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Abstract

Background: The tortuosity of nerve fibers has been shown to be important for identifying and 

monitoring clinically relevant manifestations resulting from of a variety of ocular and systemic 

disease pathologies and disorders. However, quantifying tortuosity in dense neurite networks can 

prove challenging, as existing methods require manual scoring and/or complete segmentation of 

the neurite network.

New method: We measured neurite tortuosity by quantifying the degree of directional coherence 

in the Fourier transform of segmented neurite masks. This allowed for the analysis of neurite 

tortuosity without requiring complete segmentation of the neurite network. We were also able to 

adapt this method to measure tortuosity at different length and size scales.

Results: With this novel method, neurite tortuosity was accurately quantified in simulated data 

sets at multiple length scales and scale variant and scale invariant tortuosity was accurately 

distinguished. Use of this method on images of murine corneal neurites correctly distinguished 

known differences between neurite tortuosity in the peripheral and central cornea.

Comparison with existing method(s): Other methods require complete segmentation of 

neurites, which can be prohibitive in dense and/or sparsely labeled neurite networks such as in the 
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cornea. Additionally, other methods require manual curation, manual scoring, or generation of a 

curated training set, while our novel method directly measures tortuosity as an intrinsic property of 

the image.

Conclusions: We report the use of Fourier transforms for quantification of neurite tortuosity at 

multiple length scales, and with an image input that contains incompletely segmented neurites. 

This new method does not require manual training or curation, allowing a direct and rapid 

measurement of neurite tortuosity, thereby enhancing the accuracy and utility of neurite tortuosity 

measurements for evaluation of ocular and systemic disease pathology.
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1. Introduction

1.1. Clinical relevance of neurite tortuosity

In vivo confocal microscopy (IVCM) serves as a noninvasive imaging tool, allowing for 

both structural and quantitative analyses of the cornea (Jalbert et al., 2003). In particular, 

images of the sub-basal nerve plexus, the primary nerve plexus supplying the corneal 

epithelium, collected by IVCM have been utilized to evaluate various aspects of corneal 

nerve morphology. The tortuosity of these nerve fibers has been shown to be an important 

indicator of clinically relevant changes resulting from a variety of disease pathologies and 

disorders. For example, corneal nerve tortuosity was cited as a key biomarker for assessing 

the severity of diabetic neuropathy (Edwards et al., 2014). Nerve tortuosity was inversely 

correlated with corneal sensation, a primary symptom of Herpes zoster ophthalmicus 

infection of the trigeminal nerve (Hamrah et al., 2013). Patients with acute Acanthamoeba 
keratitis or fungal keratitis demonstrate a significant increase in nerve tortuosity (Kurbanyan 

et al., 2012), and abnormally tortuous nerve fiber bundles were found in patients with 

primary Sjögren’s syndrome (Tuominen et al., 2003).

1.2. Limitations of previous methods

Previous studies have used two primary methods for evaluation of nerve tortuosity. One 

method that bypasses the need for image processing involves assessment by a corneal 

specialist or trained grader who assigns images a grade of nerve tortuosity, or a normal/

aberrant status (Hamrah et al., 2013; Muraoka et al., 2013; Eleid et al., 2014; Lagali et 

al., 2015). However, tortuosity estimations produced by specialists or graders are limited 

by inter-observer and intra-observer variability, as well as limited repeatability due to 

cost and time. Alternatively, automated methods have been presented, and in recent years 

have taken precedence over manual segmentation. The most common method of automatic 

tortuosity estimation framework (ATEF) involves the use of a variety of different algorithms 

(Guimarães et al., 2014, 2016; Joshi et al., 2010; Wilson et al., 2008; Bullitt et al., 2004; 

Koprowski et al., 2012; Scarpa et al., 2011; Grisan et al., 2008; Annunziata et al., 2016).

