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ABSTRACT OF THE DISSERTATION

Deep Learning Methods for High-Resolution Functional Annotation and Discovery
of Novel Connections Between Gene Sets

by

Hao Chen

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2021

Dr. Tao Jiang, Chairperson

Proteins are essential to life. Precise understanding of protein functions is critical

in addressing many biomedical questions. Different protein isoforms can be produced from a

single gene through alternative splicing, which greatly expands the diversity of proteins and

the complexity of cellular functions. However, precise annotations that differentiate func-

tions of isoforms are few. On the other hand, effective modeling of functional knowledge can

empower computational methods in many biological applications. A fundamental step in

such applications is the discovery of gene sets. Methods that can accurately map genotypes

to phenotypes are needed for detecting novel connections between gene sets derived from

different experiments, which could enable new biological discoveries.

Along with the accumulation of large-scale biological data, deep learning applica-

tions to biological data analysis are flourishing. In this dissertation, we propose three deep

learning methods for the two related problems in functional genomics, i.e., producing high-

resolution functional annotation at the isoform level, and discovering connections between

experimentally derived gene sets via functional knowledge. First, we design DIFFUSE,
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which for the first time integrates isoform sequences and expression profiles to systemati-

cally predict isoform functions, by combining the power of deep learning and probabilistic

graphical models. Second, to enhance the prediction of isoform functions, we propose

FINER, which jointly predicts isoform functions and isoform-isoform interactions through

the introduction of a unified learning objective, enabling the two tasks to benefit from each

other. Finally, we develop FEGS, a representation learning approach based on hypergraph

embedding, which embeds gene sets as compact features encoding functional information of

gene members and facilitates gene set comparison by more sensitive detection of common

phenotypes. FINER and DIFFUSE significantly outperform the existing isoform function

prediction methods, and their predictions are validated by independent biological data.

FEGS has been successfully applied to drug discovery and cell type identification.
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Chapter 1

Introduction

Proteins, the most versatile gene products, serve crucial functions in cellular sys-

tems. They provide structure to the cell, function as catalysts, transport molecules such

as oxygen, provide immune protection, control cell differentiation, growth, and death, and

work to synthesize new proteins. Many complex diseases are caused by the disruption of

protein functions [127, 66, 32], while identifying new therapeutic targets always requires the

understanding of how the target proteins function in the biological networks underlying the

diseases [81, 67]. Therefore, precise functional annotation of proteins is vitally important

in unraveling the molecular basis of such diseases and drug discovery.

The complexity of proteomes is much higher than that of genomes. In human,

the number of human protein-coding genes is estimated to be about 20 000. However,

it is estimated that more than 106 different proteins may exist in the human body [112].

Alternative splicing is commonly believed to play a central role in increasing the proteome

diversity [76, 107]. In alternative splicing, exons of a gene may be joined together in
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various ways to produce different mRNA variants which will be translated to different

proteins, known as protein isoforms. In the human genome, more than 95% of the multi-

exon genes undergo alternative splicing [116]. Isoforms carry specific, sometimes distinct

or even opposite, biological functions [95]. Although functions and interactions at the gene

level have been extensively studied and well recorded in databases [7, 73], there are very

few annotations that can differentiate functions of isoforms encoded by the same gene, that

is, isoforms are always treated as having the same functions in databases. Owing to the

importance of precise functional annotation of proteins and the large number of isoforms,

efficient computational methods that can provide high-resolution function predictions at

the isoform level are in great demand.

On the other hand, it has been shown that effectively modeling of functional knowl-

edge can empower the computational methods in many biological and medical applications

[81, 103]. One of the most basic outcomes when interpreting biological data in such ap-

plications is the discovery of gene sets. For instance, the gene expression analyses identify

sets of genes that are differentially expressed in different conditions. Genetic screening ex-

periments produce sets of genes associated with a disease. A high similarity between gene

sets derived from different experiments might indicate previously unrecognized connections

between studied objects. Due to the hypothesis that genes in an experimentally identified

gene set work coherently towards the same biological processes or functions, the designing

of computational methods that can sensitively detect gene set connections needs to consider

not only the numbers of shared genes between sets, but also biological functions enriched

in the set of genes.
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Thanks to the development of high-throughput sequencing, the genome sequences

of species become largely accessible, large-scale biological data are accumulated, which

depict cellular and molecular processes from different levels, such as the genome, proteome,

and transcriptome. In parallel to the advances in sequencing technologies, deep learning

applications to biological data analysis are flourishing due to their strength in integrating

heterogeneous data, modeling complex relationships underlying the data, and generalization

ability on unseen examples.

In this dissertation, we study deep learning methods for two related problems

in functional genomics. Specifically, we provide new methods to produce high-resolution

functional annotations at the isoform level and to effectively model functional knowledge to

help discover gene set connections to enable new biological discoveries. Three deep learning

methods are proposed. The details of computational challenges facing in the two problems

and the proposed methods are reviewed in Sections 1.1 and 1.2 respectively.

1.1 Predicting functions and interactions of isoforms

In eukaryotic cells, through the mechanism of alternative splicing, a single gene of-

ten produces multiple protein isoforms with different sequences and thus different structures.

Isoforms encoded by the same gene can carry distinct or even opposing biological functions,

as illustrated in Figure 1.1. Well-studied examples include apoptosis, in which alternative

splicing can act as an on/off switch for genes encoding pro-apoptotic or anti-apoptotic iso-

forms. For instance, two of the isoforms of BCL2L1 gene, BCL-xL, and BCL-xS, exhibit

completely opposite functions: BCL-xL inhibits apoptosis while BCL-xS promotes it [149].
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Figure 1.1: A eukaryotic cell is depicted. Alternative splicing produces protein isoforms
(red half squares) by introducing protein sequences (yellow) that are encoded by alternative
exons. The expression of different isoforms may change cellular processes, e.g., apoptosis.
Source: [135].

Although gene functions have been well studied, the specific functions of the vast

majority of isoforms are still poorly understood to date. Therefore, efficient computational

methods that can provide high-throughput and accurate predictions of isoform functions

are in great demand, which can be a complement to traditional biological pipelines that fall

short in power and efficiency.

Given the availability of annotated gene functions, supervised learning models

have been successfully applied for gene function prediction [110, 83]. In contrast, the lack

of isoform-level functional ground truth as the training labels makes the existing methods

in training gene function prediction models not applicable to the isoform function predic-

tion problem. Earlier isoform function prediction methods [99, 40, 102, 129] try to infer

isoform functions from their expression profiles alone. The experimental results suggest

that the prediction accuracy of these methods is less than desirable. Other data, such as

isoform sequences and conserved domains may carry complementary functional information
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to expression profiles and should be included in the predictive models.

To obtain more accurate isoform function predictions, we present a deep learn-

ing approach, named DIFFUSE [27] (Deep learning based prediction of IsoForm FUnctions

from Sequences and Expression). As illustrated in Chapter 2, DIFFUSE for the first time

integrates isoform sequences and expression profiles to systematically predict isoform func-

tions. DIFFUSE combines the power of deep learning and probabilistic graphical models to

model sequence information of individual isoforms and co-expression relationships of isoform

pairs respectively. We designed a semi-supervised learning algorithm to overcome the lack

of isoform-level functional ground truth. Experimental results show that DIFFUSE greatly

outperforms earlier methods. Predicted isoform functions of DIFFUSE are further vali-

dated by their consistency with protein isoform structures (represented by contact maps)

and consistency with some functional sequence features, e.g., the presence or absence of

certain types of binding sites in isoform sequences.

Another critical information in biological processes, protein-protein interactions

(PPIs), is also often used to study gene functions. However, similar to the situation of

functional annotation at the isoform level, “proteins” in the existing PPIs generally refer to

“genes”, which do not provide more detailed information concerning the interaction of iso-

forms. Therefore, directly using PPIs to predict isoform functions cannot help differentiate

the functions of isoforms.

On the other hand, the isoforms of a gene can have vastly different interaction

profiles. Such difference can be as great as that between proteins encoded by different

genes. The interacting partners of isoforms often exhibit distinct functional characteristics
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[161]. In fact, several computational methods have been developed to refine protein-protein

interactions into isoform-isoform interactions (IIIs) [94, 147, 48, 72, 165]. However, the

prediction of isoform functions and prediction of isoform-isoform interactions, though in-

herently intertwined, have so far been treated as independent computational problems in

the literature. How to solve the two problems jointly and exploit the reciprocal relationship

between them remains an interesting challenge.

Hence, we propose FINER (enhancing the Functional prediction of Isoforms via

NEtwork Refinement on their interactions) [26], the first joint-learning method that simul-

taneously predicts isoform functions and refines protein-protein interactions from the gene

level to the isoform level. As demonstrated in Chapter 3, jointly modeling the two tasks

enables them to benefit from each other in terms of performance. We applied our method

to predict tissue-specific functions and interactions of isoforms in human and found our

predictions provide insights supported by biological evidence. We found our predictions

are consistent with the tissue specificities of isoforms and also demonstrate the pattern of

isoform interactions concerning their subcellular localization.

1.2 Discovering gene set connections via functional informa-

tion of genes

Omics-based analyses are now standard practice to deconstruct the cellular and

molecular processes. One of the most common outcomes when interpreting large-scale

omics datasets is the discovery of gene sets. For instance, genome-wide association studies

(GWAS) produce sets of genes associated with a disease. Proteomics studies produce sets
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of proteins produced in different conditions. In all of these cases, the basic hypothesis is

that the identified set of genes work coherently towards the same biological processes or

functions. Comparison of such gene sets derived from different experiments can lead to new

discoveries. For example, the L1000 dataset [136] creates a comprehensive catalog of gene

expression signatures for gene knockdown/over-expression experiments and drug treatment

experiments. A high similarity between gene sets derived from different signatures might

indicates previously unrecognized connections, for example, the connection between a drug

and its protein targets.

Routine approaches characterize similarities between gene sets based on statistics

measuring the significance of the number of shared genes between two sets. Commonly

used ones are the Fisher’s exact test [15] and the weighted Kolmogorov-Smirnov-like statistic

introduced in GSEA [137]. However, in experimentally derived gene sets, a biological process

or function is usually represented by a sparse subset of its associated genes. Therefore, two

sets of genes from phenotypically similar experiments may show distressingly little overlap

[47], which makes the statistical methods based on gene identity counting less effective.

Based on the hypothesis that the set of genes identified from an experiment con-

sistently function in the same biological processes or pathways, we propose a representation

learning approach, FEGS (Functional Embeddings of Gene Sets), which embeds gene sets

as compact features encoding information of functions enriched in the sets. The details of

the method are presented in Chapter 4. The embeddings facilitate gene set comparison

by more sensitively detecting shared pathways between gene sets. We successfully applied

our method to high-impact applications. By representing single cells as sets of detected
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genes, our method better captures cellular phenotype similarities and thus improves cell

type identification. Our method also improves drug-like compound target prediction using

the gene sets derived from perturbation transcriptomic signatures.

1.3 Organization of the rest of the dissertation

The rest of the dissertation consists of three chapters. In each chapter, we will

introduce a computational problem with its background, and present the proposed method

that attempts to address the problem. The experimental results with the conclusions will

then be discussed. Specifically, DIFFUSE, the method for systematically predicting isoform

functions, will be introduced in Chapter 2. FINER, the method for jointly modeling the

isoform function prediction and the isoform-isoform interaction prediction, will be presented

in Chapter 3. FEGS, the representation learning method for gene set embeddings, will be

discussed with its applications in Chapter 4.

The publications encompassed in this dissertation are listed below:

• Hao Chen, Dipan Shaw, Jianyang Zeng, Dongbo Bu, and Tao Jiang. “DIFFUSE:

predicting isoform functions from sequences and expression profiles via deep learning.”

27th Conference on Intelligent Systems for Molecular Biology (ISMB/ECCB 2019),

Basel, Switzerland, 2019. Also appears in Bioinformatics, 35(14): i284-i294. 2019.

• Hao Chen, Dipan Shaw, Dongbo Bu, and Tao Jiang. “FINER: enhancing the predic-

tion of tissue-specific functions of isoforms by refining isoform interaction networks.”

NAR Genomics and Bioinformatics 3(2): lqab057. 2021.
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• Hao Chen, Bin Zhou, Max W. Chang, Lars Pache, Christopher Benner, Tao Jiang,

Sumit K. Chanda, and Yingyao Zhou. “Novel embeddings in functional spaces to help

discover connections between gene sets.” In preparation.
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Chapter 2

DIFFUSE: Predicting Isoform

Functions From Sequences and

Expression Profiles via Deep

Learning

2.1 Introduction

Due to alternative splicing, exons of multi-exon genes are selectively included in

the transcription process, thus generating multiple isoforms from a single gene. Isoforms

carry specific, sometimes distinct or even opposing, biological functions. Moreover, the

expression of an isoform is often specific to tissue, developmental stage or environmental

conditions, which is responsible for the diversity and adaptability of cellular activities [154,

138]. Therefore, delineating the functions of isoforms is crucial to the study of functional
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complexity and diversity of genomes.

Despite their importance, the specific functions of the vast majority of isoforms

are still poorly understood to date. Although many well-established databases exist [7, 73]

for gene functional annotation, very few functions have been annotated at the isoform level.

Owing to the large number of isoforms, systematic and global analysis of isoform functions

experimentally is impractical in a short period. Therefore, efficient computational methods

that can provide high-throughput and accurate predictions of isoform functions are in great

demand. Given the availability of annotated gene functions, supervised learning has been

successfully applied for gene function prediction [110, 83]. In contrast, the lack of isoform-

level functional ground truth annotation makes isoform function prediction much more

challenging.

Several methods have been proposed for isoform function prediction recently, in-

cluding iMILP [99], mi-SVM [40], WLRM [102], and DeepIsoFun [129]. The basic idea

of these methods is to distribute the functional annotation of a gene to all of its isoforms

using techniques such as multiple instance learning (MIL) and domain adaptation (DA).

However, these methods suffer from the limitation that they infer isoform functions from

the information contained in expression profiles alone. The experimental results suggest

that the prediction accuracy of these methods is less than desirable: the best area under

the receiver operating characteristics curve (AUC) achieved by these methods is around 0.7

and the best area under the precision-recall curve (AUPRC) is around 0.3 [129].

Different types of biological data may carry complementary information of iso-

form functions, and hence a systematic integration of such information might lead to a
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substantial improvement in prediction accuracy [97, 138]. In particular, we may divide

informative biological data into the following two types. i) Data of individual isoforms:

An isoform sequence may contain some functional sites, say active or binding sites, signal

peptides and motifs. These sites, although very short, could provide strong signals about

the functions of an isoform. Another source of information is (evolutionarily) conserved

domains. Compared with functional sites, conserved domains are much longer, and their

conservation during the evolutionary process may imply their important biological func-

tions. Both functional sites and conserved domains could be identified from an isoform

sequence, and it is well-known that the presence or absence of such sequence features can

significantly influence its functions. For example, [140] studied the impact of alternative

splicing on transcription factors in mouse and reported that alternative splicing can delete

DNA binding domains, generating tissue-specific protein isoforms with distinct functions.

ii) Data between isoforms: From the expression profiles of isoforms, we could easily identify

the co-expression relationship between isoforms [42]. This co-expression relationship has

been used to predict isoform functions in the above-mentioned methods as co-expressed

isoforms tend to share similar biological functions. These two types of biological data come

in different forms: the functional sites and conserved domains can be represented as strings

while the co-expression relationship is usually represented as a network. How to integrate

such different forms of data in isoform function prediction remains as a challenge.

In this chapter, we present a novel approach, named DIFFUSE (Deep learning

based prediction of IsoForm FUnctions from Sequences and Expression), that integrates

both isoform sequences and expression profiles to predict isoform functions. Our approach
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goes through two stages to integrate various information into a unified predictive model. In

the first stage, a deep neural network (DNN) is designed to capture features from isoform

sequences and conserved domains. Taking the sequence and conserved domains of an isoform

as the input, the DNN computes an initial score that measures how likely the isoform has

the function under consideration. In the second stage, a conditional random field (CRF)

is designed to exploit the co-expression relationship between isoforms. By combining the

initial scores computed by the DNN with the co-expression relationship, the CRF assigns

isoforms functional labels based on the initial scores while trying to keep highly co-expressed

isoforms attaining the same labels. To overcome the lack of isoform-level training labels,

we propose an iterative semi-supervised training algorithm based on the multiple instance

learning (MIL) framework similar to the one in [3]. Specifically, our approach first initializes

all isoforms of genes that have the function under consideration with positive labels and

the other isoforms with negative labels. The initial functional labels are then used to train

the model parameters. The new parameters of the model are next used to update the

label of each isoform from positive genes. In each iteration, these two steps are performed

alternately. Note that the isoforms of the same gene may be assigned different labels an

update, which would encourage the model to capture features that can differentiate the

functions of different isoforms.

To evaluate the performance of DIFFUSE, we first measure its prediction accuracy

using the gene-level functional annotation in Gene Ontology (GO) as done in [99, 40, 102,

129]. DIFFUSE achieves an average AUC of 0.840 and AUPRC of 0.581 over 4,184 func-

tional categories. We also compare DIFFUSE with the existing methods on several datasets.
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Four state-of-the-art isoform function prediction methods proposed in [99, 40, 102, 129] are

included in the comparison. The results demonstrate that our method significantly outper-

forms the others. We further analyze the divergence of the predicted functions of isoforms

from the same gene. The scarcity of experimentally-verified isoform functions makes the

validation of predicted functions difficult. We thus conduct a series of computational ex-

periments to indirectly validate our predictions. More specifically, we first analyze how

functional similarity is correlated with isoform sequence, expression and structural similar-

ities. Our analysis shows that the similarity of predicted functions has higher correlation

with isoform structural similarity than with sequence similarity or expression similarity,

which accords previous studies [68]. The predictions are then further validated by assess-

ing their consistency with the presence or absence of some well-studied functional sequence

features followed by a targeted literature search.

2.2 Materials and methods

2.2.1 Datasets

Isoform sequences of the human genome are downloaded from the NCBI Reference

Sequences database (RefSeq GRCh38.p12; [119]. To ensure sequence quality, only manually-

curated RefSeq records are recruited in our computational experiments. The ‘Coding DNA

Sequence’ (CDS) is extracted for each isoform using the RefSeq CDS annotation file. Two

or more isoforms corresponding to the same CDS are treated as a single isoform. For each

isoform, we search it against the NCBI Conserved Domain Database (CDD) [105] to acquire

its conserved domains.

14



Isoform expression profile data are obtained from the literature [129]. It consists

of human isoform RNA-seq data from the NCBI Reference Sequence Archive (SRA) [91]

consisting of 334 studies and 1,735 experiments. Only isoforms that appear in both the

sequence data and the expression data are kept. This results in a total of 39,375 isoforms

from 19,303 genes consisting of 9,032 multiple isoform genes (MIGs) and 10,271 single

isoform genes (SIGs).

We adopt the functional categories defined by Gene Ontology (GO), and download

gene functional annotation from the UniProt Gene Ontology Annotation (UniProt-GOA)

database [64]. To ensure the annotation quality, we only keep manually-curated GO terms

and skip terms with the ‘IEA’ evidence code. Similar to [99, 129], we also ignore GO terms

that are too specific or general. Finally, 4,184 GO terms associated with the numbers of

genes in the range of 10 to 1,000 are considered in this study.

2.2.2 Methods overview

As mentioned before, DIFFUSE predicts isoform functions by integrating the in-

formation of isoform sequences, conserved domains and expression profiles into a unified

predictive model. More specifically, we train a model for each GO term. The inference

procedure of the model consists of two stages. In the first stage, taking the sequence and

conserved domains of an isoform as the input, the DNN computes an initial score in the

range of [0, 1] measuring how likely the isoform has the GO term. In the second stage, the

CRF makes a final prediction by considering both the initial scores and the co-expression

relationship among isoforms. To overcome the lack of annotated isoform functions, we de-
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Figure 2.1: Overview of our computational pipeline. (a) Alternative splicing generates
multiple isoforms from a gene with different sequences and expression profiles. (b) The
DIFFUSE model contains two key components, a DNN and a CRF. The DNN consists of
several layers and components including a CNN and an LSTM. Its input consists of trigrams
generated from a CDS or protein sequence and conserved domains. It computes an initial
score indicating how likely the output label is positive. The CRF can be represented as a
complete graph G over variables y, which denote the labels of isoforms. Each unary clique
or pairwise clique in G induces a unary potential or a pairwise potential denoted as ψu or
ψp. The CRF makes predictions by minimizing a Gibbs energy composed of ψu’s and ψp’s.
The initial scores are factored into ψu’s while the co-expression relationship is factored into
ψp’s. The DNN and CRF are trained together using an iterative semi-supervised learning
algorithm based on MIL, where the positive likelihood of each isoform is initialized with its
initial score and then updated iteratively through the mean field approximation. (c) Several
analyses are conducted in our study to support or validate our predicted isoform functions.

velop a semi-supervised algorithm following [3] to train both the DNN and CRF together

iteratively. To help training the DNN, protein sequences from the SwissProt [13] database

are also used as training data. In order to avoid potential information leak between the

training and test data, we consider clusters of orthologous groups (COGs) and make sure

that each COG is never split between the training and test data. A schematic illustration

of DIFFUSE as well as the analyses to be performed in our study is given in Figure 2.1,

and more details of the method are provided below.

2.2.3 Exploring sequence features using a DNN

DNNs are known to be effective in capturing biological sequence features [167, 83].

Here, we design a DNN consisting of two components (Figure 2.1b) to capture informative
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features from isoform sequences and conserved domains, respectively. We use a convolu-

tional neural network (CNN) to extract sequence features. Specifically, we first translate

each isoform CDS to an amino acid sequence. Then, each sequence is represented as a

series of overlapping trigrams, denoted as s = (t1, t2, ..., tm). Each trigram is embedded as

a continuous vector by the dense embedding layer (denoted as embed(·)) [10]. Note that

the vector representations are optimized during the training process and thus are able to

capture similarities between the trigrams. We then employ a one-dimensional convolutional

layer with multiple convolution filters (denoted as conv(·)) to scan the encoded sequence

and detect the functional sites. After that, pooling (denoted as pool(·)) and dense (denoted

as dense(·)) layers are used to reduce the dimensionality of the hidden features.

A big challenge here is that the lengths of isoform sequences vary a lot. Due

to the fixed size of pooling window and stride, the output size of a normal pooling layer

depends on the length of the input sequence, which makes connecting the pooling layer to

the following dense layer impossible. To address this problem, we adopt a ‘pyramid pooling’

layer in our model, which is widely used in computer vision [58]. We modify it, however,

as a one-dimensional pooling layer. The pyramid pooling layer can generate a fixed-length

output regardless of the input sequence length. Specifically, it uses multi-level pooling bins.

Pooling bins at different levels have sizes proportional to the sequence length with different

ratios. The number of bins at each level is fixed. High level pooling bins capture global

features while low level bins capture local features.

Conserved domains are the building blocks of proteins. Their duplication, fusion

and recombination during evolution produce proteins with novel structures and functions.

17



In addition, the order of domains is also conserved during evolution [85]. Rearrangement of

domains can influence functions of a protein. We use a recurrent neural network (RNN) to

capture domain features. Domain order information is considered in the network structure

design. Specifically, we order the conserved domains of an isoform as a sequence, denoted

as d = (dm1, dm2, ..., dmn), where each domain is represented by a unique ID. Then, we use

the same dense embedding technique to embed each ID into a vector representation. To

capture the order information of domains, we apply the recurrent layer with long short-term

memory (LSTM) units (denoted as LSTM(·)) to process the encoded domain sequence. The

output of the last LSTM unit is used as the feature vector from the domain component.

