components: (i) a predictive probabilistic surrogate model representing the objective(s) and
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constraint(s) and (ii) an “acquisition” function that quantifies the benefit of querying the
posterior objective(s) and constraint(s).

Create a Predictive Probabilistic Surrogate Model

To start, BO requires a predictive model defined by a Bayesian posterior distribution over
J . Some examples of probabilistic surrogate models that satisfy this requirement include
random forests [88], Bayesian neural networks [89], and Gaussian processes (GP) [90]. GPs
are the most commonly used class of models in BO due to their computationally tractability
and non-parametric nature [90]. A GP is fully specified by its prior mean µ0 : Θ → R and
covariance k0 : Θ × Θ → R functions. New data are obtained by querying the true system
Dn = {(θj, {yi,j}Mi=1)}nj=1, where yi,j = Ji(θj) + εi,j are noisy evaluations with independent
and normally distributed, zero-mean, σ2-variance noise (εi,1, . . . , εi,n). Then, the posterior
distribution for each Ji can be computed with the following analytic mean and covariance
expressions

µn(θ) = µ0(θ) + k⊤
0 (θ)(Kn + σ2In)−1ỹn, (3.11)

kn(θ, θ′) = k0(θ, θ
′)− k⊤

0 (θ)(Kn + σ2In)−1k0(θ),

where ỹn = (y1 − µ0(θ1), . . . , yn − µ0(θn)) ∈ Rn, k0(θ) = (k0(θ, θ1), . . . , k0(θ, θn)) ∈ Rn,
Kn ∈ Sn

++ is the kernel matrix whose elements are given by [Kn]ν,ω for all ν, ω ∈ {1, . . . , s},
and In is the n× n identity matrix. The key advantage behind this probabilistic predictive
model lies in the fact that the posterior mean function µn can be interpreted as a surrogate
model for the closed-loop performance measures Ji and that the posterior covariance function
kn provides rigorous uncertainty estimates. These estimates are directly used in the next
component of BO.

Optimize an Acquisition Function

The exploration-exploitation dilemma is a long-standing concept in decision-making [91].
The core principle is that in order to maximize long-term benefit (or minimize long-term
cost), there exists some balance between choosing the next action based on past experi-
ence/information (exploitation) or based on the prospect of gaining more information in the
future (exploration). BO accomplishes this by recasting the main optimization to solve the
following optimization problem

θn+1 ∈ arg max
θ∈Θ

αn(θ), (3.12)

where αn : Θ → R is an acquisition function that quantifies the exploration-exploitation
tradeoff. Conceptually, the acquisition function is derived from an expected increase in some
utility (or reward) function r(Dn) dependent on the observed data Dn = {θj, {yi,j}Mi=1}nj=1,
where yi,j = Ji(θj) + εi,j are noisy evaluations with independent and normally distributed,
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Figure 3.2: Evolution of Bayesian optimization for a one-dimensional single objective prob-
lem. The top subplots illustrate the Gaussian process surrogate model and how it evolves
in time from left to right. As data is observed, the model more accurately represents the
truth, and the uncertainty around known data is reduced. The bottom subplots show the
acquisition function and how it evolves in time from left to right. The value of searching in
particular points is highlighted by the acquistion function.

zero-mean, σ2-variance noise (εi,1, . . . , εi,n), i.e.,

αn(θ) = En

{
r(Dn ∪ (θ, {yi}Mi=1))− r(Dn)

}
. (3.13)

It is important to note that the acquisition function αn, unlike the Ji’s, is often available in
closed-form, making (3.12) easier to solve. The main principle behind αn is that it considers
both the posterior mean µn (belief about the true system) and the posterior covariance kn
(or, more commonly, the variance σn =

√
kn, the belief about the uncertainty). As such, it

trades off between optimizing the belief about the true optimum (exploitation) and the belief
about potential optimums (exploration). This trade-off can be interpreted as a formal way to
quantify the information gained from testing a set of control policy parameters defined by θn.
In a single objective case, the value of information is placed on locating one true optimum.
An illustration of the evolution of BO for a single objective is shown in Figure 3.2. In a
multi-objective case, the value of information is placed on finding the Pareto optimal points
(aka the points at which optimizing one measure degrades the other). The multi-objective
case ultimately results in a more general representation of possible controller configurations,
allowing the user to select the best fit for the application based on the Pareto optimal points.
Details regarding multi-objective optimization will be discussed in subsequent chapters.
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Chapter 4

Multi-Objective Learning Framework
for Optimal Hardware-Software
Co-Design of Control-on-a-Chip
Systems1

The digital age has made embedded control a key component to user-oriented,
portable, and internet-of-things devices. In addition, with emergent complex sys-
tems arises the need for advanced optimization-based control strategies like model
predictive control. However, the unified implementation of these advanced strate-
gies on hardware remains a challenge. Designing complex control policies for
embedded systems is inherently an interwoven process between the algorithmic
design and hardware implementation, which will require a hardware-software co-
design perspective. We propose an end-to-end framework for the automated de-
sign and tuning of arbitrary control policies on arbitrary hardware. The proposed
framework relies on deep learning as a universal control policy representation
and multi-objective Bayesian optimization (BO) to facilitate iterative systematic
controller design. The large representation power of deep learning and its ability
to decouple hardware and software design are a central component to determin-
ing feasible control-on-a-chip policies. Then, BO provides a flexible sequential
decision-making framework where practical considerations such as multi-objective
optimization concepts and categorical decisions can be incorporated to efficiently
design embedded control policies that are directly implemented on hardware. We
demonstrate the proposed framework via closed-loop simulations and real-time
experiments on an atmospheric pressure plasma jet for plasma processing of bio-
materials.

1This chapter was adapted with permission from the coauthors from [78].
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4.1 Introduction

Embedded systems lie at the core of many online control systems technologies, including
autonomous systems [92], IoT systems [93, 94], and biomedical devices [95, 96], amongst
others. Microcontrollers/microprocessors (MCUs) have played a major role in enabling em-
bedded control for portable devices [97]. Due to their widespread availability and adop-
tion, MCUs have been designed such that they can be easily programmed using high-level
programming languages, such as C and Python, and be deployed with relative ease [93].
Meanwhile, emerging technologies have increasingly complex dynamics and typically rely on
advanced model-based control strategies, such as model predictive control (MPC), that can
handle constraints. As a result, significant efforts have targeted the development of auto-
mated software-based code generation tools for fast numerical optimization on MCUs. These
tools (e.g., ACADO [98], GRAMPC [99], FORCES [100]) utilize tailored implementations
of structured formulations of the underlying optimization problem to efficiently compute
the optimization solution for real-time control (e.g., using sequential quadratic program-
ming [101], nonlinear interior point methods [102], or accelerated gradient methods [103]).
The structured formulation that these code generation tools require can make the implemen-
tation of robust and learning-based optimal control strategies more challenging, while the
focus on solely the software side implies that the form of hardware implementation is also
limited. Furthermore, the design of embedded controllers relies on more than just the fast
solution of the optimal control problem. It also involves maintaining numerical robustness
at low computational accuracy, tolerance against infeasibility, low code complexity, and low
memory/resource utilization, among other considerations. Many of these challenges require
explicit knowledge of the hardware specifications, as well as knowledge of how computations
are performed and accelerated on the hardware. As advanced hardware technologies (e.g.,
graphics processing units (GPUs), field programmable gate arrays (FPGAs), tensor pro-
cessing units (TPUs)) become commonplace, the principle of hardware-software co-design
will become an integral consideration for the physical implementation of embedded con-
trollers [104]. Hardware-software co-design involves the concurrent design of the control
algorithm (software) and its embedded implementation (hardware) [105].

Optimized control policy tuning is often a tedious and cumbersome process, which is
further exacerbated by the extensive workflow to go from the programmatic control policy
design to embedded implementation. Control policy auto-tuning (aka calibration) is well-
established for simple controllers [106,107], but auto-tuning for generic control structures has
recently regained traction. One popular approach to auto-tuning uses principles of reinforce-
ment learning (RL) [108–110]. To this end, policy-gradient RL methods involve updating
the control policy parameters via gradient descent [111]. While policy gradient is a scalable
approach, it can require many evaluations on the true system and can be prone to getting
stuck at local optimizers. Another popular approach to auto-tuning relies on data-driven
optimization, particularly Bayesian optimization (BO) [69, 112, 113]. Auto-tuning can be
interpreted as a black-box problem where the objective function is expensive to evaluate,
potentially non-convex, and without closed-form derivatives. BO is a “global” optimization
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method that takes a probabilistically principled approach to reduce the number of interac-
tions with the real system [70]. Variants of BO for auto-tuning are also emerging [114–116];
however, most of these studies, except [115], do not consider the hardware considerations
for embedded control. Even still, the focus of [115] remains on the hardware-constrained
optimization (i.e., real-time computations) of the software, rather than hardware-software
co-design.

The hardware-software co-design paradigm presents a new take on the embedded control
design problem. Formally, we denote this new perspective of hardware-software co-design as
control-on-a-chip (CoC) design, since we aim to provide a unified workflow to place arbitrary
control policies on arbitrary hardware. In this work, we pose the CoC co-design problem
as an optimization problem that incorporates a hardware feasibility constraint and multiple
levels of decisions to create an all-in-one framework. First, we establish a flexible workflow
that takes advantage of recent advances in deep learning. Deep neural networks (DNNs) have
played a pivotal role in imitation learning of MPC policies [76, 117, 118] and differentiable
predictive control [119]. In this work, we use the imitation learning perspective as it poses two
key advantages: (i) it provides a “physically interpretable” control policy; and (ii) by virtue
of (i), it reduces the design parameter space. Thus, our proposed CoC workflow consists in (i)
designing an expert control policy (based on optimization-based control strategies), (ii) using
DNNs to represent the expert control policy, and (iii) implementing the DNN-based control
policy on hardware. We then use multi-objective BO (MOBO) [120] to encapsulate the multi-
step CoC design workflow to create an end-to-end optimization framework. Solving a multi-
objective CoC design problem via MOBO entails finding an optimal set of control policies
rather than one single optimizer, which allows a practitioner to choose the best design(s)
according to the needs or preferences of the application [121, 122]. Furthermore, BO offers
flexibility when incorporating design choices from each step of the CoC workflow [90,123].

4.2 Hardware-Software Co-design Problem

Formulation

In this work, we seek optimal CoC policies that minimize a set of closed-loop cost metrics
subject to hardware constraints. In general, CoC policies can be represented as a space of
all possible machine code instructions that can be executed on a given choice of hardware.
Since this is a complex design space involving decisions made by human experts, the design
problem is often decomposed into two key steps: (i) choice of a high-level control program
θ that must reside in the space of possible programs Θ (generally very high-dimensional
and complex); and (ii) choice of a code generation strategy that translates θ into executable
machine code, which has its own set of design parameters denoted by γ ∈ Γ (e.g., numerical
representation and parallelization options). We can formulate the search for an optimal pair
of program and code generation parameters (θ⋆, γ⋆) in terms of the following multi-objective
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optimization (MOO) problem

min
θ,γ
{J1, . . . , JM}, (4.1a)

s.t. xk+1 = f(k, xk, uk, wk), (4.1b)

uk = π(xk; θ, γ), (4.1c)

wk ∼ Pwk
(xk, uk), (4.1d)

Ji = E
{
ℓT,i(xT ) +

∑T−1
k=0 ℓi(xk, uk, wk)

}
, (4.1e)

g(θ, γ) = 1, (4.1f)

(θ, γ) ∈ Θ× Γ, (4.1g)

∀(k, i) ∈ {0, . . . , T − 1} × {1, . . . ,M},

where (4.1a) represents the set of M closed-loop performance metrics; (4.1b) represents the
system dynamics that describes the evolution of the system state xk in response to control
actions uk and disturbances wk at time k; (4.1c) defines the CoC policy π(xk; θ, γ) that
maps (measured or estimated) states to control actions for a specific choice of program and
code generation parameters; (4.1d) is a stochastic disturbance that evolves according some
probability distribution Pwk

(xk, uk) that is conditionally independent of previous disturbance
realizations given the current states and actions; (4.1e) represents the i-th performance metric
Ji defined in terms of the closed-loop system evolution given local stage cost ℓk,i and terminal
cost ℓT,i functions over a finite time horizon T ; (4.1f) denotes a hardware resource utilization
constraint represented by a binary function g : Θ × Γ → {0, 1} that indicates if the high-
level control program can be compiled and executed on the available hardware (1) or not (0);
and (4.1g) represents the user-defined search space of control programs and code generation
strategies. The expectation E{·} in (4.1e) is taken with respect to the stochastic disturbance
sequence of the closed-loop system {w0, . . . , wT−1}.

The MOO problem (4.1) represents a very general framework for CoC design. In fact, we
can interpret virtually all end-to-end control design procedures as an approximation to (4.1).
However, approximations are necessary in practice due to the intractability of (4.1), which
stems from two main challenges. First, the program parameter space Θ is abstract due to
the choice of an appropriate control policy representation. To ensure it has sufficiently large
representation power, the control policy will typically be embedded in some high-dimensional
space Θ ⊂ RD, where D can be very large. Furthermore, this space may involve discrete and
continuous variables that are needed to represent logical relationships between different sets
of variables. Second, we often do not have exact knowledge of the system dynamics f(·),
disturbance distribution Pwt(xt, ut), and the hardware utilization constraint function g(·),
which prevents the application of traditional MOO methods that require equation-oriented
forms for all objective and constraint functions.

Standard control design approaches often proceed in the following steps that are illus-
trated in Fig. 4.1: (i) restrict the control policy representation by constraining Θ to describe
a narrow set of policies in a low-dimensional space; (ii) independently search for control pro-
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Figure 4.1: Flow diagram of the standard control-on-a-chip design process. First, a high-level
representation of the control policy is selected and evaluated using approximate models or
limited closed-loop data. Then, a code generation strategy is selected and evaluated based on
its ability to be successfully implemented while matching the performance of the high-level
program. In general, several iterations may be needed at each stage of the design process
until an acceptable option is found. If any stage fails, then one must return to a previous
stage to repeat the process.

gram parameters θ that approximately minimize the closed-loop performance metrics either
using approximate models, or (limited) closed-loop data; and (iii) search for code generation
parameters γ that enable the desired θ to be executed on the available hardware. If step
(iii) fails, then one must go back and repeat the process again for a narrower set of more
computationally tractable policies. For example, complex control policy formulations as in
optimization-based control (e.g., as described in Section 4.3.3, (4.5)) may require specific
code libraries and/or routines that are not easily implemented on low-resource hardware
due to memory restrictions, or reduced accuracy due to quantized numeric representation.
Furthermore, emergence of advanced hardware (e.g., GPUs, FPGAs) to speed up compu-
tations requires additional low-level code generation that requires specialized knowledge of
the device architecture. Separate design of θ and γ misses out on important interactions
between high-level program representation and code generation. In particular, the hardware
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utilization constraint function g(·) represents whether or not the policy can be embedded into
the hardware or can satisfy timing constraints. Examples of parameters that influence this
constraint include numeric representation, number of operations, parallelization options, etc.
Without co-design, there is a much greater chance that CoC policies cannot be implemented
as knowledge of how the algorithmic requirements are translated to the physical wires in
hardware are not generally accessible.

The main goal of this work is the development of an iterative learning-based strategy
capable of systematically tackling the hardware-software co-design problem (4.1). The core
structure of our proposed strategy, which relies on deep learning to simplify the policy and
hardware utilization constraint, is presented in the next section. In Section 4.4, we then
describe an efficient multi-objective black-box optimization strategy that takes advantage of
this structure by searching over a reduced set of parameters.

4.3 Bridging the Gap between Hardware and

Software with Deep Learning

The lack of an easy-to-search program space Θ and known structure for the feasibility con-
straint g greatly complicates the traditional CoC design procedure (Fig. 4.1). In this section,
we show how both of these problems can be addressed by working with deep neural network
(DNN) policies such that θ = {θW , θA} can be separated into continuous weight and bias
parameters θW and architecture parameters θA that can be discrete. This not only helps us
simplify the learning process for g, but also allows us to take advantage of prior knowledge
to “train” θW such that we only consider a small subset of parameters when optimizing
closed-loop performance.

4.3.1 Deep Learning for Control Policy Representations

Deep learning is a generalized term for computational structures/graphs characterized by
multiple “layers.” Through multiple layers, deep learning transforms an input representation
to abstract representations until the ultimate output is learned [124]. It is exactly the many
layers that allow deep learning to extract (on its own) features from raw data that are
relevant to learning control policies [2, 118].

The key advantage of DNN policies is the surprisingly robust ability to train such large
structures using (stochastic) gradient descent style methods. For simplicity of presentation,
consider a fully-connected feedforward DNN control policy πdnn(x; θ) with L hidden layers
and H nodes per layer, which can be mathematically defined as follows

πdnn(x; θ) = αL+1 ◦ βL ◦ αL ◦ · · · β1 ◦ α1(x), (4.2)

where α1(x) = W1x + b1 is an affine transformation of the input, αl(zl−1) = Wlzl−1 + bl
are affine transformations of the hidden layers for all l ∈ {2, . . . , L+ 1}, βl(z) are nonlinear
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activation functions (e.g., βl(z) = max{z, 0} for ReLU activation functions) for all l ∈
{1, . . . , L}, and θW = {W1, b1, . . . ,WL+1, bL+1} denotes the collection of weights and biases
that parameterize the network for a fixed architecture θA (e.g., type of activation function,
L, and H). Due to their continuous representation, θW can be trained by minimizing a loss
function that captures how well the DNN performs on a given task. This process is known
to work well in practice under the assumption that the gradient of the loss function with
respect to θW can be efficiently computed via backpropagation [125]. This is not necessarily
the case when one attempts to use πdnn in (4.1) unless a differentiable structure for the
dynamics and cost functions is known.

Remark 1 Note that the DNN policy defined in (4.2) is just one choice of architectural
representation of artificial neural networks. In fact, any deep learning architecture can be
used to approximate (4.2). For example, if the state or any other exogenous signals involved
image data, we could exploit a convolutional neural network structure that is designed to
specifically exploit the regularity of image pixel patterns.

4.3.2 Learning Feasible Space of CoC Policies

Given that our ideal policy is represented by a DNN, in addition to the program (i.e.,
software) (4.2), CoC policies also require specification of the embedded version of the program
that can be run on the actual hardware. Although this difference is not practically important
in the absence of resource limitations, it is very important in cases where there are constraints
on the number of real-time computations and/or resource (memory or power) utilization
[126]. A useful property of DNNs is that the resource utilization is the same for all θW given
a fixed architecture θA. To see this, we can compute the number of operations Nop for a
dense DNN of the form (4.2) as

Nop = (nin + 1)H +H(H + 1)L+ (H + 1)nout, (4.3)

where nin and nout are the number of inputs and outputs, respectively. Thus, by simply
changing the architecture of the DNN (e.g., reduce number of nodes or layers), we can lower
the evaluation cost on hardware.

Nonetheless, we cannot use Nop to directly characterize the feasible set of CoC policies,
i.e., F = {(θ, γ) ∈ Θ × Γ : g(θ, γ) = 1}, since this set will depend on how the opera-
tions written in a mid- or high-level programming language (e.g., Matlab, Python, C) get
translated to low-level machine code (e.g., assembly language, binary), compiled, and then
packaged. Automatic code generation tools aim to provide a streamlined means of perform-
ing such tasks by abstracting the laborious translation process [32, 127, 128]. As such, code
generation serves as a bridge between human-interpretable code and machine-interpretable
instructions. In this work, we treat code generation as a black-box function

π(·; θ, γ) = CG(πdnn(·; θ), γ), (4.4)
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that takes as input a DNN policy and some parameters related to the translation process
γ and returns a machine-interpretable policy. Since changing θW will not fundamentally
change the structure of the returned CoC policy π, function g will be independent of θW
and, thus, we only need to learn an approximation of g(θA, γ).

One way to learn an approximation g̃ ≈ g is to run the code generation process CG for a
randomly generated DNN for several values of (θA, γ) ∈ ΘA × Γ, which is expected to be a
much lower-dimensional space than ΘW . The outcome can be recorded as either a successful
compilation 1, or failed compilation 0. This labeled data can then be used to train a binary
classifier that is capable of predicting if a new choice of architecture and code generation
parameters is feasible or not. To this end, any classifier type can be used, for example,
support vector machines and DNN with a sigmoid activation function at the output layer.
We highlight that the major advantage of this approach is that g̃ can be trained independently
of the quality of the CoC policy. Not only can this process be done fully offline, but also
it does not require any system data to be generated – all that is required is access to the
hardware and code generation process.

4.3.3 Accelerated Training of Hardware-Feasible DNN Policies
by Imitating Physics-Informed Expert Policies

In Section 4.3.2, we presented an efficient way to verify if a CoC policy will be feasible. Yet,
the original MOO problem (4.1) can still be computationally intractable since θW remains
a high-dimensional space with possibly thousands or more independent parameters. The
question we address here is how the search over this space can be efficiently performed
without sacrificing the achieved closed-loop performance. To this end, we rely on a class of
control policies that are implicitly defined in terms of a set of interpretable set of equations
[69]. Specifically, we look to use policies defined by an optimization problem

πopt(x;λ) = arg min
u

V (x, u;λ), (4.5a)

s.t. hi(x, u;λ) ≤ 0, i = 1, . . . , k, (4.5b)

gi(x, u, λ) = 0, i = 1, . . . , r, (4.5c)

where V : Rnx × Rnu × Rnλ → R is the objective function, hi : Rnx × Rnu × Rnλ → R are
the inequality constraints for all i = 1, . . . , k, gi : Rnx × Rnu × Rnλ → R are the equality
constraints for all i = 1, . . . , r, and λ ∈ Λ ⊂ Rnλ are tunable policy parameters. As
discussed in [69], this representation captures a large set of policies, including approximate
dynamic programming and model predictive control. The key idea behind (4.5) is that
(4.5a) describes some type of value or reward function, (4.5b) represents critical state and/or
input constraints, and (4.5c) represents a (possibly physics-based) model of the system. A
significant advantage of the structure (4.5) is that it provides a natural way for users to
incorporate prior knowledge about the system, when available, by properly selecting or
constraining the functions V, h1, . . . , hk, g1, . . . , gr.
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The central notion is that λ can be much lower dimensional than θW , such that we can
derive an explicit value for the DNN parameters that depend on λ by minimizing the error
between the DNN policy πdnn and the “physics-informed” expert policy πopt

θ⋆W (λ, θA) = arg min
θW

1

ns

ns∑
i=1

∥πopt(x(i);λ)− πdnn(x(i); θW , θA)∥2, (4.6)

where {(x(i), πopt(x(i);λ))}ns
i=1 represent a set of ns state-action pairs acquired by solving the

optimization problem (4.5) offline for specific state values and fixed λ values. This dataset
can be generated in a variety of ways, including randomly sampling in the state space or using
closed-loop “rollouts” from likely initial conditions [2]. It is important to note that special
care must be taken in generating the dataset to train the DNN as the approximation of (4.5)
may reduce the robustness properties ensured by implementing (4.5) directly depending on
the quality of the overall training process. In accordance with the universal approximation
theorem [129], there exists a DNN that matches (4.5) exactly. As such, given a sufficiently
large architecture and enough training data, we can ensure πdnn(·; θ⋆W (λ, θA), θA)→ πopt(·;λ)
for some θA.

Notice that the solution to (4.6) will depend on both the expert policy parameters λ
and the DNN architecture hyperparameters θA. Therefore, the proposed CoC policy has the
following unique structure

πCoC(·;λ, θA, γ) = CG(πdnn(·; θ⋆W (λ, θA), θA), γ), (4.7)

which depends on three sets of parameters, mainly λ, θA, and γ that all appear in different
components of the CoC framework. An illustration of the proposed CoC design process is
shown in Fig. 4.2, which is based on selecting (λ, θA, γ) ∈ Λ × ΘA × Γ to optimize closed-
loop performance metrics of interest. However, we do not have a closed-form expression
for how performance metrics depend on (λ, θA, γ). This is further compounded by the cost
of collecting closed-loop performance data since it requires (i) training a DNN policy, (ii)
executing a code generation process to run the policy on embedded hardware, and (iii)
running hardware-in-the-loop closed-loop experiments to collect performance data. Next,
we present an efficient procedure for searching over this joint parameter space.

4.4 Bayesian Optimization for Control-on-a-Chip

Problem

The system dynamics and CoC policy together form a stochastic process due to the initial
condition x0 and disturbances {wk}k≥0 that are random variables

xk+1 = f(k, xk, uk, wk), k = 0, 1, . . . , (4.8a)

uk = πCoC(xk; ξ), (4.8b)
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Figure 4.2: Flow diagram of the proposed control-on-a-chip (CoC) design process. As in
Fig. 4.1, CoC design is subdivided into two categories related to software (high-level control
program selection in light gray) and hardware implementation (in dark gray). Our proposed
workflow for CoC design is subdivided as follows: Within the high-level control program
selection, the first step is to select and evaluate a “physics-informed” control design. In
the next step, a deep learning-based policy is created in pursuit of hardware-compatibility.
The final step involves the hardware implementation and final evaluation. Note that the
“Exhausted Options” decision marker is not present in this figure for simplicity, but still
exists as part of the design process. We define this design process as a framework for CoC
design that can be used to search over the joint software and hardware parameter space.

where ξ = (λ, θA, γ) is the concatenation of all software and hardware parameters that define
the policy. A specific choice of ξ can be judged according to the set of M expected closed-loop
performance metrics Ji(ξ), i = 1, . . . ,M defined in (4.1) with the state and input sequences
generated by (4.8).

Since Ji are defined as expectations over closed-loop trajectories, they only depend on ξ
that is of much lower-dimensional than the original θ space, as discussed above. Thus, we
now pose (4.1) as a more manageable MOO problem

min
ξ∈Ξ
{J1(ξ), . . . , JM(ξ)}, (4.9)

where Ξ = {(λ, θA, γ) ∈ Λ×ΘA×Γ : g̃(θA, γ) = 1} is the space of CoC parameters that can be
compiled on the available hardware. Since the functions {Ji}Mi=1 are black box in nature, we
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must resort to derivative-free optimization (DFO) methods to approximately solve (4.9) in
practice. In particular, the DFO method must be able to handle noisy, expensive evaluations
of {Ji}Mi=1. The evaluations are expensive due to the need to collect hardware-in-the-loop
data, as discussed previously. These evaluations will also be subject to noise due to the
expectation operator that defines Ji. In practice, we can approximate this expectation
using a random sampling technique (e.g., Monte Carlo sampling) such that yi = Ji(ξ) + εi,
where εi is the effective measurement noise in the i-the performance function. Assuming K
independent random samples are used to approximate the performance functions, then it is
known that εi approaches a zero mean Gaussian random variable whose variance decreases
at a rate of 1/K by the central limit theorem [130].

We briefly highlight the fact that the only major assumption made in (4.9) is that we
can generate independent noisy measurements of the closed-loop performance functions. We
do not require any specific knowledge of the dynamics, or uncertainty distribution, which
makes the proposed hardware-software co-design approach broadly applicable. However, the
more knowledge that we can exploit in the specification of the expert policy (4.5), the better
the choice of the ξ ∈ Ξ space, which can simplify the process of solving (4.9).

