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A Horseshoe Pit mixture model for
Bayesian screening with an application
to light sheet fluorescence microscopy in

brain imaging
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1Department of Statistics, University of California, Irvine
2Department of Neurobiology and Behavior, University of California,
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Finding parsimonious models through variable selection is a fundamental
problem in many areas of statistical inference. Here, we focus on Bayesian
regression models, where variable selection can be implemented through a reg-
ularizing prior imposed on the distribution of the regression coefficients. In
the Bayesian literature, there are two main types of priors used to accomplish
this goal: the spike-and-slab and the continuous scale mixtures of Gaussians.
The former is a discrete mixture of two distributions characterized by low
and high variance. In the latter, a continuous prior is elicited on the scale of
a zero-mean Gaussian distribution. In contrast to these existing methods, we
propose a new class of priors based on discrete mixture of continuous scale
mixtures providing a more general framework for Bayesian variable selection.
To this end, we substitute the observation-specific local shrinkage parameters
(typical of continuous mixtures) with mixture component shrinkage parame-
ters. Our approach drastically reduces the number of parameters needed and
allows sharing information across the coefficients, improving the shrinkage ef-
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fect. By using half-Cauchy priors, this approach leads to a cluster-shrinkage
version of the Horseshoe prior. We present the properties of our model and
showcase its estimation and prediction performance in a simulation study.
We then recast the model in a multiple hypothesis testing framework and
apply it to a neurological dataset obtained using a novel whole-brain imaging
technique.

Keywords: Bayesian inference; Variable selection; Mixture models; Neu-
roscience.

1 Introduction

Variable selection plays a central role in many statistical inference problems, where n
measurements of a dependent random variable Y are modeled as a function of p co-
variates, X. Broadly speaking, variable selection aims to provide a parsimonious and
generalizable representation of the functional relationship betweenX and Y by designat-
ing a subset of variables in X as interesting and relevant, while discarding the remaining
ones as unrelated to the outcome (i.e., noise). Variable selection is of pivotal importance
when dealing with modern large-scale inference analyses, especially the so-called “small
n large p” problems. To tackle such problems, a large class of methodologies have been
proposed based on regularization (or shrinkage) of the parameters. This procedure aims
at identifying a meaningful subsets of variables inX by shrinking to zero the effect of the
variables deemed as irrelevant, usually assumed to be the vast majority (see, for example,
Tibshirani, 2013; George and McCulloch, 1997, and the references therein).

Within the Bayesian framework, the regularization process involves the specification of
shrinkage priors for the regression coefficients β = {βj}pj=1. To achieve this goal, two
main approaches have been proposed in the literature: the spike-and-slab (or two-group)
models (Mitchell and Beauchamp, 1988; McCulloch and George, 1993) and the continuous
shrinkage scale mixture models (Polson et al., 2012). The first approach models the
parameter of interest as a discrete mixture between a point mass at 0 (or a distribution
centered at zero with low variance) and a “flat” distribution with large variance. This way,
the resulting model-based clustering can discriminate between relevant and irrelevant
coefficients. Despite being a well-established topic for more than two decades, this is
still an active area of research. For example, Rockova and George (2016) have recently
proposed the spike-and-slab Lasso, where the two competing distributions are assumed to
be double Exponentials, in the spirit of the Bayesian Lasso of Park and Casella (2008).
The second approach relies on the specification of continuous scale mixtures, e.g. by
placing hierarchical priors on the variance parameter of Gaussian distributions (refer to
Bhadra et al., 2019a, for a recent review). The scale parameter is often decoupled into
two (or more) terms, commonly referred to as the global (i.e., shared by all the regression
coefficients) and the local shrinkage parameters. Several shrinkage models can be seen
as a special case of this global-local shrinkage paradigm, including the Bayesian Lasso
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(Park and Casella, 2008), the Normal-Gamma (Griffin and Brown, 2010), the Horseshoe
(Carvalho et al., 2010), or the Horseshoe+ (Bhadra et al., 2017). The selection between
relevant and irrelevant variables needs to be done ex-post, usually by thresholding a
proxy of the posterior probability of relevance: P [βj 6= 0|data].

In this paper, we aim at bridging the gap between these two alternatives by proposing
a discrete mixture of continuous scale mixtures to perform different types of Bayesian
screening. The proposed approach allows to combine the regularization effect typical of
continuous shrinkage priors while inducing a segmentation of the coefficients as in the
spike-and-slab case. Indeed, the model will automatically detect groups of coefficients
driven by different levels of sparsity, imposing an adaptive regularization within each
group. Moreover, the discrete mixture greatly reduces the complexity of the model,
avoiding the usual specification of a local shrinkage parameter for each variable. For
example, we will show how a unique, shared mixture component shrinkage parameter is
often sufficient to model all the null coefficients, enabling at the same time sharing of
information across the parameters.

Our proposed approach is related to several other methods employing mixture models
to improve the efficacy of the variable selection and shrinkage processes. For example,
Shahbaba and Johnson (2013) proposed a scale mixture of Gaussian distributions ca-
pable of ranking the covariates (e.g., a treatment indicator) by modeling the sampling
variances via the Dirichlet Process (DP, Ferguson, 1973). This Bayesian nonparametric
specification groups the variance parameters according to their magnitude, therefore in-
ducing a ranking in terms of relevance among the groups of corresponding coefficients.
Our model extends this idea with the possibility of regularizing the estimates by adopt-
ing shrinkage priors to model the sampling variances. Therefore, the ranking property
inherited by our discrete mixture specification is appealing since it complements the lack
of an explicit screening solution typical of the continuous shrinkage methods. MacLehose
and Dunson (2010) proposed to model regression coefficients as binary mixtures between
a traditional double Exponential centered in zero (Bayesian Lasso) and a double Expo-
nential with non-zero location parameter. They employ DPs for both the location and
scale parameters. This model was extended by Yang et al. (2011), who adopted mixtures
of Bayesian elastic-nets (Li and Lin, 2010). In contrast, our approach focuses only on
the modeling of variances, fixing the center of the mixture kernel distributions to 0. This
choice allows to exploit the properties of the continuous scale mixture family. Recently,
Ding and Karabatsos (2021) explored the effects of the combination between shrinkage
priors and a covariate dependent DP mixtures. The authors jointly model the conditional
response distributions and the covariates with a nonparametric mixture, inducing a par-
tition over the observations. We instead consider fixed covariates and employ the mixture
to cluster the regression coefficients into shrinkage profiles. Our proposal is also related
to the Dirichlet-t distribution introduced in Finegold and Drton (2011, 2014) within the
Bayesian robust graphical modeling framework, where a DP with Inverse Gamma base
measure models the scale parameters of a multivariate Normal. Following the discus-
sion in Shahbaba (2014), we adopt different base measures and recast their modeling
framework for screening purposes. See Appendix A for further discussion.