Feature vectors from both the sequence and domain components are then concate-

nated to form a unified feature representation. Finally, the unified representation is fed

into a logistic regression layer (denoted as logit(·)) to compute the initial score as follows.

Formally, given isoform sequence s and sequence of domains d, the initial score computed

as follows:

InitialScore(s, d) = logit(dense(fs(s), fd(d)))

fs(s) = dense(pool(conv(embed(s))))

fd(d) = LSTM(embed(d)).

(2.1)

2.2.4 Exploring co-expression relationship using a CRF

The function of an isoform is sometimes determined by its interacting partners

that are often co-expressed. To capture the co-expression relationship among isoforms, we

design a CRF in the second stage (Figure 2.1b). Co-expression networks are first derived

from the RNA-seq data. Specifically, we construct a co-expression network for each SRA
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study using the WGCNA algorithm [89], which has been widely used in the studies of

weighted correlation network analysis. To ensure the network quality, we only consider

SRA studies with at least ten experiments. This results in a total of 42 networks. For each

pair of isoforms, the absolute value of the Pearson correlation coefficient (PCC) between

their expression profiles is assigned as the corresponding edge weight using the soft threshold

method of WGCNA.

We denote the sequence, domains and expression profile of an isoform i as si, di

and ei, and use a binary scalar yi to denote its label, indicating whether the isoform has the

function under consideration or not. The CRF model aims to assign each isoform a label

by minimizing a Gibbs energy function, which is defined as:

E(y|s, d, e) = θ1

∑
i

ψu(yi|si, di) + θ2

∑
i<j

ψp(yi, yj |ei, ej). (2.2)

The Gibbs energy is characterized by both the initial scores from the DNN and the co-

expression relationship between isoforms. The unary potential ψu(yi|si, di) comes from the

initial scores, which is defined as ψu(1|si, di) = 1 − InitialScore(si, di) and ψu(0|si, di) =

1−ψu(1|si, di). The co-expression relationship is considered in the pairwise potential, which

is defined as:

ψp(yi, yj |ei, ej) = µ(yi, yj)
∑
l

wl(ei, ej), (2.3)

where wl(ei, ej) is the edge weight between isoform i and isoform j in the l-th co-expression

network and µ(yi, yj) is a label compatibility function defined as µ(yi, yj) = [yi 6= yj ] that is

used to penalize highly co-expressed isoforms with differently assigned labels. The weights
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θ1 and θ2 control the relative importance of the unary potential ψu and pairwise potential

ψp in the Gibbs energy, and will be discussed more in the next section.

By finding a label assignment ŷ that minimizes the Gibbs energy E(ŷ|s, d, e),

we aim to assign each isoform an label with low unary energy and, at the same time,

ensure that highly co-expressed isoforms get the same label. Because of the computational

complexity of exact inference, we apply an efficient approximation algorithm named the

mean field approximation similar to [80]. Here, minimizing the Gibbs energy is formulated

as maximizing the following probability:

P (y|s, d, e) =
1

Z
exp(−E(y|s, d, e)), (2.4)

where Z =
∑

y exp(−E(y|s, d, e)) is a normalization constant. Instead of computing the ex-

act distribution P (y|s, d, e), the approximation algorithm computes a distributionQ(y|s, d, e)

that minimizes the KL-divergence D(Q||P ), where the distribution Q is defined as a product

of independent marginals:

Q(y|s, d, e) =
∏
i

Qi(yi|si, di, ei). (2.5)

Minimizing the KL-divergence yields the following iterative update equation:

Qi(yi|si, di, ei) =
1

Zi
exp{−θ1ψu(yi|si, di)

− θ2

∑
j 6=i

∑
l

wl(ei, ej)Qj(1− yi|sj , dj , ej)}.
(2.6)

Qi is initialized with the unary potential and updated iteratively according to Equation 2.6
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Algorithm 1 Training algorithm of DIFFUSE

Initialization: Initialize the label ŷi of each instance in a positive or negative bag as ŷi = 1
or 0, respectively. Initialize DNN parameters w and CRF parameters θ.

Parameter update: Fix instance labels and update model parameters.
1: Compute ∇w`DNN (w : s, d, ŷ) and use SGD to update w.
2: Compute ∇θ`CRF (θ : s, d, e, ŷ) and use L-BFGS-B to update θ.

Label update: Fix model parameters and update instance labels.
3: for each instance i in positive bags do
4: ŷi = arg maxyi Qi(yi)
5: end for
6: for each positive bag b do
7: if max(ŷi) == 0, for all instances i belonging to bag b then
8: i = arg maxiQi(1), for all instances i belonging to bag b
9: ŷi = 1

10: end if
11: end for

until convergence, which gives the final output of our model.

2.2.5 Training the model with the MIL framework

Due to the lack of ground truth isoform labels, the conventional supervised training

algorithm cannot be directly applied to our model. Hence, we adopt a semi-supervisd model

training algorithm under the MIL framework similar to the one in [3], which is outlined in

Algorithm 1. In the MIL framework, each gene is treated as a bag, the isoforms of a

gene are treated as the instances in the bag, and only the ground truth labels of the bags

(i.e., genes) are required. A positive bag refers to a gene that has the function under

consideration. Clearly, a positive bag should contain at least one positive instance, while a

negative bag should contain no positive instances. We first initialize the instances of positive

bags with positive labels, and the others with negative labels. Then, the model parameters

can be optimized with the initial labels in the normal supervised learning manner. In
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particular, given the training instances {(si, di, ei, ŷi)}i, the loss function in terms of the

DNN parameters w is defined as the sum of the negative log likelihoods:

`DNN (w : s, d, ŷ) =−
∑
i

ŷi log(InitialScore(si, di))

+ (1− ŷi) log(1− InitialScore(si, di)).

(2.7)

Gradients in terms of w can be computed and the stochastic gradient descent (SGD) algo-

rithm is used to optimize w. Similarly, the CRF parameters θ are optimized by minimizing

the negative log-likelihood `CRF using the L-BFGS-B algorithm [172], which is defined as:

`CRF (θ : s, d, e, ŷ) = − logP (ŷ|s, d, e) +
∑
i

θ2
i

2σ2
. (2.8)

Here, the second term is a regularization term to reduce over-fitting, where σ2 is a free

parameter that determines how much to penalize large weights. L-BFGS-B requires to com-

pute the gradient of `CRF in terms of θ. However, the number of terms in Z of P (ŷ|s, d, e)

is exponential in the number of instances, making the gradient computation intractable.

We therefore use an approximate gradient algorithm given in [139], which approximates the

true gradient by replacing P with the marginals Q:

∂

∂θ1
`CRF (θ : s, d, e, ŷ) ≈

∑
i

Qi(1− ŷi|si, di, ei)(ψu(ŷi|si, di)

− ψu(1− ŷi|si, di)) +
θ1

σ2
,

(2.9)
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∂

∂θ2
`CRF (θ : s, d, e, ŷ) ≈

∑
i

Qi(1− ŷi|si, di, ei)

(
∑
j 6=i

ψp(ŷi, 1− ŷi|ei, ej)−
∑
j 6=i

ψp(1− ŷi, ŷi|ei, ej)) +
θ2

σ2
.

(2.10)

After updating the parameters of the model, we perform inference for each instance

in positive bags using the new model. Instance labels are then updated according to the

inference: ŷi = arg maxyi Qi(yi). For each positive bag, if all its instances are assigned with

negative labels, we select the instance with the largest positive prediction score Qi(1) in

the bag as positive. The parameter update step and the label update step are repeated

alternately until convergence.

2.2.6 Implementation details

A large number of manually reviewed protein sequences with annotated GO terms

are available on the SwissProt [13] database. Most proteins in the database represent the

canonical isoforms of genes and therefore will not help improve the model’s ability to dif-

ferentiate the isoform functions of the same gene. However, they are still precious resources

that can help our DNN learn important functional features from sequences and domains.

We download 89,459 eukaryotic (other than human) protein sequences with GO annotation

from the SwissProt database. Conserved domain data are downloaded accordingly using

the same method described before. The data are used to train the DNN. Specifically, given

the sequence, domains and ground truth label of each protein instance, the initial score and

loss of DNN are computed for the instance and then the loss is used to update the DNN

parameters.
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We partition our data into the training, validation and test sets with the propor-

tions of 70%, 10% and 20%, respectively. To avoid potential information leak (i.e., isoforms

with very similar sequences and similar functions appear in different components of the

partition), we split the data according to two criteria. First, we require that isoforms of the

same gene are partitioned into the same set. Second, since our data contains proteins from

different eukaryotes, we forbid orthologous genes to be split. In other words, we consider

clusters of orthologous groups (COGs) [143] and require that all genes of the same COG

are partitioned together. 10,308 COGs are downloaded from the EggNOG database [62].

Note that the SwissProt proteins are only used for training our model and are not involved

in testing. Hyperparameters of the model are manually tuned based on the model perfor-

mance on the validation data. The validation data are then merged with the training data

to train a final model for each GO term before we assess its performance in terms of AUC

and AUPRC.

In our computational experiments, the Adam optimizer [77] is used to optimize

the DNN. The sizes of the embedding vectors for both amino acid trigrams and domain

unique IDs are 32. We use 64 convolution filters with length 32 and stride 1. The pyramid

pooling layer consists of pooling bins from four levels, with 1, 2, 4, and 8 bins at each level,

respectively. To prevent over-fitting the model, the dropout [134] technique is adopted. The

DNN model is implemented using the Keras library with TensorFlow [1] as the backend.

The SciPy package is used for implementing the L-BFGS-B algorithm. To accelerate the

training process, NVIDIA K80 GPUs are used.
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2.3 Results

2.3.1 Prediction performance of DIFFUSE

Since annotated isoform functions are generally unavailable, following the evalu-

ation procedure used in previous isoform function prediction studies [99, 40, 102, 129], we

first evaluate the performance of our method using gene-level functional annotation. For

each GO term, the maximum prediction score among the isoforms of a gene is taken to

check its consistency with the gene annotation. To investigate how the prediction perfor-

mance may be influenced by GO branches and the number of positive genes, we divide all

the GO terms into 12 groups based on GO branch and term size, which is defined as the

number of genes associated with a GO term. Specifically, we first divide GO terms into

three groups based on the three main GO branches (i.e., Biological Process (BP), Molecular

Function (MF) and Cellular Component (CC)). Then, the terms of each group are divided

into four subgroups with term sizes in the ranges of [10, 20], [21, 50], [51, 100], and [101,

1000], respectively. Both AUC and AUPRC are used to evaluate the performance for each

GO term. Since the baseline for AUPRC (ratio of positive genes in the test set) is different

for different GO terms, to make comparison across different groups more fair, we unify the

AUPRC baseline as 0.1 for all terms by duplicating positive genes in the test set. Out of

the 4,184 GO terms, 3,037 are in the BP group, 432 in CC and 715 in MF.

The (numerical, also called macro) average AUC value for BP, CC and MF are

0.829, 0.850 and 0.881, and the average AUPRC values are 0.563, 0.586 and 0.656, re-

spectively. The distributions of AUC and AUPRC values in different groups are shown in
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Figure 2.2: Performance evaluation in terms of AUC and AUPRC. GO terms are divided
into groups based on the three main GO branches and term sizes. (a) Distributions of AUC
scores over GO terms in different groups. (b) Distributions of AUPRC scores.

Figure 2.2. Interestingly, we observe that more positive genes do not yield higher perfor-

mance. The groups with the largest term sizes (i.e., range [101, 1000]) in fact have relatively

low AUC and AUPRC values compared with the other groups. This phenomenon has been

observed in several previous studies as well [129, 99]. A possible explanation is that as

the term size increases, the biological features (i.e., sequences and expression) of isoforms

associated with a GO term become more heterogeneous and the correlation between the

functional similarity and the similarities of the biological features decreases, as discussed in

detail in [129].

2.3.2 Performance comparison with the existing methods

We compare DIFFUSE with four state-of-the-art isoform function prediction meth-

ods including mi-SVM [40], iMILP [99], WLRM [102], and DeepIsoFun [129]. The compari-

son focuses on a small set of GO terms, GO Slim [30], which provides a broad overview of the

ontology content. 96 GO terms are kept after the term size filtration mentioned above. To
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Table 2.1: Comparison between DIFFUSE and other isoform function prediction methods.

Method Dataset#1 Dataset#2 Dataset#3
AUC AUPRC AUC AUPRC AUC AUPRC

DIFFUSE 0.835 0.585 0.828 0.537 0.817 0.524
DeepIsoFun 0.729 0.280 0.722 0.257 0.712 0.231

WLRM 0.685 0.265 0.667 0.237 0.672 0.201
mi-SVM 0.668 0.248 0.671 0.221 0.706 0.235
iMILP * 0.678 0.317 0.662 0.292 0.639 0.288

* Since iMILP classifies an isoform into three classes rather than two classes
for a given GO term (i.e., positive, negative or unknown), we measure its
AUC and AUPRC values using only the positive and negative classes.

make a comprehensive comparison, besides the dataset analyzed above (called Dataset#1),

we include two other datasets from the literature [99, 40]. In particular, Dataset#2 contains

RNA-seq data for 29,806 human isoforms of 18,923 genes, which were generated from 29

SRA human studies consisting of 455 experiments. Dataset#3 contains RNA-seq data for

16,191 mouse isoforms of 13,692 genes, which were generated from 116 SRA studies con-

sisting of 365 experiments. The corresponding sequence, domain and annotation data are

collected by following the same procedure described in the ‘Materials and methods’ section.

The average AUC and AUPRC values are reported in Table 2.1. Note that iMILP performs

a 3-class classification rather than 2-class. While all other methods treat genes without a

GO annotation as negatives of this GO term, iMILP selects negative genes according a more

stringent criterion and treats the others as unknowns. Here, we assess the AUC and AUPRC

of iMILP based only on the positive genes and selected negative genes, which might incur

some favorable bias for the method. Nonetheless, significant improvements by our method

have been observed. DIFFUSE achieves improvements of 14.5%, 14.7% and 14.7% in terms

of AUC and 84.5%, 83.9% and 81.9% in terms of AUPRC over the best performance of

the other methods on the three datasets, respectively. Some example receiver operating
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(a) ROC curves on term GO:0043065

DIFFUSE: 0.825
DeepIsoFun: 0.718
WLRM: 0.656
mi-SVM: 0.651
iMILP: 0.612
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(b) PR curves on term GO:0043065
DIFFUSE: 0.605
DeepIsoFun: 0.394
WLRM: 0.262
mi-SVM: 0.186
iMILP: 0.137
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(c) ROC curves on term GO:0046872

DIFFUSE: 0.851
DeepIsoFun: 0.728
WLRM: 0.582
mi-SVM: 0.638
iMILP: 0.613
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(d) PR curves on term GO:0046872
DIFFUSE: 0.621
DeepIsoFun: 0.232
WLRM: 0.151
mi-SVM: 0.197
iMILP: 0.177
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(e) ROC curves on term GO:0043065

DIFFUSE: 0.825
DIFFUSE w/o CRF: 0.819
DIFFUSE w/o domains: 0.797
DIFFUSE w/o sequences: 0.800
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(f) PR curves on term GO:0043065

DIFFUSE: 0.605
DIFFUSE w/o CRF: 0.596
DIFFUSE w/o domains: 0.554
DIFFUSE w/o sequences: 0.453
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(g) ROC curves on term GO:0046872

DIFFUSE: 0.851
DIFFUSE w/o CRF: 0.840
DIFFUSE w/o domains: 0.817
DIFFUSE w/o sequences: 0.804
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(h) PR curves on term GO:0046872

DIFFUSE: 0.621
DIFFUSE w/o CRF: 0.600
DIFFUSE w/o domains: 0.535
DIFFUSE w/o sequences: 0.475
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Figure 2.3: Example receiver operating characteristic (ROC) curves and precision-
recall (PR) curves on terms GO:0043065 (positive regulation of apoptotic process) and
GO:0046872 (metal ion binding). The plots (a-d) illustrate the ROC and PR curves achieved
by the methods compared in Table 1. The curves on both GO terms demonstrate that DIF-
FUSE performs better than the other methods across all thresholds on false positive rate or
recall. The plots (e-h) illustrate the ROC and PR curves on the same GO terms achieved by
the four variants of DIFFUSE discussed in the later section 3.1.3. The PR curves on both
GO terms suggest that after removing sequence features from DIFFUSE, the model pre-
dicts more false positives with high scores, which may explain why the AUPRC of DIFFUSE
drops so significantly without using sequences.
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Table 2.2: Comparison of the performance of DIFFUSE in training and testing on all three
datasets. The average performance gaps across the three datasets are 6.3% in terms of
AUC and 8.3% in terms of AUPRC. These are well within acceptable ranges reported in
the literature [166, 75] and thus likely to indicate that our model was not grossly overtrained
in the experiments.

Dataset#1 Dataset#2 Dataset#3

AUC AUPRC AUC AUPRC AUC AUPRC

DIFFUSE training 0.891 0.632 0.882 0.588 0.875 0.574
DIFFUSE test 0.835 0.585 0.828 0.537 0.817 0.524

characteristic curves and precision-recall curves on two GO terms achieved by the methods

are illustrated in Figure 2.3a-d. The performance of DIFFUSE on the training data is given

in Table 2.2 to show that the model is not grossly overtrained.

2.3.3 Analyzing the effects of model components

To evaluate the contribution of some key components and biological features used

in our model, we perform an ablation study by removing these components/features from

model and measuring how the performance of the model is affected. Specifically, we remove

the CRF component, conserved domain features and sequence features from DIFFUSE,

respectively, and test its performance on GO Slim. We observe that the average AUC

drops 1.7% (from 0.835 to 0.821) and the average AUPRC drops 7.5% (from 0.585 to 0.541)

without the CRF. The average AUC drops 3.7% (from 0.835 to 0.804) and the average

AUPRC drops 21.2% (from 0.585 to 0.461) without using conserved domains. The average

AUC drops 4.6% (from 0.835 to 0.797) and the average AUPRC drops 27.9% (from 0.585 to

0.422) without using sequences (Figure 2.4a). The results suggest that the CRF component

is very effective in capturing the co-expression relationship and conserved domains contain

important functional information (as known before), and both contribute significantly to
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Figure 2.4: (a) The average AUC and AUPRC values over the terms in GO Slim for DIF-
FUSE (blue), DIFFUSE without CRF (green), DIFFUSE without using conserved domains
(pink), and DIFFUSE without using sequences (yellow). (b) Average importance scores
for conserved domain regions and non-conserved domain regions are calculated for each
isoform-GO term pair. There is a clearly a significant difference between these two regions
as supported by the one-sided Wilcoxon test (****P <0.0001).

the performance of DIFFUSE. Moreover, although conserved domains are extracted from

sequences, they cannot completely replace sequences. Some example receiver operating

characteristic curves and precision-recall curves on two GO terms achieved by the above

four variants of DIFFUSE are illustrated in Figure 2.3e-h.

2.3.4 Importance of local sequence features in function prediction

Deep learning models are usually considered as “black boxes”. In the bioinfor-

matics domain, however, understanding the rationales behind decisions made by a model

is very important to the potential users of the model. Here, we use the saliency map [132],

a deep learning visualization technique, to help us understand what parts of an isoform se-

quence are most influential in the classification decision. Briefly, a saliency map calculates

the derivative of the output of the DNN with respect to the variable at each input position,
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so we can see the influence of each position of the input sequence on the output score. We

denote the value of derivative at each position as its ‘importance score’. The Keras-vis

tool [78] is used to calculate the saliency map and the method in [88] is used to obtain the

importance score of each amino acid (AA) residue of the input sequence. Since conserved

domains are known to be rich in functional sites, residues inside conserved domains are

expected to have higher importance scores on average.

To test this hypothesis, for each isoform-GO pair, we compute a saliency map and

calculate the importance score for each AA residue of the isoform. For each saliency map,

we calculate the average importance score of all AA residues inside conserved domains and

that of all AA residues outside conserved domains, respectively. As expected, we observe

significantly higher average importance scores in conserved domains (Figure 2.4b).

2.3.5 Analyzing the divergence of isoform functions

Delineating the specific functions of the isoforms is the ultimate goal of isoform

function prediction. Hence, it would be useful to analyze the divergence of the predicted

functions of the isoforms from each gene, as done in [99, 129]. We estimate the similarity

of predicted functions for each pair of isoforms in terms of the semantic similarity score

using GOssTo [22], again considering the three GO branches separately. The semantic

dissimilarity score of two isoforms is then defined as one minus their similarity score. For

each MIG, the functional divergence of its isoforms is calculated by averaging the semantic

dissimilarity scores of all pairs of its isoforms sharing predicted functions in the same GO

branch. Out of the 9,032 MIGs, 8,924 (5,444 or 5,521) MIGs have at least two isoforms

assigned GO terms in the BP (CC or MF, respectively) branch by DIFFUSE. Among
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Figure 2.5: Distributions of semantic dissimilarity scores of MIGs that have functionally
divergent isoforms. The range of semantic dissimilarity score [0,1] is equally divided into
20 bins. For each bin, we count how many MIGs have semantic dissimilarity scores in this
range. The three GO branches are considered separately.

these MIGs, 90.3% (8,060 out of 8,924), 81.1% (4,415 out of 5,444) and 76.5% (4,222 out

of 5,521) are estimated to have functional divergent isoforms (i.e., semantic dissimilarity

scores greater than 0) with respect to BP, CC and MF, respectively. The dissimilarity score

distributions for MIGs that have functional divergent isoforms are shown in Figure 2.5,

where the mean score values are 0.490, 0.482 and 0.411 for BP, CC and MF, respectively.

A similar pattern of distributions was observed in a previous study [99].

As discussed above, functional divergence among isoforms of the same gene is ex-

pected. It remains unclear, however, to what extent isoforms have divergent functions.

Therefore, we further investigate the functional divergence of isoforms by testing its con-

sistency with the (protein) structural divergence of isoforms. In other words, for a gene

with isoforms that share similar functions (i.e., low semantic dissimilarity score), the pro-

tein structures of these isoforms are expected to be similar, and vice versa. The protein

structure of an isoform can be represented as a contact map, which is a two-dimensional

matrix of distance between all possible AA residue pairs and can be used to estimate protein

structural similarities. Contact maps are predicted using the RaptorX [117] server. Due to
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Figure 2.6: Average structural similarity between isoforms of MIGs with low or high func-
tional similarities. Significant differences are observed in all the GO branches according to
the Kruskal-Wallis tests (with P-values ***P=5.77e-04, **P=2.50e-03 and **P=3.30e-03
for BP, CC and MF, respectively). Note that the semantic dissimilarity score can only be
calculated for MIGs containing two or more isoforms with GO terms in the same branch.
This results in 296 (167 or 155) out of the 300 MIGs considered for the BP (CC or MF)
branch.

the computational intensity of contact map prediction, we predict contact maps for isoforms

of 300 randomly selected MIGs with at most 500 AAs. For each GO branch separately, we

divide the genes into two groups by the median semantic dissimilarity score, resulting in a

high functional similarity group and a low functional similarity group. For each gene, we

calculate the average structural similarity score over all its isoform pairs, measured by the

Contact Map Overlap (CMO) using the software AI-Eigen [38]. As anticipated, we observe

significantly higher structural similarities between isoforms of MIGs in the high functional

similarity groups for all three GO branches (Figure 2.6).
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Figure 2.7: Correlations between functional similarity, sequence similarity and expression
similarity. The isoforms are grouped into 2,492 clusters by hierarchical clustering. The
average pairwise functional similarity, sequence similarity and expression similarity are es-
timated for the isoforms in each cluster. The Pearson correlation coefficient is used to
measure the strength of correlation.

