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Abstract
Differences in the bacterial community structure associated with 7 skin sites in 71 healthy

people over five days showed significant correlations with age, gender, physical skin

parameters, and whether participants lived in urban or rural locations in the same city. While

body site explained the majority of the variance in bacterial community structure, the com-

position of the skin-associated bacterial communities were predominantly influenced by

whether the participants were living in an urban or rural environment, with a significantly

greater relative abundance of Trabulsiella in urban populations. Adults maintained greater

overall microbial diversity than adolescents or the elderly, while the intragroup variation

among the elderly and rural populations was significantly greater. Skin-associated bacterial

community structure and composition could predict whether a sample came from an urban

or a rural resident ~5x greater than random.

Introduction
As the largest organ of the human body, skin is a highly variable microbial habitat colonized by
a broad diversity of bacteria and fungi [1]. These assemblages demonstrate significant intra-
and inter-individual variation [2, 3] and topographical and temporal diversity [4, 5]. Addition-
ally, gender [6] and cohabitation with other humans or animals [7] have been shown to shape
the skin microbiome. The skin is our primary interface with the physical world, and as such the
variability in skin microbial communities within a human population may be influenced by
place of residence, as well as skin type (sebaceous, dry and moist), age, and gender, though the
extent to which these factors influence this variability remains unknown.
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The place of residence of a human population is associated with the composition of human-
associated microbial communities, for example populations living in Venezuela and the United
States have significantly different skin and stool-associated microbiomes [8]. However, these
populations likely have different lifestyles and diets that will influence the structure of their
microbial assemblages, making it difficult to disentangle the specific factors influencing the
structure and composition of their microbiota. Even in the same country, due to the different
diets and lifestyles, gut-associated microbiomes have been observed to have different composi-
tion and structure between urban and rural populations [9]. Recent evidence suggests that
when an individual changes their city of residence for more than a month (Boston, USA to
Bangkok, Thailand), it can have a significant impact on the structure and composition of their
saliva and stool microbiota [10]. However, skin-associated microbiome, thought of as highly
variable, does not seem to be influenced by long-term changes in immediate habitat for human
populations. For example, when families move between different houses, there is no observable
shift in their skin-associated microbial composition [11]. Here we explore whether the skin
microbiome of a human population within a single city demonstrates biogeographic
differentiation.

Cutaneous bacterial communities associated with 7 skin sites from 71 healthy individuals
living in rural and urban areas of Shanghai, China, were examined in the context of several
population variables. Correlations between bacterial community structure and skin physical
parameters such as sebum, trans-epidermal water loss (TEWL), moisture and pH were also
examined. Using these data, we tested the hypothesis that within a geographically semi-contig-
uous human population, the skin microbiota can show regional biogeographic patterns.

Materials and Methods

Ethics statement
This study was approved by the Ethical Committee of Fudan University prior to implementa-
tion. A written informed consent was obtained from each subject or their guardians prior to
sample collection. All data were de-identified.

Sampling
A total of 71 subjects were recruited for the study, 36 living in the urban regions and 35 living
in the rural regions of Shanghai, China (Table 1). The rural adults and elderly included in this
study were all agricultural field-workers, whereas most urban participants had indoor occupa-
tions. Moreover, no subjects lived in the same family or worked in the same office. All subjects
were classified into 3 age groups: elderly (50~60 years old), adults (25~35 years old) and adoles-
cents (12~19 years old). Medical and medication history were obtained for each individual by
questionnaires; additionally, a complete dermatologic examination was performed. Subjects
with any history of dermatologic diseases and those who had any antibiotic exposure in the
past 6 months were excluded. Each subject was instructed not to wash the specific body sites
for 12 hours (except hands for 2 hours) prior to sampling. Seven skin sites were sampled on
each subject in order: back of hands (Hb), interdigital web space (Is), volar forearm (Vf), ante-
cubital fossa (Af), nares (Na), glabella (Gb) and back (Ba). For symmetrical sites, the selections
of sampling were random. Samples were collected in a temperature and humidity controlled
rooms. Sample collection was performed in August of 2011. A 4-cm2 area (for Is an ~1-cm2

