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ABSTRACT OF THE THESIS

Robust and Efficient Neural Inertial Localization

and Complex Activity Recognition

by

Swapnil Sayan Saha

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2021

Professor Mani B. Srivastava, Chair

Inertial complex activity recognition and neural inertial navigation are challenging due to

missing samples, misaligned data timestamps across sensor channels, variations in sampling

rates and high model deployment costs. In this thesis, we introduce a robust training pipeline

for complex activity detection that handles sampling rate variability, missing data, and

misaligned data timestamps using intelligent data augmentation techniques. Specifically, we

use controlled jitter in window length and add artificial misalignments in data timestamps

between sensors, along with masking representations of missing data. In addition, we exploit

end-to-end sequential learning, α − β filters, Madgwick filters, hardware and quantization-

aware Bayesian neural architecture search and a temporal convolutional neural network

backbone to form the basis of scalable, real-time and sub-meter GPS-free inertial localization

on wide spectrum of target resource-constrained hardware. We also provide a compact,

ultra-low-power, environmentally resilient and modular sensor tag configuration that pushes

the state-of-the-art in inertial odometry hardware. On average, the network found via our

efficient pipeline provided 3× peak activation and 6× memory savings over the state-of-the-

art neural inertial algorithms and taking at most 24 hours to train and search pareto-optimal

models in the backbone search space. Moreover, we evaluate the complex activity pipeline

on state-of-the-art complex activity recognition dataset, achieving test accuracies of 88%

and 72% respectively for coarse and granular-activity classification while ranking 3rd in the

2020 Cooking Activity Recognition Challenge out of 78 submissions.
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CHAPTER 1

Introduction

An inertial measurement unit (IMU) reports mass-specific force and angular velocity of an

object [76], often complemented by a magnetometer for reporting heading in the North-

East-Down (NED) reference frame. Thanks to developments in micro-electro-mechanical

system (MEMS) technology, inertial sensors are omnipresent and ubiquitous in modern day

electronic systems as shown in Figure 1.1. Application spectrum of inertial sensors include

autonomous vehicle attitude estimation and infrastructure-independent positioning on land,

underwater, air and space [87][181] [87] for both military and civilian applications, pedestrian

dead-reckoning (PDR), transportation mode, fitness and well-being, human gait and activity

analysis [84][85] [182] [183] [184] [185] using smartphones and wearables, pose-estimation of

smartphones and virtual-reality headsets coupled with full-body motion capture in haptics,

gaming and augmented reality settings [181] [186] [187], robot joint state estimation [188]

and multimodal sensing in smart homes [189] [190]. The market for inertial sensors was

valued at USD 18.97 billion in 2019, with an expected value of 27.23 billion by 2025 at

6.49% CAGR [191].

Figure 1.1: Inertial sensors encompass a broad domain spectrum with widespread ubiquity.
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Two of the most prolific and widely-studied applications of inertial sensors include com-

plex human activity recognition (HAR) and inertial odometry in GPS-denied environments.

HAR is defined as the process of correlating a sequence of granular human action primi-

tives with similar data from a datastore [192]. Complex events are anything that can be

decomposed into a sequence of simpler events [3]. On the other hand, inertial odometry

(often referred to as dead-reckoning) is the fusion of on-board inertial sensors for indirect

infrastructure-free estimation of an object’s position (and attitude) for navigation [193][194].

Among the current odometry and activity recognition techniques, inertial sensors provide a

small footprint, low cost, low access delay, low power, high sampling rate and high resolution

solution for complex event processing and localization [85][149].

1.1 Challenges in Complex Activity Detection and Inertial Odom-

etry

Figure 1.2: Challenges in deploying inertial complex activity recognition systems in the wild.

There are several challenges in deploying inertial complex activity detection system in the

wild, illustrated in Figure 1.2. Ubiquitous inertial systems are known to have sampling

2



rate jitter, cross-channel timestamp misalignment and occasional sample loss (otherwise

known as missing data) [1][132][133], which can hurt the performance of vanilla complex

event processing pipelines [6][7][15][132]. This can lead to disastrous consequences in critical

settings, particularly in healthcare monitoring. For example a nurse may need to wash her

hands before administering an injection to a patient. The temporal dynamics in complex

activities such as nurse-care recognition have been shown to be severely hampered by loss

of information caused by sensing and timing uncertainties in inertial streams [195][196].

Furthermore, detecting complex events at various space and time scales requires injection

of conditional logic and hierarchy in the detection framework, as some granular events may

be dependent on the presence of macro events [3][15]. Without appropriate pre-processing

and architectural encodings, even artificial intelligence (AI) based complex event processors

suffer from accuracy loss during test time [15][154].

Figure 1.3: Example application requiring real-time neural inertial odometry [197].

In addition, MEMS inertial sensors suffer from time-varying drift and noise [73][82][120][76].

Dead-reckoning involves cumulatively summing the estimated position at current times-

tamp relative to the position at previous timestep in conjunction with heading informa-

3



tion from attitude estimation algorithms. While inertial sensors are generally available

continuously without interruption to the object interested in localizing itself, the error

bound in the estimated position explodes cubically with each timestep [78][75]. Classi-

cal techniques to constrain errors such as Bayesian filters, man-made system models and

heuristics are not robust to domain variance and ambient dynamics. Although these tech-

niques are computationally inexpensive, they are accurate only under the system model

that they have been designed for, with no “one-size-fits-all” scenario for system model

and designed heuristics due to non-optimal parametrization via linear approximation of

the real-world [82][129]. On the other hand, AI-based inertial odometry frameworks have

been shown to outperform model-based techniques under domain variance and stochasticity

[82][102][103][120][131][117][125][129][123], but suffer from high training and model optimiza-

tion costs, constraining their application in the offline world or on smartphones, cloud and

workstations [131]. Existing off-the-shelf hardware-agnostic neural optimization techniques

alone cannot drastically reduce model size without incurring performance loss, with most

of the tools geared towards smartphones and image processing frameworks [24]. A broad

spectrum of localization applications in GPS or network-denied environments mandate ac-

curate yet lightweight and real-time deployment of neural-inertial models where smartphone

or cloud-based evaluation are unusable. These include:

• Terrestrial and marine search and rescue missions [198][199].

• Underwater sensor networks, oceanic biodiversity and marine health tracking [72][200][197].

An example is shown in Figure 1.3.

• Wildlife monitoring [201][91].

• Deep-space small satellite localization [202].

• Coalition situational understanding [203][204].

• Patient tracking and healthcare monitoring [205].

• Localizing micro unmanned vehicles and robots [102][123][124][206].
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For the above applications, it is not possible to use conventional infrastructure-dependent

localization systems such as GPS or radio telemetry, as such systems are subject to both spa-

tial and temporal limitations due to signal obfuscation and coverage [207][85][208], location

error [209][210], access delays with sporadic accessibility [176][90] and hardware-software

challenges for ubiquitous edge localization [171][210][211][85][74]. Non-inertial odometry

techniques such as visual, LIDAR and RADAR egomotion suffers from sub-optimal and

understated trajectory projections during local costmap updates. Real-world is stochastic,

unstructured and complex, with changes in ambient and environmental conditions (such as

lighting, weather, obfuscations and path loss) affecting non-inertial odometry sensors [212].

Furthermore, non-inertial odometry sensor algorithms are domain and platform specific,

generalizing poorly across eclectic use-cases. In addition, they may not be suitable for in-

tegration in ubiquitous localization platforms given usability, power, compute, weight and

space requirements. The shortcomings are summarized in Figure 1.4.

Figure 1.4: The shortcomings in conventional localization techniques.
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1.2 Contributions

In this thesis, we introduce techniques to handle runtime sensing uncertainties in inertial com-

plex activity detection systems, and also provide a a framework for deploying real-time neural

inertial models on resource-constrained (popularly known as TinyML) hardware for diverse

applications. To handle the challenges of missing and misaligned sensor samples and variable

sampling rates of multimodal data, we augment additional sensor channels in the training

pipeline through masking representations of missing samples. Additionally, we perform data

augmentation through artificial misalignments and jitter during window creation, effectively

creating time-aware deep neural architectures. Our neural inertial navigation framework

exploits end-to-end sequential learning, hardware and quantization-aware Bayesian neural

architecture search (NAS) and a temporal convolutional neural network (TCN) backbone

to form the basis of scalable sub-meter inertial localization. Our algorithms run on a wide

spectrum of target TinyML hardware without requiring GPS or human-engineered system

models. Our main contributions are follows:

• We provide a comprehensive survey on the recent advances in uncertainty aware com-

plex event processors, inertial odometry and efficient deep-learning (DL), outlining

their strengths and weaknesses (Chapter 2).

• We propose using a mixture of mask metadata channels and pop-ahead samples to

quantify missing data. To handle sampling rate jitter and timestamp misalignment,

we apply controlled artificial time shifts to the training data and timing jitter in window

length (Chapter 3).

• We devise a hierarchical deep recurrent-convolutional architecture that can perform

complex activity processing at varying spatial and temporal granularities, infused with

conditional logic (Chapter 3).

• To the best of our knowledge, our proposed efficient neural inertial navigation frame-

work is the first work that explores real-time AI-based inertial navigation for resource-

constrained hardware (Chapter 4).
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• We devise a systematic framework for deploying data-driven inertial odometry on a

wide vareity of target hardware. We formulate a fast and parallelizable hardware-

in-the-loop (HIL) quantization-aware Bayesian NAS operating on a TCN backbone to

yield sub-meter neural-inertial architectures regularized by device constraints (Chapter

4).

• We formulate lightweight and computationally tractable altitude/depth and orientation

filters (Chapter 4).

• We provide a compact, ultra-low-power, environmentally resilient and modular sen-

sor tag configuration that pushes the state-of-the-art in inertial odometry hardware

(Chapter 5).

• We describe a large-scale inertial dataset that we collected, called the NESL Ear-

able Mobility Corpus, for benchmarking orientation and head-pose estimation filters in

context of spatial audio (Chapter 5).

Figure 1.5 and Figure 1.6 provides an overview of our designed ”robust and efficient” neural

inertial localization and complex activity detection frameworks.

Figure 1.5: Overview of efficient neural inertial navigation.
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Figure 1.6: Overview of robust complex activity detection (specialized to operate on Cooking

Activity Dataset with Micro and Macro Activities [155]).
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CHAPTER 2

Background and Related Work

A prolific set of scholarly manuscripts and books exist addressing the issues of handling

sensing uncertainties in DL pipelines, inertial localization and efficient DL (also known as

TinyML). Common techniques to handle runtime uncertainties include feature extraction,

matrix factorization and generative models [15]. Inertial localization can be categorized

into model-based systems using system models, Bayesian filters and heuristics, or learning-

enabled systems exploiting recent advances in DL [82]. Software advances in TinyML include

the use of pruning, quantization and model compression, lightweight neural blocks, hardware-

aware NAS and the rise of commercial off-the-shelf (COTS) tools [17][32]. In this chapter,

we provide a comprehensive survey of the strengths and shortcomings of existing techniques

in inertial localization and complex activity detection.

2.1 Handling Sensing Uncertainties in Temporal Streams

Several techniques have been proposed in the literature to handle missing data in temporal

streams. Hossain et al. [1][2] proposed extracting handcrafted spatial features to dimin-

ish individual effects of sample points, using traditional machine learning (ML) algorithms

for activity recognition [149][150]. However, the constituent primitives of complex events

might generate features that evolve with time [3], requiring careful a trade-off between dif-

ferentiability and generalizability during feature selection [4], ultimately leading to poor

deployment performance for traditional classifiers compared to DL approaches [5]. Feature

extraction leads to loss in high-dimensional spatial and temporal context for temporal se-

quences, while traditional interpolation techniques require implicit modelling assumptions
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[15]. This is evident in [6], where the authors propose using masking and time interval

channels as representations of missing patterns to improve the prediction performance of

deep recurrent architectures. Their evaluations illustrate that DL architectures offer better

generalizability in test cases over traditional interpolation (e.g., MICE, MissForest, matrix

completion, spline, k-nearest neighbors (kNN), forward imputation and statistical imputa-

tion) and classification techniques (e.g., logistic regression (LR), support vector machines

(SVM) and random forests (RF)) for temporal sequences. Yoon et al. [7] proposed a multi-

directional recurrent neural network for missing data imputation that exploits correlation

within and across data streams and with conclusions similar to [6], achieving 35-50% im-

provement in error metric over existing approaches. An alternative approach for handling

sensing uncertainties in multi-modal temporal streams involves intelligently ”transferring

knowledge” from one sensor to the missing sensor modality via temporal/spatial correlation

across sensors or mapping to shared latent space [8][9][10][11]. Recent endeavors include

the use of generative adversarial models (GAN) to impute the missing samples synthetically,

followed by training [12][13][14]. However, all of the existing methods fail to handle sampling

rate invariability and timestamp uncertainty in fast temporal streams with missing data [15].

2.2 Model-Based Approaches for Autonomous Inertial Odometry

Under ideal geomagnetic conditions void of magnetic disturbances, non-uniform magnetic

field or sensor noise and for slow movements, the heading H can be estimated directly from

magnetometer, typically deployed for marine animal dead-reckoning (DR) [71][72]:

H = arctan

(
my,t

−mx,t

)
· 180

π
(2.1)

The altitude is typically obtained from barometric pressure sensors, while the latitude

(φ) and longitude (λ) can be hypothetically obtained via double integration of accelerometer

readings (fx, fy, fz) under empirical accelerometer vector sum threshold α [72] to reject noise:

st =

 β
√
f 2
x,t + f 2

y,t + f 2
z,t + γ,

√
f 2
x,t + f 2

y,t + f 2
z,t > α

0 otherwise
(2.2)
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φt = arcsin

(
sinφt−1 · cos

st
RE

+ cosφt−1 · sin
st
RE

· cosH

)
, RE = 6.371× 106m (2.3)

λt = λt−1 + arctan 2

(
sinH · sin st

RE

· cosφt−1, cos
st
RE

− sinφt−1 · sinφt
)

(2.4)

While magnetometers are unpolluted by device motion [73], magnetic disturbances coupled

with sensor placement offset can affect the seemingly simple estimation of H and lead to

errors as much as 100◦ [74]. Furthermore, naive double integration of accelerometer readings

cumulatively accumulates the effects of time-varying bias, gravity pollution and AWGN,

causing errors in (φ) and (λ) to explode in a cubic manner [73][75][78][82], illustrated in

Figure 2.1. In fact, the gyroscope within a MEMS inertial sensor is modeled as follows [76]:

ωib = Rbn(ωie + ωen) + ωnb + bg + ng (2.5)

where, ḃg ∼ N (0, Qg) = bias gradient, ng ∼ N (0,Σω) = additive white Gaussian noise

(AWGN), Rbn = rotation matrix from navigation to body frame, ωie = earth rate (7.29×10−5

rad/s), ωen = transport rate and ωnb = latent angular velocity. Assuming that the rigid

body of interest is constrained on an immobile platform with respect to earth frame and is

sufficiently close to the Earth’s surface, the underlined term in the above equation can be

considered 0. As a result, ωnb is the uncorrupted angular velocity of the object. Due to bias

instability (BI) and angular random walk (ARW) [77] resulting from AWGN, pink noise and

thermal effects [78], the gyroscope suffers from time-varying drift in the long term, ideal for

characterizing fast and agile movements [76]. In fact, for constant velocity v, the error in

position estimate for one dimension x can be modelled as [78]:

σx(t) = v

√
(2 · ARW ·

√
t3/3)2 + (BI · t2/2) (2.6)

The accelerometer model is defined as:
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Figure 2.1: Example of localization of a quadrotor using GPS, GPS+IMU and autonomous

IMU via Extended Kalman Filter (EKF). Fusion of IMU with GPS smooths the trajectory

projections, while using autonomous IMU without error correction heuristics leads to drift.

f b = Rbn(anii − g) + ba + na, a
n
ii = ann + aCE + aCO (2.7)

where, ann = latent linear acceleration of body. aCE = centrifugal component, aCO =

Coriolis component, g = gravity vector, ḃa ∼ N (0, Qa) = bias gradient and na ∼ N (0,Σa)

= AWGN. The accelerometer is noisy in the short term but does not drift significantly in

the long term, ideal for slow movements and having complementary characteristics to that

of the gyroscope. We assume that the centrifugal component is absorbed within g, while the

Coriolis component is negligible for everyday observed velocities [76]. Mathematically, the

compass can be modeled as:

bn = Rbnmn + nb, m
n = [cosδ 0 sinδ] (2.8)

where, nb ∼ N (0,Σm) = AWGN and δ = magnetic inclination due to Earth’s magnetic dip.
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The magnetometer requires frequent calibration to compensate for soft and hard iron dis-

turbances and is usually noisy in indoor environments. Other errors that are not separately

modelled in the IMU system models are axis misalignment errors in 3DoF, quantization error

and scale-factor error [79], which are usually lumped into the IMU offsets and noises during

calibration. Since the biases and noises of the IMU are time-varying, on-the-fly calibration is

required, either opportunistically [80] or manually [81]. Given attitude estimate from sensor

fusion, assuming that the IMU is rigidly strapped down to the object of interest, the heading

angle θt is defined as the angle that vector ~ut
N,horz makes with the horizontal axes fixed to

the ground plane [83][141]:

~ut
N,horz =


1 0 0

0 1 0

0 0 0

CN
B (qt)~ut

B (2.9)

qt = qt−1 +
1− α
fs,w

Ribwt +


arctan

(
fy,t√
f2x,t+f

2
z,t

)
· 180α

π

arctan

(
fx,t√
f2y,t+f

2
z,t

)
· 180α

π

0

 (2.10)

where CN
b and Rib are the direction cosine and rotation matrices respectively, qt = orientation

estimate, ut
B = unit vector that is not parallel to the perpendicular axis of the ground plane,

~ut
N,horz = horizontal projection of ut

B, α ∈ (0, 1) and fs,w is the gyroscope sampling rate.

Depending on target application and topography, heuristic drift reduction, magnetic

anomaly detection, opportunistic calibration, quasi-static moment detection, particle filters,

magnetic map matching and inertial signature verification are used to counteract heading es-

timation error [73][74][80][84][85], typically fused through an error-tracking indirect Kalman

filter (KF). The KF is an iterative optimal state estimation algorithm (from fusing consecu-

tive samples of single or multiple noisy indirect modalities) under Gaussian variations. It is

composed of prediction (process or transition or time update) and correction (measurement

update). KF is a subset of Bayes filter with Gaussian prior, linear process and measurement

model with Gaussian noise and satisfying Markov property, with the goal of maximizing

posterior probability. The prediction and correction equations of the linear KF [99] are as
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follows:

Prediction :


x̂t,p = Ax̂t−1 +But

Pt,p = APt−1A
T +Q

Measurement :


kt = Pt,pCT

CPt,pCT +R

x̂t = Ax̂t,p − kt(yt − Cx̂t,p)

Pt = (I − ktC)Pt,p

where x = state, Q = process covariance noise, k = Kalman gain, y = measurement from

sensor, R = sensor noise covariance. Given a prior and in absence of measurement model,

covariance of prediction will increase with each step. Given a prior and measurement model,

the measurement step will yield a posterior (belief) with lower covariance than prediction

and measurement. Resulting estimate is optimal (minimum variance) and unbiased.

For displacement estimation, unmanned aerial, ground and underwater vehicles (UAV,

UGV and UUV) typically fuse inertial sensors with GPS, LIDAR, camera and RADAR via

KF variants for localization, complemented via map information from known localization

space [86][87]. Typical aid includes magnetic map matching, flow-sensors and wheel odome-

ters, with nonholonomic constraints on the motion. Satellites and spacecrafts perform non-

linear Bayesian fusion of physics-based kinematics models with inertial sensor measurements

for attitude estimation [88], coupled with position information from GPS, kinematics mod-

els (e.g. ephemeris and almanac), relative angle measurements (e.g. parallax) or ground

control [89][90]. For slow and predictable motion profiles such as in wildlife tracking, ecolo-

gists formulate animal-specific belief-based constraints on velocity, transportation modes and

Boolean decision-trees to mitigate drifts and sensor errors, occasionally fusing GPS through

KF variants when available [72][91][92].