2.4 Validation of predicted isoform functions

The scarcity of experimentally-verified functions of isoforms raises a great a chal-

lenge to the validation of our predicted isoform functions. To address this challenge, we

first indirectly validate the predicted functions by analyzing how they are correlated with

isoform sequences, expression as well as protein structures. The predictions are further

validated by evaluating their consistency with some well-studied UniProt sequence features

related to functions. Finally, we directly validate a small set of predicted isoform functions

analyzed above by a targeted literature search.

2.4.1 Correlations between functional, sequence and expression similari-

ties

Our method is based on the assumption that isoforms with similar sequences

and/or expression profiles should have similar functions. To check that our predicted func-

tions indeed have this property, we test whether similar biological features indeed lead to
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similar predictions and vice versa, as done in [129]. (Hence, this is more of a sanity check

on our computational model than a proper validation of our predicted isoform functions.)

We group the 39,375 isoforms into 2,492 clusters with sizes in the range of [10, 20] based

on hierarchical clustering, where the bit score of BLAST [2] is used to measure the pairwise

distance of isoforms. Then the average functional similarity, sequence similarity and expres-

sion similarity are estimated over all isoform pairs within each cluster. Different from the

last subsection, here the functional similarity between isoforms is measured by the negative

value of the Euclidean distance between their predicted functions (as two vectors). The

expression similarity is measured by the PCC of two expression profiles and the sequence

similarity is measured by the pairwise global alignment score of two isoform protein se-

quences normalized by the alignment length. Each similarity is normalized to the range

of [0, 1]. Then, the PCC is used to measure the pairwise correlations between functional

similarity, sequence similarity and expression similarity, as shown in Figure 2.7. Clearly, iso-

forms with similar sequences or expression profiles tend to have similar predicted functions.

Interestingly, functional similarity seems to be more correlated with sequence similarity

than with expression similarity and only a moderate correlation is found between sequence

similarity and expression similarity, which explains why these two biological features can be

combined to improve function prediction. To further verify these isoform-level correlations,

we perform the same computational experiment at the gene level where the gene functional

annotation, the longest isoform sequence of each gene and gene expression profiles are used

to estimate the above three similarities. Very similar PCC values are obtained as shown in

Figure 2.8.
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Figure 2.8: Correlations between functional similarity, sequence similarity and expression
similarity at the gene level. The genes are grouped into 1254 clusters with sizes in the range
of [10, 20] based on hierarchical clustering. The average pairwise functional similarity,
sequence similarity and expression similarity are estimated for each cluster. The Pearson
correlation coefficient (PCC) is used to measure the correlations.

Figure 2.9: 1,500 isoforms of MIGs are grouped into 99 clusters. The average pairwise
functional similarity, sequence similarity and structural similarity are estimated for each
cluster. (a) The correlation between functional similarity and structural similarity. (b) The
correlation between functional similarity and sequence similarity.

2.4.2 Correlation between functional and structural similarities

Previous studies [68] have shown that protein structures are more conserved than

sequences. Hence, isoforms with similar functions are expected to have more similar struc-

tures than sequences. We further test how the predicted functions are correlated with

protein structures represented as contact maps. Again, we download contact maps from

the RaptorX server for 1,500 isoforms of MIGs. We focus on MIGs rather than SIGs in this
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Figure 2.10: The correlation between functional similarity and structural similarity mea-
sured on 600 SIGs that are grouped into 40 clusters with sizes in the range of [10, 20]. The
functional similarity is estimated based on the annotated functions of the SIGs.

test since the functions of their isoforms are currently unknown. The isoforms are grouped

into 99 clusters with sizes in the range of [10, 20] and the average functional similarity,

sequence similarity and structural similarity are measured for each cluster using the same

methods described above. As expected, a higher PCC is found between functional similarity

and structural similarity (Figure 2.9). Furthermore, we perform the same computational ex-

periment on 600 random SIGs using their annotated functions and obtain a consistent PCC

between functional similarity and structural similarity (see Figure 2.10). These analyzes

indirectly support our prediction results.

2.4.3 Consistency with well-studied UniProt sequence features

A recent review [138] reported a set of function related sequence features (as

defined by UniProt; [18] associated with a list of isoforms. The presence or absence of these

functional sequence features can be used to infer potential isoform functions. Three of the

functional sequence features can be mapped to GO terms, which are ‘Metal ion binding
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site’ (to GO:0046872), ‘ATP binding site’ (to GO:0005524) and ‘Nuclear localization signal’

(to GO:0005634). We then map the list of isoforms reported in this review to our isoform

dataset. For each GO term, we check the consistency between the presence or absence

of the corresponding sequence feature in associated isoforms and the functional predictions

concerning this GO term. To quantify the consistency for the three GO terms separately, the

Jaccard indices are calculated as in the literature [159]. The same computational experiment

is repeated for the three other methods as well in order to compare. The Jaccard indices

of DIFFUSE are 0.674, 0.700 and 0.700 for GO:0046872, GO:0005524 and GO:0005634,

respectively, which are significantly higher than those of DeepIsofun (0.548, 0.595 and 0.579),

WLRM (0.514, 0.578 and 0.580), mi-SVM (0.534, 0.517 and 0.569), and iMILP (0.560, 0.581

and 0.521). The detailed results concerning the three GO terms are shown in Tables 2.3,

2.4, and 2.5, respectively.

2.4.4 Validation via the literature

We further perform an exhaustive literature search for experimentally verified func-

tions of the isoforms analyzed above (i.e., appearing in Tables 2.3, 2.4, and 2.5). Functions

or strong functional evidence for 14 isoforms of 6 genes have been found. Out of the 14

isoforms, our method predicted correct functions for 11 of them (Table 2.6), which is sig-

nificantly more accurate than the other methods. It is worth mentioning that 13 of the

14 functions reported in the literature are consistent with the presence or absence of their

corresponding UniProt sequence features. This suggests that the UniProt sequence features

may serve as a good benchmark to validate predicted isoform functions.
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Table 2.3: Consistency between the presence or absence of sequence feature ‘Metal ion
binding site’ and the function predictions concerning GO term GO:0046872 (metal ion
binding). Note that a metal ion may have several binding sites. We treat the binding sites
that correspond to the same metal ion as a group. Each isoform sequence may contain
multiple metal ion binding site groups. If all metal ion binding site groups of an isoform
have binding sites affected by alternative splicing, we treat the sequence feature ‘Metal ion
binding site’ as absent in this isoform, noted by a cross. Otherwise, we treat it as present in
this isoform, noted by a circle. Positive and negative predictions are represented by circles
and crosses as well.
Gene Isoform Sequence

feature
Predictions

DIFFUSE DeepIsoFun WLRM mi-SVM iMILP
ACE P12821-1 ◦ ◦ ◦ ◦ ◦ ◦

P12821-3 ◦ ◦ ◦ × ◦ ◦
P12821-4 ◦ ◦ ◦ ◦ ◦ ◦

ACMSD Q8TDX5-1 ◦ ◦ ◦ ◦ ◦ ◦
Q8TDX5-2 × ◦ ◦ ◦ ◦ ◦

ADAM33 Q9BZ11-1 ◦ ◦ ◦ ◦ ◦ ×
Q9BZ11-2 ◦ ◦ ◦ ◦ ◦ ◦

ADAMTS13 Q76LX8-1 ◦ × ◦ ◦ ◦ ◦
Q76LX8-2 ◦ ◦ ◦ ◦ ◦ ◦
Q76LX8-3 ◦ × ◦ ◦ ◦ ◦

ALKBH2 Q6NS38-1 ◦ ◦ ◦ ◦ ◦ ◦
Q6NS38-2 × × × ◦ ◦ ◦

ALKBH8 Q96BT7-1 ◦ ◦ ◦ ◦ ◦ ◦
Q96BT7-4 ◦ ◦ ◦ ◦ ◦ ◦

ALOX15B O15296-1 ◦ ◦ ◦ × × ×
O15296-2 ◦ ◦ ◦ ◦ ◦ ◦
O15296-4 ◦ ◦ ◦ ◦ ◦ ◦

ALOX5 P09917-1 ◦ ◦ ◦ × ◦ ×
P09917-2 ◦ ◦ ◦ ◦ × ×
P09917-3 ◦ ◦ ◦ ◦ ◦ ◦

AOC3 Q16853-1 ◦ ◦ ◦ ◦ ◦ ◦
Q16853-2 × × ◦ ◦ ◦ ◦
Q16853-3 ◦ × ◦ ◦ × ◦

APOBEC3F Q8IUX4-1 ◦ × ◦ ◦ ◦ ◦
Q8IUX4-3 × ◦ ◦ ◦ ◦ ◦

APOBEC3G Q9HC16-1 ◦ ◦ ◦ ◦ ◦ ◦
ARG1 P05089-1 ◦ ◦ ◦ ◦ ◦ ◦

P05089-2 ◦ ◦ ◦ ◦ ◦ ◦
ARSA P15289-2 × × ◦ ◦ ◦ ×
ASPH Q12797-1 ◦ ◦ ◦ ◦ ◦ ◦

Q12797-10 ◦ ◦ ◦ ◦ × ◦
Q12797-2 × × ◦ ◦ × ◦
Q12797-3 × × ◦ ◦ ◦ ◦
Q12797-4 × × ◦ ◦ ◦ ◦
Q12797-5 × × ◦ ◦ × ◦
Q12797-6 × × ◦ ◦ × ◦
Q12797-7 × × × ◦ ◦ ◦
Q12797-8 × × ◦ ◦ × ◦
Q12797-9 × × ◦ ◦ ◦ ◦

ATP1A1 P05023-1 ◦ ◦ ◦ ◦ ◦ ◦
P05023-3 ◦ ◦ ◦ ◦ ◦ ◦
P05023-4 ◦ ◦ × ◦ ◦ ◦

ATP7A Q04656-1 ◦ ◦ ◦ ◦ ◦ ◦
Q04656-5 ◦ ◦ ◦ ◦ ◦ ◦
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ATP7B P35670-1 ◦ ◦ ◦ ◦ ◦ ◦
P35670-3 ◦ ◦ ◦ ◦ ◦ ◦

DIS3L2 Q8IYB7-1 ◦ ◦ × ◦ ◦ ◦
Q8IYB7-3 ◦ × ◦ ◦ ◦ ◦
Q8IYB7-4 × × × ◦ ◦ ◦

DPP3 Q9NY33-1 ◦ ◦ ◦ ◦ × ◦
Q9NY33-4 ◦ ◦ ◦ ◦ ◦ ◦

ENDOV Q8N8Q3-1 ◦ ◦ ◦ ◦ ◦ ◦
Q8N8Q3-2 ◦ ◦ ◦ ◦ ◦ ◦
Q8N8Q3-3 ◦ ◦ ◦ ◦ ◦ ◦

ENOSF1 Q7L5Y1-1 ◦ ◦ ◦ ◦ ◦ ×
Q7L5Y1-6 ◦ × × ◦ ◦ ◦

EPHX2 P34913-1 ◦ × ◦ ◦ ◦ ◦
P34913-2 × × ◦ × ◦ ◦
P34913-3 × ◦ ◦ ◦ ◦ ◦

ERAP2 Q6P179-1 ◦ ◦ ◦ ◦ × ◦
Q6P179-3 ◦ ◦ ◦ ◦ ◦ ◦
Q6P179-4 × × ◦ ◦ ◦ ×

FAN1 Q9Y2M0-1 ◦ ◦ ◦ × ◦ ◦
Q9Y2M0-2 × ◦ ◦ ◦ ◦ ◦

GALNT2 Q10471-1 ◦ ◦ ◦ × ◦ ◦
GALT P07902-1 ◦ ◦ × × ◦ ◦

P07902-2 ◦ × ◦ ◦ ◦ ◦
GCH1 P30793-1 ◦ ◦ ◦ × × ◦

P30793-2 × × × × ◦ ×
P30793-4 × × ◦ ◦ ◦ ◦

HEPH Q9BQS7-3 ◦ ◦ ◦ ◦ ◦ ◦
Q9BQS7-4 ◦ ◦ ◦ ◦ × ◦

HMGCL P35914-1 ◦ ◦ ◦ × × ◦
P35914-2 ◦ ◦ ◦ ◦ ◦ ◦

HMGCLL1 Q8TB92-1 ◦ ◦ ◦ ◦ ◦ ◦
Q8TB92-2 ◦ ◦ ◦ ◦ ◦ ×
Q8TB92-5 ◦ ◦ ◦ ◦ ◦ ◦

IDE P14735-1 ◦ ◦ × ◦ ◦ ◦
P14735-2 × × ◦ × × ◦

IMPA1 P29218-1 ◦ ◦ ◦ ◦ × ◦
P29218-2 ◦ ◦ ◦ ◦ ◦ ◦
P29218-3 ◦ ◦ ◦ ◦ ◦ ◦

LHPP Q9H008-1 ◦ ◦ ◦ ◦ ◦ ◦
Q9H008-2 × × ◦ ◦ × ◦

MASP1 P48740-1 ◦ ◦ ◦ ◦ ◦ ◦
P48740-2 ◦ ◦ ◦ ◦ ◦ ◦
P48740-3 ◦ ◦ ◦ ◦ × ◦

MPPE1 Q53F39-1 ◦ ◦ ◦ ◦ ◦ ◦
Q53F39-4 ◦ ◦ ◦ ◦ ◦ ◦

NOS1 P29475-1 ◦ ◦ ◦ ◦ ◦ ◦
P29475-3 ◦ ◦ ◦ ◦ ◦ ◦
P29475-5 ◦ ◦ ◦ ◦ ◦ ◦

PGM1 P36871-1 ◦ ◦ ◦ ◦ ◦ ◦
P36871-2 ◦ ◦ ◦ ◦ ◦ ◦
P36871-3 × × ◦ × × ◦

PPM1M Q96MI6-4 ◦ ◦ × ◦ × ◦
PPP3CA Q08209-1 ◦ ◦ ◦ ◦ ◦ ×

Q08209-2 ◦ ◦ ◦ × ◦ ◦
Q08209-3 ◦ ◦ ◦ ◦ ◦ ◦

QPCTL Q9NXS2-1 ◦ ◦ ◦ ◦ ◦ ◦
Q9NXS2-3 × × ◦ ◦ × ◦

RGN Q15493-1 ◦ ◦ ◦ ◦ ◦ ◦
Q15493-2 × × ◦ ◦ ◦ ◦
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RPE Q96AT9-1 ◦ ◦ ◦ ◦ ◦ ×
Q96AT9-3 × ◦ ◦ ◦ × ◦
Q96AT9-4 × ◦ ◦ ◦ × ×
Q96AT9-5 × ◦ ◦ ◦ ◦ ×

SOD2 P04179-1 ◦ ◦ ◦ × × ◦
P04179-2 × ◦ ◦ ◦ × ◦
P04179-3 ◦ ◦ ◦ ◦ ◦ ◦
P04179-4 ◦ ◦ ◦ × ◦ ◦

SUV39H2 Q9H5I1-1 ◦ ◦ ◦ ◦ ◦ ◦
Q9H5I1-2 ◦ ◦ × ◦ ◦ ◦
Q9H5I1-3 ◦ × ◦ ◦ ◦ ◦

TET2 Q6N021-1 ◦ ◦ × × ◦ ◦
Q6N021-2 × × ◦ ◦ ◦ ◦

THTPA Q9BU02-1 ◦ ◦ ◦ ◦ ◦ ◦
Q9BU02-2 × × ◦ ◦ ◦ ◦

USP16 Q9Y5T5-1 ◦ ◦ × ◦ ◦ ◦
Q9Y5T5-2 ◦ ◦ ◦ ◦ ◦ ◦

XPNPEP1 Q9NQW7-1 ◦ ◦ ◦ ◦ ◦ ◦
Q9NQW7-3 ◦ ◦ ◦ × ◦ ◦
Q9NQW7-4 ◦ ◦ ◦ ◦ ◦ ◦

Jaccard
index

0.674 0.548 0.514 0.534 0.560
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Table 2.4: Consistency between the presence or absence of sequence feature ‘ATP binding
site’ and the function predictions concerning GO term GO:0005524 (ATP binding). Again,
note that an ATP maye have several binding sites. We treat the binding sites that cor-
respond to the same ATP as a group. Each isoform sequence may contain multiple ATP
binding site groups. If all ATP binding site groups of an isoform have binding sites affected
by alternative splicing, we treat the sequence feature ‘ATP binding site’ as absent in this
isoform. Otherwise, we treat it as present in this isoform.
Gene Isoform Sequence

feature
Predictions

DIFFUSE DeepIsoFun WLRM mi-SVM iMILP
ACLY P53396-1 ◦ ◦ ◦ ◦ × ◦

P53396-2 ◦ × ◦ ◦ × ◦
BRSK2 Q8IWQ3-1 ◦ ◦ ◦ ◦ ◦ ◦

Q8IWQ3-2 ◦ ◦ ◦ ◦ ◦ ◦
Q8IWQ3-3 ◦ ◦ ◦ ◦ ◦ ◦
Q8IWQ3-5 ◦ ◦ ◦ ◦ × ◦
Q8IWQ3-6 × ◦ ◦ ◦ × ◦

CDK11A Q9UQ88-1 ◦ ◦ ◦ ◦ ◦ ◦
Q9UQ88-2 ◦ ◦ ◦ ◦ ◦ ◦
Q9UQ88-4 ◦ ◦ × ◦ ◦ ◦

IDE P14735-1 ◦ ◦ × × ◦ ◦
P14735-2 × × ◦ × × ◦

LATS1 O95835-1 ◦ ◦ ◦ ◦ ◦ ◦
O95835-2 × × × ◦ × ◦

MARK1 Q9P0L2-1 ◦ ◦ ◦ × ◦ ◦
Q9P0L2-3 ◦ ◦ ◦ ◦ ◦ ×

MTHFS P49914-1 ◦ ◦ ◦ ◦ × ◦
OAS2 P29728-1 ◦ ◦ ◦ ◦ ◦ ◦

P29728-2 ◦ ◦ ◦ ◦ ◦ ◦
P29728-3 × × × ◦ × ◦

PFKP Q01813-2 × ◦ ◦ × × ×
Q01813-1 ◦ ◦ ◦ ◦ ◦ ◦

SIK3 Q9Y2K2-5 ◦ ◦ ◦ ◦ ◦ ◦
Q9Y2K2-8 ◦ ◦ ◦ ◦ ◦ ◦

STK26 Q9P289-1 ◦ ◦ ◦ ◦ ◦ ◦
Q9P289-2 × × ◦ ◦ ◦ ◦
Q9P289-3 ◦ × ◦ ◦ ◦ ◦

TAOK1 Q7L7X3-1 ◦ × ◦ ◦ ◦ ◦
Q7L7X3-3 ◦ ◦ ◦ × × ×

TSSK4 Q6SA08-1 ◦ ◦ ◦ ◦ ◦ ◦
Q6SA08-2 ◦ ◦ ◦ × ◦ ◦
Q6SA08-3 × × ◦ ◦ ◦ ◦

UHMK1 Q8TAS1-1 ◦ ◦ ◦ ◦ ◦ ◦
Q8TAS1-2 ◦ ◦ ◦ ◦ × ◦
Q8TAS1-3 × × ◦ × ◦ ◦

WNK1 Q9H4A3-1 ◦ ◦ × ◦ ◦ ×
Q9H4A3-5 ◦ ◦ ◦ ◦ ◦ ◦
Q9H4A3-6 ◦ ◦ ◦ ◦ ◦ ◦

WNK4 Q96J92-1 ◦ ◦ ◦ ◦ × ◦
Jaccard
index

0.700 0.595 0.578 0.517 0.581
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Table 2.5: Consistency between the presence or absence of sequence feature ‘Nuclear lo-
calization signal’ and the function predictions concerning GO term GO:0005634 (nucleus).
Note that each isoform sequence may contain multiple nuclear localization signals. If all
the nuclear localization signals of an isoform are affected by alternative splicing, we treat
the sequence feature ‘Nuclear localization signal’ as absent in this isoform. Otherwise, we
treat it as present in this isoform.
Gene Isoform Sequence

feature
Predictions

DIFFUSE DeepIsoFun WLRM mi-SVM iMILP
ADK P55263-1 ◦ ◦ ◦ ◦ ◦ ×

P55263-2 × ◦ × ◦ ◦ ◦
P55263-3 ◦ ◦ ◦ × × ×
P55263-4 × × ◦ × × ×

AIFM1 O95831-1 ◦ ◦ ◦ ◦ ◦ ◦
O95831-3 ◦ ◦ ◦ ◦ × ×
O95831-4 × × × ◦ × ×

APTX Q7Z2E3-1 ◦ ◦ ◦ ◦ ◦ ◦
Q7Z2E3-10 ◦ ◦ ◦ ◦ × ◦
Q7Z2E3-11 ◦ ◦ ◦ ◦ ◦ ◦
Q7Z2E3-3 × × ◦ ◦ × ◦
Q7Z2E3-5 ◦ ◦ ◦ ◦ ◦ ◦
Q7Z2E3-7 ◦ ◦ ◦ ◦ ◦ ◦
Q7Z2E3-9 ◦ ◦ ◦ ◦ × ◦

DDX25 Q9UHL0-1 ◦ ◦ ◦ ◦ ◦ ◦
Q9UHL0-2 × ◦ ◦ ◦ × ×

DNMT1 P26358-1 ◦ ◦ ◦ ◦ ◦ ◦
P26358-2 ◦ ◦ ◦ ◦ ◦ ◦

ERBB2 P04626-1 ◦ ◦ ◦ × × ◦
P04626-4 ◦ ◦ ◦ ◦ ◦ ◦
P04626-5 ◦ ◦ ◦ ◦ ◦ ◦

ERCC2 P18074-1 ◦ ◦ × ◦ ◦ ◦
P18074-2 × × ◦ × × ×

HIPK2 Q9H2X6-1 ◦ ◦ ◦ ◦ ◦ ◦
Q9H2X6-3 ◦ ◦ × ◦ ◦ ×

JMJD6 Q6NYC1-1 ◦ ◦ ◦ ◦ ◦ ◦
Q6NYC1-3 ◦ ◦ ◦ ◦ ◦ ◦

MAPK7 Q13164-1 ◦ ◦ ◦ ◦ ◦ ◦
Q13164-2 ◦ × ◦ ◦ ◦ ◦

MDM2 Q00987-11 ◦ ◦ ◦ ◦ ◦ ◦
Q00987-5 × ◦ ◦ × ◦ ◦

OGFOD1 Q8N543-2 × × ◦ ◦ ◦ ×
PAPOLA P51003-1 ◦ ◦ ◦ ◦ ◦ ◦

P51003-2 × × × × ◦ ×
PIAS1 O75925-1 ◦ ◦ × ◦ ◦ ◦

O75925-2 ◦ ◦ ◦ ◦ ◦ ◦
PIAS2 O75928-1 ◦ ◦ ◦ ◦ ◦ ◦

O75928-2 ◦ ◦ ◦ ◦ ◦ ◦
O75928-3 × × ◦ ◦ ◦ ◦

PIK3C2A O00443-1 ◦ ◦ ◦ ◦ ◦ ◦
PPP1R8 Q12972-1 ◦ ◦ ◦ ◦ ◦ ◦

Q12972-2 ◦ ◦ ◦ × ◦ ◦
Q12972-3 × × ◦ × × ◦

REV1 Q9UBZ9-2 ◦ ◦ ◦ ◦ ◦ ×
RTEL1 Q9NZ71-1 ◦ ◦ ◦ ◦ ◦ ◦

Q9NZ71-6 ◦ ◦ ◦ × ◦ ×
Q9NZ71-7 ◦ ◦ ◦ ◦ × ◦
Q9NZ71-9 × ◦ ◦ × × ×
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SPAST Q9UBP0-1 ◦ ◦ ◦ ◦ ◦ ×
Q9UBP0-2 ◦ ◦ ◦ ◦ ◦ ◦

USP4 Q13107-1 ◦ ◦ × × ◦ ◦
Q13107-2 ◦ × ◦ ◦ ◦ ◦
Q13107-3 × × × ◦ ◦ ◦

WWOX Q9NZC7-1 ◦ × ◦ ◦ ◦ ◦
Q9NZC7-3 ◦ ◦ ◦ ◦ ◦ ×

Jaccard
index

0.700 0.579 0.580 0.569 0.521
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2.5 Applying DIFFUSE to predict isoform functions for some

Dichocarpum species

2.5.1 Background

Dichocarpum is a genus of flowering plants belonging to the family Ranunculaceae.

