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ABSTRACT
Modern Building Management Systems (BMSs) provide limited
amount of control to its occupants, and typically allow only the
facility manager to set the building policies. In this context, we
present BuildingRules, a system which provides an intuitive inter-
face to the occupants of commercial buildings to customize their of-
fice spaces using trigger-action programming. BuildingRules auto-
matically detects conflicts among the policies, expressed by the oc-
cupants, by using the Z3 SMT solver, and leverages an open source
web service BMS (BuildingDepot) to provide access control and
actuation services in a building. BuildingRules has been designed
to scale for large commercial buildings, as it supports grouping of
rooms for ease of policy expression, a scalable backend for resolv-
ing conflicts, and a simulator that shows the actuation of rules on
a timeline. We tested our system with 23 users across 17 days in a
virtual office building, and evaluate the effectiveness and scalability
of BuildingRules.

1. INTRODUCTION
Over the years, commercial buildings have evolved to satisfy the
different requirements of present day enterprises. Typically, mod-
ern buildings have centralized Heating, Ventilation, and Air Condi-
tioning (HVAC) systems in addition to lighting, fire safety, eleva-
tors and security systems. While there are numerous Building Man-
agement Systems (BMS) [28, 40, 33] to manage and control build-
ings these have evolved from traditional HVAC controls and do not
support emerging smart building applications such as integration
with the Smart Grid [4], Microgrid [30], Demand Response [36]
and Building Automation [1, 35, 31]. Recently, web service based
BMSes have been proposed [2, 5, 14] to better address the chal-
lenges and requirements of scalability, maintainability, and easier
application development.

BMSes deployed today [28, 40, 33] are designed for building man-
agers and maintenance personnel. Occupants interact with build-
ings in a limited manner - using thermostats for HVAC control,
switches for lights, keys cards for locks and power strips for plug
loads. With existing BMSes, it is not possible for the occupants
to automate and personalize their environment such as setting the
temperature according to outside weather or automatically brew-
ing coffee at 8am, etc. Modern web service based BMSes, and ad-
vanced sensor technology, will provide the flexibility to express and
implement such applications which can improve occupant comfort
and productivity [25] as well as building energy efficiency [21, 29,
6].

While giving occupants the ability to personalize their living envi-
ronment is indeed promising, there are numerous challenges that
must be addressed. First, building occupants do not understand the
details of the building infrastructure, and are not necessarily pro-
grammers. As shown in prior work [41, 42, 43], occupants prefer
not to interact with sensors and actuators directly; for example they
relate better to “someone walked into a room” than “motion sen-
sor was activated”. Therefore, it is critical that the right level of
abstraction and an intuitive user interface is provided by a build-
ing automation system to enable occupants with varying levels of
expertise to express their preferences [43]. Second, there needs to
be the appropriate access control mechanisms when the number of
users – i.e. both occupants and building managers – increase to en-
sure proper building operation. Finally, with multiple users often
customizing the same spaces, there needs to be a scalable mecha-
nism to detect and resolve conflicts that will occur. Existing BMSes
have limited or no support for such type of access control or conflict
resolution.

To address the above challenges, we present the design and the im-
plementation of BuildingRules, a system that allows building oc-
cupants to express their automation needs while resolving possible
conflicts. BuildingRules is based on the trigger-action program-

ming paradigm, under which occupants can express policies using
the “IF something happens THEN do something” (IFTTT) pattern.
Prior work has shown that trigger-action programming is an expres-
sive and intuitive interface to implement building automation poli-
cies for people without programming experience [18, 43]. Buildin-
gRules extends the IFTTT abstraction to commercial buildings, and
addresses the challenges in integrating the system with our web ser-
vice BMS [2]. While similar systems have been proposed for smart

homes, commercial buildings are significantly more complex due to
their scale and their shared nature where multiple occupants with
different needs inhabit the same space leading to conflicts. To study
the extent of conflicts, we conducted a survey with 72 users ask-
ing for their preferred rules as applied towards shared office spaces
of varying capacity. The survey revealed conflicts in 99% of the
cases (details in Section 5). To resolve these conflicts in Build-
ingRules, we leverage techniques from context aware frameworks
to check for conflicts at the moment of the policy expression [47,
34] and use rule priority to resolve conflicts that arise during ac-
tuation [37]. Furthermore, we show that BuildingRules is able to
keep the latency of conflict detection low enough to ensure good
user experience.