Figure 4.3: Diagram of the data-driven optimization framework. The optimization frame-
work consists in (i) an inner learning procedure that represents a templated workflow to
design a single CoC policy (black dashed box) and (ii) an outer optimization stage that sug-
gests new CoC designs via closed-loop evaluations (yellow dashed box). The inner learning
procedure (i) is similar to Fig. 4.2, but rather than iteratively optimizing between steps as
in Fig. 4.2, the outer optimization (ii) allows us to select parameters from each step (λ, θA,
γ) concurrently.
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4.4.1 A Bayesian Optimization Approach to Co-Design

Since {Ji}Mi=1 are noisy, expensive functions defined over a relatively low-dimensional space
ξ ∈ Ξ, Bayesian optimization (BO) is a natural choice of DFO framework for (4.9) since it is
specifically designed for such cases. Furthermore, BO has been shown to surpass state-of-the-
art performance in real-world controller tuning applications with a variety of policy types [69].
BO falls under the paradigm of active learning, meaning it translates the optimization task
into an iterative learning task. There are two major components in BO. First, we must
construct a probabilistic surrogate model, typically a Gaussian process (GP) [90], to provide a
posterior distribution P{J |Dn} over the unknown true vector-valued function values J(ξ) =
(J1(ξ), . . . , JM(ξ)) given a prior dataset Dn = {(ξi,yi)}ni=1. Second, we must define an
acquisition function αn : Ξ → R that uses the surrogate model to assign a utility value to
the future candidate points at which we can evaluate the true function. Thus, for a well-
designed αn, we would like to preferentially sample at a point that produces the highest
possible value. The active learning process is then defined by

ξn+1 = arg max
ξ∈Ξ

αn(ξ). (4.10)

Since the surrogate approximation of J is expected to be much cheaper than the true func-
tion, we can (approximately) solve (4.10) using established optimization algorithms.

Remark 2 While GPs are the standard surrogate model-of-choice for BO, they are known
to scale poorly with the number of data points D, requiring O(D3) floating point operations
for exact inference, and higher number of data points may be required to obtain representative
models for higher dimensional problems. However, there are recent advances that reduce the
computational cost at the cost of accuracy (e.g., [131,132]). Additional ways to address large
data problems, including using a different type of surrogate model, are an active area of open
research [133,134].

Since we are interested in MOO, we do not have a single best solution and instead would
like to provide the control practitioner with an estimate of the set of Pareto optimal solutions.
A point ξ ∈ Ξ is considered to be Pareto optimal if improvement in one objective means
deteriorating one or more of the others. The so-called Pareto frontier is the set of Pareto
optimal points, which is mathematically defined as

P⋆ = {J(ξ) :̸ ∃ξ′ ∈ Ξ s.t. J(ξ′) ≻ J(ξ)}, (4.11)

where J(ξ′) ≻ J(ξ) implies the point ξ′ dominates the point ξ, which occurs if Ji(ξ
′) ≥ Ji(ξ)

for all i = 1, . . . ,M . To derive αn, we would like to select points that grow our understanding
of P⋆. Following previous work [76,135,136], we use the expected hypervolume improvement
(EHVI) acquisition function defined as follows

αn(ξ) = E{HV(P ∪ {J(ξ)}, r)− HV(P , r)}, (4.12)
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where HV(P , r) denotes the hypervolume of a finite approximate Pareto set P and a reference
point r ∈ RM that bounds P from below. The HV can be computed exactly as the M -
dimensional Lebesgue measure

HV(P , r) = λM (
⋃q

i=1[r,yi]) , (4.13)

where P = {y(1), . . . ,y(q)} is composed of a finite set of q points. EHVI is notoriously difficult
to optimize since it has a relatively higher computational cost compared to standard single-
objective BO acquisition functions (such as expected improvement) when evaluated using
box decomposition. However, as shown in [135], one can more efficiently compute EHVI and
its gradients exactly (up to a Monte Carlo integration error) using the inclusion-exclusion
principle [137], making the solution of (4.10) tractable.

An illustrative summary of the complete hardware-software co-design framework is pro-
vided in Fig. 4.3.

4.4.2 Kernel Selection for Multi-Objective Controller Tuning

The choice of the covariance (or kernel) function in the GP model for J is a critical parameter
in the proposed multi-objective BO approach. A particular challenge is the fact that ξ may
consist of ordinal and categorical variables. Ordinal variables are those with some type of
natural ordering such as continuous (e.g., weight parameters in the control policy) and integer
variables (e.g., the number of nodes/layers in the DNN policy). Categorical variables, on
the other hand, are best described as a collection of unordered categories such as the choice
of parallelization option in the code generation tool. The standard way for dealing with
categorical variables in GP models is to apply one-hot encoding (i.e., converts a c-category
variable into c new binary variables). The main challenge with one-hot encoding is that it
can lead to a large increase in the dimensionality of the search space as well as complicate the
acquisition optimization process. As such, we pursue a mixed kernel function approach [123]
that combines separate kernels for the ordinal and categorical variables. For every element
of J , we focus on independent kernels of the following form

k(ξ, ξ′) = k1cat(ξcat, ξ
′
cat)k

1
ord(ξord, ξ

′
ord) + k2cat(ξcat, ξ

′
cat) + k2ord(ξord, ξ

′
ord), (4.14)

where ξcat and ξord denote the categorical and ordinal components of ξ, respectively, and
k1cat, k

2
cat, k

1
ord, and k2ord are kernels associated with the categorical and ordinal variables,

each with their own set of hyperparameters. The k1cat and k1ord kernels are associated with a
product in (4.14), so can capture the joint impact of both types of variables. The k2cat and
k2ord kernels are associated with a summation in (4.14), so focus on independent impacts of
each type of variable.

Based on the idea of Hamming distances, the categorical kernel is selected as follows

kicat(x, y) = νi exp(−d(x, y)/li), i ∈ {1, 2}, (4.15)
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where d(x, y) is meant to represent the distance between categories (equal to 0 if x = y and 1
otherwise) and νi is a variance hyperparameter related to the magnitude of the function and
li is a lengthscale hyperparameter related to how fast the function can vary with distance.
For the ordinal variables, we focused on a Matérn-5/2 kernel that have similar variance and
lengthscale hyperparameters, though this choice could easily be replaced with any other
established kernel (see, e.g., [90] for details on kernel choices and properties).

4.5 Simulations of Hardware Challenges with an

Illustrative Example

As a first look into the complexity of the embedded control problem, we examine the benefits
offered by using deep learning as a bridge between hardware and software. A major consider-
ation in embedded control is whether or not the proposed control policy can be implemented
on hardware, which is related to the hardware constraint (4.1f), and can be a factor of the
online computational complexity of the control policy. This section examines the online eval-
uation of various control policies to illustrate the need for hardware considerations during
the software policy development.

Consider a system of masses attached by springs as given in [138]. In general, for a system
of m masses, the system can be described by a linear state space model with the m positions
and m velocities of each mass as the states and applied force to m− 1 masses as the inputs.
Due to hardware considerations,2 we use a simplified two-mass system. A first-order hold
discrete-time model with sampling time of 0.5 seconds is derived from the continuous-time
dynamics such that the plant is of the form

xk+1 = Axk +Buk +Gwk, (4.16)

for fixed (A,B,G) matrices given in [138]. We assume the disturbances wk are independent
uniform random variables acting on each mass with each element between −0.5 and 0.5. We
can then derive a nominal MPC policy whose goal is to keep the system at rest starting from
an initial condition of x0 = 0 by solving the minimization problem

min
{ut|k}

Np−1
t=0

Np−1∑
k=0

x⊤t|kQxt|k + u⊤t|kRut|k, (4.17)

s.t. xt+1|k = Axt|k +But|k, t = 0, . . . , Np − 1,

xmin ≤ xt|k ≤ xmax, t = 1, . . . , Np,

umin ≤ ut|k ≤ xmax, t = 0, . . . , Np − 1,

2The exact system described in [138] (12-state, 3-input) is computationally challenging for standard
explicit MPC tools, taking more than five days to generate the solution offline and using more than 30, 000
look-up values.
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where Q = diag(1, 1, 1, 1) and R = 1 are the state and input weight matrices, respectively,
and the state and input bounds are given by xmin = [−4,−4,−4,−4]⊤, xmax = [4, 4, 4, 4]⊤,
umin = −0.5 and umax = 0.5.

We evaluate the embeddability of three control policies: an implicit MPC, an explicit
MPC (EMPC), and a DNN approximation to MPC. Implicit MPC refers to the online solu-
tion to optimization problem (4.17). We use CasADi to formulate the problem as a quadratic
program and solve using QRQP [139]. EMPC subdivides the state-space into polytopic re-
gions with precomputed controller gains. EMPC can typically be readily embedded on hard-
ware since the control law is reduced to a look-up table [140]. The optimization problem
is created with the MPT-3 toolbox [141] by using the MPCController() function, which is
the equivalent to the implicit MPC created using CasADi. An explicit control policy is then
created by calling the toExplicit() function, which solves a multiparametric programming
problem to determine the piecewise affine (PWA) function that replaces the online opti-
mization problem. The evaluation of the explicit control policy is performed by conducting
sequential search on the returned set of gains for the PWA representation. Note that when
the EMPC is exported to C-code, the search is conducted via more efficient binary search
trees [141]. Finally, the DNN-based approximate MPC is trained using data generated of-
fline by solving the implicit MPC law (4.17). The DNN is trained following the procedure
described in Section 4.3.3 using ns = 5, 000 samples with MATLAB’s feedforwardnet func-
tion. Note that the choice of ns and the quality of the training data must be done with
respect to the desired accuracy and robustness, where the choice of ns = 5, 000 was done
empirically by performing some initial training, validation, and testing results on randomly
selected architectures.

Each method was evaluated across 1, 000 replicate simulations with 100 time steps each
resulting in 100, 000 total time steps. Disturbance realizations were consistent for each
controller, but varied in each replicate simulation. To mimic embedded implementation, each
control policy was converted to C-code and compiled into MEX functions. Each of CasADi,
MPT-3, and MATLAB has a routine to convert the m-code into C-code. Once C-code is
generated, each program is compiled into a MEX function. A MEX function is a MATLAB
function that calls a C program, acting as an interface between a high-level programming
language (i.e., MATLAB) and a low-level one (i.e., C). Settings and the procedures used in
the compilation process are detailed in the Section 4.8.3

Table 4.1 compares three metrics of interest for each control policy: closed-loop per-
formance, computational time, and memory requirements. The closed-loop performance is
given as the average stage cost computed over the 100, 000 steps of the system. Additionally,
Fig. 4.4 depicts the distributions of the stage cost for each controller. The computational
time is given as the average time taken to compute an input using a compiled C-program
(via MEX function) on a general purpose laptop CPU (2.3 GHz 8-Core Intel i7 processor).4

The memory requirements are given in two forms: one related to the general storage of

3All code and additional documentation (including those for the results and discussion of the next section)
may be found at https://github.com/Mesbah-Lab-UCB/HW-SW_CoDesign4CoC.

4On a less powerful device and/or on specialized hardware, the results in Table 4.1 would show even
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Table 4.1: Comparison of control policies in the illustrative ex-
ample on general purpose CPU: MPC, standard explicit MPC
(EMPC), and neural network approximation of MPC (DNN)

Computation Memory
Stage Cost Time (ms) (kB)

File Max
Average Average Max Min Size Heap

MPC 4.77± 5.74 0.55± 0.11 1.91 0.37 242.5 5.0
EMPC 4.81± 5.92 1.40± 0.13 2.76 1.32 5600.0 6.8

DNN 4.76± 5.67 0.01± 0.01 0.38 0.01 18.0 5.0

the program (executable file size) and one related to the random access memory (RAM)
required during computation (maximum heap utilization). The closed-loop performance be-
tween the three controllers are similar, if not the same. However, when considering hardware
constraints/utilization, standard EMPC takes the longest computation time and greatest
memory consumption. In general, standard EMPC is ill-suited for this problem since even
the implicit solution can outperform EMPC. Regardless, the DNN can offer an order-of-
magnitude improvement in computation speed and memory utilization as compared to the
MPC. The gap between MPC implementations and DNN implementations can be signifi-
cantly widened in specialized contexts, e.g., in cold plasma bioprocessing/medicine, where
the dynamics are nonlinear and the control context requires safety considerations.

4.6 Results of Control-on-a-Chip for Cold

Atmospheric Plasma Jets

To illustrate the complete proposed design framework illustrated in Fig. 4.3, we investigate
the CoC design for cold atmospheric plasma (CAP) devices. CAPs have recently found
promising use in a variety of applications, including (bio)materials processing [142] and
plasma medicine [14–16]. CAPs, a low-temperature (partially) ionized gas, can be generated
by applying electric fields to a noble gas, typically argon or helium. The synergistic effects of
CAPs, including the generation of reactive chemical species and ions, ultraviolet radiation,
low-level electric fields, and thermal effects, are posited to induce therapeutic and practical
outcomes [143, 144]. CAP devices, such as atmospheric pressure plasma jets (CAPJs) [80],
can facilitate direct CAP treatments by providing a portable, point-of-use solution to deliver
plasma effects in a directed manner. However, CAPJs pose unique challenges in control and
rely on cutting-edge control formulations [2, 145], most of which have no unified embedded

larger differences.
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Figure 4.4: Distributions of the stage cost for three control policies used in the illustrative
example: implicit MPC, standard explicit MPC (EMPC), and DNN approximation to MPC
(DNN).

techniques. This section will cover some key additions and/or deviations from the description
of the CAPJ system in Section 2.2 and demonstrate a CoC design study for the CAPJ system.

4.6.1 Resource-limited Hardware Integration with CAPJ

In this chapter, we added a field programmable gate array (FPGA) to the CAPJ system
described in Section 2.2 to act as the low-resource hardware for embedded control systems.
Data acquisition was implemented and managed via USB connection to a standard CPU
using Python. DNN-based CoC policies were implemented on a FPGA (the programmable
logic side of a Zybo Z7, XC7Z020-1CLG400C). The programming files for the FPGA were
generated automatically using MathWorks HDL Coder (included with MATLAB R2021a)
and Xilinx Vivado 2020.1. FPGA-in-the-loop simulations and experiments were facilitated
by MATLAB on a standard laptop CPU, rather than the Zybo Z7’s on-board processor.5

5Note that the communication time between devices can play a role in effective hardware implementation.
Further investigation into using a system-on-chip architecture provided by the Zybo Z7 is left for future work.
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4.6.2 Modeling for Control of CAPJs

A model of the CAPJ is used as described in Section 2.2.2, and the key equations are revisited
here. The dynamics of the CAPJ is described by a data-driven LTI model

xk+1 = Axk +Buk, (2.1a revisited)

yk = Cxk +Duk, (2.1b revisited)

and the thermal effect of the CAP is given by

CEMk+1 = CEMk +K(Tref−Ts,k)δt. (2.3 revisited)

4.6.3 Scenario-based Model Predictive Control

Since we have no way to remove thermal effects once delivered, we need to be cautious in
the face of uncertainty. Therefore, we select scenario-based MPC [146], or sMPC for short,
to provide a controller that is robust to uncertainty especially in the presence of safety-
critical constraints. Specifically, sMPC assumes that the system uncertainty can take on
finite number of s scenarios at every time step. Whenever the uncertainty is time-varying
in the sense that it can take on new values at every time step, the system evolution can
be represented by a scenario tree of S = sN unique combinations of uncertainty values
where N denotes the prediction horizon [147]. The sMPC policy then solves the following
minimization problem at every time step

min
ui,j|k

S∑
j=1

ωj

[
Np−1∑
i=0

V (xi,j|k, ui,j|k) + Vf (xNp,j|k)

]
, (4.19a)

s.t. xi+1,j|k = Axi,j|k +Bui,j|k + wi,j|k, (4.19b)

(xi,j|k, ui,j|k) ∈ X × U , (4.19c)∑S
j=1 ẼjUj|k = 0, (4.19d)

x0,j|k = xk, (4.19e)

∀i ∈ {0, . . . , Np − 1}, ∀j ∈ {1, . . . , S},

where the subscript (·)i,j|k denotes the j-th scenario predicted i steps ahead of the cur-
rent time k, ωj is the probability of occurrence of the j-th disturbance sequence Wj|k =
(w0,j|k, . . . , wNp−1,j|k), X and U are the state and input constraints, respectively, that must
hold for all uncertainty realizations, V and Vf are the stage and terminal cost functions, re-
spectively, and (4.19d) enforces the non-anticipativity constraints, which ensure states that
branch from the same parent node have the same control input. As shown in [148], these
constraints can be written in terms of known matrices {Ẽj}Sj=1 that impose structure on
the vector of control inputs for the j-th scenario, i.e., Uj|k = (u0,j|k, . . . , uNp−1,j|k). To limit
the exponential growth in the scenario tree, we use the idea of the robust horizon Nr < Np
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Table 4.2: Examples of Design Parameters in the Control-on-a-Chip (CoC) Design Process

CoC Design Step Examples

Scenario-based MPC
(λ)

prediction horizon (N), robust horizon (Nr), back-off
parameters, uncertainty bounds (ŵbound)

DNN Approximation
(θA)

number of layers (L), number of nodes (H), activation
function(s) ({αl}Ll=1), training/optimizer parameters

Hardware
Implementation

(FPGA) (γ)

numerical representation (e.g., total/fraction length/bit
representation), parallelization options

from [147], which stops branching after Nr steps with Nr usually equal to 2 or 3 (often
sufficient in practice to achieve constraint satisfaction).

In (4.19), the control objective for the CAPJ system is given by a terminal cost of
Vf (xNp) = (CEMsp−CEMNp|k)2 where CEMsp is the desired CEM value. We use a prediction
horizon of Np = 5 and a robust horizon of Nr = 2. We consider a set of 3 scenarios at
each time step, mainly {(−ŵbound,−ŵbound), (0, 0), (ŵbound, ŵbound)}, which correspond to
low, middle, and high values for the uncertainty for a tuning parameter ŵbound. The inputs
are constrained by the hardware to satisfy P ∈ [1.5, 5.0] W and q ∈ [1.5, 5.0] s.l.m. The
outputs are constrained by the following limits Ts ∈ [25, 45]◦C and I ∈ [0, 80] intensity
units. The optimization problem (4.19) was formulated using CasADi [139] and solved with
IPOPT [102] in a receding-horizon fashion.

Although sMPC provides an effective robust control strategy for the CAPJ, it poses a
significant challenge for CoC design since, to the best of the authors’ knowledge, there are no
known off-the-shelf embedded implementations of (4.19). As such, sMPC provides a useful
expert control policy that can be imitated by a DNN on embedded hardware.

4.6.4 Hardware-in-the-loop Simulations

Now, our goal is to embed the sMPC policy defined by (4.19) on specialized hardware, mainly
an FPGA (i.e., the programmable logic side of the Zybo Z7). We can select CoC design
parameters at each stage of the proposed framework – we list several possible parameters
in Table 4.2. We selected the following closed-loop performance metrics to define the MOO
problem (4.9) that provides the basis for selecting the complete set of software and hardware
design parameters ξ

J1(ξ) = E

{
T∑

k=0

(
CEMsp − CEMk(ξ,W ))2

)}
, (4.20a)

J2(ξ) = E

{
T∑

k=0

(
[Ts,k(ξ,W )− Tmax]

+)2
)}

, (4.20b)
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Figure 4.5: Confusion matrix of the hardware feasibility classifier. Recall that 0 represents
an infeasible control-on-a-chip design, while 1 indicates a feasible design.

where W = (w0, . . . , wT−1) is the set of random uncertainty values over the horizon T ,
[a]+ = max{a, 0}, and the expectation is taken over W . Here, J1 represents deviation from
the desired setpoint of CEMsp = 1.5 min and J2 is a temperature constraint violation metric
given Tmax = 45◦C.

We select the following CoC design parameters and their bounds: maximum possible
uncertainty realization ŵ1,bound ∈ [0, 10], number of nodes per hidden layer in the DNN
H ∈ [2, 10], and the fixed-point word length when generating code wl ∈ [10, 32].

Hardware Feasibility Classifier Results

As mentioned in Section 4.3.2, the constraint function g(θA, γ) can be learned prior to any
optimization routine. As such, we pre-select a range of H and wl to learn a binary classifier
g̃(H,wl) → {0, 1}. Data Dg = {(H,wl), g(H,wl)} were generated by creating DNNs with
randomly initialized weights and passing them through the code generation process CG.
Feasibility was recorded with each combination of parameters. Using Dg, a neural-network-
based classifier was trained using MATLAB’s fitcnet function with an 80/20 training/test
split.

Remark 3 While the generation of training data for the hardware feasibility classifier is
performed independently of the CoC design optimization, the process of generating the data
itself can be costly due to the time required to run code generation step (i.e., the FPGA
synthesis). To reduce the cost of gathering training data, optimization methods like BO can
be used to determine the boundaries of feasible/infeasible points instead of searching over the
entire parameter space of ΘA and Γ.

Fig. 4.5 shows the confusion matrix of the resulting hardware classifier learned from Dn.
The confusion matrix shows a reliable estimation of how well we can predict the feasibility of
a particular hardware design. As shown in Fig. 4.5, the classifier accurately predicts with an
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Figure 4.6: Observed closed-loop performance metrics of plasma treatments during five repli-
cates each of multi-objective Bayesian optimization (MOBO) and random search via SOBOL
sampling. Blue circles indicate the metrics observed during MOBO; red squares indicate the
metrics observed during random search. Dashed black lines indicate “constraints” on the
closed-loop performance metrics that are used to guide parameter suggestions to the region-
of-interest. The left figure shows all data encountered in all optimization routines, while
the right figure illustrates a zoomed-in version (truncating the upper x-axis value at 120).
Note that random search has no notion of the objective threshold since no surrogate model
is created based on previously observed data. As such, random search explores significantly
more designs outside of the region-of-interest.

85% test accuracy. This hardware classifier can then be used during an optimization routine
to estimate which combination of H and wl are feasible. The result is that we effectively
reduce the search space prior to performing full CoC design runs.

Multi-objective Framework Results

Five replicates of MOBO are used to iteratively find the Pareto frontier according to the
two closed-loop performance metrics using a total of 50 iterations. Closed-loop FPGA-
in-the-loop simulations of the CAPJ are performed in MATLAB. DNNs are trained with
feedforwardnet and ns = 2, 000. Again, the choice of ns was done empirically. However, a
nice feature of our CoC framework is that the closed-loop validation process is able to “catch”
if poor performance is consistently achieved for a variety of design parameters ξ, which, in
turn, may be indicative of a poor training data set. Since the CoC optimization is performed
offline (up until the real-system query), one can always increase the size of ns at the cost of
longer data generation and training time. Results from the closed-loop simulations are passed
into the MOBO framework implemented in Python using Ax [123]. MOBO is compared to
random search (RS) using a quasi-random Sobol sampling strategy [149], which is a common
benchmark for derivative-free optimization methods. Each strategy was initialized with one
known, successful design and one Sobol-selected design.

Fig. 4.6 illustrates the observed closed-loop performance metrics over the five replicates of
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MOBO and RS. In Fig. 4.6, the blue circles indicate data points gathered from MOBO, while
red squares indicate data points gathered from RS. Dashed black lines indicate “objective
thresholds,” which are used in Ax to “constrain” the search space to produce values within
a desired region-of-interest. Objective thresholds are chosen such that the closed-loop per-
formance metrics are representative of valuable or practical control policies. In other words,
in the case of the thermal dose metric, if the metric exceeds 100 (≈ CEMsp× 70 time steps),
then this would mean that the suggested CoC policy will take longer than the maximum
treatment time allowed and/or is incapable of achieving the desired thermal dose. In the
case of the temperature constraint metric, if the metric exceeds 80 (≈ 1◦C×80 time steps or
10◦C×8 time steps), then the policy is considered too dangerous as it violates the constraint
too often or at too high magnitude. Objective thresholds can be chosen since MOBO pro-
duces a surrogate model that relates the design parameters to the performance metrics. The
posterior model can be used to estimate parameters that will produce performance metrics
that are likely to be in the defined region-of-interest. Since the surrogate model in MOBO is
probabilistic in nature, CoC design parameters suggested by MOBO may still fall outside of
the region-of-interest in the initial iterations of MOBO. Note that the RS has no notion of
the objective threshold since no surrogate model is created based on the previously-observed
data. As such, RS explores significantly more designs outside of the region-of-interest due to
a less constricted parameter space. The left subfigure shows all data encountered, while the
right shows a zoomed-in version with a truncated x-axis, and it illustrates how RS encounters
significantly more points with a thermal dose metric greater than 100.

Furthermore, Fig. 4.7 shows the HV evolution over the 50 iterations of each method
(MOBO in blue and RS in red). The solid lines indicate the mean over five replicates
whereas the shaded region indicates one standard error. Recall that the HV is a measure of
the quality of the Pareto frontier. As seen in Fig. 4.7, the two methods begin in a similar
fashion at suboptimal Pareto frontier estimations over the first two iterations, but MOBO
quickly diverges within the immediate next few iterations. MOBO’s increase in HV value in
few iterations is due to its ability to intelligently explore the design space in search of the
optimal trade-off between the two performance metrics. Meanwhile, RS is a näıve approach
that explores many options that are not expected to improve the HV, i.e., designs are selected
with no knowledge of the outcome. As such, it takes RS many more iterations to reach a
HV close to that of a “converged” MOBO.

Finally, Fig. 4.8 shows closed-loop trajectories of the states related to J1 and J2 (CEM
and T , respectively). We use Fig. 4.8 to illustrate the performances of various CoC designs
that are encountered at several snapshots of MOBO. Using Fig. 4.8, we can see the variety
of control policies that are encountered, and how the observed Pareto frontier evolves over
time. From top to bottom, we show snapshots of one replicate of MOBO at iterations
5, 15, and 25. From left to right, the subfigures in the left column are the closed-loop
trajectories of CEM for selected designs; the subfigures in the middle column are the closed-
loop trajectories of surface temperature for selected designs; and the subfigures in the right
column are the observed metrics from the designs encountered up until that iteration. We
selected designs that a practitioner may select based on the application needs. A “utopia”
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Figure 4.7: Hypervolume improvement of five replicates each of multi-objective Bayesian
optimization (MOBO, blue) and random search via SOBOL sampling (red) for the control-
on-a-chip design for atmospheric pressure plasma jets. Solid lines indicate the mean hyper-
volume and the shaded regions indicate one standard error. MOBO on average reaches a
higher hypervolume overall and earlier than random sampling, which indicates that a mean-
ingful Pareto frontier is realized in fewer iterations of MOBO than of random sampling.

design is determined on the basis of the lowest combination (scaled sum) of performance
metric values,

Ψu = Ĵ1 + Ĵ2,

where Ĵi are scaled values of Ji. Bounds of the scaling are fixed to [20, 100] for J1 and [0, 60]
for J2. A “control performance preferred” design is determined on the basis of a weighted
combination of J1 and J2,

Ψp = τ Ĵ1 +
1

τ
Ĵ2,

where τ = 3. A “constraint satisfaction preferred” design is determined similarly, but with
the weights switched, i.e.,

Ψs =
1

τ
Ĵ1 + τ Ĵ2.