A fundamental issue with tortuosity estimation through an ATEF is their dependence on 

complete, correct segmentation of all neurites within an image, making them unamenable 
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to dense or complex structures. Deep learning (Soltanian-Zadeh et al., 2019; Huang et al., 

2020; Melinscak et al., 2015) or machine learning algorithms (Turior et al., 2013; Gala 

et al., 2014; Kandaswamy et al., 2013a; Januszewski et al., 2018) have been proposed to 

circumvent the requirement for complete neurite segmentation; however, this approach still 

depends on both inference and manual curation based on a subjective criterion, or complete 

segmentation of a training data set.

1.3. Evaluation of neurite tortuosity using discrete Fourier transforms

We report a solution to the above methodological issues that allows for the inference of 

neurite tortuosity without the requirement for complete neurite reconstruction or model 

training. Our solution takes advantage of the fact that by defining tortuosity as a lack 

of directional coherence of neurites both globally (across the entire image) and locally 

(grid-wise analysis of subregions within the image), the average tortuosity of a neurite 

network can be accurately inferred even from a set of discontinuously segmented neurites. 

Specifically, the method we report measures the degree of anisotropy in the power spectrum 

of the discrete Fourier transform (DFT) to measure the degree of directional coherence, 

which we show is inversely proportional to the average tortuosity of the neurites.

2. Materials and methods

2.1. Animal care

All procedures involving animals were conducted under a protocol approved by the Animal 

Care and Use Committee, University of California Berkeley, an AAALAC accredited 

institution. C57BL/6 mice were used. Mice were female and ~ 6 weeks of age. For use 

in experiments, mice were euthanized using 5% isoflurane (10 min) followed by cervical 

dislocation and eyes prepared for imaging. Eleven mice were used in this study.

2.2. Corneal nerve staining

Enucleated eyes were fixed for 1 h in 100% methanol, followed by washing in PBS for 

10 min with gentle rotation. Corneas were then removed under a dissecting microscope 

while the eye was kept over ice. Dissected corneas were washed once in PBS for 10 min, 

immersed in blocking solution (3% bovine serum albumin (BSA) and 0.3% Triton X-100 

in PBS) for 1 h at room temperature, then incubated for 1 h in 20 mM EDTA at 37 °C. 

Corneas were then incubated in a primary antibody labeling solution consisting of rabbit 

anti-mouse β-Tubulin III (Sigma-Aldrich; #T2200) diluted 1:500 in blocking solution and 

incubated overnight at 4 °C. Corneas were then removed, washed in PBS for 10 min, then 

incubated with secondary antibody labeling solution consisting of goat anti-rabbit antibody 

(Life Technologies; #A11034) diluted 1:500 in PBS with 1 × DAPI. After 2 h at room 

temperature, corneas were transferred to fresh PBS and washed 3 times for 10 min. Each 

of the above washes and incubation steps involved gentle rotation. Corneas were then 

flat-mounted with Prolong Gold (Thermo Fisher Scientific, Molecular Probes #P363961) to 

enhance the visibility during imaging.
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2.3. Image acquisition

Flat-mounted corneas were imaged using an upright Olympus Fluoview FV1000 Confocal 

Microscope equipped with a 20x/1.0NA water-dipping objective under. Eyes were imaged 

using the 488 nm laser line of an argon laser. Z-stacks were imaged over a 636 μm × 636 

μm × 74 μm volume with 1.24 μm × 1.24 μm × 1.24 μm cubic voxels. Image stacks were 

collected from five fields per sample including one from the center of the cornea and four 

from the peripheral corneal flat petals.

2.4. Image processing and analysis

Initial image processing and analysis was performed using FIJI (Schindelin et al., 2015) 

(ImageJ 1.52p) with the TransformJ (Meijering et al., 2001) plugin and Canny Edge (Canny, 

1986) plugin. Statistical analysis and plotting were performed with Python 3.8.3 64-bit with 

Pandas 1.1.3 (McKinney, 2010) and Microsoft Excel 16.0 64-bit. ImageJ macros and Python 

code available here: https://github.com/Llamero/Dendrite_tortuosity_analysis.