Various medicinal metabolites have been found in Dichocarpum species, many of which,

have shown clinical utility [54]. Our collaborators have recently sequenced the full-length

transcriptomes of five species of Dichocarpum, Dichocarpum basilare, Dichocarpum auricu-

latum, Dichocarpum fargesii, Dichocarpum lobatipetalum, and Dichocarpum malipoenense,

using the PacBio sequencing technology [124]. The gene and isoform functions of these five

species have not been carefully studied before. Even though the functions of their genes

can be easily predicted from annotations of homologous genes by aligning sequences in the

databases, the functions of isoforms can be hardly differentiated by this way since most parts

of the sequences of isoforms are the same. In this section, we discuss how to apply DIFFUSE

to predict isoform functions for the five Dichocarpum species. Potential applications of our

predicted isoform functions include facilitating the understanding of metabolic regulations

in these species, which may help medicinal studies concerning plant-based natural products.

2.5.2 Materials and methods

Unless specifically mentioned, the data collection procedures and the predictive

method are the same as described in Section 2.2.
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Materials

Isoform sequences: Coding sequences (CDS) parts are predicted from the tran-

scripts using the software ANGLE [131]. Then each CDS is translated into an amino acid

sequence.

Isoform expression profiles: Each species has one sequencing sample. The

sequencing reads are aligned to the reference transcriptome using bowtie2 [90] and the

expression levels of transcripts are quantified using RSEM [93] (measured in expected num-

ber of Fragments Per Kilobase of transcript sequence per Millions base pairs sequenced or

FPKM).

Gene functional annotations: The GO annotations are first collected for each

isoform by aligning its protein sequence in the Pfam database [9], after which, isoforms

encoded by the same gene usually get the same electronic annotations. We then generate

the functional annotations for each gene by merging the annotations of all its isoforms.

GO terms: We perform predictions on all the GO terms appearing in the elec-

tronic annotations, which includes 1900 GO terms in total. The numbers of GO terms from

BP, CC, and MF branches are 807, 272, and 821 respectively.

Methods

Building isoform expression similarity networks from isoform expression

profiles: Since there is no biological replicate of isoform expression for each species, the

step of building isoform co-expression network cannot be performed due to the inability

of calculating correlations between expression profiles. Instead, we build the networks of
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isoforms based on the euclidean distance between their log transformed expression levels as

below:

w(ei, ej) = max(10− | log(1 + ei)− log(1 + ej)|, 0), (2.11)

where ei and ej are the expression levels of isoform i and isoform j, and w(ei, ej) is the edge

weight between the two isoforms in the expression similarity network.

2.5.3 Analyses of the prediction results

Divergence of isoform functions

We apply DIFFUSE to predict isoform functions for five species on all 1900 GO

terms appearing in the electronic annotations. As done in Section 2.3.5, we check if DIF-

FUSE can differentiate functions of isoforms encoded by the same gene. We estimate the

similarity of functions for each pair of isoforms within each MIG in terms of the seman-

tic similarity score using GOssTo [22], considering the three GO branches separately. The

analysis is performed for both the electronic annotations and the predicted functions of

DIFFUSE. Figure 2.11 shows the distributions of GO similarity scores of all isoform pairs

based on their electronic annotations on three branches separately. There are only 22.1%,

24.8%, and 19.5% isoform pairs that have differences in their functional annotations in the

BP, CC, and MF branches respectively (Intermediate + Distinct). As a comparison, there

are 38.7%, 50.3%, and 54.1% isoform pairs that are predicted with functional differences

by DIFFUSE in the BP, CC, and MF branches respectively, as shown in Figure 2.12. The
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Figure 2.11: Distributions of GO similarity scores of all isoform pairs based on their elec-
tronic annotations on three branches, BP, CC, and MF respectively.
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Figure 2.12: Distributions of GO similarity scores of all isoform pairs based on the predic-
tions of DIFFUSE on three branches, BP, CC, and MF respectively.
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results demonstrate that DIFFUSE is more likely to differentiate functions of isoforms com-

paring with the electronic annotations by sequence alignment. And the levels of functional

divergence obtained by DIFFUSE are more reasonable considering our previous analytical

results and those in the literature [99].

Consistency between predicted functions and important biological features

To validate the predicted functions of isoforms, we perform a similar validation

to that of Section 2.4.3 to check the consistency between our predicted functions and the

existence of important biological features in isoform sequences. Since some transcription

factors (TFs) play important roles in controlling plant secondary metabolism [151] which

are interesting in medicine studies on these plants, we check our predictions on the function

of DNA binding (GO:0003677) for a set of isoforms from genes encoding TFs. Specifically,

we collect 207 isoforms from genes that are predicted to encode TFs by iTAK [169], then

we check the consistency between the predicted functions of these isoforms on the term

GO:0003677 and the existence of DNA binding domains in their sequences. Isoforms an-

notated with DNA binding domains should be more likely to be predicted as having the

function of DNA binding. The Jaccard index between our predictions and the existence of

DNA binding domains in isoforms achieves 0.872 (Table 2.7), which can be interpreted as

high consistency.

52



Table 2.7: Consistency between the presence or absence of DNA binding domains and the
function predictions concerning GO term GO:0003677 (DNA binding) of the 207 selected
isoforms.

Have DNA binding
domains

Do not have DNA
binding domains

Have the function 163 10
Do not have the function 14 20

Jaccard index 0.872

2.5.4 Conclusions

We apply DIFFUSE to predict isoform functions of five Dichocarpum species,

whose gene functions and isoform functions have not been carefully studied. Our analytical

results demonstrate that DIFFUSE is more likely to differentiate functions of isoforms com-

paring with the electronic annotations by sequence alignment. And a case study shows that

our predictions on the term GO:0003677 (DNA binding) are consistent with the biological

features of isoforms. We hope our predicted isoform functions can facilitate the under-

standing of metabolic regulations of these plant species and help the medicinal studies on

them.

2.6 Discussion

As discussed in recent reviews [97, 138], the integration of various types of bio-

logical information is needed to improve isoform function prediction. In this chapter, we

proposed a deep learning based method, called DIFFUSE, that integrates sequence, con-

served domain and expression information into a unified predictive model. DIFFUSE greatly

outperformed the existing methods in our comprehensive computatioanl experiments. How-

ever, the performance of DIFFUSE could be further improved in several aspects. First, the
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co-expression networks derived from RNA-seq data are specific to different tissues and con-

ditions, which may be correlated with specific GO terms. [99] used a search algorithm to

identify the best performing subset of co-expression networks for each GO term. However,

the algorithm is time-consuming. We believe that an efficient algorithm that can search for

a good combination of co-expression networks specific to each GO terms could be designed

and integrated into our method. Moreover, in the model training procedure, we decou-

pled the DNN and CRF training stages, assuming that the DNN parameters were fixed

when optimizing the CRF parameters. A recent work [168] demonstrated the advantage of

formulating the CRF as a layer in the DNN to enable end-to-end training with the usual

back-propagation algorithm. This could further improve the performance of our model.

As demonstrated in the results (also a well-known fact), isoform functions are

more correlated with protein structures than anything else. Hence, it is natural to consider

incorporating protein structures in isoform function prediction [95]. However, large-scale

determination of three-dimensional protein structures for isoforms accurately is computa-

tionally prohibitive. On the other hand, contact maps have been used to represent protein

structures approximately and they are easier to compute (e.g., [157]. We have used them in

the validation of our predictions in this work and plan to explore how to incorporate them

into our model in the future.
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Chapter 3

FINER: Enhancing the Prediction

of Tissue-Specific Functions of

Isoforms by Refining Isoform

Interaction Networks

3.1 Introduction

Annotating functions of gene products in complex biological systems is of funda-

mental importance. A large number of annotation approaches [29, 61] have been proposed

and a variety of databases have been established to record functional annotation of genes

[4, 41]. However, most of the existing functional annotations are at the gene level, which is

coarse-grained and insufficient as a gene might have multiple products. In fact, alternative
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splicing of mRNAs frequently occurs in eukaryotes, leading a single gene to often produce

multiple protein isoforms [113]. The isoforms of a gene may carry different or even opposite

biological functions [17]. For instance, two of the isoforms of BCL2L1 gene, BCL-xL and

BCL-xS, exhibit completely opposite functions: BCL-xL inhibits programmed cell death

while BCL-xS promotes it [149]. The diversity of gene products requires finer functional

annotations at the isoform level instead of the gene level.

Since the experimental technologies to determine isoform functions are usually

time-consuming and costly, computational approaches to predict isoform functions are

highly desired. Many methods have been proposed in recent years [40, 100, 102, 130, 27, 163,

155, 98, 46]. Most of these approaches apply the multiple instance learning (MIL) technique

to explore isoform features, including isoform sequence motifs, conserved domains, and ex-

pression profiles. More specifically, the MIL technique attempts to learn function-specific

isoform features, i.e., features that belong to at least one isoform of each gene possessing

the function. The resulting function-specific features are then used to predict the functions

of new (or queried) isoforms. However, these methods all suffer from the limitation that

some key functional features (such as protein-protein interactions discussed below), which

are proved to be effective in predicting gene functions, may not be available at the isoform

level. Hence, they have prediction performance less than desirable.

Besides functional features of individual isoforms, the interactions among isoforms

also form an important information source of isoform functions. The underlying ratio-
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Figure 3.1: Schematic overview of the FINER workflow.

nale can be clearly demonstrated by an analogy to protein-protein interactions (PPIs): a

protein usually performs specific functions through interacting with other proteins [150],

thus enabling the prediction of protein functions through analyzing protein interactions.

The existing PPI networks are essentially at the gene level as they exhibit only interac-

tions among corresponding genes without providing more detailed information concerning

the interaction of isoforms. In fact, the isoforms of a gene may have different interacting

partners, possibly due to the difference in their interacting domains resulted from alterna-

tive splicing [140]. Thus, although PPIs have been successfully used for predicting gene

functions [84, 173], they cannot be directly applied to infer fine-grained isoform functions.

Recently, extensive studies have been performed to refine protein-protein interactions into

isoform-isoform interactions (IIIs) [94, 147, 48, 72, 165]. Clearly, the problems of isoform
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function prediction (IFP) and isoform-isoform interaction prediction (IIIP) are inherently

intertwined, implying that they may not be well addressed if considered separately. Thus,

how to solve the two problems jointly and exploit the reciprocal relationship between them

remains an interesting challenge.

In this chapter, we present a novel approach, called FINER (i.e., enhancing the

Functional prediction of Isoforms via NEtwork Refinement on their interactions), that

jointly solves the IFP and IIIP problems, thus allowing one problem to benefit from the

other. Our approach contains three key elements as shown in Figure 3.1B: (i) The function

prediction module predicts the functional labels of isoforms from their amino acid sequences

and conserved domains. (ii) The interaction network refinement module identifies real in-

teracting isoform pairs from known interacting gene pairs and denoises the existing IIIs

simultaneously. (iii) A mutual regularizer encourages the above two modules to agree with

each other, i.e., isoforms with similar predicted functions will be likely connected in refined

III networks and vice versa. Through the mutual regularizer, the function prediction mod-

ule and interaction network refinement module exchange information and, in turn, improve

their own prediction of isoform functions and interactions.

To evaluate our approach FINER, we applied it to predict tissue-specific functions

and interactions of isoforms in human. Understanding tissue-specific functions of isoforms

is an important but challenging task: On one hand, tissue-dependent isoform usages are

pervasive across human tissues, since a gene may express various isoforms to perform dif-

ferent functions in different tissues [154, 50]. On the other hand, less is known about the

tissue specificity of PPIs [162]. Although PPIs can be associated with tissues through the
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consideration of tissue-specific expression data [8, 79], the derived interactions are perhaps

less reliable, thus making the refinement on tissue-specific interactions highly desirable.

In addition, diverse tissues serve as multiple sources of datasets for testing our approach.

We further analyzed the relationship between our functional prediction and the subcellular

localization and the tissue specificity of isoforms (Figure 3.1C). The experimental results

clearly demonstrate the advantages of our approach over the state-of-the-art methods in

predicting isoform functions and interactions, as well as its potential in revealing the roles

of isoforms in diverse human tissues and diseases.

3.2 Materials and methods

3.2.1 Data collection

To predict isoform functions, we need gene-level functional annotation ground-

truth, features of individual isoforms (including isoform sequences and conserved domains)

and isoform-isoform interactions (derived from gene-level protein-protein interactions and

isoform co-expression networks) (Figure 3.1A). The data used in the study are described in

detail as follows.

(i) Isoform sequences: We downloaded ‘Coding DNA Sequence’ (CDS) of human genome

(GRCh38.p13) from the NCBI Reference Sequences database (RefSeq, as of January,

2020) [120]. For each CDS, we constructed an isoform by translating it into the amino

acid sequence. Two or more isoforms corresponding to the same CDS are treated as a

single isoform. To ensure isoform quality, only manually-curated RefSeq records were

recruited into our study. As a result, we obtained a total of 43 289 isoforms from 19
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408 genes, consisting of 33 529 isoforms from 9648 multiple-isoform genes (MIGs) and

9760 single-isoform genes (SIGs).

(ii) Isoform conserved domains: For each isoform, we acquired its conserved domains by

searching its amino acid sequence against the NCBI Conserved Domain Database

[106].

(iii) Functional annotation ground-truth of genes: We adopted the functional terms defined

by Gene Ontology (GO) [4], wherein GO terms are organized in hierarchies represented

as directed acyclic graph (DAG) structures, describing functions at different levels

of abstraction. For the genes used in the study, we downloaded their functional

annotations from the Gene Ontology Annotation (GOA) database [65]. To ensure

the annotation quality, we kept only manually-curated GO annotations and skipped

electronic annotations containing the ‘IEA’ evidence code.

(iv) Protein-protein interactions: We used the PPI data collected by Zitnik et al. [173],

in which, various types of physical PPIs from six reputable resources were combined

[114, 125, 25, 74, 49, 108]. All the PPIs have experimental supports. The reader

is referred to Zitnik et al. [173] for a detailed description of the data. By mapping

the collected data to the genes used in our study, we acquired a total of 317 750

interactions among 19 408 genes.

(v) Isoform expression profiles: To collect expression profiles of isoforms, we first re-

trieved RNA-seq experiments for different types of normal human tissues from the

NCBI Sequence Read Archive (SRA) database [91], where corresponding accession

60



numbers were obtained from the Human Protein Atlas (HPA) database [148] and the

recount-brain project [122] (see Table 3.1 for a list of RNA-seq experiments). Next,

we applied the tool Kallisto [14] to obtain quantified isoform expression profiles in

each experiment (measured in Transcripts Per Million or TPM).

3.2.2 Construction of tissue-specific datasets

In the study, we applied FINER to predict isoform functions for 12 selected major

tissues and three brain sub-tissue of human. These tissues were selected as follows. From

the tissues recorded in the BRENDA Tissue Ontology [51], we first selected tissues with

valid tissue-specific GO terms. Here, GO terms specifically describing cellular functions

of each tissue were retrieved from Greene et al. [50], and only GO terms associated with

at least 5 genes were recruited into our experiments (see Supplementary Table 3.2 for the

lists of tissue-specific GO terms). Next, following the criterion used by Li et al. [100], we

selected tissues associated with at least six RNA-seq experiments to guarantee the quality

of co-expression networks to be constructed later. As a result, we obtained a total of 12

major tissues and three brain sub-tissues of human, which are rich enough to represent both

diversity and different levels of specificity of human tissues.

Unlike isoform sequences and conserved domains that are tissue-independent, iso-

form expression profiles and interactions are highly tissue-specific. To construct tissue-

specific PPI networks, we first selected genes with high tissue specificity, i.e., the so-called
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Table 3.1: Lists of RNA-seq experiments associated with different tissues, used for building
tissue-specific PPIs and isoform co-expression networks.

Datasets Tissue # of experiments SRA IDs

Major tissues Adipose tissue 7
ERR579122, ERR315342, ERR315343,
ERR579146, ERR315332, ERR315431,
ERR315378

Bone marrow 8
ERR315396, ERR315395, ERR315469,
ERR315425, ERR315333, ERR315406,
ERR315404, ERR315486

Heart 9
ERR315413, ERR315384, ERR315389,
ERR315367, ERR315356, ERR315331,
ERR315435, ERR315430, ERR315328

Intestine 30

ERR315462, ERR579129, ERR315357,
ERR315348, ERR579148, ERR315403,
ERR315400, ERR315484, ERR315445,
ERR315442, ERR315457, ERR315461,
ERR579127, ERR579151, ERR579140,
ERR579147, ERR315419, ERR315381,
ERR315388, ERR315364, ERR315344,
ERR315423, ERR315409, ERR315408,
ERR315465, ERR315366, ERR315454,
ERR315345, ERR315437, ERR315481

Lung 8
ERR315444, ERR315353, ERR315341,
ERR315346, ERR315424, ERR315439,
ERR315326, ERR315487

Lymphocyte 13

ERR315371, ERR315493, ERR315393,
ERR315390, ERR315373, ERR315387,
ERR315475, ERR315440, ERR315441,
ERR315426, ERR315471, ERR315329,
ERR315488

Placenta 7
ERR315399, ERR315375, ERR315374,
ERR315377, ERR315476, ERR315336,
ERR315478

Skeletal muscle 6
ERR579130, ERR579152, ERR579149,
ERR579142, ERR579143, ERR579141

Skin 6
ERR315460, ERR315464, ERR315372,
ERR315376, ERR315339, ERR315401

Testis 8
ERR315415, ERR315492, ERR315391,
ERR315446, ERR315352, ERR315351,
ERR315350, ERR315456

Thyroid gland 9
ERR315412, ERR315491, ERR315397,
ERR315363, ERR315358, ERR315428,
ERR315422, ERR315337, ERR315483

Uterine endometrium 9
ERR315495, ERR315490, ERR579138,
ERR315386, ERR315368, ERR579123,
ERR315438, ERR315433, ERR315361

Brain sub-tissues Cerebellum 10

SRR1222586, SRR2070736, SRR1927055,
SRR1927057, SRR1927059, SRR1927061,
SRR1927063, SRR1927065, SRR1927067,
SRR1927069
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Brain sub-tissues Cerebral cortex 35

SRR1747144, SRR2015714, SRR1047838,
SRR1047839, SRR1047840, SRR1047841,
SRR1047842, SRR1047843, SRR1047844,
SRR1047845, SRR1047846, SRR1047847,
SRR1047848, SRR1047849, SRR1047850,
SRR1047851, SRR1047852, SRR1047853,
SRR1047854, SRR1047855, SRR1047856,
SRR1047857, SRR1047858, SRR1047859,
SRR1047860, SRR1047861, SRR1047862,
SRR2557113, SRR2557114, SRR2557117,
SRR2557119, SRR2557124, SRR2557125,
SRR2557126, SRR835931

Spinal cord 10

SRR1042023, SRR1042024, SRR1042025,
SRR1042026, SRR1042027, SRR1042028,
SRR1042029, SRR1042030, SRR1042031,
SRR1042032
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Table 3.2: Lists of GO terms specifically describing the cellular functions of different tissues
that are included in our experiments.

Tissue # of GO terms GO terms

Adipose tissue 13

GO:0060612, GO:0045444, GO:0044321, GO:0044320,
GO:0045600, GO:0070344, GO:0070345, GO:0050872,
GO:0050873, GO:0090335, GO:0090336, GO:0045599,
GO:0045598

Bone marrow 3 GO:0071863, GO:0071864, GO:0048539

Heart 131

GO:0003151, GO:0003157, GO:0045823, GO:0045822,
GO:0010881, GO:0060307, GO:0003205, GO:0003206,
GO:0003203, GO:0003209, GO:0060914, GO:0010002,
GO:0003231, GO:0055003, GO:0055006, GO:0055007,
GO:0055008, GO:0055009, GO:0061343, GO:0060347,
GO:0060973, GO:0060976, GO:0060977, GO:0010459,
GO:0003279, GO:0003272, GO:0003015, GO:0003160,
GO:0003161, GO:0003281, GO:0003283, GO:0061311,
GO:0061314, GO:0060379, GO:0060372, GO:0060373,
GO:0060371, GO:0003230, GO:0001947, GO:0003307,
GO:0003300, GO:0002026, GO:0002027, GO:0003207,
GO:0003128, GO:0061371, GO:0048738, GO:0048739,
GO:0055017, GO:0055015, GO:0055013, GO:0055012,
GO:0010667, GO:0010665, GO:0060039, GO:0060038,
GO:0035051, GO:0035050, GO:0010612, GO:0007507,
GO:0010611, GO:0010614, GO:0003208, GO:0003348,
GO:0003344, GO:0060911, GO:0003007, GO:0055119,
GO:0055117, GO:0003179, GO:0003171, GO:0003170,
GO:0003177, GO:0003176, GO:0003175, GO:0003174,
GO:0055026, GO:0055024, GO:0055025, GO:0055022,
GO:0055023, GO:0055021, GO:0007512, GO:0003186,
GO:0003184, GO:0003183, GO:0003180, GO:0003181,
GO:0003188, GO:0060045, GO:0060047, GO:0003228,
GO:0060956, GO:0060048, GO:0003222, GO:0055010,
GO:0003256, GO:0003139, GO:0090381, GO:0061337,
GO:0060043, GO:0003143, GO:0003148, GO:0003149,
GO:0061384, GO:0051891, GO:0051890, GO:2000136,
GO:2000138, GO:0060317, GO:0003214, GO:0003215,
GO:0003211, GO:0060419, GO:0060413, GO:0060412,
GO:0060411, GO:0003229, GO:0003223, GO:0008016,
GO:0003062, GO:0003197, GO:0003190, GO:0003198,
GO:0060420, GO:0060421, GO:0010613, GO:0061117,
GO:0060452, GO:0010882, GO:0010460

Intestine 6
GO:0030300, GO:0042572, GO:0042573, GO:0001523,
GO:0030299, GO:0030277

Lung 7
GO:0030324, GO:0060441, GO:0060425, GO:0060428,
GO:0060487, GO:0060479, GO:0048286
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Lymphocyte 165