Designs are selected in this manner to avoid overly extreme controller designs. Utopia designs
are denoted by the color green (and solid lines in the trajectory plots); control performance
preferred designs are denoted by the color orange (and dotted-dashed lines); constraint
satisfaction preferred designs are denoted by the color brown. Additionally, if any selected
designs were the first artificial point, then they are colored purple. At iteration 5, MOBO
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Figure 4.8: Closed-loop trajectories of CEM (left column) and surface temperature (middle
column) at snapshots (at Iterations 5, 15, and 25) of one replicate of multi-objective Bayesian
optimization. Selected designs (colored stars) were determined from the observed data (blue
circles) in the metric space (right column). The selected designs correspond to designs
that an engineer may select based on the needs of a particular application. The “utopia”
point/design (solid green) is selected on the basis of lowest combination (scaled summation)
of the metric values. The “control performance preferred” point (dot-dashed orange) is
selected on the basis of a weighted combination of the metric values where the thermal dose
metric is weighted three times more than the temperature constraint metric. The “constraint
satisfaction preferred” point (dotted brown) is selected on the basis of a weighted combination
of the metric values where the temperature constraint metric is weighted three times more
than the thermal dose metric. In the CEM figures, the dashed black line represents the
desired thermal dose. In the surface temperature figures, the dashed red line represents the
constraint.
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Figure 4.9: Observed performance metrics during three replicates of multi-objective Bayesian
optimization for control-on-a-chip design based on design parameters chosen for the exper-
imental case study. Modifying different design parameters still shows a similar trade-off
between the two closed-loop performance metrics.

has selected designs that improve the Pareto frontier such that a utopia design and control
performance preferred design are different from the first design. The utopia point provides
an indication of design with the most even trade-off between the different metrics and can
also partially indicate the quality of the Pareto frontier. At iteration 15, more designs have
been explored such that new designs for the more extreme designs can be observed. At
iteration 25, several more designs have been explored, but had little value to finding the
Pareto optimal points, and as a result, had no significant changes between iteration 15.

4.6.5 Real-time Experimental Verification

Finally, to show utility in the real system, we selected three control policy designs from the
Pareto frontier generated in simulation. Note, for ease of testing, we chose to modify H, L,
wl, and loop where loop is a categorical option in the code generation process that determines
whether or not to parallelize certain matrix computations. We used MOBO offline to search
for optimal CoC designs and transfer the designs to real-time experiments. In principle, these
optimal design parameters obtained offline are sufficient for the experiments as they primar-
ily describe the capability of the CoC policy in (i) accurately representing the sMPC law and
(ii) being feasibly implemented on the hardware device. Fig. 4.9 shows the observed data
from three replicates of MOBO for the new set of design parameters. Fig. 4.9 shows a similar
trade-off as in Fig. 4.6 even with different design parameters. Real-time experiments using
the CoC design parameters to create embedded control policies for the CAPJ were performed
in triplicates. Table 4.3 describes the controller parameters used and the closed-loop metrics
obtained on the CAPJ testbed. Due to the significant plant-model mismatch between the
linear models and the true system, the original sMPC was tuned based on a newly identi-
fied LTI model on the day of experiments to achieve appropriate control performance before
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Table 4.3: Configurations and Closed-loop Metrics for Real-time Control Experiments
with the APPJ Testbed. Metrics are reported as the mean ± the standard error of 5
replicates.

Control Policy Closed-loop
Parameters Performance Metrics

Hidden Hidden Fixed Point Loop Thermal Temperature
Description Nodes Layers Word Length Unrolling Dose Constraint

(i)
Control

5 2 13 UnrollLoops 35.66± 0.59 2.12± 0.43Performance
Preferred

(ii)
Constraint

8 2 18 LoopNone 39.53± 4.19 1.07± 0.40Satisfaction
Preferred

(iii) Utopia 5 3 20 LoopNone 33.67± 2.03 1.78± 0.39

testing CoC designs.6 From Table 4.3, we can see several trade-offs between control per-
formance, hardware utilization, and constraint satisfaction. A performance-dominated CoC
design (i.e., Configuration (i)) is typically comprised of a small-scale DNN that can achieve
the desired CEM dose quickly at the expense of more constraint violations. A constraint-
dominated CoC design (i.e., Configuration (ii)) is typically comprised of a larger width DNN
with larger fixed point word length. This often leads to a more representative DNN that has
fewer constraint violations. Finally, a mixed CoC design (i.e., Configuration (iii)) can offer
a balance of the two extremes.

4.7 Conclusions and Future Work

This chapter presented an end-to-end control-on-a-chip (CoC) design framework for the im-
plementation of arbitrary control policies on arbitrary hardware. We argued for deep learning
as a unifying template that connects the hardware and software aspects of embedded control
design. Furthermore, we presented a Bayesian optimization framework for CoC design that
can account for the multi-objective nature of the control design problem, categorical de-
sign spaces, and minimal interactions with the expensive design process. We demonstrated
the proposed CoC design framework for cold atmospheric plasma processing of biomaterials
in closed-loop simulation studies and real-time experiments. The framework was able to
efficiently and systematically determine trade-offs in the CoC design process, resulting in
adequate estimation of the Pareto frontier in only a few design iterations. Future work may

6New system parameters are provided in Section 4.8.1.
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Figure 4.10: Comparison of measured APPJ outputs and the model used in sMPC (4.23).
A new model was learned from new experimental data, since the configuration of the APPJ
had changed since the data collection for (4.21) and (4.22).

focus on extending the framework to online adaptation of control policies and guaranteeing
the robustness (i.e., safety) of the resulting controllers.

4.8 Additional Information

4.8.1 Subspace Identification for the APPJ Testbed

As indicated in the main text, we used subspace identification [86] to identify discrete-time
state-space models from open-loop data of the APPJ testbed. For the closed-loop simulations
described in Section 4.6, we used two sets of identified matrices to simulate plant-model
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mismatch. The following matrices were used in defining the control model f̂(x, u)

A =

[
0.903 0.018
0.132 0.243

]
, B =

[
0.581 −0.220
2.674 −1.131

]
. (4.21)

The following matrices were used in defining the plant model (2.2)

A =

[
0.888 0.055
0.094 0.283

]
, B =

[
0.503 −0.174
2.764 −1.037

]
. (4.22)

In Section 4.6.5, a new state-space model was identified for sMPC. The matrices for
f̂(x, u) are given as follows

A =

[
0.845 0.016
−0.060 0.358

]
, B =

[
0.450 −0.164
0.713 0.567

]
. (4.23)

Furthermore, the nominal operating conditions were given as [P s, qs]⊤ = [3.5 W, 3.5 s.l.m.]⊤

and [T s, Is]⊤ = [49.6◦C, 29.7 arb. units]⊤. Fig. 4.10 (b) shows a comparison between the
open-loop data collected (via multi-step tests) and the model learned from the open-loop
data.

4.8.2 Compilation Settings for Generating Embedded Control
Policies

This section describes the settings used in generating code for hardware-based control poli-
cies. Most tools were used with their default settings with the exception of those detailed in
this section.

CasADi Code Generation

As mentioned in the main text, CasADi provides a generate() function to create a C-code
representation of the optimization problem defined with CasADi’s symbolic syntax. The
optimization problem (4.17) from the illustrative example in Section 4.5 is formulated using
CasADi’s symbolic syntax and used to generate a functional form of the control law

u⋆t = πmpc(xt), (4.24)

where a call to πmpc solves the implicit optimization problem defined by (4.17). The variable
in which πmpc is stored is used with the generate(filename, opts) function with these
additional options (defined in as the structure opts):

• ’main’: true

• ’mex’: true
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• ’with header’: true.

Then, the C-code generated under the filename variable filename is converted to a MEX

function for use as a MATLAB function using the following command (within MATLAB Com-
mand Window): mex filename -largeArrayDims -outdir codegen/mex/mpc/ -output

mpc mex.

MPT-3 Code Generation

As mentioned in the main text, MPT-3 provides several methods to generate C-code for
control policies defined using MPT-3 syntax. In this work, we use the method that involves
the use of the MATLAB Coder toolbox. The procedure to do so is as follows:

1. Define a control policy using the MPCController object, which takes system and
horizon as arguments, where system is the linear model to be used in the dynamics
constraints and horizon is the prediction horizon of the optimal control problem.

c = MPCController(system, horizon);

2. Convert the control policy into an explicit control policy using the toExplicit()

function.

ec = c.toExplicit();

3. Convert the explicit control policy to a functional representation of the control law.

ec.toMatlab(mfile, ’primal’, ’obj’);

where the mfile is an m-code representation of the control law

u⋆t = πempc(xt), (4.25)

where the evaluation of πempc searches for the appropriate gain from the PWA function
that defines the explicit control policy.

4. Use MATLAB Coder to create a MEX function.

coder mfile -args {zeros(nx, 1)};
where nx is the number of states.

DNN Code Generation

The DNN can be converted to C-code through a similar method as the final step of the
MPT-3 method. The DNN was created using the feedforwardnet function, which is a
part of the Deep Learning toolbox. In addition, the Deep Learning toolbox provides a
function genFunction that converts a neural network to a MATLAB function, i.e., an m-code
representation of the DNN control policy

û⋆t = πdnn(xt), (4.26)
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where the evaluation of πdnn is the forward pass of the learned DNN. The DNN is converted
with genFunction:
genFunction(net, mfile, ’MatrixOnly’, ’yes’);

where net is the DNN object generated after calling feedforwardnet and mfile is the
filename of the m-code function that is generated. Finally, the same call to MATLAB Coder

from Step 4 of the MPT-3 code generation is called to create the C-code and MEX function.
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Chapter 5

Towards Personalized Plasma
Medicine with Bayesian Optimization
Particularities1

Precision or personalized medicine is an approach that aims to select medical
treatments based on factors that are unique to an individual. In plasma medicine,
the difficult-to-elucidate plasma-interface interactions and uncertainty around
plasma treatment outcomes pose an additional challenge. Data-driven optimiza-
tion that can mimic the doctor-patient interaction can be useful to inform deci-
sions made by a physician. This chapter illustrates how two aspects of healthcare:
balancing multi-objective outcomes and safe exploration can be addressed by data-
driven optimization.

5.1 Introduction

Cold atmospheric plasmas (CAPs) have found promising use in plasma medicine [16]. CAPs,
a low-temperature (partially) ionized gas, can be generated by applying an electric field to
a noble gas, such as argon or helium, whereby the resulting discharge is directed towards
a target surface [80]. The synergistic effects of CAPs, including the generation of reactive
chemical species and ions, ultraviolet radiation, low-level electric fields, and thermal effects,
can induce therapeutic outcomes [143]. As such, portable CAP devices have shown promise
for a variety of point-of-care biomedical applications [150]. Nevertheless, CAPs exhibit mul-
tivariable, distributed-parameter, and intrinsically variable dynamics and are often subject
to (safety-critical) constraints. Thus, there has been a growing interest in advanced control
of biomedical CAP devices using model predictive control (MPC) [151] and learning-based
control strategies [65]. Two of the main challenges in MPC of CAPs stem from the need
to: (i) handle the fast dynamics and, thus, kilohertz (kHz) sampling rates of CAPs [2], and

1This chapter was adapted with permission from the coauthors from [76] and [77].
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(ii) adapt MPC policy parameters to account for variable characteristics of the plasma and
target surfaces [19].

The notion of learning and adaptation, as well as auto-tuning, of control policies using
closed-loop performance data has received increasing attention. Notably, policy-gradient
methods [152] have been used as a popular reinforcement learning (RL) approach to guide
policy search within continuous control-input spaces, with particular success for MPC policies
(e.g., [110]). Due to its use of gradient information, policy-gradient RL is touted as a scalable
alternative to the increasingly popular Bayesian optimization (BO) strategy for controller
auto-tuning (e.g., [153,154]), but at a cost of lower data-efficiency, especially when initialized
poorly. Instead, BO can be a viable alternative for data-efficient policy search, especially
when performance data and/or interactions with the real environment are limited. BO is a
derivative-free, probabilistically principled method for “global” optimization that can handle
a mixture of continuous, discrete, and categorical decision variables [70]. For example, [155]
presents an entropy-search BO approach to use prior information from a “cheap” simulated
environment for sample-efficient policy learning on the actual physical system. Moreover,
the multi-objective nature of policy search can be directly accommodated in BO, when there
is a need to discover a set of optimal policies due to multiple conflicting objectives [136,156].

For plasma treatment of complex interfaces, it is imperative to adapt control policies to
account for the variability among different target surfaces, in addition to the time-varying
nature of the plasma and surface characteristics. Moreover, adaptability of the treatment
policy is important for personalized plasma medicine, where CAP treatments must be tai-
lored for each individual subject to enhance their therapeutic efficacy without compromising
the safety and comfort of patients. However, a key challenge arises from the limited num-
ber of treatments/trials that can be performed in a biomedical context, which makes data
efficiency a prerequisite for control policy adaptation and BO an attractive option for that
data-driven control policy adaptation.

5.2 Multi-objective Neural-Network-based Policy

Search

This section presents a strategy for adaptive deep learning-based approximate MPC, towards
personalized and point-of-care biomedical plasma applications. Approximate MPC [13],
which hinges on approximating MPC laws via offline computations of the optimal control
problem, enables control of CAP devices at kHz sampling rates [157]. Deep neural net-
work (DNN)-based approximations of MPC laws are especially attractive due to their low
memory footprint and versatile embedded implementations on resource-limited, specialized
hardware such as field programmable gate arrays (FPGAs) [72,158]. To this end, we present
a multi-objective BO (MOBO) strategy for data-efficient and “globally” optimal adaptation
of DNN-based control policies in a run-to-run manner. MOBO uses probabilistic surrogate
models of multiple closed-loop performance measures (i.e., plasma treatment outcomes) to
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systematically trade off between exploration and exploitation of a subset of DNN parame-
ters. The selection of this subset of parameters is guided by a global sensitivity analysis that
quantifies the influence of each network parameter on the performance measures. As such,
MOBO yields a data-efficient scheme for performance-oriented adaptation of DNN-based
control policies. We experimentally demonstrate the proposed strategy for adaptive DNN-
based approximate MPC of a CAP jet (CAPJ) with prototypical applications in processing
of heat-sensitive biomaterials.

5.2.1 Robust MPC of Cold Atmospheric Plasma Jet

In this section, we present the control problem for a prototypical CAPJ in the context
of personalized plasma treatments. This section revisits several aspects of the previous
chapters. First, we use the CAPJ system described in Chapter 2.2, which is modeled by a
linear time-invariant (LTI) state-space model

xk+1 = Axk +Buk, (2.1a revisited)

yk = Cxk +Duk, (2.1b revisited)

and the thermal effect of the CAP is given by

CEMk+1 = CEMk +K(Tref−Ts,k)δt. (2.3 revisited)

The goal of the plasma treatment is to deliver a desired amount of plasma effects as
quickly as possible without violating comfort and safety constraints. Here, we revisit the
robust MPC formulation, scenario-based MPC (sMPC) [146]. The optimal control problem
is formulated as

min
ui,j|k

S∑
j=1

ωj

[
Np−1∑
i=0

V (xi,j|k, ui,j|k) + Vf (xNp,j|k)

]
, (4.19a revisited)

s.t. xi+1,j|k = Axi,j|k +Bui,j|k + wi,j|k, (4.19b revisited)

(xi,j|k, ui,j|k) ∈ X × U , (4.19c revisited)∑S
j=1 ẼjUj|k = 0, (4.19d revisited)

x0,j|k = xk, (4.19e revisited)

∀i ∈ {0, . . . , Np − 1}, ∀j ∈ {1, . . . , S},

The solution to (4.19) defines the sMPC law as

πsmpc (xk) = u⋆0|k, (5.3)

where u⋆0|k is the optimal first input. Here, the control objective is defined as the terminal
cost

Vf (CEMNp) = (CEMsp − CEMNp)2, (5.4)
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where CEMsp denotes the setpoint CEM dose.
To adapt the policy for personalized CAP treatments, we focus on two closed-loop perfor-

mance measures: (i) the delivery of a desired amount of thermal dose and (ii) the adherence
to a comfort/safety constraint. We define (i) as a CEM tracking cost over the treatment
time T

ϕ1 =
T∑

k=0

(CEMsp − CEMk)2, (5.5)

and (ii) as the sum of the degree of constraint violation in surface temperature over T

ϕ2 =
T∑

k=0

([Ts,k − Ttol]+)2, (5.6)

where Ttol is the nominal tolerated temperature constraint, and [Ts,k − Ttol]+ is the positive
magnitude of constraint violation. These measures are competing since Ttol is often set to a
value at or near 43◦C, which limits the rate of CEM delivery.

5.2.2 Approximate MPC using Deep Learning

The requirements of embedded control on low-cost, resource-limited hardware for point-of-
use CAPJ applications pose a key challenge to online deployment of the sMPC law (5.3).
The challenge arises from the high computational cost of the scenario-tree optimization in
(4.19). To this end, we use DNNs to approximate (5.3).

Consider a dataset in the form of

T = {(xq, πsmpc(xq))}ns

q=1 , (5.7)

representing ns state-action (optimal input) pairs as acquired by the offline solution of (4.19).
Let a DNN-based policy be defined as πdnn : Rnx → Rnu . A generic feedforward description
of a DNN constitutes a nonlinear, input-output mapping, where information is propagated
from the input layer to the output layer via L hidden layers that contain H nodes [159]. As
was given in Chapter 4.3.1, a DNN can be defined as

πdnn(x; θ) = αL+1 ◦ βL ◦ αL ◦ · · · β1 ◦ α1(x), (4.2 revisited)

where θ is decomposed into two categories of parameters, those that relate to the weights
θW and those that relate to the architecture θA. Specifically, θW = {W1, b1, . . . ,WL+1, bL+1}
denotes the collection of weights and biases that parameterize the network for a fixed archi-
tecture θA (e.g., type of activation function, L, and H).

The DNN parameters θW are generally fit by minimizing a mean-squared-error loss func-
tion. Meanwhile, the DNN hyperparameters θA related to its architecture (e.g., L, H,
{σi}Li=1), as well as the training/fitting options (e.g., learning rate, optimizer solver) must
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be tuned. Tuning is a crucial step of the DNN policy training since the hyperparameters
affect the resource utilization of hardware, e.g., the memory required to store the weight-
s/parameters θW and the accuracy of the approximation of (5.3). While BO is commonly
used to facilitate hyperparameter tuning, i.e., tuning θA, this work focuses on using BO to
adapt DNN parameters θW . Here, the DNN is trained using closed-loop data as described
in, e.g., [72]. This way, each step of the closed-loop trajectory is a solution to (5.3) and
represents a suitable situation in which the closed-loop system is likely to operate.

Remark 4 Adaptation of DNN-based control policies using data-driven optimization meth-
ods such as BO is prone to the curse of dimensionality. Thus, we utilize a global sensitivity
analysis (GSA) [160] with respect to the performance measures ϕ1 and ϕ2 to decide which
candidate parameters θW,0 ⊂ θW should be prioritized for control policy adaptation. The two
main components of a GSA are the quantities of interest (QoI) to be analyzed and the corre-
sponding inputs. A suitable set of QoIs are the closed-loop performance measures, ϕ̂1 and ϕ̂2,
which serve as proxies to the true ones. By extensive sampling of the DNN parameters (i.e.,
inputs of GSA) we can evaluate the impact of DNN parameters on the performance measures
(i.e., outputs of GSA) and, accordingly, determine which inputs are most responsible for the
variability of the latter.

5.2.3 Multi-objective Bayesian Optimization for Control Policy
Adaptation

The control policy adaptation can be cast as a multi-objective (MO) problem characterized
by M closed-loop performance measures {ϕm}Mm=1; see (5.5), (5.6). We denote the closed-
loop system uncertainties by d = {d(0), . . . , d(N)}. Further, we define a vector-valued
performance measure as h(θ) : Rnθ → RM , with components hm(θ) = Ed [ϕm(θ,d)], where
θ ∈ Θ are real-valued decision variables, namely the subset of DNN parameters that are
adapted. Then, the MO optimization problem for optimal selection of θ is formulated as

min
θ∈Θ

h(θ). (5.8)

We approximate the expectation of each performance measure in a sample-based fashion as

hm(θ) = Ed [ϕm(θ,d)] ≈ 1

Nd

Nd∑
j=1

ϕm(θ,dj), (5.9)

where Nd is the number of samples for a given θ. The sample-averaged approximation (5.9)
yields noisy estimates of the performance measures

ψm(θ) = hm(θ) + ϵm, (5.10)

where ϵm represents the noise of the m-th performance measure, and Ψ(θ) = {ψm(θ)}Mm=1

denotes the set of observed performance measures for a given θ.
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Problem (5.8) cannot be directly solved in the case of expensive and black-box perfor-
mance measures. Hence, the general idea of BO is to learn probabilistic surrogate models,
typically Gaussian Processes (GPs), for the performance measures and select a set of points
that jointly optimize the expected value of the current surrogates. This is done by solving a
proxy problem where an acquisition function proposes points to query to refine the surrogate
representing the performance measures. The querying strategy is based on the exploration/-
exploitation trade-off: we look to query the measures at points that lie in a neighborhood
that can contain the optima while also reducing the prediction uncertainty of the surrogate
models. Given newly observed data D = {(θi,Ψi)}No

i=1, each performance measure is updated
using Bayesian inference; e.g., for GP surrogates, GP regression is used [90].

Moreover, in a MO setting, there is not a single best optimizer since the performance
measures can be conflicting. Hence, the goal is to discover a set of optimal points, a Pareto
frontier comprised of Pareto optimal points. The Pareto frontier is a boundary in the
performance measure space in which improving one measure is realized at the expense of
degrading the others. Let us denote a set of Pareto optimal solutions as P . Solutions
contained within P are known to be non-dominated by other solutions in the feasible region.
For control policy adaptation, Pareto dominance is defined in Definition 1.

Definition 1 Given a set of parameters and their corresponding performance measures
{θ,h(θ)}, a solution h(θA) dominates another solution h(θB) if hi(θA) ≤ hi(θB) ∀i ∈
{1, . . . ,M} and ∃i ∈ {1, . . . ,M} such that hi(θA) < hi(θB). Pareto dominance is de-
noted by h(θA) ≺ h(θB), while a solution h(θA) is non-dominated if ∄θB ∈ Θ such that
h(θB) ≺ h(θA).

Given Definition 1 and the set of Pareto optimal performance measures (the Pareto frontier)
is given as

P = {h(θ) s.t. ∄θ⋆ ∈ Θ : h(θ⋆) ≺ h(θ)}, (5.11)

and the Pareto optimal parameter set is given as

ϑ = {θ ∈ Θ s.t. h(θ) ∈ P}. (5.12)

Establishing a Pareto frontier will enable the selection of optimal control policies, each of
which yields optimal performance with varying levels of trade-offs between performance
measures.

In MOBO, the search for the Pareto frontier is commonly facilitated by the expected
hypervolume improvement (HVI) acquisition function [135]. The expected HVI relies on
the definition of an indicator that quantifies the Pareto optimality of the estimated Pareto
frontier known as the hypervolume (HV).

Definition 2 The HV is defined with respect to a reference point r ∈ RM in the performance
measure space. For a finite, estimated Pareto set P, the HV is given as the M-dimensional



CHAPTER 5. TOWARDS PERSONALIZED PLASMA MEDICINE WITH BAYESIAN
OPTIMIZATION PARTICULARITIES 59

Table 5.1: Sensitivity values (mean ± standard error) of the closed-loop measures to various
parameters of the policy

First Layer Last Layer

Thermal Dose Delivery (ϕ1) 0.025± 3.2× 10−4 0.026± 8.3× 10−4

Temperature Constraint (ϕ2) 0.036± 4.7× 10−4 0.038± 1.1× 10−3

Lebesgue measure ΛM of the space dominated by P and bounded by r

HV(P , r) = ΛM

 |P|⋃
i=1

[r,Ψi]

 , (5.13)

where |P| is the cardinality of P, and [r,Ψi] is the hyper-rectangle formed by the points r
and Ψi [135].

The HV acts as a metric to quantify the quality of the Pareto frontier and is affected by the
selection of the reference point. Thus, “convergence” to a single HV value means that MOBO
has performed enough sampling (based on budget) to construct the best possible Pareto
frontier, which is not necessarily the true one. Then, the HVI describes the incremental
improvement of the HV of P if a new point is added. The HVI of a set of newly observed
measures Ψ′ is given by

HVI(Ψ′,P , r) = HV(Ψ′ ∪ P , r)−HV(P , r). (5.14)

Hence, the expected HVI acquisition function αEHVI describes the expectation of HVI over
the posterior of the performance measures and is given as

αEHVI(θ) = E[HVI(Ψ′,P , r)]. (5.15)

Finally, to account for noisy observations of performance measurements, the noisy expected
HVI acquisition (NEHVI) is employed; see [135]. Here, NEHVI is maximized with respect
to the DNN parameters θ.

5.2.4 Adaptive DNN-based Control Policies for Personalized
Plasma Treatments

We demonstrate the proposed MOBO strategy for control policy adaptation on the CAPJ
described in Chapter 2.2.

Control Policy Approximation

First, we solved the sMPC problem (4.19) in closed loop to gather training data for ap-
proximating the initial control law (5.3). In (4.19), we set the prediction horizon Np = 5,
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Figure 5.1: (a) Hypervolume improvement (mean ± two standard errors) and (b) observed
Pareto frontier over five replicate runs of MOBO. The hypervolume improvement (a) demon-
strates that MOBO reaches some optimal representation of the Pareto frontier. The Pareto
frontier (b) demonstrates the trade-off between the competing performance measures (dose
delivery: reducing treatment time; temperature constraint: satisfying patient comfort and
safety).

the robust horizon Nr = 2, and the discrete uncertainty scenarios as [0.01wmin, 0, 0.01wmax].
The control inputs are constrained by P ∈ [1.5, 5] W and q ∈ [1.5, 5] SLM, and the states
are constrained by T ∈ [25, 45]◦C and I ∈ [20, 80] arb. units. The sMPC was formu-
lated using CasADi [139] and solved with IPOPT [102]. We simulated the true system with
a mismatch between the plant and control model and normally distributed measurement
noise N (0, (0.1)2). We collected ns = 5, 000 samples of state-to-optimal-input mappings and
trained a fully-connected feedforward DNN architecture with L = 4, H = 7, and ReLU acti-
vation functions. We trained the DNN for 5, 000 epochs using PyTorch [161] with the default
optimizer settings. The resulting DNN-based policy achieved nearly equivalent performance
to the implicit sMPC law. Furthermore, the computation time of the DNN, which depends
on the architecture of the DNN, compared to solving (4.19), on a standard CPU (2.4 GHz
quad-core Intel i5 processor) was roughly three orders of magnitude faster (∼ 10−5 s versus
∼ 10−2 s).