Statistical analysis was performed using the Kolmogorov-Smirnov (KS) test in SciPy 1.5.2 

(Virtanen et al., 2020).

3. Results

3.1. Image stack segmentation and skeletonization

Prior to analyzing neurite tortuosity, we first segmented and skeletonized the neurites (Fig. 

1A). This step was essential to normalize the image stacks and prevent the tortuosity 

analysis from being biased towards nerve bundles and brighter/thicker neurites. Specifically, 

we used only standard denoising filters and a simple segmentation/skeletonization approach. 

The output of this filtering is a two-dimensional binarized mask of all visible neurite 

segments within the field-of-view. As our analysis method does not depend on the neurite 

segmentation being continuous, the processing pipeline did not require model fitting or 

manual curation techniques to bridge the neurite segments, which served to reduce the 

complexity and time required for initial image processing.

3.1.1. Noise and background subtraction—The high temporal frequency 

photomultiplier noise was first removed from the image stack using an axial Gaussian 

convolution. While conventionally a lateral median filter is used to remove detector noise, 

this filter would also have removed many of the finer neurites in the image, biasing the 

analysis towards thicker neurites. However, as the Z-step distance between optical sections 

was smaller than the axial optical resolution, a small axial Gaussian filter (σ = two pixels) 

suppressed the high frequency detector noise without impacting the axial resolution of the 

neurites (Fig. S1).

The local contrast and intensity of the neurites was then normalized by removing any 

background signal, including artefacts such as vignetting as well as structured background 

such as autofluorescence. Fortunately, neurites are thin, sparse projections within an image, 

which easily distinguishes them from the mottled background signal. Therefore, a lateral 

median filter (radius = three pixels) was used to excise the sparse, thin neurites, while 
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retaining as much background detail as possible. The background signal was then be 

removed by subtracting the median filtered background image stack from the denoised 

image stack.

3.1.2. Skeletonizing neurites—After the noise and background had been removed 

from the image stack, the neurites were segmented. Skeletonizing the neurites not only 

served to segment them into a binary mask, but also normalized their intensity and thickness. 

This normalization was necessary to prevent thicker neurites and nerve bundles from 

becoming over-represented in the DFT. One standard approach to segment the neurites 

would be to threshold the image stack to create a binary mask, and then plot the medial 

axis (i.e. morphological skeleton) of the thresholded mask. The major limitation to this 

approach is finding a threshold that maximizes neurite segmentation while minimizing the 

inclusion of any remaining background signals, especially when automating the analysis 

pipeline. Therefore, we used an alternate approach using local maxima, which effectively 

thresholds based on local contrast rather than a global cutoff. Specifically, the image stack 

was transformed 90° about the X and Y axes to the corresponding Z projections and then 

the local maxima points were plotted for each slice, taking advantage of the fact that 

corneal neurites are primarily oriented in the lateral plane. Segmentation of both XZ and 

YZ projections is necessary to ensure that regions of neurites that are perfectly aligned with 

either axis are completely segmented (Fig. 1A).

3.2. Quantifying neurite tortuosity via DFT

Previous methods for quantifying neurite tortuosity relied on having continuous correctly 

segmented neurites, and then comparing the length of the neurite to the linear distance 

the neurite traverses. As previously discussed, this adds complexity to the analysis as it 

requires complete and correct segmentation of neurites, which can be prohibitive in tissues 

with dense neurite meshes. Recent approaches used to segment dense, discontinuous neurite 

meshes have used modeling and inference (Quan et al., 2015; Pani et al., 2014; Li et al., 

2019). However, while useful for determining neural connectivity, the resulting neurite paths 

are a combination of the actual neurite paths derived from the original image stack, and the 

model’s generated paths used to bridge gaps between neurite segments where there was no 

signal. This presents a new issue of how to design a model to bridge gaps in neurites that 

does not impose a priori assumptions on the path those neurites would have taken, which 

would inherently impact the quantification of the tortuosity of that path. Therefore, a method 

that can infer neurite tortuosity without needing to fill in these gaps would be ideal, as the 

measurement would be derived purely from the original data.