area) was swabbed with polyester fiber-headed swabs moistened with solution of 0.15 M NaCl
and 0.1% Tween 20 [6, 12]. The sampling regions were swabbed approximately 50 times for at
least 30 seconds. Then the swab head was picked off by sterilized tweezers and carefully placed
in the PowerBead Tube of the MO BIO PowerSoil DNA Isolation Kit (MO BIO Lab, Carlsbad,
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CA, USA). The nares were sampled with a twisting motion, gently rubbing the mucosal sur-
faces of the anterior nares with a sterile and moistened swab, covering the area twice. All sam-
ples were stored at 4°C for DNA extraction. Following skin sampling, measurements were
taken of skin sebum (by Sebumeter1 SM 810, Courage & Khazaka, Cologne, Germany),
TEWL (by VapoMeter, Delfin Tech, Kuopio, Finland), moisture (by Corneometer1 CM 825,
Courage & Khazaka) and pH (by Skin-pH-Meter1 PH 905, Courage & Khazaka). An unused
moistened swab head (negative control) was placed in another PowerBead Tube. Three repli-
cate swabs of the identified body sites were taken from each subject with a 1-day interval (Mon-
day-Wednesday-Friday) between each sampling.

DNA extraction
DNA extraction from the head of the swabs was performed within 12 hours of sampling. The
MO BIO PowerSoil DNA Isolation Kit with modifications was applied [4]. To each PowerBead
tube, 60 μl of solution C1 were added, the tube sealed, and it was then placed in a water bath at
65°C for 10 minutes. The tubes were then shaken horizontally for 2 minutes at maximum
speed using the MO BIO Vortex Adapter. The remaining steps were performed as directed by
the manufacturer. Extracted DNA was resuspended in 100 μl eluent and stored at −20°C prior
to PCR amplification.

PCR amplification
Bacterial 16S rRNA genes were amplified from the extracted DNA using two stages of PCR.
For the first round of PCR, the modified primer set 27FYM (5’-AGAGTTTGAT(C/T)(A/
C)TGGCTCAG-3’) and 536RK (5’-GTATTACCGCGGC(G/T)GCTGG-3’) were applied.
For each 25-μl reaction, PCRs consisted of 0.25 μl of each forward and reverse primer (10 μM),
6 μl of template DNA, 1 μl of bovine serum albumin (BSA, 20 mg/ml) and 12.5 μl of Ex Taq
Premix version 2.0 (TaKaRa Biotech., Dalian, China). The samples were initially denatured at
94°C for 5 min, then amplified using 20 cycles of 94°C for 45 s, 53°C for 30 s, and 72°C for 90 s.
A final extension of 10 min at 72°C was added at the end of the program. For the second round
of PCR, the primer set, AdaA-27FYM and AdaB-536RK, which contained 454 pyrosequencing
adapters were applied. The forward primer AdaA-27FYM (5’-CCATCTCATCCCTGCGTG
TCTCCGACGACTNNNNNNNNTCAGAGTTTGAT(C/T)(A/C)TGGCTCAG-3’) contained
454 pyrosequencing adapter A, a unique 8-bp barcode (designated by NNNNNNNN) used to

Table 1. Subject information.

Age Residence Gender No. of subjects Average-age

Elderly Urban Male 5 54.4

Female 6 53.0

Rural Male 5 53.2

Female 6 53.5

Adults Urban Male 6 29.0

Female 6 31.0

Rural Male 6 30.2

Female 6 31.3

Adolescents Urban Male 6 14.3

Female 7 15.9

Rural Male 6 16.0

Female 6 17.0

doi:10.1371/journal.pone.0141842.t001
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tag each PCR product [13], the bacterial primer 27FYM, and a 2-bp linker “TC” inserted
between the barcode and the primer. The reverse primer AdaB-536RK (5’-CCTATCCCC
TGTGTGCCTTGGCAGTCGACTCAGTATTACCGCGGC(G/T)GCTGG-3’) contained 454-pyr-
osequencing adapter B, the bacterial primer 536RK, and a “CA” inserted as a linker. For each
100-μl reaction, PCRs consisted of 1 μl of each forward and reverse primer (10 μM), 10 μl of
template using the PCR product of the first round, 4 μl of BSA and 50 μl of Ex Taq Premix
(TaKaRa). The second-round PCR program was similar to the first round, except that the
number of amplification cycle was 10 instead of 20.