3



The article proceeds as follows. In Section 2, we present the model and investigate its
theoretical properties. In Section 3, we discuss how to perform posterior inference. In
Section 4, we conduct several simulation studies. In Section 5 we showcase how our
model performs on an innovative whole-brain imaging dataset obtained using light sheet
fluorescence microscopy to detect classes of activation in the brain. Finally, in Section 6
we summarize advantages and shortcomings of our proposed method and discuss future
directions.

2 A discrete mixture of continuous scale mixtures

We introduce our Bayesian variable selection framework by considering a linear regression
model. More specifically, we assume that an outcome vector Y of length n is modeled
as

Y = β01n +Xβ + ε, ε ∼ Nn(0,Σ), (1)

where X ∈ Rn×p is the matrix of covariates, β ∈ Rp is the vector of regression coeffi-
cients, β0 ∈ R is the intercept, and ε is the noise term. We assume homoschedastic and
uncorrelated errors, i.e. Σ = σ2In. Here, Nk(a,A) indicates a multivariate Normal dis-
tribution of dimension k with mean vector a, covariance matrix A, and density function
φk(a,A). In the univariate case, we let N1 ≡ N and φ1 ≡ φ. Without loss of generality,
we assume that the outcome variable is centered, and therefore β0 = 0.

To adopt a fully Bayesian setting, we need to specify prior distributions for the variance
parameter σ2 and the coefficients β. A common choice for the prior distribution of σ2 is
the Jeffreys prior π(σ2) ∝ 1/σ2. More care is needed to specify the prior distribution for
β. This choice is crucial, especially if we want to enforce any regularizing effect on the
parameters. In the usual global-local shrinkage parameter models (Polson et al., 2012),
the regression coefficients are assumed to be distributed as a continuous scale mixture
of Gaussian distributions, i.e. βj |τ,λp, σ2 ∼ N (0, σ2 · τ2 · λ2j ) ∀j = 1, . . . , p and with λj
assumed stochastic. Here, the parameter τ ∈ R+ is called the global shrinkage parameter,
while the vector λp = {λj}pj=1, λj ∈ R+ contains all the local shrinkage parameters.
Conditioning on the variance of the data, σ2, guarantees a unimodal posterior (Park and
Casella, 2008).

We modify this model by proposing a discrete mixture of continuous scale mixtures of
Gaussians. As a result, the large number of local shrinkage parameters is substituted by a
more parsimonious set of L mixture component shrinkage parameters. More specifically,
we assume

βj |τ,λL,π, σ2 ∼
L∑
l=1

πl N (0, σ2 · τ2 · λ2l ), j = 1, . . . , p, (2)

where π is the vector of mixture weights and the elements of the vector λL = {λl}Ll=1

assume the role of mixture component shrinkage parameters. The specification in (2)
is very general and encompasses many known models. In particular, when L = 2 and
λ1 ≈ 0, we recover the spike-and-slab framework, while when L = p and πl = δp(l) ∀l, p
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(i.e., inducing p different singleton clusters) we recover the continuous shrinkage frame-
work.

From another perspective, we can consider the Normal mean estimation problem Yj ∼
N (βj , σ

2), for j = 1, . . . , n, by simply adopting X = In and β0 = 0 in model (1).
This scenario is often considered for hypothesis testing, where the task is to detect the
test statistics that depart from the standard Gaussian distribution specified under the
null hypothesis (H0,j : βj = 0). Suppose we adopt the classical global-local shrinkage
prior for β to induce sparsity and set σ2 = 1. One can easily show that Yj |λj , τ ∼
N (0, 1 + τ2λ2j ). In our discrete mixture of continuous scale mixture model, the induced
sampling distribution is itself a mixture:

Yj |τ,λL,π ∼
L∑
l=1

πl N1(0, 1 + τ2λ2l ). (3)

In the multiple hypothesis testing setting, we can see Y as a vector of n properly stan-
dardized test statistics corresponding to n different null hypotheses. Thus, model (3) can
be interpreted as an extension of the classical two-group model (Efron, 2007). Without
loss of generality, let us assume that the first mixture component is characterized by
the smallest scale parameter λ(1) = minl λl. One can impose this constraint a priori or
recover the mixture component with smallest scale parameter after the model estima-
tion. In the case where the product τλ(1) ≈ 0, the corresponding mixture component
represents the null distribution, resembling a theoretical standard Gaussian. The prod-
uct τλ(1) is allowed to be different from zero to reflect a departure from the theoretical
null. The remaining mixture components define the alternative distribution, which can
be decomposed into degrees of relevance according to the magnitude of the parameters
remaining λ \ λ(1).

Whether we are adopting our model to perform variable selection or hypothesis test-
ing, we need to elicit prior distributions for both π and λL to complete the Bayesian
specification. In addition, we can also specify a distribution for the global shrinkage
parameter τ . The prior distribution for the weights changes if we assume a countable or
uncountable number of mixture components. If we assume L to be finite, we can sim-
ply set π ∼ Dirichlet(a1, . . . , aL). Notice that even L > p is a viable option since one
has to distinguish between mixture components and active components, i.e. the actual
clusters found in the dataset. For example, this argument has been recently discussed in
Malsiner-Walli et al. (2016), where the authors advocate for the use of sparse mixture
models. Setting the hyperparameters al = ε ∀l with ε small (≤ 0.05) allows the model
to parsimoniously select the number of active components needed to describe the data.
Another possibility is to specify a nonparametric model via a DP mixture model:

βj |τ,λ∞, σ2 ∼ N (0, τ2σ2λ2j ), λj |G ∼ G, G ∼ DP (α,H), (4)

where DP (α,H) indicates a Dirichlet Process with concentration parameter α and base
measure H. Adopting the Stick Breaking (SB) representation of Sethuraman (1994),
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model (4) becomes

βj |τ,λ∞, σ2,π ∼
+∞∑
l=1

πlφ(βj ; 0, σ2 · τ2 · λ2l ), λl ∼ H, π ∼ SB(α), (5)

where the weights π are defined as π1 = u1, πl = ul
∏
q<l(1 − uq) for l > 1 and ul ∼

Beta(1, α) for l ≥ 1. Different nonparametric priors, such as the Pitman-Yor process,
can be adopted as well.

