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ABSTRACT OF THE DISSERTATION

Eukaryotic Cell Migration — from Single Cell to Collective Behavior

by

Man-Ho Tang

Doctor of Philosophy in Physics (with a specialization in Quantitative Biology)

University of California San Diego, 2022

Wouter-Jan Rappel, Chair

Cell migration is the movement of a single cell or group of cells, usually in response to

various environmental cues. It is crucial in many biological processes, including morphogenesis,

immune response and metastasis of cancer cells. This dissertation studies eukaryotic cell migration

from single cell level to collective behavior using both experiments and theoretical models.

In Chapter 2, we study single cell migration of the social amoeba Dictyostelium discoideum

and investigate the effect of background chemoattractant concentration on cellular memory in

eukaryotic chemotaxis. Our results suggest that aggregation of Dictyostelium cells can be

facilitated by a rising level of chemoattractant during its developmental program.
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In Chapter 3, we study the collective behavior of the social amoeba Dictyostelium dis-

coideum during its multicellular mound stage. We find tight correlation between the traction

force, signaling activity and cell velocity in the mound, all showing oscillations in their magnitude

with the same period. With our mathematical model and perturbation experiments, we show that

collective cell motion is crucial in setting up a persistent signaling vortex state within the mound.

In Chapter 4, we study the collective behavior of breast cancer cells (MDA-MB-231)

and liver cancer cells (SK-HEP-1) during their proliferation in dense extracellular matrices

(ECMs). We find the formation of two distinct morphologies and migration modes, namely

rotational spheroids and invasive networks. Our experimental and numerical results show that

the localization of matrix-degrading enzymes is a key factor in distinguishing formation of the

distinct structures and migration modes.
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Chapter 1

Introduction

Cell migration is the movement of a single cell or groups of cells that usually occurs as a

response to various environmental cues. It is an important process that affects the functioning

of many biological systems. For example, during the egg-chamber development of Drosophila,

a cluster of cells (known as border cells) detaches from the epithelium and migrates through

the surrounding nurse cells in order to reach the oocyte and enable fertilization. Mutants with

defects in this border-cell migration process result in production of numerous unfertilized eggs.

[1]. In wound healing, epithelial cells migrate collectively as a coherent sheet to the site of

injury to restore the epithelial barrier. When the levels of certain migration-stimulating chemicals

are too high, migration will happen in an uncontrolled way, leading to the detrimental effect

of scattering cells in the epithelial sheets. [2]. For cancer, which is the second-highest leading

cause of death in the US in year 2020 [3], metastasis is the life-threatening stage during which

tumor cells migrate into the blood or lymph vessels and invade the rest of the body. Numerous

studies have been and are still being conducted to study how cancer cells adapt to migrate in

different microenvironments [4]. Learning the principles about cell migration is essential to a

deep understanding of the above biological phenomena.

A wide variety of cues is known to influence and direct cell migration, including diffusible
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chemical molecules (chemotaxis), mechanical properties of a surface (durotaxis), electric fields

(electrotaxis), light sources (phototaxis) and heat sources (thermotaxis). In a recent review [5], a

framework consisting of four principles — the generation, sensing, transmission and execution

of the signals — are summarized for cell migration. For all environmental cues, cells need to

process information from the signals and generate mechanical movement in accordance.

Traditionally, modes of migration have been classified according to the morphology of

the cells. For individual cells moving in a 3D extracellular matrix, the two main categories are

mesenchymal and amoeboid modes. [6]. In the mesenchymal migration mode, the crawling

movement of cells can be described by a four-step cycle [7]. First, the cell creates a protrusion

at the leading edge. For example, lamellipodia are formed by actin polymerization in elongated

cells including human HL60 neutrophil-like cells. Then, the cell generates focal adhesions

with the substrate by connecting the extracellular matrix to its cytoskeleton. By pulling from

the front and contracting at the back, the cell body can be moved forward. Finally, the old

adhesions are detached and allow turnover of intracellular materials to form new adhesions. In the

amoeboid migration mode, cell can move by forming blebs which are generated by the intracellular

hydrostatic pressure. The migration of zebrafish primodial germ cells is an example that relies

heavily on blebbing [8]. The blebbing process involves local cortex-membrane detachment to

initiate the bleb, followed by pressure-driven cell body expansion into the bleb, resulting in net

forward movement. Many cells, including cancer cells, are known to have plasticity to switch

between different modes of migration to select the most efficient mode to navigate through the

complex extracellular matrix.

The social amoeba Dictyostelium discoideum has been a popular model organism for

studying cell migration. During its vegetative stage, Dictyostelium cells are solitary and feed on

bacteria. They are able to chemotactically follow the bacteria by sensing the folic acid secreted

by them. Upon starvation, the Dictyostelium cells enter a developmental program that involves

a self-organized aggregation process. First, they start to secrete and relay cAMP, which is a

2



chemoattractant to the cells. When the resulting cAMP waves propagate through the population

of Dictyostelium cells, the cells begin to move collectively as streams and form multicellular

aggregates, so-called mounds. Subsequently, the mound will develop into a slug during which

cells start to differentiate into two types of cell — pre-stalk and pre-spore cells. In the slug,

Dictyostelium cells continue to move collectively and can travel towards a light source and

can respond to pH and temperature gradients [9–11]. When the slug finds a suitable location,

culmination of the fruiting body begins where stalk cells will rise to support spore cells. Finally,

when the outside environmental condition becomes favorable, the spores can be dispersed and

spawn into new feeding cells, completing the life cycle. Dictyostelium cells are known to adapt

how they move according to the physical environment they are in — extending F-actin-driven

pseudopods on smooth surface, creating blebs in mechanically constrained environment, or even

swimming if the opportunity arises [12]. Owning to the many fascinating behaviors demonstrated

in its life cycle, Dictyostelium cells are used as a model organism not only for chemotaxis and

cell motility, but also for pattern formation, cell differentiation, multicellular morphogenesis,

phagocytosis, autophagy and social evolution [13].

Many mathematical models have been proposed to describe the chemotactic migration

process of Dictyostelium cells, capturing features including motility, polarization and directional

sensing [14]. For gradient sensing, a class of models is based on the local excitation, global

inhibition (LEGI) principle. In this model, occupancy of the chemoattractant receptors triggers

production of an activator (fast) and an inhibitor (slow) at different rates to produce a downstream

transient response. Many proteins and lipids are involved in this complex signaling process,

including G proteins, Ras, PI3K, PTEN and PIP3. [15, 16]. Dictyostelium cells are observed to

be able to respond to very shallow gradients. Models with signal amplification based on a cell

front-back asymmetry and a positive feedback of signal and motion have been proposed [17]. It

has been shown that the chemoattractant-dependent polarization involves positive feedback of

actin polymerization [18]. Meanwhile, on a population basis, other models have focused on the
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spatiotemporal patterns that arise during the self-organized aggregation of Dictyostelium cells,

most commonly by describing the population of cells as an excitable media [19]. Waves patterns

observed during the aggregation process, including concentric and spiral waves, can be explained

by reaction-diffusion models of cAMP [20].

In Chapter 2, we study the effect of background levels of the chemoattrantant cAMP

on single-cell migration of Dictyostelium cells. It has been shown that cellular memory is an

important feature for the cells to maintain its motion during the negative gradient of cAMP

waves [21]. In this chapter, we show with experiments and mathematical modeling that the

cellular memory depends on the background chemoattractant concentration. Our results suggest

that the rising background level of chemoattractant might facilitate the aggregation process of

Dictyostelium cells during its developmental program.

In Chapter 3, we investigate the persistent vortex state of the multicellular mound of

Dictyostelium cells by monitoring the traction force, signaling activity and motion of the cells. In

this chapter, we show with experiments and mathematical modeling that collective cell motion

is crucial in initiating a specific wave pattern — persistent spiral waves of cAMP within the

mound. Furthermore, we show that the size of the aggregate plays a critical role in determining

the signaling pattern [22].

In Chapter 4, we study the multicellular morphology and migration modes of cancer cells

in dense extracellular matrices (ECMs). When single breast cancer cells proliferate in dense

ECM, two distinct structures and migration modes, namely rotational spheroids and invasive

networks, are observed. Using experiments and mathematical modeling, we show that the spatial

distribution of the matrix-degrading enzymes released by the cells is a key factor in determining

the morphology and migration mode of the cancer cells.

I carried out theoretical and modeling work in Chapter 2-4, data analysis in Chapter 2-3

and experiments in Chapter 2.
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Chapter 2

Cellular Memory in Eukaryotic Chemotaxis

Depends on the Background

Chemoattractant Concentration

2.1 Abstract

Cells of the social amoeba Dictyostelium discoideum migrate to a source of periodic

traveling waves of chemoattractant as part of a self-organized aggregation process. An important

part of this process is cellular memory, which enables cells to respond to the front of the

wave and ignore the downward gradient in the back of the wave. During this aggregation, the

background concentration of the chemoattractant gradually rises. In our microfluidic experiments,

we exogenously applied periodic waves of chemoattractant with various background levels. We

find that increasing background does not make detection of the wave more difficult, as would

be naively expected. Instead, we see that the chemotactic efficiency significantly increases

for intermediate values of the background concentration but decreases to almost zero for large

values in a switch-like manner. These results are consistent with a computational model that
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contains a bistable memory module, along with a non-adaptive component. Within this model, an

intermediate background level helps preserve directed migration by keeping the memory activated,

but when the background level is higher, the directional stimulus from the wave is no longer

sufficient to activate the bistable memory, suppressing directed migration. These results suggest

that raising levels of chemoattractant background may facilitate the self-organized aggregation in

Dictyostelium colonies.

2.2 Introduction

Chemotaxis, the movement of cells guided by chemical gradients, plays an important

role in many biological processes including tumor dissemination, wound healing, and embryo-

genesis [1, 23–25]. One of the most studied chemotaxis model organisms is the social amoeba

Dictyostelium discoideum. Following starvation, Dictyostelium cells secrete a chemoattractant,

cAMP, in a periodic fashion [26]. This chemoattractant signal is relayed by neighboring cells

resulting in waves that sweep over the cell population with periods that range from 6-10 minutes

[26–28]. These waves spontaneously organize themselves in spiral or target waves, leading to

large-scale patterns of cell migration and eventually generating aggregation centers that attract

tens of thousands of cells. Within the resulting aggregates, cells differentiate, with the majority

turning into spore cells.

Multiple aspects of this biological system have been investigated using computational

and mathematical modeling [29]. Models have addressed instabilities responsible for large scale

migration patterns [30, 31], the coupling between intracellular signaling and morphological

changes [32–34], and the topology of signaling pathways responsible for guided motion [16, 35,

36]. Furthermore, models have addressed potential mechanisms of gradient sensing [14, 29]

while a number of studies have examined the role of noise in the chemotactic response [37–39].

Several experimental and modeling studies have also addressed the so-called back-of-the-

6



(a) (b)
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(f)

(g)

Figure 2.1: Experimental setup using a microfluidic device to create sweeping cAMP waves with
adjustable background level. Cells were deposited on a micropatterned substrate and exposed
to these waves. The locations of each cell were tracked and their chemotactic performances
were quantified. (a): Left: Schematic of the microfluidic wave device, with observation region
indicated by black box (Scale bar: 3 mm). Right: Snapshot of cells moving on the micropatterned
substrate, with symbols corresponding to cells identified by the machine learning algorithm (red
circles: cells used in our analysis; blue X’s: excluded cells that are too close to one another;
the blurry spots are out-of-focus dirt particles and other irregularities that are not identified as
cells by the machine learning algorithm; scale bar: 100 µm). (b-c): Spatial (b) and temporal
profile (c) of the cAMP wave, determined from the fluorescent intensity of the dye, and the
result of the Gaussian fit. (d-e): Images of the two substrate patterns used in this study, with
green highlighting the location of the PEG-gel stripes. The pattern consists of either 4 narrow
(∼ 10µm) and 1 wide (∼ 25µm) untreated stripes (d) or of 6 variable width stripes, ranging
from ∼ 6µm to ∼ 25µm (e). In both patterns, the untreated stripes are separated by 30 µm wide
non-adhesive PEG-gel stripes. Scale bar: 50 µm. (f-g): The CI as a function of time for the
current experiment using a micropatterned substrate (f) and in a previous study [21], using a
non-patterned substrate (g). The results are qualitatively similar, indicating that restricting the
cells to 1D stripes does not affect their chemotactic behavior.
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Figure 2.2: (a-i) Experimentally determined average CI as a function of time (measured relative
to peak of wave) for different concentrations of background cAMP (0-150nM). In each panel,
gray dots represent the CI of individual cells, the black curve is the binned average over N=3-4
different experiments, and the dashed red line is the cAMP concentration of the wave. (j)
Average x-component of the velocity of cells for different concentrations of background cAMP.
Time is binned in intervals of 0.5 min. Error bars in this figure represent the standard error of
the mean obtained using bootstrapping.

wave problem in the chemotactic response to traveling waves [21, 40, 41]. If cells respond only to

spatial gradients, they would move forward in the front and backward in the back of the traveling

wave, preventing aggregation. These studies have shown that cells exhibit memory, responding

directionally to the front but not the back of the wave, enabling them to move efficiently toward the

wave source [21, 41]. For wave periods shorter than 10 min, this memory completely prevented

reversals of cell migration, whereas for longer periods, cells started reversing their migration

direction in the back of the wave [21]. A mathematical model, consisting of an upstream adaptive

module and a downstream bistable module, was able to explain the response of cells to periodic

waves of chemoattractant [21]. Similar memory phenomena have also been reported in other

biological systems, including chemotactic neutrophils [42, 43].

In the experimental studies of memory in Dictyostelium chemotaxis, the cAMP waves

were applied exogenously, with the cAMP concentration reaching nearly zero in the troughs of the

waves. In cAMP waves that are endogenously produced by starving populations of Dictyostelium,

however, the background cAMP concentration, cAMPbg, increases from cycle to cycle [44].
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This increase occurs because secreted cAMP is not completely removed by phosphodiesterases

(PDEs), enzymes that are responsible for the degradation of cAMP and that are also secreted by

the cells [45]. Hence, the question how a non-zero cAMPbg affects chemotaxis is relevant to the

aggregation, sporulation, and survival of Dictyostelium. Naively, one would expect a decrease in

the cell’s ability to migrate towards the source of the wave since the fractional gradient across

the cell body, and thus the signal-to-noise ratio, decreases for increasing cAMPbg[46]. Another

possibility is that the cells fully adapt to cAMPbg, rendering the ability of cells to respond to

gradients independent of the background concentration [47].

