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A B S T R A C T   

There have been major advances in the science to predict the likely environmental concentrations of nano
materials, which is a key component of exposure and subsequent risk assessment. Considerable progress has been 
since the first Material Flow Analyses (MFAs) in 2008, which were based on very limited information, to more 
refined current tools that take into account engineered nanoparticle (ENP) size distribution, form, dynamic 
release, and better-informed release factors. These MFAs provide input for all environmental fate models (EFMs), 
that generate estimates of particle flows and concentrations in various environmental compartments. While MFA 
models provide valuable information on the magnitude of ENP release, they do not account for fate processes, 
such as homo- and heteroaggregation, transformations, dissolution, or corona formation. EFMs account for these 
processes in differing degrees. EFMs can be divided into multimedia compartment models (e.g., atmosphere, 
waterbodies and their sediments, soils in various landuses), of which there are currently a handful with varying 
degrees of complexity and process representation, and spatially-resolved watershed models which focus on the 
water and sediment compartments. Multimedia models have particular applications for considering predicted 
environmental concentrations (PECs) in particular regions, or for developing generic “fate factors” (i.e., overall 
persistence in a given compartment) for life-cycle assessment. Watershed models can track transport and 
eventual fate of emissions into a flowing river, from multiple sources along the waterway course, providing 
spatially and temporally resolved PECs. Both types of EFMs can be run with either continuous sources of 
emissions and environmental conditions, or with dynamic emissions (e.g., temporally varying for example as a 
new nanomaterial is introduced to the market, or with seasonal applications), to better understand the situations 
that may lead to peak PECs that are more likely to result in exceedance of a toxicological threshold. In addition, 
bioaccumulation models have been developed to predict the internal concentrations that may accumulate in 
exposed organisms, based on the PECs from EFMs. The main challenge for MFA and EFMs is a full validation 
against observed data. To date there have been no field studies that can provide the kind of dataset(s) needed for 
a true validation of the PECs. While EFMs have been evaluated against a few observations in a small number of 
locations, with results that indicate they are in the right order of magnitude, there is a great need for field data. 
Another major challenge is the input data for the MFAs, which depend on market data to estimate the production 
of ENPs. The current information has major gaps and large uncertainties. There is also a lack of robust analytical 
techniques for quantifying ENP properties in complex matrices; machine learning may be able to fill this gap. 
Nevertheless, there has been major progress in the tools for generating PECs. With the emergence of nano- and 
microplastics as a leading environmental concern, some EFMs have been adapted to these materials. However, 
caution is needed, since most nano- and microplastics are not engineered, therefore their characteristics are 
difficult to generalize, and there are new fate and transport processes to consider.   
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1. Introduction 

Nanotechnology has grown at a blazing pace, from the early work in 
the 1980s when the visualization of individual atoms and bonds was 
made possible by the invention of the scanning tunneling microscope, to 
today with the production of nearly 2 million metric tons of nano
materials and projected to double in the next decade. The actual pro
duction and commercialization of nanomaterials began well before 1980 
(Nowack et al., 2011; Wigger et al., 2018), as “ultrafine” materials (e.g., 
nano‑silver, nano-silica, nano‑titanium dioxide, carbon black), but the 
development of materials targeted at the nanoscale began in earnest 
once we began to understand their unique properties. By the early 21st 
century, nanomaterials were being used in a wide variety of consumer 
products, including pigments and coatings, as well as a number of 
automotive, electronics, medical, and personal care products (Keller 
et al., 2023). For example, titanium dioxide nanoparticles and zinc oxide 
nanoparticles have been widely used as sunscreens due to their ability to 
absorb UV light (Suzuki, 1987; Monteiro-Riviere et al., 2011; Tyner 
et al., 2011), while silver nanoparticles are increasingly used in textiles 
due to their antibacterial properties (Gokarneshan and Velumani, 2017). 
Apart from these consumer products, nanomaterials are used in a large 
number of applications in various industrial sectors. For example, in the 
automotive industry, carbon nanotubes (CNTs) can improve tire per
formance in terms of durability, fuel efficiency and traction control 
(Felix and SivaKumar, 2014). In addition, engineered nanoparticles 
(ENPs) can be used in water treatment and environmental remediation 
due to their catalytic and photocatalytic properties (U.S. EPA., 2010; Lu 
et al., 2016). Moreover, they are also very useful in the energy sector. 
Carbon-based nanomaterials, such as carbon nanotubes, graphene, and 
fullerenes, allow for improved solar cell efficiency and stability due to 
their unique electrical and mechanical properties (Deshmukh et al., 
2021). The use of nanotechnology in agriculture is also primed to in
crease, with important environmental implications (Usman et al., 2020). 
The growing number of ENP-containing products demonstrates the 
enormous value of nanotechnology to the global economy. The global 
nanotechnology market is growing exponentially with millions of tons of 
production volume (Future Markets Inc, 2021a). Such high volume in
dicates that nanotechnology and nano-products have become part of our 
daily life (Hansen et al., 2020). 

The widespread use inevitably leads to the release of ENPs to the 
environment, resulting in environmental exposure, which can occur at 
all stages of their life cycle: production, manufacturing, use and end-of- 
life disposal and recycling (Wigger et al., 2020). For example, during the 
manufacturing stage of nano-enabled products, small amounts of ENPs 
are released into the environment when the products are structurally 
modified using high-energy and high-temperature procedures (Martínez 
et al., 2020). According to the results of material flow models, most 
ENPs are released during the usage of products (Sun et al., 2016). For 
example, ENPs in sunscreen applied when people swim in open water 
can be released directly into surface water (Keller, 2023). Washing 
textiles with ENPs added can cause them to be released into the sewer 
system. Mass flow studies show that the majority of ENPs will be treated 
in wastewater treatment plants (WWTPs), waste incineration plants 
(WIPs) and landfill before reaching the environment (Sun et al., 2016; 
Keller and Lazareva, 2014). Once in the environment, ENPs can be 
further transported by wind, rainwater or surface water (Lead et al., 
2018a; Garner and Keller, 2014; Garner et al., 2017). 

Once released, ENPs can reach the environmental compartments of 
water, soil, and air and may undergo a wide variety of physicochemical 
transformations (e.g., homo- and hetero-aggregation/agglomeration, 
formation of organic corona, dissolution, sulfidation or other trans
formations) (Garner and Keller, 2014; Gregory et al., 2012b; Zhou et al., 
2012; Wang et al., 2015; Nowack and Bucheli, 2007; Praetorius et al., 
2020a; Tomak et al., 2022; Hadjidemetriou and Kostarelos, 2017; Quik 
et al., 2014). It has been also shown that even before reaching the 
environment, many ENP have undergone significant transformation, 

either during product use or withing technical compartments such as 
WWTP (Mitrano et al., 2015). The physicochemical properties of ENPs, 
particularly after their transformations, are critical to understanding 
their fate and behavior in the environment, the interactions of the ENPs 
with other pollutants, as well as their uptake and biodistribution in or
ganisms. The behavior and fate of ENPs in the environment depends not 
only on the conditions in the medium (temperature, flow rate, pH, ionic 
strength, presence of organic matter, etc.), the so-called extrinsic pa
rameters, but also the inherent properties of ENPs (size, shape, solubil
ity, reactivity, etc.), the so-called intrinsic properties, which are 
modulated by the transformations (Lead et al., 2018b). 