PDR systems typically decompose position estimation problem into direction estimation

and stride length estimation [74], the latter of which is further partitioned into transporta-

tion mode classification, gait cycle segmentation and step length estimation (SLE) subject

to environmental constraints and iterative updates [84][85][93]. For DR via foot-mounted

IMU, information about the linear and angular velocities of the foot during swing and stance
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phases for various motion primitives can be exploited to constrain explosion of errors in step

counting [84][85][94]. This is referred to as zero velocity update (ZUPT) or zero angular rate

update (ZARU) pseudo-measurements [95], segregating the gait cycle into identifiable chunks

either coarsely or granularly [84], as shown in Figure 2.2. Temporal and frequency-domain

analysis (e.g., wavelet and Fourier transforms, level crossing detection, extrema detection,

autocorrelation, Hidden Markov Models (HMM) and local variance detection) are used to

extract recurrent and temporal contextual dynamics in the gait cycle to improve robust-

ness of gait phase identification against AWGN for various activity modes [74][84][85][96].

Typical SLE approaches include physiological knowledge injection (e.g., Weinberg SLE),

linear regression upon step frequency with aiding covariance heuristics, global acceleration

extrema difference, knowledge of virtual landmarks and floor plans or use of KF variants

[74][84][85][93][97][98].

Figure 2.2: Gait cycle showing different phases of human walking [148].

2.3 Machine-Learning Approaches for Autonomous Inertial Odom-

etry

While model-based inertial localization systems are computationally efficient and have been

shown to run in real-time, designing generalizable heuristics poses a significant hurdle in
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the deployment of real-time inertial dead-reckoning systems, with no “one size fits all” an-

alytical solution to the problem. The system models are linear approximations of the state

evolution in the real-world, which do not translate accurately in the long run for eclectic

scenarios due to non-optimal parametrization. As a result, several machine-learning ap-

proaches have emerged which are able to capture high-dimensional contextual dynamics in

the non-linear domain void of human knowledge to either heuristically complement physics-

based state-estimators or derive the location end-to-end, providing superior translational

error characteristics over classical approaches for longer time periods while competing with

other egomotion techniques.

2.3.1 Aiding Physics-Based Models

Since AI models are adept at filtering out noise and irrelevant information while bringing

out useful features from sensors in the wild [15], the early papers for AI-enabled inertial

odometry focused on using ML as an aid for modeling covariance parameters of Bayesian

filters on-the-fly or denoise inertial sensor readings, provide pseudo-measurement updates to

KF or estimate heuristic parameters in the presence of eclectic deployment scenarios.

2.3.1.1 Modeling Sensor Covariances and Denoising

A rational solution to handle the provenance of the curse of drift involves eliminating the root

of sensing uncertainty on-the-fly before state estimation step. A few papers attempt to model

the sensor covariance characteristics and perform indirect denoising using ML techniques to

aid state estimation using Kalman or non-Bayesian filters [100]-[109].

Tekinalp et al. [104] and Fan et al. [106] proposed the use of ensemble multilayer

perceptrons (MLP) for transfer alignment and one-time calibration of integrated strapdown

inertial-celestial navigation system (SINS-CNS) for ballistic missile guidance to mitigate

axis misalignment, position and velocity errors, accelerometer bias, gyroscope drift and scale

factor errors. The MLP aids an indirect KF compensate initial state estimation errors when

the star tracker (master) is absent during boost phase (∼ 40 seconds) and only the SINS
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(slave) is being used for DR, which cannot be accounted for by the CNS and may cause

dispersion of target point [106]. To make the classifier invariant to eclectic scales, spans

and domains of motion and enforce location-independent precise spatial connections among

adjacent noisy inertial samples [15], deep CNN can further enhance the sensing uncertainty

profile estimation without explosion of weight count and having minimal chance of overfitting

[101]. Nevertheless, the techniques in [101][104] [106] are one-shot and non real-time, with

the AI coming into play within a limited spatial and temporal domain. Affixing a neural

network block dedicated to denoising in the state estimation filter yields real-time and on-

the-fly noise reduction. Proposed neural blocks include:

• Deep Feedfoward Neural Network (D-FFNN) - D-FFNN have been shown to be effective

in extracting noise-free state-estimates from noisy inertial Kalman predictions coupled

with quadrotor dynamics to enhance attitude estimation in presence of multirotor

actuator microvibrations [100].

• Dilated CNN (D-CNN) - Apart from being invariant to random gyrations and ex-

hibiting generalizability under unseen trajectory projections, D-CNN with Huber loss

are robust to training data anomalies, maintains sample order and have a larger re-

ceptive field for extracting differential features over a larger local window of inertial

samples without losing resolution compared to vanilla CNN or D-FFNN, all within a

computationally inexpensive architecture [103]. Brossard et al. [103] showed that an

open-loop attitude estimator with D-CNN block outperforms state-of-the-art (SOTA)

autonomous inertial orientation estimation techniques for multirotors and hand-held

inertial sensors and even competes with egomotion without using any camera.

• GyroNet and FoGNet (Bi-LSTM) - Long Short-Term Memory (LSTM) networks are

capable of learning long-term temporal dynamics and invariant to irregular time de-

lays and vanishing gradients [15], whereas bidirectional-LSTM can exploit recurrence

from both past and previous context [111]. Gyronet and FoGNet [107] feature 2-layer

Bi-LSTM, each designed for autonomous vehicle localization with different loss func-

tions for MEMS IMU and fibre-optic gyroscopes (FoG) respectively. Gyronet provides
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6× mean improvement in attitude estimation over one-time manual calibration, But-

terworth filtering and complementary filter using MEMS gyroscopes, while FoGNet

coupled with wheel odometry was shown to outperform Lwoi [108] and RINS-W [110]

for autonomous vehicle localization.

• Lwoi (Gaussian Process) - Kernel tricks allows linear algorithms (e.g., linear SVM) to

operate in a high-dimensional non-linear feature space within reasonable computational

bounds in a scalable and accurate fashion. Lwoi trains a Gaussian Process (GP) to

minimize the difference between ground truth position and predicted position by the

dynamical system model represented as GP, while using a DNN-based approximate

kernel learning method, with the GP parameters optimized with stochastic variational

inference. The corrections generated by Lwoi can be fused with an extended KF (EKF)

for location estimation [108].

The state estimators in aforementioned cases are agnostic to the corrections being made by

the neural network, which may lead to pose predictions that are statistically non-optimal un-

der non-ideal gradient descent convergence. An alternative approach proposed in [102][105][109]

(inspired from adaptive KF training [112] but independent of state estimates or measure-

ment errors) involves using AI blocks to dynamically update KF noise covariance parameters

instead of sensor errors. In [102], an invariant EKF supported by wheeled vehicle dynamics

is tightly coupled to a 2-layer temporal-CNN (TCNN), which dynamically adapts measure-

ment noise covariance from raw IMU measurements (with process noise covariance optimized

during training) for lateral and vertical vehicle movements under loose constraints. The tech-

nique was shown to compete with LIDAR and egomotion while adding only a 15% computa-

tional overhead over vanilla EKF. The work was extended to include process noise covariance

in [105], using TCNN complemented with a denoising autoencoder (DAE) to enhance noise

removal through multi-task learning. The DAE rejects abnormal noise profiles beyond its

latent space distribution to nonholomonically constrain the noise covariance within finite

bounds. Gao et al. [109] introduced a deep deterministic policy gradient (DDPG) algorithm

(derivative of model-free actor-critic algorithm in deep reinforcement learning (RL)) with
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MLP target networks to dynamically estimate process noise covariance of an EKF. However,

the algorithm requires cloud support and is not suitable for on-board deployment.

Figure 2.3 illustrates the concept of denoising and covariance control using DL in inertial

localization.

Figure 2.3: (Left): Denoising IMU using neural block [103] (Right): Adaptively updating

filter noise statistics using neural block [102].

2.3.1.2 Velocity Profile Heuristics

While threshold-based step detectors and SLE with beliefs on accelerometer statistics are

widely deployed for indoor PDR systems, they are not robust to varying gait patterns or

sensor positions beyond the limited classes of common resolved activities. AI based velocity

profile detectors and SLE are able to extract coveted velocity intervals for step detection

and adapt stride length based upon discerned motion patterns. The earliest AI-based SLE

technique [115] used a MLP trained with handcrafted features (extrema and variance of ac-

celeration vector sum) for adaptive SLE based upon perceived velocity from helmet-mounted

IMU readings, coupled with zero-crossing step detector. Recent proposals in this domain

exploit deep neural architectures void of manual feature extraction. Wagstaff et al. [113]

used a 6-layer LSTM network for ZUPT to constrain errors of an EKF based SLE robust to

various activity primitives. An extension of [113] includes a SVM motion classifier to adap-

tively update the ZUPT threshold for cascade detector along with the LSTM network to aid

an EKF based SLE to yield a PDR system robust to gait and subject variations [114]. They
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also proposed the addition of Gaussian noise and downsampling to training data collected

from a particular IMU as a data augmentation technique, transforming the data across other

IMU without the need to recollect data for various IMU models. Velocity profiles can also

aid DR in wheeled robots and vehicles; ZUPT and ZARU allows attitude and bias estimation

corrections, while priors on lateral and vertical velocity improve long-term pose estimation

accuracy [110]. RINS-W [110] used 4 binary LSTM networks to detect the aforementioned

profiles using commodity IMU and an invariant EKF for final pose estimation, competing

with FoG-wheel odometry fusion techniques.

2.3.1.3 State Advisors

State advisors provide indirect information about pose and orientation (such as velocity and

displacement) from inertial readings to physics-based filters, aiding in the decision making

process. The HDR algorithm [77] indirectly reveals that average speeds over short time

intervals of humans are reasonably constrained even under varying gait, terrain and subjects.

Instead of explicitly specifying pose bounds under eclectic conditions, a CNN can be trained

to regress momentary velocities directly from a finite window of raw IMU readings covering

a range of motion primitives and topography as well as various test subjects [116]. The

velocity information is then fed to an EKF as pseudo-measurements update along with IMU

readings (as system model) for reporting the final position, velocity and orientation [116].

In [117], the authors directly regress 3D momentary displacements and measurement noise

covariance using a 1D Resnet18 CNN without requiring initialization, which is fed to a

stochastic cloning EKF (SC-EKF) as measurement update. The SC-EKF uses a strapdown

inertial kinematic framework as system model and estimates 3D position, velocity, orientation

and sensor biases, with the ability to to constrain neighboring poses by keeping track of past

states and treating the measurement updates in heading agnostic coordinate frames (HACF)

to address varying sensor orientations. Under ever-changing environments such as an AUV

navigating in choppy waters, conventional physics-based filters can have difficulty estimating

the AUV heading due to sculling velocity error (coupling of linear and angular motion) and

rapid changes in pitch angle, the latter of which can cause noisy gyroscope readings and
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errors in coordinate frame translation. Xie et al. [118][119] showed that a DNN can aid in

mapping EKF-denoised accelerometer readings to usable pitch angles, with the training data

computed via non-linear coupling of filtered accelerations, depths from pressure sensors and

locations tracked through acoustic localization.

Figure 2.4: (Top): AI-based velocity profile heuristics [113] (Bottom): Using AI to provide

displacement and covariance pseudo-measurement advice to physics-based filter [117].

2.3.2 End-to-End Models

Bayesian filters require an accurate model of the evolution of the position, velocity and

orientation (as well as IMU errors) in terms of the incoming measurements. Such system

models are only linear approximations of the state evolution in the real-world, which do not

translate accurately in the long run for eclectic scenarios due to non-optimal parametriza-

tion. In other words, model-based approaches are generally computationally inexpensive

and accurate under the system model that they have been designed for, however, they are

not robust to deviations from assumed system model such as for non-linear complex motions

or deployment under different domains (domain variance) [82][120]. Recent breakthroughs
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in ML and DL have overcome the requirements of formulating an accurate system model

or heuristics/priors for inertial odometry, resulting in several end-to-end learning-enabled

inertial odometry models able to handle non-linearities associated with inertial localization

which are otherwise hard to model mathematically.

2.3.2.1 Classical ML and Continuous Double Integration

Diamant et al. [121] first showed the application of an end-to-end learning pipeline for

pose estimation of AUV and ships in choppy waters. They used a constraint expecta-

tion–maximization (EM) algorithm to classify accelerometer data into bins of similar pitch

angles and then projected these onto the local north–east horizontal plane to account for

erroneous heading angle estimation (under the assumption that the vessel motion perfectly

correlated with ocean waves and slowly time-varying) in that same frame due to sculling ve-

locity error. The EM algorithm thus corrects accelerometer sequences for stochastic changes

in pitch angle, which are double integrated to yield position without the need for a gyroscope

or a complex system model incorporating wave mechanics. In [122], Bi-LSTM was applied

for step detection and linear regression on variance of accelerometer readings for 3 kinds

of movements (walk, run, walk backwards) was applied for SLE, with the goal of creating

a sensor location and transportation mode independent PDR system. The network was

trained for four phone positions (pocket, foot, hand and bag) with random orientations and

was shown to be invariant to transformation and distortions of the input patterns caused by

phone placements and rotations, outperforming widely applied model-based classical PDR

algorithms, including peak detectors, frequency domain SLE, map matching, MLP and in-

verted pendulum. RIDI [75] removed bounds on motion primitives and SLE, using a SVM

based sensor placement detector (pocket, hand, bag, body) and SVR-based (2 each for mag-

nitude and direction, 8 total) velocity regressor to estimate velocities from accelerometer

and gyroscope readings for various kinds of motions. The resulting velocities are used to

correct accelerometer readings, which are then double integrated to obtain position. To

make the velocity invariant to phone transformations at each position of the body, rather

than hoping for the classifiers to discard domain-specific irrelevant information, the authors
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leveraged the gravity direction to define a stabilized-IMU frame using orientation estimates

from the phone, where the device pitch and roll are eliminated from by aligning its y-axis

with the gravity vector, while the yaw ambiguity is handled during training by regressors.

RIDI was shown to be robust across unseen subjects for unrestricted motion primitives and

step-lengths, as well as for different devices.

Figure 2.5: Concept of neural inertial sequential learning [82][120][131].

2.3.2.2 Sequential-Learning

A rudimentary problem with the aforementioned approaches is the growth of double inte-

gration error due to continuous integration. IONet [120] was the first end-to-end DL paper

that broke the cycle of continuous integration by treating inertial DR as sequential learning

problem based on Newtonian physics, illustrated in Figure 2.5. The goal is to achieve pseudo-

23



independence across inertial windows (as windows are not truly independent) to estimate

the change in navigation state over each window using a Bi-LSTM network. Assuming zero

vertical velocity for PDR, the authors showed that the horizontal displacement and heading

over a window can be expressed as a function of initial velocity, the gravity direction, ac-

celerometer and gyroscope readings in the polar coordinates, with the task of estimating the

initial velocity and gravity in each window (which are treated as latent states and instead

the neural network outputs heading and displacement change). The algorithm did not rely

on device orientation, and was shown to be robust across unseen subjects, unseen phones

and various phone rotations for three positions (pocket, hand, bag), while also useable for

tracking wheeled robots. The success of IONet spawned a series of successors building upon

the sequential learning problem, notably RoNIN [82] for PDR, AbolDeepIO [123] for aerial

vehicle DR, VeTorch [125] for autonomous vehicle localization and NavNet [124] for AUV

positioning. Klein et al. [126] evaluated the performance of three neural architectures for

PDR, namely CNN-based gain controller for Weinberg SLE with peak detection as step de-

tector, CNN-based SLE with the same step detector as before and an end-to-end CNN-based

(Resnet-18) for sequential DR like IONet without step detection, while using a CNN-LSTM

network for phone position classification for all three models. The final architecture, which

treats DR sequentially with independent time windows, outperformed both the hybrid (neu-

ral network aiding physics-based model) and the non-sequential model on the RIDI dataset.

Lima et al. [127] showed that translation mean absolute error (MAE) and quaternion mul-

tiplicative error are ideal loss functions for such architectures in eclectic scenarios (e.g., for

PDR and quadrotor DR).

• RoNIN [82] proposes three neural architectures for PDR, namely Resnet with strided

velocity loss, LSTM and TCN latent velocity loss, using phone orientation and inertial

streams as input. It also uses a LSTM-based body heading network to account for

abnormal motions (e.g., walking sideways) and proposes a heading agnostic coordinate

frame (HACF) instead of stabilized IMU frame (any frame whose z axis can be aligned

with gravity) to account for completely unrestricted phone orientations and phone

positions. During training, ground truth trajectories are randomly rotated to emulate
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random HACF in line with data augmentation. Tested on RIDI, OxIOD and RoNIN

(the largest inertial PDR dataset till date) datasets, RoNIN was shown to overall

outperform RIDI, IONet, naive double integration and ZUPT-based methods.

• AbolDeepIO [123] uses two separate LSTM channels to map accelerometer and gyro-

scope readings to different latent representations (to decouple individual errors and

biases) while feeding the sampling rate of the inertial sensor through a third LSTM

channel to make the displacement and heading regressor robust to sampling rate jit-

ter. The high-level correlated features are then fused using slow fusion. The authors

also use noise augmentation to inform the pipeline of presence of sudden noise variation

and drift in inertial sensors during rapid maneuvers, commonly encountered in quadro-

tors and robots. The framework was shown to outperform IONet and compete with

visual-inertial odometry techniques for quadrotor DR and outputs 3D trajectory and

orientation. The authors later applied the multi-channel LSTM architecture for robust

3D orientation estimation (called OriNet [128]), where they fed the current gyroscope

sample, previous gyroscope sample, sampling rate and previous quaternion estimate as

inputs to the network and weigh state estimate from aggregated past states (from an

MLP) with current measurements to update current state. The previous state quater-

nion helps transfer IMU measurements from world to body frame, acting similar to

how a KF keeps track of past state and weighs new measurements using Kalman gain

before updating the current state. A genetic algorithm was proposed to calibrate the

initial bias of the IMU.

• NavNet [124] asynchronously combines inertial sensor and doppler velocity log (DVL)

through separate LSTM networks (both current and previous readings for robustness

against sensor errors), followed by attention layers to capture relevant long-term con-

textual information across timesteps with information fusion from both sensors through

an MLP. NavNet can also act as state-advisors for classical EKF or unscented KF for

high-frequency state-estimation.

25



2.3.2.3 Transformers and Autoregressive Models

Recurrent sequence-to-sequence architectures like IONet and RoNIN have limited capability

in discarding domain-specific features in favor of relevant information and are thus unable to

handle truly unrestricted phone position, phone model, phone orientation, changes in device

physics and unseen subjects without the presence of sufficient domain invariance in the

training set. This results in the need for large training sets with sufficient variance and models

with large number of parameters to capture required complex and semantic information

within the latent space, which are not suitable for real-time deployment on edge devices

due to large inference time, memory and compute requirements. Transformer networks

[129], on the other hand, are domain-invariant and are able to extract relevant information

required for regression and discard noisy domain-specific motion sequence transformation in

an unsupervised manner without the difficulties of training LSTM or gated recurrent units

(GRU), adapting well in multiple deployment scenarios thanks to multi-head self attention

[130]. The resulting models are also computationally efficient with fewer parameters while

allowing parallelization thanks to sequential decoupling. In [129], the authors of IONet

used a transformer network to generate domain invariant IMU sequences from raw IMU

data coming from various phone placements, rotations or motion types in a completely

unsupervised fashion, so that one does not need to collect labelled data for various domains.