2.3 Experimental Results

To experimentally study this question, we used a modified version of the microfluidics

device from Ref. [21] in which a traveling, bell-shaped wave of cAMP with a peak of 1000

nM periodically sweeps across a gradient channel at a constant speed (Fig. 2.1a; see Appendix

A for further details). The fluorescent intensity profile with cAMPbg=0 was well fitted using

a Gaussian (Fig. 2.1b-c and Appendix A) and the resulting wave profile is similar to the one

measured for natural waves of cAMP [48, 49]. Importantly, and in contrast to previous studies,

the background concentration of cAMP was a variable parameter. Another major modification

was that the glass substrate in the gradient channel was micropatterned with ∼1.5 µm thick

stripes of cell adhesion-blocking polyethylene glycol (PEG) gel. Examples of the two types of

micropatterned substrates used in this study are shown in Fig. 2.1d-e. These substrates limit the

adhesion and migration of Dictyostelium cells to ∼6-∼25 µm wide stripes of non-PEG treated

glass oriented in the x-direction, along the gradient and perpendicular to the flow. A detailed

description of these micropatterned substrates can be found in Ref. [50], where it was shown that

cells are nearly exclusively constrained to glass stripes. As a result, cell migration was effectively

one-dimensional (1D), either up or down the gradient (positive or negative x-direction), greatly
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facilitating the collection and analysis of data as compared to 2D chemotaxis on a standard glass

substrate.

In our experiments, we exposed cells to repeated waves of cAMP and recorded their

movement, excluding the first wave. We used cells of the axenic Dictyostelium discoideum strain

AX4 that were transformed to express a fusion of GFP to LimE (∆ coil LimE-GFP) and a gene

encoding a fusion of RFP to Coronin (LimE GFP/corA RFP) [51]. The cells were grown in

submerged shaking culture in HL5 medium (35.5g HL5 powder (Formedium, Norfolk, UK)

and 10mL Penicillin-Streptomycin (10,000 U/mL; Gibco, Thermo Fisher Scientific, USA) per

liter of DI water) [52]. For starvation, when cells reached their exponential growth phase (3-4

× 106 cells/mL), they were harvested by centrifugation at 3000 rpm for 5 min, resuspended in

KN2/Ca buffer (14.6 mM KH2PO4, 5.4 mM Na2HPO4, 100 µM CaCl2, pH 6.4), collected by

centrifugation, and re-suspended in KN2/Ca at 107 cells/mL. Cells were developed for 5 h with

pulses of 50 nM cAMP added every 6 min. Differential interference contrast (DIC) images were

taken every 15 s in four fields of view spanning the width of the chemotaxis channel, 2800 µm

away from the cAMP inlet, on a spinning-disk confocal Zeiss Axio Observer inverted microscope

using a 10X objective and a Roper Cascade QuantEM 512SC camera. Images were captured and

analyzed by using Slidebook 6 (Intelligent Imaging Innovations).

Cells were tracked with a custom-made machine-learning algorithm detailed in Appendix

B. Only cells that were at least 33 µm from neighboring cells were used in the analysis (marked by

red circles in Fig. 2.1a) while cells that were part of clusters were not taken into account (marked

by blue crosses in Fig. 2.1a). This algorithm was able to capture more than 90% of single cells,

as determined by manual counting. Using cell tracks, we quantified the directional response by

computing the chemotactic index CI, defined as ratio between the velocity in the x direction and

the speed, computed as the difference in the x-position 3 frames prior and 3 frames forward (a 90

s interval): CI=Vx/V. Thus, this quantity ranges from +1 (cells with velocity perfectly aligned to

the +x direction), to -1 (cells with velocity perfectly aligned to the −x direction).
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We first examined how cells responded to chemoattractant waves with a period of 10

minutes and very low background concentration; cAMPbg=0 and 0.01 nM). This wave period

was chosen since it corresponds to the largest period for which the CI in 2D assays remained

positive in the back of the wave [21]. The CI for these background concentrations, shown as a

black line in Figs. 2.2a and b, computed by averaging over different experiments and over 30s

time-intervals, was nearly zero for cells ahead of the wave front, steeply increased to a maximum

of ∼0.7 as cells were exposed to the wave front, stayed high after the peak of the wave has passed,

and gradually decayed to near zero but never became negative. The response for zero background

is qualitatively similar to that in 2D Dictyostelium chemotaxis assays on plain substrates [21],

indicating that constraining the cells to narrow stripes does not change their behavior and that the

cellular memory reported in 2D assays is fully manifested in 1D assays as well (Fig. 2.1f-g).

Next, we exposed cells to the same periodic waves but with larger background concentra-

tions (cAMPbg=0.5, 3, 5, 30, and 60 nM) (Fig. 2.2c-g). We found that the average CI improved

for these values of cAMPbg: the CI remained much greater than 0 during the entire wave cycle.

Furthermore, the CI showed a clear minimum after the peak of the wave has passed and increased

towards the end of the wave cycle even though cAMPbg was at its lowest level. For the two largest

values of cAMPbg tested, cAMPbg=150 nM and 300 nM, the CI was reduced and remained close

to zero throughout the entire wave cycle (Fig. 2.2h-i). Both the increase in average CI for small

values of the background concentration (0.01 to 0.5nM transition) and the decrease in average

CI for large values of the background concentration (60 to 150nM transition) were significant

(p < 10−4, using a z-test). Thus, the background cAMP concentration has a profound effect on

the chemotactic response, with intermediate/large values of cAMPbg enhancing/suppressing the

response.

The effect of the background concentration was also evident from the quantification of

the x-component of the velocity, Vx. This quantification is shown in Fig. 2.2e where we plot

Vx, also averaged over different experiments and over 30s time-intervals, as a function of time
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(a)

Figure 2.3: (a) Schematic diagram of the chemotactic model, consisting of a receptor R, an
activator E, an inhibitor I, a response element S, and a memory component M. Simulations
are carried out in a 1D geometry (top drawing). As indicated by the bottom bar, M is bistable,
with a low and a high state, determined by parameters a and b. (b-e) Model results for different
background cAMP concentrations added to a periodic wave, shown as a dashed red line. The
black line represents the CI, the blue (light gray)/red (dash-dotted) line is the response S at the
front/back of the cell, and the dotted magenta line corresponds to the memory M at the front.
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for different cAMPbg. While this velocity component remained positive or close to zero during

the entire cycle for all values of cAMPbg, its maximum value is clearly larger for intermediate

values of cAMPbg than for cAMPbg=0nM. Furthermore, Vx is significantly reduced for the large

background concentrations (cAMPbg=150 nM).

2.4 Model Results

To investigate plausible mechanisms for this enhanced cellular memory, we turned to

modeling. Specifically, we asked whether the cellular memory model developed by Skoge et

al. [21] can reproduce the experimental results. This model describes the chemotaxis pathway

in terms of abstract variables, although, for some, identification with biochemical components

may be possible. Key features of this model are perfect adaptation upon uniform stimulation

and cellular memory in gradients [21, 53]. It is schematically shown in Fig. 2.3a and contains

an adaptive module, which incorporates an incoherent feedforward Local Excitation Global

Inhibition (LEGI) mechanism [16, 35] and consists of a receptor R, an activator E, an inhibitor

I and a response element S (Fig. 2.3a). In addition, the model contains a memory module,

which is assumed to be bistable such that its component M can be either in a low or high state.

The transition between these state is determined by two thresholds, a and b and M feeds back

to S. Importantly, this feedback depends on R and this non-adaptive link may be thought of

as representing parallel pathways for chemotaxis described in experimental studies [54]. For

simplicity, we neglect the detailed morphology of the cell and model it as a 10 µm line with the

two endpoints representing the front and back, respectively (Fig. 2.3a). At the front, the model is
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written as

dR f

dt
= kR(cAMP+ cAMPbg)(Rtot

f −R f )− k−RR f (2.1)

dE f

dt
= kER f − k−EE f (2.2)

dM f

dt
= −kMemM f (M f −Mtot

f )

(
M f −Mtot

f
b− s f

b−a

)
(2.3)

dS f

dt
= kSE f

Stot
f −S f

Km1 +Stot
f −S f

− k−SI
S f

Km2 +S f
+ kS2M f R f

Stot
f −S f

Km3 +Stot
f −S f

(2.4)

and a similar set of equations applies for the components at the back, labeled with subscript b.

The first equation describes the binding/unbinding dynamics of cAMP to the receptor with on

and off rates kR and k−R, respectively. Here, cAMP is the time-varying concentration due to

the wave and its dynamics is taken from a Gaussian fit to the wave profile (Fig. 2.1b-c). The

second equation models the activator dynamics, parametrized by the activation rate kE and the

degradation rate k−E . The third equation describes the bistable memory module, which has two

stable steady states 0 and Mtot
f . The output of the model, S, obeys Michaelis-Menten kinetics

and is activated with rate kS by the activator E. It is de-activated with rate k−S by an inhibitor I,

which diffuses within the interior of the cell. We will assume that I is uniform throughout the

cell, corresponding to a high diffusion rate, and is activated by the average of R between the front

and the back Rav = (R f +Rb)/2, along with a small basal activity kbasal , and can spontaneously

degrade with rate k−I:
dI
dt

= kI(kbasal +Rav)− k−II (2.5)

We set the Michaelis constants, Km1 and Km2, to be small (Km1,Km2 ≪ 1) to achieve near zero-

order ultra-sensitivity, which, consistent with experiments, can result in the amplification of

shallow external cAMP gradient [55, 56]. The last term in the equation for S f describes the

feedback from the memory module to the activation of S f , parametrized by the activation rate

kS2 and Michaelis constant Km3. For simplicity, we will take Mtot
f = Mtot

b = Stot
f = Stot

b = Rtot
f =
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Rtot
b = 1. The equations were simulated using an adaptive Runge-Kutta method with variable step

size. To prevent the memory from becoming trapped in a fixed point, we reset M f and Mb every

t=15s to δ or 1−δ if their values are smaller than δ or larger 1−δ (δ=0.01).

Model parameters were determined using a fitting procedure (detailed in Appendix C),

which minimized a loss function L that compared simulation results (xsim) to experimental results

(xexp) with uncertainty σexp: L = ∑
N
n=1 |xexp − xsim|/(Nσexp). Here, N = 56 with 46 data points

chosen from previous experiments using different microfluidic devices [21, 53] and the remaining

10 data points chosen from the current experiments. Details of the previous data points used in

the fitting are presented in Appendix C while the new data points consisted of data for cAMPbg of

0, 0.01, 0.5, 60, and 150nM that were chosen since they represent the three qualitatively distinct

responses observed in the experiments. Specifically, in our fitting we required that M f 2.5 minutes

before and 5 minutes after the peak to be either 0, corresponding to a small experimental value of

CI, or 1, corresponding to a high CI in the experiments. Simulated annealing was used to find

possible global minima, followed by a pattern search to obtain the local minima using the Matlab

routine patternsearch. Importantly, the parameter values for the bistable and adaptive module were

taken from previous studies [21, 53] and only parameters associated with the memory module (a,

b, kMem, kS2 and Km3) were adjusted. The parameter values obtained by our fitting procedure are

listed in Table 1 while a fit to previous data is shown in Fig. 2.4a-b.

Simulation results for cAMPbg=0 (Fig. 2.3b) show that the chemotactic response, quan-

tified by CI (computed, following our earlier study [21], as a linear combination of S and M:

CI= 0.1831(M f −Mb)+ 0.8169(S f − Sb) is in qualitative agreement with the experimentally

measured CI (cf. Fig. 2.2a). In this case, as the wave approaches the cell, the small difference

in cAMP between the front and back is greatly amplified because of the ultra-sensitivity of the

response. The resulting large increase in S f (blue (light gray) line) causes a transition of M f

(dotted magenta line) to the high state. Since Sb (dash-dotted red line) remains low, Mb stays in

the low state, and the CI is high (black line). After the wave sweeps over the cell, S f decreases
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(a)

(b)

(c)

Figure 2.4: (a-b): Comparison between experimental results from Ref. [53] (symbols) and
model results. Shown are the maximum change in intensity Ipeak (a) and its corresponding
time Tpeak (b) as a function of the uniform change in cAMP concentration for two different
cAMP pretreatment concentrations. (c): Average CI (red symbols) versus background cAMP
concentration.

while M f remains high for several minutes, resulting in cellular memory and an elevated CI.

Eventually, however, the low values of S f cause a transition of M f to its low state and the CI

decreases to zero (see below and Fig. 2.5).

Intermediate values of cAMPbg (cAMPbg=0.5-69 nM) result in higher values of S f ,

maintaining M f in a high state for the entire wave period (Fig. 2.3c-d). This increase in S f is

due to the feedback from M f to S f , which is, through the non-adaptive link, proportional to the

receptor occupancy R f . Since this occupancy is an increasing function of cAMPbg, the feedback

loop between S f and M f contributes to a sustained positive CI throughout the entire wave cycle

(Fig. 2.3c-d), in agreement with the experimental results. This feedback from high M f is also

responsible for the increase of S f in the back of the wave (Fig. 2.3c-d). As a result, the CI shows a

distinct increase near the end of a cycle, which is, again, consistent with the experimental results.

For cAMPbg>69 nM, both S f and CI remain close to 0 during the entire cycle, which

is consistent with the experimental results for cAMPbg=150 and 300 nM. The reason for this is

that the amplification of S f due to the ultra-sensitivity of the response is reduced for increased

values of cAMPbg (see below and Fig. 2.5). As a result, the value of S f is not sufficiently large

to bring M f to its high state. Consequently, M f remains in the low state, leading to a short and
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weak response of S f and an overall low CI (Fig. 2.3e). Note that for our parameter values, the

dissociation constant for the receptors is Kd ≈ 408nM. Thus, the absence of a strong chemotactic

response for high values of cAMPbg is not due to receptor saturation but is directly linked to the

bistability and the ultra-sensitivity of the pathway.