In a commercial building, typically facility managers set up au-



tomation policies using the existing BMS, such as the minimum
allowable temperature or air flow. It is critical that occupants cus-
tomizations don’t violate these policies. Furthermore, occupants
should not be able to control rooms to which they do not have ac-
cess to. As automated applications such as Demand Response [3]
become prevalent, BuildingRules needs to incorporate the policies
expressed by them as well. In BuildingRules, we incorporate hi-
erarchical levels of policy expression to address these challenges,
and implement BR by extending an open source webservice-based
BMS [2, 45]. Since BuildingRules is targeting commercial build-
ings, we needed it to scale to many hundreds of rooms and thou-
sands of occupants. We achieve this scaling using several design
choices. First, BuildingRules supports specifying a rule for the en-
tire building, or a subset of rooms, using a grouping mechanism
in combination with conflict resolution that may be required. Sec-
ond, we have designed the conflict resolution mechanism to be per-
formed in parallel for each room, such that the latency does not
increase with the number of rooms.

We evaluate BuildingRules by creating a virtual office environment
with 30 rooms, and testing it on 23 users spread across 17 days. We
show that the conflict detection latency is 251 ms in the worst case,
and 102 ms in the average case. 636 rules were specified during the
experiment, and we detected up to 50 conflicts in a day.

2. BACKGROUND AND RELATED WORK
It has been shown that automation reduces time spent by occupants
to manage their office environment, such as adjusting temparature
and light levels, which in turn improves their productivity [25]. In
current buildings with limited occupant control, occupants either
request managers to override default settings, or implement ad-
hoc solutions such as space heaters [21] which can lead to energy
wastage and deviation from designed operating points [32]. Provid-
ing control to the occupants by design, i.e., within the boundaries
specified by the building manager, will help reduce energy wastage,
while improving the comfort and satisfaction to the occupants [25,
21, 29].

Current sensing technology - occupancy sensors [7, 9], light sen-
sors [16, 39], plug meters [27, 44] - enable automation applica-
tions for office buildings. Several context aware frameworks and
web service based building management systems have been de-
veloped in anticipation of such sensors [2, 14, 17]. Greenberg et
al. [24] and Bellotti et al. [8] observe that users need to be an inte-
gral part of such systems, as it is not possible to automatically infer
their specific wishes with the sensing technology available today.
Trigger-action programming has emerged as a promising solution
to involve users in home automation, as it provides an expressive
and an intuitive interface [41, 42, 43]. Dey et al. show that the
IFTTT paradigm expresses 95% of all the applications envisioned
by users in smart homes, demonstrating its expressiveness across a
wide set of context aware applications [18]. More recently, Ur et
al. showed that 63% of smart home applications requested by oc-
cupants required programming, and all of these applications could
be expressed by the IFTTT paradigm [43]. Finally, IFTTT.com is
a popular web application that already uses this methodology for
connecting various web services and different smart home appli-
ances (e.g., Belkin Wemo) [26]. With BuildingRules, we focus on
extending trigger-action programming to provide personalized au-
tomation in complex commercial buildings, and address the chal-
lenges that emerge when deploying such a system on a large scale.
One of the primary concerns that needs to addressed is the resolu-
tion of conflicts that arise due to incompatible user requirements.

Existing BMSes already support conflict resolution to some extent.
BACnet (Building Automation and Control Networks) protocol is a
widely adopted standard by industrial BMSes [10], with support for
a priority table for every writable sensor. Conflicts are resolved by
assigning priority to applications by their importance. Web service
BMSes extend this methodology to include access control and pro-
vide more metrics for conflict resolution. SensorAct [5] manages
permissions through a combination of priority and guard-rules, a
script that specifies validation conditions based on time, date, du-
ration, location and the frequency of operation. BOSS[14] defines
every sensor write as a transaction to resolve conflicts. BuildingDe-
pot [45] proposes a combination of priority and lease times at the
sensor level. Conflict resolution in these systems is at the sensor
level, and does not involve the users by design. Conflicts resolu-
tion has been studied extensively in context aware systems [38]. A
number of conflict resolution strategies focus on automatically re-
solving application inconsistencies without involving the user [46,
37]. Systems that involve humans need to abstract information such
that users can understand the nature of these conflicts, and can re-
solve them [18]. CARISMA [11] resolves conflicts among multiple
users for a single application with pre-recorded preferences. Park
et al. [34] extend the conflict resolution to multiple applications, in-
corporating user preference and user intent in the application meta-
data. In BuildingRules, we focus on providing a simple interface,
and hence do not collect user preferences or intent. For avoiding
conflicts, BuildingRules checks if a proposed rule conflicts with
the existing rules, and shows the conflicting rules back to the user
so that she can modify them appropriately. The rules are converted
to first order logic and checked using an SMT (Satisfiability Mod-
ulo Theories) solver [15], similar to the strategy followed by Zhang
et al. [47]. Some of the conflicts cannot be detected at the time of
rule specification as the conflict is evident only during actuation.
Users specify a priority of rules to resolve these run-time conflicts,
similar to the solution proposed by Gaia [37].