PCR product purification and sample pooling
The PCR products of the second round were purified with UltraClean PCR CleanUp Kit (MO
BIO Lab) following the direction of the manufacturer. The PCR products were finally re-sus-
pended in 50 μl eluent and stored at −20°C. Amplicon DNA concentrations were measured
using PicoGreen dsDNA reagent (Invitrogen, Grand Island, NY, USA) on a TBS-380 Mini-
Fluorometer (Promega, Madison, WI, USA). Based on the quantification result, cleaned PCR
amplicons that belong to the same pyrosequencing plate were added in equimolar ratios into a
1.5-ml tube. The composite sample was cleaned again using AxyPrep DNA Gel extraction Kit
(Axygen, Tewksbury, MA, USA). The purified PCR products were sequenced using a GS-FLX
pyrosequencing platform with Titanium chemistry (Roche, Basel, Switzerland) following the
direction of the manufacturer.

Sequence analysis
Sequences were processed using the QIIME (http://www.qiime.org) software package [14].
Reads were assigned to particular libraries according to the 8-nucletide (nt) barcodes with the
criteria of higher than 25 quality value,>250 nt in length, no ambiguous characters and no
homopolymers run exceeding 8 nt. The complete data set was chimera-checked using
USEARCH61 (http://drive5.com/usearch/usearch_docs.html) with the Greengenes database
[15]. Then the remaining reads were clustered into operational taxonomic units (OTUs) by
UCLUST [16] based on 97% identity. After singletons removal, a representative sequence was
chosen from each OTU by selecting the first sequence (the UCLUST cluster seed). Taxonomy
was assigned to each representative sequence using the Ribosomal Database Project (RDP)
classifier [17], with a minimum confidence of 80%. Representative sequences were aligned
against the Greengenes database using Python Nearest Alignment Space Termination tool
(PyNAST) [18], and used a minimum alignment length of 210 and a minimum identity of
75%. The OTUs which failed to align to representative sequences were dropped. The PH Lane
mask was used to remove hypervariable regions after alignment. The aligned representative
sequences were assigned a phylogenetic relationship using FastTree [19]. To ensure adequate
representation of the community structure, samples with<200 reads were removed. To evalu-
ate the amount of diversity contained within communities (alpha diversity), rarefaction analy-
sis was performed with Chao1, Shannon and phylogenetic distance (PD) index [20]. To
determine the amount of diversity shared between two communities (beta diversity), UniFrac
distances [21] were calculated between all pairs of samples. UniFrac distances were based on
the fraction of branch length shared between two communities in a phylogenetic tree.
Unweighted UniFrac accounts for membership only (community membership, not consider-
ing the content of each member), whereas weighted UniFrac accounts for membership and rel-
ative abundance (community structure, considering members and the content of each member
together). UniFrac-based jackknifed hierarchical clustering was performed using unweighted
pair group method with arithmetic mean (UPGMA) in QIIME. Principal coordinates analysis
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(PCoA) was also performed on the UniFrac distance matrices, and visualized using the KiNG
graphics program (http://kinemage.biochem.duke.edu/software/king.php). We subsampled
1,364 samples to 200 sequences per sample, and then collapsed rarefied samples into 84 groups
according to factors of age, gender, residence, and skin site. Again, we rarefied the 84 groups to
1,400 sequences per group. Finally, these rarefied groups were used to perform PCoA and
UPGMA analysis; the relative abundances of these groups were all examined using heat maps.
Except for these analyses, all other investigations used all 1,364 of the rarefied samples. The
sequence data generated for this study were deposited in the NCBI GenBank Short Read
Archive (SRA) under accession number SRP051059.

Statistical analysis
We performed t-test on alpha diversity and UniFrac distance of different categories, Analysis
of Variance (ANOVA) on OTU abundance of different categories, Pearson correlation on envi-
ronmental factors and genus-level abundances, Mantel test on correlation of skin physical
parameters and UniFrac distance matrices, and Analysis of Similarities (ANOSIM) on UniFrac
distance matrices of different categories. All these statistical methods were performed in
QIIME. All P values of ANOVA and Pearson correlation were corrected used the Bonferroni
method for multiple comparisons. We used random forest supervised learning models to deter-
mine the extent to which skin-associated microbial communities could be used to predict the
age, gender, place of residence, or skin surface environment of the subject from whom a sample
was taken. These models formed decision trees using a subset of samples to identify patterns
associated with a metadata category, and then the accuracy of the tree was tested on the
remaining samples not used for training. Each model ran 1000 independent trees and reports
the ratio of model error to random error as a metric for the predictive power of the category’s
microbial communities. A greater ratio of baseline-to-model error indicates a better ability to
classify that grouping by microbial community alone. Triplicate samples were pooled and rari-
fied to an even depth of 400 reads, resulting in a total of 479 samples. OTUs detected in less
than 10 samples were discarded. All models were run with 10-fold cross-validation using the
supervised_learning.py script in QIIME.