From a regulatory perspective, data on environmental release and 
exposure for ENPs are essential to estimate their environmental risk 
(Svendsen et al., 2020). ENP emissions only pose a risk if both exposure 
and hazard are observed (Aschberger et al., 2011). However, current 
analytical methods for ENP detection in environmental samples are still 
very limited (Gondikas et al., 2018; Yi et al., 2020; Wagner et al., 2014). 
Although some studies have characterized and quantified the release 
rates of nanoparticulate materials from specific products or waste 
treatment compartments, they do not give a complete picture of ENP 
exposure in the environment (Hagendorfer et al., 2010; Kaegi et al., 
2017; Kaegi et al., 2010; Cervantes-Avilés and Keller, 2021; Mitrano 
et al., 2012; Nabi et al., 2021a; Laborda et al., 2016; Hadioui et al., 2013; 
Peters et al., 2018; Montaño et al., 2016). Therefore, environmental 
exposure modeling for determining predicted environmental concen
trations (PECs), useful to calculate exposure dose, remains an indis
pensable tool for assessing the human and ecological health risk posed 
by ENPs. 

The general scheme of environmental risk assessment consists of 
combining exposure with hazard assessment. As one pillar of any envi
ronmental risk assessment, exposure models cover the flows from pro
duction, manufacturing, use, and end-of-life to the environment 
(material flow analysis, MFA) and further describe their fate and dis
tribution in the environment (environmental fate modeling, EFM) 
(Garner et al., 2017; Meesters et al., 2014; Quik et al., 2015a; Klein et al., 
2016; Besseling et al., 2017; Praetorius et al., 2012; Nowack, 2017). The 
general framework of any MFA model contains the mass amounts of ENP 
production, product allocation and transfer coefficients between com
partments as input and ENP releases to the environment as output. MFA 
models can be coupled with tools for EFM and enable a more accurate 
description of the actual form and concentration of the ENPs in the 
environment by considering material transport, transformation, and 
degradation processes. ENP behavior is, i.e., dependent on particle size 
distribution. In addition, uptake and bioaccumulation models are used 
to further link external exposure with adverse effects often observed in 
lab studies, commonly referred to as toxico- kinetic and dynamic models 
(Fig. 1). 

Chemicals can pose potential toxicity if they bioaccumulate in or
ganisms and are transported to target sites within the body (Charles 
et al., 2022). Followed by exposure modeling, the next step in envi
ronmental risk assessment could be to relate external concentrations 
(PEC) to internal concentrations within the organism, considering 
various processes within the organism such as absorption, distribution, 
metabolism, and excretion (ADME). Metabolic transformation of ENPs 
within the organisms is a complicating factor, since the internal expo
sure may be to an ENP with a different composition, or to dissolution 
products (Zhu et al., 2013; Wang et al., 2013). This part is denominated 
toxicokinetic (TK) or biokinetic modeling (Fig. 1). Biokinetic models are 
commonly used to calculate bioaccumulation metrics from experimental 
data collected in standard bioaccumulation tests (OECD, 2012). For 
bioaccumulation of ENPs in aquatic organisms, the simplest one- 
compartment biokinetic model is commonly used, where the organism 
is considered as one whole compartment. The chemicals enter the 
compartment at rate ku and be eliminated by the organisms at rate ke. 
Next, toxicodynamic (TD) models relate the damage suffered by an or
ganism due to internal bioaccumulation concentrations to observed 
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effects, such as increased mortality or reduced growth. The European 
Food Safety Authority (EFSA) recommends the use of the combined TK- 
TD models to refine Tier-2 risk assessment (European Commission, 
2013). 

For this review we will cover the evolution of each of these steps 
within exposure assessment, highlighting the major advances, identi
fying the gaps, and providing some suggestions for the future of ENP 
exposure estimates. 

2. Material flow analysis 

The first MFA framework applied to ENPs was developed by Boxall 
et al. (2007). The MFA modeling in this study was based on assumptions 
and a high market penetration scenario. It did not provide realistic PEC 
values but aimed at providing a possible upper limit of concentration. 
Müller and Nowack (2008) then published the first PEC values for the 
three most used ENPs (nano-Ag, nano-TiO2 and CNT) that were 
employed in several further studies (Mueller and Nowack, 2008). They 
substituted hypothetical calculations with more realistic scenarios based 
on the best available knowledge. MFA-modeling was then extended to a 
probabilistic material flow analysis (PMFA) by applying Bayesian sta
tistics (Gottschalk et al., 2010). Bayesian modeling includes the propa
gation of incomplete knowledge and uncertainty analysis of all model 
parameters. Instead of single point values, model inputs and outputs are 
expressed as probability distributions. Another example of an MFA, 
developed by Keller and colleagues, estimated ENP releases at global, 
regional and US scales (Keller and Lazareva, 2013). They also estimated 
dynamic ENP release at U.S. and global scales (Song et al., 2017). 

A further improvement was made by extending the probabilistic 
approach to a dynamic MFA modeling (Bornhöft et al., 2016), resulting 
in the dynamic, probabilistic, material flow analysis (DPMFA). The main 
purpose of dynamics is to quantify material flows over time and to create 
robust scenarios using historical patterns of development of physical 
stocks and flows. ENPs are produced and embedded in products in many 
different forms, and these forms can be altered during the life cycle (Sun 
et al., 2017). Studies showed that these forms of ENPs can affect their 
release, fate and toxicity in the environment (Lowry et al., 2012a; 
Gottschalk et al., 2015; Hendren et al., 2013). Considering this, Adam 
et al. (2018) developed a form-specific MFA, considering pristine, 
matrix-embedded, transformed, dissolved, and product-embedded 
forms (Adam et al., 2018a). Combining all the advancements from 

previously mentioned individual models, Adam et al. provided the 
IDPMFA model which is the most advanced model to predict the mass 
flows of ENP to the environment (Adam et al., 2021). Most recently, 
Zheng modified the DPMFA to consider the ENP particle-size distribu
tion in addition to their form (Zheng and Nowack, 2021a). 

A key input for all MFAs is an estimate of the production of ENPs for 
the region of interest. Some MFAs rely on commercial market studies 
(Future Markets, Inc, 2012; Future Markets Inc, 2021b), others have 
considered national databases such as the mandatory French registry of 
all nanomaterials produced in or imported to France (MTES, 2020), 
others have used or considered voluntary product registries such as the 
Nanodatabase (www.nanodb.dk) in Europe, the Wilson Center Project 
on Emerging Nanotechnologies Consumer Product Database, and the 
Nanomaterial Registry in the USA (http://www.nanomaterialregistry. 
org/), while others have used patent data and company proxy infor
mation to estimate production amounts (Hendren et al., 2011). One 
recent update on production has used the location of specific production 
sites to distribute the total European production to specific countries 
(Kuenen et al., 2020). While all sources of production data have 
considerable uncertainty, given that companies consider it proprietary 
information, it is estimated that in 2020 nanomaterial production was 
over 1.6 million metric tons, and will likely more than double by 2031, 
to nearly 3.5 million metric tons (Future_Markets, _Inc, 2021). These 
estimates do not include carbon black, with an estimated production of 
14 million tons in 2021 and growing at a compounded annual rate of 
3.4% (https://www.chemanalyst.com/industry-report/carbon-black-m 
arket-440). Thus, carbon black dwarfs the ENP market. Another major 
nanomaterial not considered in the previous estimates is nano calcium 
carbonate (nCaCO3). The annual production of calcium carbonate is 
around 8.7 million tons (https://www.chemanalyst.com/indust 
ry-report/calcium-carbonate-market-687), but the fraction produced 
as nano is unknown. However, both carbon black and nCaCO3 are 
considered nanomaterials in the French nanomaterial registry (MTES, 
2020). Also missing from the market studies are mixed composition and 
most 2-D nanomaterials, likely due to their low sales volume, despite 
potential environmental implications (Parviz et al., 2020). 