The introduction of mixture component shrinkage parameters is beneficial mainly for
two reasons. First, this specification can improve the effectiveness of the regularization
with respect to common global-local scale mixtures models. A discrete mixture allows
the model to borrow information across all the parameters and self-adapt to the different
degrees of sparsity characterizing subsets of the coefficients. Second, the model-based
clustering nature of our approach enables the ranking of groups of coefficients into several
shrinkage profiles, as in Shahbaba and Johnson (2013), improving on the typical binary
solutions (e.g., relevant vs. irrelevant) and providing more complete information. In
Section 5, we will present a successful application of this concept.

In what follows, we will adopt a Half-Cauchy prior for the mixture component shrinkage
parameters: λl ∼ C+(0, 1), ∀l following the suggestion Shahbaba (2014) made in the
context of robust modeling. We call the model following from this specification Horse-
shoe Pit (HSP), in the spirit of the Horseshoe (HS) prior introduced by Carvalho et al.
(2010).

2.1 The mixture component and the cluster shrinkage factors

Consider again the Normal mean estimation framework, and define κj = 1/(1 + τ2λ2j ) ∈

(0, 1). It follows that E [βj |Yj ] = (1 − E [κj |Yj ]) · Yj , and E [βj |λj , τ, Yj ] =
τ2λ2j

1+τ2λ2j
· Yj ,

where κj is known as the shrinkage factor for observation j, which can be interpreted
as a proxy of the complement of the posterior probability of relevance in the two-group
model (Carvalho et al., 2010). It is interesting to see how this key quantity changes under
our model specification. For the conditional model, the posterior expected values of the
coefficients become

E [βj |π,Y ] =
L∑
l=1

E [rl(Yj)(1− κ∗l )|Y ] · Yj ,

E [βj |τ,λL,π,Y ] =

(
L∑
l=1

rl(Yj)(1− κ∗l )

)
· Yj = (1− κ̃j) · Yj ,

(6)

where rl(Yj) =
πlφ(Yj ;0,1+τ

2λ2l )∑L
l=1 πlφ(Yj ;0,1+τ

2λ2l )
. See Appendix B for the derivation of (6). Here,

we distinguish between the mixture component shrinkage factors (MCSF - one for every
mixture component) defined as κ∗l = 1/(1+τ2λ2l ) and the cluster shrinkage factors (CSF
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- one for every coefficient) κ̃j =
∑L

l=1 rl(Yj)κ
∗
l . Each CSF is a function of a convex

combination of the L MCSFs and directly controls the amount of shrinkage that affects
each parameter βj . Simultaneously, the weights of the convex combination depend on
the components of the marginal sampling distribution φ(Yj ; 0, 1+τ2λ2l ). It becomes clear
how the model structure takes advantage of the the sharing of statistical strength across
parameters. Indeed, the posterior mean for βj is the result of two effects. Given its mix-
ture nature, the shrinkage is affected by all the other mixture components parameters
through information sharing. However, since the mixture is driven by weights that di-
rectly depend on each data point’s contribution to the marginal likelihood, we retain an
observation-specific effect in the shrinkage process. These simultaneous effects help the
estimating procedure to place more emphasis on shrinkage profiles that better describe
the data points in Y .

As a simple example, consider a sample of 1,000 observations generated from a linear
regression model with a true vector of coefficients β composed of 100 zeros and 200 real-
izations generated in equal proportions from two Normal distributions centered around
zero with variances 100 and 1, respectively. The error noise is set to σ = 0.5. and
we fix ex-ante τ2 = 0.05. Given this dataset, we compare the HS and the HSP model
in terms of estimated variances (and, therefore, shrinkage effects). The four panels of
Figure 1 show the posterior means (left column) and medians (right column) for the
quantity λ̂jτσ plotted against the true coefficients, transformed as β̃j = sign(βj)

√
βj

to ease the visual comparison. The points in the bottom panels are colored according
to the resulting best partition (more detail on this in the next section). By comparing
the two panels, the cluster-specific shrinkage becomes evident. The HSP can capture
the different magnitudes of the coefficients and rank them in three different clusters. In
particular, one profile includes all the noisy coefficients, providing a clear solution to the
variable selection problem. It is also interesting to compare the posterior mean with the
median in the HSP case. While the three distinct shrinkage profiles are clear in the latter
case, the behavior of the posterior means reveals the presence of both a cluster effect and
an observation-specific effect.

3 Posterior Inference

3.1 The latent membership labels and posterior conditional distribution

To conduct posterior inference, we need to rely on MCMC techniques since the posterior
distribution is not directly available in closed form. To simplify posterior simulation, we
augment model (2) with the latent membership labels z = {zj}pj=1, where zj ∈ {1, . . . , L},
linking each coefficient with a cluster. In other words, zj = l if the j-th coefficients has
been assigned to the l-th cluster. We obtain

βj |τ,λL, zj , σ2 ∼ N (0, σ2 · τ2 · λ2zj ), zj |π ∼
L∑
l=1

πlδl(·). (7)
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Figure 1: A comparison between the estimated individual mean and median standard
deviations λ̂jτσ against the true coefficients for the HS (top panels) and the
HSP (bottom panels) models. The colors in the bottom panels describe the
partitions into different magnitudes.

Once the auxiliary membership labels are introduced in the model, it is straightforward
to derive the full conditional for the corresponding Gibbs sampler. Both the global
and the mixture component shrinkage parameters can be efficiently sampled following a
parameter augmentation strategy (Makalic and Schmidt, 2016) or via slice sampler (as
in the Supplementary Material of Polson et al., 2014). The details of the Gibbs sampler
are deferred to Appendix C.

This data augmentation not only is usefult to conduct feasible posterior inference, but
also provides more insights regarding the behavior of the MCSFs. Indeed, we can derive
the conditional posterior distribution for the l-th MCSF κ∗l under the Horseshoe Pit
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prior, obtaining

p(κ∗l |z,Y , τ2, σ2) ∝
(κ∗l )

− 1
2 (1− κ∗l )

− 1
2

τ2κ∗l + 1− κ∗l
(κ∗l )

nl
2 · exp

− κ∗l
2σ2

∑
j:zj=l

Y 2
j

 . (8)

It is crucial to note how all the observations that are grouped in the l-th cluster explicitly
contribute to the conditional posterior distribution of κ∗l . Without loss of generality, we
set σ2 = τ2 = 1. Moreover, define Sl =

∑
j:zj=l

Y 2
j . Then, the distribution in (8)

simplifies into p(κ∗l |z,Y ) ∝ (κ∗l )
nl−1

2 (1 − κ∗l )
− 1

2 exp
[
−κ∗l

2 Sl

]
. Whenever L = p, nl = 1,

and Sl = Y 2
j , we recover the case of the Horseshoe model.