Control Policy Adaptation in Closed-loop Simulations

We consider the treatment of a subject with characteristics that differ from the mean popu-
lation values, and our goal is to adapt the initial policy designed for the population mean to
cater to the individual subject. Note that the closed-loop performance measures are parame-
terized by subject-specific characteristics, namely K in the CEM setpoint tracking cost (5.5)
and Ttol in the comfort constraint cost (5.6). Here, we examine the case in which the param-
eters of the population mean are Kpop = 0.5 and Ttol,pop = 45◦C, while the characteristics of
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Figure 5.2: State and input profiles of closed-loop experiments at various iterations of
MOBO. Each iteration of MOBO consisted of triplicate experiments. The CEM profile
(upper left) shows the median value (solid line) along with the min/max range (shaded
region). The surface temperature profile (upper right) shows the mean value (solid line)
and two standard errors (shaded region). For the manipulated inputs (power and flow rate),
only the mean value is plotted. The selected profiles shown are designated as the trajectories
that correspond to the “incumbent best” policy parameterizations. The incumbent best is
deemed as the initial policy, if a Pareto frontier cannot be established (i.e., in the first few
iterations) or the policy parameterization on the Pareto frontier with the lowest temperature
constraint measure.

the individual subject are Kindiv = 0.55 and Ttol,indiv = 44.5◦C.
First, we examine the sensitivity of the DNN-based policy to perturbations in different

subsets of its parameters. Knowing that the desire for personalized treatments is to minimize
the number of trial-and-error treatments, we adapted a subset of DNN parameters due to
its high dimensionality (nθW = 212). Common practice is to freeze the DNN and adapt the
last layer and/or append a new layer to the network to adapt. To evaluate this practice, we
examine the sensitivity of the closed-loop performance measures to the parameters of the first
and last layers of the DNN-based policy. To perform a GSA as described in Remark 4, we
used the sensitivity analysis tools by UQLab [162]. We used a moment-independent method
(i.e., Borgonovo indices) to analyze the global sensitivity of the selected DNN parameters to
the closed-loop performance measures. We generated 10, 000 samples of the 44 parameters
encapsulated by the first and last layers of the 4-layer, 7-node DNN. Samples were selected
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from geometrically-bounded values from the initial policy parameters. For each sample, we
ran triplicate closed-loop simulations using the DNN-based policy and evaluated the mean
plus and minus standard error values of the observed closed-loop measures. Table 5.1 lists
the results of the GSA. In general, the dose delivery measure (5.5) is less sensitive to changes
in the parameters compared to the temperature constraint measure (5.6). Overall, both of
the measures are equally sensitive to all of the parameters selected for GSA. Despite this, the
parameters of the last layer have slightly higher influence with fewer number of parameters.
Hence, we selected the last layer of the DNN-based policy as the subset of parameters to
modify in our policy search procedure (i.e., θ = W L+1 such that nθ = 16).

As a global optimization method, MOBO provides a means to systematically explore and
detect trade-offs between competing performance measures. Fig. 5.1 shows the results of 5
replicates of 50 iterations of MOBO on a simulated CAPJ, where one iteration of MOBO
is comprised of Nd = 3 replicates.2 The HV profile in Fig. 5.1(a) shows the “convergence”
of MOBO. The reduced improvement in the HV after more than 30 iterations indicates
that MOBO has achieved some optimal representation of the Pareto frontier depicted in
Fig. 5.1(b). While it took 20 or more iterations to achieve this Pareto frontier, the first
few iterations of MOBO can drastically improve upon the initial policy. The steep increase
in HV suggests that the initial policy parameterization is suboptimal, and a new Pareto
optimal point can be found in the first few iterations even when starting with a suboptimal
solution.

Control Policy Improvement for Real-time Treatments

For the experimental demonstrations of the proposed approach on the CAPJ depicted in
Fig. 2.1, the sMPC had Np = Nr = 2, and the input bounds were adjusted to P ∈ [1.5, 3.5]
W and q ∈ [3.5, 7.5] SLM. Then, 11 closed-loop experiments resulting in ns = 1, 378 sam-
ples were performed to gather training data for the DNN approximation. The DNN was
trained with the same structure and procedure as described for the simulation studies and
achieved similar closed-loop performance to implicit sMPC. MOBO was performed for 15
total iterations due to a limited budget of 45 treatments.

Fig. 5.2 shows the state and input profiles of 3 particular iterations of MOBO. Within
each iteration, we performed Nd = 3 replicate real-time experiments to account for the
intrinsic variability of the system. The CEM profiles are plotted with min-max bounds
of the three replicates represented by the shaded region, while the solid line represents the
median value of the triplicate runs. The temperature profiles represent the mean value (solid
lines) plus and minus two standard errors (shaded region) of the triplicate experiments. Both
input profiles are plotted with the mean value from the triplicate experiments. In Fig. 5.2,
the profiles shown are determined to be a few of the “best” treatment options encountered

2To implement MOBO, we used Ax [123]. Ax interfaces with BoTorch [163] to perform BO, and BoTorch
interfaces with GPyTorch [164] for the surrogate modeling with GPs. These tools were primarily used with
their default settings, using the Matern 5/2 kernel for GPs and the noisy EHVI acquisition function. Codes
are available at https://github.com/kchan45/BO4Policy_Search_Plasma.
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Figure 5.3: Observed performance measures from the MOBO exploration. A total of 15
iterations of MOBO were performed. Each individual point represents the mean performance
measure values from triplicate real-time experiments at each iteration. The red boxes identify
the estimated Pareto optimal points.

through the process of MOBO. In this case, the “best” is described in one of two ways: (i) if
there was insufficient data to establish a clear Pareto frontier, then the best treatment was
considered the initial policy, and (ii) once an estimated Pareto optimal point was found, the
best treatment used the policy that produces the lowest constraint violation. This sequence
of treatment protocols follows a “safe” treatment intuition. As in for (i), the initial treatment
is deemed safe for the general population and is considered “best” for the time being. In
the case of (ii), once a Pareto frontier is established, the treatment may then be switched
to a more optimal one at the cost of minor temperature violations. Note that establishing
some trade-off between the different performance measures via an estimated Pareto frontier
allows for the personalization of plasma treatments.

From Fig. 5.2, the first “best” profile is the initial profile (in blue); a new “best” is
encountered after Iteration 3 (in dashed orange). The dashed orange profile represents a
new parameterization of the policy that outperforms the initial blue policy, as it achieves
the CEM faster (reducing the median treatment time by roughly 8 s or 13%), with slight
constraint violations. After more iterations of MOBO, a new policy in dotted green is
found at Iteration 12. In this case, the CEM delivery on average is similar to the orange
policy (reducing the median treatment time from the initial policy by 10 s or 16%), while
maintaining a lower constraint cost. Furthermore, in Fig. 5.2, the flow rate of He tends to
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become saturated during treatment. In general, higher He flow rates are characteristic of
lower temperatures. Thus, because of the temperature tolerance specification, the operation
of the CAPJ necessitates higher flow rate to remain within the region of desirable operating
temperatures. The locations of these “best” points in the performance measure space is
shown by the red boxes in Fig. 5.3. With few iterations, the Pareto frontier cannot be visually
established, but several points may still be identified as Pareto optimal by their proximity
to the minimization of both performance measures. Fig. 5.3 is consistent with the profiles
in Fig. 5.2 in that Pareto optimal points are found at Iterations 3 and 12 (as indicated by
the red boxes). As such, a strategy has been established that can trade off between multiple
performance measures in order to tailor the treatment to individual subjects.

5.3 Safe Exploration in Control Policy Tuning

This section introduces a novel method in safe data-driven optimization. Penalty-based safe
BO methods [165] force the query points to remain in the interior of a partially-revealed
safety region, which may result in unacceptable (and unquantified) performance losses. Our
method aims to enhance the explorative capabilities of safe BO by re-introducing a metric
for the enlargement of the feasible set. Note that this section is broadly applicable as a
method development, so the notation used in this section is distinct from the rest of this
dissertation.

5.3.1 Introduction to Safe Data-driven Optimization

Advances in data-driven control and decision-making capabilities have created significant
opportunities for autonomy for vehicles, robots, and biomedical devices [166]. Interactions
with humans make safety a fundamental requirement for these autonomous systems. Thus,
the underlying problem for autonomy can be generally posed as a constrained optimization
problem of the form

min
x∈X

{
f 0(x) : f i(x) ≥ 0, ∀i = 1, . . . ,m

}
, (5.16)

where x are the decision variables (i.e., modifiable parameters), f 0 : X → R is the objective
function, f i : X → R are constraints, and X ⊂ Rnx is some compact domain.

In autonomous systems, it is often the case that the mathematical structure of the objec-
tive f 0(x) and constraints f i(x) are not exactly known, e.g., those derived from closed-loop
trajectories. In such cases, we often refer to the functions {f i(x)}mi=0 as “black-box” in the
sense that they can only be learned from noisy observations at specific query points x ∈ X .
These observations must then be used in a strategy to compute an optimum for x. One such
strategy is Bayesian optimization (BO) [70]. BO is a sequential decision-making strategy
that uses probabilistic surrogate models of {f i(x)}mi=0 to optimize a proxy problem to (5.16).
The surrogate models, often represented with Gaussian Processes (GPs), are updated via
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Bayesian inference [90]. Optimizing the proxy problem is facilitated by an acquisition func-
tion α(x) : X → R, which, in some form, leverages the uncertainty in the posterior model.
This feature of optimizing with respect to both the belief of the optimum and the uncer-
tainty surrounding this belief is commonly referred to as the trade-off between exploration
and exploitation. By iteratively querying and updating the surrogates, BO systematically
explores the design space X to find an optimum.

For the safe interaction of autonomous systems with humans, it is imperative to ensure
that the proposed parameter choices satisfy constraints {f i(x)}mi=1. In other words, evalu-
ating any arbitrary x in X can lead to constraint-violating designs that can have dangerous
outcomes. Yet, identifying a safe, or feasible, design space F ⊆ X when the constraints are
unknown is challenging. To this end, several recent works have been proposed in the realm
of safe BO. At its core, the safe BO problem is exactly the constrained optimization problem
(5.16) with strict adherence to the constraints. Two common approaches are taken: (i) a
penalty-based strategy, where the constraints act as a penalty term in the objective; and
(ii) a safe set strategy, where points are only chosen from an estimation of the safe region.
In [165], the acquisition function is augmented with barrier functions, a take on (i); it uses
the posterior estimates of the constraints to directly penalize the acquisition objective to
limit the search to revealed safe points. Here, the solution will only be locally optimal near
the initial safe design point x0. Alternatively, [167] uses the posterior models to compute
a partially-revealed safe set using Lipschitz continuity properties. This safe set is further
subdivided into a set of potential “optimizers” and a set of potential “expanders.” Then,
the most uncertain element from the combination of the optimizers and expanders is sug-
gested as the next query. This method takes an exploration-first perspective to maximize
the discovery of safe points and then switches focus to the standard exploitation/exploration
trade-off. This method may lead to “wasteful” queries within the feasible region.

In an attempt to expand the feasible region, [168] proposes an ϵ-greedy approach to
switch to a pure exploratory strategy to directly explore the boundary of the feasible re-
gion. However, this exploratory procedure remains agnostic to improvements in the main
objective. This section presents SEBO (Safe Explorative Bayesian Optimization), a new safe
BO method that avoids potential performance losses by incorporating information gained by
expanding the feasible region. As depicted in Fig. 5.4, penalty-based strategies for safe BO
may be prone to being overly conservative such that they may get stuck in the locally feasible
region near the initial safe point. SEBO uses a relaxed formulation to widen the search space
that more likely encapsulates the true optimum. Safety is ensured by projecting back to the
estimated safe region, but at the same time, maximizing the potential to increase knowledge
around the safe set in the direction of improvement. Thus, SEBO effectively incorporates
directed information to explore the safe region(s).

We demonstrate SEBO for an example application for personalized plasma medicine,
which is an emerging field involving the use of cold atmospheric plasmas (CAPs) for a variety
of medical treatments [150]. Automated CAP treatments using advanced control (e.g., model
predictive control, MPC) are necessary for ensuring effective delivery of plasma effects [19,
61]. Tailoring the plasma effects is key to ensuring the efficacy of plasma treatments [25].
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Figure 5.4: Exemplary feasible set using safe Bayesian optimization (BO) (in orange) versus
a relaxed problem (in green). The true feasible set is in red, while the initial feasible point
is in blue. The true optimum is denoted with a cyan “x”, and a local optimum is denoted
with a magenta “x”. Contours of the objective are in gray-scale with more optimal spaces
in white.

However, the underlying mechanisms of plasma-surface interactions can only be quantified
for a population of subjects [19,169]. Therefore, iterative improvements in delivery of plasma
effects using BO will enable personalization of CAP treatments, wherein ensuring patient
safety is of the utmost importance. We compare SEBO’s performance to alternative safe
BO approaches and demonstrate that it can mitigate getting stuck in a local feasible region
while realizing safe CAP treatments.

5.3.2 Safe Bayesian Optimization using Logarithmic Barrier
Functions

Since the model and constraint functions in (5.16) are unknown, we must learn them from
data. Here, we focus on the case that these functions can be modeled as independent
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Gaussian processes (GPs)

f i(x) ∼ GP(µi(x), ki(x, x′)), ∀i = 0, . . . ,m, (5.17)

where µi(x) = E{f i(x)} is the prior mean function and ki(x, x′) = E{(f i(x)−µi(x))(f i(x′)−
µi(x′))} is the prior covariance (kernel) function of the objective and safety constraints. GP
models are non-parametric and have the property that the posterior model, conditioned on
noisy observations yi

n = (yi1, . . . , y
i
n) at query points (x1, . . . , xn), remains a GP with the

following analytic expressions for the mean, kernel, and standard deviation functions

µi
n(x) = ki⊤

n (x)(Ki
n + ηiI)−1yi

n, (5.18a)

kin(x, x′) = ki(x, x′)− ki⊤
n (x)(Ki

n + ηiI)−1ki
n(x′),

σi
n(x) =

√
kin(x, x), (5.18b)

where ki
n(x) = [ki(x1, x), . . . , ki(xn, x)]⊤, Ki

n is the positive definite kernel matrix whose
elements are given by [Ki

n]ν,ω = ki(xν , xω) for all ν, ω ∈ {1, . . . , n}, and ηi > 0 is the
variance of a zero-mean Gaussian noise model for the observations, i.e., yij = f i(xj) + ϵij for
some ϵij that is R-sub Gaussian noise [170].

If the GP models are sufficiently “well-calibrated,” then they can provide high probability
confidence bounds on {f i(x)}mi=0. We summarize this requirement below.

Assumption 1 (Well-calibrated GPs) The GP models for the unknown objective and
constraint functions {f i(x)}mi=0 satisfy the inequality below ∀x ∈ X , n ≥ 0, and i = 0, . . . ,m

|f i(x)− µi
n(x)| ≤

√
βi
n+1σ

i
n(x), (5.19)

with probability at least 1− δ for some δ ∈ (0, 1).

This assumption can be satisfied by properly selecting the sequence of confidence bound
parameters {βi

n+1}n≥0 as long as the functions {f i(x)}mi=0 have a bounded reproducing kernel
Hilbert space (RKHS) norm; see [170] for expressions for {βi

n+1}n≥0, which are defined in
terms of the maximum information gain.

For convenience, we rewrite Assumption 1 in terms of the lower confidence bound (LCB)
and upper confidence bound (UCB) on the unknown functions at iteration n

lin(x) = µi
n(x)−

√
βi
n+1σ

i
n(x), (5.20a)

uin(x) = µi
n(x) +

√
βi
n+1σ

i
n(x), (5.20b)

where the inequality (5.19) can be equivalently stated as f i(x) ∈ [lin(x), uin(x)] using the
LCB/UCB definitions. The main idea behind a safe BO procedure is then to sequentially
select new sample points x1, x2, . . . that have a high probability of satisfying safety constraints
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at every iteration. This differs from standard BO that would query by solving xn+1 ∈
arg minx∈X l

0
n(x) (using an LCB acquisition function). As proposed in [165], one can ensure

xn+1 remains in the interior of the partially-revealed safe set by solving

xn+1 ∈ arg min
x∈X

{
l0n(x) + τ

∑m
i=1 Blin(x)

}
, (5.21)

where Bg(x) = − ln(g(x)) is the logarithmic barrier applied to a constraint g(x) ≥ 0 and
τ > 0 is a tunable parameter that ensures the barrier term converges to the exact indicator
penalty function in the limit τ → 0. Notice that (5.21) accounts for both performance and
safety. The safety guarantees conferred by (5.21) are summarized in the following theorem.

Theorem 1 (Safe Learning [165]) Let Assumption 1 hold, the feasible set F = {x ∈ X :
f i(x) ≥ 0,∀i = 1, . . . ,m} be non-empty, and there exists at least one known safe starting
point x0 ∈ F . Then, the sequence of query points {xn}n≥1 generated by (5.21) satisfies

Pr
{
f i(xn) ≥ 0, ∀i = 1, . . . ,m, ∀n ≥ 1

}
≥ 1− δ, (5.22)

for any chosen δ ∈ (0, 1).

The proof of this theorem is based on three key arguments. First, the partially-revealed
feasible region, defined by

F̂n = {x ∈ X : lin(x) ≥ 0, ∀i = 1, . . . ,m}, (5.23)

must be contained within the true feasible region F̂n ⊆ F with high probability. Second,
F̂n ̸= ∅ must be non-empty given a known safe point x0. Third, the log-barrier term in
(5.21) always guarantees the next query point xn+1 is contained in this estimated region,
i.e., xn+1 ∈ F̂n.

The primary challenge encountered by this type of safe BO approach is that it does not
have any direct incentive to grow the size of the partially-revealed safety region F̂n. Thus, it
may become “stuck” in the sense that F̂n ⊂ F as n→∞, which could lead to sub-optimal
performance in cases where the global solution to (5.16) satisfies x⋆ ∈ F \ F̂n. We look to
overcome this challenge by introducing SEBO.

5.3.3 Safe Explorative Bayesian Optimization

The main idea motivating the proposed SEBO method is that there is value in enlarging
the certifiable safety region at every iteration of BO to ensure that we do not get stuck
in a sub-optimal solution. Thus, we require a metric that, when evaluated at any x ∈ X ,
provides a reasonable measure of the potential benefit of querying the constraints at that
point in the future. Let Vol(F̂n) denote the volume of the partially-revealed safe set. We
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Algorithm 1 Safe Explorative Bayesian Optimization

Require: Domain X , safe point x0 ∈ F , initial data D0 = {x0, {f i(x0)}mi=0}, m+1 GP mod-
els (5.17), confidence bound parameters {βi

n+1}n≥0, barrier parameter τ > 0, switching
tolerance ε ≥ 0, and exploration radius b ≥ 0.

1: for n = 0, 1, . . . do
2: xn+1 ← arg minx∈X{l0n(x) + τ

∑m
i=1 Blin(x)}

3: if σ0
n(xn+1) ≤ ε then

4: xrn+1 ← arg minx∈X{l0n(x) + τ
∑m

i=1 Bui
n
(x)}

5: xpn+1 ← arg minx∈F̂n
∥x− xrn+1∥

6: xn+1 ← arg maxx∈∂F̂n∩Nb(x
p
n+1)

∑m
i=1 σ

i
n(x)

7: end if
8: Query xn+1 and observe objective and constraints
9: Update data Dn+1 ← Dn ∪ {xn+1, {f i(xn+1)}mi=0}
10: Update GP models with Dn+1 using (5.18)
11: end for

can propose the following safety-based acquisition function that we refer to as the expected
safety improvement (ESI)

ESIn(x) = En

{
Vol(F̂n+1)− Vol(F̂n) | xn+1 = x

}
, (5.24)

where En{·} denotes the expectation with respect to the posterior distribution given all
function evaluations up until iteration n. There are two important challenges with (5.24):
(i) it is expensive to compute and optimize since it requires repeated estimation of the volume
of a set, though this can in principle be done with Monte Carlo methods (see, e.g., [171]);
and (ii) any growth in the safety region is valued by this metric, which can impede the ability
to discover new safe points that are likely to improve performance over multiple steps in the
future. SEBO attempts to overcome both of these challenges by applying a series of steps
that do not compromise the safety guarantees established in Theorem 1.

The first major step of SEBO is to decide when the choice in (5.21) is likely to contain
low information content. The most straightforward approach is to check if σ0

n(xn+1) ≤ ε,
where ε ≥ 0 is a user-specified tolerance value. This implies we can confidently predict the
value of f 0(xn+1) and, thus, have no additional room for improvement within F̂n. Whenever
such a situation occurs, we must explore outside the current safe region. To decide a new
search direction, we solve the following relaxed problem

xrn+1 ∈ arg min
x∈X

{
l0n(x) + τ

∑m
i=1 Bui

n
(x)

}
, (5.25)

where the LCB in the log-barrier term in (5.21) is replaced with the UCB. This change fun-
damentally alters the way that constraints are handled in the search process. In particular,
(5.25) operates over a relaxed feasible region

F̃n = {x ∈ X : uin(x) ≥ 0, ∀i = 1, . . . ,m}. (5.26)
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Since F̃n contains the global solution with high probability under Assumption 1 [172], sam-
pling at {xrn}n≥1 will guarantee convergence to the global solution; however, it will result
in loss of the safety guarantees. Instead of directly sampling at this point, SEBO finds the
closest safe point to xrn+1 by solving the following projection problem

xpn+1 ∈ arg min
x∈F̂n

∥x− xrn+1∥. (5.27)

For any xrn+1 ̸∈ F̂n, the projected point xpn+1 ∈ ∂F̂n will lie on the boundary of the partially-
revealed safe region and, thus, is more likely to expand the boundary. However, this projec-
tion does not account for the uncertainty of the constraint functions and may sample low
uncertainty points. Thus, the final step of SEBO is to find the point with the largest sum
of standard deviations in a neighborhood of the safe region boundary around xpn+1, i.e.,

xsn+1 ∈ arg max
x∈∂F̂n∩Nb(x

p
n+1)

∑m
i=1 σ

i
n(x), (5.28)

where Nb(z) = {x : ∥x − z∥ ≤ b} is a b-radius ball around point z. When the solution to
(5.21) has low information, xsn+1 is proposed as the new query point. The SEBO method is
summarized in Algorithm 1. Although the practical performance of SEBO will be affected
by the choice of parameters ε and b, they will not affect the safety properties, as summarized
below.

Theorem 2 Let the assumptions in Theorem 1 hold. Then, for any choice of ε, b ≥ 0,
the sequence of query points {xsn}n≥1 generated by (5.28) will satisfy the safety constraints
(5.22), with xn replaced by xsn, for any δ ∈ (0, 1).

Proof: The projection (5.27) and exploration (5.28) steps of SEBO ensure xsn+1 ∈ F̂n for
all n ≥ 0 such that the same arguments used in the proof of Theorem 1 follow. ■

It is interesting to note that Algorithm 1 reduces to the safe BO method in [165] in the
case that σ0

n(xn+1) > ε always holds, which is guaranteed to be true whenever ε = 0. As
such, we can interpret SEBO as a generalization of this method. SEBO will be particularly
useful whenever one starts with a very restrictive inner approximation of F .

5.3.4 Personalized Plasma Treatment Guidance

CAP Jet Modeling and Control

We consider a kHz-excited CAP jet (CAPJ) in helium [61] as described in Section 2.2. The
manipulated inputs are applied power P (in Watts) and helium flow rate q (in standard
liters per minute, SLM). The measured outputs are maximum surface temperature T (◦C)
and total optical intensity I (in arbitrary units) of the plasma at the plasma-surface incident
point. The system dynamics h(·) are described by an observable, canonical form of a linear
time-invariant model

s(k + 1) = As(k) +Ba(k) + w(k), (5.29)
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where k is the discrete-time step, s = [T, I]⊤ ∈ R2 is the vector of states, a = [P, q]⊤ ∈ R2 is
the vector of manipulated inputs, w is a stochastic variable that represents the overall system
uncertainty, and A,B are the state-space matrices identified using subspace identification
[173].

CAP treatments rely on the quantification of the delivered plasma effects to a surface.
We describe the accumulation of thermal effects on a target with a metric called cumulative
equivalent minutes (CEM) [1,87] given by

CEM(k + 1) = CEM(k) +K(Tref−T (k))δt, (5.30)

where K > 0 is an exponential base dependent on physical properties of the substrate,
Tref = 43◦C is the reference temperature, δt is the sampling time, and CEM(0) = 0. Here,
δt = 0.5 s in accordance with our open-loop data collection.

For a controlled plasma treatment, we use MPC, which is formulated in terms of the
optimal control problem

min
s(k),a(k)

(CEMsp − CEMc(Np|k))2 (5.31a)

s.t. s(i+ 1|k) = hc (s(i|k), a(i|k)) , (5.31b)

(s(i|k), a(i|k)) ∈ S ×A, (5.31c)

s(0|k) = s(k), (5.31d)

∀i ∈ {0, . . . , Np − 1},

where s(k) = [s(0|k)⊤, . . . , s(Np|k))]⊤ is the vector of predicted states s(i|k) over the predic-
tion horizon Np = 5 at time k; a(k) = [a(0|k), . . . , a(Np − 1|k))] is the vector of predicted
inputs a(i|k) at time k; CEMsp is the setpoint for the CEM; S = [25◦C, 0 arb. units] ×
[45◦C, 80 arb. units] is the set of state constraints; A = [1.5 W, 1.5 SLM]× [5 W, 5 SLM] is
the set of input constraints; hc(s, a) = Âs+B̂a is the control-relevant state space model that

may differ from (5.29); and CEMc(Np|k) = CEM(k) +
∑Np−1

i=0 K̂Tref−T (i|k)δt is the control-
relevant CEM model that may differ from (5.30). The solution to (5.31) defines the MPC
law as

πc (s(k)) = a⋆(0|k), (5.32)

where a⋆(0|k) is the optimal first input. The MPC problem (5.31) is implemented in Python
using CasADi [139] and is solved using IPOPT [102].

MPC Law Adaptation using SEBO

The plant (5.29) and (5.30) has parameters (A,B,K) that are specific to a given patient,
which are not known in advance. The control method in (5.31), on the other hand, only has
estimates of these values based on general population data. Therefore, to personalize a CAPJ
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Figure 5.5: Comparison of observed closed-loop profiles between three strategies: (a) SEBO,
(b) safe BO, and (c) the relaxed formulation of safe BO. The top figures represent the
evolution of CEM over a treatment period of 120 s. The bottom figures represent the
evolution of temperature over the same treatment period. The colors/gradient of the profiles
indicate the evolution of the profiles over 30 iterations of BO. The first two profiles in dotted
pink indicate the initial data provided to BO.

treatment, we propose to use SEBO to adapt a subset of these parameters to improve closed-
loop performance while remaining safe using as few iterations as possible. This problem can
be formulated in terms of (5.16) by defining the following black-box functions

f 0(x) =
∑N

k=0(CEMsp − CEM(k))2, (5.33a)

f 1(x) =
∑N

k=0([T (k)− Tmax]
+)2, (5.33b)

where x = [Â11, Â12, Â21, Â22, K̂]⊤ are the subset of model parameters in the controller that
we allow to be modified (mainly the elements of the estimated A matrix and K constant
since we assume B can be accurately identified), N denotes the treatment time, and Tmax

denotes the maximum allowed safe surface temperature. The objective (5.33a) corresponds
to the cumulative deviation of the CEM value from its setpoint while the constraint (5.33b)
corresponds to the squared summation of all constraint violations over the full course of the
treatment. The CEM and temperature values in (5.33a) and (5.33b) correspond to the true
closed-loop values obtained by applying the MPC law (5.32) to the plant (5.29)–(5.30). As
such, every evaluation of these functions requires an expensive closed-loop experiment. We
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allow all model parameters to vary within the following geometric bounds,

x =

{
x̂0/v, x̂0 > 0,

vx̂0, x̂0 ≤ 0,
, x =

{
vx̂0, x̂0 > 0,

x̂0/v, x̂0 ≤ 0,
,

where x̂0 is the nominal value of x, x is the lower bound, x is the upper bound, and v = 2.
These bounds define the search space X .