Coatings, paints, and pigments represent the dominant application, 
particularly if one considers that over 60% of carbon black is used as 
pigment in tires, 20% in other rubber (e.g., hoses, gaskets), 11% in 
paints, and 4% in printing inks, and 25% of calcium carbonate is used in 
paints and coatings. While many of the products in which ENPs are used 

Fig. 1. Framework for modeling of exposure to support environmental risk assessment of ENPs. MFA: material flow analysis, EFM: environmental fate modeling, 
PEC: predicted environmental concentration, TK: toxicokinetic modeling, TD: toxicodynamic modeling. 
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in coatings and paints or as pigments are used directly in the environ
ment (e.g., tires, automotive paints, building paints), most of the release 
is in composite materials (i.e., rubber and other polymeric matrices), 
with only a small fraction likely to be released in the nanoscale. Personal 
care products (e.g., sunscreens, cosmetics) are the application with the 
most significant load to the environment, given the release to waste
water, with a potential release via treated effluent to waterbodies, and 
via biosolids to the terrestrial environment, mainly to agriculture 
(Fig. 2). Overall, air emissions are expected to be small. 

ENP production is mostly centered in developed countries (Fig. 3) in 
Asia, Europe, Oceania, and the Americas, with minimal production in 
Africa and less developed countries in Europe, Southeast Asia, and South 
America. Commodity nanomaterials are more likely to be produced in 
China and selected countries in Western Europe and North America, 
while specialties are more likely to originate from the US and a few 
Western Europe countries. While production is likely to shift to other 
countries by 2031, the current production centers are likely to continue 
to dominate. However, nanomaterial consumption is spread more 
widely incorporated into consumer and industrial products. Although 
the size of the nanomaterial market is small in comparison to other 
materials, there is a considerable transportation footprint, as nano
materials are exchanged between continents for incorporation into 
products that are then shipped further to the rest of the world. 

3. Multimedia (Box) models 

3.1. Evolution 

Multimedia fate models are useful for understanding the distribution 
of ENPs among different environmental compartments (i.e., air, soil, 
water, and sediments), considering the processes that determine the 
behavior of the nanoparticles within each compartment and their 
transfer from one compartment to another. In contrast, atmospheric or 
watershed models only focus on the fate of the ENPs within a more 
limited set of compartments (e.g., water and sediments), but with 
greater spatial representation. Multimedia fate models have existed for 
several decades for organic and metal compounds (van de Meent, 1993; 
Mackay and Paterson, 1991; Harvey et al., 2007). However, given the 
significant differences in behavior between organic compounds or even 
metals from those of ENPs, it was determined that these multimedia 
models needed major adjustments (Praetorius et al., 2012; Arvidsson 
et al., 2011; Meesters et al., 2013; Quik et al., 2011). The first to publish 
an adapted fate model were Arvidsson et al. (2011) and Praetorius et al. 
(2012) in which the Smoluchowski theory on particle agglomeration 
and Stokes Law on particle settling were included in an aquatic fate 
model (Arvidsson et al., 2011; Praetorius et al., 2012). The first two full 
multimedia fate models for ENPs, Mendnano (Liu and Cohen, 2014) and 
SimpleBox4nano (Meesters et al., 2014) followed after and primarily 
focused on estimating the environmental distribution of ENPs at steady 

Fig. 2. Flow of nanomaterials in 2020 through the global economy, from production (left side) to applications (mid yellow boxes), to final compartments (right side, 
in brown), with some ENPs passing through wastewater treatment plants (WWTP) and waste incineration plants (WIP). Carbon black and nCaCO3 are not considered. 
Data from ref. # 70. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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state. In 2017, the nanoFate model introduced a greater number of 
compartments and high-resolution temporal dynamics related to 
weather and nanomaterial release events (Garner et al., 2017). More 
recently, the NanoFase model was developed, with much higher spatial 
resolution for soil and water compartments, making it a hybrid between 
multimedia and watershed models (Lofts et al., n.d.). 

3.2. Characteristics 

To make fate models fit for use with ENPs, the relationship between 
ENP properties and their effect on transport or transformation processes 
in the environment needs to be explicitly incorporated. The relationship 
must consider intrinsic and extrinsic ENP properties (Hendren et al., 
2015; Quik et al., 2018). Intrinsic properties include ENP composition, 
size, coating, and density among others. Extrinsic properties are related 
to the interaction between the ENPs, their surrounding matrix (e.g., air, 
water, soil), and the conditions of the overall system. Extrinsic proper
ties are dependent on the environmental matrix (i.e., air, freshwater, 
seawater, groundwater), the ionic strength (i.e., salt concentrations), 
concentration and nature of natural organic matter (NOM), and pH. 
Important properties for the system include temperature, UV irradia
tion, concentration of suspended particles and aerosols, as well as soil 
characteristics such as cation exchange capacity (Garner et al., 2017). 
The coating of an ENP is a function of time and exposure pathway: 
initially, the ENP may be coated by the manufacturer to increase sta
bility or provide specific functional properties, making it an intrinsic 
property (Cartwright et al., 2020). Later, as the particle travels through 

various matrices, it can be coated by organic matter (eco-corona) and/or 
proteins (Casals et al., 2010; Natarajan et al., 2021; Barbero et al., 2021), 
resulting in changes in extrinsic properties such as the attachment effi
ciency for homo-/heteroaggregation and in some cases the dissolution 
rate. For example, the dissolution rate is dependent on the chemical 
composition of the ENP, its coatings, pH of the water matrix (e.g., 
freshwater, seawater, soil pore water), aggregation state, and tempera
ture (Amde et al., 2017) (Fig. 4). Another example is the transformation 
of ENPs by the microbiome, which can significantly alter their fate 
(Couvillion et al., 2023). Below we briefly discuss the prevalent ENP- 
related physico-chemical properties included in ENP fate models, the 
landscape and spatial aspects they consider and their temporal 
resolution. 

3.3. Processes considered in multimedia models 

Fate processes (e.g., dry and wet deposition, dissolution, homo- and 
hetero-aggregation, sedimentation) implemented in the currently 
available nanomaterial multimedia models are presented in Table 1, 
along with relevant ENP properties. Although the coating is a very 
important property, it is not considered explicitly in any of these models; 
it is taken into account implicitly via its effect on attachment efficiency 
and dissolution rates. MendNano is the only multimedia model that has 
implemented a size-dependent diffusion model for estimating the ENP- 
environmental medium mass transfer coefficient, to be used when no 
measured dissolution rate constant is available (Liu and Cohen, 2014). 
MendNano also utilizes the fractal dimension for estimating porosity of 

Fig. 3. Global nanomaterial production (blue scale) and use (size of circles for each country) estimates for 2020. Data from Reference (Future_Markets, _Inc, 2021) 
for regional production and sales. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ENP homo-agglomerates (Liu and Cohen, 2014). Given that the disso
lution rate and the attachment efficiency or attachment factor are a 
function of the evolving ENP coating (a dynamic extrinsic property), it 
presents a major challenge, and thus it has not yet been explicitly 
incorporated into any multimedia model. SimpleBox4nano and nano
Fate both explicitly consider ENP transport in porous media, either as 
free nanoparticles or heteroaggregated to clay particles. Both models 
also track the concentrations of free nanoparticles, hetero-agglomerates, 
and dissolved ions when applicable. Given their dependence on intrinsic 
properties, environment and system, these extrinsic properties need to 

be measured for specific relevant conditions (see Section 6, data needs). 