Results
Skin samples from 71 participants (Table 1) generated a total of 625,372 high-quality 16S rRNA
gene sequences from 1,364 samples (mean 458 sequence reads per sample). These sequences
clustered into 13,004 OTUs (S1 Fig). The main genera were Propionibacterium, Corynebacte-
rium, Staphylococcus, Streptococcus, Enhydrobacter, Sphingomonas, Paracoccus, and Acinetobac-
ter. Weighted and unweighted UniFrac distances showed clear differentiation of the bacterial
community structure and membership between different subsets of the population studied (S2
Fig). The primary factor describing variation in the bacterial community structure (the relative
abundance of different taxa) was skin site followed by the age of participants, then gender, and
finally place of residence (ANOSIM R = 0.24, 0.05, 0.02, 0.02, all P = 0.001 with weighted Uni-
Frac, Fig 1). Meanwhile the factors that correlated with changes in community membership
(community composition) were place of residence and skin site followed by age and gender
(ANOSIM R = 0.20, 0.18, 0.08, 0.02, all P = 0.001 with unweighted UniFrac, Fig 2). These factors
could partially interpret differences between each sub-population (S1 Table).

Urban and rural populations had similar skin-associated bacterial richness estimates
(Table 2, S3 Fig). However, the intragroup variation in microbial community structure among
rural subjects was significantly greater than urban subjects (two-tailed t-test, P< 10−4, Fig 3A).
Unweighted UniFrac clearly showed the separation of different groups based on urban versus
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rural residency (Fig 2A). The relative abundance of Trabulsiella was significantly greater in
urban dwellers compared to rural dwellers (1.5% on urban dwellers and 0.5% on rural dwellers,
ANOVA P< 10−4), especially on sites including Hb, Vf and Gb (All the results of ANOVA are
shown in S2 Table and the relative abundance of different bacterial genera in different group
are shown in Fig 4). Among the adults, Propionibacterium on Is of urban dwellers (14.0%) was
significantly greater than rural dwellers (6.5%, ANOVA P = 0.03). However, Propionibacterium
on Ba was significantly more abundant in rural dwellers (57.2% on urban adults and 86.2% on
rural adults, ANOVA P = 0.0008). For the females, the content of Propionibacterium on Gb of
urban dwellers (42.5%) was significantly greater than that of rural dwellers (21.8%, ANOVA
P = 0.02), whereas Corynebacterium showed an opposite pattern (2.5% and 5.1%, respectively,
ANOVA P = 0.003).

Na and sebaceous sites (Gb and Ba) showed significantly lower alpha diversity than dry (Vf
and Hb) and moist (Af and Is) sites (Table 2, S3 Fig). The 1,364 samples were clustered into 84
groups based on the 4 key experimental factors: age, gender, place of residence and skin site.
Then we used hierarchical-clustering heat-map to analysis the 20 most abundant bacterial gen-
era (those with>1% relative abundance) of the 84 pooled groups (Fig 5). Three main clusters
were defined based on the sebaceous skin sites, the nares that clustered separately, whereas dry

Fig 1. PCoA analysis of 84 pooled groups based on weighted UniFrac distances. Clustering of study subjects using principal coordinates analysis
(PCoA) based on weighted UniFrac distances. In the Bi-plot, 8 predominant genera are indicated by the size of the gray circle representing the abundance of
the taxon. Each point corresponds to a group colored by (A) site, (B) residence, (C) age, or (D) gender. In the abbreviation of group names, A: adult, T:
adolescent, O: elderly; F: female, M: male; U: urban populations, R: rural populations; Hb: back of hands, Is: interdigital web space, Vf: volar forearm, Af:
antecubital fossa, Na: nares, Gb: glabella, Ba: back.

doi:10.1371/journal.pone.0141842.g001
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Fig 2. PCoA analysis of 84 pooled groups based on unweighted UniFrac distances. Clustering of study subjects using principal coordinates analysis
(PCoA) based on unweighted UniFrac distances. Each point corresponds to a group colored by (A) residence, (B) site, (C) age, or (D) gender. The
abbreviations and the corresponding explanations are given in Fig 1.

doi:10.1371/journal.pone.0141842.g002

Table 2. Analysis of alpha diversity.