GO:0002707, GO:0002706, GO:0002709, GO:0002708,
GO:2000319, GO:0051133, GO:0046651, GO:2000401,
GO:2000402, GO:2000403, GO:2000404, GO:0033077,
GO:0072676, GO:0072678, GO:0002293, GO:0002292,
GO:0002295, GO:0002294, GO:0030889, GO:0030888,
GO:0045628, GO:0045621, GO:0045622, GO:0045625,
GO:0045624, GO:2000564, GO:0050870, GO:0050871,
GO:0070229, GO:0070228, GO:0010820, GO:0042129,
GO:0070232, GO:0070233, GO:0070230, GO:0070231,
GO:0070234, GO:0002456, GO:0002455, GO:0002260,
GO:0030217, GO:0002327, GO:0045620, GO:0051023,
GO:0051024, GO:0050855, GO:0042093, GO:0042098,
GO:0002889, GO:0016064, GO:0051249, GO:0001782,
GO:2000516, GO:2000514, GO:2000515, GO:0045061,
GO:0045619, GO:0002335, GO:0050869, GO:0050868,
GO:0050864, GO:0050861, GO:0050860, GO:0050863,
GO:0050862, GO:0002725, GO:0002724, GO:0002726,
GO:0010818, GO:0030183, GO:0042130, GO:2000321,
GO:2000320, GO:0033089, GO:0002381, GO:0043029,
GO:2000551, GO:0045577, GO:0070227, GO:0033085,
GO:0001916, GO:0001914, GO:0046006, GO:0046007,
GO:0043380, GO:0048247, GO:0002903, GO:0045058,
GO:0002902, GO:0002208, GO:0002204, GO:0001771,
GO:0006958, GO:0043372, GO:2000562, GO:2000561,
GO:0035710, GO:0045580, GO:0045581, GO:0045582,
GO:0045589, GO:0002891, GO:0002890, GO:0043367,
GO:0051251, GO:0051250, GO:0050670, GO:0050671,
GO:0050672, GO:0031294, GO:0042113, GO:0042110,
GO:0031295, GO:0050852, GO:0050853, GO:0050856,
GO:0002710, GO:0002711, GO:0002712, GO:0002713,
GO:0002714, GO:0072539, GO:0046639, GO:0046638,
GO:0046637, GO:0046636, GO:0046635, GO:0046634,
GO:0046632, GO:0046631, GO:0002664, GO:0045830,
GO:0019724, GO:0046649, GO:0046642, GO:0046640,
GO:0046641, GO:0010819, GO:0045191, GO:0002286,
GO:0002287, GO:0002285, GO:0002360, GO:0002363,
GO:0051135, GO:0030890, GO:0033081, GO:2000406,
GO:0043368, GO:0043369, GO:0045190, GO:0045591,
GO:0045623, GO:0030098, GO:0043371, GO:0043370,
GO:0043373, GO:0042104, GO:0042100, GO:0042102,
GO:0002449, GO:0045579, GO:0002315, GO:0002312,
GO:0002313

Placenta 8
GO:0060711, GO:0060713, GO:0060706, GO:0060669,
GO:0060674, GO:0001892, GO:0001893, GO:0001890

Skeletal muscle 49

GO:0051154, GO:0061337, GO:0010832, GO:0048742,
GO:0045843, GO:0010830, GO:0030240, GO:0006941,
GO:0060538, GO:0014857, GO:0055002, GO:0014888,
GO:0014897, GO:0048641, GO:0060297, GO:0014855,
GO:0030239, GO:0045844, GO:0003009, GO:0014722,
GO:0048741, GO:0051145, GO:0007528, GO:0014902,
GO:0048743, GO:0014819, GO:0007519, GO:0071688,
GO:0043501, GO:0055003, GO:0030241, GO:0045988,
GO:0045989, GO:0006942, GO:0016202, GO:0045214,
GO:0014866, GO:0048643, GO:0014706, GO:0051155,
GO:0014733, GO:0048642, GO:0051146, GO:0043403,
GO:0010831, GO:0014904, GO:0010664, GO:0051153,
GO:0010662
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Skin 29

GO:0060088, GO:0051797, GO:0031069, GO:0045682,
GO:0060113, GO:0035315, GO:0008544, GO:0042633,
GO:0042635, GO:0042634, GO:0001942, GO:0060119,
GO:0060117, GO:0033561, GO:0031424, GO:0042491,
GO:0048730, GO:0045683, GO:0022405, GO:0045684,
GO:0045606, GO:0045605, GO:0045604, GO:0043588,
GO:0043589, GO:0070268, GO:0060122, GO:0002093,
GO:0009913

Testis 4 GO:2000018, GO:0060008, GO:0008584, GO:2000020

Thyroid gland 3 GO:0042403, GO:0030878, GO:0006590

Uterine endometrium 3 GO:0022602, GO:0046697, GO:0042698

Cerebellum 14

GO:0021983, GO:0021707, GO:0021702, GO:0021681,
GO:0021696, GO:0021697, GO:0021694, GO:0021695,
GO:0021692, GO:0021549, GO:0021587, GO:0021684,
GO:0021680, GO:0021683

Cerebral cortex 7
GO:0021762, GO:0021987, GO:0021799, GO:0021756,
GO:0021895, GO:0021795, GO:0021801

Spinal cord 29

GO:0021515, GO:0021517, GO:0021516, GO:0021511,
GO:0021510, GO:0021513, GO:0021522, GO:0034351,
GO:0060251, GO:0060253, GO:0034350, GO:0022030,
GO:0048485, GO:0014014, GO:0014015, GO:0014013,
GO:0060019, GO:0021932, GO:0042063, GO:0014009,
GO:0001774, GO:0021782, GO:0021801, GO:0045687,
GO:0045686, GO:0045685, GO:0010001, GO:0060252,
GO:0008347
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“tissue enhanced genes” [148]. Specifically, for each of the 12 major tissues, we selected

genes that have at least four-fold higher mRNA levels over the average levels in the other

major tissues. For the three brain sub-tissues, we relaxed the above threshold to two-fold

due to the smaller differences between sub-tissues. Next, a subnetwork was extracted from

the global PPI network for each tissue as the tissue-specific PPI network, in which each

edge from the global PPI network was included if at least one of the two genes connected

by the edge is tissue enhanced. The underlying rationale is that tissue enhanced genes are

likely to perform functions specific to the involved tissues, while their interacting partners,

if not tissue enhanced, are likely ubiquitously expressed genes that perform tissue-specific

functions only when interacting with tissue enhanced genes [12, 50].

We further constructed isoform co-expression networks by measuring expression

correlations of isoform pairs across all RNA-seq experiments associated with the tissue,

wherein only isoforms of genes appearing in the corresponding tissue-specific PPI network

were considered. Expression correlation coefficients as edge weights were computed by the

absolute value of the leave-one-out Pearson correlation coefficients [101], which is robust

against single experimental outliers. To retain reliable co-expression edges but avoid noisy

ones, we only kept the top five percent edges with the largest weights in each co-expression

network.

3.2.3 The framework of FINER

The architecture of FINER consists of three key modules, namely, the function

prediction module that predicts isoform functions (denoted as GO terms) for the input
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Figure 3.2: Schematic illustration of the architecture of FINER, which consists of three
modules: (A) a neural network based function prediction module, (C) an III refinement
module for iteratively updating III networks and (B) a mutual regularization module that
is introduced to enable the previous two modules to exchange information with each other.
That is, module B encourages isoforms with similar predicted functions to be more likely
connected in the refined III networks, and vice versa. See the ‘Materials and methods’
section for more details.

isoforms from their sequences and domains, the III refinement module that iteratively refines

the gene-level PPI network to the isoform-isoform interaction network by taking into account

isoform co-expression relationship, and a mutual regularization module that enables the

exchange of information between the above two modules. A schematic illustration of the

architecture is provided in Figure 3.2. The details of the three modules, together with their

training procedures, are described below.

3.2.4 Function prediction module and its learning objective

We constructed the function prediction module on the basis of DIFFUSE [27] with

extensions (Figure 3.2A). The backbone of DIFFUSE is a deep neural network designed for

predicting isoform functions based on isoform sequences and conserved domains. Specif-

ically, the neural network contains two components: (i) A convolutional neural network
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(CNN) component is used to extract sequence features of isoforms, in which the amino acid

sequence of each isoform is encoded as a series of overlapping tri-grams s. Each tri-gram is

encoded as a continuous vector by the dense embedding layer [10]. A one-dimensional con-

volutional layer with multiple convolution filters is then employed to detect functional sites

by scanning the encoded sequence and represent the extracted information into a sequence

hidden feature vector hs. A pyramid pooling layer was designed in the CNN component

to deal with isoform sequences of different lengths. (ii) The other component is a recur-

rent neural network (RNN) with long short-term memory (LSTM) units [60]. In the RNN

component, each type of conserved domain is represented as a unique token. Domains of

each isoform are ordered as a sequence of tokens d, which are encoded by the same dense

embedding technique and then input to the LSTM units successively. Content of tokens

with their order information for each isoform are thus captured and again represented as a

domain hidden feature vector hd.

The two types of hidden features, hs and hd, are concatenated and then fused as a

unified functional feature vector h through a fully connected layer. The feature extraction

and fusion process are formally defined as:

h = Dense([hs,hd]) = Dense([CNN(s), RNN(d)]), (3.1)

where Dense(·) denotes the fully connected layer and [·, ·] denotes the concatenation of two

vectors.

Unlike DIFFUSE, which produces a binary prediction on each individual GO term,

FINER produces a multi-label prediction on all the GO terms specific to a given tissue
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simultaneously, thus making the entire training process more efficient and allowing common

knowledge to be shared across all GO terms. Specifically, we used a fully connected layer

to map a functional feature vector h to an output vector o:

o = Dense(h). (3.2)

Here, the output vector o has T dimensions, where T denotes the number of GO terms

specific to a tissue. The sigmoid function is applied on each dimension of the output to

normalize the prediction on each GO term to a score in the range [0, 1], indicating how

likely the input isoform performs the corresponding function.

Because of the hierarchical nature of GO, an isoform is automatically labeled with a

GO term if any of its child terms are labeled on the isoform. To ensure consistent prediction

on all GO terms, we designed a hierarchical prediction layer as done in Kulmanov et al.

[84]. For each term in the set of T GO terms, we created a binary mask vector, denoted as

ct (where t = 1, 2, ..., T ), wherein the bits corresponding to the GO term and its children

are set as 1. The maximum score from the element-wise product of the output vector and

the mask vector is set as the GO term’s prediction, which is formally denoted as:

at = max(ct ◦ o) for t = 1, 2, ..., T. (3.3)

Finally, the prediction results on all T terms are merged as the functional prediction of the

input isoform p = Hierarchical(o) = (a1, a2, ..., aT ).

To overcome the difficulty of lack of ground-truth isoform function annotations,
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we applied the multiple instance learning (MIL) technique, following the previous work on

isoform function prediction in [27, 40]. Specifically, each gene is treated as a bag and the

isoforms of a gene are treated as the instances of the bag. For a given function, positive

bags refers to genes associated with the function. Clearly, a positive bag should contain

at least one positive instance but may also have some negative instances, while a negative

bag should contain no positive instances. We initialize all instances of positive bags with

positive labels, and the others with negative labels. Given an isoform i and its initial label

on GO term t, we can define the following “binary cross entropy loss”:

li,t = −(yi,t log(pi,t) + (1− yi,t) log(1− pi,t)), (3.4)

where yi,t is a one-hot indicator for the label of isoform i on GO term t, and pi,t is the

corresponding prediction score. To characterize the above bag instance relationship, we

weighted each “binary cross entropy loss” by the corresponding prediction score, so that

significant punishment would be applied on large prediction scores with negative labels but

not on small prediction scores with positive labels.

Given a set of K isoforms, the learning objective for the function prediction module

is to minimize the following “function prediction loss” defined by the following weighted

binary cross entropy [59]:

Lfp = −
K∑
i

T∑
t

p̂i,tli,t, (3.5)

where p̂i,t is a constant assigned by pi,t to avoid direct minimization of the prediction score.
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The isoform labels are recalculated after each training iteration under the MIL constraints,

which will be described in more detail in the sections below.

3.2.5 Isoform-isoform interaction refinement module and its learning ob-

jective

For a given tissue, we iteratively refine its isoform-isoform interaction network

initialized as the tissue-specific PPI network (Figure 3.2C). The III network contains the

isoforms of genes that appear in the tissue-specific PPI network. Initially, we connect

isoforms if and only if their genes have interactions in the tissue-specific PPI network. We

formally define an III network as a undirected graph GIII = (V ,E), in which isoforms are

represented as a set of nodes V = {vi}|V |i=1, and their interactions are represented as edges

E between nodes. Our goal is to produce a refined III network G′III = (V ,E′) on the same

set of nodes but with a new set of edges E′, reflecting real interactions among isoforms.

We refine the III network according to isoforms’ neighbors in the current III net-

work and the isoform co-expression relationship. For each isoform vi ∈ V , these two types

of information are represented as a node feature vector xi. The details of this representation

are described as follows.

(i) Isoform neighborhood: The neighborhood of node vi is defined as a set of nodes visited

by a series of random walks starting from vi, denoted as Ni [52]. The isoforms

with similar neighborhoods should share similar node feature vectors as they have

similar interacting partners. To characterize this relationship, we specify the following

objective function: For a node vi, the objective seeks to correctly predict Ni from their
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node feature vectors. As the neighborhood relationship is not certainly bidirectional

based on its definition, we use a context vector x′i to represent each node when it is

treated as the prediction target. Thus, predicting the neighborhood is modeled as the

conditional likelihood given by a softmax unit parameterized by the products of node

vectors. The objective is to minimize the following negative log likelihood through

the updating of node feature and context vectors:

Lnb = −
|V |∑
i=1

∑
j∈Ni

log p(vj |vi)

= −
|V |∑
i=1

∑
j∈Ni

log
exp(x′Tj xi)∑

vk∈V exp(x′Tk xi)
.

(3.6)

As the computation of the full softmax is expensive, we approximate the objective

using negative sampling [109]. For each node vj in the neighborhood of node vi, we

sample a set of non-neighborhood nodes, Rij ⊆ V −Ni. Thus, the task becomes to

distinguish node vj from nodes in Rij . Then, the above objective can be formulated

as the following “network neighborhood loss”:

Lnb = −
|V |∑
i=1

∑
j∈Ni

(log σ(x′Tj xi)−
∑
k∈Rij

log σ(x′Tk xi)). (3.7)

(ii) Co-expression relationship: Co-expressed isoforms are usually those involved in com-

mon biological processes and thus may have common interacting partners [126]. As

introduced in the ‘Construction of tissue-specific datasets’ section, the tissue-specific

co-expression network GEXP = (V ,R) is constructed on the same set of nodes V as

the tissue-specific III network, with a set of weighted edges R where the weight of edge
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rij between nodes (vi, vj) reflects the expression correlation between two correspond-

ing isoforms. Then, the following “co-expression loss” introduces a regularization

for node feature vectors under the squared euclidean distance, weighted by the edge

weights of the co-expression network, which encourages similar node feature vectors

to be shared by co-expressed isoforms:

Lcoe =

|V |∑
i=1

|V |∑
j=1

rij ||xi − xj ||22. (3.8)

To predict interactions from node features, we built a binary classifier. Specifically,

for a pair of nodes (vi, vj), we first combine their feature vectors using the element-wise

multiplication, i.e., xi ◦xj , which is a commonly used operation in modeling the symmetric

relations from vector representations [28, 70, 57]. Then, the sigmoid function is applied

on the weighted summation of the combined representation’s dimensions, which outputs

a score in the range [0, 1], indicating how likely the interaction happens between the two

corresponding isoforms:

zij = σ(wT(xi ◦ xj)), (3.9)

where w is a vector of trainable parameters which learns to weight the contribution of

different dimensions of node feature vectors. To train the weight vector, we treat links in

the current III network as labels and apply the same weighted cross entropy introduced in

Equation 3.5 as the “link prediction loss”:
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Llp = −
|V |∑
i=1

|V |∑
j=1

ẑij(eij log(zij) + (1− eij) log(1− zij)), (3.10)

where eij is a binary indicator for the link between node i and node j in the current III

network and ẑij is a constant assigned by zij . Feature vectors are also adjusted to adapt to

the weight vector based on the objective function, which facilitates the training process.

3.2.6 Mutual regularization and the joint learning objective

The key idea, which forms the cornerstone of this work, is to establish the connec-

tion between the two tasks, IFP and IIIP. Inspired by the graph regularizer [20] recently

proposed for training neural networks with the help of static graphs, we propose a mutual

regularizer for both modules (Figure 3.2B) that uses edges in the current III network to

regularize the learning process of the functional predictor and also encourages dynamic ad-

justments in the III network consistent with the prediction results made by the functional

module:

Lmut = −
|V |∑
i=1

|V |∑
j=1

zij(m− ||hi − hj ||22), (3.11)

where hi and hj are functional feature vectors of the corresponding isoforms of node i

and j, defined in Equation 3.1, and m is a predefined margin. Intuitively, this “mutual

regularization loss” encourages the functional predictor to learn similar functional feature

vectors for two isoforms if they are connected in the current III network. On the other

hand, if two isoforms have similar functional feature vectors, i.e., the squared euclidean

distance over them is smaller than the predefined margin m, a larger prediction score of
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Algorithm 2 Learning algorithm of FINER

Initialization: Isoform sequences, s; Conserved domains, d; Initial functional labels, y;
Initial III network, GIII = (V ,E); Co-expression network, GEXP = (V ,R).

Output: Functional predictor with parameters Θ; Refined III network G′III = (V ,E′).
1: Initialize parameters Θ, x, x′ and w, G′III = GIII
2: while not converged do
3: Sample batches for functional predictor by E′

4: for each batch do
5: Update Θ by Equation 3.13
6: end for
7: for each isoform i do
8: Make inference on hi and pi
9: end for

10: Update y under the MIL constraints
11: Sample batches for III refinement module by Node2vecWalk(G′III)
12: for each batch do
13: Update x, x′, and w by Equation 3.14
14: end for
15: for each node pair (vi, vj) do
16: Make inference on zij
17: end for
18: Update E′

19: end while

their interaction is encouraged.

To sum up, the joint objective of FINER is to minimize the following loss function:

L = λ1Lfp + λ2Lmut + λ3Lnb + λ4Lcoe + λ5Llp, (3.12)

where λ1, λ2, λ3, λ4, and λ5 are the balancing hyper-parameters.

3.2.7 Training procedure of FINER

To learn general functional knowledge from sequences and domains, we first pre-

train the function prediction module using a large number of proteins retrieved from the
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SwissProt database [11] as done in DIFFUSE [27]. In this study, we collected 98 400 eu-

karyotic (other than human) protein sequences with GO annotations from the SwissProt

database. Conserved domain data were retrieved accordingly using the same method de-

scribed before. The “binary cross entropy loss” defined in Equation 3.4 is used to pretrain

the functional predictor.

Next, the function prediction module and the III module are alternately trained

with the isoform data, until convergence. The pseudocode for the learning algorithm is

given in Algorithm 2, and its basic ideas are sketched below.

(i) Training the function prediction module: In the functional module training phase,

parameters of the functional predictor Θ are updated by minimizing the weighted

summation of two components in the loss function with the stochastic gradient descent

method:

min
Θ

λ1Lfp + λ2Lmut. (3.13)

To speedup learning, isoforms connected in the current III network are sampled into

the same training batch. After each training phase of the functional module, the infer-

ence is performed for all isoforms on their functional feature vectors h and functional

predictions p. Under the MIL setting, for each GO term, the labels of all instances

in positive bags are updated according to the following criteria: (i) Instances with

prediction scores above the predefined threshold are assigned with positive labels,

while the others are assigned with negative labels. (ii) For each positive bag, if all its

instances are assigned with negative labels, we select the instance with the largest pos-

itive prediction score in the bag as positive. The updated labels are used for training
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in subsequent iterations.

(ii) Training the III network refinement module: In the III module training phase, node

vectors and weight parameter w are updated by minimizing the weighted summation

of four components in the loss function with the stochastic gradient descent method:

min
x,x′,w

λ2Lmut + λ3Lnb + λ4Lcoe + λ5Llp, (3.14)

After each training phase of the III module, the inference is performed for each node

pair (vi, vj) on the link prediction zij , based on which, edges in the current III network

are updated to obtain a refined III network.

Due to the noisy nature of tissue-specific PPIs, we would like to denoise the existing

interactions while discovering de novo interactions. Therefore, unlike the label update

procedure in the functional module, edge update here does not consider bag-instance

constraints. The following criteria are considered when updating edges instead: (i)

In the refined III network, edges are set between nodes if the corresponding link

prediction scores are above the predefined threshold. (ii) To guarantee the inclusion

of interaction information for each isoform, the top 10 edges with the largest link

prediction scores associated with each node are also included in the refined III network.

Edges in the refined network are then used for regularizing the functional module in

subsequent iterations.
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3.3 RESULTS

3.3.1 Prediction of tissue-specific isoform functions

We applied FINER to predict tissue-specific functions of isoforms on the human

tissue datasets, including 12 major tissues and three brain sub-tissues. The prediction

procedure, together with the calculation of prediction accuracy, are described below:

(i) Dataset partition: For each tissue, we randomly partition its isoforms into training,

validation, and test sets with the proportions of 70%, 10%, and 20%, respectively.

Hyper-parameters of the models are manually tuned based on model performance on

the validation data (see Table 3.3 for the calibrated hyper-parameter values). The

validation data are finally merged with the training data to train a model for perfor-

mance evaluation on the test data. To avoid potential information leak (i.e., different

components of the partition share isoforms with very similar sequences and thus sim-

ilar functions), we first require that isoforms of the same gene are partitioned into

the same set. In addition, since the function prediction module is pretrained with the

SwissProt protein sequences from different eukaryotes and there are closely related

paralogous genes in the human genome, we consider clusters of orthologous groups

(COGs) defined in the EggNOG database up to the level of eukaryotes [63] (note that

such COGs also include many paralogous genes) to prevent closely related homolo-

gous genes from being split among different sets. In other words, all genes of the same

COG are required to be partitioned together. In addition, all (non-human) SwissProt

proteins belonging to COGs that contain (human) genes in the test set are excluded

from the pretraining phase.
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Table 3.3: The calibrated hyper-parameter values of FINER models.

Hyper-parameter Value

Dimensionality of the amino acid tri-gram embedding 8
Dimensionality of the conserved domain token embedding 8

Convolutional layer kernel number 64
Convolutional kernel size 64

Dimensionality of the sequence hidden feature vector hs 128
Dimensionality of the domain hidden feature vector hd 128

Dimensionality of the functional feature vector h 128
Dimensionality of the node feature vector x 16

Return parameter of random walk in the Node2Vec algorithm [52] 4
In-out parameter of random walk in the Node2Vec algorithm 1

Margin in the mutual regularization loss m 0.1
Optimizers of both modules Adam [77]

The balancing of the hyper-parameters of the loss function and learning rates were tuned
specifically for the model of each tissue.

(ii) Prediction accuracy evaluation: As the ground-truth of isoform functions is generally

unavailable, we adopt the widely-used alternative evaluation strategy at the gene level

[27, 40, 100, 130], with the rationale that if the functions of isoforms are correctly pre-

dicted, their gene functions should be correctly predicted automatically. Hence, for

each GO term, a prediction score for each gene is generated by taking the maximum

prediction score among its isoforms, and the performance is measured by comparing

the gene-level prediction with the ground-truth. Both the area under the receiver

operating characteristics curve (AUC) and the area under the precision-recall curve

(AUPRC) are used to evaluate the performance for each GO term. To make compar-

isons across different datasets fairly, we unify the AUPRC baseline as 0.1 for all GO

terms as done in [130, 27].