3.4. Spatial and temporal resolution of multimedia models 

Somewhat different approaches are considered by the multimedia 
models mentioned above with regards to landscape and spatial vari
ability. There are two main differences in approaches. In the most 
common, the landscape is divided into relevant water and soil types 
representative of the spatial distribution. For instance, the landscape can 
be subdivided into agricultural soils (with and without the application of 
biosolids), natural soil and urban soil (Garner et al., 2017; Meesters 
et al., 2014). NanoFate and SimpleBox (Casals et al., 2010) also con
siders different water body compartments, for example a flowing river 
and a lake, estuary, or sea water. Most often these types of models 
consider a single well-mixed air compartment. SimpleBox also considers 
three nested scales at the regional, continental and global level simul
taneously. In the second approach, utilized by NanoFase, the fate model 
considers a grid and grid cell characteristics have to be determined for 
each fraction of water and soil in that cell (Lofts et al., n.d.). Application 
of multimedia models to different spatial scales is dependent on the goal 
of each model. For instance, local air concentrations related to a point 
source are not represented adequately using a single well mixed air 
compartment (Poikkimäki et al., 2022). 

Most multimedia models used for ENPs consider a daily temporal 
resolution for the emission of ENPs and in some cases also the weather 
(e.g., nanoFate, MendNano, NanoFase). Dynamic emissions patterns can 
be used to model increasing release as new products incorporate more 
ENPs, decreasing due to a phase-out, seasonal events (e.g., summer 
sunscreen application), and accidental spills. Weather events have a 
significant influence on wet deposition from air and runoff from soil. 
nanoFate also considers the daily streamflow through the flowing river, 
as well as discharge from groundwater into the river or other water 
bodies. The SimpleBox model differs markedly from the other models 
since only dynamic emission patterns at a monthly or yearly temporal 
resolution are considered (Parker and Keller, 2019). 

Models such as SimpleBox are considered screening level and have 
particular applications in lower tiers of risk assessment, for instance in 
the context of European Chemicals legislation (REACH) (Hansen et al., 
2017), or to calculate generalized fate factors for life-cycle assessment. 
The models with higher spatial or temporal resolution (e.g., nanoFate, 
NanoFase) are a better fit for higher tier risk assessments, including 
regional PECs (see also section 4). 

3.5. Applications of multimedia models 

The primary application of the multimedia fate models is for pre
dicting the concentrations of ENPs in different environmental media 
over time, as part of an exposure assessment to estimate the risk ENPs 
may pose. Garner et al. (2017) showed that in temporal peaks of run-off 
and emission acute risk limits can be exceeded for TiO2 and ZnO in 
freshwater, highlighting the importance of including interaction with 
the soil compartment for assessing aquatic exposure to ENPs (Garner 
et al., 2017). nanoFate has also been used to predict ENP concentrations 
in different cities, depending on their local characteristics (landuse, 
weather, emissions patterns) (Parker and Keller, 2019), and also within 
the broader ChemFate framework, to compare the concentrations and 
exposure of ENPs to other types of chemicals (e.g., ionizable and non- 
ionizable organics, dissolved metals) (Tao and Keller, 2020). Simple
Box is the basis for the EUSES model suite (Vermeire et al., 1997) to 
estimate background exposure concentrations to chemicals. As such 
SimpleBox4nano can be applied for these more general exposure as
sessments. Local scale environmental concentrations are also possible, 
provided the model is parameterized for a specific area (Lofts et al., n.d.; 
Poikkimäki et al., 2022; Domercq et al., 2022). 

An additional application of multimedia fate models is estimating 
fate factors for life cycle impact assessment. One important tool for these 

Fig. 4. Extrinsic properties reflect the change in parameter values of intrinsic 
properties (e.g., dissolution rate, attachment efficiency) depending on the ma
trix (e.g., freshwater, seawater, groundwater) and its characteristics (e.g., pH, 
NOM, ionic strength), and the pathway that the ENP may take through the 
System (i.e., within the nano-enabled product, through wastewater, in agri
cultural or stormwater runoff, etc.). 

Table 1 
Nanomaterial properties in relation to fate processes.  

Nanomaterial property Linked fate 
processes 

Model(s) 

Size Dry air deposition nanoFate, MendNano, 
SimpleBox4nano 

Wet air deposition SimpleBox4nano 
Sedimentation nanoFate, MendNano, 

SimpleBox4nano 
Hetero- 
agglomeration 

SimpleBox4nano 

Dissolution MendNano 
Density Dry air deposition nanoFate, MendNano, 

SimpleBox4nano 
Wet air deposition SimpleBox4nano 
Sedimentation nanoFate, MendNano, 

SimpleBox4nano 
Hetero- 
agglomeration 

nanoFate, SimpleBox4nano 

Dissolution MendNano 
Attachment efficiency/ 

factor 
Hetero- 
agglomeration 

nanoFate, MendNano, 
SimpleBox4nano 

Hamaker constant Hetero- 
agglomeration 

SimpleBox4nano 

Fractal dimension Dissolution MendNano 
Dissolution rate 

constant 
Dissolution nanoFate, SimpleBox4nano 

Degradation rate 
constant 

Degradation SimpleBox4nano 

NA* Wet deposition 
Porous media 
transport 
Advection 

nanoFate, MendNano, 
SimpleBox4nano  

* The fate models include these processes, but without a direct relationship 
with ENP related properties. References: MendNano (Liu and Cohen, 2014), 
nanoFate (Garner et al., 2017), SimpleBox4nano (Meesters et al., 2014). 
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assessments is UseTox, which uses SimpleBox4nano for the nano- 
specific fate factors (Salieri et al., 2019), and others have included 
their own implementation for derivation of ENP-specific fate factors 
(Ettrup et al., 2017). These nano-specific multimedia models can be 
applied in any assessment where the fate of ENPs is relevant. For 
instance, SimpleBox is used in socio-economic analysis of mitigation 
measures (Gabbert et al., 2023), where distinguishing between persis
tence and mobility of different chemicals and nanomaterials is relevant. 

4. Watershed models 

Freshwater environments are a major receiving compartment for 
ENPs, both via point sources such as WWTPs and via diffuse sources such 
as run-off from agricultural fields or urban landcover (e.g., roads, 
buildings). In the absence (or limited availability) of monitoring data for 
ENPs, PEC values in freshwaters and sediments play an important role in 
informing risk assessment. In contrast to unit world type multimedia fate 
models, where surface waters and sediments are each represented by 
one bulk compartment (box), watershed models are spatially resolved 
and can therefore predict concentration profiles as a function of the 
distance to their point of emission (Williams et al., 2019; Dale et al., 
2015a). This enables the investigation of ENP concentration hotspots 
and their potential for long-range environmental transport. In watershed 
models the most relevant ENP-specific processes are heteroaggregation, 
sedimentation (and resuspension from surface sediments), dissolution 
and other (surface) transformations for reactive ENPs. 

One of the first models to assess ENP fate in a river considered the 
case of silver originating from silver nanoparticle-containing products in 
the Rhine River (over 700 km from Basel (CH) to Lobith (NL)). (Blaser 
et al., 2008) The Rhine River was represented by a multimedia mass- 
balance model with well-mixed surface water, stagnant water and sur
face sediment compartments. Spatial resolution was achieved by sub
dividing the river into 70 boxes of equal length. Emissions were 
estimated using a silver MFA from biocidal plastics and textiles. No ENP- 
specific transformation or transport processes are included in the model, 
but the dominant form of silver was assumed to be silver sulfide and 
both dissolved and particle-bound silver concentrations were modelled. 
The model predicted a downstream accumulation of silver sulfide, with 
an earlier concentration maximum in water than in sediment. 