We use Z3 as our SMT solver for resolving conflicts [15]. Park et
al. [34] use JESS to build and execute their context-aware sets of
rules, and also manage conflicts among rules. Differently from Z3,
JESS (Java Expert System Shell) [23] is not an SMT solver, but is a
rule engine for the Java platform, which supports the development
of rule-based systems that can be tightly coupled to code written
entirely in Java. In their system, a context variable can change only
in two directions (increase and decrease) and, when rules cause a
change in opposite directions to the same variable at the same time,
a conflict is detected. In this approach, the conflict is detected only
when actuation by a new activated rule is in contrast with the al-
ready active rules. Instead, we analyze conflict as soon as a rule is
added, even if it is not active yet. This allows us to solve potential
conflicts before they actually arise. Moreover, since JESS is not an
SMT solver, it needs to be enriched with inference rules to define
what is considered as conflict. Thus, every time a rule type or struc-
ture is added, new customized inference rules need to be added as
well.

Besides the work proposed for smart buildings, all the literature on
policy definition and policy conflict management is related to our
work. A policy is a rule that enables the execution of an action
when some specific event takes place and if a pre-defined condi-
tion holds, and for this reason is often in the form event-condition-
action and it is called ECA-rule. There are many different pol-
icy languages, such as Ponder [13] and PDL [12]. Policy lan-
guages have in general a built-in conflict detection and resolution
approach and are defined for a specific context. Ponder is a declara-



tive, object-oriented language defined to specify security and man-
agement policies. The language allows the specification of both
primitive and composite ECA-rules. Analogously, PDL allows the
description of ECA-rules that can be translated to Datalog. Both
languages are equipped with a priority and grouping mechanism to
specify to which group the rules apply and with which priority, and
with conflict resolution mechanism based on meta-policies, that de-
scribe what to do when a conflict happen. The meta-rules define
the conflicts and the events that characterized the conflict are mon-
itored. When these events are detected , the resolution actions are
performed. Differently from our approach, Ponder and PDL re-
quire to define the resolution policies, defining what is considered
a conflict. Notice that while we automatically detect conflict as un-
satisfiable sets of rules, we can also define additional conflicts by
adding rules to the specification that is given as input to the SMT-
solver.

3. BUILDINGRULES DESIGN
The goal of BuildingRules is to provide an intuitive interface to the
building occupants for expressing customized automation policies
for their office spaces, and to use that information to control build-
ing subsystems such as HVAC more effectively. In this section we
describe the overall design of BuildingRules.

3.1 Rules
As mentioned earlier, similar to prior work [18, 26, 43] we use
the trigger-action paradigm to allow users to specify rules in the
following format:

if (something happens) then (do something)

The “if” part of the rule is called trigger while the “then” part is
called action. According to this paradigm, a user can specify an
action to be performed when certain event conditions are met, and
the combination is a rule. For example, “If it is cloudy then turn on
lights”, where “cloudy weather” is the trigger, and “turn on lights”
is the action. Rules are formed using a set of pre-defined triggers
and actions.

BuildingRules represents a building with two main entities: the
rooms in the building and groups of rooms. Each room is owned by
one or more occupants, and the rules are specified at the room level.
A room represents a physical space - an office, a conference room,
a lobby or a kitchen. Occupants are assigned to these rooms by
the building manager, and occupants can customize the behavior of
their room by adding new rules. We chose room as the lowest gran-
ularity in our implementation, but the representation can be easily
extended to be more granular, such as to cubicles or desk spaces.