Chao1 Phylogenetic Distance (PD) Shannon

Residence U,R ns a U>R * U,R ns

Site Vf>Gb,Ba,Na ** b Vf>Is,Gb,Ba,Na ** Vf>Is,Gb,Ba,Na **

Hb>Gb,Ba,Na ** Hb>Is,Gb,Ba,Na ** Hb>Is,Gb,Ba,Na **

Af>Gb,Ba,Na ** Af>Gb,Ba,Na ** Af>Gb,Ba,Na **

Is>Gb,Ba,Na ** Is>Gb,Ba,Na ** Is>Gb,Ba,Na **

Gb>Ba,Na ** Gb>Ba,Na ** Gb>Ba,Na **

Age A>T,O ** A>O,T * A,O,T ns

Gender F,M ns F,M ns F,M ns

Replication P1,P2,P3 ns P1,P2,P3 ns P1,P2,P3 ns

aT-test results: ns: not significant,

*: 0.001< P<0.05,

**: P<0.001.
bVf>Gb, Ba, Na means the diversity index value of Vf is significantly higher than Gb, Ba and Na respectively.

In the comparison of different sites, Table 2 just lists the significant results. The abbreviations and the corresponding explanations are given in Fig 1. P1,

P2, P3: three replicate sampling.

doi:10.1371/journal.pone.0141842.t002

Skin Microbial Communities in Urban and Rural Populations

PLOS ONE | DOI:10.1371/journal.pone.0141842 October 28, 2015 7 / 16



and moist sites clustered together (Fig 5). Clustering based on weighted UniFrac distances
demonstrated grouping by Ba and Gb, Is and Af, Vf and Hb, and Na that clustered separately
(Fig 1A, S2A Fig).

Nares-associated microbial communities comprised Corynebacterium (35.5%), Staphylococ-
cus (17.7%), and Alloiococcus (5.2%), which were all significantly higher than in other skin sites
(ANOVA all P< 10−4). Ba showed lowest intragroup variation, whereas Is demonstrated the
greatest difference in community structure between subjects (Fig 3B). Interestingly, the two dry
skin sites, Vf and Hb, demonstrated as much variation in microbial community structure
within a single site as they did between sites (Fig 3B). Furthermore, there was no significant dif-
ference in the relative abundance of the dominant bacterial genera between sites Vf and Hb
(ANOVA all P> 0.05). In the moist sites, Staphylococcus showed the greatest difference in rela-
tive abundance (3.2% on Af and 11.3% on Is, ANOVA P< 10−4), whereas Propionibacterium
in the sebaceous sites showed the greatest difference (53.4% on Ba and 40.5% on Gb, ANOVA
P< 10−4) and highest relative abundance across all sites.

Bacterial alpha diversity was significantly different between age groups (Table 2, S3 Fig).
Adults maintained a greater overall diversity than adolescents and the elderly (all P< 10−4

with Chao1, S4 Table). For the male rural group, elderly individuals had the lowest alpha

Fig 3. Hierarchical-clustering heat-map of the inter- and intra-groups distance.Hierarchical-clustering heat-map of the weighted UniFrac pairwise
distance between several groups and the clustering dendrogram using Euclidean distance by (A) residence, (B) site, (C) age, (D) gender, or (E) replication.
Blue and Red cells represents low and high distance values, respectively. The inter- and intra-groups distances revealed community differences between
groups. The abbreviations and the corresponding explanations are given in Fig 1. P1, P2, P3: three replicate sampling.

doi:10.1371/journal.pone.0141842.g003
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diversity, which was significantly different from adolescents and adults (P = 2.7 × 10−3,<
1.0 × 10−4 with Chao1, S4 Table). Among the different age groups, the intragroup variation
was significantly greater among the elderly compared to adolescents and adults (all P< 10−4),
whereas the bacterial population of adults was more similar to adolescents than elderly popula-
tions (Fig 3C). Ba showed the strongest correlation of bacterial community structure with age
(ANOSIM R = 0.15, P = 0.001 with weighted UniFrac, S1 Table). Within the age groupings,
Enhydrobacter was significantly more abundant among elderly individuals (5.8%) compared to
adolescents (3.3%, ANOVA P< 10−4) and adults (2.4%, ANOVA P< 10−4), especially on sites
Ba and Na. On the other hand, the relative abundance of Propionibacterium among the elderly
(12.6%) was significantly lower than adolescents (21.9%, ANOVA P< 10−4) and adults
(26.7%, ANOVA P< 10−4), especially on dry and moist sites. Meanwhile, on site Is, the relative
abundance of Sphingomonas and Streptococcus was significantly greater among adolescents
(6.3% and 4.6%) compared to adults (1.3%, ANOVA P< 10−4; and 1.8%, ANOVA P = 10−4)
and elderly (2.1%, ANOVA P = 10−4; and 0.7%, ANOVA P< 10−4).