The previous model by Blaser et al. was further developed by 
(Praetorius et al., 2012) to represent the ENPs in 5 distinct size classes 
and include ENP-specific processes, in particular heteroaggregation with 
suspended particulate matter (SPM) and size- and density-dependent 
settling (Praetorius et al., 2012). The impact of different ENP sizes, 
heteroaggregation attachment efficiencies, and SPM properties on 
downstream transport of TiO2 NPs in the Rhine River was evaluated in 
selected scenarios. Additionally, higher spatial resolution was achieved 
in this model by reducing the length of the river boxes, in particular 
close to the emission source to prevent overestimation of downstream 
transport by numerical diffusion. The importance of using higher spatial 
resolutions was confirmed by Gao et al. (2022) when adapting the Rhine 
river model to assess the fate and transport of nanoAg in the Xiangjiang 
River (China) and comparing model outputs at high and low spatial 
resolution (Gao et al., 2022). Sani-Kast et al. (2015) presented an 
adaptation of the Rhine model to the Rhone River and incorporated 
spatial variability in the environmental conditions (aquatic chemistry, 
SPM concentration and size) (Sani-Kast et al., 2015). Thereby, the 
importance of the water characteristics, especially close to the emission 
source, on the downstream concentration profiles was demonstrated. 

The strengths of the above-mentioned multimedia box models 
compared to these watershed models lie in their modularity with respect 
to introducing ENP-specific process descriptions, their comparatively 
low computational demands (especially when solved at steady-state) 
and the ability to adapt the models easily to represent different land
scapes, including rivers or watershed. This is possible, because the 
representation of environmental conditions – in terms of river 

morphology, hydrodynamics of water and sediment flow, water quality 
and their temporal/seasonal variations typically – are greatly simplified. 
However, this simplicity is also their weakness. 

Stream dynamics have a strong influence on ENPs transport and 
transformations in rivers and watersheds (Dale et al., 2015b). Dale et al. 
(2015) demonstrated this by using a spatially-resolved environmental 
fate model, the James River Basin portion of the Chesapeake Bay 
Watershed Model (WSM) coupled to the US EPA's water quality 
modeling suite WASP7 (Dale et al., 2015b). The stream hydrology in the 
model was previously calibrated to monitoring data from the modelled 
region and represented daily variations in streamflow, sediment trans
port and stream loads. The model results showed that in watersheds with 
high sediment mobility, sediment accumulation of ENP is less relevant 
than previously assumed and that using average sediment resuspension 
rates underestimates the distance that ENP can be transported in a 
watershed. Transformation reactions for ZnO and Ag NPs were repre
sented in the model to assess the speciation of these reactive NPs (as 
speciation will influence toxicity). However, heteroaggregation was not 
modelled explicitly, as this was not possible in version 7 of the WASP 
model. Instead, complete heteroaggregation of the NPs in all media was 
assumed, which may represent the overall behavior reasonably well, but 
also makes it impossible to identify locations or scenarios where free NPs 
may remain in the environment. 

The Water Quality Simulation Program WASP was further developed 
to include heteroaggregation, as well as photo-transformation as ENP- 
specific transformation processes. The updated WASP8, with its 
Advanced Toxicant module, is presented in detail in Knightes et al. 
(2019). In WASP8, chemical solutes, solid particles and nanoparticles 
can be simulated and particle attachment kinetics, as well as the envi
ronmental factors (e.g., ionic strength, pH, NOM, SPM) influencing 
them, are well described. By combining ENP-specific process de
scriptions with a spatially-resolved mass balance framework, that can 
represent different surface waters (i.e., lakes, streams, branched estu
aries) at high level of hydrological detail (e.g. by linking to hydrological 
models), WASP8 represents an important milestone in the development 
of watershed models for ENPs. It was applied to several cases, (e.g., 
multi-wall CNTs, graphene oxide (GO) and reduced graphene oxide) in 
different aquatic ecosystems in the USA, ranging from a seepage lake, to 
a coastal plain river, a piedmont river and an unstratified, wetland lake 
(Bouchard et al., 2017; Avant et al., 2019; Han et al., 2019); and more 
recently also to CuO-NPs released from nano‑copper-based antifouling 
paints on boats in a large lake (Lake Waccamaw, North Carolina, USA) 
(Ross and Knightes, 2022). 

A similar approach of linking ENP-specific process description to a 
spatially explicit hydrological model was introduced by Quik et al. 
(2015b). The NanoDUFLOW model, which is parameterized in its 
default scenario for the Dommel River (NL), represents ENPs in 5 size 
classes. In the model, an explicit link is made between key hydrological 
characteristics of the river and ENP fate processes. For example, the 
heteroaggregation, sedimentation and resuspension rates are linked to 
water flow rate and shear stress. This makes it possible to model feed
backs between local flow conditions and the fate of ENPs and predict 
time- and place-dependent ENP hotspots. A major challenge faced by all 
ENP watershed models is the limited availability of monitoring data of 
ENPs needed for model validation. Klein et al. (2016) made first steps 
towards validation of the NanoDUFLOW model by comparing model 
outputs to measured concentrations of <450 nm-sized particles con
taining Ce, Al, Ti or Zr, measured by Asymmetric Flow-Field-Flow 
Fractionation (AF4) coupled to ICP-MS (Klein et al., 2016). They 
found good agreement between modelled CeO2 NP concentrations and 
the measured concentration profile of Ce smaller than 450 nm, whereas 
for Al, Ti and Zr the model results were in line with measured trends, but 
with some underestimation, in particular further downstream. 

Other approaches to model ENPs at the watershed level include the 
use of the Global Water Availability Assessment Model (GWAVA) to 
model monthly Ag-NP and ZnO-NP concentrations in surface waters 
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across Europe (at 5’ by 5’ spatial resolution) by Dumont et al. (2015). 
Here ENP-specific processes are represented in first-order loss terms for 
sedimentation and dissolution. Another example is the incorporation of 
ENP-specific fate processes (homo- and heteroaggregation, sedimenta
tion, but no dissolution) into an existing hydrological model (SOBEK- 
River) and water quality model (DELWAQ) to assess the fate of metallic 
NPs along the Rhine River (DE/NL) by Markus et al. (2016). Different 
scenarios were assessed, which, among other things, revealed the 
importance of the initial state of the ENPs entering the model on their 
distribution in the river. Similar to (Dale et al., 2015b), the study by 
Markus et al. (2016) reveals limited net sedimentation of ENPs in a fast 
flowing river like the Rhine, but the potential for long range transport up 
to the North Sea. The Markus et al. (2016) approach was adapted by 
Williams et al. (2019) to model Ag NPs in the River Isar (Wimmer et al., 
2019). Model outputs matched well with measured data in the modelled 
area, except for load peaks near WWTP effluents areas. 

Broadly, existing watershed models fall into two categories: (1) 
spatially-resolved multimedia box models (Praetorius et al., 2012; Gao 
et al., 2022; Sani-Kast et al., 2015) and (2) hydrological models adapted 
to include (selected) ENP fate processes (Dale et al., 2015b; Quik et al., 
2015b; Markus et al., 2016; Wimmer et al., 2019). Models in category 1 
are more easily adaptable to different rivers or watersheds, often include 
more ENP-specific processes (as their structure is more modular) and 
have a lower computational demand. Conversely, models in category 2 
represent stream and sediment dynamics with higher environmental 
realism, making them better suited to predict ENP transport patterns in 
highly dynamic watersheds and to derive site-specific PECs. Yet, they 
are typically calibrated for a very specific river or watershed and cannot 
be easily adapted to a different geographic location. The recently 
updated WASP8 model (Knightes et al., 2019) is a very promising 
development, as its advanced toxicant module includes detailed ENP 
process descriptions and the model can be linked to different hydrody
namic and sediment transport models, thereby combining the advan
tages of most models described above. 