Ur et al. [43] introduced the concept of simple and complex rules
for smart homes. A simple rule is composed of a single trigger
and action, and a complex rule may have multiple triggers or ac-
tions, each of which is connected by a logical AND. For example,
“if it is raining then close the windows” is a simple rule while “if
it is sunday and it is after 10am then close the curtains” is a com-
plex rule. In BuildingRules, we support both simple and complex
rules, but the complex rules are restricted to just multiple triggers.
Currently, we do not support multiple actions to keep the user in-
teraction paradigm as simple as possible; anyway this is not a lim-
itation for the expressivity of the system since those rules can be
easily decomposed into multiple rules with the same trigger. Table
1 summarizes the list of the currently available triggers and actions
in BuildingRules.

We support two datatypes for triggers and actions - boolean and in-

teger. We force a range of values for integer valued triggers instead
of comparison against a single value, as it expresses the rule clearly.
For instance, a user cannot make a rule: “if it is after 8PM”, instead
she specifies a time interval: “if it is between 8PM and 10PM”.
By specifying a time range, a rule has a time validity, and actions
which run into perpetuity are avoided. This restriction does not
change the expressivness of rules, but forces the user to define both
the start and end points of the rule.

Table 1 shows the list of representatives rules supported by Build-
ingRules. Each rule is assigned to one of several predefined cate-

gories, based on what they want to control. For example, the two
rules “if it is rainy then turn on the light” and “if it is a holiday then
turn off the light” are in the same “Light” category, while the rule
“if it is rainy then close the windows” is in the “Window” category.
NO_RULE is a special trigger available for the building adminis-
trators (Rule 7 in Table 1). This trigger is always set to True and is
used for setting the default conditions of the building. Occupants
can override these default rules with more specific rules. Buildin-
gRules also supports external applications through virtual triggers
that is controlled via RESTful APIs (Rule 9 in Table 1). We are
aware that there are many policy languages, such as PDL [12] and
Ponder [13], that can formalize the same information that is pro-
vided by the chosen format. However, in our case the format is
simple and close to the natural language to be easily understood by
the users, and the conflict resolution approached introduced in the
next section can be applied to any language that can be encoded in
Z3 input language, using a suitable formalization.

3.2 Conflict Resolution
Since users can express their own rules for rooms, some of which
are shared by multiple users, conflicts can arise. We define two
rules as conflicting when the rules can be in effect at the same time,
but the action specified by the rules cannot be satisfied at the same
time. If these conflicts are not resolved properly, it can lead to dam-
age of equipment or compromise user comfort. To clarify, consider
two users who independently specify the rules: “if time is between
9am and 6pm then turn the HVAC on” and “if time is between 5pm
and 8am then turn the HVAC off”. Between 5pm and 6pm, the sys-
tem would be in an inconsistent state. This may cause discomfort
to the occupants and could damage HVAC damper if not actuated
properly.

To identify the conflicts among rules, we formalize them as propo-
sitional formulae and analyze the formalization using the SMT Solver
Z3 [15]. A rule is composed of two parts: a (conjunction of) trig-
ger(s), and an action. Before adding a rule, it is verified against
the set of rules already active in the room. We represent each rule
as a propositional formula composed by an implication (the trigger
implies the action) that is satisfied if the trigger is not satisfied, or
if both the condition and the action are satisfied. In this context, the
action is considered as a proposition that is true if the action can be
executed, false otherwise. The new rule together with the existing
ones are seen as a specification and automatically verified to check
their satisfiability. If the specification is satisfiable, the rules are not
in conflict with each other. If not, two or more rules are in conflict
and need to be resolved. If a user tries to insert a conflicting rule,
the list of the conflicting rules is displayed to the user.

We formalize the rules as propositional formulae compliant with
the following grammar:

A rule is an implication, where the action and trigger have



TYPE DATA CATEGORY EXAMPLE NAME EXAMPLE HUMAN READABLE SYNTAX EXAMPLE Z3 SMT TRANSLATION

1 T BOOLEAN OCCUPANCY OCCUPANCY_TRUE someone is in the room (inRoom)

2 T INTEGER EXT_TEMPERATURE EXT_TEMPERATURE_RANGE external temperature is between @val and @val (and (>= (extTempInRoom) @val) (<= (extTempInRoom) @val))

3 T INTEGER TIME TIME_RANGE time is between @val and @val (and (>= (time) @val) (<= (time) @val))

4 T BOOLEAN DATE DATE_RANGE the date is between @val and @val (and (>= (day) @val) (<= (day) @val))

5 T BOOLEAN WEATHER SUNNY it is sunny (sunny)

6 T INTEGER ROOM_TEMPERATURE ROOM_TEMPERATURE_RANGE room temperature is between @val and @val (and (>= (tempInRoom) @val) (<= (tempInRoom) @val))