We exemplify the behavior of this posterior in the two panels of Figure 2, where we report
different shapes of the posterior density function for different combinations of (nl, Sl).
We expect our model to group parameters characterized by similar magnitude, so the
top panel shows what happens when Sl = 0 and nl grows. Ideally, the more observations
with 0 magnitude are assigned to the same cluster, the stronger is the shrinkage effect
of the MCSF κ∗l , concentrating all the mass around 1. Clearly, high values of Sl and
low values of nl will result in small κ∗l , as we can see in the bottom panel. In other
words, the MCSF is lower when the relative cluster is comprised of few observations of
great magnitude. In Appendix E, we report a diagram that depicts this behavior, which
explains how the sharing of information is exploited by our model to tune the amount of
shrinkage according to the observed data.

3.2 Postprocessing of the results

Once the posterior sample has been collected, we can estimate the cluster-shrinkage fac-
tors by means of the membership labels. We map each coefficient βj to the assigned local
shrinkage parameter via zj constructing the vector (λz1 , . . . , λzJ ). It is then straightfor-
ward to compute ˆ̃κj = 1/(1 + τ2λ2zj ). One of the main advantages of our model is
that, once the MCMC sample of size T is collected, it allows the estimation of the
best partition that groups the different coefficients into classes of similar magnitude. Let
z(t) = {z(t)1 , . . . , z

(t)
n } be the realization of the membership labels at iteration t = 1, . . . , T .

With this information, we can estimate the Posterior Probability Coclustering (PPC) ma-
trix, whose entries are defined as P̂PCj,j′ =

∑T
t=1 1

(
z
(t)
j =z

(t)

j′

)/T, for j, j′ = 1, . . . , p. In

other words, P̂PCj,j′ estimates the proportion of times that coefficients j and j′ have
been assigned to the same cluster along the MCMC iterations. Hierarchical clustering
can be applied directly to the P̂PC matrix for fast solutions as in Medvedovic et al.
(2004).

The resulting partition is easy to interpret. The HSP prior allows for a model-based
clustering driven by the cluster-shrinkage parameter vector λL. Therefore, the clusters
in the solution specified by the optimal partition ẑ can be described as classes of different
magnitude. Therefore, whenever a regularization problem is addressed, we can explicitly
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Figure 2: Posterior densities of the MCSF κ∗l , changing according to the number of co-
efficients assigned to the cluster and to their magnitudes.

identify the subgroup of coefficients characterized by the smallest magnitude that can
be deemed as irrelevant, similarly to the null component in of the two-group model.
In a linear regression framework, this means that we are able to identify the set of
indexes that indicate the least relevant covariates, say B0 = {j ∈ {1, . . . , p} : βj = 0},
inducing a variable selection solution. Moreover, the model also allows the classification of
the remaining parameters into subsets of different magnitudes, yielding an interpretable
ranking.
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4 Simulation study

4.1 Estimating and Predictive Performance

We compare the estimating and predictive performance of the HSP model and the HS
in a linear regression framework. To estimate the model under the Horseshoe prior
specification, we employ the R package bayesreg (Makalic and Schmidt, 2016).

Our experiment consists of five scenarios, characterized by different values of the ra-
tio n/p, describing the proportion between the sample size and number of variables.
Specifically, we consider the following five ratios: n/p ∈ {(1000, 500) = 2, (200, 150) =
1.33, (200, 200) = 1, (500, 1000) = 0.5, (200, 500) = 0.4}. Under each scenario, we gen-
erate K = 100 training and test datasets as follows. We first sample n independent
observations from a multivariate Gaussian as Xi,k ∼ Np (0, Ip), i = 1, . . . , n creating the
design matrixXk, k = 1, . . . ,K. A matrix of the same size is generated to be used as test
set. Then, we sample the regression coefficients βk organized in three different blocks:
β
(1)
j1,k
∼ N (0, 400) for j1 = 1, . . . , 50, β(2)j2,k

∼ N (0, 9) for j2 = 1, . . . , 50, and β(3)j3,k
∼ δ0 for

j3 = 1, . . . , p − 100. That is, for a fixed number of covariates p > 100, we generate 50
coefficients of high magnitude (σ(1) = 20), 50 coefficients of low magnitude (σ(2) = 3),
and p − 100 coefficients identically equal to zero. Finally, we set Yk = Xkβk + εk, with
εk ∼ Nn (0, In).
For the mixture weights, we adopt a sparse mixture specification using L = 50 mix-
ture components and a = 0.05. To quantify the performance of the two models, for
each dataset we compute the mean squared error between the posterior mean β̂k and
the ground truth, defined as MSE(βk, β̂k) =

∑p
j=1(βj,k − β̂j,k)2/p. The same measure

is adopted to compare the prediction errors obtained in test set: MSE(Yk, Ŷk). More-
over, we focus on the estimating performance within each block of coefficients, to assess
the shrinking properties of the HSP compared to the classical HS. We compute the
ratio between the MSE obtained on each block of parameters, namely MSER(β(l)) =

MSEHSP
(
β
(l)
k , β̂

(l)
k

)
/MSEHS

(
β
(l)
k , β̂

(l)
k

)
for l = 1, 2, 3. Therefore, the MSER provides

a relative measure of comparison between the two models shrinkage effects across differ-
ent levels of magnitude.
Figure 3 shows the boxplots of the resulting error measures obtained over the 100 datasets
for each scenario. Each row corresponds to a different quantity: MSE over the coeffi-
cients, MSER over the parameter blocks, and MSE over the outcome variable. Within
every row, each panel correspond to one of the scenarios. The HSP performs consistently
better than the simple HS model, especially when both n/p and n are small. Almost all
the MSER values are below 1, indicating a better estimating performance of the HSP
model. However, when the sample size is larger than the number of variables (Scenarios
1 and 2), the estimating performance of the parameters belonging to the first two blocks
are comparable, with MSER values mostly between 0.75 and 1. The most important gain
given by the HSP model is in precision of the estimation in the third group of coefficients.
In other words, the HSP effectively detects and shrinks to zero the true null coefficients.
The MSER boxplots shows that the errors made on the third block of parameters by the

11



HSP is almost negligible when compared to the classic HS. In Scenario 5 (n/p = 0.4),
the HS fails to accurately estimate the regression coefficients, resulting in a large average
prediction MSE.