Bacterial community richness was similar between males and females (Table 2, S3 Fig).
However, on site Gb, elderly males showed significantly lower bacterial alpha diversity com-
pared with elderly females (P< 10−4 with Chao1, S4 Table). Additionally, rural males had a
significantly lower alpha diversity than rural females (P = 6.7 × 10−4 with Chao1), especially on
site Gb (S4 Table). Interestingly, the intragroup variation in microbial community structure
was significantly greater among females than among males (P< 10−4, Fig 3D). The relative

Fig 4. The relative abundance of different bacterial genera in different groups. All samples are combined to 12 groups (FAU, FAR, MAU, MAR, FOU,
FOR, MOU, MOR, FTU, FTR, MTU, MTR) based on gender, age and residence. The abbreviations and the corresponding explanations are given in Fig 1.
For example, FAUmeans the group involved samples that were from female (F) adults (A) living in an urban (U) area.

doi:10.1371/journal.pone.0141842.g004
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Fig 5. Hierarchical-clustering heat-map of the relative abundance of the 20 most abundant bacterial
genera.Hierarchical-clustering heat-map of the relative abundance and the clustering dendrogram of
different groups and the 20 most abundant bacterial genera, using Euclidean distance. Color intensity
indicates abundance, ranging from black (absence), blue (low abundance) to red (high abundance). All of
samples are combined to 84 groups based on age, gender, residence, and skin site. The abbreviations and
the corresponding explanations are given in Fig 1. For example, M.A.R.Gb means the group involved
samples which are from a rural (R) male (M) adult’s (A) glabella (Gb). Classifications are to the genus (gen),
family (fam), order (ord) or class (cla) level. For each taxon, the phylum is also indicated: Act, Actinobacteria;
Bac, Bacteroidetes; Cya, Cyanobacteria; Fir, Firmicutes; Pro, Proteobacteria. Taxa are classified to the
highest taxonomic level to which they were confidently assigned. For the details see S3 Table.

doi:10.1371/journal.pone.0141842.g005
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abundance of Propionibacterium was significantly greater in males compared to females
(23.5% on male and 18.2% on female, ANOVA P = 0.01), especially on Gb (especially among
elderly subjects) and Hb (especially among adults and elderly). On Gb of the elderly, the rela-
tive abundance of Propionibacterium was 7 times greater in males (60.2%) compared to females
(9.3%, ANOVA P< 10−4). Additionally, the relative abundance of Corynebacterium in males
was significantly greater than females (13.1% on male and 8.4% on female, ANOVA P< 10−4),
especially on Hb, Vf, Af, Gb and Is. The relative abundance of Acinetobacter, Paracoccus (espe-
cially on Ba of elderly) and Sphingomonas in females (4.5% and 4.3%, respectively) was signifi-
cantly greater than males (2.8%, ANOVA P< 10−4; and 2.8%, ANOVA P< 10−4). For the Na
of elderly, the relative abundance of Staphylococcus and Alloiococcus was 3 to 7 times greater in
females (26.9% and 15.4%, respectively) than males (9.3%, ANOVA P = 0.009; and 2.6%,
ANOVA P = 0.02), whereas Anaerococcus was significantly greater in males than females
(4.0% and 1.0%, respectively, ANOVA P = 0.004). Among adolescents, site Af maintained 3
times the relative abundance of Streptococcus in males (8.7%) compared to females (2.6%,
ANOVA P = 0.03).

A Mantel test was performed to determine the possible correlations between microbial dis-
tributions on skin sites and skin physicochemical parameters (Table 3). Positive correlations
were observed between sebum content and both the bacterial community structure and mem-
bership on the sebaceous site Gb; and pH and the bacterial community structure on Af and
community membership on Vf, Af, Gb and Ba. Changes in pH were positively correlated with
changes in the relative abundance of Corynebacterium (R = 0.29, P = 6.0 × 10−20; especially on
Hb, Af, Ba and Vf; S5 Table), whereas sebum content (R = 0.36, P = 2.1 × 10−20, especially on
Gb) and moisture (R = 0.38, P = 1.0 × 10−35) were positively correlated with the relative abun-
dance of Propionibacterium. Finally, TEWL was significantly correlated with the relative abun-
dance of Staphylococcus (R = 0.14, P = 1.3 × 10−4).