We also used the modeling results to compute the chemotactic index averaged in time

over the entire wave cycle, ⟨CI⟩. The dependence of ⟨CI⟩ on cAMPbg has three distinct regimes

(Fig. 2.4c). For very small values of cAMPbg (cAMPbg< 0.5 nM) ⟨CI⟩ remains close to its

value at cAMPbg=0. For these values of cAMPbg, the memory is only turned on during part

of the wave cycle. In contrast, for intermediate values of cAMPbg (0.5 nM ≤ cAMPbg ≤ 69

nM), M f is in the high state during the entire cycle, resulting in a nearly constant and high ⟨CI⟩.

Finally, for cAMPbg > 69 nM, M f is always in the low state and ⟨CI⟩ is close to 0. Notably,

due to the bistable dynamics of our memory module, the transitions between these regimes are

very abrupt and switch-like. To determine whether our experimental data also exhibited this

switch-like behavior, we computed the average CI in the experiments. The results are plotted

as symbols in Fig. 2.4c and are close to the results of the model (line). Most importantly, ⟨CI⟩

decreases in a switch-like fashion from as much as ∼0.6 at cAMPbg=60nM to as little as ∼0.1 at

cAMPbg=150nM, in agreement with the bistable dynamics of the memory module.

To understand the transition in the model behavior for small values of cAMPbg, shown

in Fig. 2.4c, it is useful to examine the response of S f with M f = 1. For this case, we plot in

Fig. 2.5a the steady state solution for S f as a function of uniform cAMPbg(i.e., in the absence

of a wave). S f increases from 0 to approximately 0.6 as the background cAMP concentration

increases. This increase is due to the feedback from M f to S f , which is proportional to the

receptor occupancy R f , an increasing function of cAMPbg. The dependence of S f on cAMPbg

explains why for small values of cAMPbg the chemotactic index CI reduces to zero following the

wave (see Fig. 2.3a and Fig. 2.4c). This is further illustrated in Fig. 2.5b where we plot S f and

M f for cAMPbg=0.4nM and cAMPbg=0.5nM. For cAMPbg=0.4nM, S f remains close to the lower
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Figure 2.5: A: Steady-state value of S f as a function of uniform cAMPbg for the case M f =1.
B: S f and M f as a function of time in the full model for a value of cAMPbg that does
(cAMPbg=0.5nM; dashed lines) and does not (cAMPbg=0.4nM; solid lines) result in persis-
tent memory. C: Maximum value of S f and M f in a wave as a function of cAMPbg. There is
a sharp, switch-like transition at cAMPbg≈69nM. D: Response of the full model for cAMPbg
just below (cAMPbg=69nM; solid lines) and just above (cAMPbg=70nM; dashed lines) the
switch-like transition.

threshold of the bi-stable module (indicated by the dotted line), which causes M f to transition

from the high to the low state, resulting in a vanishing CI. For cAMPbg=0.5nM, however, the

feedback from M f results in higher values of S f such that the memory stays in its high state.

To analyze the switch-like behavior of Fig. 2.5, we can compute the maximum value of

S f in a wave as a function of cAMPbg. The result is plotted in Fig. 2.5c, both for the full model

(solid line) and for the case without feedback from M f , i.e. kS2 = 0 (dashed line). As a result

of the ultra-sensitivity of the equation, the asymmetry in the response of S is much larger than

the asymmetry in the external gradient and the receptor occupancy. As is evident from the plot,

this amplification of S f is a decreasing function of cAMPbg. Therefore, above a critical value of

cAMPbg, S f is no longer able to cause a transition of M f from the low to the high state. For the

values of cAMPbg above the critical value, the CI will thus remain low (see Fig. 4). Furthermore,

due to the bi-stability of the memory module, M f exhibits a switch-like transition at a critical

value of cAMPbg (magenta (light gray) line). This is also shown in Fig. 2.5d where we plot the

response of the full model for a value of cAMPbg just below and just above the critical value. For

cAMPbg=70nM, above the critical value, M f does not transition to the high state and S f remains

close to 0 for the second half of the wave. For cAMPbg=69nM, on the other hand, M f switches
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from its low to its high state, which leads to an increased response. After the wave passes, S f

decreases but then increases to ≈0.6 due to the persistent memory at the front.

The switch-like transitions are also clearly visible when examining the phase diagram of

the response of the model in the a-b parameter plane (corresponding to the two thresholds in the

memory module). Here, we plot the time averaged difference between the memory at the front

and back of the cell, ⟨M f −Mb⟩, for different values of a and b using a color scale (Fig. 2.6).

Since we take a ≤ b we only present one-half of the space. The parameter values corresponding

to Table 1 and used in our study are indicated by the symbol. For cAMPbg=0nM (left panel),

the sharp transitions between three different regions are clearly visible. In the dark blue regions,

corresponding to large values of b, neither the front nor the back memory is activated, resulting

in ⟨M f −Mb⟩= 0. For intermediate values of b and small values of a, the memory at the front

is permanently activated while Mb = 0, which results in ⟨M f −Mb⟩= 1 (yellow region). In the

other regions, the front memory is activated only during part of the wave, giving rise to values of

⟨M f −Mb⟩ that are between 0 and 1. Note that our parameters fall within this region of the phase

space. For cAMPbg=60nM, the sharp boundary of the yellow region has moved to larger values

of a, such that our parameter values now fall within the region in which ⟨M f −Mb⟩= 1 (middle

panel). Finally, for cAMPbg=150nM, the yellow region has almost completely disappeared and

nearly the entire phase diagram, including our parameter set, correspond to ⟨M f −Mb⟩= 0.

2.5 Summary

In summary, we find that the background concentration of the chemoattractant, cAMPbg,

has a profound effect on the cellular memory of chemotaxing Dictyostelium cells. For intermediate

values of cAMPbg this memory is greatly enhanced, leading to substantially more efficient

chemotaxis under periodic waves of cAMP. It is worth noting that the experimentally estimated

value of cAMPbg during the natural aggregation process of Dictyostelium cells is ∼10nM [44].
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Figure 2.6: Phase diagram in the a−b space quantifying ⟨M f −Mb⟩ for three different values
of cAMPbg. Three regions, with sharp transitions, can be identified: ⟨M f −Mb⟩ = 1 (yellow
regions) for which the front memory is always high while the back memory is always low,
⟨M f −Mb⟩= 0 (dark blue regions) corresponding to low memory at the front and the back, and
intermediate values of ⟨M f −Mb⟩ for which the front memory is high during part of the wave.
The values of a and b corresponding to our study are marked by a red X.

This value is within the intermediate range, suggesting that aggregation may be facilitated

by increased cellular memory due to accumulating cAMP. For larger values of cAMPbg, the

chemotactic response and cellular memory are suppressed. Our experimental results, and in

particular the switch-like behavior of the average CI, are fully consistent with our mathematical

model. Crucial elements of this model are a bistable memory module, which allows cells to

ignore the back of the wave, an ultra-sensitive response, responsible for the amplification of

the chemoattractant gradient, and a direct, non-adaptive link between input signal and response,

which explains the long-lasting memory for intermediate values of cAMPbg. Future work will be

required to identify the precise biochemical components that are responsible for the observed

behavior.
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Chapter 3

Motion-induced topological defect initiates

collective signaling vortex state

3.1 Abstract

Social amoeba Dictyostelium discoideum cells use cAMP as a signal for aggregation

during its developmental program. In the intermediate stage, isolated multicellular mounds are

formed, in which sustained rotational motion of cells and spirals of signaling waves are observed.

This rotational motion can last for hours. The mechanisms responsible for these persistent

rotations are currently unclear. Here, by using a microfluidic device, traction force microscopy

and a strain that expresses a protein reflecting the cell’s cytosolic cAMP level, we present the

first measurements of the traction force distribution, together with the signaling dynamics and

cell motion in the vortex state of the mound. Using experiments and computational modeling,

we show that collective cell motion is crucial in regulating the spatiotemporally stable signaling

pattern.
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3.2 Introduction

When the social amoeba Dictyostelium discoideum is starved, hundreds of thousands

of cells will migrate in a coordinated fashion to form multicellular aggregates, that eventually

become fruiting bodies, containing spore cells. At the beginning of this developmental program,

Dictyostelium cells start to secrete cyclic adenosine monophosphate (cAMP) to attract other cells.

Each cell can sense the external cAMP level and, in response, releases more cAMP into the

environment. This cAMP relay system results in the propagation of cAMP waves throughout

the cell population. These waves are observed to travel as concentric target waves or rotating

spiral waves. As the cells develop, they become chemotactically sensitive and migrate towards

the source of cAMP waves, which is achieved by spatial gradient sensing and signal adaptation.

Streams of cells then move collectively towards the aggregation centers. As more cells come

together, they pile up and three-dimensional mounds are formed. While many studies have

focused on the early stages of aggregation, much less is understood about this mound stage.

For example, persistent rotational movement of cells are observed within the mound [57],

but it is unclear what its purpose is and what coordinates this movement. It is possible that this

rotational motion plays a role in the cell differentiation into pre-stalk and pre-spore cells during

the mound stage. This differentiation is crucial proper culmination of a fruiting body. As only

spore cells can eventually survive while the stalk cells die, the cell fate of Dictyostelium cells

poses an interesting yet unsolved question. Understanding more about the rotational mound stage

can possibly shed light on this problem.

In the field of active matter, the study of nematics has bloomed over the years and

has attracted many theorists and experimentalists to the field. In basic terms, active nematics

are elongated self-propelled units that actively consume energy and move in association with

their elongation axis. Examples of active nematics include active liquid crystals and micro-

tubule–kinesin mixtures. A common focus of active nematics is how collective behavior emerges
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from the individual units. The studies of turbulence and topological defects in active nematics

have inspired different approaches in studying biological systems, including the alignment of

neural stem cells [59] and the signaling dynamics of membrane proteins [60]. As a model

organism for collective migration, Dictyostelium cells present a good opportunity to understand

how topological defects can affect its developmental program via spatial organization of motion

and signaling.

In particular, the aforementioned cAMP signaling of Dictyostelium cells can be modeled as

an excitable media with reaction-diffusion equations, which exhibit target and spiral wave patterns.

Distinct from the non-living classic example of excitable media — the Belousov-Zhabotinsky

(BZ) chemical reaction, which also displays various wave patterns [61] — the wave dynamics in

Dictyostelium cells are far more complex. This is due the fact that Dictyostelium cells are motile.

Furthermore, the specific wave patterns may directly affect survival of the cells. For example,

an intrinsic difference between target and spiral waves is that target waves propagate radially

outward and then die out, while spiral wave can rotate and propagate indefinitely. Therefore, the

latter may facilitate the aggregation of cells and can result in larger mounds.

In this chapter, we address several questions. What is the role of the persistent rotation

of cells in the mound? Does it affect the developmental program of the cells? If so, what is the

underlying mechanism? Or is it simply a result of cell responding to a rotating cAMP wave?

3.3 Experimental Results

3.3.1 Experimental Setup

To study the coherent rotational state of Dictyostelium cells, we used a custom made

microfluidic device to flatten and create vertically constrained cell aggregates. To monitor the

cellular signaling activity, cells were transformed to express flamindo2-GFP, which is an indicator

for cytosolic cAMP levels [62]. For detecting the mechanical forces generated by the cells in
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the rotational state, cell mounds were plated on a thin elastic silicone substrate coated with

fluorescent beads for traction force microscopy (TFM). In addition to expressing flamindo2,

cellulose synthase null (dcsA-) cells were used in order to properly observe the traction force.

In our experiments, cells were grown in shaking HL5 medium (35.5g HL5 powder

(Formedium, Norfolk, UK) with 10mL Penicillin-Streptomycin (10,000 Units/mL Penicillin,

10,000 µg/mL Streptomycin, Gibco, Thermo Fisher Scientific, USA) and 200 µL Geneticin

(50mg/mL active Geneticin, Gibco, Thermo Fisher Scientific, USA) per 1 liter of Milli-Q

water. For starvation, cells in exponential growth phase (2-4 × 106 cells/mL) were collected

by centrifugation at 400g for 4 min then resuspended in KN2/Ca buffer (14.6 mM KH2PO4,

5.4 mM Na2HPO4, 100 µM CaCl2, pH 6.4). This washing process was done twice more to

completely remove the growth medium. After the final wash, 150 µL of total 1.7 × 107 cells

were transferred onto a 35mm agar plate (2% agar, 50% KN2/Ca buffer and 50%ddH2O). With

its lid off, the cell plate was placed in a biosafety cabinet with laminar flow to allow excess liquid

to evaporate. About 20 minutes later, the lid was put back and further development was stalled

by refrigerating the cells overnight at 4-8◦C. In the following day, development was resumed

by placing the cell plate at room temperature 22◦C for 6-8 hours until when tight mounds were

observed. These cell aggregates were harvested by pipetting 2mL of buffer up and down the

agar surface, followed by repeated pipetting and vortexing to obtain a homogeneous culture.