We report in Appendix D another simulation study, where we investigate the effect of
the cluster shrinkage as a function of the number of null parameters.

4.2 Multivariate HSP: application to a simulated f-MRI dataset

To show how the HSP can be seamlessly adapted to a multivariate regression setting, we
now employ our model to an artificially designed functional magnetic resonance imaging
(f-MRI) dataset. In a f-MRI experiment, the level of the blood-oxygen-level dependent
(Bold) signal is measured for the entire brain. The blood flow captured by the Bold level
is used as a proxy to study neuronal activation. The main goal of the f-MRI analysis
is to investigate the activation of the brain regions in association with a certain task
(stimulus) performed by the subject under study. In particular, a 3D image of the brain
is partitioned into voxels according to a three-dimensional grid. The Bold level is then
measured for each voxel over time. Therefore, the typical f-MRI dataset is a dynamic
3D image that can be expressed as a four-dimensional array of coordinates (x, y, z, t).
Through the R package neuRosim (Welvaert et al., 2011), we simulate a f-MRI dataset
that closely resembles realistic situations. To this end, we first create an event-specific
stimulus function over T = 100 time stamps of 2 seconds each. This function is then
convoluted with a double-Gamma hemodynamic response function (HRF), to mimic the
hemodynamic delay between the neuron activation and the corresponding difference in
the metabolic status. We use the same event-related onset as suggested in Welvaert
et al. (2011). The resulting explanatory variable X(t), t = 1, . . . , T is shown in the
Appendix E: the red bars represent the stimuli, and the black line the resulting response
function.

According to our simulation scenario, the response function X(t) affects three different,
manually specified, brain regions (Top Right - TR, Top Left - TL and Bottom -BT). The
Bold reactions in the three subsets have different magnitudes, being βBT = 5, βTL = 10
and βTR = 10. On top of the signal, we specify a rician white noise along the temporal
dimension and a Gaussian markov random field for modeling the spatial correlation
structure. For the parameters of the error specification, we resort to the default values
of the functions in neurosim. We also adopt the same signal-to-noise ratio, specified as
SNR = 3.67. We focus on a particular brain slice (z = 13) of dimension 64×64. The
ground truth is highlighted in the left panel of Figure 4.

To apply the HSP model in this context, we need to rewrite our model in a multivariate
fashion. Let Yν(t) be the Bold level at time t = 1 measured in voxel ν. We define, for each
voxel ν = 1, . . . , V , the model Yν(t) = β0 +X(t)βν + εν , and then assume model (7) for
the regression coefficients βν . We employ a sparse mixture model, adopting a Dirichlet
prior for the mixture weights with parameters al = 0.05∀l and run the Gibbs sampler for
10’000 iterations after discarding the burn-in period. To compare our method to other
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Figure 3: Boxplots of estimating and predictive performance of the HSP model compared
to the HS model. The first row of plots shows the MSE computed on the
coefficients, the second row shows the relative MSE in three different blocks of
coefficients, the third row shows the predictive MSE computed on the outcome
variable.
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Figure 4: Clustering results of the multivariate HSP model. The left panel reports the
ground truth. The central and right panels displays the detected voxels when
two and three clusters are chosen in the post-processing procedure, respectively.

models, we run OLS and Bayesian HS voxel-specific models. We showcase the heatmaps
with the MLE estimates (for OLS) and the posterior means (HS and HSP) in Figure 5.
Compared with the other methods, the estimates of the inactive voxels under the HSP
(right panel) are better detected and regularized, as we can see from the uniformity of
the brain-image background, while the true signal is mostly recovered. To understand
how strong is the shrinkage of the coefficients induced by the HSP model, we provide
a comparison of the coefficients’ magnitude in the Appendix E. The HSP aggressively
shrinks to zero all the small coefficients, especially when compared to non-regularizing
methods such as the OSL. The departure from the black line suggests that the HSP
perform a stronger regularization than the HS model as well.

Finally, we can provide a clear distinction between active and inactive voxels exploiting
the clustering nature of the HSP mixture specification. We threshold the resulting poste-
rior coclustering matrix looking for two and three clusters. The results are shown in the
central and right panels of Figure 4. Cluster 1 contains all the voxels characterized by
smallest cluster shrinkage parameter. Thus, these voxels can be deemed as inactive. In
the right plot, we can also distinguish between two additional clusters characterized by
low and high magnitude groups of coefficients, therefore providing an informative rank-
ing between the types of voxel activations as lowly active (Cluster 3) and highly active
(Cluster 2), respectively.
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Figure 5: Brain heatmaps colored according to the magnitude of the coefficient estimates
of the three different models: simple OLS, Horhseshoe (HS) and Horseshoe Pit
(HSP).

5 Application to Brain Wide Anatomics in Mouse

We apply our method to a real problem involving cellular-resolution mapping of dif-
ferences in neuronal activity across brain regions. Advanced methods in optical tissue
clearing and light sheet fluorescence microscopy (LSFM) provide sub-micron resolution
three-dimensional snapshots of fluorescence labeled postmortem mouse brains (Richard-
son and Lichtman, 2015; Renier et al., 2016). We leverage this novel imaging technology
to measure differences in neuronal activity by labeling immediate-early gene (IEG) pro-
tein products with fluorescent antibodies. IEGs are rapidly transcribed following neu-
ronal activity and their protein products can be measured within minutes to assess a
neuron’s recent activity.

Antibody labeling of IEGs is used extensively in thin-section microscopy, and more re-
cently in intact, optically cleared tissues (Lin et al., 2008; Renier et al., 2016). This novel
methodology differs from the classical f-MRI experiment: the data are not dynamic, but
are collected at a very high resolution. Thus, we employ the HSP model in a multiple
testing framework to detect differentially activated regions. As we will show, our meth-
ods is able to overcome the classical binary classification (relevant vs. non-relevant) and
provide more insights ranking of the differential signals according to their importance.
Specifically, to test the efficacy of our method we looked at the effect of light exposure
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on neuronal activity across brain regions.

The brain activity is assessed by measuring up-regulated IEG Npas4. The experiment was
devised as follows: 14 mice were stationed in the dark for 24h and then exposed to ambient
light. The brains of 6 (baseline group) mice were examined 0-15min after light exposure.
The brains of the other 8 mice (light-exposed group) were examined 30-120min after light
exposure, within the window of Npas4 protein up-regulation (Ramamoorthi et al., 2011).
This experimental design aimed to detect brain regions differentially activated between
the baseline and light-exposed groups. A more detailed description of the experiment
and an example of the resulting brain imaging is reported in Appendix F.