To evaluate the effect of III refinement on functional prediction, we compare the
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Figure 3.3: (A) Comparison of functional prediction performance measured by the av-
erage AUC over GO terms on each dataset, between FINER (orange), FINER without
co-expression regularization (blue), and FINER without III refinement (green). The num-
ber of GO terms associated with each tissue is noted after the name of the tissue. (B)
Comparison of functional prediction performance measured by the average AUPRC. (C)
Learning curves of the function prediction module with (orange) and without (green) III
refinement on the Heart tissue dataset in terms of both AUC and AUPRC.
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Figure 3.4: Learning curves of FINER on all tissue-specific datasets other than Heart.
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performance of FINER with that of FINER without III refinement as well as with FINER

without co-expression regularization in the III refinement module. Figure 3.3 summarizes

the average AUC and AUPRC values over all the GO terms in each tissue. On average,

FINER achieves improvements of 5.80% and 21.5% over FINER without III refinement

in terms of AUC and AUPRC, respectively, on the major tissue datasets, as well as im-

provements of 5.16% and 15.1% in terms of AUC and AUPRC, respectively, on the brain

datasets. In addition, FINER achieves improvements of 1.94% and 4.28% over FINER with-

out co-expression regularization in terms of AUC and AUPRC, respectively, on the major

tissue datasets, as well as improvements of 1.51% and 7.37% in terms of AUC and AUPRC,

respectively, on the brain datasets. The learning curves of the function prediction module

in Figure 3.3C clearly demonstrate that the performance of the module benefited from the

refinement of III networks, i.e., the performance of the function prediction module clearly

gets better after each III network update, until convergence (see Figure 3.4 for learning

curves on all the other tissues).

A concrete example is shown in Figure 3.5. Isoform NM 000660 is the single

isoform of gene TGFB1. According to GO annotations, TGFB1 is labeled as having the

heart-specific function of cardiac chamber development (GO:0003205). Without applying

III refinement, NM 000660 is predicted to have the function of GO:0003205 with a score

of only 0.571, which is just at the boundary between having or not having the function.

Meanwhile, most of its interacting partners in the initial III network are predicted as not

having the function. In contrast, when applying III refinement, NM 000660 is predicted

to be interacting with isoforms that are predicted as having the function, and NM 000660
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Figure 3.5: Illustration of the interactions and functional prediction scores on the term
GO:0003205 of isoform NM 000660 in both the initial III network and the refined III net-
work. Red nodes represent isoforms predicted as having the function, while blue nodes
represent isoforms predicted as not having the function.

itself is predicted as having the function with a high score of 0.870.

3.3.2 Comparison with the existing methods

We further make comprehensive comparisons between the functional prediction

performance of FINER and that of several state-of-the-art methods with different objec-

tives, including two recent isoform function prediction methods DIFFUSE [27] and DisoFun

[155], a tissue-specific protein function prediction method OhmNet [173] and a general bi-

ological network refinement method NE [152]. Note that three isoform function prediction

methods, DisoFun, ISOGO [46] and IsoResolve [98] have been published in the literature

after DIFFUSE. Although these methods have not been compared with DIFFUSE directly

on the same dataset, their reported overall performance all seem to be worse than that of

DIFFUSE. Among the methods, DisoFun adopted a more strict evaluation metric in its

performance evaluation. Moreover, it also considers PPI information similar to FINER. We
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Table 3.4: Comparison of functional prediction performance between FINER and some
existing state-of-the-art methods.

Method Major Tissue Datasets Brain Datasets
AUC (SD) AUPRC (SD) AUC (SD) AUPRC (SD)

OhmNet 0.751 (0.099) 0.431 (0.196) 0.743 (0.123) 0.423 (0.223)
DisoFun 0.805 (0.188) 0.460 (0.236) 0.770 (0.214) 0.419 (0.242)

DIFFUSE 0.836 (0.134) 0.568 (0.208) 0.822 (0.190) 0.541 (0.256)
FINERfixed+RAW 0.845 (0.102) 0.522 (0.185) 0.833 (0.149) 0.569 (0.254)
FINERfixed+NE 0.859 (0.104) 0.540 (0.178) 0.841 (0.131) 0.577 (0.242)

FINER 0.894 (0.080) 0.634 (0.158) 0.876 (0.115) 0.655 (0.234)

therefore choose to include DisoFun in the comparison here.

DisoFun predicts isoform functions using a matrix factorization approach based

on isoform expression profiles, where PPIs are used to perform a gene-level regularization.

OhmNet first learns protein embeddings from different tissue-specific PPI networks, taking

into consideration the dependence between tissues. Independent function classifiers are then

trained to predict tissue-specific protein functions at the gene level. NE has been success-

fully used to denoise tissue-specific PPIs in the literature [152]. In the study, we apply NE

to denoise initial III networks in our datasets. To compare the effect of their results on en-

hancing isoform function prediction with that of our refined III networks, we provide FINER

with NE’s denoised III networks and keep them fixed throughout functional prediction. We

denote this model as FINERfixed+NE. To make the comparisons more clear, we include

the performance of FINER without III refinement here, denoted as FINERfixed+RAW. As

shown in Table 3.4, FINER improved over the best performance of the three isoform/protein

function prediction methods (i.e., OhmNet, DisoFun, and DIFFUSE) on both the major

tissue and brain datasets by 6.94% and 6.57%, respectively, in terms of average AUC, as

well as 11.62% and 21.1%, respectively, in terms of average AUPRC. We observe that the
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standard deviations (SDs) in FINER’s performance across different tissues are generally

smaller than the other methods. Moreover, a comparison among FINER, FINERfixed+NE

and FINERfixed+RAW demonstrates that FINER acquires larger performance gains from

our iteratively refined III networks than the denoised III networks of NE, even though they

are still better than the initial networks.

Due to the lack of tissue-specific interaction ground-truth, we measure the consis-

tency between our refined III networks and the results of a state-of-the-art III prediction

method. TENSION [72] is compared here as it is the most recent tissue-specific III predic-

tion method. For each tissue, a core subnetwork is extracted from the predicted III network

of each method, which is induced by the set of isoforms whose genes are associated with

the tissue-specific functions. The Jaccard index is used to measure the similarity between

the subnetworks generated by the two methods for each tissue. As shown in Table 3.5, the

average of Jaccard indexes across all tissues is 0.332, and they are all significantly larger

than the expected ones if two networks are randomly (and independently) generated with

the same sets of nodes and number of edges as in the networks predicted by FINER and

TENSION (under the column E[Jaccard index] in Table 3.5). The moderate similarity be-

tween the core parts of III networks on most of the tissues suggests that the III predictions

made by the two methods are perhaps informative.
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Table 3.5: Similarity between the core subnetworks of tissue-specific III networks predicted
by FINER and those predicted by TENSION in each tissue, where each subnetwork is
induced by the set of isoform nodes from genes associated with the corresponding tissue-
specific functions. P -values from Fisher’s exact tests are used to demonstrate the signif-
icance of the difference between the Jaccard indexes calculated and the expected ones if
two networks are randomly (and independently) generated with the same sets of nodes and
number of edges as in the networks predicted by FINER and TENSION.

Tissue Jaccard
index

E[Jaccard index] P -value # of isoforms in
subnetwork

Uterine endometrium 0.594 0.102 1.40E-26 24
Lung 0.553 0.066 6.49E-79 48
Bone marrow 0.517 0.077 1.96E-71 47
Testis 0.500 0.039 3.01E-48 45
Cerebral cortex 0.427 0.009 2.57E-170 147
Adipose tissue 0.333 0.031 1.14E-220 138
Cerebellum 0.317 0.035 1.19E-27 48
Thyroid gland 0.311 0.147 1.62E-5 21
Spinal cord 0.308 0.008 2.24E-171 191
Intestine 0.297 0.032 2.91E-50 70
Skin 0.242 0.011 0.0 337
Heart 0.194 0.008 0.0 729
Placenta 0.154 0.050 7.14E-38 111
Skeletal muscle 0.141 0.014 0.0 795
Lymphocyte 0.086 0.009 0.0 1106

Average 0.332

3.3.3 Consistency between the predicted functions of isoforms and their

tissue specificity

We validate our isoform-level predictions by investigating their consistency with

the tissue specificity of isoforms. It is well-known that the expression of genes is usually

tissue-specific. Previous studies have shown that in a certain tissue, the highly-expressed

genes are usually associated with functions specific to the tissue [45]. For example, genes

with elevated expression in skin are associated with functions related to the barrier function,

skin pigmentation, and hair development, while genes elevated in liver are associated with

metabolic processes and glycogen storage [148]. As isoforms are actual function carriers,
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we expect that this relationship also remains true at the isoform level. That is, the set

of isoforms elevated in a tissue should be enriched with the corresponding tissue-specific

functions. Thus, we quantify the expression specificity of each isoform in a given tissue

by the fold change of its mRNA level in the tissue over the average level in other tissues.

For each tissue, a set of “tissue enhanced isoforms” are selected from the test set based on

the “tissue enhanced” criteria same as those in the “Materials and methods” section. To

generate functional annotations of isoforms on each GO term, we binarize the corresponding

prediction scores by applying the threshold that optimizes the F1 score with respect to the

gene-level ground-truth. Then, Fisher’s exact test is performed to test each tissue-specific

GO term’s enrichment in the set of tissue enhanced isoforms. The multiple testing correction

with false discovery rate (FDR) controlling is applied to the P values. Figure 3.6A shows

the fractions of GO terms that are enriched in the tissue enhanced isoform sets of each

tissue. Enrichment (i.e., P(corrected) ≤ 0.05) is found in 91.4% (385 out of 421) of the

GO terms on the major tissue datasets and 84.0% (42 out of 50) on the brain datasets.

These results confirm that the consistency between (predicted) functions and tissue-specific

expressions remains at the isoform-level.

We further investigate whether our functional predictions differentiate tissue en-

hanced isoforms from non-tissue enhanced ones in functional genes. Specifically, for each

tissue-specific GO term, we consider only the genes that are associated with the term, and

divide isoforms of these genes into two sets, namely, a set of “tissue enhanced isoforms”

and a set of “non-tissue enhanced isoforms” based on the same criteria as before. Note

that either the tissue enhanced isoform set or the non-tissue enhanced isoform set could
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A B

Figure 3.6: (A) The fractions of GO terms that are enriched in the set of tissue enhanced
isoforms of each tissue. Different levels of enrichment are colored differently. (B) Fold
enrichment of GO terms in sets of tissue enhanced isoforms (green) and sets of non-tissue
enhanced isoforms (orange), where for each GO term, only isoforms of genes associated with
the term are considered. The one-sided Wilcoxon test is performed on the results of each
tissue with at least 5 GO terms (numbers of GO terms are noted in the titles) included
in this analysis to test the significance of the difference in GO enrichment between tissue
enhanced and non-tissue enhanced isoform sets.

be empty for a GO term. If this happens, the corresponding GO term is then ignored in

the analysis. We compare the fold enrichment of a GO term in both sets. The higher the

fold is, the more significant enrichment is found in a set. As shown in Figure 3.6B, the

one-sided Wilcoxon test exhibits significant differences of GO enrichment between such two

sets of tissue enhanced and non-tissue enhanced isoforms. The results suggest that FINER

was able to identify tissue-enhanced isoforms from genes with tissue-specific functions and

assign these functions to such isoforms.
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3.3.4 Consistency between the highest connected isoforms and isoform

protein-level expression

Previous studies have found that in a given tissue, the isoform of each gene with

the most interacting partners usually shows a higher expression level than other isoforms

of the same gene, and is more likely to play functional roles in the tissue. This observation

is consistent across a variety of tissues at both the transcript level and the protein level

[94, 96]. To check the validity of this observation in our refined III networks, we identify

the highest connected isoform (HCI) of each MIG in different tissues, where the HCI is

defined as the isoform of each MIG that has the highest degree in the III network of a given

tissue. An independent dataset for tissue-specific protein-level expression of isoforms was

then collected from Wang et al. [153]. For each tissue, the dataset lists a set of isoforms that

are detected at the protein level by mass spectrometry. Due to its low sequence coverage,

most genes have only one detected isoform in each tissue, which usually is the highest

expressed isoform at the protein level. Ideally, the HCIs of each MIG in different tissues

should be the isoforms that have protein expression evidence in the corresponding tissues.

As shown in Table 3.6, the numbers of MIGs whose HCIs in a tissue are detected at the

protein level, denoted as NFINER, are significantly higher than the expected numbers of

MIGs (Nchance) if their HCIs in the tissues are randomly chosen and detected at the protein

level. We repeat the same experiment on the III predictions of TENSION. The numbers

of MIGs with HCIs in the III networks predicted by TENSION that are detected at the

protein level, denoted as NTENSION, are not as significantly different from Nchance as the

ones of FINER. These results confirm the above observation in our refined III networks.
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Table 3.6: The numbers of MIGs whose HCIs are detected at the protein level in each
tissue. Comparisons are made between HCIs of III networks predicted by FINER and those
predicted by TENSION.

Tissue # of MIGs Nchance NFINER (P -value) NTENSION (P -value)

Heart 316 121 217 (2.35E-14) 177 (9.12E-14)
Lung 272 103 150 (1.72E-13) 121 (1.91E-03)
Lymphocyte 399 157 252 (4.33E-14) 196 (5.04E-06)
Placenta 599 228 345 (5.95E-14) 236 (1.29E-01)
Testis 754 287 421 (5.80E-14) 313 (5.40E-03)
Thyroid gland 466 180 287 (3.46E-14) 196 (2.37E-02)
Uterine endometrium 235 91 147 (1.98E-14) 124 (8.47E-07)

Table 3.7: The numbers of MIGs with their 2nd HCIs or HCIs detected at the protein level
in each tissue. Comparisons are made between the III networks predicted by FINER and
those predicted by TENSION.

Tissue # of MIGs NFINER NTENSION

2nd HCI HCI 2nd HCI HCI

Heart 316 85 217 90 177
Lung 272 94 150 98 121
Lymphocyte 399 111 252 146 196
Placenta 599 186 345 242 236
Testis 754 249 421 303 313
Thyroid gland 466 129 287 202 196
Uterine endometrium 235 67 147 76 124

We also consider more isoforms of each MIG that have high degrees in the predicted

IIIs, and found that the numbers of MIGs whose third highest connected isoforms (3rd

HCIs), second highest connected isoforms (2nd HCIs) or HCIs obtained by FINER are

detected at the protein level monotonically increase in all tissues (Tables 3.7 and 3.8). This

suggests that the isoforms detected at the protein levels tend to have higher degrees in the

III networks predicted by FINER. However, this monotonicity property does not always

hold in the III networks predicted by TENSION.
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Table 3.8: The numbers of MIGs with their 3rd HCIs, 2nd HCIs or HCIs detected at
the protein level in each tissue. Here, MIGs with at least three isoforms are considered.
Comparisons are made between the III networks predicted by FINER and those predicted
by TENSION.

Tissue # of
MIGs

NFINER NTENSION

3rd
HCI

2nd
HCI

HCI 3rd
HCI

2nd
HCI

HCI

Heart 177 21 57 102 49 45 77
Lung 149 23 54 65 41 41 52
Lymphocyte 189 34 57 93 55 50 62
Placenta 316 65 103 144 93 100 95
Testis 389 66 128 172 98 123 103
Thyroid gland 241 39 66 122 50 98 70
Uterine endometrium 120 15 34 63 28 37 45

3.3.5 Consistency between interactions of isoforms and their subcellular

localization

Subcellular localization of isoforms determines the environments where they oper-

ate. Therefore, subcellular localization plays a significant role in controlling the availability

of interacting partners of isoforms and further influencing their functions [164]. Thul et

al. [144] also discovered that interactions among proteins within the same or connected

cell organelles are more likely to happen compared to isoforms between disconnected or-

ganelles. Inspired by this finding, we collected some data of isoform subcellular localization

from Uhlén et al. [148], in which isoforms are annotated with locations predicted from

their sequences: soluble (intracellular isoforms), membrane-spanning, or secreted. We then

examine the enrichment of interactions among isoforms in the same or between different

subcellular locations. Figures 3.7A and 3.7C show that, when considering isoforms of SIGs

alone, a significant enrichment of interactions is always found between isoforms within the
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Figure 3.7: Heat maps describe the probability (measured by the FDR-corrected P value
for the binomial test) of observing at least as many isoforms in a given location (y axis) by
chance, given the location of each isoform’s interaction partner (x axis). (A) Comparison of
the above probabilities between the isoforms of SIGs in the initial III networks and those in
the refined III networks for the 12 major tissues. (B) The same comparison for the isoforms
of MIGs in the 12 major tissue datasets. (C) The same comparison for the isoforms of SIGs
in the 3 brain sub-tissue datasets. (D) The same comparison for the isoforms of MIGs in
the 3 brain sub-tissue datasets.
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same subcellular location but rarely found between those in different locations, no matter

the initial or refined III networks are used. On the other hand, an enhancement of this trend

(i.e., enrichment of interactions between isoforms within the same subcellular location) can

be seen in refined III networks compared with the initial ones in the Heart, Skeletal mus-

cle, Skin, and Thyroid gland tissues. In contrast, Figures 3.7B and 3.7D show that, when

considering only isoforms in MIGs, more enrichment of interactions between isoforms in

different locations is found in the initial III networks, but the above trend observed in SIGs

still remains true in the refined III networks. A plausible conclusion from these observa-

tions is that our results concerning the isoforms of SIGs show consistency with the previous

findings [144]. In other words, even though isoforms at the same subcellular location may

not belong to the same or connected organelles, it is conceivable that interactions could be

more likely to happen between these isoforms compared to isoforms in different locations,

as found consistently in our observations. However, since different isoforms of MIGs can

be localized differently, initializing III networks based on PPIs may introduce many false

interactions between isoforms from different locations. Through III network refinement,

real interactions are revealed and thus the expected trend is recovered.

3.3.6 Differentiating functions of isoforms with different localization

It is commonly found that a single gene can encode isoforms with different subcel-

lular localization [148], which suggests the potential functional differences between them.

We test if FINER can correctly differentiate the functions of isoforms from the same gene,

measured in terms of consistency with their localization. We focus on a set of subcellular

location enriched GO terms. Specifically, for each subcellular location, we consider the set
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Figure 3.8: Comparison between FINER (blue), DIFFUSE (yellow) and DisoFun (Red) in
terms of consistency between their predictions on location enriched GO terms and sub-
cellular localization of isoforms, where the consistency is measured by the Jaccard index.

of genes that encode isoforms located there. Then, GO terms that are enriched in the gene

set are selected as the location enriched terms through GO enrichment analysis. For each

selected GO term and the corresponding subcellular location, we consider MIGs that are

associated with the GO term and encode isoforms with different localization containing at

least one isoform in the considered location. Isoforms with prediction scores greater than

the background of their genes are annotated with the GO term, where the background of a

gene is defined as the average prediction score of all its isoforms. The Jaccard index is used

to quantify the agreement that isoforms annotated with a GO term are also located in its

corresponding subcellular location.

Figure 3.8 shows that the predictions of FINER achieve a higher consistency with

isoform subcellular localization than those of DIFFUSE and DisoFun in 6 out of the 7
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BA

Figure 3.9: The degrees of TITIN isoforms in the refined tissue-specific III networks of
skeletal muscle and heart, respectively. (A) N2A is the major skeletal muscle isoform of
gene TITIN, who has a higher degree compared with the other TITIN isoforms in the refined
III network of skeletal muscle. (B) N2B and N2BA are the two major heart isoforms of gene
TITIN, who have higher degrees compared with the other TITIN isoforms in the refined
III network of heart. The Kruskal-Wallis test is performed to test the significance of the
degree difference between two groups of isoforms in each tissue.

considered GO terms, while DIFFUSE generally outperforms DisoFun. This result suggests

that isoform localization information resides in the refined IIIs and isoform sequences may

help FINER differentiate the functions of isoforms with different localization.

3.3.7 Case studies with literature support

We finally perform a literature search for experimental evidence to support the

predictions of FINER. In particular, some evidence concerning the tissue specificity of iso-

forms and their functions is collected from the literature for three genes. The first gene

FYN encodes isoforms FynB and FynT. Whereas FynB accumulates highly in the brain,

FynT is expressed predominantly in lymphocytes. Accordingly, FynT but not FynB serves

a tissue-specific function in T cell activation [34]. This evidence is consistent with the

relationship between function and tissue specificity analyzed in Figure 3.6. FINER cor-
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rectly predicted the tissue-specific functions of both isoforms. For the lymphocyte-specific

GO term “Regulation of T cell activation (GO:0050863)”, FynT has a prediction score 1.3

times the background score of its gene, while FynB only has a score 0.6 times the back-

ground. The second gene PPARG involves two isoforms with different tissue specificity.

The expression of PPARG2 is restricted mainly to the adipose tissue, whereas PPARG1 is

expressed in the adipose tissue and many other tissues. PPARG2 can stimulate the forma-

tion of adipocytes (fat cells). However, evidence shows that PPARG1 has no or reduced

ability to induce adipogenesis [111, 123]. Our predictions on the GO term “Fat cell dif-

ferentiation (GO:0045444)” accord with the experimental observation. That is, PPARG2

has a prediction score 1.2 times the background, while the score of PPARG1 is 0.8 times

the background. The last example concerns three isoforms encoded by gene TITIN. While

the isoform N2A is the major isoform of TITIN expressed in skeletal muscles, N2B and

N2BA are major TITIN isoforms expressed in the heart, whose expression ratio is related

to human heart diseases [104]. The III predictions of FINER show that N2A is the highest

connected isoform in the refined III network of skeletal muscles, while isoforms N2B and

N2BA are the highest connected ones in that of the heart (Figure 3.9), consistent with the

relationship analyzed in Table 3.6.

In addition, we are able to find some experimental evidence that indirectly supports

the predictions of FINER concerning the tissue-specific functions of isoforms in four genes.

The evidence is collected by the following procedure. For each tissue, among all the MIGs

associated with at least one GO term specific to the given tissue, the MIGs whose HCIs have

the top five highest degrees (among all HCIs) are selected. An exhaustive literature search is
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Table 3.9: Functional prediction cases of FINER that are supported by experimental evi-
dence from the literature.

Tissue GO term Gene Isoform Fold
change of
prediction
score

Adipose tissue
GO:0045444
Fat cell differentiation PPARG

PPARG2 1.2
PPARG1 0.8

Lymphocyte
GO:0050863
Regulation of T cell activation FYN

FynT 1.3
FynB 0.6

Adipose tissue
GO:0070345
Negative regulation of fat cell
proliferation

GATA2
NM 032638
NM 001145662

1.2
0.8

Lymphocyte
GO:0045579
Positive regulation of B cell
differentiation

CD40
NM 001250
NM 152854

1.2
0.9

Testis
GO:0008584
Male gonad development WT1

NM 001198551 1.3
NM 024424 1.2
NM 000378 1.0
NM 024426 0.9
NM 001198552 0.8
NM 001367854 0.7

Thyroid gland
GO:0030878
Thyroid gland development NKX2-5

NM 004387 1.2
NM 001166176 0.9
NM 001166175 0.9

then performed against the selected MIGs. Information about tissue-specific functions and

corresponding predictions of FINER concerning the isoforms in these MIGs is listed in Table

3.9 (along with the cases discussed in the previous paragraph). Details of the functional

evidence are discussed below. The gene CD40 plays an important signal transduction role in

the pathway responsible for B cell growth and differentiation. Compared with the isoform

NM 001250 encoded by CD40, isoform NM 152854 lacks the transmembrane domain, which

makes it signal-nontransducible [145]. Consistently, for the lymphocyte-specific GO term

“Positive regulation of B cell differentiation (GO:0045579)”, FINER predicts NM 001250

to have a score 1.2 times the background score of its gene, while NM 152854 has a score
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0.9 times the background. The gene WT1 regulates gonad development through activating

the expression of the gene SF1. However, the presence of the KTS motif in WT1 isoforms

hinders their interaction with the SF1 promoter [158]. Accordingly, among the six isoforms

encoded by WT1, FINER gives the three isoforms lacking the KTS motif (NM 001198551,

NM 024424, NM 000378) higher scores on the testis-specific GO term “Male gonad develop-

ment (GO:0008584)” than the other three isoforms with the KTS motif, as shown in Table

3.9. In the adipose tissue, the gene GATA2 acts as a negative regulator of adipocyte prolif-

eration through interaction with FOG proteins, where the interaction relies on the contact

of their zinc fingers [69]. Between the two isoforms encoded by GATA2, NM 001145662

lacks a zinc finger compared with NM 032638. Accordingly, FINER predicts NM 032638

to have a score 1.2 times the background on the GO term “Negative regulation of fat cell

proliferation (GO:0070345)”, while the score of NM 001145662 is 0.8 times the background.