Finally, 150 µL of cells were plated onto the silicone substrate and allowed to settle on it for 10

minutes. Meanwhile, the microfluidic device was plasma-treated for about 8 seconds to make the

PDMS surface hydrophilic and reactive for enhanced wetting and bonding to the substrate. The

microfluidic device was then placed on top of the cells, and a slight suction (roughly 10 kPa below

atmospheric pressure) was applied to the vacuum cup to seal the device onto the substrate and

to keep the height confined to around 8 microns (about the size of the cell) allowing formation

of monolayer aggregates. Imaging of the flamindo2-GFP dcsA- aggregates was done using an

inverted spinning-disc confocal microscope (20X/0.8 air objective, Zeiss and Intelligent Imaging
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Figure 3.1: Experimental setup using a microfludic device to create vertically constrained aggre-
gates with measurements of cyctosolic cAMP level, traction force and cell velocity. Rotational
waves were observed in these measured quantities. (a): Experimental image showing flamindo2
intensity (GFP) of a quasi-2D aggregate deposited on a deformable silicone substrate coated
with fluorescent beads (RFP). The cytosolic cAMP level is inversely proportional to the GFP flu-
orescence intensity. Scale bar: 50 µm. (b-c): Traction force (b) and cell velocity (c) fields of the
aggregate. Red arrows represent direction and magnitude of the vector fields. (d-g): Time series
of the (d) raw and (e) inverse bandpass-filtered GFP images revealing a rotating cAMP wave
(counter clockwise); similar waves can be seen in the time series of bandpass-filtered (f) traction
force and (g) cell velocity, with 48 s interval between consecutive images. (h): Kymograph of
GFP intensity averaged over [left] angle and [right] distance from center of aggregate. Dark
bands in the angle kymograph showing the rotating cAMP wave, which persisted over an hour.
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Innovation). Every 24-30 s, images in GFP and RFP channels were captured (Fig. 3.1a). In each

capture, the built-in autofocus function in Slidebook 6 (Intelligent Imaging Innovation) was used

on RFP channel to find the best focused plane of the fluorescent beads, which corresponded to the

bottom of the cells. At the end of each experiment, reference images of the beads were obtained

after the cell aggregates were dissolved with a 1% solution of Triton X-100.

3.3.2 Traction force and cell velocity calculations

Displacement maps of the fluorescent beads between the in-focus images and the reference

image were found using PIVlab [63]. These displacement maps were then converted to traction

force maps (Fig. 3.1b) using the Fourier method presented in [64]. It is worth noting that this

method assumed the absence of normal stresses, which was not the case in our system since we

had a ceiling that confined the cells by pushing them down, and consequently, the cells would

push down on the substrate. However, as the substrates we used were relatively thin (about 5 µm

thick), the artifacts introduced by ignoring normal displacements or stresses were negligible [65].

Cell velocity fields (Fig. 3.1c) were estimated using MATLAB Optical Flow Farneback

method using the GFP images. The resulting velocities were compared to a set of manually

tracked data and found to be in good agreement. Times series of GFP images (Fig. 3.1d-e)

revealed a rotating cAMP wave propagating (counter clockwise) within the cell aggregate, which

was in opposite direction of the cell motion (clockwise in Fig. 3.1c). This rotating cAMP wave

was clear when we examined the angle kymograph (Fig. 3.1h). By fitting straight lines to the

dark bands (see appendix.B.1), the period of the rotating cAMP wave can be inferred to be about

4.3 min. Oscillations with the same period were also observed in the magnitudes of traction force

and cell velocity (Fig. 3.1f-g).
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(c) (d) (e)

Figure 3.2: Experimental data quantification of multiple aggregates, including the sizes, signal-
ing periods, cytosolic cAMP levels, traction forces and cell velocities. (a): Quantification of
sizes and oscillation periods of Na = 15 aggregates in the vortex state. In the boxplots, the [100,
75, 50, 25, 0]th percentile are marked, with the average and standard deviation shown at the
top. (b): Phase relationships between traction force (T), cell velocity (V) and cytosolic cAMP
level (cAMP). (c-d): Representative spatial profile of the radial and tangential components of
(c) traction force and (d) cell velocity as a function of normalized distance from the center of
the aggregate. Black line shows the mean values and errorbars represent the standard deviation.
Red line shows the angular velocity. Sign conventions are (radial, +: away from center, -:
towards center) and (tangential, +: along rotation direction, -:opposite to rotation direction).
(e): Traction force and velocity maps of aggregates with different morphology [upper: stream,
lower: annulus] where traction forces were always pointing normally outward at the aggregate
boundary, and pointing along the cell migration direction inside the aggregate. White dotted
lines in upper panels separate ceiling-free region (left) and vertically constrained region (right).
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3.3.3 Results

For further quantification, we considered N = 15 aggregates in experiments done on 11

different days. The average radius of the aggregates was 93±25µm (average ± s.d.) consisting

of about 100-700 cells (Fig. 3.2a). The period of oscillations was 4.5±0.5min, consistent with

reported values in other studies [66]. Shapiro-Wilk tests were performed on the radius (p =

0.9963) and period (p = 0.1925) distribution and it did not show significant departure from the

normality (α = 0.05). Fig. 3.2b shows the temporal phase relationship between traction force,

cell velocity and cytosolic cAMP level. The phase difference was calculated by considering the

cross-correlation between a pair of quantities (see appendix B.2).

It can be seen that the cell velocity reached a maximum during the rising phase of the

cAMP level, which is expected due to the positive cAMP gradient, in agreement with previous

studies [21, 67]. Also, it is interesting to see that the traction force and cell velocity were roughly

anti-phase, suggesting that cells exerted the least force on the substrate while they were moving

the fastest. We then looked at the spatial profile of traction forces and cell velocities as a function

of distance (normalized by the radius of the aggregate) from the center of the aggregate (Fig.

3.2c-d). The average radial movement of the cells was limited (about one-tenth) compared

to the tangential movement which was along the direction of rotation. This was expected as

any net radial movement would correspond to a change in size of the aggregate, which was

possible only if cells were joining or leaving the aggregate (rare), or if they were migrating

into the z-direction which was restricted since the aggregates were vertically constrained. The

tangential velocity peaked at roughly half the radius with an average value of 6µm/min. The

angular velocity was ∼ 0.2rad/min at the center and gradually decreased as it went further away

from the center, corroborating the experimental result in [57]. For traction force, surprisingly

the cells exerted mostly a radially outward force on the substrate near the edge of the aggregate

with average maximum magnitude of 700 Pa, which was more than double of the tangential

component (300 Pa). In its natural developmental program, groups of Dictyostelium cells also
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exhibit other morphologies, including annuli and streams of cells. We occasionally observed these

morphologies in our experiments (Fig. 3.2e), and found that a large traction force always existed

near the boundary of the aggregates and always pointed normally outward from the aggregate

body. Similar results were also observed in other studies [68], but it is unclear what caused this

boundary force.

3.4 Model Results

3.4.1 Model Setup

To investigate the underlying mechanisms for the relationship between traction force,

cell velocity and cell signaling, as well as the origin of the observed traction force pattern, we

developed a 2D grid-based computational Cellular Potts Model (CPM) with an excitable cAMP

signaling module incorporated with cell motility.

The Cellular Potts Model has been used as a computational model to study cell and

tissue. In its earliest application, it was used to simulate cell sorting by assuming differential

adhesion between different cell types [69]. CPM was adapted from the large-Q Potts model

which is a generalization of the Ising model used by physicists to study interacting spins on a

crystalline lattice [70]. Over the years, extensions have been incorporated into the CPM to study

a wide variety of biological phenomena, including morphogenesis [71], tissue growth [72], cell

differentiation [73] and would healing [74].

In CPM, each lattice site is assigned with a label (σ) which defines whether it is part

of a cell (e.g. σ1 for cell 1, σ2 for cell 2) or other materials (e.g. σm represents surrounding

medium). The cell behavior is determined by the energy of the system, the Hamiltonian (H),

which can consist of various energy terms depending on the biological phenomena we are trying

to model. The CPM evolves by minimizing the Hamiltonian of the system stochastically using

a Metropolis algorithm [75]. In each simulation step, a lattice site m and a neighboring site n
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are randomly picked as an attempt to copy the label of site m to site n. The energy difference

∆H = Hn→m −Hcurrent is calculated. If ∆H ≤ 0, the cell label of site m would be copied to site n.

If ∆H > 0, the copy would take place with a probability of e−∆H/T , where T is the simulation

temperature.

In our model, the Hamiltonian of the simulated system consists of four terms: contact

energy, cell size constraint, actin polarization and chemotaxis.

H = Hcontact +Harea +Hpolarization +Hchemotaxis (3.1)

Hcontact = ∑
i, j neighbors

Jτ(σi),τ(σ j)(1−δσi,σ j) (3.2)

Harea = ∑
n

λa(a(σn)−A)2 (3.3)

Hpolarization = −λp P⃗ · ∑
i, j∈σ

r⃗i j (3.4)

Hchemotaxis = −λc θ(rc − r)∇S · ∑
i, j∈σ

r⃗i j (3.5)

The first two terms are conventionally used to model contact energy (e.g. cell-cell adhesion and

cell-medium interfacial tension) and to account for the energy cost for a cell to deviate from

its optimal size. For contact energy, the coupling strength (J) in Eq. 3.2 depends on the types

(τ(σ)) of interacting lattice sites, where Jc,c represents cell-cell adhesion and Jc,m represents

cell-medium interfacial tension. The kronecker delta δσi,σ j is 1 if the two interacting cell labels

(σi = σ j) are the same, while it is 0 if the cell labels (σi ̸= σ j) are different. Thus contact energy

is only non-zero between lattice sites with different cell labels but not within the same cell. For

the cell size constraint, A represents the target area and a(σi) is the area of the cell with label i.

This quadratic term models the energy penalty when the cell size deviates from the optimal size

with a strength λa, resembling the elasticity of a cell membrane.

In addition, we have two extra terms in the Hamiltonian representing the polarization

energy and the chemotaxis energy. The polarization energy enables our simulated cell to set up a

polarity (e.g. front-back asymmetry) for directed cell migration. The importance of cell polarity
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in both single cell and collective cell migration has been experimentally widely studied with

various cell types [76, 77]. In our model, the polarization vector (P) is governed by

dPx

dt
= k+

vx

|v|
(1−|P|)− k−Px (3.6)

dPy

dt
= k+

vy

|v|
(1−|P|)− k−Py (3.7)

The above equations describe a positive feedback between cell motion (v) and the polarization

vector (P), enabling the simulated cell to have persistent motion with a memory depending on the

rate constants (k+ and k−). This mimics the well-documented positive feedback between actin

polymerization and motion of cells [78, 79].

The chemotaxis energy encourages our simulated cell to move along the positive gradient

of cAMP. This imitates the ability of Dictyostelium cells to sense and migrate in response to

cAMP [55]. The equations for the cAMP (S) signaling dynamics are

dS
dt

= D∇
2S+α0 − JS+ρθ(g−gc) (3.8)

I = A log10(1+ S̄/K) (3.9)

dg
dt

= −kgg(g−1)(g−a)− krr+ I (3.10)

dr
dt

= (g− r)/τ (3.11)

Here, the right hand side of Eq. 3.8 describes the diffusion, basal production, degradation and

active production of cAMP. Eq. 3.9 models the logarithm sensing of cAMP, while Eq. 3.10

and Eq. 3.11 are the FitzHugh–Nagumo equations [80] corresponding to the activator (g) and

repressor (r) dynamics of an excitable media.

Finally, to simulate traction forces, we used a theoretically simple approach that assumes
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that forces can be derived from the negative gradient of the Hamiltonian of the system (Eq. 3.12).

F⃗ =−∇H (3.12)

This approach was shown to resemble real forces measured experimentally in a previous study

[81].

3.4.2 Numerical Results

Fig. 3.3a shows a simulated aggregate with N=100 cells rotating clockwise while the

cAMP waves propagated in the opposite direction (Fig. 3.3b), as observed experimentally. We

then ran the simulations multiple times using a distribution of aggregate sizes. The representative

spatial profile of simulated traction forces and cell velocities qualitatively matched well with our

experimental results (Fig. 3.3c-d). Specifically, the tangential force and velocity had the same

direction and peaked at approximately half of the aggregate radius. In addition, the radial force

pointed outward near the edge of the aggregate, and the radial velocity was very small compared

to the tangential velocity. There were still some quantitative differences, a major one being that the

simulated radial force was much smaller than the tangential force, as opposed to the experimental

results. This discrepancy was possibly because our simulated traction force only accounted for

local interaction between the cells, while in experiment the aggregate might be under pressure or

a compression force that can be transmitted across the aggregate. In addition, the relative strength

of the radial force is likely to depend on the parameters chosen in the simulation. Future work

should explore this parameter space. Nevertheless, despite its simplicity, the model is able to

qualitatively capture many experimentally observed features of the rotating aggregate.

Next, we perturbed our model in order to gain insights into the system. Specifically, we

changed the size of the aggregate r and the refractory time τ of the repressor. We observed that the

number of cAMP spiral arms increases linearly with the aggregate size (Fig. 3.3e). In addition,
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Figure 3.3: Simulation results of aggregates showing rotational motion and signaling. Spatial
distribution of simulated traction force and cell velocity resembled the experimental results.
Number of spiral arms of the cAMP waves depended on the aggregate size, repressor timescale
and cell speed. (a): Simulated aggregates with N=100 cells individually coded with artificial
colors for visualization. White arrows indicate the polarization vectors of individual cells. Cells
were collectively rotating in clockwise direction. (b): cAMP (S) levels of the simulated aggre-
gates shown in (a) with a rotational wave in counter clockwise direction. (c-d): Representative
spatial profiles of simulated (c) traction force and (d) cell velocity as similarly quantified as in
Fig. 3.2c-d. (e) Number of rotating arms, n, as a function of the radius of aggregate, r, and the
repressor time scale, τ. (f): Snapshots of cell motion (upper row), and signaling (lower row) for
different values of the strength of polarization, λp. Upper right panel: velocity as a function of
λp, lower right panel: number of spiral arms as a function of λp.
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we found that the n is approximately linearly with the inverse of τ (Fig. 3.3e). This finding can be

understood if we assume that the cAMP propagation speed is v0, in which case the number of

spiral arms can be approximated by

n =
2πr∗

v0τ
(3.13)

where r∗ is the effective radius of the aggregate. This means that doubling the number of spiral

arms would require a doubling of the aggregate radius. Consistent with this, in our experiments,

the radius of the smallest aggregate that showed a one-arm rotational wave was about 52 µm,

and the smallest one showing two-arm waves was 100 µm. Limited by the field of view in our

experimental settings, we did not observe larger aggregate that in principle could exhibit rotational

waves with more arms. A previous study [82] has documented rotational optical density waves

consisting of up to five arms in Dictyostelium cell mound. In their work, FitzHugh-Nagumo

equations were also used to study the formation of multiarmed spirals. In comparison, our current

model also incorporates cell motility which allows us to study the effect of cell motion on the

cAMP spiral dynamics.