To identify activated neurons, we used brainQuant3D augmented with a custom machine-
learning enabled classifier to segment only activated neurons (Schneider et al., 2019).
Prior to segmentation, intensity data are standardized to remove variation in background
fluorescence across samples as intensity = i−µ̃

σ̃ where i is the voxel intensity and µ̃ and σ̃
represent the image total intensity mean and standard deviation, respectively. We aligned
the imaged brain volumes to the annotated Allen reference brain atlas (Allen Institute,
ARAv2). Brain regions in the ARAv2 are hierarchically organized and a terminal region
(id) is assigned to each neuron. We refer to the parent region of a neuron c (i.e.,
its closest ancestor) as PID(c). In total, we analyzed the distribution of over 300,000
neurons. In summary, this workflow allows us to obtain the location of active neurons
in a common three-dimensional reference space and extract their intensity and volume
with remarkable precision. Because Npas4 protein induction is not binary, the degree
of induction within a neuron is used to weigh each count and avoid arbitrary intensity
thresholds. The intensity per unit of volume (iov=intensity

volume ) is the main variable of
interest.

We expect that light exposure induces widespread visually evoked activity. To exemplify,
Figure 6 displays the brains of two representative mice sampled from the two different
experimental conditions (baseline and light-exposed, respectively). Every dot represents
a neuron c, colored according to its parent regions PID(c). The size of each dot corre-
sponds to the neuron’s volume. In Appendix F, we report the main summary statistics
of the frequencies of neurons recorded in the various parents across all mice, stratified
by exposure level along with additional descriptive violin plots. We can appreciate that
the activated neuron count is higher in the light-exposed group of mice.

First, we seek to remove the potential distortion in the intensity given by specific mouse
effects and the potential influence of ancestor areas. As a simple solution, we regress the
variable iov on all possible interactions between the mouse identifiers and the ancestor
identifiers. We denote the resulting residual for each neuron as rc. To take into account
the frequency of the neurons, we multiply rc by the density of neurons per unit of parent
volume. This way, we obtain a new variable of interest: r̃c = rc ∗

nPID(c)

VolPID(c)
. Finally, we

filter out all the brain regions that contain less than 15 neurons. A total of N = 281
regions remain in our analysis after this step.

We start our comparison by testing the differential activation of each brain regions using
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Figure 6: Comparison between detected Npas4 expressing neurons in brains of two rep-
resentative mice exposed to different experimental conditions (Allen annotated
atlas- left, baseline- middle, light-exposed- right). Each dot represents a neu-
ron, the size and color of which represent the neuron’s volume and parent
partition, respectively.

a two-sided Welch’s t-test, comparing the average r̃ baseline vs. light-exposed expres-
sion values in each region. We obtain the t-statistics t = {ti}Ni=1, the values of degrees
of freedom estimated by the Welch–Satterthwaite equation d = {di}Ni=1, and the corre-
sponding p-values p = {pi}Ni=1. The p-values are post-processed following Benajmini and
Hochberg (BH, 1995) and thresholded at 5% to detect the activated regions. The results
provide a benchmark for later comparisons. To obtain a second benchmark, we also
employ the Efron’s empirical Bayes two-group model (locfdr, Efron, 2007). To do so,
we first transform the t-statistics to z-scores: zi = Φ−1

(
FTdi (ti)

)
∀i, where Φ and FTd

denotes the c.d.f. of the standard normal distribution and a Student-t distribution with
d degrees of freedom, respectively. Then, we threshold the resulting local false discovery
rate at 0.20, as suggested in the literature.

Finally, we apply the HSP model directly to the z-scores:

zi|βi, σ2 ∼ N (βi, σ
2), βi|λ, τ, σ ∼

∑
l≥1

πl φ(0, λ2l τ
2 σ2), i = 1, . . . , N. (9)

As previously mentioned, the expression in (9) can be seen as a multi-group model
in a multiple hypothesis testing framework. Within this setting, we will interpret the
component characterized by the lowest variance as representative of the null distribution.
In contrast, the other components (once ranked in increasing order) represent different
degrees of relevance (Shahbaba and Johnson, 2013). To fit model (9), we adopt a Bayesian
nonparametric approach employing a DP stick–breaking representation over the mixture
weights. We fix τ2 = 0.001 and run 150,000 iterations as burn-in period and collect
100,000 as posterior sample.
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We post-process the posterior coclustering matrix with the Medvedovic approach parti-
tioning the z-scores into four tiers of relevance ranging from no activation (Tier 4) to
clear activation (Tier 1). Figure 7 reports both the posterior mean of the coefficients
and the estimated posterior probability of relevance 1− κ̄i. The elements in both panels
are colored according to the tier to which they are assigned. As expected, in the left
panel we see that the different levels are associated with the increasing magnitude of
z-scores. We report both the posterior means (dots) and median (crosses) in the right
panel. This plot helps interpret the tiers of relevance: we notice the shift from Tier 2 to
Tier 3 in the posterior means occurring around 0.5. Therefore, our method can be seen
as an extension of the two-group model, automatically detecting the null group. More-
over, after having filtered out the irrelevant observations, we can partition the remaining
ones into different sets of increasing importance, capturing more information from the
z-scores.

Figure 7: The left panel displays the estimated posterior mean superimposed onto the
original data (transparent dots). The right panel shows the mean and median
posterior probability of relevance, approximated as the complement to one of
the cluster shrinkage factors κ̃i, linked with a gray vertical line to highlight the
difference.

It is interesting to compare the results obtained by BH, locfdr, and HSP. In Table 1
we report the confusion matrices comparing the allocations in classes of relevance of
the different methods. The locfdr method is the most conservative, detecting only 38
regions that are part of HSP’s Tier 1. HSP and BH are more concordant. Overall,
HSP detects 38 additional regions assigned to Tier 2, while we also observe a separation
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HSP Tier 1 2 3 4

BH - Relevant 47 95 0 0
BH - Irrelevant 0 38 18 83

locfdr - Relevant 38 0 0 0
locfdr - Irrelevant 9 133 18 83

Table 1: Comparison of the results obtained with the BH and locfdr procedures vs. the
HSP allocation in tiers of relevance computed on all the brain regions.

between the BH relevant regions into the top two tiers. Given this result, we sought to
identify whether HSP was better at selecting known visually responsive regions.

