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Evaluating human and machine understanding of data visualizations
Arnav Verma1, Kushin Mukherjee2, Christopher Potts1, Elisa Kreiss3, Judith E. Fan1

Stanford University, Stanford, CA, United States
University of Wisconsin-Madison, Madison, WI, United States

University of California, Los Angeles, CA, United States

Abstract

Although data visualizations are a relatively recent invention,
most people are expected to know how to read them. How do
current machine learning systems compare with people when
performing tasks involving data visualizations? Prior work
evaluating machine data visualization understanding has relied
upon weak benchmarks that do not resemble the tests used to
assess these abilities in humans. We evaluated several state-of-
the-art algorithms on data visualization literacy assessments
designed for humans, and compared their responses to
multiple cohorts of human participants with varying levels
of experience with high school-level math. We found that
these models systematically underperform all human cohorts
and are highly sensitive to small changes in how they are
prompted. Among the models we tested, GPT-4V most closely
approximates human error patterns, but gaps remain between
all models and humans. Our findings highlight the need for
stronger benchmarks for data visualization understanding to
advance artificial systems towards human-like reasoning about
data visualizations.

Keywords: graph literacy; visual reasoning; quantitative
reasoning; artificial intelligence; benchmarking

Introduction
Humans can engage with a wide range of visual input
modalities, ranging from natural scenes and drawings to
diagrams and data visualizations (Tversky, 2011; Franconeri
et al., 2021; Fan et al., 2023). Data visualizations — also
commonly known as graphs, charts, and/or plots — are
especially important because they support reasoning about
phenomena that might be too large in scale (or too slow or too
uncertain) to be observed directly. They do so by leveraging
color, shape, size, position, and other visual variables to
encode and convey quantitative patterns and relationships in
data (Bertin, 1981; Tufte, 1983; Wilkinson, 2012). As such,
they are now indispensable in modern scientific workflows to
support exploratory analysis and statistical reasoning (Tukey
et al., 1977; Börner et al., 2019; Cumming & Finch, 2005).
Moreover, the acquisition of data visualization literacy — a
robust ability to parse data visualizations and derive insights
from them (Fry, 1981; Curcio, 1987; Friel et al., 2001; Shah
& Hoeffner, 2002; Boy et al., 2014; Börner et al., 2019; Firat
et al., 2022) — has been a longstanding priority in STEM
coursework throughout K-12 and beyond (Pellegrino et al.,
2014).

Nevertheless, there are fundamental gaps in current
knowledge of what cognitive operations underlie data

visualization understanding. In part, these gaps reflect
inherent challenges in operationalizing such a complex
cognitive construct — the same dataset can be visualized
in many different ways and a wide variety of tasks can
be performed with any single data visualization (Brehmer
& Munzner, 2013; Friel et al., 2001). Even among the
most prevalent types of data visualizations (e.g., bar plots,
line plots, scatter plots), a person might sometimes want
only to search for a single value and other times to derive
broader insights about complex trends (Boy et al., 2014;
Lee et al., 2016; Kim & Heer, 2018; Börner et al., 2019;
Lundgard & Satyanarayan, 2021). The ability to perform
any of these tasks is thought to rely on the coordination of
several mental processes (Hegarty, 2005), including: rapid
perceptual computations (Cleveland & McGill, 1984) with
respect to a known graph schema (Pinker, 1990); explicit
numerical operations (Gillan & Lewis, 1994) constrained
by finite working memory resources (Padilla et al., 2018);
and interpretive processes that lead to more general insights
(Carpenter & Shah, 1998), which may be influenced by prior
content knowledge (Shah & Freedman, 2011).

In principle, computational modeling approaches could
provide greater precision concerning the exact operations that
support data visualization understanding. Recent advances
in artificial intelligence (AI) have yielded a cohort of
“multimodal” AI systems that can operate over a combination
of visual and linguistic inputs to perform a wide variety of
cognitive tasks. The complexity of these tasks has begun
to approach that of tasks that humans routinely face in real-
world settings, including at school and in the workplace
(Chung et al., 2024; S. Zhang et al., 2022; OpenAI, 2023; Liu
et al., 2023; Bommasani et al., 2021; Katz et al., 2023; Yue
et al., 2023). While strong performance has been reported for
some of these systems on data visualization understanding,
these reports rely upon relatively weak benchmarks that
do not resemble the tests used to assess the same abilities
in humans Masry et al. (2022); Lu et al. (2023); OpenAI
(2023); Yue et al. (2023). As such, it remains unclear to
what degree state-of-the-art vision-language models achieve
human-like understanding of data visualizations, for any
cohort of humans.