7 T BOOLEAN DEFAULT_STATUS NO_RULE no rule specified (noRule)

8 T INTEGER DAY TODAY today is @val (= (today) @val)

9 T BOOLEAN EXTERNAL_APP CALENDAR_MEETING calendar meeting event (meetingEvent)

10 A BOOLEAN LIGHT LIGHT_ON turn on the room light (light)

11 A BOOLEAN WINDOWS WINDOWS_OPEN open the windows (openWindows)

12 A INTEGER HVAC SET_TEMPERATURE set temperature between @val and @val (and (>= (tempSetpoint) @val) (<= (tempSetpoint) @val))

13 A BOOLEAN APPLIANCES COFFEE_ON turn on the coffee machine (coffee)

14 A BOOLEAN MESSAGES SEND_COMPLAIN send complain to building manger (sendComplain)

15 A BOOLEAN CURTAINS CURTAINS_OPEN open the curtains (openCurtains)

Table 1: Currently supported rule triggers (T) and actions (A) categories. An example of trigger or action for each category is

provided

rule ::= trigger⇒ action
trigger ::= sTrig | sTrig ∧ trigger
action ::= bAct | ¬bAct | iAct∈[n,m]
sTrig ::= bTrig | ¬bTrig | iTrig∈[n,m]

a fixed structure. The trigger is a conjunction of conditions
sTrig, that are built on the triggers represented in Table 1 (Rows
1-9). When the trigger is boolean (Rows 1,4,5,7,9), the condi-
tion is satisfied when the data is true (bTrig) or false (¬bTrig).
When the trigger is an integer (Rows 2,3,6,8), the condition is
satisfied when value is in the specified interval [n, m], where
n≤m and they are both specified according to the data domain. A
similar method is used for both boolean (Rows 10-11,13-15) and
integer (Rows 12) action values. We do not allow the use of dis-
junction in action or trigger, or use of conjunction in the actions.
The conjunction in the action (and the disjunction in triggers) is
redundant and is equivalent to specifying multiple rules with the
same trigger (action) and different actions (triggers).

Note that the disjunction in actions introduces non-deterministic
rules, meaning that there is a choice in how the actions can be per-
formed. Currently, we require the user to completely specify the
action for a rule using priority. Consider a user who wants to insert
a rule “if the room is dark then please turn on the lights or open
the blinds”, with the intention that the system can choose to “turn
on the light” or “open the blinds” in case of poor luminosity. We
ask the user to insert two rules with different priorities to make her
intentions clear without any ambiguity.

Since the rules correspond to a subset of propositional logic, they
can be analyzed by encoding them in the language of the Z3 SMT
Solver [15]. Translating the formalization of rules into the Z3
language is straightforward since Z3 supports boolean and integer
variables. Note that formulae must be expressed in the prefix form
adopted by Z3. For example, the rule “If someone is in the room
then turn on light” is represented as:

(assert (=> inRoom lightOn))

and the rule “If someone is in the room then set temperature be-
tween 68F and 72F” is represented as:

(assert (=> inRoom (and (<= 68 temp)

(<= temp 72)))).

We complete the Z3 model with a set of assertions that specify the
characteristics of the integer data (e.g., time is between 0 and 24)

and the relationship among data (e.g., if it is sunny, then it cannot
be rainy). We then verify the model to check for possible con-
flicts. The model is verified multiple times by asserting the trig-
ger of each rule in the same category. Thus, we can identify the
conflicts related to the same trigger or related triggers. In Buildin-
gRules, the rule verification is performed as soon as a new rule is
inserted. When a user inserts a rule that is conflicting with existing
rules, a notification is raised and the user is asked to modify the
rule. We translate the rules from human readable syntax to the Z3
syntax using a pre-defined look up table (see Table 1).

We chose Z3 to detect conflicts as it is efficient and reusable. Al-
though the satisfiability problem is computationally expensive, we
ensure low latency as Z3 solves this problem efficiently. An al-
ternative is to have a customized implementation to deal with our
particular variables. To assure good performance, we would have
to modify and evaluate the algorithm every time we modify the
variable domain, the rules structure and other details in the rule set.
Instead, the SMT solver just requires addition of transformation
rules to create a new model, but does not require re-evaluation of
the algorithm, since it is computed efficiently by Z3. Further, the
input language of our SMT solver is generic, and it would be easy
to switch to different SMT solvers, such as Yices [19].