Visual cortex comprises a collection of posterior cortex regions that provide low level
visual feature extraction and are strongly modulated by visual activity (Hübener, 2003).
Like other cortical regions, visual cortex regions can be divided into layers (Hübener,
2003). Compared to BH, HSP identifies 3 more regions from the visual regions laminae.
Moreover, HSP identifies 4 additional regions of hippocampus, which is known to be
involved in visual memory formation. For this type of data, HSP appears to model the
underlying activity more faithfully. However, further investigations are needed to reveal
more regional patterns of statistically significant activation.

6 Discussion

This paper has introduced a novel shrinkage prior for variable selection and multiple
hypothesis testing. Our approach consists in adopting a discrete mixture model, rem-
iniscent of the two-group models, where each mixture component is itself a continuous
scale mixture distribution. In this way, we can retain the strong shrinkage properties of
the continuous mixtures while performing model-based clustering typical of the discrete
mixtures. The clustering enables the detection of the irrelevant coefficients and poten-
tially segments the relevant ones into classes of relevance, according to the magnitude
of each coefficient. The combination of the two approaches shows promising results,
especially in targeting and regularizing the null coefficients via the clustering-induced
shrinkage structure. Half-Cauchy priors are adopted for the shrinkage parameters, mim-
icking the Horseshoe model. We have derived theoretical results regarding the shrinkage
properties and showcased the potential of our approach in simulated scenarios. Our pro-
posal paves the way for many future research questions. First, different continuous scale
mixture types can be considered to improve the HSP model: either taking into consider-
ation a double Exponential prior generalizing the model in Rockova and George (2016),
or more refined HS distributions such as the HS-like distribution (Bhadra et al., 2019b)
or the Regularized HS (Piironen and Vehtari, 2017). Second, when massive datasets are
analyzed, the devised Gibbs sampler could be too expensive to employ. Efficient MCMC
alternatives can be explored, such as the two algorithms for horseshoe estimation recently
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proposed in Johndrow et al. (2020). Alternatively, an approximate inference method such
as mean-field variational Bayes (Neville et al., 2014) can be adopted.
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Appendix A: the Dirichlet-HS distribution and robust
modeling

To provide an additional perspective, we can relate our regularization prior to the “classi-
cal” vs. “alternative” paradigm discussed by Finegold and Drton (2011) in terms of robust
modeling. Suppose a generic random variable Y is distributed according to a continuous
scale mixture of Normals. In that case, it can be equivalently represented as Y = Xρ,
where X has the multivariate standard Gaussian distribution and ρ is a random scale
parameter. It is well-known that, if ρ ∼ Gamma(ν/2, ν/2), then Y is distributed as a
multivariate Student-t. In the “classical” case, ρ is univariate and shared across all the
coordinates of X = {Xj}pj=1. This case is equivalent to a regularization model with a
unique, random global shrinkage parameter ρ = τ . The opposite situation, where each
entry Xj is paired with a unique scale ρj , is referred to as the “alternative” multivari-
ate Student-t. This case corresponds to the classical global-local shrinkage models with
deterministic τ̄ , where ρj = τ̄λj . In Finegold and Drton (2014), the authors propose
a third distribution, Dirichlet-t, assuming τj ∼ G and G ∼ DP (α,Gamma(ν/2, ν/2)).
This last option is directly linked with our proposal.

Following their definition, once we assume a fixed global shrinkage parameter τ = τ̄ and
λl ∼ C+, both models (2) and (4) in the main paper can be seen as the parametric
and nonparametric versions of a novel Dirichlet-HS distribution, respectively. Shahbaba
(2014) suggested to use this structure in the context of robust modeling, given the ap-
pealing properties of the Horseshoe distribution. This argument can be generalized to
Dirichlet-ρ distributions, defined by considering different specifications for the scale pa-
rameter ρ. Notice that, despite similar names, these distributions are essentially different
from the one proposed by Bhattacharya et al. (2015). Even in this context, the gain is
twofold. First, we obtain a distribution that is more flexible than the “classic” one. Sec-
ond, we allow sharing of statistical strength across the elements of the random vector
even without assuming a distribution for τ , for which special care is needed to carry
out posterior simulation (Piironen and Vehtari, 2017). Moreover, we gain in terms of
computational properties by greatly reducing the number of parameters. Finegold and
Drton (2014) highlight that the structure of a distribution such as the generic Dirichlet-ρ
interpolates between the two extreme model specifications (“classical” vs. “alternative”).
We add that, even in the simple case of a parametric mixture, model (2) in the main
paper gives us direct control of where the resulting distribution takes place between the
two extremes by tweaking the prior over the mixture weights. Figure 8 provides an
example with the Dirichlet-HS distribution with L = 10. The overfitted mixture case
(a ≤ 0.05) is the closest one to the “classical” model, which can be recovered for a→ 0.
As a increases, if L is large enough, the likelihood of sampling distinct values of ρj for
all j increases, and therefore we get closer to the “alternative” model.
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Figure 8: Parametric Dirichlet-HS realizations induced by different specification of the
Dirichlet distribution adopted for L = 10 mixture weights.
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Appendix B: Distributional derivations

Marginal Likelihood

Let σ2 = 1 without loss of generality. Then, the sampling distribution for Yj , j = 1, . . . , n
after marginalizing out the parameter vector β is obtained as:

π(Yj |τ,λ,π) =

∫
π(Yj |β)π(β|τ,λ,π)dβ

=

∫
π(Yj |βj)π(βj |τ,λ,π)dβj

=

∫
1√
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Y 2
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2π(1 + τ2λ2l )

e
−

Y 2
j

2(1+τ2λ2
l
) .

Therefore, Yj |τ,λ,π ∼
∑L

l=1 πlN (0, 1 + τ2λ2l ). If σ2 is supposed to be stochastic, we
would obtain Yj |τ,λ,π, σ2 ∼

∑L
l=1 πlN (0, σ2(1 + τ2λ2l )).
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Posterior mean

Again, let us suppose σ2 = 1. We can derive the posterior mean of the parameter βj as
follows.

E [βj |τ,λ,π, Yj ] =

∫
βj
π(Yj , βj , τ,λ,π)

π(Yj , τ,λ,π)
dβj =

π(τ,λ,π)

π(Yj , τ,λ,π)

∫
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=
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where 1− κ∗k =
τ2λ2l

1+τ2λ2l
and rl(Yj) = πlφ(Yj ; 0, 1 + τ2λ2l ).

28



Appendix C: Gibbs Sampler for the HSP model

1. Let ΛZ = τ2 · diag(λ2z1 , . . . , λ
2
zp) Sample β ∼ Np

(
A−1X ′Y , σ2A−1

)
, where A =

(X ′X + ΛZ). To efficiently sample from this distribution we follow Makalic and
Schmidt (2016) and employ the algorithm of Rue (2001) when p/n ≤ 2, while we
use Bhattacharya et al. (2016) otherwise.