In this paper, we aim to address this gap in three
ways: First, we identify reliable tests of data visualization
understanding that have been used in previous human
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Figure 1: (A) The current experiments include three tests of data visualization understanding, which vary in their length and
composition. (B) Each of these tests was administered to both human participants and a set of state-of-the-art AI models,
enabling quantitative comparison between human and model error patterns.

studies. Second, we develop an evaluation protocol to
assess data visualization performance in multimodal vision-
language models, designed to enable direct comparison
to human response patterns. Third, we benchmark
the performance of several state-of-the-art vision-language
models against existing human datasets on the same
visualization understanding test suite, building on recent
work employing similar approaches (Binder et al., 2023;
Bear* et al., 2021; Mukherjee et al., 2023). Taken together,
this work presents initial insights and evaluation methods
that could be leveraged to make further progress towards
computational models that expose the cognitive mechanisms
that support real-world quantitative reasoning.

Methods
Progress towards AI systems that achieve human-like
understanding of data visualizations requires meeting two key
challenges: first, establishing common standards by which
to assess understanding of data visualizations in humans and
AI systems, and second, conducting controlled evaluations
of human and AI understanding of data visualizations that
support direct comparison between humans and models.

Common benchmarks for data visualization
understanding
Meeting the first challenge requires identifying valid
and reliable measures of data visualization understanding.
Towards this end, we leverage prior work developing
assessments of data visualization literacy (DelMas et al.,
2005; Galesic & Garcia-Retamero, 2011; Lee et al., 2016;
Börner et al., 2019; Boy et al., 2014; Ge et al., 2023).
These assessments are generally structured in the same way,
consisting of a set of test items, each presenting a data
visualization and a question about it. Nevertheless, they
also vary in how they are organized and what aspects of
data visualization understanding they emphasize. Here, we
include three tests of data visualization understanding with
complementary attributes (Figure 1A).

GGR The first test, which we dub GGR, is a widely
used 13-item assessment containing three bar plots, three line
plots, as well as an icon array and pie chart (Galesic & Garcia-
Retamero, 2011). The test was designed to probe a compact
hierarchy of abstract abilities, progressing from “reading the
data” to “reading between the data” to “reading beyond the
data” (Friel et al., 2001). Nine of the test items require a
numerical response and four of them were multiple choice.

VLAT The second test, known as the Visualization
Literacy Assessment Test (VLAT), is an influential 53-item
assessment containing 12 plots (Lee et al., 2016), each
generated from unique real-world data sources: line chart,
bar chart, stacked bar chart, normalized stacked bar chart,
pie chart, histogram, scatter plot, bubble chart, area chart,
stacked area chart, choropleth map, and tree map. VLAT
also groups items into a broader suite of more concrete tasks
than in GGR, including items that involve: retrieving values,
finding extrema, finding anomalies, making comparisons,
determining ranges, finding correlations and trends, and
finding clusters. All of the test items are multiple choice
(34 items with four options; 3 with three options; 16 were
True/False).

HOLF The third test, which we dub HOLF, is a 384-
item test containing 64 bar plots, consisting of 8 variants
generated from each of 8 real-world datasets (Huey et al.,
2023). While in VLAT and GGR each plot is paired with
an uneven number and variety of types of questions, in
HOLF each bar plot variant is paired with all questions
pertaining to its corresponding dataset (i.e., retrieve value,
make comparisons, determine range). This balanced set of
question-plot combinations makes it possible to distinguish
the impact of attributes of the plot from the impact of the
dataset itself. All of the test items in HOLF require a
numerical response.
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Measuring data visualization understanding in
humans and models

Human participants All behavioral data from human
participants included in the current analyses were collected
in two recent studies in accordance with the UC San Diego
IRB. Data from 1,135 U.S.-based participants recruited via
a combination of Prolific and the UCSD study pool were
included in analyses of human performance on GGR and
VLAT (Lloyd et al., 2023). Data from 531 U.S.-based
participants recruited via Prolific were included in analyses
of human performance on HOLF (Huey et al., 2023).