Second, even when we removed the cAMP signaling module, our simulated cells could

still establish coherent rotation as an aggregate. Hence, according to our models, chemotaxis

was not required for the coherent rotation of cells. Instead, cell motility and strong cell-cell

adhesion were the key components. This is consistent previous studies in which aggregates of a

non-signaling strain were found to still be able to manifest coherent rotations [57, 83].

Lastly, we investigated how cell motion might affect the cAMP signaling pattern. Cell

velocity was not explicitly defined in our model. However, due to the polarization energy term

(Eq.3.4), cell velocity was indirectly affected by the strength of polarization, λp. Hence, by

changing λp, we can effectively perturb cell velocity. Our simulation results showed that the
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Figure 3.4: Perturbation experiments using LatB revealed changes in signaling wave patterns,
from spiral waves to target waves, when cell motion was impeded. (a): Three different aggregates
treated with LatB exhibiting target cAMP waves as shown in the kymographs. (b): Rotating
aggregate before (t = 15 mins) and after (t = 30 mins) treated with Lat B (t ≈ 20 mins). The
cAMP waves changed from rotating (before 20 mins) to target waves (after 80 mins). (c): Time
series of traction force and cell velocity averaged over 6 aggregates in the same experiment.
Upon LatB treatment, radial force significantly dropped to roughly one-third while the tangential
force and cell velocities dropped close to zero. Red dotted line indicates the time when LatB
reached the aggregates.

cAMP signaling patterns significantly changed for aggregates with different cell velocities (Fig.

3.3f). At low λp, no coherent cell rotation was observed (zero tangential velocity) and only

target wave patterns were seen. At intermediate λp, corresponding to the experimental regime,

cells established coherent rotation and persistent cAMP waves propagating in opposite direction.

Lastly, at very high λp, cell velocity was so high that the aggregate would separate into smaller

groups of cells and migrate translationally. In this case, cAMP waves were only sporadically

initiated and short-lived as it propagated through the smaller aggregate, resembling target waves

observed in streaming cells.
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3.5 Model Verification and Perturbation Experiments

In order to check our model predictions that cell motion regulates cAMP signaling pattern,

we decided to experimentally perturb cell motion. For our Dictyostelium cells, we chose to

use Latrunculin B (LatB), which is an inhibitor for actin polymerization [84], to impede cell

motion. In this experiment, cells were harvested and mixed with 10-25 µM LatB in KN2/Ca

buffer before plating onto the TFM silicone substrate. This dosage of LatB completely halted

actin polymerization, and as a result the cells did not show any motion and rounded up. GFP

images and the kymographs of three aggregates are shown in Fig. 3.4a. By examining the dark

bands in the kymographs, it was clear that the cAMP waves propagated as target waves (radially

outward) as opposed to the rotational mode shown in Fig. 3.1a. Though, we also noticed two

other effects of LatB that might have affected the signaling pattern. First, the geometry of the

aggregate was no longer perfeclty round but rather irregular in shape. Second, the firing frequency

of cAMP seemed to have been reduced (T ′ ≈ 10-20 mins), hinting that LatB might have altered

the cAMP signaling dynamic at the cellular level. To further investigate these two effects, we

decided to run more experiments.

First, instead of adding LatB before loading the cells onto the silicone substrate, we added

LatB to the syringe connected to the microfluidic device right before starting the experiment.

As it took time (∼ 20 mins) for LatB to flow through the tubing to reach the device, cells were

able to move around and rotate normally for a while, so that most aggregates became relatively

circular in shape. Fig. 3.4b shows the snapshots of an aggregate right before and after exposure to

LatB. In the GFP kymograph, the aggregate showed rotational motion and a rotating cAMP wave

could be seen up to the moment that LatB reached the aggregate. After the exposure to LatB,

the cAMP signaling was initially not observable but then resumed in the form of target waves.

In this experiment, a total of 6 aggregates was monitored and they all showed similar behavior.

The averaged traction force and cell velocity for these aggregates were calculated (Fig. 3.4c).

37



Within 10 mins upon LatB treatment, the radial traction force quickly dropped from 400 Pa to

100 Pa, while the tangential force dropped from 15 Pa to less than 5 Pa. Meanwhile, both radial

and tangential velocities went down to zero. As in the irregularly shaped aggregates shown in Fig.

3.4a, these round aggregates also show a qualitative change in signaling dynamics from spiral

waves to target waves. Thus the aggregate shape did not appear to be responsible for the change

in cAMP wave patterns.

Next, we sought to elucidate the effect of LatB on cAMP signaling dynamics, specifically

whether it would alter the wave period or wave speed. We performed experiments in which

starved cells were deposited to the bottom of a glass plate to form a dense confluent layer of

cells. As the cells developed, cAMP waves that propagated through the cells were observed and

analyzed (Fig. 3.5). We compared the results with and without the addition of LatB in a large

field of view (∼ 1900 µm × 1900 µm). Period of the waves was calculated using auto-correlation

of the GFP intensity at several locations, after which the average was plotted as a function of time

(Fig. 3.5c-d). For both with or without LatB, the periods decreased over time as similarly reported

during the normal developmental program of Dictyostelium cells [66, 85]. Without LatB, the

period decreased from about 20 mins to 10 mins in two and a half hours. With LatB, the period

reduced from roughly 30 to 15 mins. The speed of the waves was computed by fitting straight

lines to an array of kymographs with different angles at 3 × 3 locations [86]. The calculated

wave speeds were verified with manually tracked data points (black cross). In both cases, with or

without LatB, the wave speed changed from ∼ 130 µm/min to ∼ 50 - 80 µm/min in two and a

half hours. Note that without LatB, as cells began to form isolated aggregates, the tracking of

waves became infeasible which resulted in the absence of a computed wave speed after two hours.

In total, three sets of experiments were done and when we focused on the common time frames

where signaling was regular (i.e. small standard deviation in detected periods), the signaling

period without LatB was 10 ± 2 min, while with LatB was 16 ± 5 min. For wave speed, normal

condition was 100 ± 60 µm/min while with LatB it was 100 ± 50 µm/min. Overall, LatB

38



(a)

(b)

(c)

(d)

(e)

Figure 3.5: Determination of effect by LatB on wave speed and wave periods using confluent
cell layers. In a large aggregate, which compensated the effect of increase in signaling period,
only target waves could be observed. (a-b): [left] GFP images showing cAMP wave propagation
in a confluent layer of cells, and [right] normalized difference images, I = It−It−1

(It+It−1)/2 , without (a)
and with (b) LatB. (c-d): The period and speed of the cAMP wave as a function of time without
(c) and with (d) LatB. (e): Example of a relatively large aggregate in the microfluidic device
which displayed multiple target waves over time. Red asterisks marked the propagation center
of a few target waves. Scale bar is 50 µm.
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appeared to increase the signaling period by about 60 % while not affecting the wave speed. Our

results are consistent with a previous study [87] where Latrunculin A increased the period of

optical density waves oscillation in a dose-dependent manner.

Now, taken into consideration that LatB could increase the signaling period of Dic-

tyostelium cells, we need to review how it might affect the spatial signaling pattern. Conveniently,

according to Eq. 3.13, the number of spiral arms should be inversely proportionally to the

refractory period τ, which in turn should be related to the signaling period. So, an increase in

signaling period by LatB, should in fact decrease n and can result in values of n that are smaller

than 1, so that no persistent rotating wave can be sustained. However, in the same equation, since

n ∝
r∗
τ

, the increase in signaling period can theoretically be canceled out with an increase in

radius of the aggregate. In our experiment, the minimum radius to support a one-arm rotational

wave was found to be ∼ 50 µm. Therefore, with LatB, with a 60 % increase in signaling period,

we expect the minimum radius to increase to ∼ 80 µm. So, if cell motion was not important,

we should expect to still observe spiral waves in LatB in large enough aggregates. For the LatB

experiment described earlier (Fig. 3.4c), 2 out of the 6 aggregates were larger than 80 µm and

only target waves were observed. In our experiments, even though we have many aggregates with

a size larger than this minimum radius, we never observed spiral wave activity. As an example,

Fig. 3.4e shows a large aggregate treated with LatB in the microfluidic device. Despite having a

large radius (> 130 µm), only target waves were observed. These results strongly suggest that

cell motion is crucial for setting up persistent rotational cAMP wave within a cell aggregate.

3.6 Discussion

3.6.1 Origin of traction force in rotational mound

To understand the origin of traction force in the Dictyostelium rotational mound, we

inspected various factors in our experiments. First, we noticed that there was a large radially
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outward traction force that the 2D mound exerted on the substrate. This outward boundary force

existed not only in the solid mound, but also in other morphologies like the annuli and streams of

cells. We verified that it was not due to the pushing effect of the ceiling of microfluidic device

by looking at traction force of free 3D mounds, and confirmed that it was not related to the

buffer flow in the device by running flow-free experiments. With the application of LatB, we

prevented actin polymerization of the cells and the traction force of static aggregates were greatly

reduced, though non-zero, compared to the rotational state. Finally, we conducted an experiment

treating aggregates with phosphodiesterase (PDE), which decomposes cAMP, and measured

that the traction force vanished to near zero (see appendix B.3). Our results suggest that actin

polymerization in the cells and the presence of an external cAMP field are essential for traction

force generation.

3.6.2 Motion-driven wave pattern formation

A few commonly known mechanisms for spiral wave initiation in excitable media is by

the break up of the wavefront of a wave, by two waves initiating spatiotemporally close to each

other within a vulnerable window or having spatial inhomogeneities in the medium [88]. Here, in

our model, we show computationally a new motion-driven mechanism to initiate rotating spirals

wave in a 2D aggregate of cells. In this mechanism, the collective cell motion is crucial in two

parts. First, when cells rotate coherently, a singularity, which is a topological defect with charge

+1, is created due to the collective alignment of cells. This singularity provides a basis for the

cAMP spiral wave to propagate around, which also consists of a singularity at its core (the spiral

tip). Together with the fact that cAMP wave can guide Dictyostelium cells movement, it forms a

positive feedback between cell motion and cAMP signaling so that a persistent rotating spiral

can be formed. Second, the magnitude of cell velocity modifies the propagation speed of the

cAMP wave. This can be thought of as a Doppler effect. Since the cAMP-emitting cell is always

moving in opposite direction to the propagating direction of the cAMP wave, the effective speed
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of the cAMP wave is lowered. This reduction in cAMP propagation speed increases the chance

of a rotating wave to be formed, as shown in Eq. 3.13. From our simulation, this motion-driven

mechanism provides a reliable way for the cells to initiate a stable rotational wave at a relatively

low firing frequency. Finally, we verified experimentally that cell motion was essential for the

existence of spiral waves in vertically constrained Dictyostelium cell aggregates, and that without

cell motion, only target waves were observed.

3.7 Summary

In this study, we investigated the Dictyostelium mound stage by using novel methods to

monitor cell movement (V), signaling activity (cAMP) and the traction force (T) exerted by two-

dimensional aggregates. We found that these quantities are tightly correlated in the rotational state

of the aggregates, showing oscillations of the same period. We presented the first measurements

of traction force in the rotating 2D mounds revealing its spatial distribution and investigated the

origin of the observed traction force pattern. More importantly, with our perturbation experiments

and computational model, we studied the cAMP wave patterns in the 2D mounds and discovered

that cell motion is crucial in initiating and sustaining the persistent rotational cAMP waves.
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Chapter 4

Matrix Degradation Determines

Morphologies and Migration Modes of

Cancer Cells in Dense Extracellular Matrix

4.1 Abstract

During tissue morphogenesis, different modes of collective migration of epithelial cells

enable the formation of distinct multicellular structures, including ducts and acini. Understanding

the rules determining these modes could inform regenerative medicine and cancer treatment. By

studying the proliferation and development of cancer cells in dense extracellular matrix (ECM),

we observed the formation of distinct structures and migration modes, namely rotating spheroids

and invasive networks. Using experiments and mathematical modeling, we found that the spatial

distribution of the matrix-degrading enzymes is a key factor in determining the morphologies and

migration modes of the cancer cells.
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4.2 Introduction

In the diagnosis of cancer, pathologists and physicians often evaluate the aggressiveness

of the cancer by examining the morphological features of the tumor and its surrounding tissue.

These morphological features have been used in some prognostic models and a strong association

with the patient survival rates was found using clinical data [89]. Meanwhile, with the advance in

next-generation sequencing technology, the amount of information on tumor genetics has been

rapidly increasing. Using the Cancer-Genome-Atlas data, tumor morphology has been found

to associate with the molecular content in cancer cells [90]. With this association, studying the

tumor morphological patterns has the potential to guide patient selection in clinical trials and

allow more precise patient care.

Cancer metastasis begins when the cancer cells migrate through the stroma into the blood

or lymph vessels. During its migration, cancer cells exhibit a wide range of invasion strategies,

from round or elongated single cells, to groups of cells migrating collectively. The migration

modes can be influenced by a combination of stromal network structure, tumor cell signaling and

extracellular stimuli [4]. This plasticity of cancer cells to adapt to the environment and switch

between migration modes poses a great challenge to antimetastasis therapy. It has been suggested

that future therapeutic efforts should focus on drugs that can selectively affect the actomyosin

dynamics in cancer cell to prevent cancer invasion [91].

Here, we use experiments and mathematical modeling to gain understanding about the

morphologies and migration modes of cancer cells by studying proliferating cancer cells in a

controlled environment.

4.3 Experimental Results

Detailed experimental materials and methods can be found in Appendix C.