Our method circumvents the issue of modeling neurite paths by measuring the directional 

coherence of the neurites to infer the over-all tortuosity of the neurite paths. This inference 

takes advantage of the fact that neurites that have a no tortuosity (i.e., travel in the shortest 

path possible) will inherently be directionally coherent along their path - as the only way to 

have no tortuosity is for the neurite to always be heading in the same direction.

Specifically, we used the power spectrum of the DFT of the neurite masks to quantify 

directional coherence (Fig. 1B). Since the power spectrum plots the angle and amplitude 
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of all possible spatial frequencies comprising the image, images with a high degree 

of directional coherence will correspondingly show an enrichment of spatial frequency 

amplitudes orthogonal to the neurite paths, where the degree of this anisotropy in the power 

spectrum is inversely proportional to the degree of tortuosity (see Supplemental Movie 1).

3.2.1. Create polar plot of power spectrum—To measure the anisotropy of the DFT, 

a 2D plot of the DFT power spectrum was produced of the neurite mask. A polar plot of the 

power spectrum amplitude was then generated by measuring the median amplitude within 

an annular sector of the power spectrum (Fig. 1B). The use of an annular sector allowed the 

measurement to be further refined by creating a bandpass filter that enriched for the spatial 

frequencies of interest (Fig. 1B - white dashed circles). Specifically, the use of a bandpass 

filter allows for the analysis to be targeted to a specific range of tortuosity feature sizes and 

serves to suppress pixel harmonic artefacts found in the highest spatial frequencies (Fig. S2). 

We used a passband of 5.0 μm per cycle to 40 μm per cycle to analyze the neurite masks, 

and the equivalent pixel frequency passband of 4.0 pixels per cycle to 32 pixels per cycle to 

analyze the simulated datasets. The median amplitude within the sector was then measured 

across a full 360° rotation around the power spectrum and plotted as a polar plot of median 

amplitude vs. angular direction.

3.2.2. Quantifying polar plot anisotropy—Once the 2D power spectrum plot was 

reduced to a polar plot, the directional anisotropy can then be inferred by fitting an ellipse 

to the polar plot and measuring the aspect ratio (minor axis radius: major axis radius) of the 

polar plot.

3.3. Scale variant tortuosity

As others have previously shown, neurite tortuosity is also scale variant, meaning that the 

degree or tortuosity can vary depending on the length scale with which it is measured 

(Guimarães et al., 2016). One of the easiest ways to conceptualize scale variant tortuosity is 

with neurites that radiate from an origin, such as with neurites entering the lamina cribrosa 

in the retina, or neurites spiraling about an origin, such as in the center of the cornea. 

In the case of the spiraling neurites, tortuosity at large scales, hereinto referred as global, 

would appear tortuous as the neurites are continuously changing direction across the field 

of view. However, at the small scale, hereinto referred as local, the radius of the curvature 

is sufficiently large that the same neurites can appear to be directionally coherent, assuming 

there is no additional directional variance in the neurites other than the spiral path.

3.3.1. Scale variant tortuosity simulations—To simulate the impact of scale 

variance when measuring tortuosity, we created both a scale invariant model (Fig. 

2A, Supplemental Movie 1), using parallel lines, and a scale variant model (Fig. 2B, 

Supplemental Movie 2) using lines curving about a central origin. To simulate the 

discontinuous segmentation of neurites, the number of line segments comprising each line 

were randomly varied. An identical random seed was used for both simulations, such that 

the only difference between the two simulations is the starting radius of curvature of each 

line.
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Approximate scale invariant tortuosity was then incrementally added to the simulation by 

varying the angle between each line segment (Fig. 2C and D) using the following equation: 

θfinal = θinitial + αscaleφrandom, where αscale ∈ 0, 1  is the tortuosity scaling factor and φrandom is a 

uniform random angle on −π, π .