Human evaluation procedure In Lloyd et al. (2023), every
participant completed all items in both GGR and VLAT,
with test order randomized across participants. In Huey
et al. (2023), each participant was presented with eight
items from HOLF, such that they answered a single question
about one plot generated using each of the eight datasets.
In both studies, participants completed a post-study survey
wherein they were asked to indicate whether they had taken
various high-school math courses: algebra, calculus, and/or
statistics. To explore the relationship between the amount
of formal math training human participants had received
and performance on data visualization understanding tasks,
participants were divided into two groups: less math, defined
as having taken 1 or 2 of the 3 highlighted math courses
(GGR: N = 454 participants; VLAT: N = 454 participants;
HOLF: N = 284 participants); and more math, defined as
having taken all 3 highlighted math courses (GGR: N = 632
participants; VLAT: N = 632 participants; HOLF: N = 164
participants).

Model suite To determine which models to include in our
evaluation, we prioritized those that have been reported to
achieve strong performance on other benchmarks that involve
reasoning over visual and linguistic inputs (Li et al., 2023;
Yue et al., 2023). Here, we include four vision-language
models that vary along several dimensions (i.e., architecture,
size, training objective, training data): LLaVA-1.5-Vicuna-
7b (Zheng et al., 2024), BLIP-2-FLAN-T5-XL (Chung et
al., 2024), BLIP-2-FLAN-T5-XXL (Chung et al., 2024), and
GPT-4V1(OpenAI, 2023)

Model evaluation procedure Each model was evaluated
on all 450 test items from across GGR, VLAT, and HOLF.
For each test item, the input to models consisted of two
components: an image containing a data visualization and
a corresponding question about the visualization supplied
as a text prompt written in English. We recorded the full
text response produced by each model and applied post-
processing to extract the most relevant information.

Assessing impact of prompt. To quantify the degree to
which model behavior was sensitive to the form of the text
prompt, we tested all models on two variants of the prompt:

1Evaluation done through Azure OpenAI services using model
GPT-4V version vision-preview from April-May 2024.

the raw prompt contained the exact task instructions and
question text provided to human participants; the adapted
prompt was modified to more closely align with the format of
the prompts provided to each model during its training (e.g.,
prepending the word Question: before each question). We
thus evaluated all four models on 900 test items, 450 using the
raw prompt and 450 using the adapted prompt. To improve
the robustness of our findings, we presented every item 10
times to each model, yielding a total of 9000 responses per
model. We sampled outputs from each model using nucleus
sampling (temperature = 0.1; top-p = 0.4), a commonly
used technique for improving the diversity and fluency of
language model outputs (Holtzman et al., 2019; Gunjal et al.,
2024). We report findings based on specific temperature and
top-p values, but explored a wide range of values for these
parameters to identify ones that were associated with higher
model performance, and thus a stronger basis for comparison
with human behavior.

Postprocessing model output. Several models produced
verbose responses that did not conform to any of the
required response formats (i.e., multiple choice, True/False,
numerical response). In particular, LLaVA-1.5-Vicuna-7b
often returned the full prompt as part of its response. As such,
we applied further processing to excise the prompt from any
responses that included them. Specifically, following prior
work (Yue et al., 2023), we used GPT-42 to extract only the
relevant information from the raw model output. A subset
of these post-processed responses were then reviewed by a
member of the research team to verify their validity.

Results
How often do models produce non-empty responses to
questions? A minimum bar for any model to clear on these
tasks is that it produces non-empty responses to all questions.
We found that when using the raw prompt, LLaVA-1.5-
Vicuna-7b failed to reliably produce non-empty strings in
response (Figure 2A) and produced the lowest proportion of
non-empty responses for raw prompts (24.4%). Using the
adapted prompts produced substantial improvements in the
rate of non-empty strings returned across models (adapted
= 99.83%; raw = 80.28%). These findings suggest that, as
capable as some of these systems might be on various tasks,
their ability to produce outputs at all can be highly sensitive
to relatively minor changes in the format of the prompt.
How much does prompting strategy impact what models
say? When models did generate non-empty responses,
to what degree was the text generated under the raw and
adapted prompts different? To evaluate this question, we
computed the Jaccard similarity index between responses to
the same test item between different model pairs and prompt
types. This index measures the ratio between the number of
overlapping words in two responses and the total number of
words appearing in both responses. If two responses were

2Evaluation done through Azure OpenAI services using model
GPT-4 version 1106-preview from April-May 2024.
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Figure 2: (A) Proportion of non-empty responses produced by each model on each test using both raw and adapted prompts.
(B) Proportion of valid responses generated by each model on each test using only adapted prompts.

exactly the same, they would have a Jaccard similarity index
of 1, and if they shared none of the same words, the Jaccard
similarity would be 0. We computed the mean similarity
between prompting method pairs by averaging similarity
values between responses across all test items that produced
non-empty outputs.