Results

To demonstrate SEBO, we consider the CAP treatment of a subject over a time period of
N = 120 s. The objective is to deliver CEMsp = 1.5 min of thermal dose as quickly as
possible, while the constraint with Tmax = 45◦C ensures safety and comfort of the individual
subject. We consider a limited budget of 30 iterations for SEBO, where the objective (5.33a)
and constraint (5.33b) are observed after each full treatment time of 120 s and are modeled
as independent GPs.3 We select τ = 103 and {β̃i}mi=0 = 0.1 as “poor” selection of the
parameters from the standard safe BO, while ε = 0.5 and b = 10−2 in Algorithm 1.4 ε is
chosen based on a user preference to indicate the level of desired potential improvement. b is
chosen to be a small number near the neighborhood of projected query xpn+1. In this work,

the sets F̂n and ∂F̂n are approximated using random samples.
Observed closed-loop trajectories of the CAP treatment for three BO methods are shown

in Fig. 5.5. The three methods are compared column-wise: (a) SEBO, (b) standard safe
BO (Section 5.3.2), and (c) relaxed safe BO (BO using only (5.25)). The initial dataset D0

consists of one known feasible and one known unfeasible point in X , shown in dotted pink.
An infeasible initial data point helps to initially delineate between a safe region and unsafe
region. In practice, such data points are readily estimated. For example, a controller that
operates with low power at all times will most certainly provide a feasible solution, as power
is directly related to surface temperature. Meanwhile, a controller that operates with high
power at all times will most certainly provide an infeasible solution. The remaining profiles
evolve over 30 iterations. Yellow-green profiles indicate earlier observations, and dark blue
profiles indicate later observations. The top figures are the CEM profiles, which represent the
objective (5.33a), and the bottom figures are the temperature profiles, which represent the
constraint (5.33b). Looking at the profiles in Fig. 5.5(b), most of the search is contained near
the initial feasible point, with very few exploratory actions. As a result, many iterations are
not helpful in finding a better treatment. Meanwhile, the profiles in Fig. 5.5(c) demonstrate
much more exploration of the design space X , but with several constraint-violating queries.
Using SEBO allows a middle-ground result. In Fig. 5.5(a), the observations exhibit more
exploration compared to the standard safe BO, while still strictly adhering to the constraint.

3To implement SEBO, we modified components of Ax [123]. Ax interfaces with BoTorch [163] to perform
BO. These tools were used with their default settings. Modifications to Ax are detailed in the codes available
at https://github.com/kchan45/SafeBOPlasma.

4We note that β̃ is selected by the user, and β = β̃ π
2 to match the implementation in Ax.
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Figure 5.6: Comparison of revealed feasible sets of SEBO, safe BO, and the relaxed formu-
lation of safe BO at iteration 30; the feasible set is denoted by F̂30. Blue stars indicate F̂30

of SEBO; orange circles indicate F̂30 of standard safe BO; and green triangles indicate F̂30

of the relaxed safe BO. While 5 parameters were included in the design space of BO, i.e.,
x ∈ R5, we show the revealed set for 3 of the parameters A11, A22, and K since they are
deemed the most influential to the objective and constraints. Values of the parameters are
normalized.

This result shows that SEBO uses and retains the information from the relaxed problem.
We note that the standard safe BO appears to violate the constraint for two observations,
and may be a result of a poor choice in β since the safety guarantees are probabilistic in
nature.

Furthermore, we show that the revealed feasible set for SEBO is larger than what is
estimated by standard safe BO in Fig. 5.6. By the end of 30 iterations, the posterior models
can be used to visualize the revealed feasible set F̂30. In Fig. 5.6, blue stars indicate F̂30 of
SEBO; orange circles indicate F̂30 of standard safe BO; and green triangles indicate F̂30 of
the relaxed safe BO. We select a subset of parameters to examine and visualize, namely A11,
A22, and K, due to their influence on the states s; A11 and A22 are the diagonal elements of
A, and K is the exponential base of the CEM delivery. The subplots of Fig. 5.6 represent the
3 planes of the 3-dimensional space. Relaxed safe BO and SEBO both have larger F̂30. In
general, since the main influence of constraint violation involves temperature, A11 exhibits
the most restrictive range of feasible parameters. Meanwhile, the influence of A22 and K
are less influential with respect to safety. A22 relates to the total optical intensity, and
K describes the rate of thermal dose delivery (CEM), both of which have no influence on
safety. Nonetheless, standard safe BO provides a myopic view of the design space. F̂30 of
relaxed safe BO has a more holistic view of what is deemed feasible/unfeasible, so its region
is larger than standard safe BO, but smaller than SEBO because it has explored more areas
of infeasibility.
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5.4 Conclusions

This chapter presented multi-objective BO (MOBO) as an effective strategy for the adap-
tation of deep learning-based control policies and safe explorative BO (SEBO) as a novel
extension of penalty-based safe BO both in an effort towards personalized plasma medicine.
Each method demonstrated how the direct manipulation of control policy parameters can be
achieved and how, in a few iterations, adapt initial policies to an individual subject. In one
direction, we showed how computationally expensive control policies (e.g., robust MPCs)
can be cheaply approximated by deep neural networks (DNN). The DNN can be updated by
modifying its parameters; we showed that MOBO can adapt a DNN policy in few learning
iterations and determine trade-offs for plasma treatments on an individual. In a complemen-
tary direction, we demonstrated SEBO, which updated the parameters of an MPC policy
in a safe, but explorative manner. Instead of remaining near a locally optimal point, SEBO
safely manipulates control policies towards a more individualized global optimum. Each of
these methods builds upon a framework based on BO and highlights aspects that are relevant
to point-of-care personalized plasma medicine (i.e., control policies on resource-limited hard-
ware and safety guarantees when exploring control policy design spaces). Immediate future
directions can involve hardware-in-the-loop simulations and experiments, expanding upon
the trade off between volume-of-improvement in the feasible space versus the performance
improvement, and combining these ideas towards control-on-a-chip implementation.
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Chapter 6

Integrating Learning and Cold Plasma
Interactions to Identify and
Differentiate Biological Materials1

Cold atmospheric plasmas (CAPs) affect biological materials via minimally-
destructive chemical, thermal, and electrical interactions that are observable via
common plasma characterization measurements. Further, for cases in which the
interface to be characterized is already exposed (e.g., early skin cancer detection),
CAPs can be used in a non-invasive manner for real-time identification. We
leverage the sensitivity of CAP interactions with biological interfaces to identify
and differentiate biological tissues by using real-time chemical (via optical emis-
sion spectra) and electrical (via voltage probes along the circuit) measurements.
These information-rich measurements have embedded physics knowledge about the
plasma chemistry and its interactions with biological tissues. Thus, we incorpo-
rate common physics knowledge to extract and analyze such measurements using
machine learning. Finally, we demonstrate that biological tissues can be differ-
entiated with high accuracy, and in proof-of-concept studies, we show that this
novel sensing method can achieve up to 99% test accuracy when differentiating
four tissue types (skin, muscle, bone, and fat) of an ex vivo chicken model. As
a result, there is potential for CAPs to augment the medical diagnostic toolkit,
including in cancer detection, vascular studies, and real-time surgical analysis.

6.1 Introduction

A major challenge in cancer diagnosis involves the early identification and differentiation
between healthy and malignant tissue. The primary tool for cancerous cell determination is
the histological evaluation (i.e., examination of the cell structures under microscope) of an

1This chapter was adapted with permission from the coauthors from [79].



CHAPTER 6. INTEGRATING LEARNING AND COLD PLASMA INTERACTIONS
TO IDENTIFY AND DIFFERENTIATE BIOLOGICAL MATERIALS 77

extracted piece of tissue. This is an invasive procedure that involves the physical removal of
potentially-afflicted tissue (via surgery) and is not done in real-time [174]. Particularly in
the skin cancer realm, a non-invasive and real-time procedure to identify and discriminate
cancerous tissues would significantly benefit patients. Creating one would allow for earlier
diagnosis and could help avoid potentially unnecessary surgical procedures that can have
complications and that are time consuming. A few alternatives have been proposed recently,
but are not widely used, due to various limitations involving the need for expert analysis. One
such example involves the use of high-frequency ultrasounds to obtain a high-resolution image
of the skin structure via sound wave reflection measurements [175]. Another very recent
example involves the use of optical coherence tomography (OCT) to perform a “virtual”
biopsy. In this “virtual” biopsy, the procedure involves a non-invasive three dimensional
scan of the tissue. The scan is used to generate a stained tissue image, similar to that of a
true stained sample, which may be used instead of a true stained sample to provide diagnostic
insights [176]. To replicate and potentially replace expert analysis for real-time and early
diagnosis, more recently, there have been advances in artificial intelligence (AI) for medical
image analysis. The accuracy of AI-based automatic detection and diagnostic systems has
been shown to be comparable to that of experienced physicians in radiology [177, 178] with
the turn-around time significantly improved, which can pose a potential avenue to speed
up cancer diagnoses. In fact, medical image analysis using AI for skin cancer detection has
been proposed in several studies [179, 180], but this method still lacks in reliability since it
depends purely on visual appearance of the afflicted area. Thus, this method still relies on
subjective characteristics of the macro-scale morphology of the tissue. Cancerous tissues,
meanwhile, are known to have physiochemical properties that are significantly different from
non-cancerous/healthy tissue.

Since the physiochemical properties of different tissue types play an important role in
the existing gold-standard (i.e., histological analysis) toolkit, it must also be part of any new
and innovative approach, and a few such properties have been explored. For example, Glick-
man et al. [181] proposed a method based on the measurement of electrical conductivity and
capacitance of melanoma cells. Their technique required the use of disposable gold needles
in a 8×8 matrix designed to penetrate the stratum corneum in the tested skin area and was
calibrated based on surrounding healthy tissue. This technique showed high sensitivity (92%
compared to 75% for physicians), but low specificity (67% compared to 87% for physicians)
for the diagnosis of melanoma [181]. Another method by Spether et al. [174] and Büger
et al. [182] relied on analyzing the chemical composition of cancerous tissue. This method
used optical emission spectroscopy of an atmospheric thermal plasma (with temperatures
that exceed 1000◦C) generated using an electrosurgical tool during a tumor resection. The
tissue in contact with the plasma is vaporized allowing for the excitation of the molecular
makeup of the tissue, which emits characteristic optical emission spectra that can discrim-
inate cancerous versus non-cancerous tissue. This method reported an accuracy of 95% in
differentiating between cancerous and healthy liver tissues [182]. However, it is destructive
and not applicable in skin cancer detection and early diagnosis. Finally, tumor cells have
been reported to present lower thermal conductivity compared to healthy cells [183], yet no
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known cancer detection system based on thermal conductivity has been proposed. To sum-
marize, key limitations to each of the above methods include the focus on a single property,
the lack of specificity, and/or the destructive nature of the examination.

In this work, we investigate a new approach to real-time tissue differentiation using cold
atmospheric plasmas (CAPs) to provide insight into various physiochemical properties of the
biological tissue. CAPs are a form of partially-ionized gaseous matter that can be generated
at near-room temperature and atmospheric pressure, which allows for a “gentle” interaction
with biological materials, such as tissues. This “gentle” interaction means that CAPs can
be used in a non-invasive, minimally-destructive manner. Thus, CAPs have sparked the
development of an entirely new field that lies at the intersection of (non-equilibrium) plasma
and medicine. Plasma medicine has now grown into a field that ranges in proposed treat-
ments from disinfection to wound healing to cancer therapies [16, 17]. The key to CAPs’
success in medicine has been the plasma-surface interactions with biological systems, which
can be evaluated by monitoring the physiochemical properties of those interactions. How-
ever, plasma medicine hinges on expertise in plasma physics and chemistry, as well as in
the biochemistry of the plasma-interface interactions [16]. AI, particularly machine learn-
ing (ML), can play a crucial role in bridging that gap between elucidating the underlying
physics of plasma-interface interactions in real-time [19]. Recently, there have been some
reports on learning-based control for CAPs [19, 63, 76, 145], on ML for predicting biological
outcomes of CAP treatments [184], and on predicting physiochemical properties to differ-
entiate (non-biological) materials [33, 185–187]. However, no known works (to the authors’
best knowledge) use CAPs to differentiate biological targets.

This work aims to use a combination of CAP effects and ML to detect differences in,
differentiate between, and diagnose/identify biological tissues. We investigate how CAP
interactions with biological tissues can be combined with ML to identify biological tissues
in a real-time, non-invasive manner. To do so, we developed and used an all-in-one CAP
generation and CAP effect measurement device. The CAP device is based on a prior con-
figuration [4] commonly proposed for plasma medicine combined with an automated data
acquisition structure using real-time capable measurement devices commonly used in plasma
(and plasma-surface) characterization [63]. This setup was used to collect chemical and elec-
trical data on ex vivo chicken leg models at various points consisting of different tissue
types (i.e., skin, muscle, bone, and fat). The chemical data primarily consisted of opti-
cal emission spectra, and the electrical data consisted of electrical waveforms associated
with the plasma-target interactions. Once data were collected with the setup, physics- and
biologically-informed data analysis and processing were used to identify and select features
of the data to be used in training ML models. This data processing included (but is not
limited to) peak selection (to identify differences in chemical properties) and physical trans-
formation of the data to understand underlying physics. After this physics-informed data
processing, we evaluated a variety of supervised learning classification techniques to achieve
high test accuracy across all models. To this end, this work aims to provide a viable avenue
towards a novel (skin) cancer detection technology that lies at the intersection of physics,
mathematics, and biology.
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Figure 6.1: Information flow of our proposed tissue diagnostic workflow. We start with an
automatic data acquisition setup using the plasma gun setup as described in Figure 2.3.
The raw data that is collected is in the form of optical emission spectra (OES) from the
spectrometer and electric waveforms from different locations and recorded by an oscilloscope.
The data is transformed and reduced in dimension in physics-informed ways: the OES are
manually reduced to important peaks and the electric waveforms are converted to Lissajous
figures. A classification technique for biological tissue detection and identification is trained
using labeled data and is tested on unseen data.

6.2 Methods

6.2.1 Data Collection

The device configuration used in this chapter was detailed in Chapter 2.3. Using the Plasma
Gun setup, we generated a dataset of 11, 456 samples collected at 100 time intervals over
seven chicken leg models at four different tissues types at multiple locations. Note that some
data were manually excluded when the system did not ignite the gas into a plasma or acquire
the data.

An additional analysis of the plasma was done using a high resolution optical emission
spectra (OES). We used a 0.320 m focal length spectrometer (IsoPlane SCT 320) coupled
with an ICCD camera (PiMax4 by Princeton Instruments). Here, the ICCD camera was
synchronized with the high voltage pulse of the CAP device and the total integration time
was 10 µs per 5000 on-chip accumulations. Low resolution OES were used in the data-driven
classification, and the high resolution OES were used to validate physical findings between
the spectral differences observed in the low resolution data.
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6.2.2 Classification Methods for Differentiation

Classification is a category of supervised ML wherein a model predicts the “label” of given
input data. In this work, this reflects the correct prediction of the type of biological chicken
model tissue based on chemical and electrical input data. Figure 6.1 illustrates the infor-
mation flow of the proposed classification technique. Raw chemical data (in the form of
OES) and electrical data are captured and saved from the Plasma Gun. The data are pro-
cessed in a second step, where peaks of the OES that indicated plasma-biological significance
were selected, and the remainder of the spectra were discarded and electric waveforms were
processed into Lissajous figures. Each of these types of processed data were labeled with
the tissue type of the sample (skin, muscle, bone, and fat) and used to train and evaluate
various ML models. Once a model is trained, the first two steps can be re-used during real-
time inference to generate a prediction of the tissue type as illustrated in the final step of
Figure 6.1.

In this work, we investigated the value of each type of data (only chemical, only electrical,
or a combination of chemical and electrical) for tissue identification by training ML models
for each type of model input. Furthermore, we compared the performance of several types of
ML models for multiclass classification, including k nearest neighbor, decision trees, random
forests, and neural networks. Each of k nearest neighbor, decision trees, and random forests
was created and trained using the scikit-learn [188]. Fully-connected neural networks
were created and trained using Tensorflow [189].

6.3 Results

6.3.1 Qualitative Differences between Chicken Model Tissues

Optical Emission Spectra

OES are commonly used in plasma diagnostics, however, this paper reports one of the first
uses of this information for the characterization of the plasma-(bio)interface interactions.
Figure 6.2 illustrates an exemplary OES of the helium plasma impinging upon different
tissues of a chicken leg model. Using the automatic data acquisition setup, we obtained
sample OES of the CAP interactions with skin, muscle, bone, and fat tissue of ex vivo chicken
leg models over a treatment time of 50 seconds at 0.5-second sampling intervals. The helium
CAP shows characteristic peaks for helium excitation at 587.6 nm, 667.8 nm, 706.5 nm, and
728.1 nm. Further, oxygen and nitrogen species typical of CAP operating in ambient air
include O2 (337.0 nm), O3 (313.74 and 317.16 nm), N2 (315.93, 337.13, 357.69, and 380.49
nm), NH (336.01 nm), NO (337.64 and 357.24 nm), HNO2 (354.25 nm), N2

+ (358.21, 391.44,
and 427.81 nm), N2O

+ (355.84 nm) and OH+ (356.5 nm). Noticeable differences among the
relative intensity of these peaks were observed for CAP interacting with different tissues,
suggesting that the plasma chemistry can be influenced through interactions with different
biological interfaces.
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Figure 6.2: Exemplary optical emission spectra of helium plasma impinging upon skin,
muscle, bone, and fat tissue of a chicken leg model. OES are collected over 50 seconds at
0.5-second sampling intervals and averaged. OES are normalized with respect to the He706
peak. Here, the spectra show distinct characteristics between peak heights that can be
exploited in classification and/or clustering techniques.

Additional observed peaks that are associated with elements from the tissue are: Ca++

(373.69 and 393.29 nm), Na (589.6 nm). Furthermore, differences corresponding to peaks
that can be associated with molecules from the tissue were also observed: Tryptophane
(345 and 419.8 nm), Pepsin (380 nm), Collagenase (420 nm), Oxyhemoglobin (412 nm),
Lactic acid (434 nm), Elastine (500 nm). We note that the location of these biologically-
relevant peaks in OES are quite limited as there are few methods to obtain these spectra
without degradation (i.e., with light induced fluorescence). Moreover, the emission from
other elements often overlaps and obscures these peaks. To verify the existence of these
biologically-relevant peaks, we used high resolution OES where data were collected at the
plasma-tissue incidence point and at just the plasma plume itself. Comparing the two
collection points allowed us to verify the existence of these peaks and use them to identify
important features to feed into the ML models.

Electrical Characteristics - Lissajous Figures

Lissajous figures are visualizations of a system of parametric equations, typically of two
waveforms. In the case of CAP systems, charge-voltage (Q-V) Lissajous figures can be
generated from measurements of the applied voltage and the charge deposited to target and
electrodes. Charge is measured via the voltage drop through a capacitor. In creating such
figures for the CAP system, physics information is encoded into a visual representation of
the data, in particular, the area enclosed by the Q-V figure is the amount of energy deposited
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Figure 6.3: Exemplary charge-voltage figures of helium plasma impinging upon skin, muscle,
bone, and fat tissue of a chicken leg model. Electrical waveforms are collected over 50
seconds at 0.5-second sampling intervals and averaged. The left figure illustrates the charge
collected at the ground electrode versus the applied power over 50 seconds, and the right
figure illustrates the charge collected at the target subject versus the applied voltage. The left
figure shows overlapping electrical characteristics and illustrates that the generated plasma
is of consistent quality. The right figure illustrates the different shapes of these electrical
characteristics between different tissue types, which can be exploited in differentiating or
identifying biological tissues.

onto the target electrode.
Figure 6.3 illustrates exemplary Q-V figures to demonstrate the electrical properties of

the plasma-tissue interactions. Figure 6.3 illustrates the Q-V figures of measurements of
the CAP system at two locations (see Figure 2.3, pentagon markers): one probe located
at the outer grounded electrode of the CAP device and one probe connected in series with
the biological tissue after the compensation circuit. Qualitatively, it is possible to observe
how the Q-V plot for the target is clearly affected by the type of tissue. Contrarily, the
Q-V plot for the ground electrode remains essentially constant. This is because the internal
configuration of the CAP device, where the plasma ignites, is fixed. We can assume that the
plasma ignition inside the device is not significantly affected by the presence of the tissue
compared to the plasma’s propagation and interactions with the target tissues. The variation
of the Q-V figure for the target can be exploited in differentiating or identifying biological
tissues. We note that there was a similar magnitude of variance between samples of the
same tissue type that can have consequences on the classification capability and is discussed
further in the subsequent section.

Classification Accuracy

Following the data processing steps outlined in Figure 6.1, we trained several ML models
to classify four different tissue types (skin, muscle, bone, and fat) of ex vivo chicken leg
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Test Accuracy (%)

Model Average Max Min

Decision Tree 92.81± 0.71 94.02 91.79
Random Forest 98.65± 0.24 99.08 98.30

k Nearest Neighbor 98.21± 0.31 98.65 97.73
Neural Network 99.41± 0.25 99.69 98.95

Table 6.1: Test accuracy (mean ± standard deviation) of various ML models trained on
combined chemical and electrical data. Statistics are established over 9 random resamplings
of the train/validation/test datasets and initializations of the models.

models. Data were split with an 80/20 training/test split where 20% of the total samples
were reserved as unseen data for evaluation. The remaining 80% was split into a 92/8
training/validation split, where 8% of the training data would be reserved for validation.
Each of the decision tree (DT), random forest (RF), and k nearest neighbor (kNN) was
trained using the fit function, and optimal hyperparameters (max tree depth and number
of neighbors) were selected via a 5-fold cross-validation score. The neural network (NN) was
constructed as a fully-connected network with three hidden layers, 100 nodes per layer, a
batch normalization layer after the input, and a dropout layer (with 40% dropout) prior to
the output layer. The NN was trained using a batch size of 128 over 30 epochs, and the best
model was selected according to the best validation loss. Table 6.1 reports the test accuracy
of these various ML models trained on a combination of the chemical (OES) and electrical
(Q-V image of the target) data. Accuracies are reported as the mean and confidence bounds
(standard deviation) over 9 random initializations of each model. All models show high
discriminative capabilities (> 90% test accuracy on average).

Figure 6.4 shows examples of confusion matrices of classifiers trained on different sets
of chicken model data. A confusion matrix is a common visual representation to illustrate
the accuracy of a classification model. In a confusion matrix, the model predictions are
plotted along one axis, while the true labels are plotted along the orthogonal axis. This
results in a c× c grid where c is the number of classes, and the diagonal indicates when the
prediction is equivalent to the truth. Hence, higher values along the diagonal of the confusion
matrix indicate a higher accuracy. Further, the confusion matrix provides a representation
of what “confuses” the model, i.e., what the model’s incorrect predictions should be in truth.
Specifically, Figure 6.4 illustrates the predictive capability of a DT and a NN using chemical-
only data, electrical-only data, and a combination of both. In general, using chemical data
results in higher tissue classification accuracy as indicated by most sample predictions lying
on the diagonal in both types of models when chemical data is included. Furthermore, a
lower complexity model (e.g., a DT) can experience a performance boost (more samples
along the diagonal) when incorporating additional data compared to a higher complexity
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Figure 6.4: Confusion matrices of a decision tree and a neural network trained different
datasets (electrical data only, chemical data only, and a combination of chemical and elec-
trical data).

model (e.g., a NN). This performance boost is illustrated in Figure 6.4 when the DT (top
row) increases in total number of samples along the diagonal (i.e., accuracy): 1910 (83.4%)
for the electrical data versus 2072 (90.4%) for the chemical data versus 2118 (92.4%) for
the combined electrical and chemical data). The NN does not necessarily experience this
performance boost, particularly when comparing chemical data versus combined data: 1919
(83.8%) for the electrical data versus 2288 (99.9%) for the chemical data versus 2268 (99.0%)
for the combined electrical and chemical data.

6.4 Discussion

In this work, we demonstrated the potential for CAPs as a diagnostic tool for the identifi-
cation and classification of biological tissues. CAPs exhibit distinct chemical and electrical
characteristics when subjected to different biological materials. In particular, OES, which
capture the gas-phase chemical reactivity of the plasma at the plasma-tissue incidence point,
illustrates distinctions in the reaction/activation potentials of both plasma and biological
species. In particular, certain peaks of the OES can correspond to the excitation of com-
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Figure 6.5: Selected biologically-relevant peaks [7, 8] from the optical emission spectra
(normalized against the He706 peak) of cold-atmospheric plasma-treated chicken models.
⋆Elastin represents elastin cross-links, and collagenase and pepsin represent collagenase-
digestible and pepsin-digestible collagen cross-links. +Further, the pepsin-digestible collagen
peak is likely heavily overlapping with the excited nitrogen peak (380.5 nm).

pounds found in different amounts in each tissue type. In Figure 6.5, we highlight a few of
these compounds: collagenase-digestible collagen cross-links, elastin cross-links, aluminum,
and pepsin-digestible collagen cross-links [7]. Collagen is the main structural protein found
in various connective tissues and can be broken down via enzymes such as collagenase and
pepsin. Presence and distribution of these forms of collagen cross-links vary with each tissue
type, and the OES can capture this difference from the variation in peak height when nor-
malized with a non-biological peak (i.e., He706). Elastin is another protein that is commonly
found in connective tissues, allowing for tissues to revert back to their original shape (i.e.,
enabling elasticity for tissues). Intuitively, elastin is prevalent in skin, muscle, and even fat
tissues, whereas its prevalence in bone tissue is less. This trend is reflected in Figure 6.5
for elastin as the bone peak is low compared to the other three tissue categories. Finally,
aluminum is a common element found in biological tissues as a result of environmental fac-
tors, including diet. On one hand, permeation of aluminum can differ between tissue types,
allowing us to use aluminum peak(s) to distinguish between biological materials. From a
broader perspective, the difference in aluminum can be used to infer deviations from the
normal and/or aid in diagnosis of conditions such as skin cancer [190]. These peaks (and
others not listed here) from the low resolution OES captured the distinctions of different
tissues such that the ML models were able to classify (with high accuracy) different tissue
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Average Test Accuracy (%)

Electrical Chemical Electrical &
Model Data Data Chemical Data

Decision Tree 84.31± 0.74 91.01± 0.57 92.81± 0.71
Random Forest 89.55± 0.65 99.02± 0.25 98.65± 0.24

k Nearest Neighbor 91.85± 0.47 98.92± 0.24 98.21± 0.31
Neural Network 82.06± 3.38 98.90± 0.90 99.41± 0.25

Table 6.2: Test accuracy of various ML models trained on different datasets. Statistics (mean
± standard deviation) are reported across 9 random resamplings of the train/validation/test
datasets and initializations of the models.

types.
Electrical measurements also demonstrate a level of distinction between different tissue

types, as seen in the variance of shapes in Figure 6.3 and the mid-high accuracy results
summarized in Table 6.2. Dielectric properties of various tissue types have been explored
extensively and show some distinctions between different tissues [191]. In this work, we
found no significant improvement in the classification capability of classifiers when trained
with chemical-only data versus with combined chemical and electrical data, which indicates
that the chemical data likely provides the bulk of the discriminative qualities of plasma-
tissue interactions. Despite this, there remains significant potential in the use of electrical
measurements in data-driven identification and differentiation of biological tissues, as the
form and manipulation of the electrical waveforms can be improved to higher resolution
images, modified to emphasize certain characteristics, or augmented with additional sensor
data (including current). Overall, this investigation of various machine learning classifi-
cation methods demonstrated reliable estimation of the different tissue types. All models
demonstrated strong classification capability of the input OES and electrical image data
with random forests and neural networks demonstrating near-perfect classification accuracy.