The proposed transformer architecture consists of:

• Sequence (auto)encoder - Finds hidden domain invariant representations from raw IMU

sequences parametrized by domain vector, finding features that do not form separate

clusters.

• GAN - The generator produces synthetic IMU data in target domain, while the dis-

criminator encourages the generator to produce reasonable time-series data.

• Reconstruction decoder - Reconstructs synthetic IMU data in the source domain via

constraints or conditions to create sequences that are better for learning the domain

invariant features by other neural networks.
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• Polar vector predictor - Generates heading and displacement labels for subsequence in

the polar coordinate system, hence can be thought of as the PDR system itself.

The computational efficiency of generative feed-forward models thanks to lack of recurrent

units can be exploited to produce efficient models suitable for deployment on edge-devices,

while still retaining pseudo-sequential modeling. L-IONet [131] was the first neural inertial

architecture targeted for real-time deployment on smartphones, derived from IONet and

currently the least resource-intensive end-to-end DL-based PDR algorithm. L-IONet uses a

generative autoregressive model with D-CNN layers (which was also later shown to be com-

putationally inexpensive for aiding physics-based DR in [102][103]) suitable for processing

long time-series sequences without the training difficulties or cost of vanilla recurrent archi-

tectures, deriving benefits from transformer networks while achieving similar (often better)

translational error.

2.4 Machine-Learning for Resource-Constrained Devices

Internet-of-Things (IoT) can be thought of as a large-scale multimodal heterogenous sensing

system consisting of devices at the edge and the cloud making rich inferences from large

amounts of data using AI [15]. Given the depth and scale of penetration of such ”frugal”

smart objects in our daily lives for eclectic applications (e.g., mHealth, smart homes, au-

tonomous vehicles, decision support systems and agriculture), considerable endeavors have

been undertaken to bring AI to the edge given energy efficiency, low cost, zero latency, data

security/privacy and reliability of processing temporal streams at the edge [32]. However,

there are several challenges in implementing AI for resource-constrained devices:

• The compute and specification spectrum of TinyML devices are heterogenous and

non-standardized, with hundreds of thousands of IoT device varieties available in the

market. It is not computationally feasible to systematically optimize ML/DL models

for each device one at a time. Furthermore, running graphics processing unit (GPU)

workstations for long periods increases carbon footprint [23][24].
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• The memory of TinyML devices are significantly smaller than cloud or even mobile

devices. For example, an Arduino BLE33 has only 320 kB of SRAM and 1 MB of

flash, compared to 4 GB of RAM and 64 GB of storage on a smartphone. A GPU

can have 16 GB of memory on a workstation with secondary storage in the order

of terabytes. As a result, optimizing larger models for smaller devices directly using

techniques such as dimension reduction, pruning, quantization and model compression

alone are insufficient to mitigate loss of accuracy of smaller models [23][24].

• Decision boundaries and activation maps in the wild need to be periodically adapted to

seasonal variations in the input stream to account for client behavioral changes. How-

ever, on-device training consumes significantly more memory than on-device inference

[151][152].

2.4.1 Fundamentals of TinyML Paradigm for Deep-Learning

Classical methods for dimension reduction commonly used in large-scale data-mining include

matrix factorization and principal component analysis (PCA) techniques such as singular

value decomposition (SVD) [33], flattened convolutions [33], non-negative matrix factoriza-

tion (NMF) [34] and linear discriminant analysis (LDA) [35]. Techniques for processing sam-

ples with highly non-linear distribution in the higher dimensions include uniform manifold

approximation and projection (UMAP) [36], t-distributed stochastic neighbor embedding

(t-SNE) [37] and autoencoders [38][39]. Figure 2.6 shows an example of matrix factoriza-

tion and manifold projection in the ”20 Newsgroup dataset”. For optimizing DL models in

software, the following techniques are used:

• Pruning, quantization and model compression.

• Hardware-aware NAS.

• Lightweight convolutional and recurrent block design.
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Figure 2.6: (Left): Variance retention capability of the top r principal components of SVD

decomposition for the TF-IDF matrix in the ”20 Newsgroup dataset” (Right): Visualization

of low-dimensional embedding of two classes in the ”20 Newsgroup dataset” via UMAP. The

classes are linearly separable in the manifold space.

2.4.1.1 Pruning, Quantization and Model Compression

Han et al. [40] first showed the concept of pruning, quantization and model compression

jointly in the context of pre-trained deep neural networks (DNN). Pruning [41] refers to

masking redundant weights (weights lying within a certain activation interval) and repre-

senting them in a row form. The network is then retrained to update the weights for other

connections. Quantization [42] accelerates DNN inference latency by rounding off weights

to reduce bit width while clustering the similar ones for weight sharing. Compression (us-

ing Huffman coding) represents common weights with fewer bits. The authors showed that

combining these techniques can drastically reduce the size of SOTA DNN such as AlexNet

(35×), LeNet-5 (39×), LeNet-300-100 (40×) and VGG-16 (49×) without losing accuracy.

One of the most common fixed-precision quantization techniques include the uniform

affine quantizer, where a real number is mapped to a fixed-point representation via a scale

factor (step-size) and zero-point (map floating point 0 to integer 0) [43][44]. It allows 8-

bit representation of weights and activations, while bias vectors are represented as 32 bits
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[43][44]. The products of weights and activations (from previous layer) are collected in a

32-bit accumulator, added to the bias, scaled/casted down to 8-bits before being clamped

by the activation function to produce 8-bit output. The inference framework also represents

matrix multiplication as integer-only arithmetic [43]. Such post-training 8-bit quantiza-

tion (per channel quantization of weights or per layer quantization of activations) has been

shown to reduce model size by 4× without negligible loss in accuracy, while speeding up

inference by 2-3× on generic central processing unit [44]. For smaller models (e.g., Mo-

bileNet), quantization-aware training is recommended to mitigate layer-wise quantization

error due to large range of weights across channels rather than applying post-training quan-

tization [43][44]. This is usually done by injecting simulated quantization operations during

the forward pass to the neural network graph. Special layers such as batch-normalization

are folded into the weights during this phase. The weights are usually clamped within a

finite range, while it is recommended to not clamp the activation ranges [44]. The steps for

quantization-aware training are as follows [43][44]:

• Train (or use pre-trained) a floating-point model in Tensorflow (TF).

• Insert fake quantization operations using quantization rewriter in TF at weights and

activation spots.

• Train the new model until convergence.

• Convert the model to optimized C code for running on TinyML devices using TF

converter.

• Execute the model (using TFLite interpreter or other COTS TinyML tools).

The aforementioned quantization paradigm assigns the same bit-width to all the layers. How-

ever, different layers have distinct compute and memory requirements requiring non-uniform

quantization precision, rendering the fixed-precision bit assignment non-optimal. Wang et

al. [45] proposed using deep deterministic policy gradient (DDPG) to assign mixed-precision

bit-width for weights and activation for each layer, using validation accuracy as reward, while
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receiving information from a hardware simulator on energy, latency and memory consump-

tion to tailor hardware-aware quantized network graph. The automated process drastically

reduces human effort and time in optimizing the layer-wise quantization search space. A

COTS tool that performs mixed-precision quantization is CMix-NN [46][47], which converts

a MobileNet model to a mixed integer precision model of 2, 4 or 8 bits (asymmetric mixed

low-bit-width) for weights and activation values of the convolution kernel. It represents a

network subgraph as a quantized convolutional layer (QCL, made up of unpack block to load

operands, vectorized MAC unit to aggregate output of convolution and a per-channel/per-

layer compressor block), with the non-convolutional parameters absorbed into the activation

function via integer channel normalization (rule-based iterative method) and driven by mem-

ory constraints of target hardware. Figure 2.7 illustrates the process of pruning, quantization

and model compression, taking LeNet, AlexNet and VGG-16 as original networks [40].

Figure 2.7: Summary of pruning, quantization and model compression [40].
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2.4.1.2 Lightweight Convolutional Neural Blocks

Han et al. [48] introduced several micro-architectural enhancements to further improve DNN

compression in context of AlexNet beyond deep-compression. These include replacing 3×3

convolution filters with point-wise filters (reduces parameter count), decrease input chan-

nel count to 3×3 filters using point-wise filters as a linear bottleneck (reduces parameter

count) and late downsampling to enhance feature maps (improves accuracy under budget

constraints). The resulting CNN (called SqueezeNet) consists of stacked ”fire modules”,

with each module containing a bottleneck / squeeze layer (layer with point-wise filters) and

an expand / excitation layer (mix of point-wise and 3×3 filters). Optional bypass (simple

and complex) can also be added to emulate ResNet-like behavior. SqueezeNet reduced size

of AlexNet by 50×, and combining pruning, quantization and model compression reduced

the size by 510× without loss of accuracy. The architecture was later generalized in [49].

Other key enhancements, introduced in MobileNetsV1 [50], include the use of depth-wise

separable convolution, which consists of channel-wise convolution followed by a bottleneck

layer, the use of width multiplier to control the input width of a layer and resolution multi-

plier to control the resolution of inputs to the network. Depth-wise separable convolution is

9× cheaper and induces 7-9× memory savings over vanilla convolution in AlexNet for 3×3

filters. ShuffleNetV1 (which achieved 13× compute improvement over AlexNet) [51] intro-

duced the concept of channel shuffle for group convolutions (group convolution refers to the

use of various convolutional kernel sets on the same image), which improves the semantic

relation between input and output channels across all the groups, as well as using point-wise

group convolution with channel shuffle before the expand layer instead of bottleneck layer.

This allows ShufflenetV1 to use wide activation maps; a channel multiplier was used to scale

the number of channels. The number of channels can be further reduced (thinner network)

by providing each layer activation maps of all preceding layers (channel-wise feature con-

catenation, introduced in DenseNet [52]), which encourages reuse and stronger propagation

of low-complexity diversified feature maps and gradients while drastically reducing network

parameter count. MobileNetV2 [53] introduced the concept of inverted residuals (gradient

highway exists between narrow parts of the network rather than wide parts to reduce pa-
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rameter count) and linear bottleneck (to counteract loss of performance at the output of

inverted residuals by enforcing a linear output at the last convolution of a residual block).

Figure 2.8 summarizes the aforementioned lightweight convolutional blocks.

Figure 2.8: Advances in lightweight convolutional neural blocks: (a) Fire modules containing

pointwise and 3×3 convolutional kernels [48][49] (b) Depthwise separable convolution [50]

(c) Channel shuffle [51] (d) Inverted residuals and linear bottleneck [53].

For scalable and efficient real-time object detection, EfficientDet [54] introduced a bidirec-

tional feature pyramid network (Bi-FPN) as the feature fusion network (neck) to aggregate

features at different resolutions with two-way information flow. It is formulated by optimizing

feature network topology found through NAS via addition and removal of nodes and edges.

It also includes compound scaling of weight, depth and resolution (using heuristics) under

target architecture memory and compute constraints for the backbone network (EfficientNet

pre-trained on ImageNet), neck and bounding box prediction network (head). EfficientDet

was tested on COCO and PASCAL VOC dataset and was shown to outperform YOLOv3,

RetinaNet, AmoebaNet (with NAS-FPN), Resnet (with NAS-FPN) and DeepLabV3 across

7 scaling configuration in terms of mean average precision (mAP) and latency, while being

4–9× smaller and using 13× - 42× less FLOPs. Scaled-YOLOv4 [55] converts portions of

FPN of YOLOv4 to cross-stage partial networks (CSP) [56], which saves up-to 50% compu-
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tational budget over vanilla CNN backbones (such as DarkNet used in YOLO[57]). It also

uses CSP-OSANet as backbone architecture, which has smaller computational complexity

than DenseNet architectures for scaled-YOLOv4 aimed for TinyML devices, while scaling

up depth, width, resolution in a compound manner like EfficientDet for larger YOLOv4 im-

plementations. CSP-OSANet requires less number of FLOPS and minimizes convolutional

Input/output.

2.4.1.3 Lightweight Recurrent Neural Blocks

FastRNN [58] adds a weighted residual connection with two scalars between RNN layers to

stabilize gradients during training without adding significant compute overhead. FastGRNN

[58] reuses the RNN matrices and converts the residual connection to gates while encouraging

the matrices to be low-rank, sparse and quantized, resulting in < 2 kB recurrent models with

accuracies similar to vanilla models for time-series classification. EMI-RNN [59] exploits the

fact that only a small, tight portion of a time-series plot for a certain class contributes

to the final classification (critical signature) while other portions are common among all

classes (common prefixes). RNN training is thus formulated as a multiple-instance learning

problem where the instance labels are iteratively updated to discover prefixes and critical

signatures with provable guarantees on correctly finding the most optimal signatures. The

resulting RNN is lightweight, fast (72× over vanilla RNN) and suitable for deployment on

resource-constrained devices for time-series classification. ShallowRNN [60] is a hierarchical

RNN architecture that divides the time-series signal into various blocks (bricks) and feeds

them in parallel to several RNNs with shared weights and activation maps and the resulting

feature maps are fed into a RNN in the next layer to provide output class. This improves the

inference accuracy while reducing compute for time-series classification. ShallowRNN can

be combined with EMI-RNN to enjoy the benefits of multiple-instance learning. Thakker

et al. [61] showed the application of compressing RNN using Kronecker product, achieving

16-38× layer-wise compression.
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Figure 2.9: Advances in lightweight recurrent neural blocks: (a) FastRNN and FastGRNN

cells [58] (b) EMI-RNN built using FastRNN cells [59] (c) Shallow-RNN built using FastRNN

cells, acting as boosted decision trees [60].

2.4.2 Hardware-Aware Neural Architecture Search

NAS is the automated process of finding the most optimal neural network within a neural

network search space given target architecture and network architecture constraints, achiev-

ing balance between accuracy and latency/energy [16][19][20]. The search can be performed

using evolutionary algorithms or RL techniques, or the weights and architectural encodings
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can be jointly or separately optimized as a super-network using gradient-driven optimization

or one-shot NAS [17][18]. For hardware-profiling, the device-specific measurements can be

obtained in real-time by running sampled models on target device, or analytically estimated

using lookup tables, architectural heuristics or prediction models. The former is slower but

most accurate, while the latter is faster but least accurate [17][18]. The search space can be

represented as follows [18]:

• Layer-wise: The entire model is generated from a collection of neural operators. The

macro-architecture (e.g., number of layers and dimensions of each layer), initial and

terminal layers of the network are fixed, while the remaining layers are optimized.

• Cell-wise: The network is constructed by stacking repeating fixed blocks called cells.

A cell is a directed acyclic graph (DAG) constructed from a collection of neural op-

erators, representing some feature transformation. Cell-based search spaces are more

time-efficent compared to layer-wise approaches but are less flexible for hardware spe-

cialization.

• Hierarchical : In tree-based search spaces, bigger blocks encompassing specific cells

are created and optimized after cell-wise optimization. Factorized hierarchical search

spaces allow each layer to have different blocks without increasing the search cost,

while allowing for hardware specialization.

Common hardware-aware NAS strategies include RL, gradient-based methods, evolutionary

search, Bayesian optimization and hybrid techniques [17]. Figure 2.10 illustrates a general-

ized pipeline for hardware-aware NAS.

2.4.2.1 Reinforcement Learning

RL techniques model NAS as a Markov Decision Process (MDP). RL controllers such as

proximal policy optimization (PPO), DDPG or Q-Learning are used to find the optimal

combination of neural network cells from a pre-defined set recursively. Example RL NAS

include NASNet and MNASNet [21][22]. The key idea is to look for optimal neural building
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blocks on a small dataset (e.g., CIFAR-10, called proxy task) and transfer the blocks on

the target dataset (e.g., ImageNet), as directly performing NAS on large datasets is time-

consuming. The network graph consists of a series of blocks (e.g., convolutional cells) whose

structures are found via the controller, with the number of repetitions of each block and

initial convolutional filters treated as free parameters intended for scaling based on device

constraints. For similar classification tasks, the blocks are transferable. NASNet also intro-

duced a new regularizer dubbed scheduled drop path, where a path in a cell is dropped with

increasing probability as training progresses. MNASNet also involves device latency in the

reward function from real mobile phones to formulate a multi-objective optimization problem

to achieve balance between accuracy and inference speed. In addition, instead of limiting

to two blocks and stacking them repeatedly, MNASNet uses the concept of factorized hier-

archical search space. The networks found by MNASNet models are faster (2.4×), smaller,

have slightly lower search cost (1.2×) and have lower number of MAC (1.7×) compared to

NASNet models.

Figure 2.10: Generalized pipeline for hardware-aware NAS [17][18].

2.4.2.2 Gradient-Based Methods

Differentiable network architecture search spaces can be optimized using continuous gradient

descent relaxation, which dramatically decreases the search and training cost. Gradient-
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based techniques include DARTS, FBNet, ProxylessNAS and MicroNets [25][26][27][28]:

• DARTS : In DARTS, each block in the search space is represented as a DAG, where

the nodes represented activation maps and the edges represent common ML operations

on the nodes. The cells can be either convolutional or recurrent and the categorical

choice of operations are represented using the gradient-friendly softmax function. The

goal is to learn the weights and architectural encoding as a nested bilevel optimization

problem (as the optimal weights are obtained via optimization over weights and optimal

architecture), with the gradients obtained approximately. The design-space of gradient-

based training usually consists of the directed graph, network weights, edge operations

and hyperparameters [25].

• FBNet : The search-space of FBNet is a layer-wise stochastic super-network (com-

pared to static blocks in DARTS or NASNet) similar to MNASNet. It also reuses the

gradient-driven architecture search from DARTS but with additional operator latency

parameters from mobile phones in the loss function, thus fusing the benefits of DARTS

and MNASNet. The first and last three layers of the target network are fixed while

the middle layers are constructed from two point-wise convolution blocks at the end

points and a depth-wise convolution (depth of 3 or 5) block in the middle, with sup-

port for skip connections and channel-shuffle for group convolutions. After training

the over-parametrized network, the optimal subnetwork is obtained by sampling the

architecture distribution. FBNet also ensures that the latency loss is differentiable,

using Gumbel softmax to represent latency parameters [26].

• ProxylessNAS : Models generated by proxy-driven NAS such as NASNet may not al-

ways provide optimal performance when transferred to large datasets. On the other

hand, gradient-driven NAS such as DARTS and FBNet suffer from high GPU memory

consumption when the search space is too large. To solve the memory issue of differ-

entiable NAS when training on actual datasets, ProxylessNAS uses path binarization,

where the architectural parameters (real-valued path weights) of the over-parametrized

network are converted to binary gates such that a single path for activation is available
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during the training phase. The weight parameters (sample binarized gates) and the ar-

chitectural parameters (reset binarized gates, two paths used) are alternatively frozen

when performing joint gradient-based training, and the final subnetwork is obtained

via path-level pruning (choosing paths with the highest weights). It is also possible

to use RL (policy-gradient) techniques to train the binarized weights. In addition,

ProxylessNAS uses a differentiable latency model crafted from mobile phone latency

data rather than using real mobile phones. ProxylessNAS yields models of eclectic

configurations depending on the target architecture.

• MicroNets : MicroNets attempt to bring NAS to existing COTS TinyML deployment

tools (e.g., TFLite Micro and CMSIS-NN) rather than using custom inference engines.

The key insight behind MicroNets is the fact that both layer and model latency (as

well as energy consumption) are linearly proportional to the number of FLOPS for

majority of common ML operators, thus FLOPS can be a proxy for latency and energy

usage for NAS. MicroNets then uses gradient-based NAS using different backbones

for different tasks (e.g., MobileNetV2 for visual wake words and variants of decoder-

side scalable convolutional architectures for keyword spotting and anomaly detection,

with constraints on width, depth, input resolution and channel count). MicroNets

then performs multi-objective optimization on accuracy, working memory and latency.

The training is quantization-aware, and includes optimized 4-bit operators (sub-byte

quantization) [28].