We found that across all three tests, the text generated by
the same model differed under different prompting methods
as measured using mean Jaccard similarities (GGR = 0.36,
95% CI = [0.20,0.50]; VLAT = 0.76, 95% CI = [0.72,0.80];
HOLF = 0.20, 95% CI = [0.20, 0.21]). These findings
provide converging evidence that subtle variations in prompt
formatting can systematically impact model outputs, even
when only considering those cases where any text was
generated at all.
How often do models produce valid responses? Having
established that using the adapted prompts more reliably
yielded non-empty responses, we sought to evaluate how
often these outputs contained information that was actually
relevant to answering the question.

Our first step was to determine whether the model
responses to test items were in the ‘valid’ format required
by the question. For multiple-choice questions in GGR
and VLAT, a response was considered to be valid if the
processed response was an exact match to one of the multiple
choice options. For numerical-response questions in GGR
and HOLF, a response was considered to be valid if it was
possible to extract a numerical value from the response string.
If multiple numerical values were given (e.g. “3.1 or 4.1”),
the one closest to the correct answer was extracted.

Using these criteria, we computed the proportion of
valid responses to each test item for each model (Figure
2B). Overall, we found that models did not always
provide valid responses to numerical questions, with
LLaVA-1.5/Vicuna producing the lowest proportion of valid
responses (60.44%), followed by GPT-4V (85.76%), BLIP-
2/Flan-T5-XL (88.40%), and BLIP-2/Flan-T5-XXL, which
produced the highest proportion of valid responses (92.09%)
(Figure 2B). These results demonstrate that even when
models produce non-empty responses, the text generated may
not contain a valid response to the question.

How often do models produce accurate answers? Having
implemented a procedure for identifying only the valid
responses produced by all four models (i.e., LLaVA-
1.5/Vicuna, BLIP-2/F-T5-XL, BLIP-2/F-T5-XXL, GPT-
4V), we next sought to compare their accuracy to that of
two groups of human participants who differed in their prior
experience with high school-level mathematics—Humans
(less math), Humans (more math).

For GGR and VLAT, we measured human and model
performance by computing the proportion of correct
responses. Doing so was straightforward for the multiple
choice items; for the items that required numerical responses,
responses were only deemed correct if they exactly matched
the true answer provided by the original test designers.

For HOLF, all of the items required a numerical
response. We measured performance by computing the
median normalized absolute deviation between human/model
responses and the correct value. Specifically given an agent-
type (model/human), for each item we obtained raw errors
by taking the absolute difference between each response and
the correct value. However, because plots in HOLF were
generated from datasets containing variables measured in
different units with highly disparate scales (i.e., some in the
range 101-102 and others in the range 104-105), it is not
clear based on these raw error values how accurate any given
response was in the context of the variable it pertains to. As
such, we obtained normalized errors by dividing the absolute
value of raw errors by the interval spanned by the y-axis in
the corresponding plot, providing a relative measure of how
far off a response was from the correct value compared to how
wide a range of values was observed for that variable.

Overall, we found that GPT-4V performed best among the
four models, achieving higher accuracy on GGR (GPT-4V
= 0.34, 95% CI = [0.18,0.52]; Other Models = 0.05, 95%
CI = [0.01,0.07]) and VLAT (GPT-4V = 0.62, 95% CI =
[0.55,0.75]; Other Models = 0.32, 95% CI = [0.25,0.39]),
while achieving lower median error on HOLF (GPT-4V
= 0.09, 95% CI = [0.08,0.10]; Other Models = 0.3,
95% CI = [0.3, 0.33]). Nevertheless, GPT-4V did not
perform as well as Humans (less math) on any of the
tests (∆GGR = 0.44, 95% CI = [0.26,0.60]; ∆VLAT =
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Figure 3: Human and model performance on each test. Each dot represents either the mean proportion correct (GGR & VLAT)
or median normalized absolute error (VLAT) for a single test item. Error bars represent bootstrapped 95% confidence intervals.

0.13, 95% CI = [0.08,0.27]; ∆HOLF = -0.04, 95% CI =
[−0.06,−0.03]). These findings suggest that there remains
a meaningful performance gap between current state-of-the-
art vision-language models and humans, even when only
considering individuals with relatively modest amounts of
prior experience with high school-level math.