3.3.2. Quantifying scale variant tortuosity—The tortuosity quantification method 

demonstrated in Fig. 1 can be readily adapted to different length scales by dividing the 

original image into a grid of sub regions, where the dimensions of each grid square 

represents the length scale in which tortuosity will be measured. One additional step to 

the method in Fig. 1 is that at smaller length scales, the density of neurites can vary greatly 

between subregions of an image, so the measured tortuosity of each grid division needs to be 

normalized to the density of neurites within the grid division using the following equation:

τnet = ∑i = 0
n ∑j = 0

n τi, jρi, j

∑i = 0
n ∑j = 0

n ρi, j

(1)

where the original image is divided into an n × n grid, τi, j is the measured tortuosity within 

a grid division, and ρi, j is the measured neurite density within a grid division (i.e., the 

fractional surface area of the neurite mask within the grid square).

To validate this quantification method, scale variant and invariant tortuosity was simulated 

from αscale = 0 (no tortuosity) to αscale = 0.6 (high tortuosity). The tortuosity was then 

quantified globally using a 1 × 1 grid and locally using a 4 × 4 grid (Fig. 2A–D). In 

the scale invariant simulation, the local and global measured tortuosity were nearly identical 

and scaled proportionally with the tortuosity scaling factor (Fig. 2E). Conversely, in the scale 

variant simulation, the global measured tortuosity stayed relatively constant, independent 

of the scaling factor, while the local measured tortuosity was proportional to the tortuosity 

scaling factor (Fig. 2F). These results confirm that our method can accurately quantify local 

and global tortuosity and distinguish between scale variant and scale invariant data and 

emphasizes the importance of factoring scale when defining and quantifying tortuosity.

3.4. In vivo quantification of neurite tortuosity

To validate our analysis method in vivo, we quantified the tortuosity of the neurites 

innervating the mouse cornea. We specifically chose this model as it is known that the 

neurites spiral in towards the center of the cornea (Marfurt et al., 2019), resulting in a 

spiral pattern of neurites at the center of the cornea similar to the scale variant tortuosity 

simulation (Fig. 3A). Conversely, at the periphery of the cornea, the radius of curvature 

of the neurite spiral is much larger, causing the neurites to have a pattern similar to the 

scale invariant tortuosity simulation (Fig. 3B). As a result, we would expect the global scale 

tortuosity to be different between the central and peripheral neurites, while the local scale 

tortuosity should be more similar since it would be less impacted by the spiral pattern.

To test this hypothesis, we skeletonized confocal image stacks of neurites from both the 

central cornea (11 images from 11 mice) and peripheral cornea (31 images from 11 mice) 
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using the method described in Fig. 1A. The neurite tortuosity was then quantified globally 

using a 1 × 1 grid and locally using a 4 × 4 grid.

At the global scale, the median tortuosity of the neurites in the central cornea was 24% 

higher than the neurites in the peripheral cornea (delta median = 0.14, KS test p-value 

= 0.0016) (Fig. 3C). Conversely, at the local scale, there was only an 8.5% difference in 

neurite tortuosity between the central and peripheral cornea (delta median = 0.064, KS test 

p-value = 0.027) (Fig. 3D). The fact that the difference in tortuosity between the central and 

peripheral neurites is three times greater at the global scale than the local scale reveals that 

the primary difference between the innervation of the central and peripheral cornea is the 

radius of curvature of the inward spiral which is primarily a global scale effect.