We used Random Forest supervised learning models to determine the extent to which skin-
associated microbial communities could be used to predict the age, gender, place of residence,
or skin surface environment of the participant from whom a sample was taken from. Models
were unsuccessful at determining the gender or body site associated with each sample. By

Table 3. Mantel-test of UniFrac matrix and skin physical parameters.

Sebum Moisture Trans-epidermal water loss
(TEWL)

pH

unweighted weighted unweighted weighted unweighted weighted unweighted weighted

R P R P R P R P R P R P R P R P

All a 0.005 0.797 -0.019 0.332 0.025 0.084 0.077 0.001 ** c -0.021 0.220 0.015 0.307 0.130 0.001 ** 0.046 0.005 *

Vf b -0.086 0.325 0.168 0.055 -0.006 0.854 0.021 0.577 -0.018 0.670 -0.017 0.684 0.123 0.022 * 0.038 0.442

Hb 0.034 0.760 -0.082 0.384 -0.008 0.869 -0.038 0.433 -0.052 0.151 -0.060 0.129 0.069 0.143 -0.001 0.982

Af -0.005 0.965 -0.032 0.709 0.050 0.168 0.053 0.150 0.004 0.921 0.069 0.103 0.199 0.001 ** 0.127 0.012 *

Is -0.106 0.217 -0.073 0.300 -0.074 0.395 -0.101 0.112 0.021 0.683 -0.011 0.772 0.064 0.404 -0.012 0.855

Gb 0.166 0.001 ** 0.197 0.001 ** 0.029 0.351 0.013 0.674 -0.007 0.822 -0.018 0.572 0.085 0.021 * 0.035 0.350

Ba 0.021 0.610 0.055 0.232 0.014 0.664 -0.058 0.080 -0.028 0.474 0.057 0.205 0.091 0.011 * 0.047 0.226

aAll seven sites together.
bThe abbreviations and the corresponding explanations of body sites are given in Table 2.
c*: P<0.05,
**: P<0.001.

doi:10.1371/journal.pone.0141842.t003
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contrast, the models performed approximately 4 times better than expected by chance at deter-
mining whether a sample was taken from an adolescent or an adult, and performed about 4.7
times better than expected by chance when determining which environment (urban vs rural)
the sample’s participant resided. In both cases, model error increased greatly when trained on
genus- or family-level taxonomic assignments instead of on OTUs.

The 3 samples taken for each body site across 3 non-consecutive days (Monday-Wednes-
day-Friday) had stable species richness (Table 2, S3 Fig), with very similar inter- and intra-
sample weighted UniFrac distances (Fig 3E, ANOSIM R = 0, P> 0.05 with weighted UniFrac).
Procrustes analysis (S6 Table) demonstrated that the bacterial community structure variation
between the 1-day intervals was much higher on sites Hb and Vf; but extremely low on sites Ba
and Na.

Discussion
Our study confirmed that bacterial community structure is significantly different between
body sites [4, 22, 23], and that the skin microenvironment type (sebaceous, moist and dry)
were the most important factors influencing community structure [4]. Multiple host factors,
including age, gender and place of residence, contributed to the variability in microbial distri-
bution. We detected 4 physical skin parameters across 6 body sites (all except Na) that corre-
lated with changes in the relative abundance of specific bacterial taxa. Although the correlation
between Propionibacterium and sebum content has already reported [24], we found that the
relative abundance of Propionibacterium also correlated with skin moisture. Age influences the
skin microenvironment and thus the bacterial communities that reside there [25, 26]. The
change in skin-associated bacterial community structure and composition during the first year
of life shows that age can significantly influence diversity estimates [27, 28]. In the current
study, the diversity of the skin microbiota in adults was significantly greater than in adolescents
or the elderly. Skin bacterial communities adapt through time, utilizing carbohydrates, pro-
teins, lipids, and minerals present on the skin surface [29]. The ability of the skin to hold mois-
ture and its sebum production capacities are affected by aging as well as by gender [30].
Lipophilic bacteria such as Propionibacterium, start to increase in abundance during adoles-
cence and peak during the third decade of life, which parallels sebum levels [25]. Propionibac-
terium prefer an environment with higher moisture and sebum. Males, who have greater
sebum secretion that remains stable with ageing [30], had a greater relative abundance of Pro-
pionibacterium bacteria, which increased with age.