The gene NKX2-5 acts as a transcription factor during the thyroid gland development [37].

Among the three isoforms NM 004387, NM 001166175 and NM 001166176 of NKX2-5, the

DNA binding domain is missing in NM 001166175 and NM 001166176 due to alternative

splicing. Correspondingly, on the thyroid gland-specific GO term “Thyroid gland develop-

ment (GO:0030878)”, the isoform with the DNA binding domain (NM 004387) is predicted

with a higher score than the other two as shown in Table 3.9.

3.4 DISCUSSION

Isoform function prediction (IFP) and isoform-isoform interaction prediction (IIIP)

are two important problems in studying the diversity of gene products. The close ties
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between functions and interactions of protein isoforms make the IFP and IIIP problems

inherently intertwined. In this work, we presented FINER, a unified framework for solv-

ing the two problems jointly. FINER establishes the connection between IFP and IIIP

by introducing a joint learning objective, which enables both tasks to benefit from each

other. We apply FINER to predict tissue-specific isoform functions and interactions on

two datasets, which contain 12 major tissues and three brain sub-tissues of human, respec-

tively. FINER outperforms the state-of-the-art methods across different tissue datasets,

and provides isoform function and interaction predictions that accord with other biological

evidence, including isoform tissue specificity and isoform subcellular localization. These

results suggest FINER’s potential in facilitating the functional exploration of (individual)

isoforms and their roles in diverse human tissues and diseases.

There are several directions for future work. First, the relationship between tissues

is not considered in FINER. The reason is that the tissues studied in this work are rela-

tively independent from each other. If tissue-specific functional terms and well-characterized

RNA-seq data are available for a wider range of tissues in the future, the dependence between

tissues can be considered and transferring functional knowledge between closely related tis-

sues can be explored in FINER. In addition, FINER converges quickly in practice with

several rounds of alternately training the function prediction module and the III refinement

module, although we do not have a theoretical proof for its convergence yet. We hope

to perform more theoretical analysis in the future. Moreover, although this work focuses

on the fundamental problem of isoform function prediction, it would be interesting to see

whether FINER can be directly applied to predict isoform–disease associations effectively.
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Chapter 4

Novel Embeddings in Functional

Spaces to Help Discover

Connections Between Gene Sets

4.1 Introduction

Omics-based analyses are now standard practice to deconstruct the molecular

mechanisms underlying complex biological systems. One of the most common outcomes

when interpreting large-scale omics datasets is the discovery of gene sets. For instance, the

gene expression studies measure expression levels of thousands of genes in different con-

ditions, which are further used to identify a set of genes that are differentially expressed.

Genetic screening studies identify sets of important genes associated with a disease state or

other phenotypes. Critically, comparison of such experimentally derived gene sets usually
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enable new discoveries. For example, the L1000 dataset [136] creates a comprehensive cat-

alog of genetic perturbagen- or drug-induced gene expression signatures. A high similarity

between gene sets derived from different signatures might indicates previously unrecognized

connections (e.g., between a drug and its potential protein targets, or between two struc-

turally dissimilar drugs but targeting the same proteins). As the omics data accumulates

and becomes largely available, it is critically important to develop tools that can help sci-

entists to compare gene sets from their data with those from public datasets to uncover

associations that lead to new findings.

Routine approaches characterizing the similarity between two gene sets rely on

statistics to measure the significance of the number of shared genes between two sets.

Among the numerous methods have been developed, commonly used ones are the Fisher’s

exact test [15] and the weighted Kolmogorov-Smirnov-like statistic introduced in GSEA

[137]. The hypothesis of these approaches is that a significant overlap between two sets

of genes indicates they are probably involved in the same biological functions, pathways,

or regulations. However, in experimentally derived gene sets, a causal pathway is usually

represented by a sparse subset of its members. Therefore, two sets of genes from independent

experiments studying the same biological system or phenotype may show distressingly little

overlap [47]. Previous studies also reported that overlaps between experimentally derived

gene sets are more readily apparent at the level of pathways than at the level of gene

identities [146, 43].

To facilitate functional analysis of genes and gene sets, many web portals, [171,

36, 82], have been developed. The core functionality of such web portals is the enrichment
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Figure 4.1: Schematic overview of the FEGS workflow. (A) FEGS considers two types of
functional information of genes, GO annotations and that derived from RNA-seq data. (B)
FEGS model gene-GO association or gene-RNA-seq sample association as hypergraphs, and
then embed genes as vector representations with the help of random walks in the hyper-
graphs. A consensus embedding for an input gene set is generated by a linear combination
of the gene embeddings. (C) The gene set embeddings are shown to be sensitive in detecting
gene sets with shared pathways and can be applied to multiple applications, such as cell
type identification, and compound target prediction.

analysis, in which the input gene set is compared to thousands of groups of genes predefined

as functional classes by their involvement in known biological processes, protein localization,

pathways, or other features. Functional classes whose members are significantly overrep-

resented in the input gene set are reported to users to describe the underlying functions

of the gene set. These tools, however, do not provide a quantitative way to characterize

similarities between different input gene sets on a large scale. On the other hand, machine

learning methods have been widely applied to omics data analyses [115, 160]. Leveraging

gene set to make new biological discoveries with the help of machine learning usually re-

103



quires converting gene sets into compact vector representations as the input of available

models.

In this chapter, we present a novel computational method, FEGS (Functional Em-

beddings of Gene Sets), for obtaining high-quality, compact vector representations of gene

sets. FEGS is able to embed any user input gene set as a vector representation, where the

direction of the vector encodes biological functions enriched in the set of genes. The em-

beddings generated by FEGS can thus be easily used to quantify similarities between input

gene sets with standard similarity measures of vectors, for example, the cosine similarity. In

addition, the embeddings of gene sets can also serve as input of available machine learning

models for different applications. Specifically, FEGS first pre-trains embeddings for individ-

ual genes encoding their comprehensive functional information, in which, both known gene

functions recorded in the knowledgebase and functional information concealed in large-scale

experimental data are considered (Figure 4.1A). We propose a novel hypergraph based sam-

pling algorithm in the embedding process to encourage genes sharing similar functions to

have similar embeddings (Figure 4.1B). Then for an arbitrary input gene set, a consensus

gene set embedding is computed by a linear combination of embeddings of genes in the set,

in which genes are given different weights to boost the signal-to-noise ratio.

We demonstrate that FEGS offers greater sensitivity to enable the detection of

shared pathways between gene sets, and thus in principle can better identify phenotypically

similar experiments (Figure 4.1C). We further show the utility of FEGS in high-impact

applications. By representing cells as sets of detected genes, the embeddings generated

by FEGS better capture phenotype similarities between cells and thus improve cell type
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identification across different read depths and tissue types. In addition, the benefits of FEGS

embeddings can also be combined with the power of deep learning for more challenging tasks.

We use FEGS to generate embeddings for gene sets derived from compound and genetic

perturbagen signatures. Serving as the inputs, embeddings of FEGS greatly help improve

the performance of an independent deep learning model for compound target prediction.

4.2 Results

4.2.1 Overview of FEGS and other embedding methods for comparison

We consider human genes in this study. FEGS embeds input gene set as vector

representations with two steps (Figure 4.1B). (i) FEGS first pre-trains two kinds of embed-

dings for individual genes in two separate functional spaces independently. The first func-

tional space summarizes known functions of genes recorded in the Gene Ontology database

[30], which is one of the largest sources that defines tens of thousands functional classes

(GO terms) to describe gene functions. The dimension of the functional space is much

smaller than the number of GO terms to reduce the redundancies inherently in the GO

hierarchy. On the other hand, functions that haven’t been well characterized in the knowl-

edgebase could also be interesting, and such functional information is usually concealed in

gene expression patterns under different conditions. Therefore, as a complement, the other

low-dimensional functional space summarizes functional information of genes derived from

massive RNA-seq data, retrieved from the ARCHS4 database [86]. We adopt the learning

objective of the Skip-gram model [109] in FEGS, which is the basis for many well-known

word and network embedding methods [118, 52, 52, 141, 142], and propose a novel hyper-
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graph based sampling algorithm to encourage genes sharing similar functions to be aligned

in the functional spaces. Two kinds of embeddings are then concatenated as the joint vector

representation of each gene. (ii) Then for an arbitrary input gene sets, a consensus gene

set embedding is computed by a linear combination of the pre-trained embeddings of genes

in the set, in which weights of gene embeddings are determined by their similarities with

other embeddings in the set to reduce the impact of outlier genes in the set.

We demonstrated the superiority of our method with a simulation study and then

showed its utility in two practical applications, including cell type identification and com-

pound target prediction. In each experiment, we evaluate the embeddings generated by

FEGS against those obtained from other state-of-the-art embedding methods that also con-

sider GO or gene expression information: OPA2Vec [133], Gene2vec [39], and clusDCA [156].

OPA2Vec first generates sentences from GO annotations and metadata to form a corpus, in

which genes and GO terms are treated as words. It then applies a Word2Vec [109] model to

jointly generate embeddings for genes and GO terms. The PubMed [21] abstracts are used

as a corpus by OPA2Vec for pretraining. Using OPA2Vec’s gene embeddings, an input gene

set can be represented by averaging embeddings of individual genes in the set, denoted as

‘OPA2Vec Gene’. For completeness, we also generate gene set embeddings using OPA2Vec’s

GO embeddings, by first adding up embeddings of GO terms associated with each gene as

the gene embedding and then averaging gene embeddings in the set, denoted as ‘OPA2Vec

GO’. Gene2vec generate gene embeddings utilizing transcriptome-wide gene co-expression

patterns derived from large-scale GEO datasets. clusDCA generates embeddings of GO

terms considering the directed acyclic graph structures of GO hierarchies. Embeddings
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of Gene2vec and clusDCA can also be used to generate gene set embeddings as described

above.

4.2.2 FEGS improves the sensitivity of detecting common pathways be-

tween gene sets

We first examine the sensitivity of FEGS embeddings in detecting gene sets with shared

pathways. Current practice in gene set comparison applies statistical metrics based on

gene identity overlap, where any two distinct genes are considered orthogonal and share

no similarity. In experimentally derived gene sets, a causal pathway associated with a

specific phenotype is usually represented by a sparse subset of its members, which therefore

makes the statistical tests fails to detect the connection between gene sets derived from

phenotypically similar experiments.

We test our hypothesis that by effectively encoding function enrichment informa-

tion in the gene set embeddings, FEGS can offer greater sensitivity in this task. We collected

pathway membership information of genes from the Reactome database [44]. Considering

each pathway, genes are separated as pathway associated genes and non-pathway associated

genes. We generate three gene sets, Sfg, S
′
fg, and Sbg, each with 100 genes. Sfg and S′fg

are randomly generated foreground gene sets, in which λ genes are randomly sampled from

pathway associated genes, and the remaining from non-pathway associated genes. Sfg and

S′fg simulate experimentally derived gene sets with a common pathway present, where λ

controls the level of pathway enrichment. Sbg is a randomly generated background gene

set from non-pathway associated genes. After generating embeddings for the gene sets, the
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Figure 4.2: (A) Similarity score distributions for foreground-foreground gene set pairs and
foreground-background gene set pairs obtained using different methods, under different
pathway enrichment level. The one-sided Wilcoxon signed-rank test is used to test the
significance of their differentiation, and the P value is noted in each subplot. (B) The
distributions of the negative logrithm of the above P values from the Wilcoxon test for 460
pathways obtained using different methods with different λ.
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foreground-foreground similarity between Sfg and S′fg, and foreground-background simi-

larity between Sfg and Sbg are measured by the cosine similarities of their embeddings.

As a baseline, we also use the Fisher’s exact test to test the significance of the overlap

between these gene sets, and use the negative logrithm of the P value to characterize their

similarities. The above sampling process is repeated 200 times and the resulting similar-

ity score distributions for foreground-foreground pairs and foreground-background pairs are

compared. The one-sided Wilcoxon signed-rank test is used to test how significantly are

the similarity scores of the former larger than those of the latter.

The results on the pathway R-HSA-5576891 (Cardiac conduction) (Figure 4.2A)

exemplify the superiority of our method. When pathway enrichment signal is week (λ =

5, the first row), the Fisher’s exact test (the last column) fails to distinguish between

foreground-foreground pairs and foreground-background pairs, while our method (the first

column) distinguishes two kinds of pairs, that is, the similarities measured by our em-

beddings of foreground-foreground pairs are significantly larger than those of foreground-

background pairs (P value = 5.64e-12, one-sided Wilcoxon test). As λ increases, the dif-

ferentiation between two kinds of gene set pairs becomes clearer, while our method always

best distinguishes them.

More generally, we consider all the pathways of human in the Reactome database

with the number of associated genes in the range of 50 to 200, which results in 460 pathways.

We performed the above simulation experiment for each pathway under different enrichment

levels (λ = 5, 10, 15, 20), and use the negative logrithm of the above mentioned P values

from the Wilcoxon test to measure the levels of differentiation between two kinds of gene set
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pairs. The larger the value, the clearer the difference. The distributions of the measurements

for 460 pathways obtained using different methods are shown in Figure 4.2B. When the

enrichment signal is week (λ = 5), most embedding methods outperform the Fisher’s exact

test, which comes into play as λ increases. However, our method still more effectively

distinguish gene set pairs with or without common pathways than the Fisher’s exact test

under all the enrichment levels.

The observations demonstrate that our embeddings can more sensitively detect

gene sets with shared pathways and thus may better characterize the underlying phenotype

similarities.

4.2.3 FEGS improves cell type identification

The emergence of single-cell technologies enables the high-definition dissection of cellular

heterogeneity in unprecedented detail. Single-cell experiments (e.g. single cell RNA-seq,

scRNA-seq) can measure tens of thousands of cells in different phenotypic states, leading

to a large number of potential comparisons. However, single-cell measurements also suffer

from limited capture efficiency, leading to the lack of detection for many truly expressed

genes (i.e. dropouts) [56]. Due to the limitation, phenotypically similar cells are likely to

generate profiles that subsample genes functioning in activated pathways, which increases

noise when comparing individual cells using their gene expression profiles.

We hypothesize that by embedding single cells as vectors encoding activated path-

way information, FEGS can better capture cellular phenotype similarities. We apply FEGS

in the task of cell type identification. We collected the scRNA-seq dataset of human Pe-

ripheral Blood Mononuclear Cells (PBMC) from the 10X Genomics Chromium platform
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and six other scRNA-seq datasets of different human tissues from the Animal Cell Atlas

(ACA) database [23], each with at least two different types of cells. For each dataset, we

convert each cell in the dataset as a set of genes that meet the two criteria: (i) The gene

is detected in the cell. (ii) The gene is within the top 1500 ‘variable genes’ that exhibit

the highest cell-to-cell variation in the dataset, recognized by Seurat [55], which is a stan-

dard pre-processing step and has been proved to help highlight biological signals [128, 16].

Then embeddings of each cell are generated using different methods. Similarities between

cells are measured by the cosine similarity of their embeddings. To make a comparison, we

also represent cells as vectors of their gene expression levels measured by unique molecular

identified (UMI) counts, and compute cell-cell similarities using the negative value of L2

distance over the vectors, which is commonly used for cell clustering [128, 92]. For each

cell as query, we retrieve the top k most similar cells based on cell-cell similarities of each

method, and then compute the identification accuracy, which is a standard metric that

quantifies the average numbers of correct retrievals (retrieved cells of the same type as the

query) given any query of interests [152] (described in the Methods section).

We compare performance of different methods at multiple read depths by down

sampling the overall number of scRNA-seq reads per cell to three levels: 5000 reads per cell,

1000 reads per cell, and 300 reads per cell. Detailed comparisons between FEGS and other

methods in terms of identification accuracy with varied numbers of retrieved cells (Figure

4.3) shows that FEGS improves cell type identification across different datasets under differ-

ent read depths. Specifically, in terms of average identification accuracy when considering
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Figure 4.3: Cell type identification accuracy when varying the number of retrieved cells.
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Figure 4.4: Distribution of cell type identification accuracy of methods in different datasets
with different read depths, considering 100 top retrievals per cell query. Stars show the
means of distributions. The one-sided Mann-Whitney rank test is used to test if the accuracy
of FEGS is significant higher than that of the other compared methods (◦: P ≥ 0.05, *:
1e−10 ≤ P < 0.05, **: 1e−100 ≤ P < 1e−10, ***: P < 1e−100).
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100 top retrievals per cell, our method improves over the best of the other embedding meth-

ods by 5.41%, 5.47%, and 6.14% on average across datasets, for read depths of 5000, 1000,

and 300 reads per cell respectively (Figure 4.3). More interestingly, the improvement of our

method over the L2 distance of UMI counts gets more obvious as read depth decreases (by

2.80%, 7.36%, and 13.75% on average across datasets for three read depths respectively).

The observation accords to our hypothesis that as read depth decreases, genes detected in

the activated pathways become sparser, which makes the expression profile based method

less effective. Our method, however, is able to recover the activated pathway signals and

thus maintains the performance. In addition, the P values of the one-sided Mann-Whitney

rank test demonstrate that these improvements on different datasets and different read

depths are generally significant (Figure 4.4). The results indicates that FEGS can reliably

and better capture phenotype similarities between single cells.

4.2.4 FEGS improves compound target prediction

New paradigm to predict molecular interactions using cellular gene expression

profiles offer promise for genome-wide screens of drug targets [87]. The NIH Library of

Integrated Cellular Signatures (LINCS L1000) program [136] creates a comprehensive cat-

alog of cellular gene expression signatures from perturbagens corresponding to over 25,000

biological entities, including treatments with drug-like compound and gene over-expression

(cDNA) or knockdown (shRNA) experiments, in around 80 cell lines. Based on the hy-

pothesis that compounds that inhibit (activate) their targets should yield similar perturbed

gene expression signatures to silencing (over-expressing) the target genes, we test the abil-
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Figure 4.5: (A) Top k accuracy of different methods on the shRNA data, which measure in
how many gene rank lists of different compounds in different cell lines, there is at least one
known target of the compound ranked in the top k. (B) Top k accuracy of different methods
on the cDNA data. Results of the embedding methods are the average accuracy under three
hyperparameter settings of the neural network (described in the Methods section). Error
bars represent the standard error of the mean.
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ity of FEGS in predicting compound targets using the gene sets derived from the genetic

perturbagen- or compound-induced gene expression signatures.

From each compound treatment, gene over-expression or gene knockdown experi-

ment in each cell line, we identify a set of upregulated genes (UP) and a set of downregulated

genes (DN) from the differential gene expression values, measured by a z-scoring procedure

described in Subramanian et al. [136], which can be retrieved from the L1000 platform.

Specifically, we rank all the genes measured in each experiment by their z-scores and take

the genes ranked in the top 100 with the absolute values of z-scores greater than 2 as the

upregulated gene set (UP), and take those ranked in the bottom 100 with the absolute

values of z-scores greater than 2 as the downregulated gene set (DN). Then for a pair of

compound treatment and gene perturbation (shRNA or cDNA) experiments, we can make

four gene set comparisons to study the underlying connection between the compound and

the gene, using the gene sets in two directions of each (UP:UP, UP:DN, DN:UP, DN:DN).

We design a Siamese deep learning model [19] (described in the Methods section)

to predict whether a gene encodes a protein of a compound. The deep learning model takes

two embeddings of a pair of gene sets as input and outputs a score in the range of [0, 1].

The maximum score of the aforementioned four gene set pairs is taken to indicate how

likely is the input gene to be the target of the input compound. To evaluate performance

of different methods, we perform cross-validation on a group of compounds with known

targets, recorded in the Broad’s database. Data are partitioned based on compounds, that

is, all the gene set pairs associated with the same compound are partitioned into the same

set, so the trained model is used to make predictions on unseen compound for different cell
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lines. For a given compound in a given cell line, we can rank all the genes based on their

probabilities to be the targets of the compound predicted by the model. Models are trained

and evaluated separately for cDNA and shRNA data.

For completeness, we also include the Fisher’s exact test and the default signature

comparing method used by L1000, CMap score, into the comparison. For a compound gene

pair, P values from the Fisher’s exact test of four gene set pair comparisons are computed,

and the maximum negative logrithm of the them is kept for the compound gene pair, which

is used to generate the gene rank list for the compound. The CMap score is also computed

for each compound gene pair and used to rank genes, which is based on GSEA [137] and

introduced in the original paper of L1000 [136].

We use the top-k accuracy to evaluate the performance of different methods, which

is standard for the compound target screening task [115]. That is, considering all the gene

rank lists for different compounds in different cell lines, which results in 5068 rank lists for

shRNA and 4531 rank lists for cDNA, we count in how many of them there is at least one

known target of the compound ranked in the top 10 (20, 30, 40, and 50). As shown in Fig-

ure 4.5, our method greatly outperforms the other methods, especially the default signature

comparing method of L1000, CMap score, for both shRNA and cDNA data. Specifically,

on the shRNA data, our method improved the top-10 (top-20/top-30/top-40/top-50) accu-

racy by 50.4% (55.8%/53.5%/51.1%/48.0%) over the best among other compared methods,

while on the cDNA data, our method improve the top-10 (top-20/top-30/top-40/top-50)

accuracy by 84.2% (71.6%/61.9%/52.7%/48.2%) over the best among compared methods.

Such improvements in this task indicate the huge potential of our method in helping drug
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discovery.

4.2.5 Analysing the effects of different components of FEGS

We next evaluate the contribution of major components of FEGS. We perform

ablation studies by removing components from FEGS and measuring how the performance

of the method is affected in different tasks. We first evaluate the contribution of two kinds

of functional information respectively by generating gene set embeddings using only the

GO information, denoted as FEGS GO, and using only the RNA-seq information, denoted

as FEGS RNA-seq. We also evaluate the contribution of the gene weighting step when

generating the consensus embedding of a gene set from gene embeddings, by replacing

this step with simply averaging individual gene embeddings, denoted as FEGS w/o. gene

weighting.

We first compare FEGS with FEGS GO and FEGS RNA-seq. In the simulation

study, FEGS GO outperforms FEGS and FEGS RNA-seq (Figure 4.6). We believe this

result is because sampling genes from known pathways favors to FEGS GO, which also

considers known functions of genes. In the cell type identification task (Figure 4.8) and the

compound target prediction task (Figure 4.11 and 4.12), FEGS clear outperforms FEGS

GO and FEGS RNA-seq, which demonstrate the benefits of combining two complementary

functional information in our method.

We then compare FEGS with FEGS w/o. gene weighting. FEGS clearly outper-

forms FEGS w/o. gene weighting in the simulation study (Figure 4.7) and the compound

target prediction task (Figure 4.13 and 4.14). In the cell type identification task, FEGS

shows higher average identification accuracy over FEGS w/o. gene weighting with statisti-
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Figure 4.6: The distributions of separations between foreground-foreground pairs and
foreground-background pairs in 460 pathways. Comparisons are made among FEGS, FEGS
built on only GO information, FEGS built on only RNA-seq information.

cal significance in 9 out of 21 comparisons (Figure 4.9). The explanation is that the gene

weighting step is designed to reduce the impact of outlier gene in the consensus embedding,

however, following the standard of analyzing scRNA-seq data, the gene set generation step

for single cells results in ‘denoised’ gene sets already by considering only highly ‘variable

genes’ of each dataset, which makes our denoising step not showing its effect. To prove

this hypothesis, we relax the gene set generation criteria to consider the top 5000 ‘variable

genes’ in each dataset, which might introduce more noise in the generated gene sets. In

this experiment, FEGS gets clearer improvements over FEGS w/o. gene weighting, that

is, FEGS shows higher average identification accuracy over FEGS w/o. gene weighting

with statistical significance in 15 out of 21 comparisons (Figure 4.10). The results demon-

strate the gene weighting step effectively boosts the signal-to-noise ratio in the gene set

embeddings.
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Figure 4.7: The distributions of separations between foreground-foreground pairs and
foreground-background pairs in 460 pathways. Comparisons are made between FEGS and
FEGS without gene weighting when generating gene set embeddings.