6.5 Conclusions

This study introduced a new method for real-time tissue identification using cold atmo-
spheric plasmas and ML. We collected chemical (optical emission spectra) and electrical
(circuit analysis) data from minimally-destructive plasma interactions with ex vivo chicken
leg models. Data were captured for distinct tissue types and were shown to be discrimina-
tive across tissue types, which are likely due to distinct physiochemical properties that are
exposed when different tissue types interact with the CAP. As such, various ML models,
were able to classify tissue types of ex vivo chicken leg models from features including the
chemical and electrical data with at least 90% test accuracy on average and up to 99.5% test
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accuracy for the best model. We identified and transformed the data into physically- and
biologically-relevant features and elaborated on several components that may have led to
such high predictive power. The physics-informed discoveries in this work leave significant
potential for future efforts in modeling CAP-(bio)interface interactions and provide a means
towards a real-time non-invasive skin cancer detection tool. For this type of data, additional
avenues of exploration can involve convolutional neural networks to better extract the fea-
tures of the electrical image data, nonlinear dimensionality reduction strategies to directly
extract important features, and unsupervised learning techniques to cluster the data into
distinct groups.

6.6 Additional information

Code and data used in this study are available at https://github.com/Mesbah-Lab-UCB/

CAP-Sensor4Bio.
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Chapter 7

Conclusions

This dissertation investigated the end-to-end design of embedded control systems
that enable individualized plasma treatment regimens in plasma medicine. The
results of this work indicate that data-driven optimization is a versatile framework
to design and adapt operational parameters of plasma treatments to create safe
and efficacious treatment regimens. This chapter summarizes major conclusions
from each chapter and presents a few open research questions to be addressed
going forward.

7.1 Summary

This dissertation investigated two key challenges towards enabling safe and effective point-of-
care devices for precision plasma medicine. Challenges associated with the lack of knowledge
between the digital control policy design, the computing hardware design, and the plasma-
(bio)interface informed the choice and development of a Bayesian optimization (BO)-based
framework to design an end-to-end embedded control system for point-of-care plasma devices.
While this dissertation had a strong focus on plasma biomedical devices, this end-to-end
design framework for embedded control systems is broadly applicable to arbitrary choices in
control policies, computing hardware, and system specifications. Challenges related to the
incomplete knowledge of plasma-(bio)interface dynamic interactions and variability between
plasma device operation or between patients/individual interfaces motivated the use of BO
(and the extension of safe BO) to adapt CAP treatment protocols over multiple treatments.

The first part of this dissertation (Chapters 2 and 3) focused on the particular CAPJ
testbeds used and provided problem formulations of CAP treatments considered in this work.
CAPJs were the focus of this work due to their widespread use in plasma medicine owing to
their versatility and portability. Each of the CAPJ testbeds was outfitted with automated
data acquisition and actuation that enabled operational control to be applied. Further,
a code framework was developed to enable run-to-run control over operational outcomes.
Intermediate predictive control policies were described in Section 3.2 and the run-to-run
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framework in general was described in Section 3.3. The formulation of these control problems
gave rise to a structured approach to address adaptive plasma treatments. The versatility
of this framework was illustrated in various aspects of the design pipeline.

In Chapter 4, we evaluated the framework through a broad lens relating the control pol-
icy program (digital/software) design to the physical computing hardware design. Chapter 4
created a unifying template for hardware-software co-design that was designated as control-
on-a-chip (CoC) design. Deep learning (DL) was key to the unified CoC design template as
DL provides a streamlined connection between hardware and software. Then, BO provided
an optimization framework that accounted for the multi-objective nature of the control de-
sign problem and categorical design space inherent to hardware design choices. Through
closed-loop simulations and experiments, we verified that multi-objective BO (MOBO) sys-
tematically determined trade-offs in the CoC design process and resulted in an adequate esti-
mation of the Pareto frontier. As a result, Chapter 4 illustrated the versatility of (MO)BO to
design arbitrary control policies on arbitrary hardware, enabling complex embedded control
systems that are necessary for plasma control at the edge.

In Chapter 5, we explored the feasibility of individualized plasma treatment regimens by
illustrating modifications to BO to address two aspects related to plasma medicine, namely
adaptive DL-based control policies for embedded control systems and safe exploration of
control policy design space. Previously, in Chapter 4, we investigated the architecture of
DL (i.e., the structure of the control policy), which is useful in designing an initial feasible
control policy. Different from Chapter 4, Section 5.2 directly modified the parameters of
the DL-based control policy, which is useful when adapting control policies to individuals.
The direct manipulation of control policy parameters is the subject of the larger field of
policy adaptation in reinforcement learning (RL), but in general, these methods can be
ill-suited to the limitations of CAP systems (e.g., in balancing multiple objectives and in
safe policy exploration). In one direction, we demonstrated that MOBO systematically
determined trade-offs in the direct adaptation of a DL-based control policy and resulted in
quantification of the trade-off between constraint satisfaction (i.e., safe operation) and control
performance (i.e., treatment speed). In a complementary direction, we demonstrated that
individualized control policies can be determined in a safe manner (i.e., without violating
safety-critical constraints) using a novel BO strategy, named Safe Explorative BO (SEBO),
that incorporates the volume of improvement in the feasible/safe set. SEBO was capable
of much more exploration of the design space compared to an existing penalty-based safe
BO method, which ensured that recommended designs do not get stuck in a locally feasible
space.

In Chapter 6, we took a slight deviation from the adaptive control policy framework, and
instead, explored a novel application of CAPs for biomedical use: bio-interface characteriza-
tion. CAPs are uniquely capable of producing minimally-destructive effects during its inter-
action with biological tissues. We demonstrated that real-time chemical and electrical mea-
surements of CAP interactions with biological tissues can be processed in physics-informed
ways and fed into supervised machine learning (ML) models to identify and differentiate
the type of biological tissue. We trained ML models that were capable of up to 99% test
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accuracy when predicting tissue types from real-time data.
The key outcome of this dissertation revolves around an end-to-end perspective of control

on the edge for precision plasma medicine. Point-of-care devices and control on the edge
dictate the need for embedded control systems. Diverse patient profiles and variation among
plasma-(bio)interface interactions necessitate adaptive and individualized CAP treatment
regimens. A data-driven optimization perspective has been shown to address each of these
needs to produce feasible embedded control systems on point-of-care devices that are used
to personalize CAP treatments. While the context of this work was in plasma medicine, the
versatile structure of data-driven optimization allows it to be broadly applicable to other
plasma processing systems, including semiconductor manufacturing [192]. The next section
outlines some open research questions related to this body of work.

7.2 Recommendations for Future Work

7.2.1 Control Policy Design in the Context of Privacy and
Security

Portable medical devices and health monitors are becoming pervasive throughout society.
A major challenge in the era of computing involves the increasing vulnerability of compu-
tational systems to adversarial attacks. Medical devices, in particular, should be designed
with built-in features of privacy and security, which can be established through software,
hardware, or wireless communication, to protect patient data. While significant efforts have
been made to counteract potential vulnerabilities, most current methods rely on detection
and damage mitigation rather than adaptive and preemptive action [193]. An extension of
the data-driven optimization framework could incorporate the networked communication de-
sign between edge devices edge servers. This communication design can have impacts on the
rest of the design pipeline, which makes the overall design difficult to understand. Addition-
ally, several of the challenges involved in designing control policies for Internet-of-(Medical)-
Things (IoMT) include expensive-to-evaluate systems, time constraints to mitigate damage
or exposure, and uncertainty in the face of constantly-evolving computing systems [194,195].

7.2.2 Embedded Physics-informed Data-driven Learning

Machine learning has been a key driver to some of the latest advances in low temperature
plasma systems and in its control [196,197]. However, general data-driven approaches are not
physically interpretable and do not typically generalize or extrapolate beyond the patterns
existing in the training data. Recently, and with success in some fields, new architectures of
learning that provide an explainable transformation of the input data have made significant
breakthroughs in learning and understanding the underlying dynamics [198–200]. These
models can then be used in a generative modeling context. A feature of generative modeling
is that it aims to understand underlying patterns for prediction and provide an uncertainty
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estimation of those predictions [197]. The investigation of more physics-informed machine
learning architectures and generative modeling holds promise for more interpretable, and
likely more accurate, predictions about the plasma-biological interactions that will aid in
control and optimization within plasma medicine. One example may be with graph neural
networks (GNNs) in modeling chemical reaction pathways of plasma systems [199]. Graphs
can be a natural way to represent complex (plasma) reaction networks [201], and then GNNs
are a learning strategy that employs convolutions to can pass information between nodes of
the graph [202]. Embedding GNNs within control strategies can provide an interpretable
evolution of (plasma) chemistry that have hardware-compatible computational structures.
Other examples can include neural ordinary differential equations (ODEs) [203] or LyaNet
[204], which embed dynamics in the form of ODEs or a control-theoretic strategy to train
ML models, respectively.

7.2.3 Expansion Towards Preclinical and Clinical Studies

Clinical trials for CAP treatments are increasing as the therapeutic benefits of CAPs in
plasma-biological systems are gaining traction. Since, Isbary et al. in 2010 published one of
the first clinical successes of CAP treatments in medicine [205], there have been a number of
clinical studies and development of CAP devices [206]. Meanwhile, data-driven optimization
has been used in few studies to optimize, adapt, and/or personalize medical treatments
[207, 208]. An important next step in enabling CAPs for medical treatments will involve
demonstrations that these data-driven methods work in medical practice. This may involve
preliminary in vitro and then in vivo studies to validate the data-driven approach on a
biological system.

7.2.4 Plasma-enabled Sensing of (Biological) Characteristics

As previously shown for non-biological systems [33] and as shown in Chapter 6, CAPs hold
promise in their capability to identify and distinguish between different material surfaces/in-
terfaces. In this direction, generative modeling can further expand the capabilities of what
has been done in this dissertation. Because of CAPs’ minimally-destructive nature, the use
of CAP-based soft sensing holds promise for a variety of applications ranging from battery
manufacturing to semiconductor fabrication to (early) detection of malignant tissues.
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[43] A. Filipić, I. Gutierrez-Aguirre, G. Primc, M. Mozetič, and D. Dobnik, “Cold plasma,
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Appendix A

Open-source Code Repositories

Table A.1 lists some of the open-source code repositories that have been created over the
course of this thesis.
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Description Repository Link

Code for [78]: End-to-end
hardware-software co-design for
embedded control policies in plasma
medicine

https://github.com/Mesbah-Lab-UCB/HW-SW_

CoDesign4CoC

Code for [76]: Personalized medicine
via adaptation of deep
learning-based approximate MPC

https://github.com/kchan45/BO4Policy_

Search_Plasma

Code for [77]: Safe exploration for
adaptation of (robust) MPC policies

https://github.com/kchan45/SafeBOPlasma

Code for [79]: Identification and
characterization of biological tissues
using CAPs

https://github.com/Mesbah-Lab-UCB/

CAP-Sensor4Bio

Code to facilitate data collection
in [79]

https://github.com/kchan45/PlasmaGun

Code for [73]: Data-driven
adaptation of control policies under
model uncertainty

https://github.com/dfmrodrigues/

SNSF-project-P2ELP2_184521/tree/main/

Optimal%20control

MPC code tutorials with CasADi
and some object-oriented aspects

https://github.com/kchan45/MPC_tutorials

A partial template and/or example
of code for conducting real-time
experiments

https://github.com/kchan45/Plasma-Wafers

Latest aggregation of codes and
documentation for the CAPJ
testbed

https://github.com/kchan45/Mesbah-APPJ

Past repositories of code and
documentation for the CAPJ
testbed

https://github.com/dgngdn/APPJ_Control and
https://github.com/adbonzanini/

APPJ-MacOS-Communication

Collection of codes used in
Berkeley-Lam collaborations

https://github.com/kchan45/

Berkeley-Lam-2023-UNLOCK

Basic code to implement deep
neural networks on field
programmable gate arrays

https:

//github.com/kchan45/DNN_MPC_Plasma_FPGA

Table A.1: Code repositories created and/or used in this thesis.
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Appendix B

Software Design for Run-to-run
Control Policy Adaptation

As mentioned in Chapter 3, the structure of the control in this dissertation relies
on a hierarchical or multi-layered approach. Doing so requires software design
that allows for interchangeable separation of each component of the system. This
dissertation followed an object-oriented programming-inspired approach to devel-
oping the software to enable the third level of data-driven optimization. This ap-
pendix will describe the structure and implementation of such codes used through-
out the dissertation.

B.1 Object-Oriented Programming for Closed-loop

Control

Object oriented programming (OOP) is a programming paradigm that relies on the orga-
nization of code into “objects,” or things that have specific attributes and functions [209].
One major advantage to the OOP structure involves modularity, allowing for objects to be
swapped out without having to change or re-develop the whole system. This means that we
define a standardized technique, which enables interchangeable blocks of code. In a feedback
control loop, there are three main components that can be subdivided into objects: the
control policy, the system, and the environment. Figure B.1 visually represents this subdi-
vision. Each of the objects are broken down to have particular attributes and functions. For
example, a function of the control policy should involve receiving feedback and computing
the next input. Then, functions of the system may involve receiving input(s), evolving the
dynamics, and outputting measurements. Finally, the function of the environment may be
to connect the outputs of the system to the controller, aka “close the loop.” Note that this
is not a new concept for control systems, and there are a few recent Python packages that
implement this coding paradigm for MPC-type policies, e.g., Pyomo [210], doMPC [211],
acados [212]. However, these packages were limited during the initial years of this thesis,
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Figure B.1: An illustration of how a typical feedback control loop can be broken down into
components for an object-oriented programming approach. The typical feedback control loop
consists of the shaded boxes and arrows. The dashed line boxes indicate the segregation of
those components as “objects.” The list of attributes and functions are of each object type
and are not exhaustive.

particularly in (i) robust/stochastic implementations of MPC and (ii) integration with ex-
perimental setups. This chapter aims to describe the methodology to give insight on inner
workings of this dissertation.

B.2 A Python Implementation of MPC Policies using

CasADi

CasADi is a widely used and recognized algorithmic differentiation and nonlinear optimiza-
tion software [139]. This dissertation used CasADi as the backbone to develop MPC policies.
The primary structure of an MPC-type policy is shown in the following Python code script:

1 # This script provides definitions of classes that can be used for

model

2 # predictive control (MPC) schemes.

3 #

4 #
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5 # Requirements:

6 # * Python 3

7 # * CasADi [https ://web.casadi.org]

8 #

9 # Copyright (c) 2024 Mesbah Lab. All Rights Reserved.

10 # Contributor(s): Kimberly Chan

11 #

12 # This file is under the MIT License. A copy of this license is

included in the

13 # download of the entire code package (within the root folder of the

package).

14

15 import sys

16 sys.dont_write_bytecode = True

17 import casadi as cas

18 import numpy as np

19

20 GENERIC_P_OPTS = {

21 "verbose": 0,

22 "expand": True ,

23 "print_time": 0,

24 } # problem options

25

26 GENERIC_S_OPTS = {

27 "max_iter": 1000,

28 "print_level": 0,

29 "tol": 1e-6,

30 } # solver options

31

32

33 class MPC:

34 """

35 MPC is a super class designed to be a template for particular

36 implementations of model predictive controllers (MPCs). Users

should develop

37 their own MPCs by using the general structure/methods provided

below. Upon

38 initialization of this class or any of its child classes , users

should

39 provide a Python dict that contains all of the relevant problem

information.

40 This class is designed to be used with CasADi to generate the

optimization

41 problems associated with MPC. Users are referred to the CasADi

documentation

42 for more information on CasADi.

43 """

44

45 def __init__(self , prob_info):

46 super(MPC , self).__init__ ()
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47 self.prob_info = prob_info

48 self.mpc_type = None

49 self.opti = None

50 self.opti_vars = {}

51 self.opti_params = {}

52

53 def get_mpc(self , arg):

54 """

55 This method should generate the MPC problem by unpacking

relevant

56 information from the prob_info dict defined upon instantiation

of the

57 class. Upon defining the optimization problem , this method

should save

58 and/or return the appropriate objects such that this object may

be

59 called upon later. (e.g. if using the Opti stack interface of

CasADi ,

60 save/return the objects that reference the optimization object

61 (typically named opti) and the optimization variable references

)

62 """

63 raise NotImplementedError

64

65 def reset_initial_guesses(self , arg):

66 """

67 This method should reset any initial guesses of the decision

variables

68 passed into the optimization problem. This method provides a

way to

69 simulate repeated solves of the optimization problem without re

-defining

70 an entirely new problem. If using the Opti stack interface of

CasADi ,

71 this method mainly involves using the set_initial () method of

the Opti

72 object.

73 """

74 raise NotImplementedError

75

76 def set_parameters(self , arg):

77 """

78 This method should (re)set any parameters in the optimization

problem.

79 This method provides a way to simulated consistent and repeated

solves

80 of the optimization problem without re -defining an entirely new

problem.

81 If using the Opti stack interface of CasADi , this method mainly

involves
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82 using the set_value () method of the Opti object.

83 """

84 raise NotImplementedError

85

86 def solve_mpc(self , arg):

87 """

88 This method should solve the optimization problem and return/

save the

89 relavent optimal variables. For MPC , this is typically the

first optimal

90 input determined by the solver. Users may also wish to return

other

91 values of the optimization problem and/or the entire solution

of the

92 optimization problem. This method should also handle any

Exceptions that

93 may occur upon a call to solve the optimization problem in the

form of a

94 try/except clause. If using the Opti stack interface of CasADi ,

this

95 method mainly involves the call to the solve() method of the

Opti

96 object , as well as calls to the value() method of OptiSolution/

Opti

97 objects.

98 """

99 pass

100

101 def get_control_inputs(self , arg):

102 """

103 This method is a wrapper around the optimization problem to

interface

104 with simulation or experiments. It should 1) set the initial

state and

105 any other parameters (which may involve casting the true states

to

106 deviation variables) for the optimal control problem (OCP), 2)

solve

107 the OCP , 3) return the optimal input for the true system.

108 """

109 raise NotImplementedError

110

111 def get_params(self):

112 """

113 This method will return the parameters of the optimal control

problem (OCP) if the OCP has been defined

114 """

115 if self.opti_params:

116 return self.opti_params.keys()

117 else:
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118 raise ValueError("The OCP has not been created. There are

no parameters to list!")

CasADi provides the Opti interface, which is a user-friendly take on defining optimization
problems in code and follows a more natural syntax based on the mathematical formulation.
The following script provides an example implementation of a non-robust nonlinear tracking
problem that was often used in the plasma thermal dose control policy definition.

1 from controller import *

2

3 class NonlinearTrackingMPC(MPC):

4

5 def __init__(self , prob_info):

6 super(NonlinearTrackingMPC , self).__init__(prob_info)

7 self.mpc_type = ’nonlinear -tracking ’

8

9 def get_mpc(self , p_opts=GENERIC_P_OPTS , s_opts=GENERIC_S_OPTS):

10 """

11 This method creates the optimization problem for the MPC. All

12 information necessary for the creation of this controller is

passed upon

13 instantiation of this object within the prob_info dict. For

more details

14 on the optimization problem , the user is referred to the paper

15 associated with the release of this code.

16

17 This code uses IPOPT for the NLP solver which is distributed

with

18 CasADi. Users are referred to IPOPT [https ://coin -or.github.io/

Ipopt /]

19 and the associated paper for more information on this solver.

20 """

21 # unpack relavant problem information

22 Np = self.prob_info["Np"]

23

24 nu = self.prob_info["nu"]

25 nx = self.prob_info["nx"]

26 ny = self.prob_info["ny"]

27

28 u_min = self.prob_info["u_min"]

29 u_max = self.prob_info["u_max"]

30 x_min = self.prob_info["x_min"]

31 x_max = self.prob_info["x_max"]

32 y_min = self.prob_info["y_min"]

33 y_max = self.prob_info["y_max"]

34

35 u_init = self.prob_info["u_init"]

36 x_init = self.prob_info["x_init"]

37 y_init = self.prob_info["y_init"]

38

39 f = self.prob_info["f"]
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40 h = self.prob_info["h"]

41 lstage = self.prob_info["lstage"]

42 lterm = self.prob_info["lterm"]

43 reduce_dinput = False

44 constrain_dinput = False

45 if "ustage" in self.prob_info.keys():

46 ustage = self.prob_info["ustage"]

47 reduce_dinput = True

48 if "du_max" in self.prob_info.keys():

49 du_max = self.prob_info["du_max"]

50 du_min = self.prob_info["du_min"]

51 constrain_dinput = True

52

53 # create NLP opti object

54 opti = cas.Opti()

55

56 # Initialize container lists for all states , inputs , outputs ,

and

57 # predicted noise over horizon

58 X = [0]*( Np+1)

59 Ref = [0]*(Np+1)

60 Y = [0]*( Np+1)

61 U = [0]*Np

62

63 J = 0 # initialize cost/objective function

64

65 # define parameter(s), variable(s), and problem

66 X[0] = opti.parameter(nx) # initial state as a parameter

67 opti.set_value(X[0], np.zeros((nx , 1)))

68

69 # define reference parameter (for state ref , output ref , or

single ref)

70 if self.prob_info["state_ref"]:

71 Ref[0] = opti.parameter(nx)

72 opti.set_value(Ref[0], np.zeros((nx , 1)))

73 elif self.prob_info["output_ref"]:

74 Ref[0] = opti.parameter(ny)

75 opti.set_value(Ref[0], np.zeros((ny , 1)))

76 else:

77 Ref[0] = opti.parameter (1)

78 opti.set_value(Ref[0], 0.0)

79

80 Y[0] = opti.variable(ny) # initial output variable

81 opti.subject_to(Y[0] == h(X[0]))

82 opti.set_initial(Y[0], y_init)

83

84 # the loop below systematically defines the variables of the

optimal

85 # control problem (OCP) over the prediction horizon

86 for k in range(Np):
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87 # variable and constraints for u_{k}

88 U[k] = opti.variable(nu)

89 opti.subject_to(opti.bounded(u_min , U[k], u_max))

90 opti.set_initial(U[k], u_init)

91

92 # define reference parameter (for state ref , output ref , or

single ref)

93 if self.prob_info["state_ref"]:

94 Ref[k] = opti.parameter(nx)

95 opti.set_value(Ref[k], np.zeros((nx , 1)))

96 elif self.prob_info["output_ref"]:

97 Ref[k] = opti.parameter(ny)

98 opti.set_value(Ref[k], np.zeros((ny , 1)))

99 else:

100 Ref[k] = opti.parameter (1)

101 opti.set_value(Ref[k], 0.0)

102

103 # get stage cost

104 Jstage = lstage(X[k], U[k], Ref)

105 J += Jstage # add to the cost (construction of the

objective)

106

107 # variable x_{k+1}

108 X[k + 1] = opti.variable(nx)

109 opti.subject_to(opti.bounded(x_min , X[k + 1], x_max))

110 opti.set_initial(X[k + 1], x_init)

111

112 # variable y_{k+1}

113 Y[k + 1] = opti.variable(ny)

114 opti.subject_to(opti.bounded(y_min , Y[k + 1], y_max))

115 opti.set_initial(Y[k + 1], y_init)

116

117 # dynamics constraint

118 opti.subject_to(X[k + 1] == f(X[k], U[k]))

119

120 # output equality constraint

121 opti.subject_to(Y[k + 1] == h(X[k + 1]))

122

123 if k > 0 and reduce_dinput:

124 J += ustage(U[k], U[k - 1])

125 elif k > 0 and constrain_dinput:

126 opti.subject_to(

127 opti.bounded(du_min , U[k] - U[k - 1], du_max)

128 )

129

130 # terminal cost and constraints

131 J_end = lterm(X[-1], Ref[-1])

132 J += J_end

133

134 # set to minimize objective/cost
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135 opti.minimize(J)

136

137 opti.solver("ipopt", p_opts , s_opts) # add the solver to the

opti object

138

139 # save list containers of variables/parameters into a dict for

portability

140 opti_vars = {}

141 opti_vars["U"] = U

142 opti_vars["X"] = X[1:]

143 opti_vars["Y"] = Y

144 opti_vars["J"] = J

145

146 opti_params = {}

147 opti_params["X0"] = X[0]

148 opti_params["Ref"] = Ref

149

150 # save opti object and variable containers as attributes of

object

151 self.opti = opti

152 self.opti_vars = opti_vars

153 self.opti_params = opti_params

154

155 return opti , opti_vars , opti_params

156

157 def solve_mpc(self , warm_start=True):

158 """

159 This method solves the MPC as defined by the get_mpc () method

of this

160 class. This method can only be called after the the get_mpc ()

method has

161 been called (i.e., the optimization problme must be defined

before it

162 can be solved).