4.1. Material Flow Analysis-Environmental Fate Model coupling 

As depicted in Fig. 1, the EFMs (both multimedia as well as the 
watershed models), rely on environmental release data of ENPs as input. 
Three types of information are needed: 1) the amount released, 2) the 
form released and 3) the characteristics of the released materials. The 
amount released into the different environmental compartments is the 
direct output of all MFA models and the current EFMs have made use of 
these data. For example the multimedia model SimpleBox4nano 
(Meesters et al., 2014) used the release data from Müller and Nowack 
(2008) (Mueller and Nowack, 2008), the watershed model by Dale et al. 
(2015b) was based on the release data by Gottschalk et al. (2009), 
Dumont et al. (2015) used release data by Sun et al. (2017). The 
nanoFate model (Garner et al., 2017) used the results of the nanoRelease 
model (Keller and Lazareva, 2014). The watershed model by Dumont 
et al. (2015) used population as proxy to distribute the estimated 
released mass to different countries (Dale et al., 2015a). However, as 
Adam and Nowack (2017) have clearly shown there are large differences 
between the ENP flows to the environment for different European 
countries caused by very different water and waste treatment systems 
(Adam and Nowack, 2017). Kuenen et al. (2020) have further updated 
the releases in different countries but, so far, their data have not been 
used for modeling ENP concentrations in whole watersheds (Kuenen 
et al., 2020). The nanoFate model (Garner et al., 2017) does consider 
watershed-specific release, as shown in several examples for different 
regions in the USA and Europe (Garner et al., 2017; Parker and Keller, 
2019; Tao and Keller, 2020; Keller and Parker, 2019). 

Fate processes of ENP in the environment such as dissolution, (het
ero)agglomeration, deposition from air or sedimentation in rivers and 
lakes are governed by particle size, among other factors (Garner and 
Keller, 2014; Meesters et al., 2014; Liu et al., 2011). The published fate 

models have used number-based size distributions (Meesters et al., 
2014), average primary diameter or the average aggregate radius in 
freshwater (Garner et al., 2017) as their input of the size distribution. 
Yet these models did not specify the actual data sources used to obtain 
the size distribution. nanoFate relies on the modeler to provide the 
average particle radius, based on the available experimental data for the 
ENP in consideration, and the water quality (i.e., ionic strength, pH, 
NOM concentration) (Garner et al., 2017). The size-specific DPMFA is 
able to provide for all release flows also the particle size distribution 
used in a range of products (Zheng and Nowack, 2021b), however, so far 
the model has only been parameterized for TiO2 (both pigment and 
nano-TiO2), and additional calculations may be needed to consider the 
actual particle size in the discharge (e.g., wastewater effluent). The 
coupling of the release data from this model with a fate model would 
allow for the first time to predict the behavior of a nanomaterial based 
on the actual size distribution of the released particles. 

5. Bioaccumulation models 

Bioaccumulation studies are used to describe the body burden of the 
organism in relation to contaminant concentration in the surrounding 
environment. This allows estimation of the potential for exposure to 
contaminant concentration levels that may not be harmful upon short- 
term exposure but may be upon long-term exposure due to the 
continued uptake and accumulation, leading to the exceedance of crit
ical body concentrations (Ribeiro et al., 2017).Bioaccumulation is a 
critical factor to make regulatory decisions on the potential environ
mental risks of ENPs (Petersen et al., 2019). Bioaccumulation describes 
the internal concentration of contaminants in the organisms in relation 
to the environmentally-relevant external concentration in the sur
rounding medium, e.g., soil or water. In bioaccumulation studies, 
different bioaccumulation metrics are used, which depend on the 
exposure routes: the bioconcentration factor (BCF), the bioaccumulation 
factor (BAF), and the biomagnification factor (BMF). A more detailed 
explanation of these terms and the experimental approaches is provided 
in the Supporting Information. 

In a critical review of tools for modeling uptake and bioaccumulation 
of ENPs, van den Brink et al. (2019) underlined that the physiologically 
based pharmacokinetic (PBPK) model, or biodynamic model, was shown 
to be applicable to ENPs (van den Brink et al., 2019). Garner et al. 
(2018) developed the nanoBio model to predict short- and long-term 
bioaccumulation of metal-based ENPs (e.g., nano-CuO, nano-TiO2, and 
nano-ZnO) across four trophic levels in an aquatic system, using first- 
order uptake and elimination, with no storage fraction (Garner et al., 
2018). Seven aquatic species were chosen to understand exposure 
pathways, accumulation through trophic levels, and the potential for 
biomagnification. Uptake, elimination, and dissolution of the ENP were 
the only processes modelled, though different routes and rates were 
considered for each species. The nanoBio model considers uptake of free 
nanoparticles, heteroaggregated ENPs, as well as the dissolved metal 
ions, which are predicted by the nanoFate model on a dynamic basis, 
considering possible daily fluctuations in ENP loading (e.g., seasonal use 
of sunscreens with ENPs), and atmospheric and hydrologic conditions 
(e.g., precipitation, runoff). Dietary exposure was also considered, 
calculated internally by nanoBio, based on the uptake and accumulation 
of ENPs by lower trophic levels. Given the higher loading of nano-TiO2, 
the highest overall biomagnification was predicted for nano-TiO2 within 
the highest trophic level species. ENP dissolution decreased total bio
magnification; however, the released metal ions may still cause toxicity. 
Predicted biomagnification factors, including free ENP, particulate-ENP, 
and metal ion) were ENP specific, and lower for daphnids and plank
tivorous fish, higher for bivalves and copepods, and much higher for the 
longer-lived omnivorous fish considered in the model (O. mykiss). 
Although this early modeling effort was based on very limited experi
mental data, important findings are the trophic levels at potentially 
higher risk of bioaccumulation, the temporal peaks in bioconcentration 
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for different species; and the processes which require more experimental 
data to reduce uncertainty. Based on a sensitivity analysis, the most 
significant parameters include uptake rates from multiple exposure 
routes, and assimilation efficiency which has a substantial impact on 
biomagnification. 

Van den Brink et al. (2019) reviewed several conventional modeling 
approaches to ENP uptake and accumulation (van den Brink et al., 
2019). The analysis focused on ENP uptake and accumulation in soil and 
aquatic invertebrates, because they comprise >99% of all animals, are 
the most diverse group of organisms, and are key for several ecological 
functions (e.g. soil structure and maintenance, nutrient cycling). The 
authors determined that using a storage fraction would improve model 
performance, when considering nano-Ag ingested by daphnids. An 
alternative approach would be to consider two compartments within the 
organisms, with different kinetic rates for accumulation and elimina
tion. However, this would require measuring ENP concentrations in the 
storage tissues, which adds complexity to the experimental studies. For 
ENPs with significant dissolution, the authors indicated that the bio
concentrations factor must consider both the ENP and the dissolved ion, 
once they reach a steady state. Using a case study of earthworms 
(Enchytraeus crypticus) exposed to nano-Ag, the authors found that 
increasing the complexity of the model by considering more processes 
improved the fit to experimental data, although the significance of the 
regression decreased due to lower degrees of freedom. 