2. Sample zj according to π(zj = l) ∝ πl · φ(βj ; 0;σ2 · τ2 · λ2l ).
Then, compute nl = #{j : zj = l} for l = 1, . . . , L.

3. Introduce the auxiliary variable uλl . Let tl = 1/λ2l . Then, sample uλl ∼ U (0, 1/(1 + tl))
and

tl ∼ G

(
(nl + 1)

2
,

∑
j:zj=l

β2l

2τ2σ2

)
1tl∈[0,1/uλl−1]

.

4. Introduce the auxiliary variable uτ . Let t∗ = 1/τ2. Then, sample uτ ∼ U (0, 1/(1 + t∗))
and

t∗ ∼ G

(
(p+ 1)

2
,

∑
j β

2
j /λ

2
zj

2σ2

)
1t∗∈[0,1/uτ−1].

5. Sample the error variance

σ2 ∼ IG

(
n+ p

2
,

∑
n(yn −Xnβ)2 +

∑
j β

2
j /τλzj

2

)
.

6. Sample the mixture weights π fromDir(a1+n1, . . . , aJ+nL) for finite mixture mod-
els; for nonparametric mixtures, use the corresponding step for the stick-breaking
construction from blocked Gibbs sampler of Ishwaran and James (2001).
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Appendix D: The HSP “gravitational pull” toward zero

To show how the shrinkage effect of the HSP can exploit the similarities in the data,
we consider five different datasets that we index with s = 1, . . . , 5 and specify the
HSP model for estimating the means. Each dataset is characterized by different sam-
ple size ns ∈ {350, 400, 500, 600, 800}. Under each scenario, we generate 300 non-zero
means from Normal distributions with standard deviations 10 and 3, in equal propor-
tions. Then, we generate additional “null” observations βi, with i = 101, . . . , ns from
a N (0,

√
0.001) distribution. Finally, the different datasets are generated according to

Y s ∼ Nns(βsIns , Ins), where Y s is the target variable of length ns under scenario s.
Here, we want to assess how increasing the presence of small/negligible mean values af-
fects the shrinkage profiles and, in turn, how they affect the posterior mean and median
estimates. To isolate the clustering effect, we fix τ2 = 0.001 and set σ2 = 1 to reflect null
distribution specification typical of the two-group model. We employ the HSP model
using a Dirichlet process, reflecting the definition of Dirichlet-HS model in the spirit of
Finegold and Drton (2014).

The results, focusing on the coefficients values ranging between -2.5 and 2.5, are reported
in Figure 9. As the number of null observations increases, the precision of the “shrinkage
focus” of the model improves, imposing more robust regularization on the observations.
To support this statement, we discuss two effects that are evident from the two panels.
First, as more null data points are added to the dataset, the gravitational pull towards
zero that the mode sets on the estimates becomes stronger, imposing wider regularization.
Second, more null observations help to reduce the unnecessary shrinkage imposed on the
non-null ones. This effect is highlighted by the different smoothing lines in the right panel:
the median estimates leave the shrinkage-affected area and reach the black symmetric
line faster as the number of null observations increases.
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Figure 9: Different profiles of shrinkage affecting the posterior mean and median esti-
mates as the number of irrelevant observations under different scenarios in-
crease.
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Appendix E: Additional Figures
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Figure 10: A visual depiction of the shrinkage induced by the HSP model. Clusters
containing numerous coefficients with overall low magnitude are regularized
the most (right end of the scale). On the contrary, cluster containing few, big
coefficients suffer less regularization (left end of the scale).

Multivariate HSP: f-MRI application

Figure 11: Event-specific stimulus function (red spikes) convoluted with a Double-
Gamma HRF adopted for the analysis
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Figure 12: Scatter plot of the estimated coefficients for the simulated f-MRI application.
The two different shapes identify the type of estimates (HS or OLS models)
plotted against the HSP posterior means. The different colors highlight the
induced partition estimated with the HSP model, thresholding the hierarchical
clustering solution to find 3 clusters.

Appendix F: Additional details on Whole-Brain Anatomics
Application

Detailed description of the experiment

The brain activity is assessed by measuring up-regulation of IEG Npas4, which is unique
among IEGs for its high specificity for activity Lin et al. (2008). In our experiment, 14
C57BL/6 (RRID:IMSR_CRL:642) mice were individually housed in the dark for 24h to
establish baseline visual activity. Mice were then transferred into a new cage exposed
to ambient light. Brains of 6 mice were examined 0-15min after light exposure to serve
as the baseline group. Brains of another 8 mice were examined 30-120min after light
exposure, within the window of Npas4 protein up-regulation (Ramamoorthi et al., 2011).
Next, one hemisphere was immunolabeled for Npas4 and rendered optically transparent
using iDISCO+ (Renier et al., 2016). Equal numbers of left and right hemispheres were
sampled. Hemispheres were then imaged on a Zeiss Z.1 light-sheet microscope with a
Mesoscale Imaging System (Translucence Biosystems) at 0.91 µm x 0.91 µm x 6.81 µm
resolution (Zeiss).
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Figure 13: Example LSFM brain images from baseline (top) and light exposed (bottom)
mice. Whole coronal section (left) shown with zoom in of visual cortex (red
box, middle). Associated neuron segmentation shown for zoom in of visual
cortex (right).

Descriptive statistics and boxplots

To obtain a complete picture of the dataset, we report four different sets of descriptive
boxplots in Figure 14. Each panel represents different summary statistics computed over
each parent, stratified by exposure level: the neurons volumes, the number of activated
neurons (frequency), the same quantity divided by the volume of the parent, and the
neuron intensities. As expected, the most noticeable differences between groups appear
when the frequencies of neurons are considered 14 (panel 2,3) instead of the raw neurons’
intensity (panel 1,4).
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Figure 14: Distribution of descriptive summary statistics computed on the dataset. Each
panel corresponds to a different quantity: neuronal volume, frequency per
brain region, frequency over volume, and intensity.

Exposure Level Min Q25 Median Mean Q75 Max

Low 0 21.50 108 376.65 340.50 5507
High 0 34.00 215 1617.80 1946.00 28547

Table 2: Summary statistics of the distribution of neuron frequencies counts in parents
across all mice, grouped by exposure levels.
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Figure 15: Histogram of the z scores for the 281 brain regions considered. The dots,
representing the individual statistics, are colored according to the tiers of
relevance.
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