2.4.2.3 Evolutionary Search

Tailoring NAS for a diverse set of target architectures (e.g., cloud, smartphones and mi-

crocontrollers) require separate training and fining-tuning for each deployment constraints,

which does not scale well due to computational expense. Cai et al. [23] suggested decoupling

training from search (one-shot NAS); instead of training and fine-tuning networks for each

scenario, they suggested training a single ”once-for-all” (OFA) super-network consisting of

several sub-networks which fits the constraints of eclectic target platforms. The training
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phase thus concerns improving the accuracy of all sub-networks while the search phase con-

sists of finding a specialized sub-network using evolutionary search given target deployment

constraints, reducing the computational complexity from O(N) to O(1). In evolutionary

search, a fitness score is assigned to a population of network candidates contained in a single

super-network. The best performing networks are selected, crossed and mutated to produce

the next generation of candidate sub-networks. For efficiently training the super-network

under elastic resolution, kernel size, depth and width, OFA proposes progressive shrinking,

in which all of the subnetworks are jointly fine-tuned after training the full model such that

the small subnetworks are gradually introduced without interfering with large subnetworks

using knowledge distillation. Progressive shrinking is illustrated in Figure 2.11. To get the

specialized sub-network, OFA randomly samples subnetworks from the super-network, mea-

sures their accuracy and latency on the validation set and target devices respectively and

trains two MLP to predict accuracy and latency given subnetwork topography. OFA was

shown to outperform RL and gradient-driven NAS strategies, achieving lower MAC, lower

latency and higher accuracy for comparable subnetworks on diverse target devices, while fix-

ing the training and search cost and achieved SOTA 80% accuracy on ImageNet for mobile

devices.

MCUNet [24] tailors OFA for Class 0 devices, using a two-stage NAS (TinyNAS) to train

OFA network in an optimized search space. TinyNAS optimizes the search space under

elastic resolution, kernel size, expansion ratio, depth and width, with the hypothesis that

models with larger FLOPS tend to have higher accuracies, selecting the search space with

highest number of FLOPS. In addition, MCUNet introduces a new inference engine called

TinyEngine to provide lower execution latency and memory usage compared to existing

interpreter-based COTS TinyML tools such as TFLite Micro, uTensor or CMSIS-NN (more

in ”off-the-shelf tools” subsections). TinyEngine exploits code-generator based compilation,

which reduces the runtime overhead of interpreters and compiles only the operations and

variables required for deployment. It also departs from the concept of arena and instead

adapts memory scheduling according to model-level statistics, which encourages feature map

reuse, reduces memory fragmentation and data movement. Other features include the fusion
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of different operators to reduce memory footprint and improve compute, loop unrolling, loop

tiling and use of in-place depth-wise convolution to reduce the amount of memory required

to store output activations.

Figure 2.11: Training process of ”Once-for-All” supernetwork via progressive shrinking

through knowledge distillation [23].

2.4.2.4 Bayesian Optimization

Bayesian techniques such as SpArSe [29] model the loss function as a single objective (two

stage or constrained) or multi-objective (scalarization or evolutionary) optimization prob-

lem, with validation accuracy, model size and working memory optimized jointly. The search-

space consists of CNNs of varying width, depth and convolution type (regular, depthwise sep-

arable, and downsampled). SpArSe also combines pruning with NAS, using both structured

and unstructured pruning techniques. To restrict Pareto-optimality of candidate architec-

tures under such diverse parameter set, constraints are put on the possible configurations as

training progresses (network morphism). Treating the objective function as a Gaussian pro-

cess provides SpArSe uncertainty metrics while looking for Pareto-optimal frontier. SpArSe

was successfully deployed on microcontrollers with < 2 kB of RAM, showing superior ac-

curacy with fewer parameters (7.4× smaller) over competing TinyML models (Bonsai [30]

and ProtoNN [31]), pruned models (LeNet + unstructured pruning and pruned decision tree
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(DT)) and classical models (RBF-SVM and kNN).

2.4.3 Off-the-Shelf Tools

Figure 2.12: (Top): Converting TF model to TFLite Micro flatbuffer serialized file, suitable

for importing into embedded environments (Bottom): The TFLite Micro runtime API and

its memory allocation strategies, namely use of arena and bin packing. [62][63].

Several COTS TinyML frameworks allow conversion of ML/DL models generated by well-

known libraries (e.g., PyTorch, TF, Keras, Scikit-Learn) to TinyML models via pruning and

quantization, as well as providing comprehensive sets of optimized ML operators, algorithms

and tools. Notable publicly available COTS TinyML packages include:

• TFLite Micro: TFLite Micro [62][63] is a specialized version of TFLite aimed towards

optimizing TF models for Cortex-M and ESP32 MCU. TFLite Micro embraces several

embedded runtime design philosophies, including dropping uncommon features, data

types (e.g., float) and operations for portability, avoiding specialized library, operating

system or build-system dependencies (bag of files) for heterogeneous hardware support
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and memory efficiency and avoiding dynamic memory allocation to mitigate memory

fragmentation. TFLite Micro interprets the neural network graph at runtime rather

than generating C++ code to support easy pathway for upgradability, multi-tenancy,

multi-threading and model replacement, while sacrificing finite savings in memory. The

implementation module is organized as follows:

– Train a TF model and perform post-training quantization using TFLite converter.

– Use an operator resolver to link only essential operations to the model binary file.

– Pre-allocate contiguous memory (called arena) stack for initialization and stor-

ing runtime variables generated by the interpreter. TFLite Micro uses a two-

stack allocation strategy to discard initialization variables after their lifetime and

minimize memory consumption. The space between the two stacks is used for

temporary allocations during memory planning (supports both online and offline

planning), where TFLite Micro uses bin packing to encourage memory reuse and

yield optimal compacted memory layouts during runtime.

– Load the model data structure. TFLite Micro uses FlatBuffer serialization format

to store the models, which are represented as a schema of topologically sorted data

and values for simple looping.

– Create an interpreter object with the arena, model data structure and operator

resolver maps. The interpreter resolves the network graph at runtime, allocates

the arena and performs runtime calculations.

– Execute the model, using a client API to handle communication between inter-

preter and operator schema.

Figure 2.12 shows the conversion process from TF model to TFLite Micro model, as

well as the runtime API of TFLite Micro.

• uTensor : uTensor [64] generates C++ files from TF models for Mbed-enabled boards,

aiming to generate models of < 2 kB in size. It is subdivided into two parts, namely

the uTensor core, which provides a set of optimized runtime data structures and in-
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terfaces under compute constraints, and the uTensor library, which provides default

error handlers, allocators, contexts, ML operations and tensors built on the core. Basic

data types include integral type (8/16/32 bit integer and 32 bit float), uTensor strings

(which are optimized to perform string comparisons via hashing), tensorshape (deals

with shape of tensors and associated functions to transform the tensors) and quan-

tization primitives borrowed from TFLite. Interfaces include the memory allocator

interface (uses handles to allocate fixed memory like arena in TFLite micro), tensor in-

terface (for life-cycle management and performing operations on tensors), tensor maps

(ordered map of uTensor string to tensor object, a way to identify tensors) and operator

interface (binds tensors to input and output names and perform evaluation). For mem-

ory allocation, uTensor uses the concept of arena borrowed from TFLite Micro, in this

case, uses a circular arena that can be either bound or unbound to a handle depending

on whether the user wants to avoid memory fragmentation. In addition, uTensor boasts

a series of optimized (built to run CMSIS-NN under the hood), legacy (asymmetric

quantized operators) and quantized (operators with symmetric quantization) ML op-

erators consisting of activation functions, convolution operators, fully-connected layers

and pooling.

• CMSIS-NN : Cortex Microcontroller Software Interface Standard-NN [65] was designed

to transform TF, PyTorch and Caffe models for Cortex-M series MCU. It generates

C++ files from the model, which can be included in the main program file and com-

piled. It consists of a collection of optimized neural network functions with fixed-point

quantization, including fully connected layers (matrix multiplication), depth-wise sep-

arable convolution, partial image-to-column convolution (along width and height), in-

situ split x-y pooling and activation functions (ReLU, sigmoid and tanh, with the latter

two implemented via lookup tables). It also features a collection of support functions

including data type conversion and activation function tables (for sigmoid and tanh).

• Microsoft EdgeML: EdgeML provides a collection of lightweight ML algorithms, oper-

ators and tools aimed towards deployment on Class 0 devices, written in PyTorch and
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Figure 2.13: Sparse projection of high-dimensional data into prototype space, used in Bonsai

and ProtoNN [30][31].

TF. Included algorithms include FastRNN / FastGRNN [58], EMI-RNN [59], Shal-

lowRNN [60], Bonsai [30], ProtoNN [31], RNNPool [66] and DROCC [67]. Bonsai is a

shallow and sparse DT (< 2 kB) with non-linear activations making inferences on data

projected in low-dimensional space (called prototypes), with the DT and projection

variables learnt jointly under budget constraints using mini-batch stochastic gradient

descent (SGD) with hard-thresholding. Similarly, ProtoNN is a lightweight KNN (<

2 kB) classifier designed to operate on prototypes. The prototypes, associated label

vectors and distance metric in the sparse space are jointly optimized under sparsity

constraints using step-by-step minimization of the three parameters and mini-batch

SGD with hard-thresholding. Figure 2.13 illustrates the idea of sparse projection, used

in Bonsai and ProtoNN. RNNPool is a non-linear pooling operator that can perform

”pooling” on intermediate layers of a CNN by a downsampling factor much larger than

2 (4-8×) without losing accuracy, while reducing memory usage by 10x and decreasing

compute by 2-5×. RNNPool provides a 1×1 summary for a patch of an image by sweep-

ing the rows and columns of the patch via 4 RNN runs. This effectively downsamples

the feature maps much faster, reducing the depth of the CNN. Finally, Deep robust

(to mode collapse) one class classifier (DROCC) is a OCC under limited negatives

and anomaly detector without requiring domain heuristics or handcrafted features.

DROOC is based on the hypothesis that normal points lie on a low-dimensional linear

manifold while points surrounding the normal points outside a threshold radius are

outliers, which can be augmented in a generative adversarial manner into the training
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set.

• STM32Cube.AI : X-Cube-AI [68] generates STM32 compatible C code from a wide va-

riety of DL frameworks (e.g., PyTorch, Tensorflow, Keras, Caffe, MATLAB, Microsoft

Cognitive Toolkit, Lasagne and ConvnetJS). It allows quantization (minmax) of NN

models, folds some of the layers into one and supports use of external flash or RAM to

store activation maps or weights. The tool also features functions to measure system

performance and deployment accuracy and suggests list of compatible STM32 MCU

based on model complexity.

• Eloquent MicroML and TinyML: MicroMLgen ports DT, SVM (linear, polynomial, ra-

dial kernels or one-class), RF, XGboost, Naive Bayes, relevant vector machines (RVM),

principal component analysis (PCA) transformer and SEFR (variant of SVM) from

SciKit-Learn to C code, with the model entities stored on flash. TinyMLgen ports

TFLite models to optimized C code using TFLite’s code generator [32].

• EmbML: Embedded ML [69] converts LR, DT, MLP and SVM (linear, polynomial

or radial kernels) models generated by Weka or Scikit-Learn to C++ code native to

embedded hardware. It generates initialization variables, structures and functions for

classification, storing the classifier data on flash to avoid high memory usage and

supports quantization of floating-point entities.

• FANN-on-MCU : FANN-on-MCU [70] ports MLP models generated by fast artificial

neural networks (FANN) library to Cortex-M series processors. It allows model quan-

tization and produces an independent callable C function based on the specific instruc-

tion set of the MCU. It takes the memory of the target architecture into account and

stores network parameters in either RAM or flash depending upon whichever does not

overflow and is nearest to the processing unit.
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CHAPTER 3

Mitigating Runtime Uncertainties in Time-Series

Processing

Challenges of deploying learning-enabled inertial systems in the wild include dealing with

data from multiple noisy sensors with variable sampling rates [133], misaligned time stamps

[132], and missing data [1]. Traditional ML and DL approaches are unable to deal with

abnormal data on their own, requiring handcrafted features and domain knowledge [1][4].

Furthermore, in context of complex events, coarse labels may be composed of a succession of

simple events, whose spatial context might alter with time [3]. In this chapter, we describe

intelligent data augmentation and informative missingness injection techniques to make neu-

ral inertial systems robust to runtime sensing uncertainties. We also describe a multi-stage

hierarchical neural architecture tailored for complex event processing (e.g., complex activity

recognition) with conditionally activated paths [15]1.

3.0.1 Handling Missing Data

Consider a multimodal sensor stream s with d channels (inputs) feeding data to a neural

network f(·) in chunks of fixed size (called windows). Adverserial elements such as com-

munication outages, sensor malfunction, power outages, limited memory, timing errors and

sampling rate jitter can cause samples to be dropped from the channels, leading to missing

data in the input stream [1][2][134]. It has been shown that missing data can hurt vanilla

DL-based time-series processors, degrading medical data imputation accuracy by 18-65%,

medical data classification by 2-5% and complex activity recognition by 11-24% [6][7][15].

1Code for this chapter is available at: https://github.com/nesl/Robust-Deep-Learning-Pipeline

47

https://github.com/nesl/Robust-Deep-Learning-Pipeline


To handle missing data, we use a combination of independent mask metadata channels to

characterize missing samples and window alignment with contained samples popped ahead

at the start of the windows during training [6][15]:

md
t =


1, sdt ∈ ∅

0, otherwise

(3.1)


sdt:t+n → sdt:t+n−γ ∀|sdt:t+n| = n− γ, γ > 0

sdt+n−γ+1:t+n = α, α /∈ E(sd)

(3.2)

The mask vector md
t consists of zeros at timestamps where data in channel d is missing

and one at all other points. However, the masking approach may fail when the timestamps

across the channels are misaligned or the actual window size is jittery. Thus, instead of

aligning the sample points, the individual overlapping windows are aligned based on initial

and terminal timestamps of each window, appending α for missing samples while choosing

an average sampling rate for each window. The drawback in this approach is that α might be

interpreted as part of the actual sensor stream. As a result, α must be chosen as a constant

outside the expected value of input data. Both approaches are visualized in Figure 3.1.

Figure 3.1: (Top): Mask metadata channel M characterizing existence of missing samples

in channel X. (Bottom): Pushing ahead contained samples in each window of length wT

at the front and replacing the missing samples with α.

48



3.0.2 Window Jitter and Time-Shift Augmentation

We apply intelligent data augmentation techniques when creating sensor windows during the

training phase. Our augmentations exploit the observation that timing characteristics are

variable and unstable for the devices capturing data during training and deployment settings.

For example, the sampling rate of smartphone peripherals can vary wildly, with the inertial

sensor sampling rate varying between 40 and 100 Hz for a 100 Hz accelerometer and the

microphone sampling rate oscillating between 189 KHz and 195 KHz for 192 KHz/24 bit

recording [133][135]. Several factors, including delay in the operating system time stamping

and variable instantaneous I/O load, are responsible for this variation. For fixed sampling

rates, the general approach is to use a fixed duration for window creation. Aware of the

sampling rate instability, we introduce a controlled timing jitter δ in the window length

when creating windows from the training files. We hypothesize that the introduced jitter

in the window length, sampled from a uniform distribution, explicitly exposes f(·) to the

variable sampling rate, allowing them to generalize on the test data [135]:

|sdt:t+n| → |sdt:t+n| ± δ, δ ∼ U

(
0.5(a1 + b1),

√
(b1 − a1)2

12

)
(3.3)

In multimodal sensing, Sandha et al. [132] have shown that data timestamps across

sensors can have significant timing errors that can misalign the modalities. For example,

the timing stack on Android smartphones can have as much 50000 mS of error. A 1000 mS

timestamp misalignment can drop multimodal fusion classification accuracy by 6% [132].

Causes of misaligned modalities include poor management of timing stack by the operating

system and the choice of time synchronization techniques used by edge devices. This can

result in overfitting of f(·) on the timing characteristics of data, with poor generalization

in the deployment scenarios [133]. To avoid this situation, we use the proposed time-shift

data augmentation approach [132] of adding artificial misalignments across the device’s data

timestamps when creating windows. This artificial misalignment helps f(·) maintain accu-

racy in the presence of variable timing characteristics in the wild:

s1
t:t+n, s

2
t:t+n → s1

t±ε:t±ε+n, s
2
t∓ε:t∓ε+n, ε ∼ U

(
0.5(a2 + b2),

√
(b2 − a2)2

12

)
(3.4)
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Figure 3.2 illustrates how sampling rate jitter and timestamp misalignments are introduced

in the training data.

Figure 3.2: (Left): Introducing artificial jitter in sampling rate (Right): Adding controlled

artificial timestamp misalignments across channels.

3.0.3 Hierarchical Deep Neural Architectures

Complex events can be decomposed into simpler yet granular primitives whose temporal and

contextual dynamics evolve differently from the overall time-series subtleties [3]. In addi-

tion, the existence of a granular event might be dependent on the class of the coarse event,

requiring logic injection in the decision making pipeline. Thus, we propose a multi-stage

recurrent-convolutional neural architecture, where the latter stages are activated hierarchi-

cally based on the output of initial stages using conditional logic. The first stage consists of

an ensemble of multi-label bidirectional CNN-LSTM networks with majority decision fusion

for coarse event recognition, while the latter stages are composed of binary CNN-LSTM

networks for granular event processing.

3.0.3.1 Convolutional Layers

CNNs are able to extract differential patterns in activity windows regardless of precise loca-

tion by enforcing a degree of local connectivity among adjacent and enabling scale invariance

(account for noisy feature discrepancy among same event class), making the architecture suit-
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able as a high-dimensional feature extractor and classifier for complex time-series processing.

Batch normalization layers smoothen the objective functions to account for noisy and un-

predictable multimodal data. Dropout layers improve generalization performance such that

the network ignores fine-grained domain-dependent event signatures, preventing overfitting

[4][15][136][137][138][139][140].

3.0.3.2 Recurrent Layers

In order to infer temporal dependencies of a sequence of common integrant micro-events

across several macro-events (e.g., event A may arrive after event B in a certain macro-

event but event C may arrive after event B in another macro-event) and translate them

differently, it is necessary to store perceived windows, which can be achieved via LSTM and

RNN. LSTMs can handle variable delays between timestamps and events and learn long-term

contextual dynamics of the time-series data for each sensor channel [4][15][136][137].

3.0.3.3 Deep Convolutional Bidirectional LSTM

A special class of LSTM is bidirectional LSTM, which can “look into” both the past and the

future [111], increasing the amount of contextual information available to the network. Deep

Convolutional Bidirectional LSTM (DCBL) is an amalgam of CNN and bidirectional LSTM,

capable of extracting patterns while learning temporal dynamics of feature activations [137].

The initial layers resemble the CNN architecture except at the end, where a bidirectional

LSTM layer maps the highly correlated spatial features extracted by the convolutional layers

to the activity classes using recurrent information from both the past and future states

[4][15][136]. The bidirectional LSTM layer is added at the end instead of the beginning to

prevent long time-windows from causing difficulties in learning for the recurrent layer [111],

while at the same time, ensuring that the feature map activations are highly correlated across

the samples from a large event duration.

Figure 3.3 illustrates the concept of hierarchical neural architecture in context of complex

activity recognition. It consists of two stages, with the first stage multilabel classifiers
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handling coarse macro-activities, and the second stage binary classifiers handling more fine-

grained micro-activities. The classifiers in the second stage are conditionally activated based

on class label from the first stage. The structure of each neural cell is illustrated in Figure

3.4, which is made up of convolutional and bidirectional LSTM layers.

Figure 3.3: Two-stage hierarchical, uncertainty aware, DL-based complex-event processing

pipeline [15].