3.2.1 Run-time Conflicts
Some conflicts cannot be detected using the SMT solver. Consider
the following example: 1) If nobody is in the room then turn off the
light; 2)If it is between 6pm and 8pm then turn on the light.

Using Z3, we would run the verification twice: once by asserting
nobody is in the room and again with the time interval 6pm to 8pm.
Both the runs are satisfiable, as it cannot be known apriori if the
triggers will conflict in time (see Table 1). We cannot identify the
conflict that arises when the room is empty between 6pm and 8pm.
In this case, the light will be both on and off at the same time.
Note that we need to support similar rules, as the user may want
to express a complex policy by combining rules. For example, the
user may want a rule that generally turns on the light between 6pm
and 8pm, but not when the room is unoccupied.

To resolve these conflicts, we let the user to assign a priority to
each rule. If the desire of the user is to set a policy like “generally
I want this behavior but not when this event happens”, the user sets
a lower priority to the general rule, and a higher priority to specific
rule. The priority number is used to order the rules by importance
and dynamically resolve conflicts during the actuation phase in an
efficient way. Moreover, it is simple to explain this concept to the





G1

R1 R2

A B C

A B C

E F

A B C

G H

!"#$%#&%'(&)*+

G1

R1 R2

A B C

A B C

E F

A B C

G H

G H E F

X ,*-.

,*-./."

!"#"$%

012
3&)//',))4'5#-6%#"6)$'(&)*+

072

Figure 3: Representation of the two different kinds of sup-

ported groups

The conflict checking algorithm needs to take care of which groups
a room belongs to. For a room not belonging to any group, the
rule set is composed of the rules saved for the room. If the room
belongs to one or more standard groups, the rule set to be checked
is composed of the rules saved in the considered room plus the
union of all the rules saved in these groups. If the room belongs to a
Cross Room Validation Group, the rule set of the room is the union
of all the rule set (for specified actions in CRVG) of the rooms
belonging to that group. Listing 2 presents the pseudo-code that
illustrates all the possible cases to generate rule sets for performing
static rule verification.

Listing 2: Ruleset generation pseudo-code
def getAllGroupRules(g):

groupRuleSet = getGroupRules(g)

if isCrossRoomValidation(g):

for r in getGroupRooms(g):

groupRuleSet.extend(getRoomRules(r))

return groupRuleSet

def getAllRoomRules(r):

ruleSet = getRoomRules(r)

groups = getRoomGroups(g)

for g in groups:

ruleSet.extend(getAllGroupRules(g))

return ruleSet

Conflict detection for a new rule inserted into a group requires more
analysis. Let us consider the example of a group G1 composed of
three rooms R1, R2, R3. All the rooms have already been pro-
grammed by occupants, so they have their own rule set. At this
point, if the building manager inserts a new rule at the group level,
and if this rule is conflicting with one of the rules already present in
R1, R2 or R3, two problems arise - (1) the rule sets of the rooms are
no longer consistent since there are conflicts, and (2) the occupants
of the rooms will be never be able to add or modify their conflicting
rule set since the administrative rule is at a higher priority.

Thus, when a new rule is inserted or modified in a group, a tem-
porary rule set ST composed of the union of the rule set of the
rooms in the group is created. ST is checked for conflicts using
Z3. If a conflict is found, the building administrator has to remove
the conflicting rules for each room before inserting the new one. To
perform this operation automatically, we currently use the RESTful
APIs exposed by BuildingRules. In our real deployment, we plan
to develop a dashboard for the building manager to perform such
powerful tasks easily.

4. IMPLEMENTATION
We have designed BuildingRules as a RESTful HTTP/JSON web
service, with a frontend for the user interface, and a backend which
communicates with the BMS, stores necessary information about
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rules, runs the conflict resolution algorithm and provides RESTful
APIs for native mobile applications or building management appli-
cations. Figure 4 shows the software architecture of the system.
We have implemented BuildingRules in Python 2.7 using the Flask
framework [22].