4. Discussion

We described a novel approach that allows for measuring the tortuosity of dense, 

discontinuous neurite networks in vivo without the need for inference or modeling. The 

outputs of our method therefore reflect only the endogenous tortuosity of the raw data, 

without possible confounding effects resulting from various computational models that 

might be used to bridge such discontinuities. We also show that our approach can be 

tuned to effectively analyze directional coherence not only across a range of distances 

(global vs. local), but also across specific bands of spatial frequencies (high frequency of 

inflection points vs. low frequency of inflection points). Since our method was designed for 

dense, discontinuous neurites common to in vivo conditions, we also suggest it could prove 

clinically useful for a variety tissues, not just the eye.

4.1. Circumventing the problem of discontinuities in existing approaches

A variety of solutions have been proposed to tackle the non-trivial, and at times intractable, 

issue of accurately and completely segmenting dense and/or discontinuous neurite networks 

(Quan et al., 2015; Pani et al., 2014; Li et al., 2019). In particular, tracing algorithms are 

often limited by discontinuities (breaks) in images of neurite networks and have traditionally 

required some form of model based gap filling approach (Soltanian-Zadeh et al., 2019; 

Huang et al., 2020; Melinscak et al., 2015) to mitigate this issue. However, as these 

algorithms require a priori assumptions about the range of valid paths to take when bridging 

a gap in an image of a neurite, they currently cannot preserve the tortuosity of neurite paths 

across these discontinuities accurately, as this would require first training the model with 

the measured tortuosity of the existing data. In other words, accurately measuring tortuosity 

using existing methods requires bridging neurite discontinuities in the image; however, one 

needs to know the tortuosity of the neurites to know how to best trace the neurite across the 

gap, creating a circular argument. The method shown in this paper can be used to resolve 

this issue by allowing the tortuosity to be analyzed solely based on the raw data available, 

which could then be used to inform models used to bridge discontinuities in neurites images.

4.2. Dense neurite networks

Even in the absence of discontinuities, the issue of accurate and complete segmentation 

of complex neurite networks remains non-trivial. Manually curated segmentation of just 
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a single image with hundreds or even thousands of individual fibers, can be prohibitively 

time consuming. This time-cost is further compounded by the fact that experiments often 

require the segmentation of large image sets, multiplying the labor invested during this 

process. Many automated approaches continue to be developed to autonomously segment 

neurites and/or quantify tortuosity (Joshi et al., 2008; Wilson et al., 2008; Bullitt et al., 2004; 

Koprowski et al., 2012; Scarpa et al., 2011; Grisan et al., 2008; Barch et al., 2021; Heneghan 

et al., 2002; Kandaswamy et al., 2013b; Jiang et al., 2021; Banerjee et al., 2020); however, 

accurate segmentation of neural networks remains an open challenge, where current methods 

still require both manually segmented training sets and manual validation of the results. Our 

method resolves this issue by quantifying neurites at the population level negating the need 

to segment individual neurites, allowing for broader application to image sets with dense 

innervation.

4.3. Limitations

Although our method addresses several key issues not accounted for by previously discussed 

approaches, it is not by any means a universal solution to all neurite types. Our method 

is best applied to very dense and/or discontinuous neurite images and as it is designed 

to measure tortuosity at the population level, other methods would be much better suited 

for inferring the tortuosity of individual neurites in a network. For example, if the image 

of interest contains singular, well-defined neurites, as seen in 2D neuronal cell cultures 

(Kandaswamy et al., 2013a), then previously described methods would serve better as they 

would be able to provide individual neurite tortuosity values which could then be averaged 

to obtain a population level description. Conversely, our approach should prove sufficient 

if not desirable in clinical settings as it directly returns values of over-all tortuosity at the 

population level, the descriptor used in diagnosis of disease pathologies (Edwards et al., 

2014; Hamrah et al., 2013; Kurbanyan et al., 2012; Tuominen et al., 2003).