Figure 3.4: Architecture of each neural cell in the hierarchical pipeline [15].
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CHAPTER 4

Efficient Neural Inertial Localization

In Chapter 2, we have seen that DL-based inertial odometry techniques provide superior

translational error characteristics over classical approaches for longer time periods in GPS-

denied environments, while competing with computationally intensive egomotion techniques

(e.g., visual odometry, LIDAR and RADAR) [82][102][117][120][123][131]. Unfortunately,

bulk of these models are unsuitable for real-time deployment on resource-constrained edge

devices due to memory, power and compute constraints, binding their application in the

offline world or on smartphones, cloud and workstations contrary to classical approaches,

many of which have been shown to work in real-time on TinyML devices. In this chapter, we

provide a systematic approach for developing neural inertial localization models for resource-

constrained devices.

4.1 Inertial Sequential Learning

To break the cycle of continuous integration and error propagation, we treat dead-reckoning

as a sequential-learning problem based on Newtonian physics, similar to IONet [120] and its

successors. The goal is to achieve pseudo-independence across inertial windows (as windows

are not truly independent) to estimate the change in navigation state in the body frame

over each window rather than absolute coordinates. Under loose nonholonomic constraints,

the horizontal displacement ∆l and heading rate ∆ψ over a window can be expressed as a

function of initial velocity v(0), the initial gravity direction g0, latent linear accelerometer a

and gyroscope readings w in the polar coordinates. The task involves estimating the initial

velocity and gravity in each window of size n, which are treated as latent states and instead
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the neural network outputs heading and displacement change, thereby constraining the ball

of outputs required for the function g to model:

(∆lt,∆ψt) = gθ(v
b(0),gb0, at:t−n,wt:t−n) (4.1)

The ground truth displacements ∆lg and heading rates ∆ψg for each inertial window of size

n are obtained from ground truth positions Lg as follows:

∆lt,g =
√

(Lx,t,g − Lx,t−n,g)2 + (Ly,t,g − Ly,t−n,g)2 (4.2)

∆ψt,g = ψt,g − ψt−n,g (4.3)

For calculating ∆ψt,g, the following conditions must hold:

ψt,g = arctan 2((Lx,t,g − Lx,t−n,g), (Ly,t,g − Ly,t−n,g))

[(ψt,g < π)→ (ψt,g + π)]

φ = (ψt,g < ψt−n,g)

[(∆ψt,g > π/2) ∨ (∆ψt,g < −π/2)]→ [(φ→ ψt,g = ψt,g + 2π) ∧ (¬φ→ ψt−n,g = ψt−n,g + 2π)]

(4.4)

The dynamic model is given by:
Lx,t = Lx,t−1 + ∆lt sin(Θt)

Ly,t = Ly,t−1 + ∆lt cos(Θt)

(4.5)

where:

Θt = Θt−1 + ∆ψt (4.6)

The functional parameters θ of g are shared between ∆l and ψ, with the ideal forms for

strapdown planar motion given as [72][83][141]:

ψideal,t =


1 0 0

0 1 0

0 0 0

CN
b (qt)~ut

b (4.7)
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qt = qt−1 +
1− α
fs,w

Ribwt +


arctan

(
ay,t√
a2x,t+a

2
z,t

)
· 180α

π

arctan

(
ax,t√
a2y,t+a

2
z,t

)
· 180α

π

0

 (4.8)

∆lideal,t = β
√

(at − gt)(at − gt)
T + γ (4.9)

α, β and γ are constants, α ∈ (0, 1), CN
b and Rib is the direction cosine and rotation

matrices, fs,w is the gyroscope sampling rate, ~ut
b is the unit vector that is not parallel to the

perpendicular axis of the ground plane and qt is the attitude of the object. Hypothetically,

the latent spatial and temporal connections between (∆lideal, ∆ψideal) and (∆l,∆ψ) maybe

be recovered from raw a and w in the presence of domain abnormalities, drift and noise

using a single recurrent-convolutional neural architecture with strided velocity and heading

loss [82]:

Lf = E[(∆lg,t:t-n −∆lt:t-n)2] + κE[(∆ψg,t:t-n −∆ψt:t-n)2] (4.10)

In order to handle cross-modal and multi-modal timestamp misalignment and sampling rate

variability, we expose gθ to controlled artificial time shifts and window jitter augmentation in

inertial windows during training phase [15]. To handle missing data, we use a combination of

independent mask metadata channels to characterize missing samples and window alignment

with contained samples popped ahead at the start of the inertial windows [15]. In addition,

we apply controlled rotation R (coordinate frame normalization) and multivariate Gaussian

noise to each 3D inertial channel during training phase to inform gθ of unrestricted sensor

orientation and varying sensor physics [82][114]:

sx,y,zt:t+n → Rsx,y,zt:t+n +N (0,Σ) (4.11)

4.2 Temporal Convolutional Network

We use a TCN [142][143] to model g [102][103][125][131], which can jointly handle spatial

and temporal features hierarchically. Without explosion of parameter, memory footprint,

layer count or overfitting, TCN kernels allow the network discover global context in long
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inertial sequences while maintaining input resolution and coverage. In TCN, the convolution

operation has three desirable properties:

• Causality : The output of the operator at current timestep t depends only on the current

and past inputs but not future inputs. This ensures temporal ordering of the input

sequences without requiring recurrent connections. Contrary to the usual method of

processing the input sequences as affine transformations of past values on a per-step

feed-forward basis, causal convolutions allow parallel training on long sequences as the

ordering is maintained via weight sharing among the input chunks. Causal convolutions

are also known as Conv1D. convolving only on current and past elements from earlier

layers, as illustrated in Figure 4.1 (Right).

• Dilation: Conv1D requires a large receptive field to integrate global context in the

sequence, which can be achieved efficiently with fewer layers and parameter count

using dilated convolutions. The receptive field Fi of each unit in the ith layer in a

TCN dilated causal kernel of size k × k with dilation factor l is given by:

Fi,TCN = Fi−1 + (kl − 1)× l, F0 = 1 (4.12)

Fi,TCN is larger than Fi,CNN, which is i× (k − 1) + k. When dilated CNN are stacked

on top of each other, the dilation factor increases exponentially, increasing model ca-

pacity and receptive field size. Each residual block usually has two dilated convolution

operations. Assuming fixed kernel size, the receptive field of a TCN with n residual

blocks and an expansion factor of 2 is given by:

FTCNn = 1 + 2× (k − 1)× (2n − 1) (4.13)

Figure 4.1 (Left) shows the difference in the receptive field between a vanila 3×3 kernel

and a dilated 3×3 kernel.

• Residual Blocks: Two stacks of dilated causal convolution layers are fused through

gated residual blocks z (shown in Figure 4.2) for expressive yet bounded non-linearity,

complex interactions and temporal correlation modeling in the input sequence:

z = tanh(Wf,k ∗ x)� σ(Wg,k ∗ x) (4.14)
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Figure 4.1: (Left): Vanilla convolution filters vs. dilated convolution kernels (dilation factor

= 2) (Right): Stack of dilated causal convolution layers [143].

Figure 4.2: Residual block in the TCN architecture [143][153].

TCN have the following advantages over vanilla neural architectures in inertial DR:

• Small number of parameters (10,000× compared to 1,000,000×), which is less prone

to overfitting while keeping a low-memory footprint.

• Fewer complex non-linear operations compared to recurrent architectures, keeping a

low runtime latency.

• Maintains temporal ordering without requiring recurrent units, which are computation-

ally expensive and difficult to train and optimize for TinyML devices due to vanishing
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gradient (leads to unstable training) for long time-series sequences.

• Supports parallelization due to out-of-order training, while recurrent units need se-

quential information to be fed in-order.

• Dilated convolutions allow larger receptive fields (exponential expansion) without ex-

plosion of parameter or layer count compared to LSTM or CNN, while maintaining

input resolution and coverage, allowing the network to discover semantic connections

in long sequences of inertial samples.

• Gated activation units replace ReLU in vanilla CNN for expressive non-linearity and

temporal correlation modeling, while competing with larger candidate neural architec-

tures in terms of absolute translation error.

• Jointly handles spatial and temporal features in a hierarchical fashion without requiring

two-stage convolutional and recurrent pipeline using causal convolution (Conv1D).

4.3 Orientation and Altitude Estimation

For tracking depth or height using barometric sensors, we designed a model-free α− β filter

[144] with thermocline, salinity, noise and timestamp jitter mitigation [145]1. The α − β

filter is a simplified version of a KF. The altitude measurements Lz,m at timestep t are given

by:

Lz,t,m =

∣∣∣∣− R(Tc,t + 273.15)

Mg
ln

(
Pt,m
P0

) ∣∣∣∣︸ ︷︷ ︸
air

∨
∣∣∣∣Pt,mρ0g

(
1− Pt,m

K

) ∣∣∣∣︸ ︷︷ ︸
fluid

(4.15)

where, Pt,m = pressure measurement, M = air molar mass, g = gravitational acceleration,

R = gas constant, Tc,t = temperature in Celsius and P0 = average sea level pressure (kPa).

Furthermore:

ρ0 = D(Tc,t) + sA(Tc,t) + s1.5B(Tc,t) + cs2 (4.16)

1Code for the filter is available at: https://github.com/nesl/robust_depth_filter
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K = E(Tc,t, s) + F (Tc,t, s)Pt,m +G(Tc,t, s)P
2
t,m (4.17)

where, N(Tc,t) ← γ10jT kc,t, M(Tc,t, s) ← µ10lT nc,ts
q + N(Tc,t), s = salinity of fluid and

µ, γ, j, k, l, n and q are constants. The filter prediction steps are given by:

Lz,t,p = Lz,t−1,p + ∆TL̇z,t−1,p, L̇z,t,p = L̇z,t−1,p (4.18)

The update steps are given by:

L̇z,t,p = L̇z,t,p +
β

∆T
(Lz,t,m − Lz,t,p) (4.19)

Lz,t,p︸ ︷︷ ︸
altitude

= Lz,t,p + α(Lz,t,m − Lz,t,p) (4.20)

L̇z,t,p refers to the velocity of the object, ∆T is the difference between current and previous

timestamps and (α, β) are filter coefficients. Large values of α favor measurements over

prediction, while large values of β increases the transient sensitivity of the filter.

For real-time orientation estimation (only under strapdown scenario) in the world frame,

Wqest (in quaternion domain) we use the 9-DoF Madgwick filter [146]:

I
W

qest,t+1︸ ︷︷ ︸
attitude

= I

W
q̂est,t + ∆T ( I

W
q̇w,t+1︸ ︷︷ ︸

gyro. inc.

+ I
W

q̇O,t+1︸ ︷︷ ︸
acc. inc.

) (4.21)

where,

I
W

q̇w,t+1 = 0.5 I

W
q̂est,t ⊗ [0, Iwt+1]T (4.22)

I
W

q̇O,t+1 = −β
Of
(

I

W
q̂est,t,

W ĝ, I ât,
W

b̂t+1,
Im̂t

)
∣∣∣∣∣∣f ( I

W
q̂est,t,

W ĝ, I ât,
W

b̂t+1,
Im̂t

)∣∣∣∣∣∣ (4.23)

W ĝ denotes the normalized gravity vector in the world frame,
W

b̂ refers to the local magnetic

declination and Im̂ denotes the magnetic field strength in the sensor frame. The attitude

consists of gyroscope increment (numerical integration of angular velocity measurements)

and the acceleration increment found via gradient descent on f , which is given by:

f
(

I
W q̂,

W
d̂, I ŝ

)
= I

W q̂∗ ⊗
W

d̂⊗ I
W q̂− I ŝ (4.24)
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Of
(

I
W q̂,

W
d̂, I ŝ

)
= JT ( I

W q̂,
W

d̂)f
(

I
W q̂,

W
d̂, I ŝ

)
(4.25)

where,
W

d̂ denotes the field reference direction in the world frame (e.g., gravity for ac-

celerometer), I ŝ denotes the sensor measurements and J is the Jacobian of function f . For
W

d̂ = W ĝ and I ŝ = Iâ:

fg
(
I
W q̂, Iâ

)
=


2 (q2q4 − q1q3)− ax

2 (q1q2 + q3q4)− ay

2
(

1
2
− q2

2 − q2
3

)
− az

 , Jg
(
I
W q̂
)

=


−2q3 2q4 −2q1 2q2

2q2 2q1 2q4 2q3

0 −4q2 −4q3 0

 (4.26)

For the magnetometer components:

fb

(
I
W q̂,W b̂, Im̂

)
=


2bx (0.5− q2

3 − q2
4) + 2bz (q2q4 − q1q3)−mx

2bx (q2q3 − q1q4) + 2bz (q1q2 + q3q4)−my

2bx (q1q3 + q2q4) + 2bz (0.5− q2
2 − q2

3)−mz

 (4.27)

J b

(
WSq̂,

W b̂
)

=


−2bzq3 2bzq4 −4bxq3 − 2bzq1 −4bxq4 + 2bzq2

−2bxq4 + 2bzq2 2bxq3 + 2bzq1 2bxq2 + 2bzq4 −2bxq1 + 2bzq3

2bxq3 2bxq4 − 4bzq2 2bxq1 − 4bzq3 2bxq2


(4.28)

Thus, f
(

I
W q̂,W ĝ, I â,

W
b̂, Im̂

)
and its Jacobian are given by:

f
(

I
W q̂,W ĝ, I â,

W
b̂, Im̂

)
=

 fg
(
I
W q̂, Iâ

)
fb

(
I
W q̂,

W
b̂, Im̂

)
 (4.29)

Jg,b

(
I
W q̂, I b̂

)
=

 JT
g ( I

W q̂)

JT
b

(
I
W q̂,W b̂

)
 (4.30)

The Madgwick filter provides several advantages for real-time orientation estimation over

counterpart [146]:

• Formulates attitude estimation in the quaternion domain, devoid of the singularities

and gimbal lock in Euler domain.
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• Computationally inexpensive; 109 and 248 scalar operations per update in C code.

• Effective for low-sampling rate sensors.

• Converges in one gradient descent step; the optimization formulation ensures counter-

action of the effects of translational movement (e.g., linear acceleration) and obtains

the most likely orientation candidate.

• Includes magnetic distortion compensation and IMU calibration steps.

• Single tunable parameter β for simple and intuitive deployment.

4.4 Hardware and Quantization-Aware Bayesian NAS

Most SOTA NAS techniques use evolutionary search or reinforcement-learning to find opti-

mal neural architectures, with the weights and architectural encodings optimized separately

via gradient-driven or one-shot NAS as a ”once-for-all” supernetwork, resulting in networks

configurations that provide the best performance during deployment under diverse target

constraints but take thousands of GPU hours to evaluate [23]. To find the ideal TinyML

neural inertial candidate from the backbone TCN for limited flash, RAM and latency re-

quirements, we model the search as a parallelizable black-box Bayesian optimization problem

(BO) with fewer elastic parameters or hard constraints. The search space Ω consists of neu-

ral network weights w, hyperparameters θ, network structure denoted as a directed acyclic

graph (DAG) g with edges E and vertices V representing activation maps and common ML

operations v (e.g., convolution, batch normalization, pooling etc.) respectively, which act on

V . 

fopt = λ1faccuracy(Ω) + λ2fflash(Ω) + λ3fSRAM(Ω) + λ4flatency(Ω)

faccuracy(Ω) = Lval(Ω),Ω = {{V,E}, w, θ, v}

fflash(Ω) = −max(0, (||w||0 + α)− flashmax)

fSRAM(Ω) = −max(0,maxl∈[1,L]{||xl||0 + ||al||0) + β} − SRAMmax)

flatency(Ω) = OPS ∨ FLOPS

(4.31)
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where,

a = w ∨ y, y =
K∑
k=1

vkgk(x,wk), |z|0 = 1 (4.32)

The objective function fopt can be thought of as seeking a Pareto-optimal configuration of

parameters Ω∗ under competing objectives [29] such that:

fk(Ω
∗) <= fk(Ω) ∀k,Ω ∧ ∃j : fj(Ω

∗) < fj(Ω) ∀Ω 6= Ω∗ (4.33)

Validation loss serves as a proxy for the accuracy of the model [29][147], while the total

number of weights serves as a proxy for the total flash required for storing the neural network

weights (unstructured pruning) [28][29]. COTS tools such as TFLite Micro stores network

weights, quantization parameters and network graph on flash, while using the arena on

SRAM to store intermediate activation maps and tensors, persistent buffer and TFLite

Micro runtime interpreter parameters [29]. As a result, we use either the standard RAM

usage model or assume that the outputs are stored on flash while the layerwise inputs and

weights reside in the arena for optimizing peak working memory. Since, model latency is

linearly proportional to the OPS count for a variety of convolutional models, we use FLOPS

or OPS as a proxy for runtime latency [28]. In addition, we inject layerwise quantization

simulation encodings based on weight and activation distribution in the training phase using

”Enhanced Tensorflow” scheme for quantization-aware training (QAT) [43]:

wi,l = Swf,l +

(
δmin

S

)
, S =

δmin − δmax

2BW − 1
(4.34)

where, δ represents clamping thresholds and BW represents the target bitwidth. QAT mit-

igates layer-wise quantization error across channels due to variance of weights for small

models.2

We use Gaussian process GP as the surrogate model to approximate fopt, which allows

priors on the distribution of moments to propagate forward as the search progresses. In

addition, the domain of random scalarizations λ can be specified by the user to guide the

parallel search acquisition functions (hallucination or K-means clustering) into the promising

2https://github.com/quic/aimet
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Pareto-optimal regions of the gradient plane. The acquisition function decides the next set

of Ωn to sample from the design space using Monte Carlo sampling with Bayesian Upper-

Confidence Bounds (UCB), also known Thompson sampling, which balances exploration

and exploitation [147]. Apart from speeding up the NAS, parallel search ensures that NAS

is not being performed on network morphs early on (exploitation) and information gain is

maximized in the search process (exploration), yielding a stage-wise ”coarse-to-fine” search

space:

f̂(Ω) ∼ GP(µ(Ω), k(Ω,Ω′)) (4.35)

Ωt = arg max
Ω

(µt−1(Ω) + β0.5σt−1(Ω)) (4.36)
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CHAPTER 5

Datasets, Hardware and Implementation

In this chapter, we outline implementation specifics of robust and efficient neural inertial

localization and complex activity recognition. Specifically, we benchmark our uncertainty

aware complex event pipeline (Chapter 3) on the Cooking Activity Dataset with Macro and

Micro Activities as part of the 2020 Cooking Activity Recognition Challenge [154][155]. We

perform preliminary evaluation of our efficient neural inertial localization framework (Chap-

ter 4) on the Oxford Inertial Odometry Dataset (OxIOD) [131], and provide a compact,

ultra-low-power, environmentally resilient and modular inertial odometry hardware config-

uration that pushes the state-of-the-art in inertial odometry hardware. Lastly, we test the

performance of Madgwick filter on the NESL Earable Mobility Corpus1, a large-scale head-

pose and simple activity detection dataset developed by ourselves using earable sensors.

5.1 The Cooking Activity Recognition Challenge

The 2020 Cooking Activity Recognition Challenge [154] embraces the hurdles of uncertainty

and abnormality in sensor-based complex activity detection in the wild, with the goal of

building a classifier to classify 3 distinct macro and 10 distinct micro-activities as follows:

• Making a sandwich - cut, wash, take, put, other

• Preparing fruitsalad - cut, take, peel, add, mix, put, other

• Preparing cereal - cut, take, pour, peel, put, open, other

1Dataset available at: https://github.com/swapnilsayansaha/Wearable_Acoustic_AR
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The training dataset consists of 30-second windows from 3 subjects in 288 data frames/files.

Sensors include 4 triaxial accelerometers placed at left wrist, right wrist, right arm, and

left hip and 29 triaxial motion capture (mo-cap) markers placed at random locations of the

body, totaling 99 sensor channels. Each frame corresponds to a single macro-activity, with

one-to-multiple possible micro-activities. Mo-cap samples are captured at approximately 100

Hz, while the accelerometers’ sampling rates vary between 50Hz - 100Hz. The starting and

terminal timestamps for each micro-activity are absent. The test dataset contains unlabeled

data from a 4th subject. The count for each class label is shown in Figure 5.1.