4.3 Methods

4.3.1 Functional information of individual genes

FEGS pre-trains two kinds of embeddings for individual genes considering func-

tional information from two sources separately: (i) Gene Ontology and (ii) RNA-seq data.

Gene Ontology database [30] is one of the largest sources that defines tens of thousands

functional classes (GO terms) to describe gene functions. We consider all the biological pro-

cess terms that associate with less than or equal to 200 genes to focus on those relatively

more specific functions, which results in 15,047 GO terms.

As complementary information to GO, we downloaded all the 238,522 RNA-seq

samples of human collected by the ARCHS4 [86] database (as of December, 2020). Gene

counts for each sample are quantified by ARCHS4 against the GRCh38 human reference

genome using Kallisto [14]. Following the data processing procedure of ARCHS4, we apply

the log2 transformation then quantile normalization on the gene counts. The gene expression
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Figure 4.8: Distribution of cell type identification accuracy when considering 100 top re-
trievals per cell query. Stars show the means of distributions. One-sided Mann-Whitney
rank test is used to test if the accuracy of FEGS is significant higher than that of FEGS
RNA-seq and FEGS GO (◦: P ≥ 0.05, *: 1e−10 ≤ P < 0.05, **: 1e−100 ≤ P < 1e−10,
***: P < 1e−100).
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Figure 4.9: Distribution of cell type identification accuracy when considering 100 top re-
trievals per cell query. Stars show the means of distributions. One-sided Mann-Whitney
rank test is used to test if the accuracy of FEGS is significant higher than that of
FEGS without gene weighting when generating gene set embeddings. (◦: P ≥ 0.05, *:
1e−10 ≤ P < 0.05, **: 1e−100 ≤ P < 1e−10, ***: P < 1e−100). The top 1500 ‘variable
genes’ that exhibit the highest cell-to-cell variation of each dataset are considered when
generating gene sets of single cells.
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Figure 4.10: The same comparison as Figure 4.9, while the scope of the ‘variable genes’ of
each dataset is increased to the top 5000 genes that exhibit the highest cell-to-cell variation.
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Figure 4.11: Top k accuracy on the shRNA data. Comparisons are made among FEGS,
FEGS GO, and FEGS RNA-seq.
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Figure 4.12: Top k accuracy on the cDNA data. Comparisons are made among FEGS,
FEGS GO, and FEGS RNA-seq.
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Figure 4.13: Top k accuracy on the shRNA data. Comparisons are made between FEGS
and FEGS without gene weighting.
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Figure 4.14: Top k accuracy on the cDNA data. Comparisons are made between FEGS
and FEGS without gene weighting.
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is then z-score normalized across samples to identify the relative gene expression. For each

sample, after ranking genes based on their z-scores, we identify a set of regulated genes that

meet the following two criteria at the same time: (i) Genes whose absolute values of the

z-scores are greater than 2. (ii) Genes ranked in the top 100 or the bottom 100. The set

of identified genes are assumed to work coherently towards the same biological processes or

functions.

Finally, there are 25,084 human genes that are involved in at least one GO term

or the regulated gene set of one RNA-seq sample, which are kept in this study.

4.3.2 Embedding individual genes into functional spaces with a novel

sampling strategy

FEGS creates two d dimensional functional spaces separately for GO and RNA-

seq, and uses the same algorithm to embed each gene as a vector representation of length

d in each space, such that functionally similar genes should be embedded closely together,

otherwise they should be separated from each other in the space. To achieve this goal,

we specify the following learning objective. Given a gene u in the functional space of GO

(RNA-seq), the objective function seeks to predict, which genes commonly appear in the

same GOs (RNA-seq samples) with u, denoted as N(u), based on their learned embeddings.

More formally, the objective is to maximize a conditional likelihood that is the product of

softmax units parameterized by the dot product of genes’ embeddings:

p(N(u)|u) =
∏

v∈N(u)

exp(xTv xu)∑
n∈V exp(xTnxu)

, (4.1)
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where x are embeddings of genes, u and v is a pair of genes with similar functions, and gene

z is from the set of all the genes in the genome, denoted as V .

A challenge is how to effectively sample such gene pairs with similar functions.

Unlike word embedding and network node embedding, which usually adopt similar learning

objectives [118, 52, 52, 141, 142], the data in our task don’t have the sequence or graph

structures that can be used to sample data pairs. We propose to convert gene-GO (gene-

RNA-seq) associations into a hypergraph (Figure 4.1B), in which, each gene is represented

as a node and each GO term (RNA-seq sample) is represented as a hyperedge e which

connects all the genes associated with the GO term (regulated gene set of the RNA-seq

sample). We then perform random walk with restart (RWR) in the hypergraph to identify

genes that lie close to each other in the graph. To pay more attention to specific functions,

we assign each hyperedge e a weight by its information content, defined as:

w(e) = − log2

f(e)∑
e′∈E |e′|

, (4.2)

where E is the set of all the edges in the hypergraph, |e| is the number of nodes connected

by the hyperedge e, and f(e) is the frequency of the edge. In the gene-GO association

hypergraph, the frequency of an edge e is defined as
∑

c∈C(e) |c|, where C(e) includes hy-

peredges corresponding to all the children GO terms of the term represented by e and the

term itself, while in the gene-RNA-seq association hypergraph, the frequency of an edge e

is defined as |e|. The smaller the size of an edge, the greater its weight.

The random walk in a hypergraph can be interpreted as, given the current node

u ∈ V , first choose a hyperedge e over all the hyperedges incident to u with the probability
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proportional to w(e), and then randomly choose a node v ∈ e uniformly [170]. Let B denote

the transition probability matrix of random walk in the hypergraph, each entry of B is thus

computed as:

B(u, v) =
∑
e∈E

w(e)
H(u, e)

d(u)

H(v, e)

|e|
, (4.3)

where H is a |V | × |E| matrix with entries H(u, e) = 1 if u ∈ e and 0 otherwise, d(u) is the

degree of gene u in the hypergraph, which is defined as d(u) =
∑
{e∈E|u∈e}w(e). The RWR

from a node u is then defined as follows in matrix notation:

st+1
u = (1− q)Bstu + qau, (4.4)

where q is the probability of restart, au represents the initial state, which is a V -dimensional

vector with one on the u-th element and zeros elsewhere, stu is a V -dimensional distribution

vector which holds the probability of each nodes being visited after t steps starting from

node u. The distribution vectors of all the nodes form as a matrix St. After iterative

update, we get the stationary distribution matrix S = S∞ when the Frobenius norm of the

difference between St+1 and St is smaller than a predefined threshold. A higher probability

in the stationary distribution matrix indicates two corresponding genes lie closer in the

hypergraph, which suggests that they share more and even more specific functions with

each other comparing to with other genes in the graph.

For each gene u, we sample N(u) from other genes in the genome with probabilities

proportional to the stationary distribution su. As the computation of the full softmax in

Equation 4.1 is expensive, we approximate the objective using negative sampling [53, 109].
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Specifically, for each gene u, we sample a set of negative samples R(u) from other genes in

the genome with probabilities inversely proportional to its stationary distribution su. In our

experiment, the ratio between the sizes of N(u) and R(u) is 1:5. Then the overall learning

objective is to minimize the following negative loglikelihood:

−
∑
u∈V

(
∑

v∈N(u)

log σ(xTv xu)−
∑

z∈R(u)

log σ(xTz xu)), (4.5)

where σ is the sigmoid function. The task is thus formulated as distinguishing the function-

ally similar gene pairs (u, v) from functionally dissimilar gene pairs (u, z) though optimizing

their embeddings.

The method is applied to two kinds of functional information to get embeddings of

each gene in two functional spaces. For a given gene u, we concatenate its two embeddings,

x
(GO)
u and x

(RNA−seq)
u , as a joint vector representation xu = [x

(GO)
u , x

(RNA−seq)
u ].

4.3.3 Generating embeddings for arbitrary gene sets from gene embed-

dings

For an arbitrary input gene set, we generate an consensus gene set embedding from

the pretrained gene embeddings. Due the technical noise in omics data [16] and different

choices of parameters in data preprocessing steps [137], outlier genes that do not work in the

pathways underlying the phenotype of interest may be introduced in the discovered gene

set. We thus compute the consensus gene set by a linear combination of the embeddings

of genes in the set, who are given different weights. Specifically, for a given gene u in an

130



input gene set G, we compute its average similarities with other genes in the set based on

two kinds of embeddings, denoted as:

r(GO)
u =

1

|G|
∑
v∈G

cos(x(GO)
u , x(GO)

v ), (4.6)

r(RNA−seq)
u =

1

|G|
∑
v∈G

cos(x(RNA−seq)
u , x(RNA−seq)

v ), (4.7)

where cos is the cosine similarity. r
(GO)
u and r

(RNA−seq)
u are then z-score normalized against

the corresponding similarity distribution observed between the gene u and all the other

genes in the genome, denoted as z
(GO)
u and z

(RNA−seq)
u .

The weight of gene u in the gene set G is then determined by

wu = min(max(max(z(GO)
u , z(RNA−seq)

u ), 0), 1), (4.8)

and the consensus gene set embedding is computed as xG = 1
|G|

∑
u∈Gwu ∗xu, by which the

impact of outlier genes in the set will be reduced.

4.3.4 Cell type identification accuracy

We use retrieval accuracy for evaluation of the cell type identification. For a query

single cell q, the accuracy on its top k retrievals is defined as:

acc(q, k) =
# of correct retrievals

min(k, Tq)
, (4.9)

where ‘# of correct retrievals’ is the number of retrieved cells with the same type of q, and
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Tq is the number of cells in the dataset with the same type of q. The average accuracy over

all the M cells in the dataset is defined as:

Acc =
1

M

M∑
i=1

acc(qi, Tqi). (4.10)

4.3.5 Neural network architecture for compound target prediction

We design a neural network based binary classifier which takes compound gene

set embedding and shRNA (cDNA) gene set embedding as input and outputs how likely

does the gene of the shRNA (cDNA) to be the target of the input compound. The neural

network contains two components descipbed as follows.

Siamese feature extraction component. Due to of the symmetric relation of

two gene sets when comparing them, we design a Siamese neural network component [19]

that uses the same weights to process and extract hidden features from the compound gene

set embedding and shRNA (cDNA) gene set embedding. The component is an one-layer

fully connected neural network, denoted as:

D(x) = Dense1(x), (4.11)

where Dense denotes a fully connected layer, and x is one of the input gene set embeddings.

Given a pair embeddings of gene sets from compound treatment and genetic pertebagen

(shRNA or cDNA), (xcpd, xgene), the Siamese component is applied to obtain hidden features

D(xcpd) and D(xgene) from both embeddings. Both hidden features are then combined using

the element-wise multiplication, D(xcpd) �D(xgene), which is a commonly used operation
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for modeling the symmetric relations of two inputs [28, 57, 70].

Classification component. We build a two-layer fully connected neural network

as the classifier and apply it on the combined hidden feature of the input pair. The sigmoid

activation function is applied in the last layer, whose output is thus a scalar in the range

[0, 1]. The whole neural network can then be denoted as:

o = Dense3(Dense2(D(xcpd)�D(xgene))), (4.12)

We use the cross entropy loss for the training of the neural network. Considering

all the training sample pairs, each with a binary label yi, indicating whether or not the

input gene is the target of the input compound, the learning objective is to minimize the

following cross-entropy loss:

−
∑
i

(yi log oi + (1− yi) log(1− oi)) (4.13)

In the experiment, we examine the influence of neuron numbers in each layer on

the performance. Since the last layer always has one neuron, we tried three combinations for

the number of neurons in [Dense1, Dense2]: [256, 64], [128, 32], and [56, 16]. The results

(Figure 4) demonstrate that the performance is stable on different settings.

4.4 Discussion

In this work, we propose a novel embedding methods that can embed any input

gene set as a fixed-length vector representation, which encodes both database-recorded and
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data-derived functional information enriched in the gene set. Through a simulation study,

we proved our hypothesis that our function based embedding can greatly facilitates gene

set comparison by more sensitive detection of shared pathways between gene sets. We have

shown how FEGS can be applied to high-impact applications. We demonstrated that the

embeddings of FEGS can help improve cell type identification through better capturing

cellular phenotype similarities. In addition, the embeddings of FEGS from perturbagen

signatures can be combined with the power of deep learning to greatly improve compound

target prediction in genome wide. With this concept, our method should have other useful

applications, like disease subtype identification.

As here we want to develop a general method for users to help comparing gene sets

derived from omics data, two types of prior functional knowledge from the GO database

and that derived from RNA-seq data are considered in our embedding. However, using

the same strategy, other more specific information can be easily incorporated into the em-

bedding, and thus our method can be transformed as one that is specifically targeted at a

certain task. For example, in the cell type or state identification task, epigenomic informa-

tion, like methylation, may be incorporated into the embedding and thus help capture cell

phenotypes.

In our experiments, similarity scores are compared across gene set pairs within

the same datasets or same cell lines. However, when there are needs to compare similarity

scores of gene set pairs between different datasets or cell lines, the similarity scores can

be easily normalized as P values by comparing each with the similarity score distribution

within the dataset.
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We expect to integrate FEGS into exiting gene set analysis portals, e.g., our pre-

vious developed web portal Metascape [171], for users to easily and better compare gene

sets derived from their data and perform meta-analysis taking the advantage of massive

publicly available data sets that continue to accumulate.

135



Chapter 5

Conclusions

A more fine-grained understanding of the functions of proteins can enhance our

understanding of biological processes, which can help to uncover mechanisms of complex

diseases. In this dissertation, we explore two problems in functional genomics using deep

learning: (i) Refining functional annotations and interactions of proteins from the gene level

to a higher resolution at the isoform level. (ii) Exploiting functional knowledge to discover

connections within omics data.

We propose three methods: DIFFUSE, FINER, and FEGS. DIFFUSE for the

first time integrates isoform sequences and expression profiles to systematically predict iso-

form functions, by combining the power of deep learning and probabilistic graphical mod-

els. FINER models isoform function prediction and isoform-isoform interaction prediction

jointly. By introducing a mutual regularization term, two learning tasks are unified into one

single learning objective, enabling both tasks to benefit from each other. FEGS embeds gene

sets as compact features encoding their functional enrichment information through a novel
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hypergraph embedding method, which facilitates gene set comparison by more sensitive de-

tection of shared pathways. FINER and DIFFUSE significantly outperform earlier isoform

function prediction methods and their predictions are validated by independent biological

data. FEGS has been successfully applied in several high-impact biological applications.

The recent advances in protein structure prediction methods such as AlphaGO [71]

and RoseTTAFold [6] offer great promise for understanding protein functions. These highly

accurate protein structure prediction methods may be able to find structural differences

between isoforms, which can facilitate the understanding of their functional differences.

Better isoform function prediction and validation methods can be therefore developed using

the predicted structures. On the other hand, alternative splicing plays an important role in

some diseases. New computational methods that can accurately predict aberrant splicing

events and their functional impacts will be the key to bridge the gaps between splicing,

isoform functions, and disease phenotypes.
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Zhang, Webb Miller, and David J Lipman. Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic acids research, 25(17):3389–
3402, 1997.

[3] Stuart Andrews, Thomas Hofmann, and Ioannis Tsochantaridis. Multiple instance
learning with generalized support vector machines. In AAAI/IAAI, pages 943–944,
2002.

[4] Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein, Heather But-
ler, J Michael Cherry, Allan P Davis, Kara Dolinski, Selina S Dwight, Janan T Eppig,
et al. Gene ontology: tool for the unification of biology. Nature genetics, 25(1):25–29,
2000.

[5] Günter Auerbach, Anja Herrmann, Andreas Bracher, Gerd Bader, Markus Gütlich,
Markus Fischer, Martin Neukamm, Marta Garrido-Franco, John Richardson, Herbert
Nar, et al. Zinc plays a key role in human and bacterial GTP cyclohydrolase I.
Proceedings of the National Academy of Sciences, 97(25):13567–13572, 2000.

[6] Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchin-
nikov, Gyu Rie Lee, Jue Wang, Qian Cong, Lisa N Kinch, R Dustin Schaeffer, et al.
Accurate prediction of protein structures and interactions using a three-track neural
network. Science, 2021.

[7] Amos Bairoch, Rolf Apweiler, Cathy H Wu, Winona C Barker, Brigitte Boeckmann,
Serenella Ferro, Elisabeth Gasteiger, Hongzhan Huang, Rodrigo Lopez, Michele Ma-
grane, et al. The universal protein resource (UniProt). Nucleic acids research,
33(suppl 1):D154–D159, 2005.

138



[8] Omer Basha, Ruth Barshir, Moran Sharon, Eugene Lerman, Binyamin F Kirson,
Idan Hekselman, and Esti Yeger-Lotem. The tissuenet v. 2 database: A quantitative
view of protein-protein interactions across human tissues. Nucleic acids research,
45(D1):D427–D431, 2017.

[9] Alex Bateman, Lachlan Coin, Richard Durbin, Robert D Finn, Volker Hollich, Sam
Griffiths-Jones, Ajay Khanna, Mhairi Marshall, Simon Moxon, Erik LL Sonnhammer,
et al. The pfam protein families database. Nucleic acids research, 32(suppl 1):D138–
D141, 2004.
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[125] Thomas Rolland, Murat Taşan, Benoit Charloteaux, Samuel J Pevzner, Quan Zhong,
Nidhi Sahni, Song Yi, Irma Lemmens, Celia Fontanillo, Roberto Mosca, et al. A
proteome-scale map of the human interactome network. Cell, 159(5):1212–1226, 2014.

[126] Swarup Roy, Dhruba K Bhattacharyya, and Jugal K Kalita. Reconstruction of gene
co-expression network from microarray data using local expression patterns. BMC
bioinformatics, 15(S7):S10, 2014.

[127] Camilo Ruiz, Marinka Zitnik, and Jure Leskovec. Identification of disease treatment
mechanisms through the multiscale interactome. Nature communications, 12(1):1–15,
2021.

[128] Rahul Satija, Jeffrey A Farrell, David Gennert, Alexander F Schier, and Aviv Regev.
Spatial reconstruction of single-cell gene expression data. Nature biotechnology,
33(5):495–502, 2015.

[129] Dipan Shaw, Hao Chen, and Tao Jiang. DeepIsoFun: a deep domain adaptation
approach to predict isoform functions. Bioinformatics, page bty1017, 2018.

[130] Dipan Shaw, Hao Chen, and Tao Jiang. Deepisofun: a deep domain adaptation
approach to predict isoform functions. Bioinformatics, 35(15):2535–2544, 2019.

[131] Kana Shimizu, Jun Adachi, and Yoichi Muraoka. Angle: a sequencing errors resis-
tant program for predicting protein coding regions in unfinished cdna. Journal of
Bioinformatics and Computational Biology, 4(03):649–664, 2006.

[132] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

149



[133] Fatima Zohra Smaili, Xin Gao, and Robert Hoehndorf. Opa2vec: combining formal
and informal content of biomedical ontologies to improve similarity-based prediction.
Bioinformatics, 35(12):2133–2140, 2019.

[134] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[135] Stefan Stamm, Shani Ben-Ari, Ilona Rafalska, Yesheng Tang, Zhaiyi Zhang, Debra
Toiber, TA Thanaraj, and Hermona Soreq. Function of alternative splicing. Gene,
344:1–20, 2005.

[136] Aravind Subramanian, Rajiv Narayan, Steven M Corsello, David D Peck, Ted E Na-
toli, Xiaodong Lu, Joshua Gould, John F Davis, Andrew A Tubelli, Jacob K Asiedu,
et al. A next generation connectivity map: L1000 platform and the first 1,000,000
profiles. Cell, 171(6):1437–1452, 2017.

[137] Aravind Subramanian, Pablo Tamayo, Vamsi K Mootha, Sayan Mukherjee, Ben-
jamin L Ebert, Michael A Gillette, Amanda Paulovich, Scott L Pomeroy, Todd R
Golub, Eric S Lander, et al. Gene set enrichment analysis: a knowledge-based ap-
proach for interpreting genome-wide expression profiles. Proceedings of the National
Academy of Sciences, 102(43):15545–15550, 2005.

[138] Dinanath Sulakhe, Mark D’Souza, Sheng Wang, Sandhya Balasubramanian,
Prashanth Athri, Bingqing Xie, Stefan Canzar, Gady Agam, T Conrad Gilliam, and
Natalia Maltsev. Exploring the functional impact of alternative splicing on human
protein isoforms using available annotation sources. Briefings in bioinformatics, 2018.

[139] Charles Sutton, Andrew McCallum, et al. An introduction to conditional random
fields. Foundations and Trends® in Machine Learning, 4(4):267–373, 2012.

[140] Bahar Taneri, Ben Snyder, Alexey Novoradovsky, and Terry Gaasterland. Alternative
splicing of mouse transcription factors affects their dna-binding domain architecture
and is tissue specific. Genome Biology, 5(10):R75, 2004.

[141] Jian Tang, Meng Qu, and Qiaozhu Mei. Pte: Predictive text embedding through
large-scale heterogeneous text networks. In Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, pages 1165–1174,
2015.

[142] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line:
Large-scale information network embedding. In Proceedings of the 24th international
conference on world wide web, pages 1067–1077, 2015.

[143] Roman L Tatusov, Michael Y Galperin, Darren A Natale, and Eugene V Koonin. The
COG database: a tool for genome-scale analysis of protein functions and evolution.
Nucleic acids research, 28(1):33–36, 2000.

150



[144] Peter J Thul, Lovisa Åkesson, Mikaela Wiking, Diana Mahdessian, Aikaterini
Geladaki, Hammou Ait Blal, Tove Alm, Anna Asplund, Lars Björk, Lisa M Breckels,
et al. A subcellular map of the human proteome. Science, 356(6340), 2017.

[145] Masahide Tone, Yukiko Tone, Paul J Fairchild, Michelle Wykes, and Herman Wald-
mann. Regulation of cd40 function by its isoforms generated through alternative
splicing. Proceedings of the National Academy of Sciences, 98(4):1751–1756, 2001.

[146] Shashank Tripathi, Marie O Pohl, Yingyao Zhou, Ariel Rodriguez-Frandsen, Guojun
Wang, David A Stein, Hong M Moulton, Paul DeJesus, Jianwei Che, Lubbertus CF
Mulder, et al. Meta-and orthogonal integration of influenza “omics” data defines a
role for ubr4 in virus budding. Cell host & microbe, 18(6):723–735, 2015.

[147] Yu-Ting Tseng, Wenyuan Li, Ching-Hsien Chen, Shihua Zhang, Jeremy JW Chen,
Xianghong Jasmine Zhou, and Chun-Chi Liu. Iiidb: a database for isoform-isoform
interactions and isoform network modules. In BMC genomics, volume 16, page S10.
Springer, 2015.

[148] Mathias Uhlén, Linn Fagerberg, Björn M Hallström, Cecilia Lindskog, Per Oksvold,
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