Physiological differences between male and female skin environments, such as hormone
metabolism, perspiration rate and skin surface pH, can also account for gender differences [31,
32]. Although previous studies have only shown a significant difference in alpha diversity
between men and women on one body site (palm) [6], the current study found this difference
on virtually all body sites, especially Gb. Although any possible explanation of the gender dif-
ferences associated with Gb would be supposition; it is possible that assumed differences in
facial cosmetic application within this population could play a role.

Urban and rural populations had significantly different community composition, with
greater intragroup variation among rural dwellers. Although urban versus rural environments
are often significantly different, the lifestyle of the residence can also vary. The rural adults and
elderly included in this study were all agricultural field-workers, whereas most urban partici-
pants had indoor occupations. These differences may alter skin conditions hence the bacteria
that reside there [1, 33], but the sources from which a skin microbiome may populate would
also be different. Indoor microbiomes are predominantly human-derived [11], whereas
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outdoor workers will be subject to soil, aquatic and host-associated microbial sources that
could alter their skin microbiome composition.

In this study, the sequence reads per sample was relatively low (the average was 458
sequence reads per sample), however, we were able to get 3 replicate samples within 1-day
intervals, and this read depth does cover the most abundant taxa on the skin surface [11]. Simi-
lar read depths had no influence on taxonomic correlations, with robust relationships observed
across 100–400 reads per sample for skin studies [8]. The advantages of having large numbers
of samples at shallow coverage clearly outweigh having a small number of samples at greater
coverage for many datasets [34, 35]. The reproducibility of sequencing results were constant
with previous reports pointing to the relative stability of the skin microbiome over time in the
same individual [4, 5]. In addition, Procrustes analysis has demonstrated that partially
occluded sites such as Ba and Na are more stable than other body sites [1], which supports our
observation that Ba and Na had the lowest intragroup variation.

There is intensive interest in the variation of the human microbiome in relation to health
and disease [36]. Dysbiosis of the microbial-host relationship, even in the absence of an invad-
ing pathogenic organism, may be influential in diseases such as primary immunodeficiency
and atopic dermatitis [37]. The level of variability within a semi-contiguous human population,
within the same geographic region, suggests that characterizing the microbial community
structure of these different cohorts will be necessary if we are to use skin microbiome informa-
tion for diagnosis and treatment.

Our study confirmed that bacterial community structure is significantly different between
different body sites, and that the skin microenvironment types were the most important fac-
tors. Multiple host factors, including age, gender and place of residence, also contributed to the
variability of the microbial distribution. Urban and rural populations showed significantly dif-
ferent community compositions, potentially due to the different skin condition as a result of
work-type (office versus field) and the significant difference in microbial sources from which
to populate their microbiome. Furthermore, we detected 4 physical skin parameters (sebum,
TEWL, moisture and pH) across the body sites that correlated with changes in the relative
abundance of specific bacterial taxa.

Supporting Information
S1 Fig. The distribution of OTUs. The horizontal axle represents the 13,004 qualified OTUs.
The singletons in sequenced data were removed and the remained singletons were caused by
the removal of samples with<200 reads. The vertical axle is the number of sequences in each
OTU. To fit graphing, the reads numbers were transformed to logarithm.
(PDF)

S2 Fig. UPGMA clustering of weighted (A) and unweighted (B) UniFrac distance of differ-
ent groups of samples. The branch color means different sites, red branch: Na, yellow branch:
Gb and Ba, blue branch: Is and Af, green branch: Hb and Vf. The sample names from different
sites with same gender, age and place of residences were showed with same color.
(PDF)

S3 Fig. Rarefaction of different alpha diversity indices (Chao1, PD and Shannon) by site,
age, gender, place of residence and replication.
(PDF)

S1 Table. Analysis of similarity (ANOSIM) results for groups divided by different factors
(single factors or multi-factors) used UniFrac distance.
(XLSX)
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S2 Table. Comparison of relative abundance of bacterial genera between different groups
with ANOVA (only showed P<0.05). All P values were corrected by the Bonferroni procedure
for multiple comparisons.
(XLSX)

S3 Table. The 20 major taxa abundances of 84 different group samples. The table matched
to Fig 4.
(XLSX)

S4 Table. Diversity indices of different group samples and comparison of different groups
with t-test (only showed P<0.05).
(XLSX)

S5 Table. Analysis of Pearson-correlation for skin physical parameters (sebum, TEWL,
moisture and pH) with contents of different genera. All P values were corrected by the Bon-
ferroni procedure for multiple comparisons.
(XLSX)

S6 Table. Procrustes analysis compared coordinate matrices of UniFrac distances for 3 rep-
lications on different sites.
(XLSX)
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