When single cells of breast cancer cells, liver cancer cells and human mammary epithelial
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Figure 4.1: Organoids of cancer cells and epithelial cells form spheroids and networks in high
density collagen. (a-c): Plots for MDA-MB-231 breast cancer cells. (a): Cancer cells seeded as
single cells in high density collagen and cultured for 7 days. (b) Immunofluorescence images of
networks vs spheroids showing the nucleus (DAPI) and actin of the multicellular structures. (c):
Plot of percentage of each phenotype: invasive network and rotational spheroid. (d-f): Plots for
MCF-10A human mammary epithelial cells. (g-i): Plots for SK-HEP-1 liver cancer cells.
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Figure 4.2: Two migrations modes are associated with the two morphologies observed in MDA-
MB-231 breast cancer cell organoids. Upper row: rotational cells associated with spheroids.
Lower row: invasive cells associated with networks.

cells were seeded and cultured for 7 days in dense ECM, multicellular structures with two

distinct morphologies were observed (Fig. 4.1a,d,g). By considering the circularity of the

multicellular structures, spheroids and networks were identified and the plot of the percentage of

each phenotype are shown in (Fig. 4.1c,f,i). These two structures were observed across all three

cell types (Fig. 4.1b,e,h).

When we examined the cell cultures at an early stage (1-2 days) during which 2-cell

clusters were formed, we observed that the two distinct morphologies were associated with two

distinct migration modes — rotational and invasive as shown in Fig. 4.2. The rotational cluster

was characterized by its rounded shape while the two cells were rotating around the center of the

cluster. The invasive cluster consisted of elongated cells with the two cells showing linear motion

along their elongation axes, occasionally sliding past each other. These rotational and invasive

clusters were found to develop into spheroids and networks respectively at later time points.

More data quantification between the rotational and invasive clusters can be found in

Appendix. C.3.
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4.4 Model Results

4.4.1 Model Setup

To explore the plausible mechanisms leading to the two distinct morphologies and migra-

tion modes observed in the cancer cell organoids, we developed a Cellular Potts Model (CPM)

with cell motility, cell-ECM interactions and proliferation. The basic setup of the model has been

outlined in Sec. 3.4. Here, we focus on the additional modules specific to modeling cancer cells

in dense ECM.

Cell motility

Cell motility of the cancer cell is modeled using the same polarization module as presented

in Sec. 3.4. The motivation is that cancer cells and amoeba cells both show similar plasticity

in their two main migration modes — mesenchymal mode and amoeboid mode. The crawling

motion of the cells involves positive feedback between motion and actin polymerization, which is

captured by the polarization vector shown in Eq. 3.4, 3.6 and 3.7.

Cell-ECM interactions

For cell-ECM interactions, we consider two contributing factors — cell-ECM adhesion

and ECM degradation.

Cell-ECM adhesion is modeled similarly compared to the cell-cell and cell-media interac-

tions described in Sec. 3.4. The strength of the cell-cell (Jc,c) is slightly lower than strength of

the cell-ECM (Jc,e). This ensures that cells are moving collectively as observed in experiments.

Although this not the focus of our study, we have also included the possibility of cell-media

interaction (Jc,m). This interaction was chosen to be higher than both Jc,c and Jc,e, such that the

cells would try to minimize the cell-media surface.

For ECM degradation, we consider a diffusible matrix-degrading enzyme (E) produced
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by the cells. It has been shown that cancer cells can release proteases, mainly Matrix Metallo-

proteinases (MMPs), that degrade the fibrous extracellular matrix [92]. In our model, there are

two modes of degradation employed by the cells — local and global degradation. In the mode

of local degradation, each individual cell only releases the enzymes locally at the tip of the cell,

determined by the direction of the polarization vector (P). This is implemented by a rule-based

fashion where the dot product between the position of each element in the cell (ri, j) and the

polarization vector (P) is calculated. Then, local production of the enzymes only takes place at

elements that have magnitude of the dot product higher than the 99% of the maximum magnitude.

In addition, the local production only occurs when the cell element is in contact with an ECM

element (i.e. at least 1 out of 8 neighboring sites has to be an ECM site). For the global mode of

degradation, the release of enzyme is non-directional and constant over the whole cell body. The

dynamics coupling the matrix-degrading enzyme (E) and the ECM substrate (S) is described by

the equations below:

dE
dt

= D∇
2E + kgδ(σi, j −σcell)+ klδ(σi, j −σcell,tip)− kdE − krES (4.1)

dS
dt

= − krES (4.2)

σcell,tip = Pi, j ≥ 99%×max
∀i, j

(r⃗i, j · P⃗) (4.3)

In Eq. 4.1, the first term describes the diffusion of the enzyme with diffusion coefficient D;

the second and third terms represent the global and local production of the enzyme where δ

is the kronecker delta, kg and kl are the respective rates of production; the fourth term is the

auto-degradation of the enzyme with degradation rate kd and the fifth term is the reaction with

ECM with reaction rate kr.

Lastly, to model the physical barrier of ECM, an ECM penetration cost is included in the
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Hamiltonian:

HECM penetration = λECM ∑
i, j∈σcell

Si j (4.4)

The penetration energy cost is proportional to the concentration of the ECM (S) and the parameter

that indicates the strength of ECM (λECM). When a cell element successfully overcomes an ECM

element, the lattice site of the ECM will be updated to the invading cell label regardless of the

original ECM value.

Proliferation

The proliferation of cells in our model involves two steps — growth and division. For

growth, we assume that the target size of the cell is a function of time, A(t). In each simulation

step, the target size of individual is increased by the growth rate G(t) such that

dA(t)
dt

= +G(t) (4.5)

G(t) =
G0

kt (4.6)

Eq. 4.6 models the reduced growth rate over time (k > 1) that accounts for the difference in

2D proliferation in our simulation, compared to 3D proliferation observed in experiment. If we

consider the number of cells in a spherical cancer organoid, in the 2D case N2D ∼ R2 while in 3D

N3D ∼ R3 where R is the radius of the organoid. Thus, the number of cells in 2D (cross-sectional)

actually corresponds to a larger number of cells in 3D, with correction factor N′
2D→3D = N3/2

2D .

Therefore, a constant growth rate in 3D (experiment) would correspond to a reduced growth rate

over time in 2D (simulation). Since the exact correction factor depends on the morphology of the

organoid (not necessarily spherical), the value of k was decided empirically to match the numbers

of simulated cells to the numbers of cells observed in experiments on the 2nd day and 7th day
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following cell seeding. Lastly, we impose a maximum cell size Amax such that the cell will not

grow indefinitely.

For division, we employ a stochastic approach such that when the cell area exceeds a

threshold value (Athres = pAmax, with p equals 0.85 in our model), it will divide into two smaller

cells with a fixed probability at each simulation step. The division takes place at the middle of

the long axis of the dividing cell, such that the two daughter cells will have half the size of the

mother cell. One of the daughter cell will maintain the cell label of its mother while a new label

will be created for the other daughter cell. Finally, the daughter cells will inherit the velocity and

polarization vector of their mother cell.

4.4.2 Two plausible mechanisms suggested by simulations

Using our model, we identified two plausible mechanisms which can lead to the distinct

morphologies and migration modes of the cancer cell organoids that were observed experimentally.

Polarization persistence

We define the polarization persistence as γ = k+
k−

according to the polarization vector (Eq.

3.6 and 3.7). Since k+ is the rate of production and k− is the rate of degradation of the polarization

vector, the ratio between the two rates determines how fast the polarization vector is updated, thus

relates to its persistence. When we vary γ, we observe a strong effect on the morphologies and

migration modes of the organoids (Fig. 4.3). At low γ (Fig. 4.3a), when degradation dominates,

the polarization vector is short-lived such that the cells change direction more quickly, resulting

in a rotational morphology that is already established at the two-cell stage. At high γ (Fig. 4.3c),

the polarization degrades slowly such that the polarization vector is more persistent, resulting in

linear motion of the cells forming the invasive network structure. At intermediate γ (Fig. 4.3b), a

transient form is observed where it is a multicellular structure characterized by the presence of a

few sprouting tips, representing a hybrid between the rotational spheroids and invasive networks.
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Figure 4.3: Model results showing morphologies of cancer cells depended on polarization
persistence. (a-c): Morphology of simulated cancer cell organoid on day 7 as function of
polarization persistence γ = k+

k−
. Insets show the migration mode of the two-cell stage on day 1.

(a) At low γ, a rotational spheroid is formed. (b) At intermediate γ, a transient structure with
sprouting tips is formed. (c) At high γ, the cells move persistently and an invasive network
structure is formed. White arrows indicate magnitude and direction of the polarization vectors.]

From these numerical results, we predict that ratio between the actin polymerization (k+) and

depolymerization rate (k−) is a key factor determining the formation of rotational spheroids and

invasive networks.

Modes of degradation

The second mechanism considers the modes of degradation. When we vary the production

rates of the matrix-degrading enzyme, kg and kl for global and local degradation respectively, we

again see a strong effect on the morphologies and migration modes as shown in Fig. 4.4. When

global degradation dominates (Fig. 4.4a), the cells degrade the surrounding ECM evenly in all

direction, resulting in the formation of rotating spheroids. When local degradation dominates (Fig.

4.4c), the cells release the enzymes at the tip determined by the polarization vector, such that the

ECM is being degraded along the direction of cell motion which is roughly linear, resulting in the

formation of an invasive network. While in the intermediate range 4.4b), when the global and

local degradation are comparable, a transient structure with some sprouting tips is formed. Our
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Figure 4.4: Model results showing morphologies and migration modes of cancer cells depended
on mode of degradation. (a-c): Morphology of simulated cancer cell organoid on day 7 as
function of modes of degradation determined by the rates of global and local production, kg

and kl respectively. Insets show the migration mode at the two-cell stage on day 1. (a) When
global degradation dominates, a rotational spheroid is formed. (b) When rates of global and
local degradation are comparable, a transient structure with sprouting tips is formed. (c) When
local degradation dominates, the cells move persistently and an invasive network is formed.
White arrows indicate magnitude and direction of the polarization vectors.

results suggest that the localization of the release of matrix-degrading enzymes can lead to the

formation of the distinct morphologies and migration modes observed in experiments.

4.5 Model Verification and Perturbation Experiments

Model prediction on modes of degradation

Changing the actin polymerization rate in experiments is challenging, since it will affect a

large number of cellular processes. Therefore, we decided to focus on exploring how the modes

of degradation might affect the morphologies and modes of migration. In Fig. 4.5, we show the

phase space plot of circularity of the 2-cell structure as a function of global and local production

rates (kg and kl) of the matrix-degrading enzyme. In this plot, we have indicated the boundary

between rotational and non-rotational structures by a red dotted line. In addition, the boundary
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Figure 4.5: [Model phase space showing different morphologies of cancer cells as a function
of modes of degradation. (a): Circularity of the simulated 2-cell stage of cancer cells on day
1, as a function of the global and local production rates of matrix-degrading enzyme. The
colored asterisks indicate examples of a (b) rounded, (c) elongated and (d) hollow structure. The
red dotted line separates regions with high rotational speed (left to line, ≥ 0.6rad/h) and low
rotational speed (right to line, < 0.6rad/h). The green dotted line separates regions with high
cells to degraded ECM volume (below the line, Vcells

VECM
≥ 80%) and low cells to degraded ECM

volume (above the line, Vcells
VECM

< 80%). (b-d): The morphologies and migration modes of the
cells on day 1 and day 7 corresponding to the asterisks located in (a).
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Figure 4.6: When the MMP inhibitor, 1µM Marimastat, is added to the extracellular matrix,
local degradation is inhibited and a majority of spheroids is formed (right) compared to the
vehicle (left) for both breast cancer cell (upper) and liver cancer cell (lower). Percentages of
each phenotype (blue: spheroid, pink: network) is shown in the rightmost panel.

between solid and non-solid structures is shown as a green dotted line. Examples of a rotational

spheroid, invasive network and hollow spheroid are shown in (b), (c) and (d), respectively, for

both the 1-day and 7-day stage. As can be seen from the phase plot, we predict that inhibiting

local degradation will results in the formation of rotating spheroids.

Perturbation Experiments using MMP inhibitors

To perturb the degradation modes employed by the cells, we applied 1µM Marimastat,

a MMP inhibitor, to the extracellular matrix. In a previous study [93], it was shown that local

degradation is related to MMP-14, which is a transmembrane protein capable to cleave type

I collagen. Marimastat can inhibit the expression of MMP-14 [94] which can in turn inhibit

local degradation of the cancer cells. In Fig. 4.6, we show that with 1µM Marimastat, the
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multicellular structures formed on the 7th day became mostly spheroids compared to the vehicle

where substantial amount of invasive networks were observed. These results verified our model

prediction that the mode of degradation is a key factor in determining the morphologies and

migration modes of the cancer cell organoids.

4.6 Summary

In this study, we presented observations of two distinct morphologies and modes of mi-

gration — namely rotational spheroids and invasive networks, in the cancer cell organoids plated

in dense extracellular matrix (ECM). These structures were observed across breast cancer cells

(MDA-MB-231 TNBC), liver cancer cells (SK-HEP-1 HCC) and Human Mammary Epithelial

Cells (HMEC), suggesting that cell-cell adhesion and laminin deposition do not determine forma-

tion of the distinct structures. Using mathematical modeling and perturbation experiments, we

found that the mode of degradation is a key factor in determining the morphologies and migration

modes of the organoids.
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Appendix A

Methods and Materials for Chapter 2

A.1 Microfluidic device, device preparation, and experimental

setup

The microfluidic system produces bell-shaped pulses of concentration that periodically

sweep over cells on the substrate, thus emulating the spatial and temporal pattern of concentration

in a periodic traveling wave. The microfluidic system is comprised of a microfluidic device and a

flow-driving setup, which are modified versions of the device and setup described in our previous

publication [21]. The microfluidic device consists of a micromachined polydimethylsiloxane

(PDMS) chip and a #1.5 microscope cover glass substrate with a periodic micropattern of stripes

of polyethylene glycol (PEG) gel. The PEG-gel stripes are all ∼1.5 µm high and ∼30 µm wide

and one of two substrate patterns are used: 1) one 25 µm wide glass (non-treated) stripe for every

four 10 µm wide glass stripes or 2) variable width stripes, repeated every 6 stripes, ranging from

∼ 6µm to ∼ 25µm (Fig. 2.1d-e). We have verified that our results are independent of the stripe

width. Because developed Dictyostelium cells cannot adhere to the surface of PEG-gel, adherent

Dictyostelium cells are confined to glass stripes, making their migration along the 10 µm wide

glass stripes nearly one-dimensional (1D) [50].
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The microfluidic device has three inlets (A-C) and one outlet (see Fig. 1). Its main

functional area is an ∼100 µm deep chemotaxis channel with a width of 2200 µm and an ∼7 mm

long rectilinear part. At the entrance of the chemotaxis channel, a ∼200 µm wide stream of a

concentrated solution of cAMP (coming from inlet C) is squeezed (hydrodynamically focused)

between two streams of plain buffer or of cAMP solutions with a lower concentration (coming

from the inlets A and B), which together fill the rest of the 2200 µm wide chemotaxis channel.