As previously mentioned, this method is also limited to directionally coherent neurites since 

it infers tortuosity from the degree of directional coherence within the neurites, as measured 

by the degree of anisotropy in the power spectrum of the DFT. As a result, this method 

would not be well suited for analyzing radially symmetric/isotropic neurite networks, such 

as those often found in culture in the absence of a scaffold, or radially symmetric neurons 

such as amacrine cells (Famiglietti, 1983).

4.4. Summary

Overall, our new approach for inferring the average tortuosity of dense and/or discontinuous 

neurite networks commonly found in images of in vivo innervation, allows scientists and 

clinicians to bypass the need for accurate complete neurite segmentation or model training. 

Additionally, the proposed method involves use of standard image processing to skeletonize 

neurites, removing background signal and artifacts through a series of simple convolutional 

filters. As a result, this method serves to complement existing methods for measuring 

tortuosity, expanding the array of datasets of neurite networks that can be easily and 

accurately quantified.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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IVCM In vivo confocal microscopy

ATEF automatic tortuosity estimation framework

DFT discrete Fourier transform

KS Kolmogorov–Smirnov
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Fig. 1. 
Neurite tortuosity analysis pipeline. (A) Image processing steps used to generate a mask 

of neurites from a raw image stack. Scale bar = 100 μm. (B) Image analysis steps used to 

quantify neurite tortuosity using the discrete Fourier transform (DFT) power spectrum. Scale 

bar = 100 μm.
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Fig. 2. 
Analysis of stimulated neurite tortuosity. (A) Scale invariant tortuosity simulation where 

the tortuosity scale factor αscale = 0. The simulated data was analyzed both with a 1 × 1 

grid (global) and 4 × 4 grid (local – magenta inset). The corresponding discrete Fourier 

transforms (DFTs) and polar plots are also shown. (B) Scale variant tortuosity simulation 

where the tortuosity scale factor αscale = 0. The simulated data was analyzed identically 

to panel A. (C) Scale invariant tortuosity simulation where the tortuosity scale factor 

αscale = 0.6. The simulated data was analyzed identically to panel A. (D) Scale variant 

tortuosity simulation where the tortuosity scale factor αscale = 0.6. The simulated data was 

analyzed identically to panel A. (E) Plot of the correlation between the tortuosity scale factor 

αscale  and the measured tortuosity τnet  for both the 1 × 1 grid analysis (global) and 4 × 4 grid 

analysis (local) of the scale invariant tortuosity simulation. (F) Similar plot to panel E of the 

scale variant simulation.
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Fig. 3. 
Analysis of corneal neurite tortuosity. (A) Filtered maximum intensity projection of neurites 

in the murine central cornea. Scale bar = 100 μm. (B) Filtered maximum intensity projection 

of neurites in the murine peripheral cornea. Scale bar = 100 μm. (C) Notched box plots 

and swarm plots of 1 × 1 tortuosity grid analysis (global) of central corneal neurite image 

stacks (n = 11) and peripheral corneal neurite image stacks (n = 31). The respective KS test 

p-values are shown in the bottom right corner of the plot. (D) Similar plot to C of 4 × 4 

tortuosity grid analysis (local).
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Movie 1. Supplemental Movie 1. Scale invariant tortuosity simulation and analysis.
This movie shows the scale invariant tortuosity simulation with the tortuosity scale factor 

αscale  increasing linearly from 0 to 0.6 (left column). The corresponding discrete Fourier 

transform (middle column), and polar plot analysis (right column) are also shown. The top 

row shows the analysis for the whole field, while the bottom row represents a local analysis 

that is 1/16th the area of the whole field.A video clip is available online. Supplementary 

material related to this article can be found online at doi:10.1016/j.jneumeth.2021.109266.
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Movie 2. Supplemental Movie 2. Scale variant tortuosity simulation and analysis.
This movie is the same as Supplemental movie 1, but for the scale variant tortuosity 

simulation.A video clip is available online. Supplementary material related to this article can 

be found online at doi:10.1016/j.jneumeth.2021.109266.
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