How similar were responses generated by models and
humans? While there is only one way to answer all of
the questions correctly, there are many possible ways to
answer them incorrectly. As such, examining these response
patterns can reveal correspondences between model and
human behavior that might not be revealed by analyses of
task performance alone. Towards this end, we computed
similarities between the response patterns generated by
different models and humans, for each pair of models (or
human-model pair). For the multiple-choice items (i.e., in
GGR and VLAT), we computed the proportion of matching
responses. For items requiring a numerical response (i.e.,
in HOLF), we used normalized absolute error values, which
provide a measure of the magnitude of deviations between
responses.

Overall, we found that consistency between all models
(taken together) and all humans (from both groups) was
relatively low for all three tests: GGR (0.18; 95% CI
= [0.10,0.26]), VLAT (0.44, 95% CI = [0.39,0.49]), and
HOLF (0.24, 95% CI = [0.22,0.25]), although GPT-4V

produced responses that were most similar to those of humans
among the four models (Fig. 4). By contrast, response
consistency was relatively high between the two groups
of human participants, Humans (less math) and Humans
(more math): GGR = 0.68, 95% CI = [0.61,0.76]; VLAT
= 0.68, 95% CI = [0.66,0.71]; HOLF = 0.05, 95% CI
= [0.04,0.05], and higher than the consistency between
different vision-language models (GGR = 0.17, 95% CI =
[0.07,0.25]; VLAT = 0.50, 95% CI = [0.46,0.56]; HOLF =
0.33, 95% CI = [0.31,0.39]). Taken together, these results
suggest that there is a high degree of systematicity in human
response patterns on these data visualization tasks, but none
of the four models could reproduce these patterns.

Discussion
Recently developed vision-language models have been
claimed to show competence at a wide variety of visual tasks,
including data visualization understanding (Lu et al., 2023;
OpenAI, 2023). However, existing results rely on weak
benchmarks and and do not use the materials and standards by
which human data visualization literacy is assessed (Galesic
& Garcia-Retamero, 2011; Lee et al., 2016; Börner et al.,
2019; Boy et al., 2014). We conducted controlled evaluations
of human and model performance on three visualization
literacy assessments previously used in human behavioral
studies. Using these assessments, we evaluated a set of
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Figure 4: Pairwise comparison of interpretable responses between all vision-language models and humans. For GGR and
VLAT, we compared responses using Jaccard similarity, with higher values indicating greater similarity (and identical responses
achieving a value of 1). For HOLF, we computed differences between responses by computing the median normalized absolute
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four state-of-the-art vision-language models and compared
their performance to that of human participants who varied
in their amount of formal math training. We found that
current models are sensitive to minor variations in the format
of the prompt and often produce invalid outputs that are
not responsive to the question at hand. Even when only
considering valid responses from models, we found that they
performed reliably worse than human participants including
those who had lesser formal math training. Nevertheless,
we found that the highest-performing model, GPT-4V, also
currently produces responses that are most consistent with
those made by humans.

Our paper contributes to a growing body of cognitive-
AI benchmarking efforts that employ large-scale behavioral
experimentation to rigorously evaluate both humans and AI
systems on a common set of controlled tasks on relatively
naturalistic stimuli (Binder et al., 2023; Bear* et al., 2021;
Martinez et al., 2023; Mukherjee et al., 2019). These
efforts not only advance human-AI alignment by identifying
specific gaps in current AI systems but also generate
fruitful hypotheses concerning the viability of current AI
models as computational cognitive models of the human
mind. We found that vision-language models that have
achieved strong performance on other visual tasks (e.g.,
object recognition, image captioning) still fall short on tasks
involving interpreting data visualizations, both in terms of
performance and consistency with humans (Radford et al.,
2021; Xie et al., 2021; J. Zhang et al., 2023).

Key outstanding questions concern where these gaps come
from and how to close them. Data visualization literacy is
acquired by humans through formal education and training.
While modern vision-language models are trained on very
large datasets that likely include data visualizations, they
generally do not engage with these inputs or receive social
feedback in the ways that human learners do (Gweon et al.,
2023). An important future direction will thus be to uncover
the aspects of human learning environments that are critical
for observing robust learning in humans, and explore to what
degree these insights can be leveraged to develop more robust

AI systems.
More broadly, we envision the use of stimuli and tasks that

approach the complexity of natural behavior in real-world
environments being crucial for advancing theories of human
perception, learning, and reasoning. Moreover, developing
AI systems that display more human-like understanding of
abstract visual inputs could be used to design both more
effective STEM learning environments and visualizations for
scientific communication.
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