The backend design follows the Model-View-Controller (MVC) ar-
chitecture. The REST interface enables communication with the
frontend, and is managed by a controller which implements the
application logic. The controller stores the data to manage build-
ings, rooms, groups, users and rules using the model which works
as a database abstraction layer. The controller also validates build-
ing rules using the Z3 SMT solver. Finally, the controller gathers
the needed data about weather, building systems and date-time sta-
tus through a standardized driver interface. The drivers allow the
controller to read building sensor values and send actuation signals
to the building to apply the triggered rules. The driver interface al-
lows BuildingRules to support a variety of web service BMS like
BuildingDepot [2], and conform to standards such as oBIX [20].
A simulator is also available in order to predict the behavior of
the rooms with the specified rules. It is a time-driven framework
where for each time step, the simulator reads the specified the envi-
ronment conditions (the room temperature, the weather condition,
the occupancy status, etc.), checks for rules that are triggered, and
decides the actions based on priority. The actions are not executed,
but are written to a log file. The log file is the automatically con-
verted to a timeline that represents the behavior of the room.

The frontend is a lightweight user interface and interacts with the
backend using a well-defined API. Using these APIs, tasks such as
user registration, adding triggers and actions, specifying rules for
individuals rooms or groups of rooms can all be performed. On
top of this API, applications can be implemented that can automat-
ically insert rules. For example, a Demand Response application
[4] can be implemented using a special user, who injects rules to
reduce energy use across all rooms when a pre-registered trigger
condition is met. Another example is a Calendar Manager that
can insert rules automatically, like turn ON/OFF the projector or
modify temperature set points based on room schedules.

Drivers in BuildingRules provide necessary abstractions between
the core system and low level sensors (reusable across deployments),
and are of two types: TriggerDrivers and ActionDrivers. A Trig-

gerDriver takes as input a sensor source (e.g., a temperature sensor
in a room) and a condition to verify (e.g., the temperature is set be-
tween 70F and 75F). When the above condition is met, it provides
a notification through the eventTriggered method. An ActionDriver
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Figure 5: Preliminary survey: number of logical and runtime

conflicts detected as participants share office spaces.

takes a target actuator (e.g. an HVAC control system) and the ac-
tual value (e.g. set temperature to 70F) as input, and uses an ac-

tuate method to execute a rule action. The translation from the
human readable form of the rule trigger/action to the input data for
the drivers is performed by the controller. This allows to keep the
drivers structure simple for developing interfaces to support new
environment quickly and with minimum effort.

In our current implementation, four TriggerDrivers and one Ac-

tionDriver are available. The four TriggerDrivers are for weather,
date/time, external applications and room level sensors. We have
implemented a single generic room level ActionDriver that can be
used for actuation such as changing the temperature in the room.
The room level drivers interact with the building using RESTful
APIs exposed by the BMS.

5. RESULTS
BuildingRules has been designed for office building occupants to
express their preferences using custom automation policies. To
evaluate BuildingRules, we first examine the rules expressed by
users in a preliminary survey, looking for conflicts and measuring
the latency of our conflict detection. Next we ran a larger user study
with 23 users using BuildingRules for a week. Using this dataset
we analyze the rules expressed, conflicts detected, and finally, how
our system can affect the office environment.

5.1 Preliminary Survey
We conducted a preliminary survey to get an understanding of the
type of rules that will be generated in an office setting, and how
these rules may conflict with each other. The participants were
asked to create trigger action rules on a web interface using spec-
ified triggers and actions. Only simple rules (no multiple triggers
or actions) were requested for this study. The trigger set included
{occupancy, temperature, time, weather}, and the action set in-
cluded {lights, heating, cooling, window, curtains, coffee machine,

microwave}.

We received a total of 72 valid (and 2 invalid) replies with a min-
imum of 2 rules per participant and a total of 284 rules. The most
popular trigger was occupancy with 141 rules and the most popu-
lar action was lights with 100 rules. To analyze the potential con-
flicts between the rules, we assigned the participants randomly to
shared offices (total of 3069 office instances), and ran our conflict
detection algorithm. The participants were assigned to offices with
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Figure 6: Conflict checking time when the inserted or modified

rule. Successful inserts are slower as the rule has been verified

against all the rules with the same trigger category. Average

detection time is 102ms for a room with 100 rules.

capacity of 1 to 30 occupants. We detected conflicts 99% of the
time, and there were duplicate rules in 96% of these virtual offices.
The conflicts are higher than what would be observed in a Build-
ingRules installation as the occupants cannot view the rules ex-
pressed by others in the same room. However, a significant number
of rules will still conflict both statically (at rule specification time)
and at run time due to the varying preferences of the occupants as
we show in the next section. Figure 5 shows the trends of increase
in static and runtime conflicts that occur as more occupants share a
single office space.