Figure 5.1: Distribution of subject-wise class labels in the Cooking Activity Dataset.

Fig. 5.2 shows the plots for 12 accelerometer channels for one of the 288 training files,

indicating missing samples and sampling rate jitter. For our experiments, we chose to omit

the 3 left-wrist channels due to high frequency of wrongly annotated timestamps and miss-

ing data in all files. Furthermore, mo-cap supplies absolute position rather than motion

signatures unique to each action primitive. In our experiments, the motion capture data did

not improve the validation accuracy. Thus, we trained final models using 9 accelerometer

channels (right wrist, right arm, and left hip).
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Figure 5.2: Accelerometer plots for one of the 288 frames, indicating the presence of missing

data and variable sampling rates.

For classification, the files in the training set were split into 60:20:20 (train:validation:test)

ratio randomly for both macro and micro-activity classification. The dataset was split by

files (sessions/trials).

5.1.1 Model Implementation Specifics

We use an ensemble of 10 DCBL classifiers with majority voting decision fusion to classify

macro-activities and conditionally select some of 20 micro-activity DCBL binary classifiers

(one-vs-all, ensemble of 2) based on the macro-activity label. In addition, for tuning the

window size, we tested the performance of single CNN, LSTM and DCBL for macro and

micro-activity classification. Table 5.1, 5.2 and 5.3 illustrates the architecture of each model.

The right wrist, right arm, and left hip accelerometers were used in training the final models.

Sliding overlapping window of length 10 second (other candidates included 3 and 6 seconds)

was used, with a stride of 1 second. No feature extraction or post-processing techniques were
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applied to the final models.

The models were implemented in Jupyter notebook (Python), using Keras and Sklearn

via a Tensorflow backend, with MATLAB being used for minor errands such as generating

labels and splitting training set. All models were trained on a GPU-machine with 128 GB

RAM, 2x 12 GB Nvidia GeForce GTX 1080 Ti, and 3.4GHz AMD Ryzen Threadripper

1950X 16-core CPU. The total training time for the final 10 macroactivity classifiers was

approximately 5 hours (including data preprocessing and loading). 40 epochs were used per

classifier. The training time for the 20 microactivity binary classifiers was approximately

1 hour and 30 mins, with 10 epochs being used per classifier. The total time required to

operate on the test set was approximately 8 minutes.

Table 5.1: Sample architecture of implemented CNN.*
Layer (type) Param # Size Stride Activation Output Shape

Conv 1 1408 (1, 10) (1, 1) ReLu (12, 500, 128)

Conv 2 163968 (1, 10) (1, 1) ReLu (12, 500, 128)

B. Norm 1 512 (12,500,128)

Conv 3 163968 (1, 10) (1, 1) ReLu (12, 500, 128)

B. Norm 2 512 (12, 500, 128)

Max. pool 1 (1,3) (1,1) (12, 166, 128)

Conv 4 163968 (1, 10) (1, 1) ReLu (12, 166, 128)

Conv 5 163968 (1, 10) (1, 1) ReLu (12, 166, 128)

B. Norm 3 512 (12, 166, 128)

Max. pool 2 (1,2) (1,1) (12, 83, 128)

Dropout 1 (12, 83, 128)

Conv 6 163968 (1, 10) (1, 1) ReLu (12, 83, 128)

B. Norm 4 512 (12, 83, 128)

Max. pool 3 (1,2) (1,1) (12, 41, 128)

Dropout 2 (12, 41, 128)

Flatten 1 (62976)

Dense 1 3022912 ReLu (64)

B. Norm 4 256 (64)

Dropout 3 (64)

Dense 2 195 Softmax (3)

* Output shape and parameter numbers are different for micro-activity classifiers
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Table 5.2: Sample architecture of implemented LSTM.*
Layer (type) Param # Size Stride Activation Output Shape

LSTM 1 70656 tanh (500, 128)

Dropout 1 (500,128)

LSTM 2 131584 tanh (128)

Dropout 2 (128)

Dense 2 387 Softmax (3)

* Output shape and parameter numbers are different for micro-activity classifiers

Table 5.3: Sample architecture of implemented DCBL.*
Layer (type) Param # Size Stride Activation Output Shape

Conv 1 1408 (1, 10) (1, 1) ReLu (12, 500, 128)

Conv 2 163968 (1, 10) (1, 1) ReLu (12, 500, 128)

B. Norm 1 512 (12,500,128)

Conv 3 163968 (1, 10) (1, 1) ReLu (12, 500, 128)

B. Norm 2 512 (12, 500, 128)

Max. pool 1 (1,3) (1,1) (12, 166, 128)

Conv 4 163968 (1, 10) (1, 1) ReLu (12, 166, 128)

Conv 5 163968 (1, 10) (1, 1) ReLu (12, 166, 128)

B. Norm 3 512 (12, 166, 128)

Max. pool 2 (1,2) (1,1) (12, 83, 128)

Dropout 1 (12, 83, 128)

Conv 6 163968 (1, 10) (1, 1) ReLu (12, 83, 128)

B. Norm 4 512 (12, 83, 128)

Max. pool 3 (1,2) (1,1) (12, 41, 128)

Dropout 2 (12, 41, 128)

Permute 1 (41,12,128)

Reshape 1 (41,1536)

Bi. LSTM 1704960 (256)

Dense 771 Softmax (3)

* Output shape and parameter numbers are different for micro-activity classifiers

5.1.2 Baselines and Variations

For uncertainty-aware complex activity recognition, we had the following baselines:

• Vanilla DNN : We tested the performance of the three multi-label classifiers shown in
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Table 5.1, 5.2 and 5.3 without any uncertainty injection.

• DNN with normalization and interpolation: Vanilla DNN with classical uncertainty

pre-processing techniques such as bandpass filtering (using 20 Hz butterworth low-

pass filter), normalization (z-normalization, uni-variance, and min-max scaling) and

vanilla interpolation (linear, spline, autoregression).

• DNN with mo-cap data: Multi-label classifiers trained on motion capture data instead

of IMU signals.

• Hierarchical DNN with time-shift augmentation and window jitter : We add controlled

artificial shifts and sampling rate jitter to the training data. To handle missing data,

we follow the push ahead contained samples (no masking). In addition, we start using

the hierarchical DNN architecture discussed in Chapter 3.

• Hierarchical DNN with time-shift augmentation, window jitter and masking : Same as

previous, but with mask metadata channel included.

• Top 10 competitors : We also compare the performance of our approach with the top

10 (out of 78) competitors in the competition. Models include CNN, CNN-LSTM,

DC-GRU, LightGBM, Naive-Bayes, Graph CNN, kNN and multi-sampling classifiers

[154]. Details of each approach can be found in [156].

5.2 The OxIOD Dataset

There are several large-scale annotated inertial odometry datasets in eclectic domains, with

notable ones being:

• Human localization: TUM-VI [157], RIDI [75], RoNIN [82] and OxIOD [131].

• Vehicle trajectory estimation: KITTI [158], KAIST Urban [159], nuScenes [160], Berke-

ley DeepDrive [161] and PandaSet [162].

• UAV flight patterns: EuRoC MAV [163].
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• Underwater AUV motion: AquaLoc [164].

As a starting point for preliminary benchmarks, we chose the Oxford Inertial Odometry

Dataset (OxIOD) [131], which is the second largest inertial navigation dataset aimed towards

human localization right behind the RoNIN dataset [82]. Features of the dataset include:

• 14.7 hours of 9DoF indoor inertial sequences collected via smartphone IMU and anno-

tated via Vicon motion tracker system (provides ground truth position and orientation

of the phone in real-time), totaling a distance of 42.6 km from 5 users and across 2

floors (1650 and 2475 meter squared).

• 0.5 mm ground truth resolution, which is better than any other inertial navigation

dataset.

• Various sensor configurations - smartphone in the hand, in the pocket, in the bag and

on a trolley.

• Diverse walking patterns - slow walking (0.5 m/s), normally walking (1 m/s) and

running (1.5 m/s).

• 4 common inertial sensor models found in commodity smartphones (iPhone 5, 6 and 7

plus and Nexus 5).

• UTC time-synchronized ground truth and inertial sequences available to account for

time-stamp misalignment.

• Separate file-wise training and test splits.

For initial evaluation, we chose 6 inertial channels across 6 different deployment scenarios,

namely ’handheld’, ’handbag’, ’pocket’, ’trolley’, ’slow-walking’ and ’running’. The 6 iner-

tial channels include tri-axial accelerometer streams (minus gravity) and tri-axial gyroscope

streams recorded at 100 Hz. The initial frame length was 200 samples, with a stride of

10 samples (sliding window), which improves the output rate of the neural network. For

the ground truth polar vector, we extracted the average velocity and heading over these
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2-second frames from the 3D ground truth pose, assuming loose nonholonomic constraints

on the vertical motion patterns of test subjects. Figure 5.3 shows sample trajectory from one

of the training files in the OxIOD dataset, along with sample accelerometer and gyroscope

traces. Figure 5.4 shows the sample extracted displacement, heading rate and absolute head-

ing traces for the same file. The heading rate changes much more slowly and predictably

compared to the absolute heading, and is easier to model using DNN. By extracting head-

ings and displacements from raw positions, we constrain the possible outputs required for

the DNN to learn within finite bounds.

Figure 5.3: Sample trajectory, accelerometer and gyroscope traces from one of the training

files in the OxIOD dataset.

Figure 5.4: Sample displacement, absolute heading and heading rates from one of the training

files in the OxIOD dataset.

We split the training set with 49 sequences into 34 training files and 15 validation files
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(we did not touch the test files during training), totaling 164514 2-second 6-channel inertial

sequences for training and 62392 sequences for validation. For quantifying the performance

of TCN, we train the TCN using displacement and heading rates. However, due to technical

issues, we used the absolute heading and displacement for evaluation in the NAS algorithm.

5.2.1 Inertial Localization Model Settings

Inspired from L-IONet [131], our initial backbone network consisted of a 8-layer TCN with

a dilation factor of 2, filter size of 32 and batch size of 256. We used Keras TCN library to

implement the network via a Tensorflow backend. We tested separate models for heading

rate and displacement, before ultimately switching to a single model for both heading and

displacement regression. We used Adam optimizer with a learning rate of 1e−5, using mean-

squared error loss between predicted and ground-truth elements (strided velocity and heading

loss). Initially, all the models were trained on a GPU-machine with 128 GB RAM, 2×12 GB

Nvidia GeForce GTX 1080 Ti, and 3.4 GHz AMD Ryzen Threadripper 1950X 16-core CPU

for 1000 epochs. The neural architecture for joint optimization is shown in Figure 5.5.

Figure 5.5: Sample backbone TCN architecture for dead-reckoning, with shapes and param-

eter count of each layer.
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5.2.2 NAS Parameters

To implement Bayesian NAS, we use the Mango parallel hyperparameter tuning library

[147]. Mango is a multi-armed bandit Bayesian optimizer, using Gaussian Process as surro-

gate function and Bayesian UCB to guide the search in the NAS design space. Mango also

supports parallel search acquisition functions using either hallucination or K-means cluster-

ing through distributed computing frameworks such as Celery, Kubernetes or Horovod. We

used 10 epochs in the Bayesian optimization (except one case where we used 100 iterations)

with a batch size of 1. For each candidate model, we trained for 50 epochs. The search space

for our NAS (colored red in Figure 5.5) was as follows, containing ∼ 1014 neural networks:

• Number of filters: 2 to 64 with a stride of 1

• Kernel size: 2 to 16 with a stride of 1

• Dropout rate: 0 to 0.5 with a stride of 0.1

• Skip connection usage: True or False

• Normalization: Batch normalization, Layer normalization and Weight normalization

• Dilations: Combination of 3 to 8 layer TCNs with dilation factors chosen from 1, 2, 4,

8, 16, 32, 64, 128, 256

5.2.3 Loading Models on Target Hardware

To load the TF models onto embedded hardware, we use TFLite Micro [62][63]. We convert

the model to TFLite object and then convert the TFLite object to portable C code as header

files. We then import the header files into Mbed Studio to include in the application. The

steps to include and run the model in code are as follows:

• Initialize header files and declare TFLite Micro namespace.

• Initialize the target, set up debug log and map the model to usable data structure.
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• Declare the operator resolver and build an interpreter.

• Allocate memory from arena to model’s tensors and obtain pointers for model’s input

and output buffer.

• During runtime, pass data to the model via the input pointer.

• Invoke the interpreter and get inference from model via output pointer.

5.2.4 Baselines and Variations

For preliminary evaluation of our efficient neural inertial localization algorithm, we chose

the following baselines:

• TinyEKF [165]: EKF without error correction heuristics shown in Figure 2.1, but

geared towards embedded implementation.

• TinyEKF with GPS : TinyEKF, but with GPS for error correction.

• IONet-LSTM [120]: The first end-to-end DL-based neural inertial navigation model,

where sequential learning was introduced.

• RoNIN-TCN [82]: One of the successors of IONet, which allows unrestricted sensor

orientations and positions.

• L-IONet [131]: Lightest neural inertial navigation model geared towards real-time

smartphone implementation. The base network that we start with is structurally sim-

ilar to L-IONet.

We also qualitatively compare the performance of our NAS algorithm with MCUNet, Once-

for-All and MicroNets [24][23][28], which are SOTA among existing NAS algorithms.
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5.3 Hardware for Neural Inertial Localization

To support long-term, low-power, durable and inexpensive neural inertial localization at the

edge, we designed one of the smallest, lightest, lowest-power and highest-resolution inertial

hardware framework with active communications, capable of running inertial odometry al-

gorithms at the edge that pushes the SOTA in odometry hardware. The fabricated circuit

board is illustrated in Figure 5.6.

Figure 5.6: Proposed dead-reckoning hardware.

We use an ultra-low-power STM32L476RG ARM Cortex M4 microcontroller (128 kB

RAM, 1 MB flash) with built-in floating point unit running Mbed RTOS. For the inertial

sensor, we use a Bosch BMX-160 9DoF MEMS IMU [169] with built-in temperature com-

pensation, power-management unit and cross-channel time synchronization. The board also

features a MS5837-30BA underwater pressure sensor for altitude estimation, an ORG-1411

GPS module for occasional position correction when GPS is available and a HTS221 tem-

perature/humidity chip. For time-stamping, we added a M41T62 (with embedded crystal)

real-time clock (RTC). The board is capable of harvesting energy depending on deployment

environment, e.g., for the underwater version, we added an Al-air energy-harvesting system

(BQ25570 for energy management) that can generate ∼ 4-5 mW of power from oceanic salt

water. The tag supports LoRa or BLE for over-the-air communication, and uses 29 KHz
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ultrasonic piezoacoustic communication in both active and backscatter [170][171] mode for

underwater communication. The entire board consumes 330 mW of power maximum. For

storage, we added 128 MB of serial flash. The tag measures 32 × 32 × 10 mm, and is suitable

for widespread deployment without incurring noticeable size, weight or power overhead.

Figure 5.7: System diagram of the sensor tag configuration.

5.3.1 Mechanical Encasement and Circuit Board Specifications

We designed a waterproof 3D-printed base and cap for the sensor tag, made out of pho-

topolymer resin, shown in Figure 5.8. The encasement around the transducer was 3D-

printed using Carbon Elastomeric Polyurethane Resin (EPU-40) to allow the transducer

vibrate freely during communication (high elasticity), while still allowing for a tear-resistant

surface protecting the electronics of the tag against the elements. EPU-40 provides better

acoustic impedance over generic polyurethane encasement [170] commonly used for under-

water backscatter networking, while being easier to prototype in an inexpensive manner. In

addition, the transducer sits on a rubber washer to reduce friction between the base and

the vibrating transducer [170]. To seal the tag, we use waterproof removable caulk, which
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allows the adhesive to be peeled off for easy access to the electronics and battery during

programming and maintenance.

Figure 5.8: Encasement for the proposed hardware, showing the bases in gray and encasement

in red.

The circular printed circuit board (PCB) is mounted inside the cylindrical piezoacoustic

transducer (PZT). The PCB has a radius of 14.5 mm and is the 2nd densest inertial PCB

after the ST SensorTile [172], which itself is underpowered to run odometry algorithms

on-board. The PCB is a 4-layer 2-sided high-density-interconnect PCB with lead-free gold

contacts for reducing environmental toxicity footprint. The cost of each PCB is ∼ 100 USD.

5.3.2 Energy Harvesting

For underwater energy harvesting, we use a miniature Al-air battery system [173][174]. We

use Aluminum (Al) strips as anodes and activated charcoal as cathode. The following reac-

tions occur in the presence of salt-water:

Anode: Al→ Al3+ + 3e− (5.1)

Cathode: O2 + 2H2O + 4e− → 4OH− (5.2)
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The reaction requires flow of ocean water to occur, which contains 3.5% Sodium Chloride.

We use a ring of electrodes around the encasement (shown in Figure 5.6). We managed to

generate ∼4-5 mW of power with the electrode configuration shown in Figure 5.6, achieving

an open-circuit voltage of 1.1V and short circuit current of 40 mA. The generated power is

well over the power consumption of the tag in sleep mode and is suitable for charging the

included Li-Po battery. To harvest such tiny amounts of power, we use the BQ25570 energy

harvester chip [175]. The chip can harvest uW to mW of power while consuming power in

the order of nW, with a minimum input voltage of just 100 mV required to start harvesting.

The chip also features a boost battery charger with overcharge/undervoltage protection and

a buck regulator to supply system power rail from the battery, which in our case is 3.3V.

It is also possible to use other forms of energy harvesting with this chip, such as solar and

thermoelectric generators.

Figure 5.9: (Left) : PZT driver circuit in active mode. The speaker symbol denotes the

PZT. The PWM signal is fed through resistor. (Right): Manchester encoding.

5.3.3 Communication

For underwater communication, we use an ultrasonic PZT tuned to 29 KHz resonant fre-

quency. In active mode, we use a MOSFET driven LC tank circuit controlled by the pulse

width modulation (PWM) pins of the Cortex M4. The communication uses Binary Phase

Shift Keying (BPSK) with Manchester encoding. The signals can be picked up using a
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hydrophone. In addition, the PZT supports batteryless backscatter communication and

energy-harvesting [170][171] with range in the order of tens of meters. In active mode, the

PZT supports range in the order of hundreds of meters. Figure 5.9 shows the PZT driver

circuit. The extracted impedance curve for the PZT is shown in Figure 5.10. For over-the-air

communication, we also provide provision to use LoRa or BLE [176].

Figure 5.10: Extracted impedance plot for the 29 KHz PZT, showing a resonant frequency

around 31 KHz.

5.3.4 Specifications of Localization Sensors

5.3.4.1 IMU

We used the Bosch BMX-160 IMU in our design, which is one of the smallest footprint,

lowest power, lowest noise profile and highest resolution inertial sensors in the market [169].

The IMU has built-in temperature compensation, power-management unit and cross-channel
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time synchronization. The specifications of the sensor are as follows:

• Current consumption: Gyroscope: 850 uA, Accelerometer: 180 uA, Magnetometer:

660 uA, total: 1.69 mA @ 3.3V.

• Output data rates (maximum): Gyroscope: 3200 Hz, Accelerometer: 1600 Hz, Mag-

netometer: 12.5 Hz.

• Range and Sensitivity: Gyroscope: ±250-2000 deg/s (131 - 16.4 LSB/deg/s), Ac-

celerometer: ±2-16g (16384 - 2048 LSB/g), Magnetometer: ±1150 uT (28.5 LSB/uT)

and ±2500 uT (13.1 LSB/uT).

• Space footprint: 2.5 × 3.0 × 0.95 mm

• Noise density: Gyroscope: 0.008 deg/s/
√

Hz, Accelerometer: 180 ug/
√

Hz, Magne-

tometer: 0.5 uT.