As the focused stream of cAMP advances down the chemotaxis channel (along the y-axis), the

diffusion of cAMP molecules across the boundaries of the stream gradually changes the lateral

(across the flow, x-axis) profile of cAMP from its initial rectangular shape to a bell-shaped curve.

At the standard experimental conditions, [cAMP] in the concentrated solution is 1400 nM, the

mean flow velocity in the gradient channel is ∼300 µm/s, and the chemotaxis is observed ∼3 mm

downstream from the gradient channel entrance, where the maximal [cAMP] is reduced to ∼1000

nM, and the effective width of the stream of concentrated cAMP (full width at half height) is

increased to ∼230 µm, both due to diffusion of cAMP across the stream [21]. The microfluidic

system operates in a cyclic fashion. In the beginning of a cycle, the volumetric flow rate of the

stream of buffer (or low-concentration cAMP solution) from inlet B to the right of the cAMP

stream is low, and the volumetric rate of flow of buffer from inlet B to the left of the cAMP stream

is high, thus placing the cAMP stream close to the right wall of the gradient channel. The flow

rate of the buffer stream on the right linearly increases with time, while the flow rate of the buffer

on the left linearly decreases with time, with the total flow rate remaining nearly unchanged. As

a result, the high concentration cAMP stream (which is squeezed between the buffer streams)

linearly drifts from right to left, and, at a given y-axis position, a bell-shaped pulse of cAMP

is sweeping from right to left (in the negative x-axis direction) at a constant speed. The length

of the sweep is l≈1425 µm that for a duration of the sweep T=10 min results in a speed of 2.5

µm/s for the motion of the cAMP pulse across the gradient channel (note that it takes 30s for

the wave to be reset, such that the effective duration is 570s). At the end of a sweep, the flow
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of the concentrated cAMP solution is turned off, making the concentrated cAMP to completely

disappear from the gradient channel, and then the flow rates from inlets A and B restored to

their initial values. After that, the flow of the concentrated cAMP solution is turned on again,

making the stream of concentrated cAMP reappear at its initial location close to the right wall

of the gradient channel, and the next cycle begins. Importantly, the cAMP stream is effectively

moved from its final to initial location without directing it (even transiently) anywhere else in

the chemotaxis channel. Also, because of the relatively large length of the sweep, and fast decay

of [cAMP] with the distance from the peak of the bell-shaped profile, there is ∼500 µm wide

region near the middle of the gradient channel, where [cAMP] is very close to the background

concentration, both in the beginning and end of each cycle. As a result, all cells in this region are

exposed to the same periodically repeating spatiotemporal pattern of [cAMP] and can be pooled

and analyzed together, after accounting for a time difference within a cycle of ∆t = ∆x/vx, where

∆x is the distance between cells along the x-axis. Therefore, large sets of data on chemotactic

indices (CIs) and velocities of individual cells at different time points (phases) of the repeated

cAMP wave cycle can be collected.

Further details on the operation of the microfluidic device and flow setup and on the

experimental procedure as well as a detailed mathematical analysis are provided in SI of Ref.

[21]. The following modifications were made to the original experimental setup and procedure

of Ref. [21]. (1) Because flow in the microfluidic device is driven and controlled by applying

differential pressures between the inlets and the outlets, it is necessary to have substantial fluidic

resistances between the inlets and the outlet. In the original device, those resistances were

implemented in 100 µm deep and 60 µm wide channels, making the device easy to fabricate

(all channels had the same depth), but requiring the resistance channel lines to be long, because

of their relatively low fluidic resistance per unit length. In the present device, the resistance

lines are ∼30 µm deep and ∼30 µm wide channels, which have an ∼40 larger fluidic resistance

per unit length, greatly reducing the footprint of the microchannel network (at the expense of
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making the fabrication of the device somewhat more involved). (2) The reduced footprint of the

microchannel network makes it possible to seal the PDMS chip against the coverglass with the

micropattern of PEG-gel stripes using the application of vacuum (∼ -30 kPa) to a deep (100 µm)

and wide (4 - 6.5 mm) O-shaped grove around the microchannel network that acts as a vacuum

cup. This vacuum-assisted sealing is essential, because it allows keeping the micropatterned

substrate wet at all times, thus preserving the structure and functionality of the PEG-gel stripes

(that Dictyostelium cells cannot adhere to). (3) The possibility of attaching the microfluidic chip

to a wet substrate also enables direct plating of Dictyostelium cells onto the substrate. The PDMS

chip is attached to the substrate only after cells settle and adhere to glass stripes. As a result, cell

plating is substantially simplified and streamlined as compared with the original microfluidic

device, where cells needed to be delivered to the gradient channel through a dedicated inlet and

connecting microchannel that are both absent in the present device.

Microfluidic chips were cast in polydimethylsiloxane (PDMS, Sylgard 184 by Dow

corning) using a microfabricated master mold, a 5 inch silicon wafer with a micro-relief of

UV-curable SU8 photoresist (by MicroChem) produced with UV photolithography [50]. First,

an ∼30 µm thick layer of SU8 2015 photoresists was spin-coated onto the wafer, pre-backed,

exposed to collimated UV-light through a photomask, and post-baked. Next, the wafer was

spin-coated with SU8 2050 photoresist to a total thickness of 100 µm, pre-baked, exposed to

UV-light through a second photomask, post-baked, and developed, revealing a micro-relief with

30 µm and 100 µm tall micro-ridges. The 30 µm deep micro-grooves on the PDMS replica of the

mold produced the 30×30 µm resistance channels, and 100 µm deep micro-grooves produced

all other flow channels and the O-shaped vacuum cups. The PDMS cast was cut into individual

chips, and the inlet and outlet holes in the chips were punched with a Luer stub.

To verify the wave profile computed from numerical simulations of the diffusion process

[21], we added Alexa FluorTM 594 Hydrazide (Invitrogen), a fluorescent dye, to the cAMP
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solution. The fluorescent intensity profile with cAMPbg=0 was well fitted using a Gaussian

cAMPGauss(x) = Ae
−(x−x0)

2

2σ2

where the wave peak position was given by x0, the wave width was given by σ and its amplitude

by A. Using the numerical simulations, this amplitude was determined to be 1000 nM at the

experimental field of view [21]. An example of a fit is given in Fig. 2.1b-c. From these

fits, we determined σ = 115 µm, corresponding to a full width at half maximum of 230 µm.

Furthermore, by using a linear fit to x0 as a function of time, we verified that the wave speed

is v = 2.5 µm/s. For non-zero cAMPbg the cAMP concentration was the Gaussian profile

plus a constant equal to the value of cAMPbg such that the total cAMP profile is given by

cAMP(x) = cAMPGauss(x)+ cAMPbg .

A.2 Cell tracking

A machine learning (ML) model was developed for reliably tracking the complex move-

ment of the Dictyostelium cells. 20 videos of cells moving in response to chemical gradients

were provided for training of the model. In order to avoid having too many repeated or similar

images, only one in every thirty frames was used for training and validating the model, resulting

in 140 images. Each of the images, of size 256x256 pixels representing 25% of the full field

of view, was assumed to be completely independent. Images were converted to grayscale and

normalized. The model used was a U-Net convolutional neural network, which can be trained

on very few images and outperforms most existing methods [95]. The model consisted of three

rounds of convolution and max pooling, followed by a fully connected layer with 512 elements,

and finally three rounds of convolution and upsampling. The convolution layers were 3x3 with 32,

64, and 128 filters. Rectified linear unit (Relu) activation was applied after each convolution. The

pooling and upsampling layers were 2x2. Data augmentation, including shifting and flipping of
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the images, was used during model training to increase the size of the dataset. A labeled dataset

was obtained by marking the centroid of cells in a small number of images using human input.

A U-Net model was then trained on this small sample and then used to aid in marking further

images. This process was repeated several times until the entire dataset was marked. The labeled

dataset was then split with 80% of all images used for training, and 20% used for validation set.

In order to avoid target leakage, the model’s parameters and hyperparameters were reset and

trained only on the new training dataset. Data augmentation was again used to increase the size of

the training dataset. The final model consistently tracked 90% of all cells in the validation dataset.

Finally, the model was tested on a new set of videos not seen in the original dataset. A comparison

between blinded, manual marking of cells and the ML algorithm showed that approximately 97%

of cells were tracked by the automated procedure (5623 vs. 5487).

Once cell positions were determined, we computed cell trajectories by connecting nearest

points in consecutive frames. Only cells that were within a 300 µm wide region at the middle

of the gradient channel were considered. These cells experienced a full cAMP wave, starting

and ending at the background concentration. Furthermore, we only included cells that were

continuously recognized for more than 3.5 min, that were moving with an average speed of at

least 0.16 µm/min, and that were at least 33 µm from the neighboring cells (these cells are marked

by red circles in Fig. 1). In addition, although rarely observed, cells moving on the PEG-gel

stripes were also excluded. Data from the first cAMP wave was excluded to eliminate any initial

differences in cells.

The cell’s velocity in the x-direction for a given frame, Vx, was computed as the difference

in the x-position 3 frames prior and 3 frames after the given frame, divided by the time interval

between these frames (90s). The time with respect to the passage of the cAMP peak (phase) was

assigned by measuring the distance of the cell from the location of the peak of the wave relative

to the extent of the sweep. The CI as a function of time was computed by averaging data points in

equally spaced bins of width 0.5 min. The time averaged CI, ⟨CI⟩, was computed by averaging
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CI in time over the entire wave cycle. The time average of Vx, ⟨Vx⟩, was calculated in a similar

fashion. Experiments were repeated at least three times for each cAMPbg. For each cAMPbg, a

distribution (N = 10,000 trials) of sample mean was generated by bootstrapping over the replicate

experiments, and the experimental averages and error bars reported in this study were the mean

and standard deviation of this resampled distribution.

A.3 Parameter fitting

As mentioned in the main text, we minimize the loss function L=∑
N
n=1 |xexp−xsim|/(Nσexp)

to find the optimal parameters. This loss function compares N=54 experimental data points to

simulation data (see main text). We take 46 discrete points from previous experimental data

(detailed in Ref. [21]) and 8 points derived from the current study. As in Ref. [21], σexp was

taken as the standard deviation of the experimental data or 50% of xexp where standard deviations

were not available.

Following Ref. [21], the 46 data points using previous studies were chosen as follows: 24

data points were taken from uniform dose response data where cells were exposed to uniform

stimulus switching from 0nM or 100nM to higher concentrations [53]. The peak amplitudes,

peak times and the state of memory module M were fitted (see also Fig. 2.4a-b). Additionally,

15 data points were chosen from gradient-to-uniform data obtained from experiments in which

cells were first exposed to a gradient (0-100 nM across a 70 µm wide channel), followed by a

uniform concentration of 0, 1, 10, 20 or 50nM [21]. These experiments, detailed in Ref. [21],

quantified the localization of activated Ras, a directional sensing marker, using the Ras-binding

domain of Raf tagged to GFP (RBD-GFP). The times for disappearance and reappearance as well

as the ratios of fluorescence intensity before and after the switching from gradient to uniform

concentration were fitted. As indicated from the experiments, we required the memory M f to stay

high (i.e., M f =1) for a uniform concentration of 10, 20 and 50nM and to become low (M f =0) for
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0nM . The final 7 data points were chosen from gradient reversal data where the initial gradient

was switched to a reversed gradient of 100-0nM, 75-25nM or 60-40nM across the gradient

chamber. The ratios of fluorescent RBD-GFP intensity before and after the switching were fitted.

The memory was required to reverse in the 100 to 0nM profile and remain unchanged in the 60 to

40nM profile. Further details of these data points can be found in Ref. [21].

The “new” 10 data points were chosen from the current background experiments with

cAMPbg= 0, 0.01, 0.5, 60 and 150nM. To match with the experimental results, which showed that

cells have a high CI during the front of the wave for cAMPbg= 0 and 0.01 nM, persistent high CI

for cAMPbg=0.5 and 60 nM, and significantly reduced CI for cAMPbg=150nM, we required the

front memory, M f , at 2.5 minutes before the peak of the wave, when cells experienced a positive

gradient, to be high for cAMPbg=0, 0.01, 0.5 and 60nM and low for 150nM. At 5 minutes after

the peak, at a near-zero cAMP concentration, M f was required to be low for cAMPbg=0, 0.01

and 150nM and high for cAMPbg=0.5 and 60nM.

We fitted the five parameters (a, b, kMem, kS2 and Km3) related to the memory module

using the lower bound constraints of [0.001, 0.001, 0.005, 20, 0.0001] and upper bound constraints

of [1, 1, 5, 200000, 1] in units of [nM, nM, nM−2s−1, s−1, nM]. To minimize L we used simulated

annealing, which avoids trapping in local minima of the parameter space, and uses an artificial

temperature that is decreased during the parameter search such that sampling becomes more and

more selective. In each iteration, a new parameter set was generated from the previous one with

a step size based on this artificial temperature. The difference in the value of the loss function

between the new and previous iteration was then computed. For a negative difference the new

parameter set was automatically accepted while for a positive difference the new parameter set was

accepted with a chance that ranged between 0 to 50% and which was based on the loss function

difference and the artificial temperature. The search was carried out in log space to cover the wide

range of parameter values and the algorithm was concluded when the difference in loss function

became smaller than 0.01 for more than 500 iterations. Multiple runs of simulated annealing were
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conducted with randomized initial parameter values. At the end of each run, pattern search was

applied to obtain more precise local minima, using Matlab routine patternsearch. In each iteration,

this algorithm attempts parameters values at a fixed step from the previous parameters. If the loss

function was reduced, the step size would be doubled in order to explore a wider space. If the loss

function did not reduce, the step size would be halved. The parameter search terminated when

both the change in loss function became smaller than 0.01 and the absolute step size became

smaller than 0.0001 in log10 space.