Most recently, Zheng and Nowack (2023) compared five biokinetic 
models for non-dissolvable ENPs in freshwater (Zheng and Nowack, 
2023), using 34 datasets for nano-TiO2, nano-SiO2, nano-Au, fullerene, 
graphene, graphene oxide, and carbon nanotubes, including first-order 
models with and without storage fraction and growth dilution, as well 
as a model based on Michaelis-Menten kinetics for uptake and first-order 
elimination for depuration, with no storage fraction. Most studies were 
based on daphnids (D. magna, n = 26), 7 on zebrafish (D. rerio), and one 
on phytoplankton (S. obliquus). From their comparison, they determined 
that the Michaelis-Menten model with exponential depuration per
formed best compared to the observations, and the first-order model 
with storage fraction during uptake and depuration, performed second 
best. Rates of uptake were much greater for daphnids (ku ranged from 
1500 to 130,000 L kg-1 h-1) than for zebrafish (ku from 0.00027 to 130 L 
kg-1 h-1), while depuration rates varied less (ke from 0.001 to 3.9 h-1) 
with no clear trend for the two trophic levels. There was no clear pattern 
in terms of daphnid uptake rates for different ENPs, but for zebrafish had 
a much greater rate of uptake of C60 (13-130 L kg-1 h-1) compared to 
nTiO2 (0.00027-0.62 L kg-1 h-1). The storage fraction ranged from 0.002 
to 0.69 with no clear pattern for ENPs or species. The authors concluded 
that the Michaelis-Menten model with exponential depuration was most 
appropriate when the uptake phase has not stabilized, and the first-order 
model with storage fraction during uptake and depuration would be 
most appropriate when a storage fraction was observed. Growth dilution 
would be important if the organisms are at early developmental stages. 

A direct comparison of the models is challenging, since they have 
different attributes. The nanoBio model is focused on the aquatic envi
ronment and considers four trophic levels; it employs only first-order 
equations without storage (Garner et al., 2018). The models reviewed 
by Van den Brink et al. focused on soil and aquatic invertebrates; these 
models are based on first-order equations with storage (van den Brink 
et al., 2019). The analysis by Zheng and Nowack (2023) focused on 
determining which equations best reflect the experimental observations, 
although only consider a single trophic level (Zheng and Nowack, 2023). 

While there has been considerable progress in modeling the bio
kinetics of ENP and metal ion accumulation, there are still many open 
questions, including the ENP characteristics (as synthesized and once in 
the environment) that result in higher uptake or decreased elimination, 
the differences in species response to exposure to ENPs which is a 
function of internal ENP processing (van den Brink et al., 2019), and 
trophic transfer. Just as in EFMs, ENP characteristics needed for 
modeling uptake and internal processes need to take into account the 

environmental system (i.e., the extrinsic property values dominate the 
behavior), but these are seldom available. 

Bioaccumulation models rely on either observed ENP concentra
tions, or PECs from the EFMs, as their input. For a single species analysis, 
this involves observed or predicted concentrations in the media in which 
the organism is exposed (e.g., soil, water, sediments). However, for the 
more complex modeling of trophic transfer, as in nanoBio, this requires 
the calculation of the ENP and dissolved metal ion concentrations within 
each trophic level (Garner et al., 2018). 

6. Data needs and challenges 

As in almost every modeling study, the most significant limitation is 
the availability of abundant, high-quality data, to obtain the range of 
parameter values necessary for implementing the model, perform cali
bration against observed data, and then validate using additional ob
servations. Standardized testing protocols are necessary to make valid 
comparisons between different models. The OECD has taken the lead on 
establishing protocols for nanoparticle characterization, nanoparticle 
dispersion stability (OECD, 2017), nanotoxicology, and bio
accumulation studies, in collaboration with USEPA and European 
agencies, but many studies in the literature have yet to follow these 
protocols. In every meta-analysis, tens to hundreds of studies must be 
discarded due to inadequate characterization, incomplete information, 
or major differences in testing protocols. 

Starting from the production rates, even the information from the 
Market Studies for 2020 has a large estimated uncertainty (+/- 75%), 
and even for commodity (high production) ENPs such as nano-SiO2 and 
nano-TiO2. Validation is challenging, since only France maintains a 
mandatory registry of all nanomaterials produced in or imported to 
France (MTES, 2020), and it does not account for ENPs that are incor
porated into imported products. Projected production into the future 
assumes constant growth rates, which cannot consider major disruptions 
to the global economy (e.g., pandemics, electronic chip manufacturing 
supply chain disruptions, very high inflation that leads to recession, 
etc.), or even major policy changes such as the accelerated investment in 
renewable energy, energy storage, electric vehicles, driven by tax and 
other incentives. 

For MFAs, the transfer coefficients used to allocate ENPs to various 
processes and compartments are based on a handful of studies, with very 
limited replication. For some transfers with very significant implications 
for the environment (e.g., release of ENPs from coatings), major as
sumptions must be made, with scant data to validate estimates. Differ
ences in product use, environmental conditions that increase or decrease 
release (e.g., rainfall patterns, solar radiation), and end-of-life man
agement practices throughout even a single region (e.g., USA, EU) are 
often difficult to consider, given the limited available data. Caballero- 
Guzman and Nowack (2016) reviewed the strategies implemented by 
MFA models to use release data in determining transfer coefficients 
which form one of the basic parameters needed for MFA (Caballero- 
Guzman and Nowack, 2016). It was identified that MFA studies rely to a 
large extent on assumptions, expert opinions, extrapolations, and 
informal sources of data to parameterize the models. At the time of that 
review, the coverage of all relevant exposure scenarios was limited; only 
20% of the ENPs used industrially and 36% of the product categories 
where ENP are used have been investigated in release studies and only 
few relevant release scenarios have been described. Overall, the lack of 
process data emphasizes even more the need for including the uncer
tainty and variability of the different processes and input applied in 
MFA's, by doing them probabilistically. A number of available MFA 
models are indeed based on probabilistic approaches and are able to 
handle those uncertainties (Wigger et al., 2020).Furthermore, assessing 
risk should if data is lacking be based on worst case assumptions 
following the precautionary principle. 

Fate models require vast amounts of data, including intrinsic and 
extrinsic physicochemical characterization, and in particular the 
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transformations that occur as the particles age in the environment (e.g., 
eco- and bio-corona, dissolution, heteroaggregation) (Vignardi et al., 
2022; Jośko et al., 2020; Praetorius et al., 2020b). In addition to the 
change in ENP behavior during aging, the rate of change is key for 
determining which processes will dominate. ENP behavior is strongly 
linked to environmental conditions (pH, concentration of organic matter 
and specific biomolecules, ionic strength, concentration and nature of 
suspended sediments, etc.), which may be dynamic. There is a lack of 
robust analytical techniques for quantifying ENP properties in complex 
matrices; machine learning may be able to fill this gap (Duan et al., 
2020; Winkler et al., 2014). However, data sets for these dynamic 
environmental conditions are rarely available; they may not even be 
available for a static condition. Most importantly, datasets with a 
spatiotemporal pattern of ENP and metal ion concentrations for a given 
location are extremely limited, making calibration and validation of 
models extremely challenging. Datasets are needed for model parame
terization as well as for model evaluation. Monikh et al., (2018) dis
cussed strategies to test ENP stability in a testing scheme designed to 
represent different environmentally relevant condition, which would 
serve to parameterize EFMs (Monikh et al., 2018). An additional chal
lenge is determining whether the concentrations of a given nanoparticle 
in the environment reflect introduced (manufactured/engineered) or 
natural or incidental particles. For most major ENPs, the concentration 
of natural particles is significant, introducing a high degree of uncer
tainty with regards to the interpretation and use for model calibration or 
validation. For example, a study of Ti nanoparticles collected in storm
water treatment infrastructure detected total Ti in soils from 1300 to 
2500 mg kg− 1, but the amount most likely due to Ti ENPs was between 
555 ± 13 mg kg− 1 and 1792 ± 203 mg kg− 1 (Baalousha et al., 2020). 
Nanoscale Ti was found in stormwater runoff at 50 to 300 μg L–1 Ti (Nabi 
et al., 2021b), but natural soils were more likely the source, and a small 
fraction from paints and coatings, rather than from sunscreen and other 
personal care products. Deconvoluting the sources of nanoparticles in 
surface waters is certainly complex. A recent study focused on the es
tuary of the Yellow River in China detected Ti, Zn, Cu, Ag, and Au based 
nanoparticles, tracking 24 stations (Li et al., 2023). A recent field study 
provided very valuable information on the concentrations of Ti, Ce, and 
Ag ENPs in a wide range of surface waters and precipitation (Azimzada 
et al., 2021). Studies like these that provide rich datasets will be useful in 
the future to evaluate and validate the various nano fate and transport 
models. 