163 """

164 # extract all keys from the opti variables dict

165 opti_var_keys = [*self.opti_vars]

166 opti_param_keys = [*self.opti_params]

167

168 # unpack relevant information from problem creation

169 u_min = self.prob_info[’u_min ’]

170 u_max = self.prob_info[’u_max ’]

171

172 feas = True

173 res = {}

174 try:

175 sol = self.opti.solve()

176

177 # process solution of optimization problem output

178 for key in opti_var_keys:
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179 # if key is J, then the value is a single scalar

180 if key == ’J’:

181 res[key] = sol.value(self.opti_vars[key])

182 # otherwise , a vector (or matrix) must be constructed

183 else:

184 var = self.opti_vars[key]

185 r = len(var) # Np

186 nx = (var [0]).size1()

187 values = np.zeros((nx ,r))

188 for j in range(r):

189 values[:,j] = sol.value(var[j])

190 res[key] = values

191

192 res["Ufull"] = res["U"] # the full optimal input

trajectory is saved as Ufull

193 res[’U’] = res[’U’][:,0] # the first optimal input is saved

as U

194

195 for key in opti_param_keys:

196 # if key is X0 , then the value is a single vector

197 if key == ’X0’:

198 res[key] = sol.value(self.opti_vars[key])

199 # otherwise , a vector (or matrix) must be constructed

200 else:

201 var = self.opti_params[key]

202 r = len(var) # Np

203 nx = (var [0]).size1()

204 values = np.zeros((nx ,r))

205 for j in range(r):

206 values[:,j] = sol.value(var[j])

207 res[key] = values

208

209 if warm_start:

210 self.opti.set_initial(sol.value_variables ())

211

212 except Exception as e:

213 print(e)

214 # if solve fails , get the last value

215 feas = False

216

217 # process solution of optimization problem output

218 for key in opti_var_keys:

219 # if key is J, then the value is a single scalar

220 if key == ’J’:

221 res[key] = self.opti.debug.value(self.opti_vars[key

])

222 # otherwise , a vector (or matrix) must be constructed

223 else:

224 var = self.opti_vars[key]

225 r = len(var) # Np
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226 nx = (var [0]).size1()

227 values = np.zeros((nx ,r))

228 for j in range(r):

229 values[:, j] = self.opti.debug.value(var[j])

230 res[key] = values

231

232 res["Ufull"] = res["U"] # the full optimal input

trajectory is saved as Ufull

233 res[’U’] = res[’U’][:,0] # the first optimal input is saved

as U

234

235 for key in opti_param_keys:

236 # if key is X0 , then the value is a single vector

237 if key == ’X0’:

238 res[key] = self.opti.debug.value(self.opti_vars[key

])

239 # otherwise , a vector (or matrix) must be constructed

240 else:

241 var = self.opti_params[key]

242 r = len(var) # Np

243 nx = (var [0]).size1()

244 values = np.zeros((nx ,r))

245 for j in range(r):

246 values[:, j] = self.opti.debug.value(var[j])

247 res[key] = values

248

249 u = res[’U’]

250 res[’U’] = np.maximum(np.minimum(u, u_max), u_min)

251 # print(’U_0:’, res[’U ’])

252 # print(’J:’, res[’J ’])

253

254 return res , feas

255

256 def reset_initial_guesses(self):

257 """

258 This method resets the intial guesses for the variables of the

259 optimization problem back to those defined in the problem_info

dict

260 provided upon instantiation of the OffsetFreeMPC object.

261 """

262 # unpack relevant information from the prob_info dict

263 Np = self.prob_info["Np"]

264 u_init = self.prob_info["u_init"]

265 x_init = self.prob_info["x_init"]

266 y_init = self.prob_info["y_init"]

267

268 # unpack relevant variable containers from problem creation

269 U = self.opti_vars["U"]

270 X = self.opti_vars["X"]

271 Y = self.opti_vars["Y"]
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272

273 self.opti.set_initial(Y[0], y_init)

274 for k in range(Np):

275 self.opti.set_initial(U[k], u_init)

276 self.opti.set_initial(X[k], x_init)

277 self.opti.set_initial(Y[k + 1], y_init)

278

279 def set_parameters(self , params_list):

280 """

281 This method sets the values of the parameters of the

optimization

282 problem to those provided as arguments to this method. The

argument

283 params_list is a list of new parameter values to set in the

same order

284 as the opti_param keys.

285 """

286 Np = self.prob_info["Np"]

287

288 # unpack parameter containers

289 X0 = self.opti_params["X0"]

290 Ref = self.opti_params["Ref"]

291

292 # unpack params_list argument

293 x0 = params_list [0]

294 ref = params_list [1]

295

296 # reset initial condition

297 self.opti.set_value(X0 , x0)

298

299 # set reference trajectory

300 self.opti.set_value(Ref[0], ref [0])

301 for k in range(Np):

302 self.opti.set_value(Ref[k], ref[k])

303

304 def get_control_inputs(self , params_list , transform_x0=True):

305 if "yss" in self.prob_info.keys() and transform_x0:

306 params_list [0] -= self.prob_info["yss"]

307

308 self.set_parameters(params_list)

309 res , feas = self.solve_mpc ()

310

311 uopt = res["U"] + self.prob_info["uss"]

312 return uopt , res , feas
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B.3 Transferring Implementations from Simulation to

Experiment

A closed-loop simulation consists of each of the parts described in Section B.1, where the
environment is the overall closed-loop simulation environment, aka an in silico experiment.
The following code represents an example of the definition of the closed-loop simulation
environment and was taken from the code used for [76]. Note that in this example, the
“system” was not separated into its own object and the system parameters are built into the
problem configuration rather than as its own object.

1 # simulation functions

2 #

3 # This file defines a Simulation class to be used for closed loop

simulations of

4 # model predictive controllers (MPCs) generated via the MPC subclasses

or via

5 # deep neural network approximations of MPC controllers.

6 #

7 # Requirements:

8 # * Python 3

9 #

10 # Copyright (c) 2021 Mesbah Lab. All Rights Reserved.

11 # Kimberly Chan

12 #

13 # This file is under the MIT License. A copy of this license is

included in the

14 # download of the entire code package (within the root folder of the

package).

15

16 import sys

17 sys.dont_write_bytecode = True

18 import numpy as np

19 import time

20 from numpy.random import default_rng

21

22 import KCutils

23

24 class Simulation ():

25 """

26 The Simulation class is used to create a simulation ’environment ’

defined by

27 given problem information.

28 """

29

30 def __init__(self , Nsim):

31 """

32 Instantiation of the Simulation class requires the input

argument Nsim ,

33 which denotes the length of the simulation horizon.
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34 """

35 super(Simulation , self).__init__ ()

36 self.Nsim = Nsim

37 self.prob_info = None

38 self.rand_seed = None

39

40 def load_prob_info(self , prob_info):

41 """

42 This method loads the relevant problem information for

simulation and

43 assigns them as attributes of the class from the prob_info dict

used by

44 other classes included in this package.

45 """

46 # extract and save relevant problem information

47 self.prob_info = prob_info

48

49 # system sizes

50 self.nu = prob_info[’nu’]

51 self.nx = prob_info[’nx’]

52 self.ny = prob_info[’ny’]

53 self.nyc = prob_info[’nyc’]

54 self.nv = prob_info[’nv’]

55 self.nw = prob_info[’nw’]

56 self.nd = prob_info[’nd’]

57

58 # disturbance/noise minimums and maximums

59 if ’v_mu’ in prob_info.keys() and ’v_sigma ’ in prob_info.keys()

:

60 self.v_mu = prob_info[’v_mu’]

61 self.v_sigma = prob_info[’v_sigma ’]

62 self.v_noise_generation = ’normal ’

63 elif ’v_max’ in prob_info.keys() and ’v_min’ in prob_info.keys

():

64 self.v_min = prob_info[’v_min’]

65 self.v_max = prob_info[’v_max’]

66 self.v_noise_generation = ’uniform ’

67 else:

68 print(’No noise bounds/parameters given. Assuming no

measurement noise ...’)

69 self.v_min = np.zeros ((nv ,))

70 self.v_max = np.zeros ((nv ,))

71 self.v_noise_generation = ’uniform ’

72

73 if ’w_mu’ in prob_info.keys() and ’w_sigma ’ in prob_info.keys()

:

74 self.v_mu = prob_info[’w_mu’]

75 self.v_sigma = prob_info[’w_sigma ’]

76 self.v_noise_generation = ’normal ’
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77 elif ’w_max’ in prob_info.keys() and ’w_min’ in prob_info.keys

():

78 self.w_min = prob_info[’w_min’]

79 self.w_max = prob_info[’w_max’]

80 self.w_noise_generation = ’uniform ’

81 else:

82 print(’No noise bounds/parameters given. Assuming no

process noise ...’)

83 self.w_min = np.zeros ((nw ,))

84 self.w_max = np.zeros ((nw ,))

85 self.w_noise_generation = ’uniform ’

86

87 self.x0 = prob_info[’x0’] # initial state/point

88 self.hp = prob_info[’hp’] # output equation for the ’real’

system (plant)

89 self.fp = prob_info[’fp’] # dynamics equation for the plant

90 self.myref = prob_info[’myref’] # reference function for the

controlled output

91 self.ts = prob_info[’ts’] # simulation sampling time

92 self.rand_seed = prob_info[’rand_seed ’] # random seed

93

94 def run_closed_loop(self , c,

95 observer=None ,

96 offset=False ,

97 CEM=False ,

98 multistage=False ,

99 rand_seed2 =0):

100 """

101 This method runs a closed -loop simulation of the system using

102 information derived from loading problem information and a

controller

103 (implicit MPC or approximate control). The problem information

must be

104 loaded before a closed -loop simulation can occur. The argument

c is a

105 controller object created using one of the classes defined in

106 controller.py (for an MPC) or neural_network.py (for a DNN

approximation

107 to a MPC law).

108 """

109 # check to ensure problem data has been loaded

110 if self.prob_info is None:

111 print(’Problem data not loaded. Please load the appropriate

problem data by running the load_prob_info method.’)

112 raise

113

114 # check controller type

115 mpc_controller = False

116 if isinstance(c, KCutils.controller.MPC):

117 mpc_controller = True
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118 print(’Using a MPC.’)

119 elif isinstance(c, KCutils.neural_network.DNN) or isinstance(c,

KCutils.neural_network.SimpleDNN):

120 print(’Using an approximate controller.’)

121 else:

122 print(’Unsupported controller type.’)

123 raise

124

125 if multistage:

126 Wset = self.prob_info[’Wset’]

127

128 # create a random number generator (RNG) to use for generating

129 # noise/disturbances; use the same seed for consistent

simulations

130 if self.rand_seed is None:

131 rng = default_rng ()

132 else:

133 rng = default_rng(self.rand_seed+rand_seed2)

134

135 if self.v_noise_generation == ’uniform ’:

136 Vsim = rng.random(size=(self.nv ,self.Nsim +1)) * (self.v_max

-self.v_min)[:,None] + self.v_min[:,None]

137 elif self.v_noise_generation == ’normal ’:

138 Vsim = rng.normal(self.v_mu , self.v_sigma , size=(self.nv ,

self.Nsim +1))

139 else:

140 print(’Unknown/unsupported form of noise generation!’)

141 raise

142 if self.w_noise_generation == ’uniform ’:

143 Wsim = rng.random(size=(self.nw ,self.Nsim)) * (self.w_max -

self.w_min)[:,None] + self.w_min[:,None]

144 elif self.w_noise_generation == ’normal ’:

145 Wsim = rng.normal(self.w_mu , self.w_sigma , size=(self.nw ,

self.Nsim +1))

146 else:

147 print(’Unknown/unsupported form of noise generation!’)

148 raise

149

150 # instantiate container variables for storing simulation data

151 Xsim = np.zeros((self.nx ,self.Nsim +1)) # state trajectories (

plant)

152 Ysim = np.zeros((self.ny ,self.Nsim +1)) # output trajectories (

plant)

153 Usim = np.zeros((self.nu ,self.Nsim)) # input trajectories (

plant)

154 Xhat = np.zeros_like(Xsim) # state estimation

155 Dhat = np.zeros((self.nd ,self.Nsim +1))

156 if multistage:

157 Ypred = [0 for i in range(self.Nsim)]

158 Wpred = [0 for i in range(self.Nsim)]
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159 else:

160 Ypred = np.zeros ((self.ny,self.prob_info[’Np’],self.Nsim))

161

162 if offset:

163 Xss_sim = np.zeros_like(Xsim) # steady state trajectory (

controller)

164 Yss_sim = np.zeros_like(Ysim) # steady state output

trajectory (controller)

165 Uss_sim = np.zeros_like(Usim) # steady state input

trajectory (controller)

166

167 ctime = np.zeros(self.Nsim) # computation time

168 Jsim = np.zeros(self.Nsim) # cost/optimal objective value (

controller)

169 Yrefsim = np.zeros((self.nyc ,self.Nsim +1)) # output reference/

target (as sent to controller)

170 Feas = np.zeros(self.Nsim)

171 if CEM:

172 CEMsim = np.zeros((1,self.Nsim +1)) # CEM trajectory

173 CEM_stop_time = self.Nsim+1

174

175 # set initial states and reset controller for consistency

176 Xsim [:,0] = np.ravel(self.x0)

177 Xhat [:,0] = Xsim [:,0]

178 if observer is not None:

179 observer.xhat = Xhat [:,0]

180 observer.dhat = Dhat [:,0]

181 Ysim [:,0] = np.ravel(self.hp(Xsim[:,0],Vsim [:,0]).full())

182

183 if mpc_controller:

184 c.reset_initial_guesses ()

185

186 # loop over simulation time

187 CEM_stop_trigger = False

188 for k in range(self.Nsim):

189 startTime = time.time()

190

191 Yrefsim[:,k] = self.myref(k*self.ts)

192 if mpc_controller:

193 if CEM:

194 if multistage:

195 c.set_parameters ([Xhat[:,k], Yrefsim[:,k],

CEMsim[:,k], Wset])

196 else:

197 c.set_parameters ([Xhat[:,k], Yrefsim[:,k],

CEMsim[:,k]])

198 else:

199 if offset:

200 c.set_parameters ([Xhat[:,k], Yrefsim[:,k], Dhat

[:,k]])
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201 else:

202 c.set_parameters ([Xhat[:,k], Yrefsim[:,k]])

203 res , feas = c.solve_mpc(warm_start=self.prob_info[’

warm_start ’])

204 Uopt = res[’U’]

205 Jopt = res[’J’]

206 if multistage:

207 Ypred[k] = res[’Y’] # todo: add functionality to

other controllers , then move this out of conditional statement

208 Wpred[k] = res[’wPred ’]

209 else:

210 Jopt = np.nan

211

212 if CEM:

213 in_vec = np.concatenate ((Xhat[:,k], CEMsim[:,k]))

214 else:

215 in_vec = np.concatenate ((Xhat[:,k], Yrefsim[:,k]))

216 Uopt = np.ravel((c.netca(in_vec)).full())

217 Uopt = np.maximum(np.minimum(Uopt , self.prob_info[’

u_max ’]), self.prob_info[’u_min ’])

218

219 ctime[k] = time.time() - startTime

220 if mpc_controller:

221 if not feas:

222 print(’Was not feasible on iteration {} of

simulation ’.format(k))

223

224 if offset:

225 Xss_sim[:,k] = res[’Xss’]

226 Uss_sim[:,k] = res[’Uss’]

227 Yss_sim[:,k] = res[’Yss’]

228

229 Usim[:,k] = np.ravel(Uopt)

230 Jsim[k] = Jopt

231

232 # send optimal input to plant/real system

233 Xsim[:,k+1] = np.ravel(self.fp(Xsim[:,k],Usim[:,k],Wsim[:,k

]).full())

234 Ysim[:,k+1] = np.ravel(self.hp(Xsim[:,k+1],Vsim[:,k+1]).

full())

235 if CEM:

236 CEMsim[:,k+1] = CEMsim[:,k] + np.ravel(self.prob_info[’

CEMadd ’](Ysim[:,k+1]).full())

237 if not CEM_stop_trigger and CEMsim[:,k+1] > Yrefsim[:,k

]:

238 CEM_stop_time = k+1

239 CEM_stop_trigger = True

240 if CEM_stop_trigger:

241 break

242
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243 # get estimates

244 if observer is not None:

245 xhat , dhat = observer.update_observer(Usim[:,k], Ysim

[:,k+1])

246 Xhat[:,k+1] = np.ravel(xhat)

247 Dhat[:,k+1] = np.ravel(dhat)

248 else:

249 Xhat[:,k+1] = Xsim[:,k+1]

250

251 Yrefsim[:,k+1] = self.myref((k+1)*self.ts)

252 # create dictionary of simulation data

253 sim_data = {}

254 sim_data[’Xsim’] = Xsim

255 sim_data[’Ysim’] = Ysim

256 sim_data[’Usim’] = Usim

257 sim_data[’Jsim’] = Jsim

258 sim_data[’Wsim’] = Wsim

259 sim_data[’Vsim’] = Vsim

260 sim_data[’Yrefsim ’] = Yrefsim

261 sim_data[’ctime ’] = ctime

262 sim_data[’Xhat’] = Xhat

263 sim_data[’Dhat’] = Dhat

264 sim_data[’Ypred ’] = Ypred

265 sim_data[’feas’] = Feas

266 if offset:

267 sim_data[’Xss_sim ’] = Xss_sim

268 sim_data[’Uss_sim ’] = Uss_sim

269 sim_data[’Yss_sim ’] = Yss_sim

270 if multistage:

271 sim_data[’wPred ’] = Wpred

272 if CEM:

273 sim_data[’CEMsim ’] = CEMsim

274 sim_data[’CEM_stop_time ’] = CEM_stop_time

275

276 return sim_data

Due to the organization of the code into objects, any control policy object can be trans-
ferred to an experiment. In other words, an experiment involves the same three components
described in Section B.1, where the control policy is the same as before; the system is the
testbed (no code necessary); and the environment is a real-time experiment. The control
policy can be moved over to the experiment, and all that is necessary to define is related
to the environment, i.e., the experimental environment code and parameters, which can be
modeled after the simulation code above. An example implementation is shown below and
was taken from the code used for [76].

1 # experiment functions

2 #

3 # This file defines an Experiment class to be used for real time

experiments on
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4 # the atmospheric pressure plasma jet (APPJ) of model predictive

controllers

5 # (MPCs) generated via the controller subclasses defined in controllers

.py

6 #

7 # Requirements:

8 # * Python 3

9 #

10 # Copyright (c) 2022 Mesbah Lab. All Rights Reserved.

11 # Kimberly Chan

12 #

13 # This file is under the MIT License. A copy of this license is

included in the

14 # download of the entire code package (within the root folder of the

package).

15

16 ## import 3rd party packages

17 import sys

18 sys.dont_write_bytecode = True

19 import numpy as np

20 import time

21 from datetime import datetime

22 import os

23

24 ## import user functions

25 import KCutils.APPJPythonFunctions as appj

26

27 def ctok(T):

28 """

29 Function to convert from Celsius to Kelvin.

30 """

31 return T+273.15

32

33 class Experiment ():

34 """

35 The Experiment class is used to create a wrapper for real -time

experiments

36 using the APPJ.

37 """

38

39 def __init__(self , Nsim , saveDir=os.getcwd (), name=None):

40 """

41 Instantiation of the Experiment class requires the input

arguments

42 Nsim , which denotes the length of the experimental run; saveDir

43 (optional), which is a path to a particular save location; and

name

44 (optional) which is an additional identifier of the data from

this

45 class.
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46 """

47 super(Experiment , self).__init__ ()

48 self.Nsim = Nsim

49 self.prob_info = None

50 self.rand_seed = None

51

52 self.saveDir = saveDir

53 if not os.path.exists(saveDir+"Backup/"):

54 self.backupSaveDir = saveDir+"Backup/"

55 os.makedirs(saveDir+"Backup", exist_ok=True)

56 print(’\n\nBackup data will be saved in the following directory

:’)

57 print(self.backupSaveDir)

58 self.count = 0

59 self.name = name

60 if self.name is None:

61 self.exp_name = ’Experiment_ ’+str(self.count)

62 else:

63 self.exp_name = self.name+’_Experiment_ ’+str(self.count)

64

65 self.ol_count = 0

66

67 def load_prob_info(self , prob_info):

68 """

69 This method loads the relevant problem information for

experiment and

70 assigns them as attributes of the class from the prob_info dict

used by

71 other classes included in this package.

72 """

73 # extract and save relevant problem information

74 self.prob_info = prob_info

75

76 # system sizes

77 self.nu = prob_info[’nu’]

78 self.nx = prob_info[’nx’]

79 self.ny = prob_info[’ny’]

80 self.nyc = prob_info[’nyc’]

81

82 self.xss = prob_info[’xss’]

83 self.uss = prob_info[’uss’]

84 self.u_min = prob_info[’u_min’]

85 self.u_max = prob_info[’u_max’]

86

87 self.Np = prob_info[’Np’] # prediction horizon

88 self.x0 = prob_info[’x0’] # initial state/point

89 # self.y0 = prob_info[’y0 ’] # initial outputs/measurements

90 # self.u0 = prob_info[’u0 ’] # startup inputs

91 self.myref = prob_info[’myref’] # reference function for the

controlled output
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92 self.ts = prob_info[’ts’] # simulation sampling time

93

94 def run_closed_loop_mpc(self , c, ioloop , model=None , observer=None ,

95 runOpts=appj.RunOpts (), devices=None ,

prevTime =0.0,

96 CEM=True , hw_flag=True , dnn_flag=False ,

97 I_NORM =1e-4):

98 """

99 This method runs a closed -loop experiment of the APPJ using

information

100 derived from loading problem information and using an explicit

MPC

101 (defined by solving an optimal control problem (OCP) at each

step). The

102 problem information must be loaded before a closed -loop

simulation can

103 occur. The argument c is a MPC controller object created using

one of

104 the classes defined in the controller.py.

105 """

106 # check to ensure problem data has been loaded

107 if self.prob_info is None:

108 print(’Problem data not loaded. Please load the appropriate

problem data by running the load_prob_info method.’)

109 raise

110

111 # get devices

112 if devices is None:

113 print(’Device information not given! Please provide device

info.’)

114 raise

115 else:

116 # serial device representation of Arduino

117 key = ’arduinoPI ’

118 if key in devices:

119 arduinoPI = devices[key]

120 else:

121 arduinoPI = None

122 print(f’WARNING: {key} not in devices dict! Code will

error ...’)

123 # Arduino address

124 key = ’arduinoAddress ’

125 if key in devices:

126 arduinoAddress = devices[key]

127 else:

128 arduinoAddress = None

129 print(f’WARNING: {key} not in devices dict! Code will

error ...’)

130 # Spectrometer

131 key = ’spec’
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132 if key in devices:

133 spec = devices[key]

134 else:

135 spec = None

136 print(f’WARNING: {key} not in devices dict! Code will

error ...’)

137 # Oscilloscope

138 key = ’instr’

139 if key in devices:

140 instr = devices[key]

141 else:

142 instr = None

143 print(f’WARNING: {key} not in devices dict! Code will

error ...’)

144

145 ## get data sizes

146 tasks , runTime = ioloop.run_until_complete(appj.async_measure(

arduinoPI , prevTime , instr , spec , runOpts))

147 if runOpts.collectData:

148 thermalCamOut = tasks [0]. result ()

149 Ts0 = thermalCamOut [0]

150 specOut = tasks [1]. result ()

151 I0 = specOut [0]* I_NORM

152 oscOut = tasks [2]. result ()

153 arduinoOut = tasks [3]. result ()

154 outString = "Measured Outputs: Temperature: %.2f, Intensity

: %.2f" % (Ts0 , I0)

155 print(outString)

156 else:

157 Ts0 = 37.0

158 I0 = 100.0

159

160 ## get controller type:

161 mpc = False

162 if hw_flag or dnn_flag:

163 pass

164 else:

165 mpc = True

166 Wset = self.prob_info[’Wset’]

167

168 ## Instantiate container variables for storing experimental

data

169 if runOpts.collectData:

170 if runOpts.saveData:

171 Tsave = np.empty ((self.Nsim ,))

172 Isave = np.empty ((self.Nsim ,))

173 Psave = np.empty ((self.Nsim ,))

174 qSave = np.empty ((self.Nsim ,))

175 CEMsave = np.empty((self.Nsim))

176 badTimes = []
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177 if runOpts.saveSpatialTemp:

178 Ts2save = np.empty((self.Nsim ,))

179 Ts3save = np.empty((self.Nsim ,))

180 if runOpts.saveSpectra:

181 if specOut is not None:

182 waveSave = np.empty ((self.Nsim ,len(specOut [2])))

183 specSave = np.empty_like(waveSave)

184 meanShiftSave = np.empty ((self.Nsim ,))

185 else:

186 print(’Intensity Data not collected! Entire

spectrum will not be saved.’)

187 runOpts.saveSpectra = False

188 if runOpts.saveOscMeas:

189 if oscOut is not None:

190 oscSave = np.empty((self.Nsim ,len(oscOut)))

191 else:

192 print(’Oscilloscope data not collected! Nothing to

save.’)

193 runOpts.saveOscMeas = False

194 if runOpts.saveEmbMeas:

195 if arduinoOut is not None:

196 ArdSave = np.empty((self.Nsim ,len(arduinoOut)))

197 else:

198 print(’Arduino Data not collected! Nothing to save.

’)

199 runOpts.saveEmbMeas = False

200 # additional containers for system operation (controller ,

observer)

201 Xhat = np.zeros((self.nx ,self.Nsim +1)) # state estimation

202 ctime = np.zeros(self.Nsim) # computation time

203 Yrefsim = np.zeros((self.nyc ,self.Nsim)) # output reference/

target (as sent to controller)

204 CEMsim = np.zeros ((self.nyc ,self.Nsim +1)) # CEM accumulation

205 if mpc:

206 Jsim = np.zeros(self.Nsim) # cost/optimal objective

value (controller)

207 Ypred = np.zeros ((self.ny,self.Nsim ,self.Np))

208 Feasibility = np.zeros(self.Nsim) # feasibility of OCP

209

210 # set initial states and reset controller for consistency

211 Xhat [:,0] = np.ravel([Ts0 ,I0]-self.xss)

212 CEMsim [:,0] = np.zeros((self.nyc ,))

213 count = 0

214

215 # loop over simulation time

216 if mpc:

217 c.reset_initial_guesses ()

218 if CEM:

219 CEM_stop_time = self.Nsim

220
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221 for k in range(self.Nsim):

222 startTime = time.time()

223 iterString = f’\nIteration {k} out of {self.Nsim}’

224 print(iterString)

225

226 ## Get measurements

227 tasks , runTime = ioloop.run_until_complete(appj.

async_measure(arduinoPI , prevTime , instr , spec , runOpts))

228 # Temperature

229 if runOpts.collectData:

230 thermalCamMeasure = tasks [0]. result ()

231 if thermalCamMeasure is not None:

232 Ts = thermalCamMeasure [0]

233 Ts2 = thermalCamMeasure [1]

234 Ts3 = thermalCamMeasure [2]

235 else:

236 print(’Temperature data not collected! Thermal

Camera measurements will be set to -300.’)

237 Ts = -300

238 Ts2 = -300

239 Ts3 = -300

240 # Intensity

241 specOut = tasks [1]. result ()

242 if specOut is not None:

243 totalIntensity = specOut [0]* I_NORM

244 intensitySpectrum = specOut [1]

245 wavelengths = specOut [2]

246 meanShift = specOut [3]

247 else:

248 print(’Intensity data not collected! Spectrometer

outputs will be set to -1.’)