5.3.4.2 Pressure Sensor

We included the MS5837-30BA underwater pressure sensor with built-in thermometer for

temperature compensation for altitude measurements [177]. The sensor can be used up to

300 meters depth in water, with a resolution of 0.2 cm. It consumes 0.6 uA @ 3.3V of power.

The space footprint is 3.3 × 3.3 × 2.75 mm.

5.3.4.3 GPS

We also included a Origin ORG-1411 GPS module [178] for occasional localization error

correction when GPS signal is available. ORG-1411 is the world’s smallest profile GPS

module with included patch antenna, with a footprint of only 10 × 10 × 3.8 mm with a

mass of 1.4 grams. The position resolution is approximately 2 meters. The GPS consumes

77 mW of power during fix with a time-to-first-fix (TTTF) of approximately 30 seconds

[176], and also features a low-power mode of 15 uA @ 3.3V. It is possible to use aided

start (assisted-GPS) by storing almanac and ephemeris data of GPS satellites in the flash,
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reducing TTTF to 6 seconds.

5.3.5 Target Hardware Platforms

For benchmarking optimized neural inertial architecture found via NAS as well as baselines

in terms of latency, memory usage and flash usage, we setup several embedded boards with

varying clock speeds, SRAM and flash apart from the described hardware platform:

• STM32L476RG Nucleo (128 kB SRAM. 1 MB flash)

• STM32F746 Discovery (340 kB SRAM, 1 MB flash)

• STM32 Nucleo-144 (1 MB SRAM, 2MB flash)

• Arduino BLE 33 (256 kB SRAM, 1 MB flash)

• Arduino Uno R3 ATMega328p (2 kB SRAM, 32 kB flash)

5.4 The NESL Earable Mobility Corpus

The Networked and Embedded Systems Lab (NESL) Earable Mobility Corpus was developed

to support the integration of dynamic/spatial audio capabilities in a mixed reality MR)

environment using sensor modalities from the physical world. Specifically, we use eSense

[166], an open earable platform [167][168] to collect inertial data of the head pose and

stream the data to an edge device via BLE. Using traditional or DL frameworks coupled

with Bayesian and non-Bayesian filters, the user’s motion/status changes are mapped to the

reference frame in the virtual world via a head-pose transfer function, ultimately altering

the dynamics of the monoaural sound sources in the virtual world to dynamic audio. The

MR platform reacts to head mechanics by creating a digital twin of sound dynamics (e.g.

attempting to reproduce the Doppler Effect and Binaural Effect) and transmitting it to the

earables to complete a perception-processing-feedback loop. We test the performance of

Madgwick filter on this dataset.
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Figure 5.11: Goal of the NESL Earable Mobility Corpus

5.4.1 Data Collection Framework

To collect head-pose training data, a subject is instructed to sit at a particular position

(called the origin, say (x′, y′, z′)) in the experimental testbed with the appropriate earables

worn on both ears. The left earable, which houses the 6DOF IMU, transmits inertial data

to an android app developed for mining eSense IMU data. The right earable is used to

record sound being emanated from a speaker with the centroid at a fixed point (x′′, y′′, z′′).

In addition, the subject is asked to wear a hat with OptiTrack IR markers mounted in a

rigid body configuration. The subject is then asked to look at several marked points in the

3D space in the experimental testbed with respect to (x′′, y′′, z′′), i.e. the user initially fixes

his head towards the origin and then moves his head towards a particular point (x′′′, y′′′, z′′′).

Two types of transitions need to be taken into account:

• Head movements from origin to marked point and vice versa.

• Head movements from origin to multiple marked points and vice versa.

In the experimental testbed, there are 27 marked points and we collect 34 (13+21) distinct

head-pose inertial frames per subject. Each user keeps his gaze fixed at the marked points

for at least 1/2 seconds. The experimental setup is shown in Figure 5.12.
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Figure 5.12: Experimental setup for earable, Optitrack and audio data collection.

The OptiTrack system consists of 6 IR cameras and serves as the ground truth for the

eSense inertial data, with a screen recorder application recording visual cues and the Motive-

Tracker software recording inertial data of the rigid body formed by the markers. In order

to synchronize all of the data collection systems, timestamping is used such that the frame-

works synchronize time with their respective local system clocks already synchronized with

time from the Internet NTP servers. To help simplify things further, the user nods his head

in a certain motion (we call it ”calibration nod”) while saying ”start” before providing the

head-pose readings. The subjects were asked to do the following in part 1 of the experiment:

• Wear the cap. Inform the collector to start data collection. Collector starts the e-Sense

android app, starts the binaural audio playing on the speakers, starts audio recorder

and finally starts the Optitrack system.
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• When collector says ”START”, nod your head horizontally in “No” motion three times

and vertically in “Yes” motion three times (this is to sync the OptiTrack system with

the e-sense system). Collector will show how to do it efficiently. Say the word “Start”

when you start nodding your head.

• Start with your eyes fixed at the origin for 2 seconds. (step 1).

• Move your head towards a target. (step 2)

• Keep your head fixed at the target for 2 seconds. (step 3)

• Move your head back to origin. (step 4)

• Repeat the above steps (steps 1 to 4) for the following transitions (origin – target –

origin). If you can’t see a number, make sure your point it out to the data collector

before starting the experiment.

• Once you’re done (make sure your head is fixed towards origin, inform the data collector

without moving your head). Don’t remove cap or earables. Collector will stop data

collection.

Part 2 of the experiment followed similarly, except subjects moved their head from origin

to first target, first target to second target and then back to origin. For the last 2/3 sub-

jects, we used a laser pointer to help subjects identify targets. In order to characterize the

position of each marked point in the 3D experimental testbed, we use a Leica Disto X3 laser

rangefinder and a smartphone compass to obtain the distance, azimuth and elevation angles

of the targets from the point the subject sits. It is important to note that since height of

each subject varies, it is important to designate the azimuth and elevation angles of each

point with respect to the origin separately for each subject. We keep record of the height of

the ears of the subject from the Optitrack origin rigid body, their natural height, weight and

age. We have found out that if we set the rangefinder at the average height of the ears of the

subject from the Optitrack rigid body ( 15 inches) of all subjects, then the elevation angles
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is 0 degrees when the rangefinder points directly towards the origin. Figure 5.13 shows the

target locations in the 3D space.

Figure 5.13: Targets characterized in Cartesian Coordinates (dimensions are given in inches).

In addition, we also aim to create a HAR dataset using the earable sensors. Using

the same subjects and an optical camera for ground truth, we have created a database of

several fine-grained activities such as activities relevant to body and limb motions pertinent

to VR/MR context. Such a dataset maybe useful for future research where the user is able

to move physically in a MR context rather than being bounded to head-movement. The

following activities have ben recorded: 1. Walking 2. Jogging 3. Jumping 4. Standing 5.

Turning Left 6. Turning Right 7. Sitting 8. Laying 9. Falling.

The Optitrack data is recorded as .tak files, while the earable inertial data is recorded as

.txt file. The audio data is recorded in .mp3 format and the camera data were recorded as

video files. The earable parameters were set as follows:

• Range of accelerometer: +- 2g, gyroscope: +- 500 deg/S

• Advertisement and connection intervals: 45-55 mS and 20-30 mS respectively
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• Sampling rate: 100 Hz.

• Low pass filter: Enabled for both accelerometer and gyroscope, cutoff frequency set at

5 Hz for both.

In total, we collected inertial data from 15 subjects.

5.4.2 Data Preprocessing

Filtering, windowing and labeling of the data were done manually, correlating visual Opti-

track cues with gyroscope sensor data plots as well as audio data for assistance. Manual

correlation was applied for four reasons:

• Some subjects made mistakes during takes, either missing designated targets, over-

shooting their head movement or looking at wrong targets.

• Some subjects didn’t move their head at all while looking at targets very close to the

origin (targets 1-6 for example). They were not captured by Optitrack, let alone the

earable.

• The sampling rate of earable data collection was not constant and jumped erratically

between 1 Hz to 100 Hz due to loss in LoS between earable and mobile phone, BLE

channel latency, improper advertisement and connection intervals of the earable as well

as smartphone’s performance bottleneck.

• Sometimes, the app didn’t collect data at all (missing data).

We observed that when user moves his head left and right, gyroscope’s x and y axis provides

negative and positive values respectively (unless a subject decides to wear the earable in a

completely erroneous manner, which happened in case of one subject. It is important to note

that the earable goes in only one way). Likewise, When user moves his head up and down,

gyroscope’s z axis provides negative and positive values respectively (regardless of how the

user wears the earable). A single head rotation on the gyroscope-time plot essentially consists
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of a triangular/bell curved shape peak, with the rate of change of the angular velocity as

well as the angular velocity being proportional to how fast the user moves his head (faster

= thinner and taller peak, slower = thicker and smaller peak). In case of head movements

from a single target and back, one will observe two opposite peaks on the gyroscope plot.

For dual targets, one will observe groups of three peaks. The observations are illustrated in

Figure 5.14.

Figure 5.14: Sample plot of angular velocity (x plane) vs time for origin-target-origin take.

The head movements are identified and numbered in the graph visually here without the

need for aid of ground truth data from Optitrack.

After slicing, cleaning and labeling the headpose data from all 15 subjects. 1266 inertial

frames were obtained. 356 of these frames were captured for origin-target-origin takes and

910 of these frames were captured for origin-target1-target2-origin takes. 607 of the 910

frames correspond to origin-target1 and target2-origin frames while the rest 303 frames

correspond to target1-target2 frames. The head pose estimation is presented in the form of

altitude and elevation and direction appropriate to the HRTF. The HRTF is then interpolated

to the point specified by the IMU and filters are made for left and right audio. For activity

classification, a sliding window of 1 seconds with stride length of 0.5 seconds was chosen.
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241 spatial features were extracted from 8002 frames of 9 activities. For this thesis, we omit

the activity recognition part and instead focus on the performance of Madgwick filter as a

head-pose regressor.

Figure 5.15: Number of frames of all 27 targets for head movement from origin to target and

target to origin (apart from these, there also exists target-target head movement).
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CHAPTER 6

Preliminary Evaluation and Discussion

In this chapter, we discuss the results of our preliminary benchmarks and provide inferences

on the observations. We divide the preliminary evaluation into three parts:

• Evaluation of the robust uncertainty aware hierarchical complex event processing pipeline

on the cooking activity dataset.

• Evaluation of efficient neural inertial localization framework, namely the TCN obtained

via NAS on the OxIOD dataset and various target hardware.

• Evaluation of orientation estimation algorithm on the NESL Earable Mobility Corpus.

6.1 Complex Activity Recognition

This section is concerned with the ideas presented in Chapter 3 and 5.1.

6.1.1 Performance characteristics for vanilla models

Figure 6.1 shows the classification performance of proposed classifiers (window-by-window

basis) on the raw dataset without incorporating any interpolation, augmentation, mask-

ing, or jitter techniques. For micro-activity classification, a multi-label classifier was used.

From Figure 6.1, we see that vanilla LSTMs perform poorly as they are unable to extract

spatially-correlated temporal features over long time-windows. However, since a macro-

activity is composed of distinct constituent micro-activities, smaller time-windows may not

provide sufficient discriminatory features to distinguish between each activity. This trend

is evident for CNNs and DCBLs, where increasing the time-window generally increases the
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classification performance. DCBL provides better generalization over CNN (although macro-

activity classification can largely be attributed to learning transient features over the latent

space) by taking into account temporal insights of constituent micro-activities apart from

spatial features, which may not be similar for each macro-activity data frame due to dis-

tinct constituent micro-activity. The best classification performance for both macro and

micro-activity classification was observed for DCBL operating on 10-second windows, being

0.80 and 0.50, respectively, motivating us to choose DCBL-10 for our endeavors. The same

classifier provided test accuracies of 0.73 and 0.37 on macro and micro-activity test splits

respectively for window-by-window basis, and 0.77 and 0.48 on macro and micro-activity test

splits respectively for file-by-file basis (taking maximum classification output of all windows

in a file).

Figure 6.1: Average classification performance (window-by-window basis) for proposed ar-

chitectures without pre-processing applied.

6.1.2 Effect of normalization and vanilla interpolation techniques

To manually account for missing data and smooth the output, pre-processing techniques such

as bandpass filtering (using 20 Hz butterworth low-pass filter), normalization (z-normalization,

uni-variance, and min-max scaling) and vanilla interpolation (linear, spline, autoregression)

were applied but negligible or negative performance improvement was observed over vanilla
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approach. For example:

• Z-normalization on DCBL-6 provided a validation accuracy of 0.77 (compared to 0.78

for vanilla approach).

• Vanilla interpolation and smoothing techniques yielded validation accuracies as low

as 30-40% for DCBL-3, DCBL-6 and DCBL-10. Our hypothesis is that since large

sections of data are missing, vanilla interpolation (and smoothing) techniques do not

generalize well to repair missing data.

6.1.3 Incorporating mo-cap data

Validation accuracies fluctuated within 30-50% for DCBL, CNN, and LSTM macro-classifiers

using all 99 raw sensor channels (including mo-cap). Validation accuracy of 0.33 was observed

for the DCBL-10 macro-classifier using only the 87 mo-cap channels. As discussed earlier,

raw marker positions do not supply sufficient discriminatory features for each action class,

yielding low accuracies. To extract temporal features such as velocity, acceleration, and jerk

from the mo-cap channels, we utilized the RT-Mocap toolbox [179]. However, we did not

observe significant performance gains, with validation accuracies remaining within 37-44%

for both DCBL micro and macro-classifiers through the extracted features.

6.1.4 Performance with augmentation and jitter (without masking)

Table 6.1 and Table 6.2 illustrate the performance of DCBL-10 for macro and micro-activity

classification after incorporating jitter and data augmentation. For handling missing data,

we used the technique to push ahead contained samples and fill in the empty spots with a

constant (in our case, we chose to fill the spots with zeros). To enhance the performance

of micro-activity classification and allow usage of conditional classifier selection, we chose to

train one-vs-all binary classifiers instead of multi-label classifiers.
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Table 6.1: Macro-activity classification metrics for 5 random dataset splits.*
Trial Test

(W-W)

Validation

(W-W)

Train(W-

W)

Test (F-

F)

Validation

(F-F)

Train

(F-F)

Split 1 0.75 0.79 1.00 0.80 0.83 1.00

Split 2 0.74 0.82 1.00 0.78 0.90 1.00

Split 3 0.84 0.80 0.99 0.93 0.85 1.00

Split 4 0.81 0.84 1.00 0.88 0.93 1.00

Split 5 0.73 0.73 0.99 0.78 0.83 1.00

5-way mean 0.77 0.80 1.00 0.83 0.87 1.00

* W-W stands for window-by-window basis. F-F stands for file-by-file basis (taking maximum classification output from all

windows in a file).

Table 6.2: Micro-activity classification metrics (one-vs-all).
Binary

Classifier

Test

(W-W)

Validation

(W-W)

Train(W-

W)

Test (F-

F)

Validation

(F-F)

Train

(F-F)

Cut (0) 0.81 0.78 0.86 0.88 0.82 0.99

Wash (1) 0.89 0.91 1.00 0.90 0.92 1.00

Take (2) 0.82 0.82 0.99 0.84 0.90 1.00

Put (3) 0.83 0.79 0.99 0.90 0.84 1.00

Peel (4) 0.87 0.85 0.98 0.98 0.96 1.00

Add (5) 0.94 0.97 0.99 0.94 0.98 0.99

Mix (6) 0.93 0.94 1.00 0.92 0.92 1.00

Pour (7) 0.91 0.92 1.00 0.90 0.92 1.00

Open (8) 0.96 0.93 1.00 0.94 0.92 1.00

Other (9) 0.84 0.88 0.99 0.88 0.86 0.99

For a file-by-file basis, average test accuracy of 0.72 was obtained for micro-activity classi-

fication for all 10 labels, yielding a 24% performance improvement over the vanilla approach

(0.48). From Table 6.1, we can see that incorporating window jitter, time-shift augmenta-

tion and popping-ahead samples yielded 6% test performance improvement on average over

vanilla approach (0.83 vs 0.77) for macro-activity classification (file-by-file basis).

6.1.5 Performance with augmentation, jitter and masking

Table 6.3 and Table 6.4 illustrate the performance of DCBL-10 for macro and micro-activity

classification after incorporating jitter and data augmentation, as well as masking from [6],
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coupled with popping-ahead samples.

Table 6.3: Final macro-activity classification metrics (masking included)
Trial Test

(W-W)

Validation

(W-W)

Train(W-

W)

Test (F-

F)

Validation

(F-F)

Train

(F-F)

Split 1 0.80 0.81 0.99 0.88 0.90 1.00

Split 2 0.91 0.97 1.00 0.90 1.00 1.00

Split 3 0.87 0.82 1.00 0.95 0.90 1.00

Split 4 0.82 0.86 1.00 0.85 0.95 1.00

Split 5 0.77 0.77 1.00 0.80 0.90 1.00

5-way

means

0.83 0.85 1.00 0.88 0.93 1.00

Table 6.4: Final micro-activity classification metrics (masking included)
Binary

Classifier

Test

(W-W)

Validation

(W-W)

Train(W-

W)

Test (F-

F)

Validation

(F-F)

Train

(F-F)

Cut (0) 0.80 0.79 0.98 0.88 0.87 1.00

Wash (1) 0.87 0.89 0.99 0.88 0.92 1.00

Take (2) 0.85 0.82 1.00 0.90 0.92 1.00

Put (3) 0.84 0.81 0.99 0.86 0.92 0.98

Peel (4) 0.85 0.89 1.00 0.98 0.92 1.00

Add (5) 0.94 0.96 0.93 0.94 0.96 0.93

Mix (6) 0.94 0.95 1.00 0.94 0.96 1.00

Pour (7) 0.91 0.92 0.99 0.90 0.92 0.98

Open (8) 0.94 0.93 0.99 0.94 0.93 1.00

Other (9) 0.86 0.81 0.99 0.88 0.82 0.99

From Table 6.3, we can see that incorporating masking yielded a 5% test performance

improvement on average over the non-masking approach (0.88 vs. 0.83) for macro-activity

classification (file-by-file basis). However, for micro-activity classification on a file-by-file

basis, average test accuracy of 0.72 was obtained for the binary classifiers for all 10 labels

using masking, which is same as the non-masked binary classifiers.

6.1.6 Analysis and Discussion

From our evaluation, we see that the performance of vanilla classifiers improve significantly

when we incorporate our proposed training pipeline in the channel. Classical approaches
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such as interpolation, filtering, normalization and feature extraction (on mo-cap data) do

not yield significant (in some cases lessen accuracy) performance improvement over vanilla

classifiers. We hypothesize that classical approaches fail to converge due to the unnatural

way the missing data was emulated in the dataset, consisting of long blocks of missing and

abnormally aligned samples not normally encountered in the real world, coupled with the

innate trade-off and time-evolving issues of classical methods discussed in section I. The un-

common nature of the dataset actually hurts micro-activity classification performance gains

when we incorporate masking in the pipeline along with jitter and augmentation, yielding

in negligible performance improvement. This occurs because masking assumes perfect sam-

ple alignment among adjacent sensors. Thus, the gains obtained from ”space-aware” neural

architectures is nullified by the natural misalignments of sensor samples in the dataset.

However, our proposed pipeline component, namely augmentation, and jitter, clusters the

non-missing samples within a window at the beginning, ultimately yielding 24% performance

improvement for complex activity recognition over vanilla approaches and thus exhibiting

promising performance characteristics in worst-case multimodal sensing scenarios.

From Figure 5.1, we see that the dataset is not balanced, with some classes having fewer

occurrences than others. This affected the output on the test dataset, with some of the

rarely occurring labels being missed by our classifiers. To minimize the penalty, we chose

one-vs-all classifiers for micro-activity recognition to attempt to provide sufficient ”positive

and negative” examples to the classifiers. Additionally, we observed that subject-dependent

training (e.g., use subjects 1 and 2’s files for training and test on subject 3) yields inferior

generalization performance due to the class imbalance as well as limited training examples.