So far, most MFA models assume that “nanoparticle A" remains 
“nanoparticle A" throughout product use, release into technical systems 
and finally release to the environment. Advanced MFA models have 
included the form of the released material, e.g., the crystal form in the 
case of TiO2 (anatase vs. rutile) (Wigger and Nowack, 2019) and the 
released form (e.g., pristine, transformed, dissolved and matrix- 
embedded) (Adam et al., 2018b). These models have shown that for 
some materials only a small fraction of the initial ENP is actually 
released in pristine form and this information should also be reflected in 
the fate models using release data. Similarly the environmental trans
formations, such hetero-agglomeration and forming of eco-corona 
should be considered in the predicted PECs. However, these PECs 
should be defined in a way that they align with the effect concentration, 
PNECs, as required for environmental risk assessment. Similar to 
microplastics, there is often a limited range in ENP characteristics 
considered in effect studies, where the environmental distribution of 
ENPs and their characteristics is multidimensional. Some lessons could 
be learned from the alignment approach, recently introduced for 
microplastics (Koelmans et al., 2020). 

While the number of laboratory bioaccumulation and trophic 
transfer studies continues to grow, they are still relatively limited and 
narrowly focused, with only a few species and ENPs represented. 
Continued efforts need to expand the bioaccumulation experiment to 
phytoplankton, zooplankton other than filter feeders, and some fish 
tissues, such as the stomach, heart, spleen, kidney, and blood. 

Information on the biodistribution in fish tissues could be relevant for 
the development of PBPK modeling in the future. In addition, an in- 
depth interpretation of bioaccumulation tests will depend heavily on a 
comprehensive description of the ENPs used, in particular their prop
erties (hydrodynamic size, aggregation state and surface charge) in the 
test medium. It is found that the particle characterization reported is 
rarely sufficient in bioaccumulation studies. Typically, only primary 
particle size and nominal concentration are disclosed, lacking informa
tion on particle behavior and concentration within the test medium 
during exposure. This means that there is an urgent need for standard
ized procedures for the operation and reporting of bioaccumulation 
experiments specifically for nanomaterials. Existing guidelines for con
ventional chemicals place greater focus on the material's chemical at
tributes, whereas it is the physical properties of nanomaterials that may 
predominantly influence their interactions with living organisms. For 
this reason, specific guidance and guidelines for nanomaterials are 
available or being developed (OECD, 2023a), such as the test guideline 
for estimating ENP size (OECD, 2023b) and hydrophobicity index 
(OECD, 2023c). The hydrophobicity index is not currently applied in 
EFMs, but in future might become applicable as a proxy for Heter 
agglomeration process, similar to how Kow is for organic compounds. 

Another challenge is keeping the EFMs operational and up to date. 
For example, the DUFLOW hydrological model framework on which 
nanoDUFLOW is based is not officially supported anymore. In addition, 
it has a Windows 10 user interface to manually build up the catchment 
based on stream cross sections and relative slope, to define character
istics of sections connected by nodes, which may no longer be supported 
in future versions of the operating system. Boundary conditions can also 
be added using the user interface. But this all can be labor intensive for a 
large catchment. Thus, models can become obsolescent as the underly
ing software changes. Very few modelers can continue to support their 
models indefinitely. 

7. Future of exposure modeling for nano 

Clearly, the most important issue for the future is the generation of 
robust datasets of observed ENP concentrations in various compart
ments, over a sufficiently long period of time to be able to evaluate the 
various models. With these datasets, one can then compare the accuracy 
of the various models, and determine how useful they are for predicting 
environmental concentrations. (Couvillion et al., 2023; OECD, 2023d; 
Hou et al., 2021) 

Almost all of the models to date have only considered metal-based 
ENPs. Carbon-based ENPs do exhibit hydrophobicity, and thus parti
tioning/adsorption to organic phases is an important process, requiring 
the consideration of their hydrophobicity index (OECD, 2023d; Hou 
et al., 2021). These carbon-based ENPs also degrade over time, which is 
not a process commonly considered for metal-based ENPs (Shams et al., 
2019). Two-dimensional nanomaterials (e.g., GO and MoS2 nanosheets) 
are becoming more common, again introducing additional consider
ations in terms of their transport (Lee et al., 2019; Li et al., 2016). 

While it is tempting to use these models directly to model nano- and 
microplastics (Mitrano et al., 2021), there are important differences, for 
example the buoyancy of most plastics would require additional con
siderations. Nanoplastics are distinguished from ENPs because of the 
high heterogeneity of the particles (shape, composition) and their po
tential for rapid further fragmentation under environmental conditions 
(Gigault et al., 2021). A significant fraction of the plastic particles are 
fibers, with a very elongated dimension, very different from the common 
aspect ratios of ENPs, which is likely to result in additional retention in 
soils and sediments. Nevertheless, there are already models addressing 
this new class of contaminants. The Rhine River multimedia box model 
has been used as basis for Full Multi Model Framework (Domercq et al., 
2022) and SimpleBox4nano has evolved to SimpleBox4plastics (Quik 
et al., 2023), to assess the PECs of these particles. NanoDUFLOW has also 
been used to estimate microplastic PECs in freshwater systems 
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(Besseling et al., 2017). While the full understanding of the fate pro
cesses for these materials is still an area of active research, these 
frameworks provide useful PECs for risk assessment. 

8. Conclusions 

The past fifteen years have seen tremendous progress in our ability to 
predict environmental concentrations of ENPs, as we understand better 
their production rates, their flow through our global, national, and even 
regional economies, their likely release pathways and processes, their 
transport through various environmental media to their ultimate fate, 
and even their potential accumulation in exposed organisms. There are 
several modeling frameworks for each stage of the process, with 
differing degrees of complexity in their representation of the environ
ment and ENP characteristics. The comparisons that have been made to 
date between observed and predicted environmental concentrations 
indicate that most of the models can provide adequate estimates within 
an order of magnitude. However, there are a number of important 
challenges that need to be overcome to continue to improve the accu
racy of PECs:  

• Datasets for evaluation of the accuracy of the models, with enough 
detail in terms of the spatiotemporal patterns and in various com
partments (i.e., water, soils, air) to capture hotspots;  

• Datasets for accurate representation of the extrinsic properties of 
ENPs in a wide range of conditions and approaches to simplify esti
mating them;  

• More accurate information on the production and use of ENPs at 
different levels (global, continental, country, and eventually local);  

• Information on the form of the ENPs as produced (e.g., crystalline 
structure), and as used in various ENP-enabled products (i.e., as free 
ENPs, within a liquid or solid matrix), and the form as exposed to 
organisms (i.e., attached to SPM) after environmental trans
formation, to be linked to effects; 

Ensuring the safe use of nanotechnology will require accurate esti
mates of PECs, and while there are many tools to perform the exposure 
assessment, their quality will rely on meeting these challenges. 
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