249 totalIntensity = -1

250 intensitySpectrum = -1

251 wavelengths = -1

252 meanShift = -1

253

254 outString = "Measured Outputs: Temperature: %.2f,

Intensity: %.2f" % (Ts, totalIntensity)

255 print(outString)

256

257 ## Save measurements to containers

258 if runOpts.saveData:

259 Tsave[k] = Ts

260 Isave[k] = totalIntensity

261 if runOpts.saveSpatialTemp:

262 Ts2save[k] = Ts2

263 Ts3save[k] = Ts3

264 # Intensity spectra

265 if runOpts.saveSpectra:

266 waveSave[k,:] = np.ravel(wavelengths)
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267 specSave[k,:] = np.ravel(intensitySpectrum)

268 meanShiftSave[k] = meanShift

269 # Oscilloscope

270 if runOpts.saveOscMeas:

271 oscOut = tasks [2]. result ()

272 oscSave[k,:] = np.ravel(oscOut)

273 # Embedded Measurements from the Arduino (note: several

embedded measurements are not fully functional as of 2020/12)

274 arduinoOut = tasks [3]. result ()

275 prevTime = arduinoOut [0]

276 if runOpts.saveEmbMeas:

277 ArdSave[k,:] = np.ravel(arduinoOut)

278 else:

279 Ts = 37.0

280 totalIntensity = 100.0

281 # measurements are collected after a control input has been

applied

282 Yrefsim[:,k] = self.myref(k)

283 if k>0:

284 Xhat[:,k] = np.ravel(np.asarray ([[Ts ,totalIntensity ]])-

self.xss)

285 if CEM:

286 CEMsim[:,k] = CEMsim[:,k-1] + np.ravel(self.

prob_info[’CEMadd ’](Ts).full())

287 if CEMsim[:,k]>Yrefsim[:,k]:

288 if CEMsim[:,k-1]< Yrefsim[:,k-1]:

289 CEM_stop_time = k

290 count +=1

291 if count > 3:

292 break

293

294 ## Compute control input

295 ctrl_stime = time.time()

296 if mpc:

297 print(Xhat[:,k])

298 print(CEMsim[:,k])

299 c.set_parameters ([Xhat[:,k], Yrefsim[:,k], CEMsim[:,k],

Wset])

300 res , feas = c.solve_mpc(warm_start=self.prob_info[’

warm_start ’])

301 print(res[’U’])

302 print(feas)

303 Uopt = np.asarray(res[’U’])

304 Jopt = res[’J’]

305 else:

306 if CEM:

307 x_in = np.concatenate ((Xhat[:,k], CEMsim[:,k]))

308 else:

309 x_in = np.concatenate ((Xhat[:,k], Yrefsim[:,k]))

310 Uopt = np.ravel((c.netca(x_in)).full())
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311 print(Uopt)

312

313 Uopt [0] = np.clip(Uopt[0], self.u_min[0], self.u_max [0])

314 Uopt [1] = np.clip(Uopt[1], self.u_min[1], self.u_max [1])

315 Uopt = np.ravel(Uopt.T+self.uss)

316 print(Uopt)

317 ctrl_etime = time.time()

318 ctime[k] = ctrl_etime - ctrl_stime

319

320 powerIn = float(Uopt [0])

321 flowIn = float(Uopt [1])

322 ## Send optimal inputs to APPJ

323 appj.sendControlledInputsArduino(arduinoPI , powerIn , flowIn

, arduinoAddress)

324

325 # save inputs

326 if runOpts.saveData:

327 Psave[k] = np.ravel(Uopt [0])

328 qSave[k] = np.ravel(Uopt [1])

329 if mpc:

330 Jsim[k] = Jopt

331 # Ypred[:,:,k] = res[’Y ’]

332 # Wpred[k] = res[’wPred ’]

333

334 # Pause for the duration of the sampling time to allow the

system to evolve

335 endTime = time.time()

336 runTime = endTime -startTime

337 print(’Total Runtime was:’, runTime)

338 pauseTime = self.ts - runTime

339 if pauseTime >0:

340 print("Pausing for {} seconds ...".format(pauseTime))

341 time.sleep(pauseTime)

342 else:

343 print(’WARNING: Measurement Time was greater than

Sampling Time! Data may be inaccurate.’)

344 if runOpts.saveData:

345 badTimes += [k]

346

347 # shut off plasma

348 appj.sendInputsArduino(arduinoPI , 0.0, 0.0, 100.0,

arduinoAddress)

349

350 # create dictionary of experimental data

351 exp_data = {}

352 exp_data[’Tsave ’] = Tsave

353 exp_data[’Isave ’] = Isave

354 exp_data[’Psave ’] = Psave

355 exp_data[’qSave ’] = qSave

356 exp_data[’Yrefsim ’] = Yrefsim
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357 exp_data[’ctime ’] = ctime

358 exp_data[’Xhat’] = Xhat

359 exp_data[’badTimes ’] = badTimes

360 if mpc:

361 exp_data[’Jsim’] = Jsim

362 exp_data[’Feasibility ’] = Feasibility

363 exp_data[’Ypred ’] = Ypred

364 if CEM:

365 exp_data[’CEMsim ’] = CEMsim

366 exp_data[’CEM_stop_time ’] = CEM_stop_time

367 if runOpts.collectSpatialTemp:

368 exp_data[’Ts2save ’] = Ts2save

369 exp_data[’Ts3save ’] = Ts3save

370 if runOpts.collectEntireSpectra:

371 exp_data[’waveSave ’] = waveSave

372 exp_data[’specSave ’] = specSave

373 exp_data[’meanShiftSave ’] = meanShiftSave

374 if runOpts.collectOscMeas:

375 exp_data[’oscSave ’] = oscSave

376 if runOpts.collectEmbedded:

377 exp_data[’ArdSave ’] = ArdSave

378

379 # save experimental data to have a backup copy

380 self.exp_data = exp_data

381 np.save(self.backupSaveDir+self.exp_name+’.npy’, exp_data)

382

383 # save csv version of experimental data

384 exp_saveDir = self.saveDir+self.exp_name+’/’

385 if not os.path.exists(exp_saveDir):

386 os.makedirs(exp_saveDir , exist_ok=True)

387 exp_data_saver(exp_data , exp_saveDir , self.exp_name , runOpts)

388

389 # increment and update class attributes to prepare for

additional experiments

390 self.count += 1

391 if self.name is None:

392 self.exp_name = ’Experiment_ ’+str(self.count)

393 else:

394 self.exp_name = self.name+’_Experiment_ ’+str(self.count)

395

396 return exp_data

397

398 def run_open_loop(self , ioloop , power_seq=None , flow_seq=None ,

runOpts=appj.RunOpts (), devices=None , prevTime =0.0):

399 """

400 This method runs a open -loop experiment of the APPJ using

provided

401 sequences of inputs.

402 """

403 # check for provided sequence of inputs
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404 if power_seq is None and flow_seq is None:

405 print(’Sequence of inputs not given! Please provide inputs.

’)

406 quit()

407 elif power_seq is None:

408 P0 = float(input(’Please enter a value for the power.\n’))

409 flow_seq = np.asarray(flow_seq)

410 power_seq = P0*np.ones_like(flow_seq)

411

412 elif flow_seq is None:

413 q0 = float(input(’Please enter a value for the flow rate.\n

’))

414 power_seq = np.asarray(power_seq)

415 flow_seq = q0*np.ones_like(power_seq)

416

417 nP = len(power_seq)

418 nq = len(flow_seq)

419

420 if nP > nq:

421 print(’Sequence of POWER inputs longer than sequence of

FLOW inputs. Using the shorter sequence ...’)

422 Niter = nq

423 elif nq > nP:

424 print(’Sequence of FLOW inputs longer than sequence of

POWER inputs. Using the shorter sequence ...’)

425 Niter = nP

426 else:

427 Niter = nP

428

429 # unpack devices

430 if devices is None:

431 print(’Device information not given! Please provide device

info.’)

432 raise

433 else:

434 # serial device representation of Arduino

435 key = ’arduinoPI ’

436 if key in devices:

437 arduinoPI = devices[key]

438 else:

439 arduinoPI = None

440 print(f’WARNING: {key} not in devices dict! Code will

error ...’)

441 # Arduino address

442 key = ’arduinoAddress ’

443 if key in devices:

444 arduinoAddress = devices[key]

445 else:

446 arduinoAddress = None

447 print(f’WARNING: {key} not in devices dict! Code will
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error ...’)

448 # Spectrometer

449 key = ’spec’

450 if key in devices:

451 spec = devices[key]

452 else:

453 spec = None

454 print(f’WARNING: {key} not in devices dict! Code will

error ...’)

455 # Oscilloscope

456 key = ’instr’

457 if key in devices:

458 instr = devices[key]

459 else:

460 instr = None

461 print(f’WARNING: {key} not in devices dict! Code will

error ...’)

462

463 # initial measurement to get data sizes

464 tasks , runTime = ioloop.run_until_complete(appj.async_measure(

arduinoPI , prevTime , instr , spec , runOpts))

465 thermalCamOut = tasks [0]. result ()

466 Ts0 = thermalCamOut [0]

467 specOut = tasks [1]. result ()

468 I0 = specOut [0]

469 oscOut = tasks [2]. result ()

470 arduinoOut = tasks [3]. result ()

471

472 ## Instantiate container variables for storing experimental

data

473 if runOpts.saveData:

474 Tsave = np.empty ((Niter ,))

475 Isave = np.empty ((Niter ,))

476 badTimes = []

477 if runOpts.saveSpatialTemp:

478 Ts2save = np.empty((Niter ,))

479 Ts3save = np.empty((Niter ,))

480 if runOpts.saveSpectra:

481 if specOut is not None:

482 waveSave = np.empty ((Niter ,len(specOut [2])))

483 specSave = np.empty_like(waveSave)

484 meanShiftSave = np.empty ((Niter ,))

485 else:

486 print(’Intensity Data not collected! Entire spectrum

will not be saved.’)

487 runOpts.saveSpectra = False

488 if runOpts.saveOscMeas:

489 if oscOut is not None:

490 oscSave = np.empty((Niter ,len(oscOut)))

491 else:
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492 print(’Oscilloscope data not collected! Nothing to save

.’)

493 runOpts.saveOscMeas = False

494 if runOpts.saveEmbMeas:

495 if arduinoOut is not None:

496 ArdSave = np.empty((Niter ,len(arduinoOut)))

497 else:

498 print(’Arduino Data not collected! Nothing to save.’)

499 runOpts.saveEmbMeas = False

500

501

502 for i in range(Niter):

503 startTime = time.time()

504 print(f’\nIteration {i} out of {Niter}’)

505

506 # asynchronous measurement

507 tasks , _ = ioloop.run_until_complete(appj.async_measure(

arduinoPI , prevTime , instr , spec , runOpts))

508

509 # Temperature

510 thermalCamMeasure = tasks [0]. result ()

511 if thermalCamMeasure is not None:

512 Ts = thermalCamMeasure [0]

513 Ts2 = thermalCamMeasure [1]

514 Ts3 = thermalCamMeasure [2]

515 else:

516 print(’Temperature data not collected! Thermal Camera

measurements will be set to -300.’)

517 Ts = -300

518 Ts2 = -300

519 Ts3 = -300

520

521 # Total intensity

522 specOut = tasks [1]. result ()

523 if specOut is not None:

524 totalIntensity = specOut [0]

525 intensitySpectrum = specOut [1]

526 wavelengths = specOut [2]

527 meanShift = specOut [3]

528 else:

529 print(’Intensity data not collected! Spectrometer

outputs will be set to -1.’)

530 totalIntensity = -1

531 intensitySpectrum = -1

532 wavelengths = -1

533 meanShift = -1

534

535 # Save measurements <--- takes on the order of 1-2e-5

seconds

536 if runOpts.saveData:
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537 Tsave[i] = Ts

538 Isave[i] = totalIntensity

539 if runOpts.saveSpatialTemp:

540 Ts2save[i] = Ts2

541 Ts3save[i] = Ts3

542 # Intensity spectra (row 1: wavelengths; row 2: intensities

; row 3: mean value used to shift spectra)

543 if runOpts.saveSpectra:

544 waveSave[i,:] = np.ravel(wavelengths)

545 specSave[i,:] = np.ravel(intensitySpectrum)

546 meanShiftSave[i] = meanShift

547 # Oscilloscope

548 if runOpts.saveOscMeas:

549 oscOut = tasks [2]. result ()

550 oscSave[i,:] = np.ravel(oscOut)

551 # Embedded Measurements from the Arduino

552 arduinoOut = tasks [3]. result ()

553 prevTime = arduinoOut [0]

554 if runOpts.saveEmbMeas:

555 ArdSave[i,:] = np.ravel(arduinoOut)

556

557 print(f’Measured Outputs: Temperature: {Ts:.2f}, Intensity:

{totalIntensity :.2f}\n’)

558

559 # Send inputs <--- takes at least 0.15 seconds (due to

programmed pauses)

560 # appj.sendInputsArduino(arduinoPI , power_seq[i], flow_seq[

i], dutyCycle , arduinoAddress)

561 appj.sendControlledInputsArduino(arduinoPI , float(power_seq

[i]), float(flow_seq[i]), arduinoAddress)

562

563 # Pause for the duration of the sampling time to allow the

system to evolve

564 endTime = time.time()

565 runTime = endTime -startTime

566 print(’Total Runtime was:’, runTime)

567 pauseTime = runOpts.tSampling - runTime

568 if pauseTime >0:

569 print(f’Pausing for {pauseTime} seconds ...’)

570 time.sleep(pauseTime)

571 else:

572 print(’WARNING: Measurement Time was greater than

Sampling Time! Data may be inaccurate.’)

573 if runOpts.saveData:

574 badTimes += [i]

575

576 # shut off APPJ

577 appj.sendInputsArduino(arduinoPI , 0.0, 0.0, 100.0,

arduinoAddress)

578
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579 # create dictionary of experimental data

580 exp_data = {}

581 exp_data[’Tsave ’] = Tsave

582 exp_data[’Isave ’] = Isave

583 exp_data[’Psave ’] = power_seq

584 exp_data[’qSave ’] = flow_seq

585 exp_data[’badTimes ’] = badTimes

586 if runOpts.collectSpatialTemp:

587 exp_data[’Ts2save ’] = Ts2save

588 exp_data[’Ts3save ’] = Ts3save

589 if runOpts.collectEntireSpectra:

590 exp_data[’waveSave ’] = waveSave

591 exp_data[’specSave ’] = specSave

592 exp_data[’meanShiftSave ’] = meanShiftSave

593 if runOpts.collectOscMeas:

594 exp_data[’oscSave ’] = oscSave

595 if runOpts.collectEmbedded:

596 exp_data[’ArdSave ’] = ArdSave

597

598 # save experimental data to have a backup copy

599 self.exp_data = exp_data

600 np.save(self.backupSaveDir+’OL_data_ ’+str(self.ol_count)+’.npy’

, exp_data)

601

602 # save csv version of experimental data

603 exp_saveDir = self.saveDir

604 if not os.path.exists(exp_saveDir):

605 os.makedirs(exp_saveDir , exist_ok=True)

606 exp_data_saver(exp_data , exp_saveDir , ’OL_data_ ’+str(self.

ol_count), runOpts)

607

608 self.ol_count += 1

609 return exp_data

610

611

612 def exp_data_saver(exp_data , saveDir , exp_name , runOpts):

613 """

614 This function saves experimental data generated using the

Experiment class.

615 This function is different from the automatic saving performed by

the

616 Experiment class when running an individual experiment. This

function will

617 save most data to csv files to make data easily interpretable

without

618 having to write a Python script to read the data.

619

620 exp_data is the dictionary of experimental data obtained by running

an

621 experiment via the the Experiments class
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622 saveDir is the path to the save location

623 timeStamp is the time stamp identifier of the series of experiments

624 runOpts is a class that defines the run options used during the

experiment

625 """

626 if runOpts.saveData:

627 # extract data

628 Tsave = exp_data[’Tsave ’]

629 Isave = exp_data[’Isave ’]

630 Psave = exp_data[’Psave ’]

631 qSave = exp_data[’qSave ’]

632 badTimes = exp_data[’badTimes ’]

633

634 dataHeader = "Ts (degC),I (a.u.),P (W),q (slm)"

635 # Concetenate inputs and outputs into one numpy array to save

it as a csv

636 saveArray = np.hstack ((Tsave.reshape (-1,1), Isave.reshape (-1,1)

, Psave.reshape (-1,1), qSave.reshape (-1,1)))

637 np.savetxt( saveDir+exp_name+"_inputOutputData.csv", saveArray ,

delimiter=",", header=dataHeader , comments=’’)

638 if badTimes:

639 np.savetxt( saveDir+exp_name+"_badMeasurementTimes.csv",

badTimes , delimiter=’,’)

640

641 if runOpts.saveSpatialTemp:

642 # extract data

643 Tsave = exp_data[’Tsave ’]

644 Ts2save = exp_data[’Ts2save ’]

645 Ts3save = exp_data[’Ts3save ’]

646

647 dataHeader = "Ts (degC),Ts2 (degC),Ts3 (degC)"

648 saveArray = np.hstack ((Tsave.reshape (-1,1), Ts2save.reshape

(-1,1), Ts3save.reshape (-1,1)))

649 np.savetxt( saveDir+exp_name+"_dataCollectionSpatialTemps.csv",

saveArray , delimiter=",", header=dataHeader , comments=’’)

650

651 if runOpts.saveSpectra:

652 # extract data

653 waveSave = exp_data[’waveSave ’]

654 specSave = exp_data[’specSave ’]

655 meanShiftSave = exp_data[’meanShiftSave ’]

656

657 print("Entire spectra will be saved in a compressed .npz file

with the following array variable names:\n"

658 +"’wavelengths ’ for the range of wavelength values\n"

659 +"’intensities ’ for the full intensity spectra

corresponding to the wavelength range\n"

660 +"’meanShifts ’ for the mean value used to shift the

spectra .\n"

661 +"Please use a Python script and numpy.load(file_name) to
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load this data.")

662 np.savez_compressed( saveDir+exp_name+"_dataCollectionSpectra",

wavelengths=waveSave , intensities=specSave , meanShifts=

meanShiftSave)

663

664 if runOpts.saveOscMeas:

665 # extract data

666 oscSave = exp_data[’oscSave ’]

667

668 dataHeader = "Vrms (V),Irms (A),Prms (W)"

669 np.savetxt( saveDir+exp_name+"_dataCollectionOscilloscope.csv",

oscSave , delimiter=",", header=dataHeader , comments=’’)

670

671 if runOpts.saveEmbMeas:

672 # extract data

673 ArdSave = exp_data[’ArdSave ’]

674

675 dataHeader = "t_emb (ms),Isemb (a.u.),Vp2p (V),f (kHz),q (slm),

x_pos (mm),y_pos (mm),dsep (mm),T_emb (K),P_emb (W),Pset (W),duty

(%),V_emb (kV),I_emb (mA)"

676 np.savetxt( saveDir+exp_name+"_dataCollectionEmbedded.csv",

ArdSave , delimiter=",", header=dataHeader , comments=’’)

677

678 print(’\n\nData saved in the following directory:’)

679 print(saveDir)

680 return

681

682 def process_experimental_data(exp_data , prob_info):

683 pass

B.4 Run-to-Run Simulations and/or Experiments

Facilitated by OOP

A crucial component of this dissertation involved run-to-run tuning/adaptation, i.e., re-
peated (but adapted) plasma treatments. To facilitate this, the code structure allows for the
environment to be wrapped with a data-driven optimization, and simulations/experiments
can proceed as defined in Algorithm 2.

The following code provides an example of code that can be used to perform Bayesian
optimization real-time experiments. This code in particular is an example of how Ax [123]
can be used to facilitate the additional layer of data-driven optimization. More detailed and
complex implementations can be found in the code repositories listed in Appendix A.

1 ’’’

2 main script to run Bayesian optimization for plasma operating parameter

tuning

3 on an atmospheric pressure plasma jet (APPJ) testbed

4
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Algorithm 2 Basic algorithm to conduct iterative data-driven optimization.

1: Initialize GP(s); Define budget
2: for n ≤ budget do
3: Update parameters of control policy
4: Perform closed-loop simulation or real-time experiment
5: Receive or calculate objective(s) Ji(θn) and constraint(s) cj(θn)
6: Use (θn, {Ji(θn)}mi=1) and (θn, {cj(θn)}pj=1) to update GPs
7: Optimize acquisition function to get new parameters θn+1

8: θn ← θn+1

9: end for

5 REAL -TIME EXPERIMENT

6

7 Requirements (main):

8 * Python 3

9 * PyTorch [https :// pytorch.org]

10 * BoTorch [https :// botorch.org] and Ax [https ://ax.dev]

11 * Matplotlib [https :// matplotlib.org] (for data visualization)

12 * a variety of other packages are necessary for communication with the

testbed ,

13 please see the import list for these requirements

14

15 Copyright (c) 2024 Mesbah Lab. All Rights Reserved.

16

17 Author(s): Kimberly Chan

18

19 This file is under the MIT License. A copy of this license is included

in the

20 download of the entire code package (within the root folder of the

package).

21 ’’’

22 # import Python packages

23 import sys

24

25 sys.dont_write_bytecode = True

26 import os

27 from datetime import datetime

28

29 # import 3rd party packages

30 import numpy as np

31 import pandas as pd

32 import torch

33 from ax.service.ax_client import AxClient

34 from ax.core.arm import Arm

35 from ax.service.utils.instantiation import ObjectiveProperties

36 from ax.modelbridge.generation_strategy import GenerationStrategy ,

GenerationStep
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37 from ax.modelbridge.registry import Models

38 from ax.modelbridge.factory import get_MOO_EHVI

39 from ax.modelbridge.modelbridge_utils import observed_hypervolume

40

41 SAMPLING_TIME = 1.0

42 NUM_OBJECTIVES = 3

43 OBJECTIVE_NAMES = [’alpha_H2O2 ’, ’productivity ’, ’thermal dose’]

44 MINIMIZE = False

45 OBJECTIVE_THRESHOLDS = [100.0 , 100.0, 10.0]

46 n_steps = 2

47 PARAMETER_NAMES = [

48 *[f"power{n}" for n in range(n_steps)],

49 *[f"flow{n}" for n in range(n_steps)],

50 *[f"distance{n}" for n in range(n_steps)],

51 ]

52 PARAMETER_TYPES = [’range ’, ’range ’, ’range ’, ’range ’]

53 PARAMETER_BOUNDS = [[1.2, 1.8], [1.0, 1.5], [6.0, 8.0], [420, 600]]

54 PARAMETER_VALUE_TYPES = [’float ’, ’float ’, ’float ’, ’int’]

55 NUM_BO_ITER = 20

56 grouped_data = True

57

58 init_data = pd.read_csv("./ results/all_initial_data_r2_restricted.csv",

index_col =0)

59 replicate_groups = [

60 [f"sample{i}" for i in range(2, 4)],

61 [f"sample{i}" for i in range (10, 13)],

62 [f"sample{i}" for i in range (15, 18)],

63 [f"paw_sample{i}" for i in range(1, 4)],

64 [f"paw_sample{i}" for i in range(7, 10)],

65 ]

66

67

68 if __name__ == "__main__":

69 n = int(input("Enter BO replicate number :\n"))

70

71 date = datetime.now().strftime("%Y_%m_%d_%H" + "h%M" + "m%S" + "s")

72 os.makedirs(f"./ results /{date}", exist_ok=True)

73 mobo_save_filepath = f"./ results /{date}/ exp_ax_client_snapshot{n}.

json"

74

75 # define a function to evaluate the parameters for a given system;

computes

76 # the objectives and/or constraints to use as data for BO; often ,

this

77 # encloses a single closed -loop simulation or real -time experiment

78 def evaluate(parameters , no_noise=False):

79 print("Parameters Suggested by BO:")

80 print(parameters)

81

82 r2_check = input("R2 >= 0.99? [Y/n]\n")
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83 if r2_check in ["y", "Y"]:

84 pass

85 else:

86 repeat = input("repeated parameters? [Y/n]\n")

87 if repeat:

88 return "abandon"

89 else:

90 return "fail"

91

92 objectives = {}

93 while True:

94 try:

95 for i,obj_name in zip(range(NUM_OBJECTIVES),

OBJECTIVE_NAMES):

96 obj_val = input(f"{obj_name} - Objective {i} value

:\n")

97 if no_noise:

98 objectives[f"obj{i}"] = (float(obj_val), 0.0)

99 else:

100 objectives[f"obj{i}"] = (float(obj_val), None)

101 break

102 except Exception as e:

103 print(e)

104 pass

105 return objectives

106

107 ## Define the BO problem

108 # define how to generate new candidate parameters (in this case all

109 # candidate parameters are generated by BO)

110 gs = GenerationStrategy(

111 steps = [

112 GenerationStep(

113 model = Models.MOO ,

114 num_trials = -1,

115 model_kwargs ={

116 "fit_out_of_design": True ,

117 }

118 )

119 ]

120 )

121

122 # define the objective properties

123 objectives = {

124 f"obj{i}": ObjectiveProperties(

125 minimize=MINIMIZE ,

126 threshold=OBJECTIVE_THRESHOLDS[i],

127 ) for i in range(NUM_OBJECTIVES)

128 }

129

130 # define the parameter properties (also defines your search space)
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131 parameters = [

132 {’name’: p,

133 ’type’: PARAMETER_TYPES[i],

134 ’bounds ’: PARAMETER_BOUNDS[i],

135 ’value_type ’: PARAMETER_VALUE_TYPES[i],

136 } for i,p in enumerate(PARAMETER_NAMES)

137 ]

138

139 # create the AxClient that facilitates the BO process

140 ax_client = AxClient(random_seed =42+n, generation_strategy=gs)

141 ax_client.create_experiment(

142 name=’bo_plasma_chem ’,

143 parameters=parameters ,

144 objectives=objectives ,

145 overwrite_existing_experiment=False ,

146 is_test=False ,

147 )

148

149 # attach initial data

150 # [...]

151

152 # Perform BO iterations

153 hv_list = []

154 for i in range(NUM_BO_ITER):

155 parameters , trial_index = ax_client.get_next_trial ()

156 raw_data = evaluate(

157 parameters ,

158 )

159 if type(raw_data) == str:

160 if raw_data == "abandon":

161 ax_client.abandon_trial(trial_index)

162 elif raw_data == "fail":

163 ax_client.log_trial_failure(trial_index)

164 else:

165 print("unknown data output")

166 ax_client.log_trial_failure(trial_index)

167 elif type(raw_data) == dict:

168 ax_client.complete_trial(trial_index , raw_data=raw_data)

169 else:

170 print("unknown data output")

171 ax_client.log_trial_failure(trial_index)

172

173 # compute HV

174 try:

175 dummy_model = get_MOO_EHVI(

176 experiment=ax_client.experiment ,

177 data=ax_client.experiment.fetch_data (),

178 )

179 hv_list.append(observed_hypervolume(modelbridge=dummy_model

))
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180 print(hv_list [-1])

181 except Exception as e:

182 print(e)

183 print(’Failed to compute hypervolume ’)

184 hv_list.append (0.0)

185

186 ax_client.save_to_json_file(mobo_save_filepath)