5.2 Conflict Resolution Latency
Our conflict resolution module checks for conflicts on a per room
basis. Each of these checks can be run in parallel, thus making
BuildingRules scalable to a large number of rooms in a building.
A transaction mechanism is required for handling race conditions
when users simultaneously insert rules in the same room or in rooms
which belong to the same cross room validation group. We have
not implemented the transaction mechanism yet as there was a low
probability to have simultaneous conflict checking for rooms in the
same group for our scale of deployment.

As BuildingRules is an interactive web application, the conflict res-
olution latency needs to be tolerable to the users. We collected the
rules obtained from the preliminary survey, and measured the la-
tency for resolving conflicts as the number of rules in a room in-
creases. Figure 6 shows the latency of conflict resolution when the
inserted rules does not conflict with any of the existing rules. Note
that, if the rule were conflicting, the latency would decrease as Z3
would return as soon as a conflict is found. Further, the conflict
checking only occurs for rules which are in the same rule category,
i.e. related actions and triggers. The maximum ratio of the number
of rules in the same category to the total number of rules in a room
is 6% from the rules collected in our virtual building user study
(next section). Thus, we estimate that for a room with 100 rules
in place, the average time for conflict checking is 102 ms, and the
worst case time is 251 ms.

5.3 Virtual Building Study
To evaluate BuildingRules in a more realistic setting, we created
a virtual office environment as depicted in Figure 7. We chose a
virtual setting because it is easier to study the rules made using
different kinds of sensors that we cannot deploy in a real build-
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on BuildingRules simulator. Significant amount of run-time

conflicts occur due to multiple rules present per action as shown

in Figure 10.

We have presented the design and the implementation of Buildin-
gRules, a system that enables expression of personalized automa-
tion rules in commercial buildings using the well known trigger-
action programming paradigm, which can then be integrated with
existing Building Management Systems (BMSes) to actuate build-
ings. We show that when multiple users express different poli-
cies for the same physical space conflicts can occur. To resolve
these conflicts, we have implemented two mechanisms in Build-
ingRules. First, we avoid logical conficts by detecting them as
rules are inserted using the Z3 SMT solver. Second, BuildingRules
resolves run time conflicts using a priority assigned to individual
rules. We show that our conflict detection algorithm is paralleliz-
able and scales to large commercial buildings, such that the la-
tency is low enough to support the interactive web application UI
of BuildingRules. To ease rule expression and expose the physical
constraints imposed by building systems, BuildingRules provides
a grouping mechanism. To incorporate the hierarchy commonly
seen in commercial buildings, BuildingRules provide mechanisms
for access control and different levels of privileges for rule expres-
sion. The final component of BuildingRules is an intuitive web in-
terface for building occupants to express their rules. Using this UI,
we evaluated the use of BuildingRules in a virtual office building
with 23 users across 17 days, and found that BuildingRules allows
expression of a wide set of rules, resolves conflicts effectively.

There are however several aspects of the system that can be im-
proved. A redesigned UI will be needed to provide a good overview,
especially for building managers who have to potentially manage
all the rules expressed in a building (for them, for instance, a spe-
cial UI is needed in order to perform the rule editing over multiple
rooms at the same time). Furthermore, the UI can be improved
further to show existing rules and possible conflicts as users are
typing their rules. We leave this limitation to future work although
one of the ideas we are pursuing is to use a building level simula-
tor to display the final effect of all the rules in one view. We also
plan to increase the number of actions (e.g. email notification) and
triggers (e.g. type of room, occupant identity) supported by Build-
ingRules assuming the underlying sensors are available, as well as
allow nesting of rules (may require incorporating temporal logic
in our conflict detection algorithm). We also plan to explore how
rules can be migrated across buildings. Most importantly, we plan
to evaluate BuildingRules in a real building. Unfortunately, this can
only be done at a small constrained environment, where occupants
can express their desires easily. It would be interesting to study the
rules expressed, especially their evolution as occupants get direct
feedback about the effect of those rules on their surroundings. Fi-

nally, we plan to study the group dynamics in shared spaces when
multiple occupants are expressing rules that conflict with other oc-
cupants rules.
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