The final parameters are listed in Table 1 and correspond to L = 0.556. As in Ref. [21]

(Fig. S5b in that study), we can compare the simulation results with experimental results of

Takeda et al., which recorded the intensity of RBD-GFP following a sudden change in uniform

cAMP concentration [53]. In Fig. 2.4a-b, we plot the numerically computed intensity peak, Ipeak,

and the time corresponding to the maximum peak amplitude, Tpeak as lines. These results are

in good agreement with the experimental results, plotted as symbols. When we consider the

loss function L′ that includes only the 46 data points from the previous experiments, the current

parameter set gives L′ = 0.655 while the original parameter set results in L′ = 0.731.
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Table A.1: Model parameters.

Parameter Value Parameter Value
kR 0.002463 nM−1 · s−1 k−R 1.006 s−1

kE 0.159 s−1 k−E 0.159 s−1

kI 0.139 s−1 k−I 0.139 s−1

kbasal 0.000015 nM kMem 0.2550 nM−2 · s−1

a 0.0239 nM b 0.3550 nM
kS 2000 s−1 Km1 0.018 nM

k−S 2048 s−1 Km2 0.001 nM
kS2 149.4 s−1 Km3 0.0366 nM

Mtot
f 1 Mtot

b 1
Rtot

f 1 Rtot
b 1

Stot
f 1 Stot

b 1
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Appendix B

Methods and Materials for Chapter 3

B.1 Kymograph analysis

The angle and distance kymographs showed in Fig. 3.1f, 3.4a-b were created by spatially

averaging over bins of angle (∆θ = 7.5◦) and distance (∆ρ = 3.33µm) of the GFP images. A 2D

Gaussian filter (1 temporal + 1 spatial) was applied to reduce spatiotemporal noise. To find the

rotational cAMP wave angular speed, straight lines were fitted to the dark bands of the angle

kymograph (I). To do so, a 2D sliding median filter with large windows (using MATLAB colfilt

function) was applied to find a background kymograph (Iback) as shown in Fig. B.1. We obtained

thr normalized signal by subtracting the background from and the original signal (Inorm = I−Iback).

The kymograph was binarized (Ibin) by checking whether the signal was local minima (using

MATLAB islocalmin function). Straight lines in the kymographs were then detected using Hough

transform (using MATLAB hough function). By calculating the average slope of the fitted lines,

the angular velocity and thus the period of the wave can be determined.
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Figure B.1: Kymograph processing procedure in order to fit straight lines (red lines) to the dark
bands in the kymograph by using Hough transform.

Figure B.2: The average cross correlation curve of cAMP and cell velocity of an aggregate.
Time difference between the signals was found to be ∼ 119.28 s as indicated.
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(a) (b)

Figure B.3: Time series of (a) traction force and (b) cell velocity averaged over 7 aggregates in
an experiment with the use of PDE. Upon the arrival of PDE, both traction force and cell velocity
dropped to near zero. Red dotted line indicates the time when PDE reached the aggregates.

B.2 Phase difference calculation

To determine the phase difference between the pair of quantities as shown in Fig. 3.2b, we

used cross correlation (MATLAB xcorr function). Specifically, for each pixel within the aggregate,

cross correlation of the time series data (e.g. ’cAMP’ and ’velocity’) was calculated. Then we

found the average cross correlation curve (Fig. B.2) by averaging over each pixel. The peaks

(maximas) of the correlation curve were then identified and the one with the smallest absolute

lag time was determined as the time difference ∆t. Finally, we converted the time difference into

phase difference by ∆φ = 2π
∆t
T where T is the average period of the signals.

B.3 PDE treatment on aggregates

53 µg/mL phosphodiesterase (PDE) in KN2/Ca buffer was added in the syringe connected

to microfludic, in similar fashion as the LatB experiments. Traction force and cell velocity time

series are shown in Fig. B.3. Note that both traction force and cell velocity decreased to near zero

upon the arrival of PDE. In the experiment, we observed that the initially rotating aggregate shrunk
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in radius while the rotation slowed down (see transient negative radial velocity). Meanwhile,

cAMP signaling stopped. Later on, the cells seemed to be able to adapt to the increase in external

PDE levels, and signaling resumed together with a gradual increase in traction force. Since PDE

decomposes the cAMP, our results suggest that traction force generation attributed not only to

actin polymerization and cell motion (as shown in LatB experiments) but also an external field of

cAMP.

69



Table B.1: Model parameters.

Parameter Value Parameter Value
Jc,c 50 ρ 0.5161 nMs−1

Jc,m 700 gc 0.0465 nM
λa 50 A 0.000574 nMs−1

A 78 µm2 K 0.00001 nM
λp 50 kg 0.0970 nM−2s−1

λc 0.4 a 0.1863 nM
k+ 0.0129 s−1 kr 0.0839 s−1

k− 0.00645 s−1 τ 93 s
D 0.129 µm2s−1 ∆x 1.25 µm
α0 0.0516 nMs−1 ∆t 1.55 s
J 0.0645 s−1
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Appendix C

Methods and Materials for Chapter 4

C.1 Cell culture

MDA-MB-231 breast cancer cells were ordered from ATCC (Manassas, VA) and SKHEP-

1 were provided by Jason Sicklick (UCSD). All MDA-MB-231 and SK-HEP-1 cell lines were

cultured in high glucose Dulbecco’s modified Eagle’s medium supplemented with 10% (v/v) fetal

bovine serum (FBS, Corning, Corning, NY) and 0.1% gentamicin (Gibco Thermofisher, Waltham,

MA), and maintained at 37 °C and 5% CO2 in a humidified environment. Cell lines were routinely

tested for mycoplasma contamination (ATCC, Manassas, VA). To generate cells that express

H2B-mCherry (pHIV-H2BmRFP, Addgene #18982 , Watertown, MA), LifeAct-GFP (Dendra2-

Lifeact-7, Addgene #54694, Watertown, MA) and mCherry-LifeAct (Addgene, Watertown, MA),

we generated viral particles by transfecting plasmids into lentiX 293T cells (Clonetech, Mountain

View, CA) along with the psPAX2 packaging vector (Addgene #12260) and the pMD2.G envelop

vector (Addgene #12259). Viral particles were collected by removing culture medium 24 and 48

hours after transfection and filtering through a 0.45µm filter. Transduced cells were treated with

hexamethane bromide and a titration of viral particles for 24 hours. Selection with puromycin

was conducted for plasmids with selection markers.
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C.2 3D culture in collagen I matrix

Cells suspended in culture medium were embedded in 3D Collagen I matrices by mixing

with 10x reconstitution buffer (1:1 v/v) and high concentration, rat tail acid extracted type I

collagen (Corning, NY) to a final Collagen I concentration of 6 mg/mL. The pH was adjusted of

the mixture using 1 N sodium hydroxide and polymerized via incubation at 37 degrees for 30

minutes.

C.3 Biophysical Gel Culture, Imaging, and Quantitative Anal-

ysis

To investigate the key factors driving these distinct morphogenic outcomes, we conducted

measurements (Fig. C.1a) characterizing the four primary processes underlying cell migration:

matrix remodeling, cytoskeletal dynamics, cell-matrix adhesion and contractility. Fig. C.1b-i

show the comparison of the measurements between the two phenotypes. We found that there were

significant differences in degradation and cytoskeletal polymerization measurements (C.1c,e)

between the rotational and invasive cells, while cell-matrix adhesion and contractility did not

show significant differences.

C.3.1 Biophysical Gel 3D Culture

MDA-MB-231 mCherry-LifeAct cells were suspended in culture medium (with or without

pharmacological inhibitors) were mixed 1:1 v/v with 1x reconstitution buffer to achieve a final

concentration of 100k cells/mL. Next, blue carboxylated microspheres (1 um, Thermofisher

Scientific, Waltham, MA) were added to the cell-buffer mixture at a final concentration of

1:50 (v/v) of the final gel volume (200 µL). Dye-quenched (DQ) collagen type I (Thermofisher

Sicentific, Waltham, MA) was added to the cell-buffer solution at a final working concentration
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Figure C.1: Experimental data quantification of degradation, cytoskeletal polymerization
and contractility measurements. (a): Images showing the actin polymerization (red), ECM
degradation signal (green) and traction force bead (blue). (b-c): Degradation measurements
based on DQ Collagen I signals. (d-f): Cytoskeletal polymerization measurements based on
actin activity. (g-i): Contractility measurements based on movements of traction force beads.
(j): Principle components from PCA using the measurement quantities in (b-i) to separate the
two phenotypes. (k): Correlations between different pairs of measured quantities. (l): The two
phenotypes showed a well-separated linear distribution in the % pericellular degradation (x) and
protrusion lifetime (y) phase space.
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of 100 µg/mL. Lastly, the cell-buffer solution was mixed into rat tail type I collagen in acetic

acid (Corning, Corning, NY) to reach the desired final concentration of 6 mg/mL. The pH was

adjusted to 7.0 using 1 N sodium hydroxide and the cell-gel solution was added to custom made

PDMS wells mounted on glass bottom dishes (Fluorodish, World Precision Instruments, Sarasota,

FL) following thorough mixing. Gels were polymerized at 37 degrees Celsius in a humidified

incubator for at least 30 minutes prior to covering the gel with culture medium.

C.3.2 Biophysical Imaging

After 33-39 hours in culture, cells were transferred to a microscope stage top incubator

on a Nikon Ti-Eclipse Epifluorescent Inverted Microscope. Multichannel Z-stacks with an axial

displacement of 37 µm (1 µm stepsize) were acquired every 2 minutes for 2 hours using an

oil-immersion 40x objective (NA 1.5). For each time interval, z-stacks through the cell body were

taken in three channels (blue, green, and red), to visualize the fluorescent beads, DQ collagen, and

mCherry-LifeAct, respectively. Invasive and rotational cells at the single- to four-cell stage whose

primary axis of spreading was along the XY plane were selected for quantitation. Maximum

intensity projections (MIPs) of the z-stacks were generated for each time point to generate 2D

time series for each channel of the cell selected for analysis.

C.3.3 Biophysical Imaging Analysis

Multichannel z-stacks and MIPs were saved as .tif files and opened in ImageJ for process-

ing and analysis (NIH, Bethesda, MA).

C.3.4 Quantification of Protrusion Dynamics

For cell protrusion dynamics analysis, protrusions were manually tracked in ImageJ using

MIP time series of the mCherry-LifeAct expressing cells. In order to determine the Methods 3
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time duration or protrusion lifetime, each protrusion was tracked frame-by-frame from initial

protrusion extension to complete protrusion retraction. Protrusions longer than 2 µm were

included in analysis. The mean protrusion lifetime, length, and rate was calculated for each cell.

C.3.5 Quantification of Matrix Remodeling

In order to quantify the degree of collagen degradation, the fluorescence intensity of a

5 µm band surrounding the cell was measured at each time frame for each slice of the zstack.

The total fluorescence intensity values were summed and divided by the total area of the band

in order to get mean fluorescence intensity. This value was divided by the mean fluorescence

intensity of the background to get the Signal/ Background ratio, referred to as DQ Intensity. To

determine the localization of matrix remodeling, binary masks of MIPs of the DQ channel at

the first timepoint (t = 1/61) were generated by applying a binary threshold to distinguish signal

from background. Next, 1 µm bands along the cell perimeter were generated from MIPs of the

cell channel. Lastly, the percent of the band area covered by DQ signal was determined using

the Area Fraction measurement in ImageJ. This measurement is referred to as the “Perimeter

Remodeling (%)”.

C.3.6 Quantification of Traction Force Microscopy Beads

Bead tracking was done using MIPs of the blue channel using the Mosaic plugin in ImageJ.

The resulting table containing XY coordinates for each bead in the 165µmx165µm field of view

for each timepoint was saved and analyzed using a custom MATLAB script that identifies beads

that moved during time-lapse imaging. First, a filter was applied to only analyze the trajectories of

beads that were tracked at all time points. After filtering, the displacement at each time point from

the initial point was determined for each bead. In order to distinguish beads that were actively

being pulled from those moving due to Brownian motion, a moving standard deviation approach
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was employed. The trajectories of beads not removed by filtering were measured resulting in the

mean instantaneous bead speed and mean maximum displacement.

C.4 Velocity tracking image acquisition

MDA-MB-231 H2B-LifeAct and SK-HEP-1 H2B-LifeAct cells were embedded in a

6mg/mL Collagen I gel in a glass bottom 48-well plate, polymerized for 30 minutes, and 200µL

of culture medium was added on top. The plate was then transferred to a microscope stage top

incubator on a Nikon Ti-E inverted microscope and z-stacks with an axial displacement of 35

µm (1.5µm stepsize) were acquired at 40x magnification every 1 hour for 24 hours. Invasive and

rotational cells at the two-cell stage were selected for velocity quantification and all dividing cells

were excluded, as determined by the H2B-mCherry channel. Velocity analysis was conducted by

using Imaris using object tracking and surface rendering in Bitplane Imaris software. Center of

mass for calculating angular velocities was determined by surface rendering of the LifeAct-GFP

channel.

C.5 Treatment with pharmacological inhibitors

Matrix metalloproteinases were inhibited using broad-spectrum MMP inhibitor Marimas-

tat (Abcam, Cambridge, United Kingdom) at a concentration of 1µM. As a vehicle control, cells

were treated with 0.01% dimethyl sulfoxide (Sigma-Aldrich, St. Louis, MO). Pharmacological

inhibitor containing medium was refreshed daily.
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Table C.1: Model parameters.

Parameter Value Parameter Value
D 0.0005 µm2s−1 λp 400
kd 9.6 ×10−5s−1 λECM 25000
kr 4.44 ×10−2s−1 λa 300
k+ 6.4 ×10−3s−1 Jc,m 400
k− 1 ×10−4s−1 Jc,e 330
A 100 µm2 Jc,c 300

G0 0.0216 µm2s−1 ∆x 1 µm
∆t 20 s
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