This also limits the direct usage of information-rich high sampling rate sensors (e.g., mo-

cap), which translates to more model parameters and requiring more training examples than

currently provided.
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6.1.7 Comparison with Contestant Models

For the test dataset (without labels) provided for the competition, we used an ensemble of

the 10 macro-activity classifiers (5 with masking and 5 without masking), while for macro-

activity classification, we used 20 micro-activity binary classifiers, with 2 classifiers (masked

and non-masked) for each of 10 micro-activities. Table 6.5 illustrates the performance of our

model on the unlabelled test set versus other contestants. We ranked 3rd in the competition.

We can make several observations.

• Out of all the teams using DNN, our framework scored the highest.

• We were the only team to acknowledge the issues of missing data, sampling rate jitter

and timestamp misalignment in the dataset.

• The top two teams required manual relabeling of the training set (and even the test

set) using reference videos generated from the Mo-cap data. Our pipeline is completely

autonomous and agnostic of the test data characteristics.

• Note that the mo-cap data did not have any missing data or jitter issues. It is easy to

manually relabel the entire dataset by contructing videos from the mo-cap data. Among

the best performing teams using only the inertial sensor data, Team 6 performed ∼ 6%

worse than our framework, while on average, our framework provides 16% improvement

in classification accuracy over other teams using only the inertial sensor data.

• Even after using the error-free Mo-cap data, most of the teams still received poor clas-

sification accuracy on the test set, likely by the uncertainty-related errors introduced

by the use of inertial data.

6.2 Efficient Neural Inertial Localization

This section is concerned with the ideas presented in Chapter 4, 5.2 and 5.3.5.
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6.2.1 Preliminary Backbone Network Performance

Figure 6.2 shows part of the performance of the backbone network for displacement and

heading rate estimation on unseen trajectories.

Figure 6.2: Sample velocity and heading estimation by the backbone network for 4.9 minutes

of unseen trajectory.

The performance of the backbone network on unseen trajectories (9 files, 36234 2-second

6-channel inertial sequences) are reported as follows:

• Displacement RMSE (meters): 0.11 meters.

• Heading rate RMSE (rad/s): 0.09 rad/s (5 degrees).

The validation RMSE are as follows:

• Displacement RMSE (meters): 0.013 meters.

• Heading rate RMSE (rad/s): 0.0099 rad/s (0.5 degrees).

Figure 6.3 shows sample trajectory plots on unseen test data estimated by our TCN. The

ground truth trajectories are shown on the same plots.
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Figure 6.3: Sample trajectory projections on unseen test data by our neural inertial model

(unit: meters).

We can make several observations from Figure 6.2 an 6.3:

• The backbone network is only 0.5 MB in size. However, it can still predict displace-

ments with sub-meter resolution under eclectic sensor domains on unseen trajectories,

with the heading being within 5 degrees.

• Predicted polar vectors sometimes suffer from high-frequency noise, which requires

smoothing. Chen et al. [131] suggested using a low-pass filter at the output of the

network to remove the effects of inertial-sensor noise in the final output. We suggest

using a 3rd order Savitzky–Golay filter with a window size of 50 to smooth out the

TCN predictions.
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• The dataset contains sudden initial peaks in the ground truth heading rates and veloc-

ities at the start of each file. During those times, the inertial sensors do not actually

record anything. We hypothesize that those initial movements correspond to Vicon

calibration cues. The RMSE is expected to improve if we remove those cues.

• While the shapes and scales of predicted trajectories match the ground truth, there is

a slight rotation. This is caused by mismatch in the initial headings provided by the

ground truth data, which is due to the calibration cues in the data. This causes the

trajectory to move in the wrong direction.

• We found out that a single TCN can predict both the displacement and heading equally

well as two TCNs. This is due to the latent connection between displacement and

heading. Note that, the heading and displacement needs to be normalized to the same

scale for a single TCN to work well.

• We observed that the TCN took approximately only 20 epochs to stabilize. Vanilla

recurrent networks take longer to converge.

• Most of the trajectories in the OxIOD dataset are circular. This may not be the most

realistic dataset when compared with practical human walking. One of our future goals

is to benchmark the performance of our models on more realistic datasets such as RIDI

and RoNIN [75][82].

6.2.2 Sample Architectures Generated by NAS

Figure 6.4 shows sample networks generated by our proposed NAS algorithm compared

to human engineered TCN network [131]. Table 6.6 illustrates the performance of NAS

algorithm under various device constraints. Note that for this section, the network was

trained to regress absolute headings compared to heading rates. In addition, we did not use

quantization. The orange shaded model in Table 6.6 is the one used for later benchmarks, as

it pertains to our designed target hardware. Note that Mbed OS, TFLite Micro and sensor

libraries require ∼50 kB SRAM and ∼280 kB flash on Cortex M4 devices. TFLite Micro

99



requires ∼32 kB SRAM during runtime.

Figure 6.4: (From Left) Backbone supernetwork designed by humans, optimized TCN

produced by NAS for STM32F746 Discovery and optimized TCN produced by NAS for

STM32L476RG Nucleo (LN refers to layer normalization).

From Figure 6.4 and Table 6.6, we can make several observations:

• Proposed NAS yields different pareto-optimal but specialized network architecture for

different target devices, regularized by SRAM, flash and latency constraints. In other

words, the NAS algorithm tries to ensure that the generated network fully exploits

the hardware capabilities of target device instead of providing a small model for all

devices.

• Our NAS algorithm balances local and global semantics in the inertial windows to

retain accuracy in the long run. In other words, Bayesian NAS uses low dilation

factors in the lower layers to capture local spatial connectivities, and large dilation

factors in the higher layers to capture global temporal dynamics, striking a balance

between spatial and temporal feature extraction.

• Hard constraints do not regularize the Gaussian process properly, leading to poor search

space and models with higher number of FLOPS (more latency) and activation size
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for the same target hardware. In hard constraint NAS, the value of the optimization

function (to be maximized) is directly set to a very negative value without running the

training process when the chosen model parameters exceed the required flash, RAM

or latency constraints. Meanwhile, in soft-constraint NAS, the device constraints are

modeled as rectified linear unit (ReLU).

• Random scalarizations helps weigh the important additive terms in the optimization

function, making sure the effects of all the terms (accuracy, latency, flash and RAM)

are equally taken into account.

• Obtained error metrics are comparable to L-IONet but with up to 3× peak activation

reduction and 5.3× memory usage reduction for the most constrained target hardware.

• Relaxed device constraints yields model with slightly better error metrics, but would

also be slower due to higher FLOPS count. Very rarely, TinyOdom makes unrealistic

choices for each NAS epoch, yielding in slow search times for 1 or 2 epochs (out of every

10) due to large training time for unrealistic models that will yield in large penalties.

This is not the case in case of NAS with hard-constraints, which however, loses out on

proper regularization and information gain.

6.2.3 Comparison of Model Performance with Baselines

Figure 6.5 shows the error characteristics of our optimized model compared to SOTA base-

lines, as as well as RAM and flash usage. From Figure 6.5, we see that our model, while

bringing only 117 kB in size and requiring only 56 kB of SRAM, can achieve sub-meter

(∼0.15 meter) trajectory projection without using GPS or large models for unseen trajec-

tories. While classical models such as EKF provides superior latency, RAM and flash usage

profiles, EKF is unusable without the aid of GPS or heuristics, diverging rapidly to thou-

sands of meters away as seen in the figure due to drift and noise. In addition, our model

is pareto-optimal with L-IONet, which is the only data-driven neural inertial architecture

that can run in real-time but on smartphones. Our model has 2.5× lower activation and

6× lower flash requirements compared to L-IONet. One weakness of our model, however,
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is the model latency, as shown in Figure 6.6. On average, we observed that our model can

run on STM32L476 series chips at a sampling rate of 7 Hz for 2-second windows (@100 Hz).

While this is much lower than L-IONet or TinyEKF’s sampling rate, there are several ways

by which we could accelerate the process:

Figure 6.5: (Left to right) Displacement RMSE (meters) and SRAM and flash usage on

target hardware for various SOTA inertial dead-reckoning algorithms. TinyOdom is our

optimized network.

• Quantization of weights, as discussed in Chapter 4.

• Using only the operators necessary to run the model rather than clogging the device

with all the operators.

• Stronger scalarization on FLOPS.

Overall, our model provides a trade-off among the baselines, reaching optimal error char-

acteristics suitable for everyday use while using as little compute resources as possible on

TinyML devices.
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Figure 6.6: Latency on target hardware for various SOTA inertial dead-reckoning algorithms.

TinyOdom is our optimized network.

6.2.4 Bayesian NAS versus SOTA NAS

SOTA in NAS for microcontrollers include MCUNet [24], which uses Once-for-All [23] and

evolutionary search on an optimized search space based on FLOPS and MicroNets [28],

which uses gradient driven NAS formulation through various device proxies. We could not

implement MicroNets due to code unavailability, and MCUNet due to absence of complete

code. While we do not claim that our NAS technique is clearly the better one, we can make

some back-off-the-hand calculations in favor of our NAS approach over the SOTA.

• None of the papers talk about search cost and instead focus on accuracy, our obtained

accuracies are pareto-optimal with respect to the backbone network (best achievable),

similar to what the two NAS algorithms also show in their respective papers for their

models.

• MCUNet reduces RAM and flash usage by 3.5× and 5.7× for Imagenet (larger network
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to begin with) while losing 10% accuracy over once-for-all, we reduce RAM and flash

usage by 2.5× and 5× while losing only cm level precision (with the goal of retaining

sub-meter accuracy) over a smaller subnetwork. It is harder to optimize a small network

over a large network [43][44]. Note that our search space however, is not tiny, with

1014 combinations.

• With such a huge search space, TinyOdom only takes 12-24 GPU hours per network for

combined training and search. Compare this with Once-for-All search used in MCUNet,

which requires 40 GPU hours on 16000 subnetworks for search alone (training time for

Once-for-All supernetwork calculation was inaccurate so we did not include it here).

• MCUNet uses proprietary engine and does not support wide-variety of devices or cus-

tom neural blocks, our NAS supports wide-variety of target hardware and neural blocks,

coupled with support from TFLite Micro. In addition, TinyEngine from MCUNet does

not provide any feasible improvements over TFLite Micro [28][63], rather a hassle to

debug as it is compiled.

6.3 Performance of Madgwick and Altitude Filter

This section is concerned with the ideas presented in Chapter 4.3. Figure 6.7 shows the

performance of Madgwick filter for headpose estimation in the NESL Earable Mobility Cor-

pus. From Figure 6.7, we observe that the median delta motion (change from one pose to

another pose) errors are 8.3 and 5.6 degrees in azimuth and elevation planes respectively.

Ferlini et al. [180] proposed the fusion of 6DOF inertial data from two earable sensors in

order to estimate final head position using quaternions, delta motions and complementary

filters, achieving estimation errors as low as 5.4 degrees and 18.7 degrees for short and long

movements (noisier) respectively. We achieved lower head-pose (and ultimately orientation)

estimation error using the Madgwick filter with a single earable sensor.
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Figure 6.7: Madgwick filter performance (real-time) in tracking head-pose on the NESL

Earable Mobility Corpus. The box plots showcase the error distribution.

The goal of the corpus was to use the headpose information to render binaural audio.

The obtained orientation estimation errors were well within the human binaural sound lo-

calization range (±20 degrees). This was confirmed via our real-time localization test, where

a subject aims to point out where a particular sound source might be based on hearing,

illustrated in Figure 6.8. We observed a median range of 40 degrees, which is ±20 degrees

of localization accuracy of humans. This complements the error of our filter, which is much

less than ±20 degrees.

The memory and flash requirements of the Madgwick filter (implemented in Arduino

IDE) for various devices, along with MPU-9250 IMU library, are as follows:

• STM32L476RG Nucleo: 1.64 kB SRAM (1.28%), 41 kB flash (4%).

• STM32F746 Discovery: 1.69 kB SRAM (0.5%), 42 kB flash (4%).
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• STM32 Nucleo-144: 1.66 kB SRAM (0.16%), 44 kB flash (2%).

• Arduino BLE 33: 47 kB SRAM (18%), 110 kB flash (11%).

• Arduino Uno R3 ATMega328p: 1.34 KB SRAM (67%), 20 kB flash (63%).

Figure 6.8: Sound localization test with real subjects to model performance of the filter.

The memory and flash requirements of the depth/altitude filter (implemented in Mbed Studio

and Arduino IDE) for various devices are as follows:

• STM32L476RG Nucleo (Mbed Studio): 10.3 kB SRAM (8%), 48 kB flash (5%).

• STM32F746 Discovery(Mbed Studio): 25.7 kB SRAM (8%), 56.1 kB flash (5.6%).

• Arduino BLE 33 (Arduino IDE): 44 kB SRAM (17%) , 86 kB (8%)
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CHAPTER 7

Conclusion and Future Work

In this thesis, we introduced a robust learning pipeline for hierarchical deep neural archi-

tectures to handle complex activity data from inertial sensors in the presence of missing

data, misaligned samples, and variable sampling rates. We evaluate the applicability of the

time-shift data augmentation, controlled window jitter, and masks to handle the hurdles

mentioned above, benchmarking our pipeline using a hierarchical recurrent-convolutional

architecture with DCBL neural blocks. Our evaluations yield 11% and 24% performance

improvement for macro and micro-activity recognition over vanilla architectures, achieving

88% and 72% classification accuracy respectively for macro and micro-activity classification

on the Cooking Activity Recognition Dataset with Macro and Micro Activities, exceeding per-

formance over state-of-the-art vanilla activity classifiers. Our proposed uncertainty aware

pipeline achieved 3rd place in the 2020 Cooking Activity Recognition Challenge and was the

best DL-based complex event processor among 78 teams. We showed that complex multi-

modal data-processing architectures require time-awareness and injection of runtime sensing

uncertainty metadata into the training pipeline to take advantage of information-rich high-

dimensional context.

In addition, we presented an efficient neural inertial navigation framework that forms

the basis and starting point for real-time sub-meter neural-inertial localization on resource-

constrained edge devices void of infrastructure-dependent position fixes or motion heuristics

that can run smoothly on a wide spectrum of target hardware. We showed the superiority

of TCN for time-series processing in dead-reckoning over recurrent architectures, achieving

gains not only in terms of error metrics, but also in terms of resource usage and optimization

advantages. We formulated a simple and fast hardware-aware Bayesian NAS algorithm that
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takes ∼12-24 hours to train and search, which is faster than existing NAS algorithms, while

achieving comparable pareto-optimal accuracy and resource usage reduction metrics with

SOTA NAS algorithms built for microcontrollers. The networks found via NAS not only

fit on target hardware, but also achieve pareto-optimal error metrics with the backbone

network while requiring upto 3× less SRAM and 5.3× less flash. Our formulation of NAS is

regularized by target hardware constraints, and uses different techniques for distinct target

hardware. Compared to SOTA, our network requires 2.5× less SRAM and 6× less Flash,

while achieving similar sub-meter accuracy. The optimized model on our designed hardware

consumes only 56 kB SRAM and 117 kB flash for the OxIOD Dataset.

We also presented an ultra-low-power, low-cost, modular, self-sustaining, durable, light

and high-resolution inertial hardware framework capable of running neural inertial navigation

algorithms in real-time that pushed the SOTA in odometry hardware. We benchmarked the

performance of Madgwick filter on the NESL Earable Mobility Corpus for orientation and

headpose estimation, obtaining a median delta motion errors of 8.3 and 5.6 degrees in azimuth

and elevation planes, outperforming SOTA while consuming only 1% SRAM and 4% flash

on generic Cortex M4 class devices. We proposed a robust altitude filter with thermocline,

salinity, noise and timestamp jitter mitigation, which consumed on average only 8% SRAM

and 5% flash on generic Cortex M4 class devices.

7.1 Future Work

There are several future directions for our work concerning complex activity recognition.

While we have focused on online learning from missing data, an alternative approach is to

impute the missing samples synthetically using GAN [12][13][14], followed by training. Syn-

thetic data generation may be useful when analyzing microscopic granularities in temporal

streams as well as data augmentation. In particular, incorporation of information-rich and

naturally & temporally aligned mo-cap data requires data generation for the inertial sensor

domain. In addition, the proposed training pipeline can be benchmarked on other temporal

HAR modalities other than inertial samples such as mmWave ambient sensing [213] as well
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as sensor placement and availability constraints requiring spatially independent approaches

[9][10][214]. In addition, we could attempt to replace the DCBL neural blocks in hierarchical

DNN architecture with more efficient TCN blocks for efficient complex activity recognition.

In terms of human-AI interaction, a tool that allows layman users to use our uncertainty

mitigation techniques using a graphical user interface may be useful 1.

For the efficient neural inertial navigation framework, scope of future work include:

• Systematic implementation and comparison with more localization and NAS baselines

on different datasets apart from PDR.

• HIL energy, SRAM, flash and latency profiling on real-hardware during the NAS epochs

rather than profiling post-NAS.

• Implement a parallel NAS formulation using Mango.

• Include quantization in the NAS formulation.

• Cross-discipline and cross-domain dead-reckoning (e.g., across land, air, sea and various

sensors/sensor positions).

• Explore Sim2Real possiblities.

• Check if orientation inputs can make the neural network aware of current coordinate

frame to allow for completely random sensor orientations.

• Explore whether magnetometer fusion results in heading RMSE improvement.

We should also benchmark the performance improvement our altitude filter brings in over

linear pressure filters, and provide a systematic comparison of our proposed neural inertial

hardware with existing hardware.

1We envision our pipeline being used in the backend here: https://github.com/

Human-AI-Interaction-Projects/GUI-GAN
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underwater dataset for visual–inertial–pressure localization.” The International Journal
of Robotics Research, 38(14), 1549-1559.

[165] Simon, D. Levy, (Accessed: June 2, 2021) ”TinyEKF: Lightweight C/C++ Ex-
tended Kalman Filter with Python for prototyping”. Available at: https://github.

com/simondlevy/TinyEKF

[166] Kawsar, F., Min, C., Mathur, A., Montanari, A., Acer, U. G., & Van den Broeck, M.
(2018, November). ”eSense: Open Earable Platform for Human Sensing.” In Proceedings
of the 16th ACM Conference on Embedded Networked Sensor Systems (pp. 371-372).

[167] Yang, Z., Wei, Y. L., Shen, S., & Choudhury, R. R. (2020, September). ”Ear-AR:
indoor acoustic augmented reality on earphones.” In Proceedings of the 26th Annual
International Conference on Mobile Computing and Networking (pp. 1-14).

[168] Choudhury, R. R. (2021, February). ”Earable Computing: A New Area to Think
About.” In Proceedings of the 22nd International Workshop on Mobile Computing Sys-
tems and Applications (pp. 147-153).

[169] O’Flynn, B., Sanchez-Torres, J., Tedesco, S., & Walsh, M. (2019, December). ”Chal-
lenges in the Development of Wearable Human Machine Interface Systems.” In 2019
IEEE International Electron Devices Meeting (IEDM) (pp. 10-4). IEEE.

[170] Jang, J., & Adib, F. (2019). ”Underwater backscatter networking.” In Proceedings of
the ACM Special Interest Group on Data Communication (pp. 187-199).

[171] Ghaffarivardavagh, R., Afzal, S. S., Rodriguez, O., & Adib, F. (2020, November).
”Underwater Backscatter Localization: Toward a Battery-Free Underwater GPS.” In
Proceedings of the 19th ACM Workshop on Hot Topics in Networks (pp. 125-131).

124

https://scale.com/open-datasets/pandaset
https://github.com/simondlevy/TinyEKF
https://github.com/simondlevy/TinyEKF
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